Supplementary Information for

Concise syntheses of (+)-maximumins B and C and (+)ottensinin

Qing-Xin Li,^{‡a,b} Lin-Lin Wang,^{‡c,d} Yue-Ming Zheng,^{b,c} Zhao-Bing Gao,^{*,b,c,d} Jin-Xin Zhao^{*,a,b} and Jian-Min Yue^{*,a,b,d}

^a Ethnomedicine and Biofunctional Molecule Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China

 ^b University of Chinese Academy of Science, No.19A Yuquan Road, Beijing 100049, China
 ^c Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
 ^d School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China

‡ Contributed equally.

*Corresponding authors

Email: zbgao@simm.ac.cn (Z.-B. Gao); jxzhao@simm.ac.cn (J.-X. Zhao) ; jmyue@simm.ac.cn (J.-M. Yue).

Table of Contents

General experimental	4
Full synthetic sequence	5
Synthesis of (+)-maximumin B (1)	5
Syntheses of (+)-maximumin C (2) and ottensinin (3)	5
Experimental procedures and characterization data for new compounds	6
Compound S1	6
Compound S2	7
Compound 4	7
Compound 7	8
Compound 6	9
Compound 16	10
Compound 1	10
Compound S3	11
Compound 11	12
Compound 10	13
Compound S4	14
Compound 17	15
Compound S5	16
Compound 18	16
Compound S6	17
Compound 9	18
Compound 19	19
Compound 2	20
Compound 13	21
Compound 3	22
NMR data comparison of synthetic and natural maximumins B/C and ottensinin	24
¹ H NMR data comparison of synthetic and natural maximumin B	24
¹³ C NMR data comparison of synthetic and natural maximumin B	25
¹ H NMR data comparison of synthetic and natural maximumin C	26
¹³ C NMR data comparison of synthetic and natural maximumin C	27
¹ H NMR data comparison of synthetic and natural ottensinin	28
¹³ C NMR data comparison of synthetic and natural ottensinin	30
X-ray crystallographic data for ottensinin (3)	31
Biological activities assays	32
Ottensinin	32
Retigabine	32
Electrophysiological recordings	33
Patch clamp data Analysis	34
NMR Spectra	35
Compound S1 ¹ H NMR (CDCl ₃)	35
Compound S1 ¹³ C NMR (CDCl ₃)	

Compound S2 ¹ H NMR (CDCl ₃)	
Compound S2 ¹³ C NMR (CDCl ₃)	
Compound 4 ¹ H NMR (CDCl ₃)	
Compound 4 ¹³ C NMR (CDCl ₃)	40
Compound 7 ¹ H NMR (CDCl ₃)	41
Compound 7 ¹³ C NMR (CDCl ₃)	42
Compound 6 ¹ H NMR (CDCl ₃)	43
Compound 6 ¹³ C NMR (CDCl ₃)	44
Compound 16 ¹ H NMR (CDCl ₃)	45
Compound 16 ¹³ C NMR (CDCl ₃)	46
Compound 1 ¹ H NMR (CDCl ₃)	47
Compound 1 ¹³ C NMR (CDCl ₃)	48
Compound 11 ¹ H NMR (CDCl ₃)	49
Compound 11 ¹³ C NMR (CDCl ₃)	
Compound 10 ¹ H NMR (CDCl ₃)	51
Compound 10 ¹³ C NMR (CDCl ₃)	
Compound S4 ¹ H NMR (CDCl ₃)	53
Compound S4 ¹³ C NMR (CDCl ₃)	54
Compound 17 ¹ H NMR (CDCl ₃)	55
Compound 17 ¹³ C NMR (CDCl ₃)	56
Compound S5 ¹ H NMR (CDCl ₃)	57
Compound S5 ¹³ C NMR (CDCl ₃)	
Compound 18 ¹ H NMR (CDCl ₃)	59
Compound 18 ¹³ C NMR (CDCl ₃)	60
Compound S6 ¹ H NMR (CDCl ₃)	61
Compound S6 ¹³ C NMR (CDCl ₃)	62
Compound 9 ¹ H NMR (CDCl ₃)	63
Compound 9 ¹³ C NMR (CDCl ₃)	64
Compound 19 ¹ H NMR (CDCl ₃)	65
Compound 19 ¹³ C NMR (CDCl ₃)	66
Compound 2 ¹ H NMR (CDCl ₃)	67
Compound 2 ¹³ C NMR (CDCl ₃)	
Compound 13 ¹ H NMR (CDCl ₃)	69
Compound 13 ¹³ C NMR (CDCl ₃)	70
Compound 3 ¹ H NMR (CDCl ₃)	71
Compound 3 ¹³ C NMR (CDCl ₃)	72

General experimental

Unless otherwise stated, all reactions were carried out under anhydrous conditions. Super-dried solvents and reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Reactions were monitored by thin layer chromatography (TLC) or LC/MS. TLC was performed using precoated silica gel 60 F254 (Merck), using short-wave UV light as the visualizing agent, and cerium molybdate (CAM or Hanessian's stain), phosphomolybdic acid (PMA), or KMnO4 and heat as developing agents. Flash silica gel chromatography was performed using E. Merck silica gel (60, particle size 0.043–0.063 mm). NMR data were obtained on Bruker AVANCE III 400, AVANCE III 500, Ascend 600 and/or Ascend 800 NMR spectrometers referenced to deuterated solvent peaks ($\delta_{\rm H}$ 7.26 in CDCl₃ or 4.87 in CD₃OD, $\delta_{\rm C}$ 77.16 in CDCl₃, 49.00 in CD₃OD).

The X-ray diffraction analysis was performed on a Bruker SMART CCD detector employing graphite monochromated Cu-K α radiation. Melting points were recorded on an SGM X-4 apparatus. ESIMS and HRESIMS were implemented on a Bruker Daltonics Esquire 3000 plus and Waters-Micromass Q-TOF Ultima Global mass spectrometer, respectively.

Full synthetic sequence

Synthesis of (+)-maximumin B (1)

Syntheses of (+)-maximumin C (2) and ottensinin (3)

Experimental procedures and characterization data for new

compounds

Compound S1

Experimental: To a stirred suspension of NaH (29 mg, 0.727 mmol, 60% dispersed in oil, 3 equiv) in 2 mL Et₂O was added **14** (47 mg, 0.242 mmol, 1 equiv) in 2 mL Et₂O at 0 °C. HCO₂Et (54 mg, 0.727 mmol, 3 equiv) and 2 drops of EtOH were then added. The mixture was warmed to room temperature. After stirring for 3 hours, the mixture was cooled to 0 °C and a solution of TsN₃ (238 mg, 1.21 mmol, 5 equiv) in 1 mL Et₂O was added dropwise and stirred for 30 min under the same temperature. Upon reaction completion (monitored by TLC), the reaction was quenched with 10% NaOH (1 mL), and extracted with EtOAc (3×5 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and filtered. Concentration *in vacuo* afforded a crude residue, which was purified by column chromatography (PE:EA = 20:1) to provide **S1** (40 mg, 75% yield) as a yellow oil.

