Electrochemical aminotrideuteromethylthiolation of isocyanides

with anilines and CD₃SSO₃Na

Lin Zhao,¹ Xinyu Zhou,¹ Kemeng Zhang,¹ Siyu Han,¹ Ge Wu,^{*1,2}

^aState Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China

^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

*E-mail: wuge@wmu.edu.cn

Table of Contents

(1) General considerations, experimental data	S2-S21
(2) ¹ H, ¹³ C and ¹⁹ F NMR spectra of products	
(3) HRMS spectra of products	\$58-\$74

General Information

Anilines and tert-butyl isocyanide were purchased from Energy Chemical Company in China.¹H NMR (500 MHz), ¹³C NMR (125 MHz) and ¹⁹F NMR (470 MHz) spectra were recorded in CDCl₃ and DMSO-D6 solutions using a Burker AVANCE 500 spectrometer. High-resolution mass spectra were recorded on an ESI-Q-TOF mass spectrometer. Analysis of crude reaction mixture was done on the Varian 4000 GC/MS and 1200 LC. All reactions were conducted using standard Schlenk techniques. Column chromatography was performed using EM silica gel 60 (300–400 m). Cyclic voltammetry data were measured with a Shanghai Chenhua potentiostat (CHI660E). All the electrochemical synthetic experiments were carried out in Ika stirrer.

General Experimental Procedures

Typical procedure for the preparation of 4a:

aniline (1a, 0.3 mmol), *t*-BuNC (2a, 0.3 mmol), CD₃SSO₃Na (3a, 0.6 mmol), KI (0.06 mmol) and MeCN (6 mL) were sequentially added to a 15 mL Single neck quartz glass that equipped with a magnetic stirrer bar and sealed with rubber plugs under air atmosphere. A carbon rod (Φ 6 mm) anode and a platinum electrode (10 mm×10 mm×0.3 mm) were used as the cathode in the bottle. About 1.0 cm of the carbon rod and platinum was under the solution. The reaction mixture was stirred and electrolyzed at a constant current of 8 mA under air at room temperature for 3 hours. After completion of the reaction, the solution was concentrated in vacuum. The resulting crude mixture was purified by flash column chromatography to give the desired product 4a.

Mechanistic Studies

aniline (1a, 0.3 mmol), *t*-BuNC (2a, 0.3 mmol), CD₃SSO₃Na (3a, 0.6 mmol), TEMPO (0.3 mmol), KI (0.06 mmol) and MeCN (6 mL) were sequentially added to a 15 mL Single neck quartz glass that equipped with a magnetic stirrer bar and sealed with rubber plugs under air atmosphere. A carbon rod (Φ 6 mm) anode and a platinum electrode (10 mm×10 mm×0.3 mm) were used as the cathode in the bottle. About 1.0 cm of the carbon rod and platinum was under the solution. The reaction mixture was stirred and electrolyzed at a constant current of 8 mA under air at room temperature for 3 hours. After completion of the reaction, and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), none of 4a was detected by GC-MS.

KI (0.06 mmol) and MeCN (6 mL) were sequentially added to a 15 mL Single neck quartz glass that equipped with a magnetic stirrer bar and sealed with rubber plugs under air atmosphere. A carbon rod (Φ 6 mm) anode and a platinum electrode (10 mm×10 mm×0.3 mm) were used as the cathode in the bottle. About 1.0 cm of the carbon rod and platinum was under the solution. The reaction mixture was stirred and electrolyzed at a constant current of 8 mA under air at room temperature for 3 hours. After completion of the reaction, we noticed that the solution turned brown, and then we performed the acetone iodization experiment, and soon the color became colorless. This experimental result confirms that potassium iodide is easily oxidized to iodine.

$$\begin{array}{c} Ph \\ Ph \\ Ph \end{array} + CD_3SSO_3Na \xrightarrow{C(+) / Pt(-), 8 \text{ mA}} \\ \hline KI (20 \text{ mmol}\%), CH_3CN, 3 \text{ h, rt} \end{array} \xrightarrow{Ph} \\ \begin{array}{c} SCD_3 \\ Ph \\ Ph \end{array} \qquad (eq. 3) \\ \hline 7a, 97\% \end{array}$$

