Supplemental Information

2

1

3 One pot Photoenzymatic Synthesis of β-chiral malononitrile

4 derivatives

5 Xin-Yue Fan^a, Yuan Yu^a, Ru-De Lin^a, Yao Yao^a, Ming-Liang Shi^a, Yan-Hong Liu^a,

6 Kun Li^{a,*}, Na Wang^{a,*}

7 a Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of
8 Chemistry, Sichuan University, Chengdu 610064, P. R. China

9

28

Context

10	1 General Information
11	1.1 Sequence information2
12	1.2 Materials and analytical methods6
13	2 Expression and purification of ene reductase7
14	2.1 Methods7
15	2.2 SDS-PAGE of crude and purified enzymes8
16	3 Experimental Procedures
17	3.1 General procedures for photoenzymatic synthesis of malononitrile alkylated
18	derivatives8
19	3.2 Docking models
20	3.3 Molecular dynamics simulation9
21	3.4 Optimization of photocatalytic reaction conditions10
22	3.5 Optimization of photoenzymatic reaction conditions13
23	3.6 Enzyme kinetics15
24	3.7 Gene sequence comparison16
25	4 Chiral HPLC data for enantiomers and reaction systems
26	5 ¹ H NMR and ¹³ C NMR25
27	6 References

1 1 General Information

2 1.1 Sequence information

- 3 OYE1 (from Saccharomyces pastorianus)
- 4 Gen Bank: CP049012.1
- 5 Protein sequence:
- 6 MSFVKDFKPQALGDTNLFKPIKIGNNELLHRAVIPPLTRMRALHPGNIPNRDWAVEYYTQ
- $\label{eq:rescaled} 7 \ \ RAQRPGTMIITEGAFISPQAGGYDNAPGVWSEEQMVEWTKIFNAIHEKKSFVWVQLWVL$
- ${\small 8} {\small \ } GWAAFPDNLARDGLRYDSASDNVFMDAEQEAKAKKANNPQHSLTKDEIKQYIKEYVQA}$
- 9 AKNSIAAGADGVEIHSANGYLLNQFLDPHSNTRTDEYGGSIENRARFTLEVVDALVEAIG
- 10 HEKVGLRLSPYGVFNSMSGGAETGIVAQYAYVAGELEKRAKAGKRLAFVHLVEPRVTNP
- ${\tt 11} \quad {\tt FLTEGEGEYEGGSNDFVYSIWKGPVIRAGNFALHPEVVREEVKDKRTLIGYGRFFISNPDL} \\$
- 12 VDRLEKGLPLNKYDRDTFYQMSAHGYIDYPTYEEALKLGWDKKHHHHHH
- 13 DNA sequence:

ATGTCATTTGTAAAAGATTTTAAGCCACAAGCTTTAGGTGACACCAACCTATTCAAAC 14 CAATCAAGATCGGGAACAATGAACTTTTGCACCGTGCTGTCATTCCTCCATTGACCAG 15 AATGAGAGCTCTTCACCCTGGTAATATCCCAAACAGGGACTGGGCAGTCGAATACTA 16 CACCCAACGTGCTCAAAGACCTGGTACCATGATTATCACTGAAGGTGCCTTCATATCC 17 18 CCACAAGCCGGCGGTTACGATAACGCTCCAGGTGTTTGGTCGGAAGAACAAATGGTG 19 TATGGGTTTGGGTTGGGCTGCTTTCCCAGACAATCTTGCCAGAGATGGTTTGCGTTA 20 CGATTCAGCTTCTGACAACGTTTTCATGGATGCCGAGCAAGAAGCTAAGGCCAAGAA 21 GGCCAACAACCCACAACAGCCTAACCAAGGACGAAATCAAGCAATACATTAAGG 22 AATACGTCCAGGCTGCCAAGAACTCTATTGCTGCTGGTGCCGATGGTGTTGAAATTCA 23 CAGTGCTAACGGTTACTTGTTAAACCAGTTCTTGGACCCTCATTCCAATACTAGAACC 24 GATGAATATGGTGGATCTATTGAAAACAGAGCTCGTTTCACCTTGGAAGTTGTTGATG 25 26 CTCTTGTCGAAGCCATTGGTCATGAAAAAGTTGGTTTGAGATTGTCCCCATACGGTGT 27 TTTCAACAGTATGTCTGGTGGTGCCGAGACCGGCATTGTTGCCCAATATGCTTACGTT

GCTGGTGAATTAGAAAAGAGAGAGCTAAAGCCGGAAAACGTTTAGCTTTTGTTCATTTG
 GTTGAACCTCGTGTAACTAACCCATTCTTGACTGAAGGGGAGGGTGAATACGAAGGA
 GGTAGCAACGATTTTGTTTACTCCATCTGGAAGGGCCCAGTCATTAGAGCTGGTAATT
 TTGCTCTCCACCCAGAAGTCGTTAGAGAAGAAGATAAGGACAAGAAGAACCTTGATCG
 GTTACGGTAGATTCTTCATTTCTAACCCGGATTTGGTTGATCGTTTGGAAAAAAGGTCT
 ACCTCTGAACAAATATGACAGAGATACTTTCTACCAGATGTCTGCTCATGGTTATATT
 GACTACCCCACCTATGAAGAAGCTCTCAAATTAGGCTGGGACAAAAAGCACCACCAT
 CACCACCACTGA

- 9
- 10 OYE3 (from *Saccharomyces cerevisiae* S288C)
- 11 Gen Bank: NP_015154.1
- 12 Protein sequence:

MPFVKGFEPISLRDTNLFEPIKIGNTQLAHRAVMPPLTRMRATHPGNIPNKEWAAVYYGQ
RAQRPGTMIITEGTFISPQAGGYDNAPGIWSDEQVAEWKNIFLAIHDCQSFAWVQLWSLG
WASFPDVLARDGLRYDCASDRVYMNATLQEKAKDANNLEHSLTKDDIKQYIKDYIHAA
KNSIAAGADGVEIHSANGYLLNQFLDPHSNKRTDEYGGTIENRARFTLEVVDALIETIGPE
RVGLRLSPYGTFNSMSGGAEPGIIAQYSYVLGELEKRAKAGKRLAFVHLVEPRVTDPSLV
EGEGEYSEGTNDFAYSIWKGPIIRAGNYALHPEVVREQVKDPRTLIGYGRFFISNPDLVYR
LEEGLPLNKYDRSTFYTMSAEGYTDYPTYEEAVDLGWNKNHHHHHH
DNA sequence:

ATGCCATTTGTAAAAGGTTTTGAGCCGATCTCCCTAAGAGACACAAACCTTTTTGAAC
 CAATTAAGATTGGTAACACTCAGCTTGCACATCGTGCGGTTATGCCCCCATTGACCAG
 AATGAGGGCCACTCACCCCGGAAATATTCCAAATAAGGAGTGGGCTGCTGTGTATTA
 TGGTCAGCGTGCTCAAAGACCTGGTACCATGATCATCACGGAAGGTACGTTTATTTCC
 CCTCAAGCCGGCGGCTATGACAACGCCCCTGGGATTTGGTCTGATGAGCAGGTCGCT
 GAGTGGAAGAATATCTTTTTAGCCATCCATGATTGTCAGTCGTTCGCGTGGGTACAAC
 TTTGGTCTTTAGGCTGGGCATCCTTCCCAGACGTATTGGCAAGAGACGGGTTACGCTA
 TGACTGTGCATCTGACAGAGTGTATATGAATGCTACGTTACAAGAAAAGGCCAAAGA