Physical state: yellow oil;

TLC: $R_f = 0.20$ (PE: EA = 20:1);

¹**H NMR (600 MHz, CDCl₃):** δ 2.77 – 2.65 (m, 2H), 2.11 – 2.05 (m, 1H), 1.90 – 1.83 (m, 1H), 1.63 – 1.52 (m, 3H), 1.47 – 1.40 (m, 1H), 1.31 – 1.22 (m, 3H), 1.19 – 1.13 (m, 4H), 0.94 (s, 3H), 0.88 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 201.4, 77.4, 77.2, 76.9, 61.3, 49.0, 46.3, 41.5, 34.6, 33.8, 33.1, 22.0, 21.2, 19.6, 18.4, 18.0.;

HRMS(ESI-TOF): calc'd for $C_{13}H_{20}N_2ONa [M + Na]^+$: 243.1468, found: 243.1469.

Compound S2

Experimental: The solution of **S1** (30.6 mg, 0.139 mmol) in 2,4,6-collidine (0.5 mL) and BnOH (0.5 mL) was purged with argon for 15 min. Then, the mixture was heated to 160 °C, and stirred for 30 min before being cooled to room temperature and diluted with EtOAc (7 mL). The organic layer was washed sequentially with 1M HCl (5 mL) and brine, dried over Na₂SO₄, and filtered. Concentration *in vacuo* afforded a crude residue, which was purified via column chromatography (PE:EA = 100:1) to provide **S2** (30.5 mg, 0.101 mmol, 73% yield) as a colorless oil.

Physical state: colorless oil;

TLC: $R_f = 0.20$ (PE: EA = 100:1);

¹**H NMR (600 MHz, CDCl₃):** δ 7.37 – 7.28 (m, 5H), 5.15 – 5.08 (m, 2H), 2.36 (t, *J* = 9.6 Hz, 1H), 2.15 – 2.07 (m, 1H), 1.92 (d, *J* = 12.9 Hz, 1H), 1.82 – 1.74 (m, 1H), 1.68 – 1.61 (m, 1H), 1.60 – 1.54 (m, 1H), 1.52 – 1.42 (m, 3H), 1.23 – 1.16 (m, 2H), 1.09 – 1.02 (m, 1H), 0.86 (s, 3H), 0.85 (s, 3H), 0.72 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 174.1, 136.5, 128.6, 128.3, 128.1, 66.1, 58.4, 57.1, 44.5, 41.6, 39.4, 33.5, 33.4, 22.7, 21.1, 20.7, 19.9, 14.9;

HRMS(ESI-TOF): calc'd for $C_{20}H_{28}O_2Na [M + Na]^+$: 323.1982, found: 323.1983.

Compound 4

Experimental: Compound **S2** (30.4 mg, 0.1 mmol) was dissolved in 10 mL MeOH followed by addition of Pd/C (10 mg). The mixture was evacuated and backfilled with

hydrogen (3 times), and stirred at room temperature for 4 hours. Upon reaction completion (monitored by TLC), the resulting mixture was filtered over a pad of celite, and then concentrated *in vacuo*. The crude residue was purified via column chromatography (PE:EA = 10:1) to provide 4 (19.8 mg, 0.093 mmol, 93% yield) as a white solid.

Physical state: white solid;

TLC: $R_f = 0.20$ (PE: EA = 20:1);

¹H NMR (600 MHz, CDCl₃): δ 2.36 (t, J = 9.5 Hz, 1H), 2.09 – 1.98 (m, 2H), 1.84 – 1.75 (m, 1H), 1.69 – 1.64 (m, 1H), 1.64 – 1.60 (m, 1H), 1.60 – 1.55 (m, 1H), 1.53 – 1.42 (m, 2H), 1.23 – 1.16 (m, 2H), 1.10 – 1.03 (m, 1H), 0.87 (s, 6H), 0.81 (s, 3H).
¹³C NMR (125 MHz, CDCl₃): δ 178.7,58.4, 56.8, 44.4, 41.5, 39.2, 33.5, 33.4, 22.5, 21.1, 20.8, 19.9, 14.8.

HRMS(ESI-TOF): calc'd for $C_{13}H_{23}O_2$ [M + H]⁺: 211.1693, found: 211.1690.

Compound 7

Experimental: To a solution of compound **15** (200.0 mg, 1.78 mmol, 1.0 equiv) in 10 mL DMF was added K_2CO_3 (492 mg, 3.56 mmol, 2.0 equiv) at 0 °C. After stirring for 5 min, PhNTf₂ (701 mg, 1.962 mmol, 1.1 equiv) was added. The mixture was allowed to stir at room temperature for 1 h (monitored by TLC). Then, the mixture was diluted with water and extracted with EtOAc (3×15 mL). The organic phase was sequentially washed with brine, dried over Na₂SO₄, filtered, and then evaporated under reduced pressure. Chromatography purification of the residue on silica gel using petroleum ether and ethyl acetate (PE:EA = 5:1 to 2:1) as the eluent to afford 7 (325 mg) in 75% yield. **Physical state:** white solid;

TLC: $R_f = 0.20$ (PE: EA = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 8.11 (d, J = 0.9 Hz, 1H), 7.81 (dd, J = 5.8, 0.9 Hz, 1H),

6.58 (d, J = 5.7 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 170.4, 155.6, 150.0, 141.8, 118.8. HRMS(ESI-TOF): calc'd for C₆H₄O₅S [M + H]⁺: 244.9726, found: 244.9727.

Compound 6

Experimental: An oven-dried 10 mL round-bottomed flask equipped with a stir bar was charged with 7 (50 mg, 0.205 mmol, 1 equiv), allyl palladium (II) chloride dimer (7.5 mg, 0.0205 mmol, 0.1 equiv), S-Phos (9.9 mg, 0.062 mmol, 0.3 equiv), and sodium 2-cyanoacetate (**8**, 33 mg, 0.308 mmol, 1.5 equiv). The mixture was evacuated and backfilled with argon (3 times). Then, 1 mL degassed mesitylene was added to the mixture. The flask was capped, and the reaction mixture was stirred at room temperature for 10 minutes before submerging in an oil bath that was preheated to 110 °C. The reaction mixture was stirred for another 4 h. At this point, the starting material was completely consumed, and the nitrile **6** was generated, as indicated by TLC. The mixture was then cooled to room temperature and diluted with EtOAc and 1M HCl. The mixture was extracted with EtOAc (3×4 mL), and the combined organic layers were washed with brine, dried over Na₂SO₄, and filtered. Concentration *in vacuo* afforded a crude residue, which was purified by column chromatography (PE:EA=2: 1), affording **6** (15 mg, 0.11 mmol, 54% yield) as a yellow solid.

Physical state: yellow solid;

TLC: $R_f = 0.20$ (PE: EA = 1:1);

¹**H NMR (600 MHz, CDCl₃):** δ 8.02 (d, *J* = 1.6 Hz, 1H), 7.82 (dd, *J* = 5.8, 0.9 Hz, 1H), 6.42 (d, *J* = 5.8 Hz, 1H), 3.51 (dd, *J* = 1.4, 0.7 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 176.0, 156.1, 153.2, 121.3, 116.6, 116.2, 14.7.

HRMS(ESI-TOF): calc'd for C₇H₆O₂ [M + H]⁺: 136.0393, found: 211.136.0391.

Compound 16

Experimental: Nitrile **6** (15.0 mg, 0.11 mmol) was dissolved in 5 mL 4M HCl. The reaction was heated to 60 °C and stirred for 5 hours. Then, the mixture was cooled to room temperature and concentrated *in vacuo*. The resulting crude residue was purified by column chromatography (CH₂Cl₂: MeOH=20:1, 0.3% HCOOH), affording **16** (13.2 mg, 77%) as a yellow solid.