1,1-diphenylethylene (**1a**, 0.3 mmol), CD₃SSO₃Na (**3a**, 0.6 mmol), KI (0.06 mmol) and MeCN (6 mL) were sequentially added to a 15 mL Single neck quartz glass that equipped with a magnetic

stirrer bar and sealed with rubber plugs under air atmosphere. A carbon rod (Φ 6 mm) anode and a platinum electrode (10 mm×10 mm×0.3 mm) were used as the cathode in the bottle. About 1.0 cm of the carbon rod and platinum was under the solution. The reaction mixture was stirred and electrolyzed at a constant current of 8 mA under air at room temperature for 3 hours. After completion of the reaction, and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), **7a** was isolated.

(2,2-diphenylvinyl)(methyl-d3)sulfane

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (44.4 mg, 97% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.42 (m, 2H), 7.39-7.25 (m, 8H), 6.60 (s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 141.83, 139.58, 138.50, 129.78, 128.41, 128.33, 127.60, 127.06, 126.93. HRMS (ESI): calcd for C₁₅H₁₂D₃S [M + H]⁺ 230.1077, found 230.1074.

Cyclic Voltammetry Studies

The cyclic voltammograms were recorded in an electrolyte of Bu_4NPF_6 (0.1 M) in CH₃CN using a glassy carbon disk working electrode (diameter, 3 mm), a Pt wire auxiliary electrode and a SCE reference electrode. The scan rate is 100 mV/s.

E/V vs. SCE

Figure S1:

Figure S1: Cyclic voltammogram of 10 mM KI obtained in CH_3CN containing 0.1 M Bu_4NPF_6 at a 3 mm diameter planar glassy carbon (GC) electrode and at a scan rate of 0.1 V s⁻¹ at room temperature. Starting point is 0 v and positive direction of scan.

Figure S2;

Figure S2: Cyclic voltammogram of 10 mM PhNH₂ obtained in CH₃CN containing 0.1 M Bu_4NPF_6 at a 3 mm diameter planar glassy carbon (GC) electrode and at a scan rate of 0.1 V s⁻¹ at room temperature. Starting point is 0 v and positive direction of scan.

Figure S3

Figure S3: Cyclic voltammogram of 10 mM CD₃SSO₃Na obtained in CH₃CN containing 0.1 M Bu_4NPF_6 at a 3 mm diameter planar glassy carbon (GC) electrode and at a scan rate of 0.1 V s⁻¹ at room temperature. Starting point is 0 v and positive direction of scan.

Characterization of Products in Details :

methyl-d3 (Z)-N-(tert-butyl)-N'-phenylcarbamimidothioate

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (61.5mg, 91% yield). ¹H NMR (400 MHz, DMSO- d_6) δ 7.23-7.19 (m, 2H), 6.94-6.89 (m, 1H), 6.75-6.73 (m, 2H), 5.74 (s, 1H), 1.41 (s, 9H). ¹³C NMR (100 MHz, DMSO- d_6): δ 150.71, 150.20, 128.98, 122.35, 121.94, 52.97, 28.91. HRMS (ESI): calcd for C₁₂H₁₆D₃N₂S [M + H]⁺ 226.1457, found 226.1458.

methyl-d3 (Z)-N-(tert-butyl)-N'-(p-tolyl)carbamimidothioate

4b

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (66.0 mg, 92% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 (s, 1H), 7.10 (d, *J* = 8.0 Hz, 2H), 6.81 (d, *J* = 8.2 Hz, 2H), 2.33 (s, 3H), 1.47 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 150.09, 148.19, 130.57, 129.49, 122.18, 52.91, 28.92, 20.94. HRMS (ESI): calcd for C₁₃H₁₈D₃N₂S [M + H]⁺ 240.1614, found 240.1623.