1 TGCGAATAATCTCGAACATAGTTTGACTAAAGACGACATTAAACAGTATATCAAGGA TTACATCCATGCGGCTAAGAATTCTATCGCGGCTGGCGCCGATGGTGTAGAAATTCAT 2 3 AGCGCCAATGGGTACTTGTTGAATCAGTTCTTGGATCCACATTCTAATAAGAGGACCG ACGAATACGGCGGAACGATCGAAAACAGGGCCCGCTTTACACTGGAGGTTGTCGATG 4 5 CTCTTATCGAAACTATCGGTCCTGAACGGGTGGGTTTGAGGTTGTCGCCGTACGGCAC 6 7 TGGGTGAATTAGAGAAGAGGGCAAAGGCTGGTAAGCGTTTGGCCTTTGTGCACCTCG TTGAACCACGTGTCACGGACCCATCGTTGGTGGAGGGCGAAGGAGAATATTCCGAGG 8 GTACTAACGATTTTGCCTACTCTATATGGAAGGGTCCAATCATCAGAGCTGGTAATTA 9 CGCTCTTCATCCAGAAGTGGTTAGAGAACAAGTAAAGGATCCCAGAACCTTGATAGG 10 11 CTATGGTAGATTCTTCATCTCTAACCCAGATTTAGTCTACCGTTTAGAAGAGGGCCTG CCATTGAACAAGTATGACAGAAGTACCTTCTACACCATGTCCGCGGAAGGTTATACC 12 13 GACTACCCAACATATGAAGAGGCAGTAGATTTAGGTTGGAACAAGAACCACCACCAT CACCACCACTGA 14

15

16 GluER (from *Gluconobacter oxydans*)

17 Gen Bank: WP_011252080.1

18 Protein sequence:

MPTLFDPIDFGPIHAKNRIVMSPLTRGRADKEAVPTPIMAEYYAQRASAGLIITEATGISRE
 GLGWPFAPGIWSDAQVEAWKPIVAGVHAKGGKIVCQLWHMGRMVHSSVTGTQPVSSSA
 TTAPGEVHTYEGKKPFEQARAIDAADISRILNDYENAARNAIRAGFDGVQIHAANGYLID
 EFLRNGTNHRTDEYGGVPENRIRFLKEVTERVIAAIGADRTGVRLSPNGDTQGCIDSAPET
 VFVPAAKLLQDLGVAWLELREPGPNGTFGKTDQPKLSPQIRKVFLRPLVLNQDYTFEAAQ
 TALAEGKADAIAFGRKFISNPDLPERFARGIALQPDDMKTWYSQGPEGYTDYPSATSGPN
 HHHHH
 DNA sequence:

27 ATGCCGACCCTTTTCGACCCCATCGATTTCGGACCTATCCACGCCAAGAATCGTATCG28 TCATGTCCCCCCTGACTCGCGGTCGCGCTGACAAAGAGGCGGTTCCAACCCCCATTAT

1 GGCTGAATACTACGCCCAACGCGCTTCGGCGGGTTTAATTATCACTGAAGCGACGGG 2 GATTTCACGCGAAGGCTTAGGTTGGCCGTTTGCGCCGGGAATTTGGTCCGATGCACAG 3 GTTGAGGCGTGGAAACCTATCGTCGCGGGTGTCCATGCAAAGGGCGGCAAGATCGTA TGTCAGCTTTGGCATATGGGCCGTATGGTACATTCTTCAGTTACAGGGACGCAGCCCG 4 TAAGCAGTTCCGCCACTACTGCTCCAGGTGAGGTTCACACCTATGAGGGCAAGAAGC 5 6 CCTTCGAACAAGCGCGTGCAATCGATGCTGCAGACATCTCCCGCATCCTTAACGATTA 7 CGAAAATGCAGCACGTAATGCAATCCGCGCGGGTTTCGATGGAGTGCAGATCCACGC AGCCAATGGCTACCTTATCGATGAGTTTTTGCGTAACGGAACCAATCATCGCACCGAT 8 GAGTATGGGGGGGGGGGCGGAGAACCGTATTCGTTTCTTGAAAGAGGTAACAGAACGC 9 GTCATCGCGGCGATTGGCGCTGACCGTACGGGTGTGCGTCTGAGTCCAAACGGTGAC 10 ACACAGGGTTGTATCGACAGTGCTCCCGAAACCGTTTTTGTTCCTGCCGCAAAGCTTT 11 TGCAAGATTTAGGGGTAGCGTGGCTTGAGCTGCGTGAACCTGGTCCGAATGGTACGT 12 13 TTGGAAAGACGGATCAACCAAAATTATCTCCACAAATCCGTAAGGTATTCCTTCGTCC ATTGGTCTTAAATCAAGACTATACTTTTGAGGCGGCACAGACGGCCCTGGCTGAGGG 14 CAAGGCGGACGCTATTGCGTTTGGCCGTAAGTTCATTTCAAATCCAGACTTGCCTGAG 15 CGCTTTGCCCGTGGCATCGCACTGCAACCAGACGATATGAAAACATGGTACTCCCAA 16 GGCCCAGAGGGTTACACAGACTATCCATCCGCAACTTCTGGGCCGAACCACCACCAT 17 CACCACCACTGA 18

19

20 NCR (from *Zymomonas mobile*)

21 Gen Bank: WP_011241612.1

22 Protein sequence:

23 MPSLFDPIRFGAFTAKNRIWMAPLTRGRATRDHVPTEIMAEYYAQRASAGLIISEATGISQ
24 EGLGWPYAPGIWSDAQVEAWLPITQAVHDAGGLIFAQLWHMGRMVPSNVSGMQPVAPS
25 ASQAPGLGHTYDGKKPYDVARALRLDEIPRLLDDYEKAARHALKAGFDGVQIHAANGY
26 LIDEFIRDSTNHRHDEYGGAVENRIRLLKDVTERVIATIGKERTAVRLSPNGEIQGTVDSHP
27 EQVFIPAAKMLSDLDIAFLGMREGAVDGTFGKTDQPKLSPEIRKVFKPPLVLNQDYTFET
28 AQAALDSGVADAISFGRPFIGNPDLPRRFFEKAPLTKDVIETWYTQTPKGYTDYPLLGDLE
29 HHHHHH

1 DNA sequence:

ATGCCGTCACTGTTCGATCCAATCCGCTTTGGGGGCTTTCACTGCAAAAAATCGTATCT 2 3 GGATGGCGCCGTTAACACGGGGTCGGGCAACCCGTGACCATGTCCCAACAGAGATAA TGGCTGAATACTATGCCCAACGCGCATCCGCGGGCTTGATCATCAGCGAGGCGACCG 4 GGATCAGCCAAGAGGGCCTGGGCTGGCCCTATGCACCAGGAATCTGGAGTGATGCGC 5 AGGTCGAGGCATGGTTACCCATAACCCAAGCGGTACACGATGCCGGAGGTTTGATAT 6 TTGCACAACTGTGGCACATGGGGCGTATGGTGCCTTCCAACGTTTCTGGAATGCAACC 7 TGTCGCACCTAGCGCTTCACAAGCGCCCGGCTTGGGCCATACTTATGATGGCAAAAA 8 GCCATACGATGTAGCCAGAGCATTGAGACTTGACGAGATCCCACGGCTGCTGGACGA 9 CTATGAAAAGGCAGCTCGGCACGCACTGAAAGCTGGGTTCGATGGAGTTCAGATTCA 10 11 TGCTGCCAACGGATACCTGATTGACGAGTTCATCCGGGATTCAACAAATCATAGACA CGACGAATACGGGGGGGGGGGGGGGGGGGGGAGAACAGAATACGGTTATTGAAGGATGTCACTGA 12 GCGGGTTATCGCAACCATCGGAAAGGAGCGCACAGCAGTGCGTTTAAGTCCGAATGG 13 AGAGATACAAGGCACAGTAGACTCGCATCCAGAACAGGTATTTATCCCGGCTGCAAA 14 15 GATGTTATCTGATTTAGATATCGCGTTCCTTGGGATGCGCGAGGGTGCTGTAGACGGG ACATTTGGCAAAACAGACCAGCCCAAACTTTCGCCCGAGATCCGTAAAGTTTTCAAG 16 CCACCCCTTGTTCTGAATCAAGATTACACTTTCGAGACTGCCCAGGCTGCGTTAGATT 17 18 GAGAAGATTCTTTGAAAAGGCACCGTTAACTAAGGACGTAATTGAGACTTGGTACAC 19 TCAGACTCCCAAAGGTTACACCGACTATCCACTGTTAGGTGATCTCGAGCACCACCAT 20 CACCACCACTGA 21