Physical state: yellow solid;

TLC: $R_f = 0.50$ (CH₂Cl₂: MeOH = 10:1, 0.1% HCOOH);

¹**H NMR (500 MHz, MeOD):** δ 8.11 (s, 1H), 8.05 (dd, *J* = 5.8, 1.0 Hz, 1H), 6.38 (d, *J* = 5.8 Hz, 1H), 3.35 (d, *J* = 0.9 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 180.2, 173.9, 158.6, 156.9, 125.7, 117.0, 31.4.

HRMS(ESI-TOF): calc'd for $C_7H_6O_4 [M + H]^+$: 177.0158, found: 177.0161.

Compound 1

Experimental: A flask was charged with acid **16** (10 mg, 0.065 mmol, 1 equiv) and *N*-hydroxyphthalimide (NHPI, 11.3 mg, 0.069 mmol, 1.05 equiv). 3 mL CH₂Cl₂ was added, and the mixture was stirred vigorously. Then, *N*, *N'*-diisopropylcarbodiimide (DIC, 9.9 mg, 0.078 mmol, 1.1 equiv) was added dropwise via syringe, and the mixture was allowed to stir for 3 h. Upon reaction completion, the solvent was removed on a rotary evaporator at 35 °C under reduced pressure and dried on a high-vacuum line for at least 5 minutes to remove residual CH₂Cl₂. Next, acid **4** (27.3 mg, 0.13 mmol, 2 equiv), Ni(BPhen)Cl₂•2DMF (12 mg, 0.02 mmol, 30 mol%), Zn (12.8 mg, 0.195 mmol,

3 equiv), benzoic anhydride (32.4 mg, 0.143 mmol, 2.2 equiv), MgCl₂ (9.3 mg, 0.098 mmol, 1.5 equiv), and LiBr (5.6 mg, 0.065 mmol, 1 equiv) were added to the same flask, which was evacuated and backfilled with argon (three times). Subsequently, 3 mL of anhydrous and deoxygenated mixture of MeCN/THF (1:1.5) was added using a syringe. The mixture was stirred overnight at room temperature. The reaction mixture was diluted with EtOAc (3×5 mL), washed with HCl (1 M), K₂CO₃ (1 M), and dried over Na₂SO₄. Upon filtration, the organic layer was concentrated under reduced pressure, and the residue was purified by flash column chromatography to afford the desired product **1** (11.0 mg, 56%).

Physical state: white solid;

TLC: $R_f = 0.20$ (PE: EA = 1:1);

Specific rotation: $[\alpha]_{D}^{18} = +150 \ (c = 0.045, \text{MeOH});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.74 (s, 1H), 7.71 (d, J = 5.7 Hz, 1H), 6.33 (d, J = 5.7 Hz, 1H), 3.38 (s, 2H), 2.67 (t, J = 8.9 Hz, 1H), 2.19 – 2.14 (m, 1H), 2.14 – 2.11 (m, 1H), 1.70 – 1.66 (m, 1H), 1.65 – 1.63 (m, 1H), 1.63 – 1.54 (m, 2H), 1.48 – 1.45 (m, 1H), 1.46 – 1.43 (m, 1H), 1.40 (td, J = 12.9, 4.2 Hz, 1H), 1.28 (dd, J = 13.2, 6.5 Hz, 1H), 1.10 (td, J = 13.4, 4.4 Hz, 1H), 0.87 (s, 3H), 0.86 (s, 3H), 0.74 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 207.3, 177.6, 155.4, 154.1, 124.7, 116.8, 64.9, 59.0, 44.9, 41.4, 39.9, 39.7, 33.5, 33.5, 22.2, 21.1, 20.8, 20.1, 14.8.

HRMS(ESI-TOF): calc'd for $C_{19}H_{27}O_3$ [M + H]⁺: 303.1955, found: 303.1956.

Compound S3

Experimental: To a solution of (+)-sclareolide (**12**, 12.0 g, 48.0 mmol, 1.0 equiv) in $300 \text{ mL CH}_2\text{Cl}_2$ at $-78 \,^{\circ}\text{C}$ was added DIBAL-H (1.5 M in heptane, 38.4 mL, 57.6 mmol, 1.2 equiv) dropwise over 10 min via syringe along the wall of the flask. The reaction

mixture was then stirred for additional 60 min. A saturated aqueous solution of Rochelles salt was slowly added to the reaction mixture, and then was warmed to room temperature and stirred overnight. The mixture was sequentially extracted with CH_2Cl_2 (3×100 mL), washed with brine (150 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*, affording **S3** (11.6 g, 96%) as a white solid.

The characterization data are consistent with reported reference: *J. Am. Chem. Soc.* 2012, **134**, 8432-8435

Compound 11

Experimental: A solution of **S3** (12.1 g, 48.0 mmol, 1.0 equiv) in 480 mL benzene was treated with PIDA (21.6 g, 67.2 mmol, 1.4 equiv) and I₂ (14.6 g, 57.6 mmol, 1.2 equiv). The purple reaction mixture was vigorously stirred at 70 °C (clear oil bath) with simultaneous irradiation using a 150-watt flood lamp for 1 h. Upon reaction completion (monitored by TLC), the reaction mixture was cooled to room temperature, concentrated *in vacuo*, diluted with brine, and extracted with EtOAc. The combined organic layers were washed with saturated aqueous Na₂S₂O₃, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The resulting residue was used directly for the next step without further purification.

The crude formate was dissolved in MeOH (30 mL). To this solution was added K_2CO_3 (7.3 g, 52.8 mmol, 1.1 equiv) at 0 °C. The resulting mixture was warmed to room temperature, and stirred for 30 min before being quenched with saturated aq. NH₄Cl solution (10 mL). The mixture was extracted with EtOAc (3×25 mL). The combined organic layers were washed with brine (20 mL) and dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvent under vacuum, the residue was

subjected to flash column chromatography using PE:EA = (10:1) as the eluent to give

11 (11.3 g, 67 %) as a white solid.

Physical state: white solid;

TLC: $R_f = 0.30$ (PE: EA = 5:1);

¹**H NMR (600 MHz, CDCl₃):** δ 3.47 (dd, *J* = 10.5, 3.4 Hz, 1H), 3.11 (dd, *J* = 10.5, 4.5 Hz, 1H), 2.00 (t, *J* = 3.9 Hz, 1H), 1.91 – 1.84 (m, 2H), 1.66 (ddd, *J* = 13.9, 6.0, 3.4 Hz, 1H), 1.61 – 1.47 (m, 2H), 1.45 – 1.41 (m, 2H), 1.40 – 1.36 (m, 1H), 1.33 – 1.21 (m, 2H), 1.20 – 1.14 (m, 1H), 1.12 (s, 3H), 0.97 (dd, *J* = 12.2, 2.4 Hz, 1H), 0.86 (s, 3H), 0.79 (s, 3H), 0.78 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 74.7, 66.1, 56.0, 44.7, 41.8, 40.6, 39.9, 33.5, 33.4, 22.9, 21.6, 20.3, 18.6, 14.7, -1.6.