methyl-d3 (Z)-N-(tert-butyl)-N'-(4-isopropylphenyl)carbamimidothioate

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (72.1 mg, 90% yield). ¹H NMR (400 MHz, DMSO- d_6): δ 7.07 (d, J = 8.3 Hz, 2H), 6.65 (d, J = 8.3 Hz, 2H), 5.65 (s, 1H), 2.82 (p, J = 6.9 Hz, 1H), 1.40 (s, 9H), 1.19 (d, J = 6.9 Hz, 2H), 5.65 (s, 1H), 2.82 (p, J = 6.9 Hz, 1H), 1.40 (s, 9H), 1.19 (d, J = 6.9 Hz, 2H), 5.65 (s, 1H), 2.82 (p, J = 6.9 Hz, 1H), 1.40 (s, 9H), 1.19 (d, J = 6.9 Hz, 2H), 5.65 (s, 1H), 2.82 (p, J = 6.9 Hz, 1H), 1.40 (s, 9H), 1.19 (d, J = 6.9 Hz, 2H), 5.65 (s, 1H), 2.82 (p, J = 6.9 Hz, 1H), 1.40 (s, 9H), 1.19 (d, J = 6.9 Hz, 2H), 5.65 (s, 1H), 2.82 (p, J = 6.9 Hz, 1H), 1.40 (s, 9H), 1.19 (d, J = 6.9 Hz, 2H), 5.65 (s, 1H), 2.82 (s, 2H), 5.65 (s, 2H),

6H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 150.00, 148.45, 141.80, 126.74, 122.14, 52.91, 33.32, 28.92, 24.66. HRMS (ESI): calcd for C₁₅H₂₂D₃N₂S [M + H]⁺ 268.1927, found 268.1933.

methyl-d3 (Z)-N-(tert-butyl)-N'-(4-fluorophenyl)carbamimidothioate

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (62.0 mg, 85% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.04-7.00 (m, 2H), 6.74-6.71 (m, 2H), 5.76 (s, 1H), 1.40 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 158.19 (d, *J* = 237.1 Hz), 150.94, 147.23, 123.55 (d, *J* = 7.9 Hz), 115.48 (d, *J* = 21.9 Hz), 53.02, 28.89. ¹⁹F NMR (375 MHz, DMSO-*d*₆) δ -123.00 (1F); HRMS (ESI): calcd for C₁₂H₁₅D₃N₂FS [M + H]⁺ 244.1363, found 244.1372.

methyl-d3 (Z)-N-(tert-butyl)-N'-(4-chlorophenyl)carbamimidothioate

4e

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (68.4 mg, 88% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.24 (d, *J* = 8.7 Hz, 2H), 6.74 (d, *J* = 8.6 Hz, 2H), 5.89 (s, 1H), 1.39 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 151.07, 149.70, 128.87, 125.86, 124.08, 53.10, 28.86. HRMS (ESI): calcd for C₁₂H₁₅D₃N₂SCl [M + H]⁺ 260.1068, found 260.1071.

methyl-d3 (Z)-N'-(4-bromophenyl)-N-(tert-butyl)carbamimidothioate

4f

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (79.1 mg, 87% yield), Mp = 70-71 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.36 (d, *J* = 8.6 Hz, 2H), 6.69 (d, *J* = 8.6 Hz, 2H), 5.90 (s, 1H), 1.39 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 151.01, 150.10, 131.77, 124.60, 113.84, 53.12, 28.86. HRMS (ESI): calcd for C₁₂H₁₅D₃N₂SBr [M + H]⁺ 304.0562, found 304.0570.

methyl-d3 (Z)-N-(tert-butyl)-N'-(4-(tert-butyl)phenyl)carbamimidothioate

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (80.1 mg, 95% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.23 (d, *J* = 8.5 Hz, 2H), 6.67 (d, *J* = 8.4 Hz, 2H), 5.67 (s, 1H), 1.41 (s, 9H), 1.28 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 149.97, 148.06, 144.02, 125.59, 121.85, 52.91, 34.34, 31.90, 28.92. HRMS (ESI): calcd for C₁₆H₂₄D₃N₂S [M + H]⁺ 282.2083, found 282.2091.