22 1.2 Materials and analytical methods

All chemicals and reagents were purchased from Okinno, Aladdin and Tansoole. Chemicals were obtained from authentic suppliers at least of reagent grade and used without further purification. All biological reagents are purchased from Fisher Scientific, Solarbio (Beijing, China) and Sangon Biotech (Shanghai, China). The recombinant plasmids, pET-22B-GluER, pET-22B-NCR, pET-28a(+)-OYE1, pET-282(+)-OYE3, respectively, containing the gene of GluER (from *Gluconobacter*

oxydans, GenBank: WP 011252080.1)/ NCR (from Zymomonas mobile, GenBank: 1 WP 011241612.1)/ OYE1 (from Saccharomyces 2 pastorianus, GenBank: CP049012.1)/ OYE3 (from Saccharomyces cerevisiae S288C, GenBank: 3 NM 001183985.1), were provided by Hunan Keai Medical Equipment Co., Ltd. and 4 Beijing Qingke Biotechnology Co., Ltd. The competent cells BL21 (DE3) and Rosetta 5 (DE3) were provided by Beijing Solarbio Technology Co., Ltd. The Escherichia coli 6 strain containing the glucose dehydrogenase (GDH) gene was provided by Wu 7 Zhongliu researcher's group from Chengdu Institute of Biology, Chinese Academy of 8 Sciences. Racemic product standards were synthesized based on previous studies.^{1,2} 9 NMR spectra were obtained by an Agilent 400-MR DD2 spectrometer (400 MHz). 10 The chemical shifts (ppm) were recorded with respect to TMS in CDCl₃ or DMSO-d₆. 11 Analytical high-performance liquid chromatography (HPLC) was carried out using an 12 Agilent 1260 Infinity instrument equipped with ChiralCel® OD-3 chiral columns 13 14 $(4.6 \times 250 \text{ mm}, 3 \text{ }\mu\text{m})$, ChiralPak® IH chiral columns $(4.6 \times 250 \text{ }\text{mm}, 5 \text{ }\mu\text{m})$, ChiralCel® OJ chiral columns (4.6×250 mm, 10 µm), isopropanol and hexane were 15 used as an isocratic mobile phase system. The temperature was set at 30 °C. 16

17 2 Expression and purification of ene reductase

18 2.1 Methods

The expression and purification of ERs referred to our previous work. The 19 recombinant plasmids were transformed into E. coli BL21(DE3) or Rosetta(DE3) 20 competent cells and selected on Luria-Bertani (LB) agar plates containing 100 µg/mL 21 kanamycin or ampicillin. Single colonies were grown overnight at 37 °C in LB 22 medium containing 100 µg/mL kanamycin or ampicillin. The overnight culture was 23 then inoculated into Terrific-broth (TB) medium containing 100 µg/mL kanamycin or 24 ampicillin. Isopropyl-beta-D-thiogalactopyranoside (IPTG) was added to a final 25 concentration of 0.5 mM when OD_{600} of the culture reached 0.6-0.8, and the 26 cultivation was continued at 20-28 °C for 18-22 h. Cells were harvested by 27

centrifugation at 4000 rpm for 10 min at 4 °C, washed with phosphate buffered saline 1 (PBS). After disruption with an ultrasonic cell disruptor (SCIENTZ-IID, SCIENTZ 2 Inc., China), the cell debris was removed by centrifugation at 12000 rpm for 30 min at 3 4 °C. The obtained supernatant was first filtered using a 0.45 μm aqueous needle filter 4 and then loaded onto Ni2+-nitrilotriacetic acid column (Bio-Rad, USA) equilibrated 5 with buffer A. The enzyme was eluted with buffer A containing a gradient of 6 imidazole from 10 to 250 mM at a flow rate of 1 mL/min, and five column volumes 7 were used for the gradient elution. The fractions containing the target protein were 8 collected and dialyzed against 10 mM PBS (pH 7.2-7.4). Purified enzymes were 9 analyzed by SDS-PAGE and used for enzymatic assays. Protein estimations were 10 carried out with the Bradford method with bovine serum albumin as a standard. 11

12 2.2 SDS-PAGE of crude and purified enzymes

1 3 Experimental Procedures

2 3.1 General procedures for photoenzymatic synthesis of malononitrile alkylated 3 derivatives

1) 1mL reaction system contains acetophenone (0.20 mmol), malononitrile (0.40
mmol), MO (8 mol%), 10 %v/v ethanol and H₂O. The mixture is stirred in a quartz
tube irradiated by white light (36 W) at room temperature in air for 36 h.

2) After turning off the light source, DMSO (2 mL) is added and dissolved
uniformly under ultrasound. Then take 300 μL system into a new conical flask, which
contains NCR (0.4 mg/mL), GDH (0.5 mg/mL), NADP⁺ (0.1 mM), glucose (20 mM),
PBS (10 mM, pH 7.2-7.4), with a final volume of 2 mL. The enzymatic reaction is
carried out in a constant temperature shaker, 32 °C, 200 rpm, 50 min. Yield and
enantiomeric excess (ee) values were determined by chiral HPLC.

13 3.2 Docking models

Automated docking models were obtained using Autodock1.5.7, OYE1 (PDB:3TX9), OYE3 (PDB:5V4V), NCR (PDB:4A3U) were used as receptors and prepared using Autodock Tools. The ligand structures were prepared by GaussView 6.0, and the energy minimizations of ligand structures were carried out in Chem3D.

18 3.3 Molecular dynamics simulation

Molecular dynamics simulation was performed using GROMACS, a widely used software package for simulating the behavior of biomolecules. The parameters of the substrate 2-(1-phenylethylidene)malononitrile and coenzyme FMN in the MD process were generated by the combination of Antechamber tool with the GAFF force field, which is an extensively used force field for small organic molecules. Amber 99sb-ildn was chosen as the protein force field, which is a frequently used force field for simulating proteins. 1 To simulate the behavior of the protein substrate complex in a solvent 2 environment, the complex was embedded into a triclinic box with a boundary distance 3 of 0.8 nm from the protein surface. The protein and the substrate were immersed in a 4 rectangular box of TIP3P water.

The complete OYE1 system ultimately contained 65192 atoms, while the OYE3 5 system contained 54560 atoms. After a series of pre-treatments, such as balancing 6 charges, the two systems underwent energy minimization of 1000 steps, using the 7 conjugate gradient method, followed by NPT simulations of 100 ps with the 8 Berendsen method. The Berendsen method is a commonly used method for 9 controlling the temperature and pressure of a simulation system. Molecular dynamics 10 simulations of 100 ns were conducted for both systems, which allowed for the 11 investigation of the dynamic behavior of the protein substrate complex over a long 12 13 time scale.

14 3.4 Optimization of photocatalytic reaction conditions

15

Entry	Photosensitizer	Photosensitizer Loading (mol%)	Yield(%) b
1	Rose Bengal	2	32.9
2	Erythrosine B	2	29.8
3	Eosin Y	2	37.8
4	Crystal Violet	2	12.4
5	Phloxine B	2	38.4
6	Methyl Orange	2	48.6
7		1	44.3
8	Methyl Orange	4	50.9
9		8	63.3
10		12	47.4
_			

16 Table S1 Screening of photosensitizers and loadings ^a

^a Reaction condition: 1a (0.24 mmol), 2 (0.48 mmol), photosensitizer (x mol%), H₂O, total
 reaction volume 1 mL, 24 h, 36 W white light. ^b Yield determined by HPLC analysis with 3a
 sample.

4

5 Table S2 Screening of co-solvents ^a

11

Entry	Cosolvent	Yield(%) ^b
1	Dioxane	63.1
2	EtOH	80.6
3	MeCN	62.8
4	Ethyl Acetate	43.3
5	DMSO	49.9
6	THF	51.5

6 ^a Reaction condition: 1a (0.24 mmol), 2 (0.48 mmol), MO (8 mol%), H₂O, co-solvent (10 % v/v),

7 total reaction volume 1 mL, 24 h, 36 W white light. ^b Yield determined by HPLC analysis with **3a**

- 8 sample.
- 9

10

11 Fig. S2 Screening of co-solvent (EtOH) volume. Reaction condition: 1a (0.20 mmol), 2 (0.40
12 mmol), MO (8 mol%), EtOH (x % v/v), H₂O, total reaction volume 1 mL, 36 h, 36 W white light.

13 Yield determined by HPLC analysis with **3a** sample.

2 Fig. S3 Photoreaction time curve. Reaction condition: 1a (0.24 mmol), 2 (0.48 mmol), MO (8
3 mol%), H₂O (900 μL), ethanol (100 μL), 36 W white light. Yield determined by HPLC analysis
4 with 3a sample.