HRMS(ESI-TOF): calc'd for $C_{15}H_{27}IONa [M + Na]^+$: 373.0999, found: 373.1000.

Compound 10

Experimental: A 25 mL round-bottomed flask charged with *t*-BuOK (225.5 mg, 2.01 mmol, 2 equiv) was evacuated and backfilled with argon (3 times). Then a solution of **11** (352 mg, 1.005 mmol, 1 equiv) in THF (10 mL) was added dropwise at 0 °C by using syringe. The resulting mixture was heated in an oil bath that was preheated to 50 °C for 30 min. After the starting material was completely consumed (monitored by TLC), the reaction was quenched with aq. NH₄Cl and extracted with EtOAc (3×15 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (PE:EA = 50:1), affording **10** (147.4 mg, 66%) as a white solid.

Physical state: white solid;

TLC: $R_f = 0.15$ (PE: EA = 20:1);

Specific rotation: $[\alpha]_{D}^{18} = -22.67 (c = 0.15, MeOH);$

¹**H NMR (600 MHz, CDCl₃):** δ 5.61 (dd, *J* = 17.7, 10.4 Hz, 1H), 4.89 (d, *J* = 1.7 Hz, 1H), 4.87 (dd, *J* = 5.0, 1.2 Hz, 1H), 2.44 (ddd, *J* = 16.8, 11.4, 5.4 Hz, 1H), 2.36 (ddd, *J* = 16.8, 11.5, 5.3 Hz, 1H), 2.06 (s, 3H), 1.63 – 1.46 (m, 2H), 1.43 – 1.35 (m, 3H), 1.33 – 1.28 (m, 1H), 1.27 – 1.21 (m, 1H), 1.19 – 1.12 (m, 1H).

¹³C NMR (150 MHz, CDCl₃): δ 209.4, 151.5, 110.6, 53.0, 47.3, 42.2, 41.5, 40.3, 34.6, 33.7, 29.8, 22.0, 21.1, 18.8, 17.2.

HRMS(ESI-TOF): calc'd for $C_{15}H_{27}O [M + H]^+$: 223.2056, found: 223.2059.

Compound S4

Experimental: To a cooled and nitrogen filled round bottom flask charged with **10** (145 mg, 0.653 mmol, 1 equiv) in CH₂Cl₂ (13.2 mL) was added (CH₂OTMS)₂ (2.02 g, 9.8 mmol, 15 equiv) and TMSOTf (22.2 mg, 0.1 mmol, 0.15 equiv). The reaction mixture was stirred at 0 °C for 13 h. Saturated NaHCO₃ was added to quench the reaction and the mixture was extracted with CH₂Cl₂ (3×15 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo* to give compound **S4** (165 mg, 95%) as a colorless oil.

Physical state: white solid;

TLC: $R_f = 0.20$ (PE: EA = 20:1);

Specific rotation: $[\alpha]_{D}^{18} = -7.78 (c = 0.167, MeOH);$

¹**H NMR (600 MHz, CDCl₃):** δ 5.76 – 5.60 (m, 1H), 4.91 (d, J = 1.0 Hz, 1H), 4.88 (dt, J = 6.2, 1.2 Hz, 1H), 3.99 – 3.83 (m, 4H), 1.68 – 1.62 (m, 1H), 1.60 – 1.53 (m, 2H), 1.45 – 1.38 (m, 2H), 1.35 – 1.29 (m, 5H), 1.27 – 1.25 (m, 1H), 1.25 – 1.21 (m, 1H), 1.17 (td, J = 13.5, 4.1 Hz, 1H), 1.00 (s, 3H), 0.90 (s, 3H), 0.89 (s, 3H), 0.83 (t, J = 4.1 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃): δ 151.7, 110.4, 110.2, 64.6, 64.6, 53.5, 42.3, 42.2, 41.7, 40.2, 34.8, 33.7, 23.5, 22.2, 21.5, 18.9, 17.5.

HRMS(ESI-TOF): calc'd for $C_{17}H_{31}O_2$ [M + H]⁺: 267.2319, found: 267.2321.

Compound 17

Experimental: To a stirred solution of compound S4 (178.0 mg, 0.67 mmol, 1 equiv) in dry THF (10 mL) at 0 °C was added 1M BH₃•THF in THF (3.35 mL, 3.35 mmol, 5 equiv). The mixture was stirred at 0 °C for 1 h and then 35 °C for 12 h. After the starting material was completely consumed (monitored by TLC), a solution of NaOH (1.33 mL, 3 M) was slowly added at 0 °C followed by a H₂O₂ solution (1.33 mL, 30%). The mixture was stirred for another 6 h, and then extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by column chromatography (PE:EA = 10:1) to furnish 17 (152 mg, 80%).

Physical state: colorless oil;

TLC: $R_f = 0.20$ (PE:EA = 10:1);

Specific rotation: $[\alpha]_{D}^{18} = +5.00 \ (c = 0.2, \text{MeOH});$

¹**H NMR (400 MHz, CDCl₃):** δ 3.98 – 3.90 (m, 4H), 3.68 (dd, *J* = 8.5, 7.0 Hz, 2H), 1.72 – 1.66 (m, 2H), 1.53 (dt, *J* = 13.7, 3.3 Hz, 1H), 1.46 (dq, *J* = 5.4, 3.0 Hz, 1H), 1.43 – 1.38 (m, 3H), 1.38 – 1.34 (m, 2H), 1.32 (s, 3H), 1.19 – 1.09 (m, 2H), 0.88 (s, 6H), 0.86 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 110.3, 64.8, 64.7, 59.4, 55.0, 46.9, 42.9, 42.2, 38.7, 37.4, 35.3, 33.6, 23.7, 22.1, 21.0, 19.5, 18.9.

HRMS(ESI-TOF): calc'd for $C_{17}H_{32}NaO_2$ [M + Na]⁺: 307.2244, found: 307.2248.

Compound S5

Experimental: To a solution of **17** (36.6 mg, 0.129 mmol) in 2 mL acetone was added 0.13 mL Jones reagent (3M) dropwise at 0 °C. The mixture was warmed to room temperature, stirred for 30 min, and then cooled to 0 °C. Upon reaction completion (monitored by TLC), the reaction was quenched with isopropyl alcohol and extracted with EtOAc (3×5 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (PE:EA = 5:1) to furnish **S5** (25.5 mg, 78%).

Physical state: colorless oil;

TLC: $R_f = 0.20$ (PE: EA = 5:1, 0.1% HCOOH);

Specific rotation: $[\alpha]_{D}^{18} = +9.00 \ (c = 0.1, \text{ MeOH});$

¹**H NMR (400 MHz, CDCl₃):** δ 2.62 – 2.45 (m, 2H), 2.26 (d, *J* = 13.1 Hz, 1H), 2.16 (d, *J* = 13.1 Hz, 1H), 2.13 (s, 3H), 1.65 – 1.50 (m, 4H), 1.48 – 1.43 (m, 1H), 1.42 (s, 1H), 1.38 (d, *J* = 3.5 Hz, 1H), 1.36 – 1.28 (m, 1H), 1.19 – 1.09 (m, 1H), 1.02 (s, 3H), 0.99 (d, *J* = 3.9 Hz, 1H), 0.90 (s, 3H), 0.85 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 209.3, 178.1, 53.4, 48.2, 47.2, 41.9, 38.5, 38.4, 35.4, 33.7, 30.1, 21.9, 20.5, 19.8, 18.7.