methyl-d3 (Z)-N-(tert-butyl)-N'-(4-methoxyphenyl)carbamimidothioate

4h

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (70.4 mg, 92% yield), Mp = 54-55 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 6.79 (d, J = 8.8 Hz, 2H), 6.65 (d, J = 8.7 Hz, 2H), 5.59 (s, 1H), 3.71 (s, 3H), 1.39 (s, 9H). ¹³C NMR (100 MHz, DMSO- d_6): δ 154.85, 150.30, 144.06, 123.07, 114.33, 55.61, 52.90, 28.94. HRMS (ESI): calcd for

 $C_{13}H_{18}D_3N_2OS [M + H]^+ 256.1563$, found 256.1567.

4i

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (78.8 mg, 85% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.19 (d, *J* = 8.4 Hz, 2H), 6.81 (d, *J* = 8.8 Hz, 2H), 5.92 (s, 1H), 1.40 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 151.23, 150.06, 143.35, 123.58, 121.94, 53.13, 28.84. ¹⁹F NMR (375 MHz, DMSO-*d*₆) δ -57.05 (3F); HRMS (ESI): calcd for C₁₃H₁₅D₃N₂OSF₃ [M + H]⁺ 310.1280, found 310.1271.

methyl-d3 (Z)-N-(tert-butyl)-N'-(4-(trifluoromethoxy)phenyl)carbamimidothioate

methyl-d3 (Z)-N-(tert-butyl)-N'-(4-((trifluoromethyl)thio)phenyl)carbamimidothioate

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (79.9 mg, 82% yield), Mp = 55-56°C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.53 (d, *J* = 8.1 Hz, 2H), 6.88 (d, *J* = 8.4 Hz, 2H), 6.13 (s, 1H), 1.40 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 153.80, 151.41, 137.63, 123.81, 114.17, 53.27, 28.82. ¹⁹F NMR (375 MHz, DMSO-*d*₆) δ -43.18 (3F); HRMS (ESI): calcd for C₁₃H₁₅D₃N₂S₂F₃ [M + H]⁺ 326.1052, found 326.1061.

methyl-d3 (Z)-N-(tert-butyl)-N'-(o-tolyl)carbamimidothioate

4k

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (60.3 mg, 84% yield). ¹H NMR (400 MHz, DMSO- d_6): δ 7.10 (d, J = 7.4 Hz, 1H), 7.04 (td, J = 7.6, 1.6 Hz, 1H), 6.84 (td, J = 7.4, 1.4 Hz, 1H), 6.64 (dd, J = 7.8, 1.4 Hz, 1H), 5.67 (s, 1H), 2.09 (s, 3H), 1.44 (s, 9H). ¹³C NMR (100 MHz, DMSO- d_6): δ 149.73, 149.56, 130.16, 129.55, 126.48, 122.15, 121.61, 52.88, 28.96, 18.57. HRMS (ESI): calcd for C₁₃H₁₈D₃N₂S [M + H]⁺ 240.1614, found 240.1617.

methyl-d3 (Z)-N-(tert-butyl)-N'-(4-(trifluoromethyl)phenyl)carbamimidothioate

41

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (60.6 mg, 69% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.54 (d, *J* = 8.3 Hz, 2H), 6.91 (d, *J* = 8.2 Hz, 2H), 6.12 (s, 1H), 1.40 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 154.37, 151.48, 126.17 (q, *J* = 4.2 Hz), 125.39 (q, *J* = 269.1 Hz), 122.79, 121.96 (q, *J* = 32.1 Hz), 53.26, 28.81. ¹⁹F NMR (375 MHz, DMSO-*d*₆) δ -59.85 (3F); HRMS (ESI): calcd for C₁₃H₁₅D₃N₂SF₃ [M + H]⁺ 294.1331, found 294.1335.