5

6 Table S3 Control experiments a

Entry	Deviation from standard conditions	Yield (%) ^b
1	None	48.6
2	Without photocatalyst	28.4
3	Without photocatalyst ^c	32.0
4	Without light	29.3
5	Without photocatalyst and light	22.3

7 ^a Reaction condition: **1a** (0.24 mmol), **2** (0.48 mmol), MO (2 mol%), H₂O, total reaction volume 1

8 mL, 24 h, 36 W white light. ^bYield determined by HPLC analysis with **3a** sample. ^c 46 hours

2 Fig. S4 Screening of acetophenone concentration (maintain acetophenone to malononitrile=1:2).
3 Reaction condition: 1a (1.0 eq.), 2 (2.0 eq.), MO (8 mol%), EtOH (10 % v/v), H₂O, total reaction
4 volume 1 mL, 36 h, 36 W white light. Yield determined by HPLC analysis with 3a sample.

High concentration of organic substrates can disrupt the three-dimensional 5 structure of enzyme proteins, thus, we investigated the effect of substrate 6 concentration on yield (with acetophenone concentration as the standard, the molar 7 8 ratio of acetophenone to malononitrile maintained at 1:2). As the substrate concentration decreased, the yield significantly decreased. To ensure a high yield of 9 the photocatalytic reaction and take into account the damage of high-concentration 10 substrates to the enzymes, we chose 200 mM acetophenone as the optimal substrate 11 12 concentration.

13

Fig. S5 Screening of substrate molar ratio. Reaction condition: 1a (0.24 mmol), 2, MO (8 mol%),
 EtOH (10 % v/v), H₂O, total reaction volume 1 mL, 36 h, 36 W white light. Yield determined by
 HPLC analysis with 3a sample.

The molar ratio of substrates may affect the equilibrium of the reaction and the selectivity of the product, therefore, we investigated the effect of substrate molar ratio (acetophenone: malononitrile) on yield. Varying the molar ratio (acetophenone: malononitrile) from 5:1 to 1:5 had little contribution to betterment. So we still used acetophenone: malononitrile=1:2 as the optimal reaction condition.

9

Yield (%) b Wavelength (nm) Entry 1 385 55.3 2 410 63.0 3 460 57.6 4 White light 85.6 5 Dark 31.5

10 Table S4 Screening of wavelength ^a

11 ^a Reaction condition: 1a (0.20 mmol), 2 (0.40 mmol), MO (8 mol%), H₂O (900 μ L), EtOH (100

12 μ L), 36 h, 36 W. ^b Yield determined by HPLC analysis with **3a** sample.

13

15 Fig. S6 Screening of co-solvent (EtOH) volume. Reaction condition: 1c (0.20 mmol), 2 (0.40
16 mmol), MO (8 mol%), EtOH (x % v/v), H₂O, total reaction volume 1 mL, 36 h, 36 W white light.
17 Yield determined by HPLC analysis with 3c sample.

2 3.5 Optimization of photoenzymatic reaction conditions

	$1a \qquad 2 \qquad 1 \text{ MO, white light} \qquad \qquad CN \qquad 1 \text{ MO, white light} \qquad \qquad CN \qquad CN \qquad 1 \text{ Aa}$			
Entry	Final substrate concentration (mM)	Yield (%) ^b	ee (%) ^b	
1	10	50.2	98.3	
2	20	25.4	99.4	
3	30	19.9	98.4	
4	40	14.9	96.5	
5	50	15.1	92.4	

3 Table S5 Screening of dilution ratio^a

^a Reaction condition: 1a (0.20 mmol), 2 (0.40 mmol), MO (8 mol%), H₂O (900 μL), EtOH (100 μL), 36 h, 36 W white light. Then added crude NCR (0.4 mg/mL), GDH (0.5 mg/mL), Glucose
(20 mM), NADP⁺ (0.1 mM), DMSO (10 % v/v) and diluted to different multiples with PBS (0.01 M, pH 7.2-7.4), 37 °C, 20 h. ^b Yield and ee value were determined by Chiral HPLC analysis with
racemic 4a sample.

After determining the optimal enzyme catalyst, we attempted two tandem 10 strategies: 1) adding all components to the system and conducting both photocatalytic 11 and enzymatic reactions simultaneously; 2) conducting the photoreaction first, 12 followed by adding ERs and cofactor cycling systems for enzymatic reaction. 13 Unfortunately, neither strategy was feasible, due to the disruption of enzymes by high 14 concentrations of substrates. However, a decrease in substrate concentration 15 significantly reduced the yield of olefin intermediates (Fig. S4). Therefore, we 16 propose a dilution strategy to cascade photoreaction and enzyme reaction. After the 17 photo reaction is completed, dilute the reaction system and add the required 18 components for enzyme catalysis for enzymatic reaction. This strategy reduces the 19 damage of high-concentration substrates to enzymes while maintaining a high 20

1

photoreaction yield. The results showed that the higher the dilution ratio, the higher
 the yield of enzyme-catalyzed reactions (Table S5). However, excessive dilution
 increases production costs and makes post-processing operations more complex.
 Therefore, we chose a final substrate concentration of 10 mM to achieve photo enzymatic cascade catalysis.

6

7 Table S6 Comparing the catalytic effects of purified enzymes, crude enzymes, and whole cell ^a

Entry	Enzyme (0.3 mg)	Yield (%) ^b
1	Whole cells	34.0
2	Crude enzymes	51.6
3	Purified enzymes	48.8

8 a Reaction condition: 1a (0.20 mmol), 2 (0.40 mmol), MO (8 mol%), H₂O (900 μL), EtOH (100
9 μL), 36 h, 36 W white light. Then added NCR (20 mg), GDH (0.618 mg), Glucose (72.2 mg),
10 NADP⁺ (0.001 mmol), DMSO (10 % v/v) and dilute the system to 20 mL with PBS (0.01 M, pH
11 7.2-7.4), 37 °C, 24 h. ^b Yield determined by Chiral HPLC analysis.

12

14 Fig. S7 Screening of enzyme concentration. Reaction condition: 1a (0.20 mmol), 2 (0.40 mmol), 15 MO (8 mol%), H₂O (900 μ L), EtOH (100 μ L), 36 h, 36 W white light. Then 100 μ L of the 16 reaction system was added crude NCR, GDH (0.3 mg), Glucose (20 mM), NADP⁺ (0.1 mM), 17 DMSO (10 % v/v) and diluted to 2 mL with PBS (0.01 M, pH 7.2-7.4), 37 °C, 20 h. Yield 18 determined by HPLC analysis.

1

3 Fig. S8 Time-temperature curve. Reaction conditions: 1a (0.20 mmol), 2 (0.40 mmol), MO (8
4 mol%), H₂O (900 μL), EtOH (100 μL), 36 h, 36 W white light. Then 100 μL of the reaction
5 system was added crude NCR (0.4 mg/mL), GDH (0.5 mg/mL), Glucose (20 mM), NADP⁺ (0.1
6 mM), DMSO (10 % v/v) and diluted to 2 mL with phosphate buffer (0.01 M, pH 7.2-7.4), 160 rpm.
7 Yield determined by Chiral HPLC analysis with 4a sample.

8

Entry	Buffer	Yield (%) ^b
1	PBS	55.2
2	MOPS	65.7
3	Tris-HCl	65.5
4	Tricine	64.2
5	TEOA	68.0

9 Table S7 Screening of buffer ^a

^a Reaction condition: 1a (0.20 mmol), 2 (0.40 mmol), MO (8 mol%), H₂O (900 μL), EtOH (100 μL), 36 h, 36 W white light. Then 100 μL of the reaction system was added crude NCR (0.4 mg/mL), GDH (0.5 mg/mL), Glucose (20 mM), NADP⁺ (0.1 mM), DMSO (10 % v/v) and diluted to 2 mL with buffer (0.01 M, pH 7.2-7.4), 32 °C, 200 rpm, 50 min. ^b Yield was determined by Chiral HPLC analysis with racemic product samples.