HRMS(ESI-TOF): calc'd for $C_{15}H_{26}NaO_3$ [M + Na]⁺: 277.1774, found: 277.1772.

Compound 18

Experimental: To a solution of S5 (10.2 mg, 0.04 mmol, 1 equiv) in 2.5 mL

toluene/MeOH (4:1) was added 0.2 mL TMSCHN₂(1M in THF, 5 equiv) at 0 °C. The mixture was warmed to room temperature and stirred for 30min. Upon reaction completion (monitored by TLC), the reaction was quenched with 2 drops AcOH and extracted with EtOAc (3×5 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (PE:EA = 10:1) to furnish **18** (10.2 mg, 95%).

Physical state: colorless oil;

TLC: $R_f = 0.15$ (PE: EA = 10:1);

Specific rotation: $[\alpha]_{D}^{18} = +25.67 (c = 0.2, MeOH);$

¹**H NMR (400 MHz, CDCl₃):** δ 3.63 (s, 3H), 2.63 – 2.45 (m, 2H), 2.23 (d, *J* = 13.1 Hz, 1H), 2.13 (d, *J* = 13.1 Hz, 1H), 2.13 (s, 3H), 1.58 – 1.48 (m, 4H), 1.44 – 1.40 (m, 2H), 1.37 (t, *J* = 2.9 Hz, 1H), 1.13 (td, *J* = 13.4, 4.1 Hz, 1H), 1.00 (t, *J* = 4.0 Hz, 1H), 0.98 (s, 3H), 0.90 (s, 3H), 0.85 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 209.2, 172.8, 53.1, 51.3, 48.2, 47.3, 41.9, 38.5, 38.5, 35.4, 33.7, 30.1, 21.9, 20.5, 19.9, 18.7.

HRMS(ESI-TOF): calc'd for $C_{16}H_{29}O_3$ [M + H]⁺: 269.2111, found: 269.2112.

Compound S6

Experimental: To a solution of **18** (55 mg, 0.205 mmol, 1 equiv), *N*-Phenylbis(trifluoromethanesulfonimide) (80.7 mg, 0.226 mmol, 1.1 equiv) in 7 mL THF at -78 °C under argon was added dropwise 226 µL KHMDS (1.0 M in THF, 1.1 equiv). The mixture was stirred for 2 h until the starting material was consumed (monitored by TLC). The reaction was quenched with NH₄Cl and extracted EtOAc (3×7 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column

chromatography (PE:EA = 20:1) to furnish **S6** (53.4 mg, 65%).

Physical state: colorless oil;

TLC: $R_f = 0.25$ (PE: EA = 10:1);

Specific rotation: $[\alpha]_{D}^{18} = +15.00 \ (c = 0.06, \text{MeOH});$

¹**H NMR** (**600 MHz**, **CDCl**₃): δ 5.09 (dd, *J* = 3.6, 1.1 Hz, 1H), 4.95 (dd, *J* = 3.5, 1.3 Hz, 1H), 3.64 (s, 3H), 2.47 – 2.33 (m, 2H), 2.24 (d, *J* = 13.2 Hz, 1H), 2.14 (d, *J* = 13.3 Hz, 1H), 1.53 (dt, *J* = 16.3, 3.9 Hz, 3H), 1.50 – 1.43 (m, 2H), 1.42 – 1.34 (m, 2H), 1.16 (td, *J* = 13.4, 3.7 Hz, 1H), 1.05 (t, *J* = 3.9 Hz, 1H), 0.99 (s, 3H), 0.91 (s, 3H), 0.88 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 172.5, 157.2, 104.0, 53.1, 51.3, 48.0, 41.8, 38.4, 38.4, 36.9, 35.3, 33.5, 23.9, 22.0, 20.0, 18.7.

HRMS(ESI-TOF): calc'd for $C_{17}H_{28}F_{3}O_{5}$ [M + H]⁺: 401.1604, found: 401.1605.

Compound 9

Experimental: To a stirred solution of **18** (49 mg, 0.133 mmol) in CH₂Cl₂ (30 mL) was bubbled through O₃ at -78 °C for 20 min before being quenched with Me₂S (0.5 mL). Then, the mixture was warmed to room temperature, stirred for 1 h, and concentrated under reduced pressure. The residue was purified by column chromatography (PE:EA = 20:1, 0.3% HCOOH) to afford **9** (26.5 mg, 80%).

Physical state: colorless oil;

TLC: R_f = 0.20 (PE:EA = 5:1, 0.1% HCOOH);

Specific rotation: $[\alpha]_{D}^{18} = +16.13 \ (c = 0.125, \text{MeOH});$

¹**H NMR (500 MHz, CDCl₃):** δ 3.64 (s, 3H), 2.51 – 2.37 (m, 2H), 2.28 (d, *J* = 13.2 Hz, 1H), 2.16 (d, *J* = 13.1 Hz, 1H), 1.71 – 1.59 (m, 2H), 1.59 – 1.51 (m, 2H), 1.46 – 1.32 (m, 3H), 1.15 (td, *J* = 13.1, 3.7 Hz, 1H), 1.03 (t, *J* = 4.0 Hz, 1H), 1.00 (s, 3H), 0.91 (s, 3H), 0.89 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 179.1, 172.7, 53.3, 51.3, 48.2, 41.9, 38.5, 38.5, 37.0, 35.4, 33.6, 22.0, 22.0, 19.9, 18.7.

HRMS(ESI-TOF): calc'd for $C_{15}H_{27}O_4 [M + H]^+$: 271.1904, found: 271.1904.

Compound 19

Experimental: A flask was charged with acid 16 (0.075 mmol, 11.5 mg, 1 equiv) and N-hydroxyphthalimide (NHPI, 13.1 mg, 0.08 mmol, 1.07 equiv). 3 mL CH₂Cl₂ was added, and the mixture was stirred vigorously. Then, N, N'-diisopropylcarbodiimide (DIC, 11.9 mg, 0.094 mmol, 1.25 equiv) was added dropwise via syringe, and the mixture was allowed to stir for 3 h (monitored by TLC). The solvent was removed on a rotary evaporator at 35 °C under reduced pressure and dried on a high-vacuum line for at least 5 minutes to remove residual CH₂Cl₂. Next, carboxylic acid 9 (40.5 mg, 0.15 mmol, 2 equiv), Ni(BPhen)Cl₂•2DMF (13.7 mg, 0.023 mmol, 30 mol%), Zn (14.7 mg, 0.225 mmol, 3 equiv), benzoic anhydride (50.9 mg, 0.225 mmol, 2.2 equiv), MgCl₂ (10.5 mg, 0.11 mmol, 1.5 equiv), and LiBr (6.5 mg, 0.075 mmol, 1 equiv) were added to the same flask. The tube was evacuated and backfilled with argon (three times). Subsequently, 3 mL of anhydrous and deoxygenated mixture of MeCN/THF (1:1.5) was added via a syringe. The mixture was stirred overnight at room temperature. The reaction mixture was diluted with EtOAc (3×5 mL), washed with HCl (1 M), K2CO3 (1 M), and dried over Na₂SO₄. Upon filtration, the organic layer was concentrated under reduced pressure. The residue was purified by flash column chromatography to afford **19** (20.3 mg, 75%).