methyl-d3 (Z)-N-(tert-butyl)-N'-(4-morpholinophenyl)carbamimidothioate

4m

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a

yellow solid (81.9 mg, 88% yield), Mp = 71-72 °C. ¹**H NMR** (400 MHz, DMSO-*d*₆): δ 6.82 (d, *J* = 8.9 Hz, 2H), 6.64 (d, *J* = 8.7 Hz, 2H), 5.56 (s, 1H), 3.74 (t, *J* = 4.6 Hz, 4H), 3.01 (t, *J* = 4.6 Hz, 4H), 1.39 (s, 9H). ¹³**C NMR** (100 MHz, DMSO-*d*₆): δ 149.97, 146.69, 143.40, 122.76, 116.46, 66.74, 52.88, 50.03, 28.96. **HRMS** (ESI): calcd for C₁₆H₂₃D₃N₃OS [M + H]⁺ 311.1985, found 311.1990.

methyl-d3 (Z)-N-(tert-butyl)-N'-(3,4,5-trimethoxyphenyl)carbamimidothioate

4n

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (85.1 mg, 90% yield), Mp = 67-68 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 6.02 (s, 2H), 5.64 (s, 1H), 3.73 (s, 6H), 3.62 (s, 3H), 1.41 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 153.30, 150.46, 146.86, 133.09, 99.74, 60.58, 56.15, 52.97, 28.95. HRMS (ESI): calcd for C₁₅H₂₂D₃N₂O₃S [M + H]⁺ 316.1774, found 316.1781.

methyl-d3 (Z)-N-(tert-butyl)-N'-(4-cyanophenyl)carbamimidothioate

40

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (56.3 mg, 75% yield), Mp = 57-58°C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.63 (d, *J* = 8.5 Hz, 2H), 6.89 (d, *J* = 8.5 Hz, 2H), 6.31 (s, 1H), 1.39 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 155.00, 151.88, 133.38, 123.24, 120.25, 103.43, 53.40, 28.79. HRMS (ESI): calcd for C₁₃H₁₅D₃N₃S [M + H]⁺ 251.1410, found 251.1416.

methyl-d3 (Z)-N-(tert-butyl)-N'-mesitylcarbamimidothioate

4p

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (61.7 mg, 77% yield), Mp = 49-50 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 6.74 (s, 2H), 5.46 (s, 1H), 2.18 (s, 3H), 2.01 (s, 6H), 1.47 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 149.65, 146.01, 130.21, 128.51, 52.77, 28.93, 20.91, 18.51. HRMS (ESI): calcd for C₁₅H₂₂D₃N₂S [M + H]⁺ 268.1927, found 268.1930.

methyl-d3 (Z)-N-(tert-butyl)-N'-(2,6-diisopropylphenyl)carbamimidothioate

4q

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (60.3 mg, 65% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.00 (d, *J* = 7.5 Hz, 2H), 6.89 (dd, *J* = 8.2, 6.9 Hz, 1H), 5.52 (s, 1H), 2.97 (p, *J* = 6.9 Hz, 2H), 1.46 (s, 9H), 1.19 (d, *J* = 6.9 Hz, 6H), 1.06 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 150.01, 145.95, 139.07, 122.79, 122.62, 52.74, 28.93, 28.02, 24.32, 23.34. HRMS (ESI): calcd for C₁₈H₂₈D₃N₂S [M + H]⁺ 310.2396, found 310.2402.

methyl-d3 (Z)-N-(tert-butyl)-N'-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenyl)carbamimidothioate

4r

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (94.8 mg, 90% yield), Mp = 58-59°C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.53 (d, *J* = 7.8 Hz, 2H), 6.74 (d, *J* = 7.8 Hz, 2H), 5.89 (s, 1H), 1.39 (s, 9H), 1.29 (s, 12H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 153.65, 150.39, 135.65, 121.87, 83.72, 53.08, 28.87, 25.22. HRMS (ESI): calcd for C₁₈H₂₇D₃BN₂O₂S [M + H]⁺ 352.2309, found 352.2318.