Entry	pH	Yield (%) ^b	ee (%) ^b
1	5.5	66.8	83.0
2	6.5	65.5	82.2
3	7.2-7.4	66.6	97.7
4	8.5	66.0	97.6
5	9.5	64.6	97.8

^a Reaction condition: 1a (0.20 mmol), 2 (0.40 mmol), MO (8 mol%), H₂O (900 μL), EtOH (100
μL), 36 h, 36 W white light. Then 100 μL of the reaction system was added crude NCR (0.4
mg/mL), GDH (0.5 mg/mL), Glucose (20 mM), NADP⁺ (0.1 mM), DMSO (10 % v/v) and diluted
to 2 mL with TEOA buffer (0.01 M), 32 °C, 200 rpm, 50 min. ^b Yield and ee value determined by
Chiral HPLC analysis with racemic product samples.

7 Table S9 Screening of co-solvent ^a

Entry	Co-solvent	Yield (%) ^b
1	DMSO	70.6
2	ACN	65.7
3	EtOH	59.2
4	IPA	65.7
5	THF	63.4
6	H ₂ O	45.2

8 ^a Reaction condition: 1a (0.20 mmol), 2 (0.40 mmol), MO (8 mol%), H₂O (900 μL), EtOH (100
9 μL), 36 h, 36 W white light. Then 100 μL of the reaction system was added crude NCR (0.4
10 mg/mL), GDH (0.5 mg/mL), Glucose (20 mM), NADP⁺ (0.1 mM), co-solvent (10 % v/v) and
11 diluted to 2 mL with TEOA buffer (0.01 M, pH 7.2-7.4), 32 °C, 200 rpm, 50 min. ^b Yield
12 determined by Chiral HPLC analysis with racemic product samples.

1 3.6 Enzyme kinetics

2

3 Fig. S9 Enzymatic reaction kinetics curves of OYE1-3a (left) and NCR-3a (right). Reaction
4 condition: 1c (0.025-2.5 mM), NADPH (0.25 mM), PBS (10 mM, pH 7.2-7.4), purified enzymes
5 (20 μg), total reaction volume 200 μL. Measured the change in absorbance value at 340 nm.

6 3.7 Gene sequence comparison

Use DNAMAN and DNAstar bioinformatics software for analysis. Based on the sequence comparison results (Fig. S10), we found that the gene sequences of OYE1 and OYE3 have a high consistency of 80.25%, and the amino acids at the active sites are highly conserved (only different in the 296 position). The sequence consistency between GluER and NCR reached 67.85%, and the amino acids at the active sites also showed high conservatism. The yellow highlighted amino acids are identified as active site amino acids in the literature ³.

GluER.pro	••••• HHH	HHHMPTLFDP	IDFGPIHAKN	RIVMSPLTRG	RADKEAVP
NCR.pro		MPSLFDP	IRFGAFTAKN	RIWMAPLTRG	RATRDHVP
OYE1.pro	MSFVKDFKPQ	ALGDTNLFKP	IKIGNNELLH	RAVIPPLTRM	RALHPGNIPN
OYE3.pro	MPFVKGFEPI	SLRDTNLFEP	IKIGNTQLAH	RAVMPPLTRM	RATHPGNIPN
GluER.pro	TPIMAEYYAQ	RASAGLII	TEATGISREG	LGWPFAPGIW	SDAQVEAWKP
NCR.pro	TEIMAEYYAQ	RASAGLII	SEATGISQEG	LG <mark>W</mark> PYAPGIW	SDAQVEAWLP
OYE1.pro	RDWAVEYYTQ	RAQRPGTMII	TEGAFISPQA	GGYDNAPGVW	SEEQMVEWTK
OYE3.pro	KEWAAVYYGQ	RAQRPGTMII	TEGTFISPQA	GGYDNAPGIW	SDEQVAEWKN
GluER.pro	IVAGVHAKGG	KIVCQLWHMG	RMVHSSV	TGTQPVSSSA	TTAPGEVHTY
NCR.pro	ITQAVHDAGG	LIFAQL <mark>W</mark> HMG	RMVPSNV	SGMQPVAPSA	SQAPGLGHTY
OYE1.pro	IFNAIHEKKS	FVWVQ <mark>L</mark> WVLG	WAAFPDNLAR	DGLRYDSASD	NVFMDAEQEA
OYE3.pro	IFLAIHDCQS	FAWVQ <mark>L</mark> WSLG	WASFPDVLAR	DGLRYDCASD	RVYMNATLQE
GluER.pro	EGKK	PFEQARAIDA	ADISRILNDY	ENAARNAIRA	GFDGVQIHAA
NCR.pro	DGKK	PYDVARALRL	DEIPRLLDDY	EKAARHALKA	GFDGVQIHAA
OYE1.pro	KAKK	ANNPQHSLTK	DEIKQYIKEY	VQAAKNSIAA	GADGVEI <mark>H</mark> SA
OYE3.pro	KAKD	ANNLEHSLTK	DDIKQYIKDY	IHAAKNSIAA	GADGVEI <mark>H</mark> SA
GluER.pro	NGYLIDEFLR	NGTNHRTDEY	GGVPENRIRF	LKEVTERVIA	AIGADRTGVR
NCR.pro	NG <mark>Y</mark> LIDEFIR	DSTNHRHDEY	GGAVENRIRL	LKDVTERVIA	TIGKERTAVR
OYE1.pro	NGYLLNQFLD	PHSNTRTDEY	GGSIENRARF	TLEVVDALVE	AIGHEKVGLR
OYE3.pro	NGYLLNQFLD	PHSNKRTDEY	GGTIENRARF	TLEVVDALIE	TIGPERVGLR
GluER.pro	LSPNG		DTQGCID	SAPETVFVPA	AKLLQDLGVA
NCR.pro	LSPNG		EI <mark>Q</mark> GTVD	SHPEQVFIPA	AKMLSDLDIA
OYE1.pro	LSPYGV <mark>F</mark> NSM	SGGAETGIVA	QYAYVAGELE	KRAKAGKRLA	FVHLVEPRVT
OYE3.pro	LSPYGT <mark>F</mark> NSM	SGGAEPGIIA	QYSYVLGELE	KRAKAGKRLA	FVHLVEPRVT
GluER.pro	WLELREPGPN	GTFGKTDQPK	LSPQIRKVFL	RPLVLNQDYT	FEAAQTALAE
NCR.pro	FLGMREGAVD	GT <mark>F</mark> GKTDQPK	LSPEIRKVFK	PPLVLNQDYT	FETAQAALDS
OYE1.pro	NP <mark>F</mark> LTEGEGE	YEGGSNDFVY	SIWKGPVIRA	GNFALHPEVV	REEVKDK
OYE3.pro	DP <mark>S</mark> LVEGEGE	YSEGTNDFAY	SIWKGPIIRA	GNYALHPEVV	REQVKDP
a) 55		VETAVESTER	PRIDATINA	DEMININGER	DEGUERDUDGI
GIUER.pro	GKADAIAFGR	KFISNPDLPE	RFARGIALQP	DDMKTWYSQG	PEGYTDYPSA
NCR.pro	GVADAISEGR	PFIGNPDLPR	REFERAPLTK	DVIETWYTQT	PKGYTDYPLL
OYEL.pro	RTLIGYGR	FFISNPDLVD	RLEKGLPLNK	YDRDTFYQMS	AHGYIDYPTY
OYE3.pro	RTLIGYGR	FFISNPDLVY	RLEEGLPLNK	YDRSTFYTMS	AEGYTDYPTY
CluED pro	TRCDM				
GIUER.pro	TSGPN				
NCR. pro	GD				
OVE2 pro	EEALKLGWDK	N			
OIE3.pro	LEAVDLGWNK	IN			
	Fig. S	S10 Sequence co	omparison resul	ts	
	ə • ^	1	1		