Physical state: colorless oil;

TLC: $R_f = 0.20$ (PE: EA = 1:1);

Specific rotation: $[\alpha]_{D}^{18} = +15.00 \ (c = 0.1, \text{ MeOH});$

¹**H NMR (500 MHz, CDCl₃):** δ 7.77 (d, J = 1.1 Hz, 1H), 7.73 (dd, J = 5.8, 1.1 Hz, 1H),

6.35 (d, *J* = 5.8 Hz, 1H), 3.64 (s, 3H), 3.46 – 3.37 (m, 2H), 2.69 (ddd, *J* = 9.9, 8.0, 6.3 Hz, 2H), 2.24 (d, *J* = 13.1 Hz, 1H), 2.16 (d, *J* = 13.1 Hz, 1H), 1.67 – 1.60 (m, 1H), 1.56 – 1.53 (m, 1H), 1.52 – 1.49 (m, 1H), 1.45 – 1.32 (m, 4H), 1.14 (td, *J* = 12.9, 3.4 Hz, 1H), 1.03 (t, *J* = 3.9 Hz, 1H), 0.98 (s, 3H), 0.90 (s, 3H), 0.87 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 206.7, 177.6, 172.8, 155.5, 154.1, 124.6, 116.8, 53.2, 51.3, 48.2, 46.6, 42.0, 38.6, 38.5, 38.3, 35.4, 33.7, 22.0, 20.5, 20.0, 18.8.
HRMS(ESI-TOF): calc'd for C₂₁H₃₁O₅ [M + H]⁺: 363.2166, found: 301.2166.

Compound 2

Experimental: Compound **19** (15 mg, 0.11 mmol) was dissolved in 5 mL 4M HCl. The reaction mixture was heated to 60 °C, and stirred for 5 hours before being cooled to room temperature and concentrated under reduced pressure. The resulting crude residue was purified via column chromatography (CH₂Cl₂: MeOH = 20:1, 0.3% HCOOH), affording **2** (10.8 mg, 75%) as a white solid.

Physical state: white solid;

TLC: $R_f = 0.10$ (PE:EA = 1:1, 0.1% HCOOH);

Specific rotation: $[\alpha]_{D}^{18} = +10.00 \ (c = 0.1, \text{ MeOH});$

¹**H NMR (800 MHz, CDCl₃):** δ 7.79 (s, 1H), 7.76 (d, *J* = 5.8 Hz, 1H), 6.39 (d, *J* = 5.8 Hz, 1H), 3.45 (d, *J* = 16.6 Hz, 1H), 3.39 (d, *J* = 16.6 Hz, 1H), 2.77 – 2.64 (m, 2H), 2.27 (d, *J* = 13.4 Hz, 1H), 2.19 (d, *J* = 13.5 Hz, 1H), 1.63 – 1.61 (m, 2H), 1.61 – 1.59 (m, 1H), 1.57 (qt, *J* = 13.1, 3.1 Hz, 1H), 1.46 – 1.44 (m, 1H), 1.44 – 1.42 (m, 1H), 1.42 – 1.38 (m, 1H), 1.16 (td, *J* = 13.2, 3.5 Hz, 1H), 1.06 (t, *J* = 4.0 Hz, 1H), 1.03 (s, 3H), 0.91 (s, 3H), 0.88 (s, 3H).

¹³C NMR (200 MHz, CDCl₃): δ 206.8, 178.0, 175.5, 155.7, 154.3, 124.7, 116.8, 53.5, 48.0, 46.6, 42.0, 38.8, 38.6, 38.4, 35.4, 33.7, 22.0, 20.5, 19.9, 18.7.

HRMS(ESI-TOF): calc'd for $C_{20}H_{29}O_5 [M + H]^+$: 349.2010, found: 349.2009.

Compound 13

Experimental: To a stirred solution of **11** (1.0 g, 2.86 mmol, 1 equiv) in CH₂Cl₂ (20 mL) was sequentially added Et₃N (870 mg, 8.58 mmol, 3 equiv) and SOCl₂ (1.53 g, 1.53 g, 12.87 mmol, 1.5 equiv) at -100 °C. The reaction mixture was stirred at the same temperature for 15 min before being quenched with saturated aq. NaHCO₃ solution (5 mL). Then, the resulting mixture was extracted with EtOAc (3×25 mL), and the combined organic phases were washed with brine (100 mL) and dried over anhydrous Na₂SO₄. After filtration and removal of the solvent under vacuum, the residue was purified by flash column chromatography eluted with pentane to give homoallylic iodide **13** (806 mg, 85%) as a white solid.

Physical state: white solid;

TLC: $R_f = 0.95$ (PE);

¹**H NMR (600 MHz, CDCl₃):** δ 5.00 (s, 1H), 4.64 (s, 1H), 3.65 (dd, *J* = 10.0, 2.2 Hz, 1H), 3.03 (dd, *J* = 10.5, 9.8 Hz, 1H), 2.46 – 2.40 (m, 1H), 2.17 (d, *J* = 11.3 Hz, 1H), 2.08 (td, *J* = 13.1, 5.1 Hz, 1H), 1.78 – 1.69 (m, 2H), 1.59 – 1.49 (m, 2H), 1.40 (dq, *J* = 13.8, 2.1 Hz, 1H), 1.36 – 1.28 (m, 1H), 1.27 – 1.16 (m, 2H), 1.11 (dd, *J* = 12.6, 2.7 Hz, 1H), 0.88 (s, 3H), 0.80 (s, 3H), 0.69 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 146.0, 108.2, 60.5, 55.3, 42.0, 41.8, 39.3, 37.7, 33.7, 33.7, 24.4, 21.8, 19.4, 13.9, 2.6.

HRMS(ESI-TOF): calc'd for $C_{15}H_{26}I [M + H]^+$: 333.1074, found: 373.1076.

Compound 3

Experimental: Homoallylic iodide **13** (73.5 mg, 0.21 mmol, 2.0 equiv), vinyl triflate 7 (25.5 mg, 0.105 mmol, 1.0 equiv), Mn (17.3 mg, 0.315 mmol, 3.0 equiv), and NiI₂ (6.6 mg, 0.021 mmol, 20 mol %), 2,2'-bipyridine (3.3 mg, 0.021 mmol, 20 mol %), TMSC1 (2.3 mg, 0.021 mmol, 0.2 equiv) were placed in a flask under an argon atmosphere, and the flask was evacuated and backfilled with argon (3 times). Afterward, anhydrous and deoxygenated DMF (1.5 mL) was added, and the mixture was stirred for 16 h at 60 °C. The mixture was diluted with 0.5M HCl (5.0 mL), and the resulting black solution was extracted with EtOAc (3×5 mL), dried over Na₂SO₄, and concentrated under reduced pressure. Ottensinin (**3**) was obtained (17.2 mg, 55%) as a white solid after column chromatography (PE:EA = 5:1).