methyl-d3 (Z)-N'-(benzo[d]thiazol-2-yl)-N-(tert-butyl)carbamimidothioate

4s

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (66.0 mg, 78% yield), Mp = 106-107 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.83 (d, *J* = 7.8 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.24 (t, *J* = 7.5 Hz, 1H), 1.50 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 151.43, 132.25, 126.29, 123.73, 121.83, 120.63, 53.81, 29.38. HRMS (ESI): calcd for C₁₃H₁₅D₃N₃S₂ [M + H]⁺ 283.1130, found 283.1137.

methyl-d3 (Z)-N-(4-chlorophenyl)-N'-phenylcarbamimidothioate

5a

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (65.3 mg, 78% yield). ¹H NMR (400 MHz, DMSO- d_6): δ 8.87 (d, J = 28.9 Hz, 1H), 7.76 (dd, J = 33.1, 8.2 Hz, 2H), 7.44-7.36 (m, 4H), 7.10 (t, J = 7.3 Hz, 1H), 6.96 (dd, J = 8.1, 5.4 Hz, 2H). ¹³C NMR (100 MHz, DMSO- d_6): δ 149.64, 148.91, 141.13, 140.35, 129.21, 129.07, 128.93, 128.76, 123.83, 123.14, 122.93, 121.98, 121.79, 120.74. HRMS (ESI): calcd for C₁₄H₁₁D₃N₂SCI [M + H]⁺ 280.0755, found 280.0761.

methyl-d3 (Z)-N'-phenyl-N-(4-(trifluoromethoxy)phenyl)carbamimidothioate

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (75.0 mg, 76% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.84 (d, *J* = 41.6 Hz, 1H), 7.78 (d, *J* = 8.5 Hz, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.29-7.23 (m, 4H), 7.00 (t, *J* = 7.4 Hz, 1H), 6.94 (d, *J* = 8.4 Hz, 1H), 6.85 (d, *J* = 7.8 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 151.30, 150.19, 149.61, 149.25, 143.94, 143.35, 141.11, 140.62, 129.18, 128.90, 124.54, 123.39, 123.14, 122.95, 122.06, 121.97, 121.77, 121.46, 120.77, 119.47. ¹⁹F NMR (375 MHz, DMSO-*d*₆) δ -57.09 (3F); HRMS (ESI): calcd for C₁₅H₁₁D₃N₂OF₃S [M + H]⁺ 330.0967, found 330.0970.

(Z)-1-(l1-methyl)-N'-phenyl-N-(o-tolyl)-l5-sulfanecarboximidamide

5c

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (55.9 mg, 72% yield), Mp = 47-48 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.63 (s, 1H), 7.69 (d, *J* = 8.0 Hz, 2H), 7.29 (t, *J* = 7.7 Hz, 2H), 7.16 (d, *J* = 7.4 Hz, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 6.99 (t, *J* = 7.4 Hz, 1H), 6.91 (t, *J* = 7.5 Hz, 1H), 6.72 (d, *J* = 7.7 Hz, 1H), 3.38 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 149.80, 148.70, 141.49, 130.43, 128.93, 126.69, 122.93, 122.76, 121.27, 120.39, 18.54. HRMS (ESI): calcd for C₁₅H₁₄D₃N₂S [M + H]⁺ 260.1301, found 260.1307.

(Z)-N-(2,6-diisopropylphenyl)-1-(l1-methyl)-N'-phenyl-l5-sulfanecarboximidamide

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (68.1 mg, 69% yield). ¹H NMR (400 MHz, DMSO- d_6): δ 8.46 (s, 1H), 7.74 (d, J =

8.0 Hz, 2H), 7.31 (t, J = 7.7 Hz, 2H), 7.07 (d, J = 7.6 Hz, 2H), 6.99 (d, J = 8.6 Hz, 2H), 2.99-2.96 (m, 2H), 1.22 (d, J = 6.9 Hz, 6H), 1.10 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, DMSO- d_6): δ 149.72, 145.09, 141.65, 138.47, 129.02, 123.28, 123.10, 122.73, 120.17, 28.22, 24.11, 23.50. HRMS (ESI): calcd for C₂₀H₂₄D₃N₂S [M + H]⁺ 330.2083, found 330.2093.