No.	product	Column	Solvent system	Flow rate	Detection	Retention
	F		(hexane/i-PrOH)	(mL/min)	wavelength	times
1	19	OD-3	90.10	1.0	210 nm	15.789 min;
1	та	00-5	90.10	1.0	210 IIII	19.492 min
2	46	OI	80.20	1.0	210 mm	9.746 min;
	40	0J	80:20	1.0	210 IIII	11.219 min
2	4 -	OI	80.20	1.0	210	8.076 min;
3	40	ŰĴ	80:20	1.0	210 nm	9.058 min
	4.1		02.7	1.0	210	15.588 min;
4	4d	OD-3	93:7	1.0	210 nm	18.444 min
_				1.0	21 0	15.235 min;
5	4e	IH	95:5	1.0	210 nm	16.334 min
	4.0	<u>.</u>		1.0	21 0	10.162 min;
6	41	OJ	80:20	1.0	210 nm	11.630 min
_					210 nm	14.495 min;
7	4g	IH	90:10	1.0		16.270 min
_		<u>.</u>	00 0	1.0	220	30.419 min;
8	4h	OJ	98:2	1.0	220 nm	32.769 min
			00.10	1.0	21 0	18.253 min;
9	41	OD-3	90:10	1.0	210 nm	19.268 min
10					•••	19.508 min;
10	41	OD-3	90:10	1.0	220 nm	20.996 min
				1.0	21 0	18.752 min;
	4k	IH	95:5	1.0	210 nm	20.405 min
		0 D 3		1.0	21 0	24.082 min;
12	41	OD-3	95:5	1.0	210 nm	26.926 min
10			00.10	1.0	210 nm	21.653 min;
13	4m	IH	90:10	1.0		24.289 min
		<u></u>	00.20	1.0	220	14.996 min;
14	4n	OJ	80:20	1.0	220 nm	18.683 min
						18.538 min;
15	40	IH	99:1	1.0	210 nm	19.841 min

1 4 Chiral HPLC data for enantiomers and reaction systems

1 HPLC trace of *rac*-4a:

3 HPLC trace of 4a, obtained with photoenzymatic reaction:

6 GluER:

9 HPLC trace of *rac*-4b:

	mAU			9.746	
1	100 - 50 - 0 -	2 4	9 - 6.697 6.697 8 - 8.0089		2 14 min
	No.	Ret. Time (min)	Area (mAU*min)	Height (mAU)	Area (%)
	1	9.746	6941.44189	297.70920	48.3570
	2	11.219	6930.19385	255.54117	48.2786

2 HPLC trace of 4b, obtained with photoenzymatic reaction:

1 HPLC trace of *rac*-4c:

3 HPLC trace of 4c, obtained with photoenzymatic reaction:

6 GluER:

8

9 HPLC trace of *rac*-4d:

mA 15 12 10 7 5 2	U 50 25 50 25 50 0	2.5 5	7.5 10 12.5	15 17.5	20 min
	No.	Ret. Time (min)	Area (mAU*min)	Height (mAU)	Area (%)
	1	15.588	3363.63892	190.08977	50.2782
	2	18.444	3326.41479	169.09909	49.7217

2 HPLC trace of 4d, obtained with photoenzymatic reaction:

8 HPLC trace of *rac*-4e:

2 HPLC trace of 4e, obtained with photoenzymatic reaction:

5 GluER:

2 HPLC trace of **4f**, obtained with photoenzymatic reaction:

5 GluER:

8 HPLC trace of *rac*-4g:

	mAU 1 800		<u> </u>	12,809	6.270
T		2 4	6 8 10	12 14	16 18 min
	No.	Ret. Time (min)	Area (mAU*min)	Height (mAU)	Area (%)
	1	14.495	2.20161e4	869.40277	49.8851
	2	16.270	2.21175e4	744.71246	50.1149

2 HPLC trace of 4g, obtained with photoenzymatic reaction:

5 GluER:

8 HPLC trace of *rac*-4h:

2 HPLC trace of **4h**, obtained with photoenzymatic reaction:

5 GluER:

HPLC trace of *rac*-4i: 8

	mAU 1				3.2 53 9.268
	250				ΠΠ
	200				
	150				
	100				
	50	260			
	0			· · · · · · · · · · ·	JV
1		2.5 5	7.5 10 12.5	15 17.	5 20 min
	No.	Ret. Time (min)	Area (mAU*min)	Height (mAU)	Area (%)
	1	18.253	6719.63574	322.92419	48.7767
	2	19.268	7039.95361	318.33133	51.1018

2 HPLC trace of **4i**, obtained with photoenzymatic reaction:

8 HPLC trace of *rac*-4j:

1	mAU 700 600 500 400 300 200 100 0	5.5 5.992 5.592	967-7 98:225 98:225 7.5 10 12:5	15 17.5	99999999999999999999999999999999999999
	No.	Ret. Time (min)	Area (mAU*min)	Height (mAU)	Area (%)
	1	19.508	1.77560e4	782.56616	49.0597
	2	20.996	1.78110e4	730.10089	49.2117

2 HPLC trace of 4j, obtained with photoenzymatic reaction:

5 GluER:

6

No.	Ret. Time (min)	Area (mAU*min)	Height (mAU)	Area (%)
1	19.370	5.53249e4	2213.53857	64.6561
2	21.021	1190.23193	38.06504	1.3910

1 HPLC trace of *rac*-4k:

3 HPLC trace of 4k, obtained with photoenzymatic reaction:

6 GluER:

2	20.106	198.81239	13.95777	0.5884
---	--------	-----------	----------	--------

4 HPLC trace of **4**l, obtained with photoenzymatic reaction:

2	26.723	243.14815	8.13967	0.3362
---	--------	-----------	---------	--------

2 HPLC trace of *rac*-4m:

4 HPLC trace of 4m, obtained with photoenzymatic reaction:

7 GluER:

2	24.958	698.80994	14.92718	0.7886
			•	

2 HPLC trace of *rac*-4n:

4 HPLC trace of **4n**, obtained with photoenzymatic reaction:

7 GluER:

- 1
- 2 HPLC trace of *rac*-40:

4 HPLC trace of **40**, obtained with photoenzymatic reaction:

7 GluER:

1 5¹H NMR and ¹³C NMR

3 2-(1-phenylethylidene)malononitrile (3a)

4 ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.24 (m, 5H), 2.62 (s, 3H); ¹³C NMR (100 MHz,

5 CDCl₃) δ 175.59, 135.85, 132.32, 129.13, 127.36, 112.82, 112.75, 84.66, 24.33, 24.32;

6 light yellow solid

7

9 2-(1-(o-tolyl)ethylidene)malononitrile (3b)

¹H NMR (400 MHz, CDCl3) δ 7.37 – 7.24 (m, 3H), 7.07 (d, *J* = 8.0 Hz, 1H), 2.53 (s,
3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl3) δ 179.06, 136.59, 133.62, 131.22,
130.43, 126.46, 125.99, 111.90, 111.75, 88.27, 25.36, 19.26; white solid

15 2-(1-(m-tolyl)ethylidene)malononitrile (3c)

¹H NMR (400 MHz, CDCl3) δ 7.41 – 7.33 (m, 4H), 2.62 (s, 3H), 2.42 (s, 3H); ¹³C
NMR (100 MHz, CDCl3) δ 175.71, 139.06, 135.93, 133.02, 128.99, 127.77, 124.46,
112.82, 112.78, 84.47, 24.28, 21.35; white solid

19

21 2-(1-(p-tolyl)ethylidene)malononitrile (3d)

22 ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 2.62

23 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.21, 143.36, 133.02, 129.77,

24 127.49, 113.13, 112.99, 83.62, 24.07, 21.56; white solid

25

1

2 2-(1-(2-fluorophenyl)ethylidene)malononitrile (3e)

³ ¹H NMR (400 MHz, CDCl₃) δ 7.56 - 7.50 (m, 1H), 7.38 (td, J = 8.0, 4.0 Hz, 1H),
⁴ 7.30 (dd, J = 8.0, 4.0 Hz, 1H), 7.25-7.20 (m, 1H), 2.63 (s, 3H); ¹³C NMR (100 MHz,
⁵ CDCl₃) δ 171.81, 171.80, 159.74, 157.23, 133.64, 133.55, 128.81, 124.87, 124.84,
⁶ 124.29, 124.15, 117.00, 116.79, 111.87, 111.82, 88.52, 88.35, 24.34, 24.31; light
⁷ yellow solid

8

9

16

22

10 2-(1-(3-fluorophenyl)ethylidene)malononitrile (3f)

¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.47 (m, 1H), 7.36 – 7.34 (m, 1H), 7.28 – 7.21
(m, 2H), 2.63 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.70, 163.81, 161.32, 137.72,
137.64, 131.07, 130.99, 123.15, 123.12, 119.25, 119.04, 114.59, 114.36, 112.27,
85.88, 24.29; light brown oily liquid