Physical state: white solid;

TLC: $R_f = 0.20$ (PE: EA = 5:1);

Specific rotation: $[\alpha]_{D}^{18} = +34 \ (c = 0.125, \text{MeOH});$

Melting point: 120–121 °C;

¹**H NMR** (**500 MHz**, **CDCl**₃): δ 7.66 (dd, J = 5.7, 1.1 Hz, 1H), 7.52 (dd, J = 2.4, 1.1 Hz, 1H), 6.30 (d, J = 5.7 Hz, 1H), 4.81 (dd, J = 2.8, 1.4 Hz, 1H), 4.46 (dd, J = 2.7, 1.3 Hz, 1H), 2.69 (dt, J = 16.4, 1.8 Hz, 1H), 2.44 (dd, J = 16.3, 11.3 Hz, 1H), 2.38 (ddd, J = 12.8, 4.3, 2.4 Hz, 1H), 2.02 (d, J = 11.0 Hz, 1H), 1.97 (dd, J = 13.0, 5.2 Hz, 1H), 1.90 – 1.85 (m, 1H), 1.75 (dddd, J = 12.8, 5.0, 2.5, 2.5 Hz, 1H), 1.62 – 1.57 (m, 1H), 1.57 – 1.48 (m, 1H), 1.43 – 1.38 (m, 1H), 1.34 (dddd, J = 12.9, 12.9, 4.3 Hz, 1H), 1.24 – 1.20 (m, 1H), 1.20 – 1.18 (m, 1H), 1.17 – 1.15 (m, 1H), 0.88 (s, 3H), 0.82 (s, 3H), 0.78 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 178.8, 154.7, 153.0, 147.8, 130.0, 116.5, 107.9, 55.7,

54.1, 42.2, 40.1, 39.2, 38.2, 33.8, 24.5, 21.9, 19.7, 19.5, 14.5.

HRMS(ESI-TOF): calc'd for $C_{20}H_{29}O_2 [M + H]^+$: 301.2162, found: 301.2161.

NMR data comparison of synthetic and natural maximumins

B/C and ottensinin

¹H NMR data comparison of synthetic and natural maximumin B

maximumin B (**1**)

No.	Synthetic maximumin B	Natural maximumin B	Err(Natural-
	(600 MHz)	(500 MHz)	Synthetic)
			$\Delta\delta$ (ppm)
1α	1.40 (1H, td, <i>J</i> = 12.9, 4.2 Hz)	1.40 td (<i>J</i> =12.6, 3.9 Hz)	0
1β	2.14–2.11 (1H, m)	2.13 (1H, m)	-
2α	1.63–1.54 (2H, m)	1.59 (2H, m)	-
3α	1.10 (1H, td, <i>J</i> = 13.4, 4.4Hz)	1.10 td (<i>J</i> =13.5, 4.5 Hz)	0
3β	1.48–1.45 (1H, m)	1.47 m	-
5	1.28 (1H, dd, <i>J</i> =13.2, 6.5 Hz)	1.29(1H, dd, <i>J</i> = 13.2, 6.4	0.01
		Hz)	
6α	1.65–1.63 (1H, m)	1.65 (1H, m)	-
6β	1.46–1.43 (1H, m)	1.44(1H, m)	-
7α	1.70–1.66 (1H, m)	1.68(1H, m)	-
7β	2.19–2.14 (1H, m)	2.17 m (1H, m)	-
8	2.67 (1H, t, <i>J</i> = 8.9 Hz)	2.67 (1H, t, <i>J</i> = 8.9 Hz)	0
11α	3.38 (2H, s)	3.39 s (2H, s)	0.01
14	6.33 (1H d, <i>J</i> = 5.7 Hz)	6.34 (1H, d, <i>J</i> = 5.7 Hz)	0.01
15	7.71 (1H, d, <i>J</i> = 5.7 Hz)	7.72 (1H, d, <i>J</i> = 5.7 Hz)	0.01
16	7.74 (1H, s)	7.75 (1H, s)	0.01
18	0.87 (3H, s)	0.87 (3H, s)	0
19	0.86 (3H, s)	0.86 (3H, s)	0
20	0.74 (3H, s)	0.74 (3H, s)	0

¹³C NMR data comparison of synthetic and natural maximumin B

maximumin B (1)

No.	Synthetic maximumin B	Natural maximumin B	Err (Natural-
	(150 MHz)	(125 MHz)	Synthetic)
			$\Delta\delta$ (ppm)
1	39.9	39.9	0
2	20.1	20.1	0
3	41.4	41.4	0
4	33.5	33.5	0
5	59.0	59.0	0
6	21.1	21.1	0
7	22.2	22.2	0
8	64.9	64.9	0
9	207.3	207.3	0
10	44.9	45.0	0.1
11	39.7	39.7	0
12	124.7	124.7	0
13	177.6	177.6	0
14	116.8	116.8	0
15	155.4	155.4	0
16	154.1	154.2	0.1
18	33.5	33.6	0.1
19	20.8	20.8	0
20	14.8	148	0

¹H NMR data comparison of synthetic and natural maximumin C

maximumin C (2)

No.	Synthetic maximumin C (800 MHz in CDCl ₃)	Natural maximumin C (500 MHz CDCl ₃)	Err (Natural-Synthetic) $\Delta\delta$ (ppm)
1α	1.46–1.44 (1H, m)	1.44 (1H, m)	-
1β	1.61–1.59 (1H, m)	1.58 (1H, m)	-
2α	1.44–1.42 (1H, m)	1.41 (1H, m)	-
2β	1.57 (1H, qt J=13.1,3.1Hz)	1.55 qt (1H, <i>J</i> = 13.1,3.1 Hz)	-0.02
3α	1.16 td (1H <i>J</i> = 13.2, 3.5 Hz)	1.16 td (1H, J=13.1, 3.1 Hz)	0
3β	1.42-1.38 m	1.38 m	-
5	1.06 (1H, t, <i>J</i> = 4.0 Hz)	1.07 (1H, t, <i>J</i> = 3.7 Hz)	0.01
6α	1.63–1.61 (2H, m)	1.61 m (2H, m)	-
7α	2.77–2.64 (2H, m)	2.71 (2H, m)	-
9α	2.27 d (1H, J = 13.4 Hz)	2.25 d (1H, <i>J</i> = 13.5 Hz)	-0.02
9β	2.19 d (1H, <i>J</i> = 13.5 Hz)	2.20 d (1H, <i>J</i> = 13.5 Hz)	0.01
14	6.39 d (1H, <i>J</i> = 5.8 Hz)	6.41 d (1H, <i>J</i> = 5.5 Hz)	0.02
15	7.76 d (1H, <i>J</i> = 5.8 Hz)	7.77 d (1H, <i>J</i> = 5.5 Hz)	0.01
16	7.79, (1H, s)	7.80, (1H, s)	0.01
17α	3.45 d (1H, <i>J</i> = 16.6 Hz)	3.46 d (1H, <i>J</i> = 16.6 Hz)	0.01
17β	3.39 d (1H, <i>J</i> = 16.6 Hz)	3.38 d (1H, <i>J</i> = 16.6 Hz)	-0.01
18	0.88 (3H, s)	0.87 (3H, s)	0
19	0.91 (3H, s)	0.90 (3H, s)	0
20	1.03 (3H, s)	1.02 (3H, s)	0

¹³C NMR data comparison of synthetic and natural maximumin C

maximumin C (2)