(Z)-N-(2,6-dimethylphenyl)-1-(l1-methyl)-N'-phenyl-l5-sulfanecarboximidamide

5e

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (55.7 mg, 68% yield), Mp = 40-41 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.50 (s, 1H), 7.72 (d, *J* = 7.9 Hz, 2H), 7.30 (t, *J* = 7.7 Hz, 2H), 6.99 (d, *J* = 6.8 Hz, 3H), 6.82 (d, *J* = 7.5 Hz, 1H), 2.07 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 149.67, 147.67, 141.59, 128.95, 128.11, 122.69, 122.51, 120.46, 18.66. HRMS (ESI): calcd for C₁₆H₁₆D₃N₂S [M + H]⁺ 274.1457, found 274.1462.

benzo[d][1,3]dioxol-5-yl

(Z)-4-((((2,6-dimethylphenyl)amino)((methyl-

d3)thio)methylene)amino)benzoate

5f

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (86.5 mg, 66% yield), Mp = 51-52 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.09 (s, 1H), 8.02 (d, *J* = 28.9 Hz, 3H), 6.98 (q, *J* = 36.4, 32.3 Hz, 6H), 6.72 (s, 1H), 6.09 (s, 2H), 2.10 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 164.98, 149.73, 148.17, 147.27, 146.74, 145.59, 145.44, 131.36, 128.22, 127.85, 122.94, 122.11, 119.08, 114.78, 108.44, 104.63, 102.22, 18.65. HRMS (ESI): calcd for C₂₄H₂₀D₃N₂O₄S [M + H]⁺ 438.1567, found 438.1569.

(Z)-N-(2-chloro-6-methylphenyl)-1-(l1-methyl)-N'-phenyl-I5-sulfanecarboximidamide

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (62.4 mg, 71% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.75 (s, 1H), 7.72 (d, *J* = 7.9 Hz, 2H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.26 (d, *J* = 7.9 Hz, 1H), 7.14 (d, *J* = 7.5 Hz, 1H), 7.03 (t, *J* = 7.5 Hz, 1H), 6.91 (t, *J* = 7.8 Hz, 1H), 2.13 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 152.03, 146.11, 141.20, 131.26, 129.13, 128.95, 127.31, 125.46, 123.48, 123.14, 120.93, 18.87. HRMS (ESI): calcd for C₁₅H₁₃D₃N₂SC1 [M + H]⁺ 294.0911, found 294.0917.

(Z)-1-(l1-methyl)-N'-phenyl-N-(2-phenylpropan-2-yl)-l5-sulfanecarboximidamide

5h Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (73.2 mg, 85% yield), Mp = 49-50 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.42 (d, *J* = 7.9 Hz, 2H), 7.31 (t, *J* = 7.7 Hz, 2H), 7.17 (t, *J* = 7.2 Hz, 1H), 7.09 (t, *J* = 7.7 Hz, 2H), 6.83 (t, *J* = 7.3 Hz, 1H), 6.39 (d, *J* = 7.8 Hz, 3H), 1.69 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 150.48, 149.34, 148.37, 128.78, 128.17, 126.01, 125.51, 121.98, 121.92, 57.55, 30.09. HRMS (ESI):

calcd for $C_{17}H_{18}D_3N_2S [M + H]^+ 288.1614$, found 288.1622.

ethyl (Z)-4-(((tert-butylamino)((methyl-d3)thio)methylene)amino)benzoate

6a

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a

yellow solid (58.9 mg, 66% yield), Mp = 71-72 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.83 (d, *J* = 8.5 Hz, 2H), 6.84 (d, *J* = 8.5 Hz, 2H), 6.14 (s, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 1.40 (s, 9H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 166.27, 155.26, 151.19, 130.54, 123.07, 122.32, 60.64, 53.26, 28.83, 14.78. HRMS (ESI): calcd for C₁₅H₂₀D₃N₂O₂S [M + H]⁺ 298.1669, found 298.1677.