17 2-(1-(4-fluorophenyl)ethylidene)malononitrile (3g)

¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.57 (m, 2H), 7.24 – 7.18 (m, 2H), 2.64 (s, 3H);
¹³C NMR (100 MHz, CDCl₃) δ 173.91, 166.11, 163.57, 131.86, 131.83, 129.95,
129.86, 116.62, 116.40, 112.75, 112.59, 84.70, 84.69, 29.69, 24.28; light yellow solid

23 2-(1-(2-bromophenyl)ethylidene)malononitrile (3h)

¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.0 Hz, 1H), 7.44 (t, J = 16.0 Hz, 1H), 7.34
(t, J = 16.0 Hz, 1H), 7.18 (d, J = 8.0 Hz, 1H), 2.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.98, 137.71, 133.69, 131.82, 128.15, 127.77, 119.31, 111.52, 111.25,

- 1 89.65, 24.80; yellow oily liquid
- 2

3

CN CN

4 2-(1-(4-chlorophenyl)ethylidene)malononitrile (3i)

¹H NMR (400 MHz, CDCl₃) δ 7.52 - 7.47 (m, 4H), 2.62 (s, 3H); ¹³C NMR (100 MHz,
CDCl₃) δ 173.83, 138.69, 134.13, 129.50, 128.76, 112.56, 112.45, 85.16, 29.68, 24.16;
yellow solid

8

10 2-(1-(4-bromophenyl)ethylidene)malononitrile (3j)

¹H NMR (400 MHz, CDCl₃) δ 7.66 - 7.63 (m, 2H), 7.45 - 7.40 (m, 2H), 2.61 (s, 3H);
¹³C NMR (100 MHz, CDCl₃) δ 173.97, 134.60, 132.47, 128.86, 127.10, 112.56,
112.46, 85.16, 24.13; white yellow

14

15

16 2-(1-(4-(trifluoromethyl)phenyl)ethylidene)malononitrile (3k)

¹⁷ ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, 2H), 7.65 (d, 2H), 2.67 (s, 3H); ¹³C NMR (100
¹⁸ MHz, CDCl₃) δ 173.84, 139.18, 127.72, 126.30, 126.26, 126.22, 126.19, 112.07,
¹⁹ 112.02, 109.99, 86.72, 24.41; light brown oily liquid

20

21

MeO

22 2-(1-(4-methoxyphenyl)ethylidene)malononitrile (3l)

23 ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dt, J = 12.0, 4.0 Hz, 2H), 6.99 (dt, J = 8.0, 4.0 Hz,

24 2H), 3.88 (s, 3H), 2.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.93, 163.08,

25 129.79, 127.88, 114.45, 113.62, 113.35, 81.96, 55.58, 23.80; light yellow solid

26

2 2-(1-(4-(methylthio)phenyl)ethylidene)malononitrile (3m)

3 ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 2.62

4 (s, 3H), 2.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.02, 145.83, 131.50, 127.94,

- 5 125.40, 113.27, 113.09, 83.05, 29.70, 23.83, 14.73; bright yellow solid
- 6

7

8 2-(1-(thiophen-2-yl)ethylidene)malononitrile (3n)

¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 4.0 Hz, 1H), 7.79 (d, J = 4.0 Hz, 1H), 7.25
(d, J = 4.0 Hz, 1H), 2.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.54, 138.27,
134.35, 133.54, 129.15, 114.00, 113.51, 78.80, 23.63; light yellow solid

13 COOEt

14 ethyl (E)-2-cyano-3-phenylacrylate (30)

¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.99 (d, J = 8.0 Hz, 2H), 7.58 – 7.49 (m,
3H), 4.39 (q, J = 8.0 Hz, 2H), 1.40 (t, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ
162.45, 154.99, 133.26, 131.47, 131.03, 129.25, 115.44, 103.05, 62.71, 14.14; white
solid

19

21 2-(1-phenylethyl)malononitrile (4a)

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.31 (m, 5H), 3.84 (d, J = 4.0 Hz, 1H), 3.47 –
3.41 (m, 1H), 1.64 (d, J = 4.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.14, 129.23,
128.83, 127.20, 111.94, 111.65, 41.16, 31.19, 17.74; ESI calculated for
[C11H10N2+H] 171.0917. Found 171.0916; light yellow liquid

CN ĊМ 1

2 2-(1-(o-tolyl)ethyl)malononitrile (4b)

³ ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.26 (m, 2H), 7.25 – 7.21 (m, 2H), 3.81 (d, J =
8.0, 1H), 3.79 – 3.72 (m, 1H), 2.40 (s, 3H), 1.62 (d, J = 8.0 Hz, 3H); ¹³C NMR (100
5 MHz, CDCl₃) δ 136.69, 135.57, 131.24, 128.41, 127.05, 125.34, 112.16, 111.74,
6 36.34, 29.99, 19.48, 18.04; ESI calculated for [C12H12N2+H] 185.1073. Found
7 185.1088; light yellow liquid

8

9

10 2-(1-(m-tolyl)ethyl)malononitrile (4c)

¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.27 (m, 1H), 7.17 (d, J = 8.0 Hz, 1H), 7.12 –
7.11 (m, 2H), 3.84 (d, J = 4.0, 1H), 3.44 – 3.38 (m, 1H), 2.37 (s, 3H), 1.64 (d, J = 4.0
Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.01, 138.18, 129.56, 129.10, 127.86,
124.16, 112.02, 111.70, 41.17, 31.19, 21.44, 17.80; ESI calculated for [C12H12N2+H]
185.1073. Found 185.1088; light yellow liquid

CN CN

18 2-(1-(p-tolyl)ethyl)malononitrile (4d)

¹H NMR (400 MHz, CDCl₃) δ 7.21 (s, 4H), 3.82 (d, J = 8.0 Hz, 1H), 3.46 – 3.39 (m,
¹H), 2.36 (s, 3H), 1.63 (d, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.70,
¹I35.17, 129.87, 127.05, 112.01, 111.73, 40.89, 31.32, 21.09, 17.81; ESI calculated for
²[C12H12N2+H] 185.1073. Found 185.1088; white solid

23

24

17

25 2-(1-(2-fluorophenyl)ethyl)malononitrile (4e)

26 ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.34 (m, 2H), 7.22 (t, J = 8.0 Hz, 1H), 7.15 –

41

7.10 (m, 1H), 4.04 (d, J = 8.0, 1H), 3.84 – 3.77 (m, 1H), 1.68 (d, J = 4.0 Hz, 3H); ¹³C
 NMR (100 MHz, CDCl₃) δ 161.60, 159.15, 130.58, 130.49, 128.34, 125.06, 116.14,
 115.92, 111.90, 111.34, 34.86, 34.84, 29.44, 29.41, 16.42, 16.41; ESI calculated for
 [C11H10FN2+H] 189.0823. Found 189.0814; light yellow liquid

6

7 2-(1-(3-fluorophenyl)ethyl)malononitrile (4f)

¹H NMR (400 MHz, CDCl₃) δ 7.39 (td, J = 16.0, 8.0 Hz, 1H), 7.15 – 7.03 (m, 3H),
3.86 (d, J = 4.0 Hz, 1H), 3.49 – 3.42 (m, 1H), 1.65 (d, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.23, 161.76, 140.45, 140.45, 130.96, 130.87, 123.04, 123.01,
116.05, 115.84, 114.47, 114.25, 111.61, 111.35, 40.83, 30.98, 17.74; ESI calculated
for [C11H10FN2+H] 189.0823. Found 189.0814; light yellow liquid

15 2-(1-(4-fluorophenyl)ethyl)malononitrile (4g)

¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.30 (m, 2H), 7.14 – 7.08 (m, 2H), 3.84 (d, J =
8.0 Hz, 1H), 3.50 – 3.43 (m, 1H), 1.64 (d, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz,
CDCl₃) δ 164.01, 161.54, 133.83, 129.09, 129.00, 116.35, 116.13, 111.74, 111.55,
40.47, 31.31, 17.90; ESI calculated for [C11H10FN2+H] 189.0823. Found 189.0814;
yellow liquid

21

22

14

23 2-(1-(2-bromophenyl)ethyl)malononitrile (4h)

¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.0 Hz, 1H), 7.46 - 7.39 (m, 2H), 7.26 7.22 (m, 1H), 4.13 (d, J = 4.0 Hz, 1H), 4.03 - 3.96 (m, 1H), 1.70 (d, J = 8.0 Hz, 3H);
¹³C NMR (100 MHz, CDCl₃) δ 136.79, 133.54, 130.31, 128.43, 128.12, 124.40,
112.01, 110.90, 39.51, 29.21, 15.92; ESI calculated for [C11H9BrN2+H] 249.0022.