benzo[d][1,3]dioxol-5-yl

(Z)-4-(((tert-butylamino)((methyl-

d3)thio)methylene)amino)benzoate

6b

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (80.5 mg, 69% yield), Mp = 103-104 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.97 (d, *J* = 8.5 Hz, 2H), 6.97-6.90 (m, 4H), 6.71 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.25 (s, 1H), 6.09 (s, 2H), 1.41 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.25, 155.97, 151.43, 148.10, 145.60, 145.35, 131.26, 122.49, 121.78, 114.76, 108.39, 104.65, 102.16, 53.30, 28.79. HRMS (ESI): calcd for C₂₀H₂₀D₃N₂O₄S [M + H]⁺ 390.1567, found 390.1568.

2-methoxyphenyl (Z)-4-(((tert-butylamino)((methyl-d3)thio)methylene)amino)benzoate

6c

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (68.6 mg, 61% yield), Mp = $131-132^{\circ}$ C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.97 (d, *J* = 8.2 Hz, 2H), 7.31-6.91 (m, 6H), 6.25 (s, 1H), 3.78 (s, 3H), 1.42 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 164.49, 155.97, 151.60, 151.43, 131.34, 127.38, 123.61, 122.55, 121.61, 121.08, 113.26, 56.17, 53.31, 28.78. HRMS (ESI): calcd for C₂₀H₂₂D₃N₂O₃S [M + H]⁺ 376.1774, found

376.1783.

(3aR,5R,6S,6aR)-5-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3d][1,3]dioxol-6-yl 4-(((Z)-(tert-butylamino)((methyl-d3)thio)methylene)amino)benzoate

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (98.1 mg, 64% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.84 (d, *J* = 8.1 Hz, 2H), 6.87 (d, *J* = 8.2 Hz, 2H), 6.21 (s, 1H), 5.99 (d, *J* = 3.7 Hz, 1H), 5.25 (d, *J* = 3.0 Hz, 1H), 4.68 (d, *J* = 3.7 Hz, 1H), 4.38 (q, *J* = 6.1 Hz, 1H), 4.25 (dd, *J* = 7.3, 3.0 Hz, 1H), 4.07 (q, *J* = 7.4 Hz, 1H), 3.96 (dd, *J* = 8.4, 5.2 Hz, 1H), 1.48 (s, 3H), 1.40 (s, 9H), 1.35 (s, 3H), 1.28 (s, 3H), 1.23 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.20, 155.84, 151.35, 130.82, 122.45, 121.99, 111.79, 108.95, 105.20, 83.28, 79.60, 76.34, 72.61, 66.72, 53.27, 28.77, 27.10, 26.92, 26.44, 25.55. HRMS (ESI): calcd for C₂₅H₃₄D₃N₂O₇S [M + H]⁺ 512.2510, found 512.2510.

4-chloro-3,5-dimethylphenyl

(Z)-4-(((tert-butylamino)((methyl-

d3)thio)methylene)amino)benzoate

6e

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (73.3 mg, 60% yield), Mp = 121-122 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.97 (d, *J* = 8.5 Hz, 2H), 7.15 (s, 2H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.27 (s, 1H), 2.37 (s, 6H), 1.41 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 164.95, 156.08, 151.48, 149.18, 137.37, 131.31, 130.93, 122.57, 121.51, 53.31, 28.77, 20.72. HRMS (ESI): calcd for C₂₁H₂₃D₃N₂O₂SC1 [M + H]⁺ 408.1592, found 408.1598.

¹H, ¹³C and ¹⁹F NMR spectra of products

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

S30

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

Relaxing and the second second

5a ¹H NMR (400 MHz, DMSO-*d*₆)

151.30 150.19 150.19 149.25 143.35 141.11 141.11 143.35 143.35 143.35 143.35 143.35 143.35 143.35 143.35 143.35 123.38 1723.46 1723.45

¹⁹F NMR (375 MHz, DMSO-*d*₆)

HRMS of Products