2

3

4 2-(1-(4-chlorophenyl)ethyl)malononitrile (4i)

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.38 (m, 2H), 7.30 – 7.26 (m, 2H), 7.83 (d, J =
8.0 Hz, 1H), 3.48 – 3.41 (m, 1H), 1.64 (d, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz,
CDCl₃) δ 136.49, 134.88, 129.46, 128.64, 111.61, 111.42, 40.61, 31.08, 17.77; ESI
calculated for [C11H9ClN2+H] 205.0527. Found 205.0561; light yellow liquid

11 2-(1-(4-bromophenyl)ethyl)malononitrile (4j)

¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 8.0 Hz, 2H), 7.22 (m, J = 8.0 Hz, 2H), 3.83
(d, J = 8.0 Hz, 1H), 3.47 - 3.40 (m, 1H), 1.63 (d, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.00, 132.42, 128.94, 123.00, 111.59, 111.40, 40.68, 30.99, 17.71;
ESI calculated for [C11H9BrN2+H] 249.0022. Found 249.0480; light brown liquid

17 F₃C

Br′

10

18 2-(1-(4-(trifluoromethyl)phenyl)ethyl)malononitrile (4k)

¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 3.80
(d, J = 8.0 Hz, 1H), 3.57 - 3.51 (m, 1H), 1.68 (d, J = 8.0 Hz, 3H); ¹³C NMR (100
MHz, CDCl₃) δ 141.87, 133.34, 131.02, 127.85, 126.33, 126.29, 126.25, 126.21,
125.05, 122.35, 111.47, 111.29, 40.88, 40.86, 30.87, 30.86, 17.72; ESI calculated for
[C12H9F3N2+H] 239.0791. Found 239.0784; light yellow liquid

24

25

CN MeO

26 2-(1-(4-methoxyphenyl)ethyl)malononitrile (4l)

¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, J = 12.0 Hz, 2H), 6.92 (m, J = 8.0 Hz, 2H),
 3.81 (s, 3H), 3.45 - 3.38 (m, 1H), 1.62 (d, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz,
 CDCl₃) δ 159.81, 130.10, 128.38, 114.52, 112.04, 111.81, 55.31, 40.53, 31.47, 17.87;
 ESI calculated for [C12H12N2O+H] 201.1022. Found 201.1008; light yellow liquid

7 2-(1-(4-(methylthio)phenyl)ethyl)malononitrile (4m)

¹H NMR (400 MHz, CDCl₃) δ 7.28-7.23 (m, 4H), 3.84 (d, J = 4.0 Hz, 1H), 3.46 –
3.39 (m, 1H), 1.63 (d, J = 4.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.64, 134.55,
127.69, 126.74, 111.91, 111.69, 40.71, 31.23, 17.73, 15.46; ESI calculated for
[C12H12N2S+H] 217.0794. Found 217.0776; light yellow liquid

12

13

6

14 2-(1-(thiophen-2-yl)ethyl)malononitrile (4n)

¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 4.0 Hz, 1H), 7.12 (d, J = 4.0 Hz, 1H), 7.03
(t, J = 4.0 Hz, 1H), 3.93 (d, J = 4.0 Hz, 1H), 3.81 – 3.75 (m, 1H), 1.72 (d, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.80, 127.40, 126.20, 125.62, 111.65, 111.35, 36.95, 32.01, 19.07; ESI calculated for [C9H8N2S+H] 177.0481. Found 177.0498;
light yellow liquid

20

22 ethyl 2-cyano-3-phenylpropanoate (40)

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 5H), 4.24 (q, J = 8.0 Hz, 2H), 3.72 (dd,
J = 8.0, 4.0 Hz, 1H), 3.31 – 3.17 (m, 2H), 1.27 (t, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.52, 135.25, 129.02, 128.87, 127.79, 116.16, 62.96, 39.70, 35.75,
13.94; ESI calculated for [C12H13NO2+H] 204.1019. Found 249.1036; light yellow
liquid

1 2-(1-(o-tolyl)ethylidene)malononitrile (3b)

1 2-(1-(m-tolyl)ethylidene)malononitrile (3c)

1 2-(1-(p-tolyl)ethylidene)malononitrile (3d)

1 2-(1-(2-fluorophenyl)ethylidene)malononitrile (3e)

1 2-(1-(3-fluorophenyl)ethylidene)malononitrile (3f)

1 2-(1-(4-fluorophenyl)ethylidene)malononitrile (3g)

1 2-(1-(2-bromophenyl)ethylidene)malononitrile (3h)

1 2-(1-(4-chlorophenyl)ethylidene)malononitrile (3i)

1 2-(1-(4-bromophenyl)ethylidene)malononitrile (3j)

1 2-(1-(4-(trifluoromethyl)phenyl)ethylidene)malononitrile (3k)

1 2-(1-(4-methoxyphenyl)ethylidene)malononitrile (3l)

1 2-(1-(4-(methylthio)phenyl)ethylidene)malononitrile (3m)

1 2-(1-(thiophen-2-yl)ethylidene)malononitrile (3n)

1 ethyl (E)-2-cyano-3-phenylacrylate (30)

1 2-(1-phenylethyl)malononitrile (4a)

1 2-(1-(o-tolyl)ethyl)malononitrile (4b)

1 2-(1-(m-tolyl)ethyl)malononitrile (4c)

1 2-(1-(p-tolyl)ethyl)malononitrile (4d)

1 2-(1-(2-fluorophenyl)ethyl)malononitrile (4e)

1 2-(1-(3-fluorophenyl)ethyl)malononitrile (4f)

1 2-(1-(4-fluorophenyl)ethyl)malononitrile (4g)

1 2-(1-(2-bromophenyl)ethyl)malononitrile (4h)

1 2-(1-(4-chlorophenyl)ethyl)malononitrile (4i)

1 2-(1-(4-bromophenyl)ethyl)malononitrile (4j)

1 2-(1-(4-(trifluoromethyl)phenyl)ethyl)malononitrile (4k)

1 2-(1-(4-methoxyphenyl)ethyl)malononitrile (4l)

1 2-(1-(4-(methylthio)phenyl)ethyl)malononitrile (4m)

1 2-(1-(thiophen-2-yl)ethyl)malononitrile (4n)

1 ethyl 2-cyano-3-phenylpropanoate (40)

1 6 References

- 2 1 M. Zhang, A.-Q. Zhang and Z.-H. Deng, Two mild methods for synthesis of α , β –
- 3 unsaturated cyanoesters, J. Chem. Res., 2005, 1,69-70.
- 4 2 B. C. Ranu and S. Samanta, Use of indium hydride (Cl₂InH) for chemoselective
- 5 reduction of the carbon-carbon double bond in conjugated alkenes, *Tetrahedron Lett.*,
- 6 **2002**, 43, 7405-7407.
- 7 3 (a) Y. Pompeu, B. Sullivan and J. D. Stewart, X-Ray Crystallography Reveals How
- 8 Subtle Changes Control the Orientation of Substrate Binding in an Alkene Reductase,
- 9 ACS catal., 2013, 3, 2376-2390; (b) R. W. Powell, M. P. Buteler, S. Lenka, M. Crotti,
- 10 S. Santangelo, M. J. Burg, S. Bruner, E. Brenna, A. E. Roitberg and J. D. Stewart,
- 11 Investigating: Saccharomyces Cerevisiae Alkene Reductase OYE 3 by Substrate
- 12 Profiling, X-Ray Crystallography and Computational Methods, Catal. Sci. Technol.,
- 13 2018, 8, 5003-5016; (c) S. Reich, H. W. Hoeffken, B. Rosche, B. M. Nestl and B.
- 14 Hauer, Crystal Structure Determination and Mutagenesis Analysis of the Ene
- 15 Reductase NCR, Chembiochem, 2012, 13, 2400-2407.
- 16
- 17

18