No.	Synthetic maximumin C	Natural maximumin C	Err(Natural-
	(200 MHz)	(125 MHz)	Synthetic)
			$\Delta\delta$ (ppm)
1	38.8	38.7	-0.1
2	18.7	18.8	0.1
3	42.0	42.0	0
4	35.4	35.4	0
5	53.5	53.3	-0.2
6	20.5	20.5	0
7	46.6	46.6	0
8	206.8	206.8	0
9	48.0	48.1	0.1
10	38.6	38.6	0
11	175.5	175.9	0.4
12	124.7	124.7	0
13	178.0	178.	0.1
14	116.8	116.8	0
15	155.7	155.9	0.2
16	154.3	154.5	0.2
17	38.4	38.4	0
18	38.8	38.7	0.1
19	22.0	22.0	0
20	19.9	20.1	0.2

¹H NMR data comparison of synthetic and natural ottensinin

No.	Synthetic ottensinin (500 MHz)	Natural ottensinin (500 MHz)	Err (Natural-Synthetic) $\Delta\delta$ (ppm)
1β	1.90–1.85 (1H, m)	1.88 (1H, m)	-
1α	1.20–1.18 (1H, m)	1.18 (1H, br ddd, <i>J</i> = 13, 13, 4 Hz)	-
2β	1.62–1.57 (1H, m)	1.60 (1H, ddddd, $J = 13 \times 3$, 3×2 Hz)	-
2α	1.57–1.48 (1H, m)	1.53 (1H, m)	-
3β	1.43–1.38 (1H, m)	1.41 (1H, dddd, $J = 13$, 3×2 , 2 Hz)	-
3α	1.24–1.20 (1H, m)	1.20 (1H, br, ddd, $J = 13 \times 2, 4$ Hz)	-
5	1.20–1.18 (1H, m)	1.17 (1H, dd, <i>J</i> = 13, 3 Hz)	-
6β	1.34(1 H, dddd, 12.9, 12.9, 4.3, 4.3 Hz)	1.36 (1H, dddd, $J = 13 \times 3, 4$ Hz),	0.02
6α	1.75 (1H, dddd, <i>J</i> = 12.8, 5.0, 2.5,2.5 Hz)	1.76 (1H, dddd, <i>J</i> = 13, 5, 3×2 Hz)	0.01
7β	2.38 (1H, ddd, <i>J</i> = 12.8, 4.3, 2.4 Hz)	2.38 (1H, ddd, <i>J</i> =13, 4, 2 Hz),	0
7α	1.97 (1H, dd, <i>J</i> = 13.0, 5.2 Hz)	1.99 (1H, br ddd, $J = 13 \times 2, 5$ Hz)	0.02
9	2.02 (1H, d, <i>J</i> = 11.0 Hz)	2.01 (1H, brd, $J = 12$ Hz)	-0.01
11	2.69 (1H, dt, <i>J</i> = 16.4,1.8 Hz), 2.44 (1H, dd, <i>J</i> = 16.3, 11.3 Hz)	2.69 (1H, ddd, <i>J</i> = 16, 2, 1 Hz), 2.45 (1H, ddd, <i>J</i> = 16, 12.1 Hz)	0.01
14	6.30 (1H, d, <i>J</i> = 5.7 Hz)	6.31 (1H, d, <i>J</i> = 5.5 Hz)	0.01
15	7.66 (1H, dd, <i>J</i> = 5.7, 1.1 Hz)	7.67 (1H, dd, <i>J</i> = 6, 1 Hz)	0.01
16	7.52 (1H, dd, J = 2.4, 1.1 Hz)	7.52 (1H, ddd, $J = 1 \times 3$ Hz)	0
17	4.81 (1H, dd, <i>J</i> = 2.8, 1.4 Hz) 4.46 (1H, dd, <i>J</i> = 2.7,1.3 Hz)	4.82 (1H, br d, <i>J</i> = 1 Hz), 4.46 (1H, br d, <i>J</i> = 1 Hz)	0.01
18	0.88 (3H, s)	0.88 (3H, s)	0

19	0.82 (3H, s)	0.82 (3H, s)	0
20	0.78 (3H, s)	0.78 (3H, s)	0

¹³C NMR data comparison of synthetic and natural ottensinin

No.	Synthetic ottensinin	Natural ottensinin	Err(Natural-Synthetic)
	(125 MHz CDCl ₃)	(125 MHz in CDCl ₃)	$\Delta\delta$ (ppm)
1	39.2	39.0	-0.2
2	19.5	19.4	-0.1
3	42.2	42.0	-0.2
4	33.8	33.6	-0.2
5	55.7	55.5	-0.2
6	24.5	24.4	-0.1
7	38.2	38.1	-0.1
8	147.8	147.7	-0.1
9	54.1	53.9	-0.2
10	40.1	40.0	-0.1
11	19.7	19.5	-0.2
12	130.0	129.8	-0.2
13	178.8	178.8	0
14	116.5	116.4	-0.1
15	154.7	154.6	-0.1
16	153.0	153.0	0
17	107.9	107.8	-0.1
18	33.8	33.6	-0.2
19	21.9	21.7	-0.2
20	14.5	14.4	-0.1

X-ray crystallographic data for ottensinin (3)

 Table S1. Crystallographic data of ottensinin (3).

Identification code	mj24051_0m	
Empirical formula	$C_{20}H_{28}O_2$	
Formula weight	300.42	
Temperature/K	296	
Crystal system	triclinic	
Space group	P1	
a/Å	6.3767(4)	
b/Å	7.3447(4)	
c/Å	20.6781(11)	
$\alpha/^{\circ}$	90.948(2)	
β/°	98.205(2)	
$\gamma/^{\circ}$	114.304(2)	
Volume/Å ³	870.54(9)	
Z	2	
$\rho_{calc}g/cm^3$	1.146	
μ / mm^{-1}	0.355	
F(000)	328.0	
Crystal size/mm ³	0.17~ imes~0.15~ imes~0.05	
Radiation	GaKa ($\lambda = 1.34139$)	
2Θ range for data collection/°	7.542 to 109.712	
Index ranges	$-7 \leqslant h \leqslant 7, -8 \leqslant k \leqslant 8, -25 \leqslant l \leqslant$	
	25	
Reflections collected	30267	
Independent reflections	6470 [$R_{int} = 0.0678$, $R_{sigma} = 0.0518$]	
Data/restraints/parameters	6470/3/404	
Goodness-of-fit on F ²	1.049	
Final R indexes $[I \ge 2 \sigma (I)]$	$R_1 = 0.0431, wR_2 = 0.1175$	
Final R indexes [all data]	$R_1 = 0.0487, wR_2 = 0.1226$	
Largest diff. peak/hole / e Å ⁻³ $0.15/-0.13$		
Flack parameter	0.07(19)	

Biological activities assays

Ottensinin

Table S2. Effects of ottensinin (3) on current of KCNQ2 channel at different concentrations

Concentration (µM)	$I_{ m drug}/I_{ m control}{}^a$	n
1	1.01 ± 0.01	3
3	1.13 ± 0.05	4
10	1.77 ± 0.07	3
30	1.99 ± 0.10	4
60	2.03 ± 0.19	6

^{*a*}The amplitude change of the outward current: I_{control} , amplitude of the outward current without the compound; I_{drug} , amplitude of the outward current with the compound; $I_{\text{drug}}/I_{\text{control}}$, effect of compound on the amplitude of the outward current of KCNQ2 channel.

Figure S1. Representative current traces of the ottensinin on human KCNQ2 channels.

Retigabine

Compound (µM)	$I_{ m drug}/I_{ m control}{}^a$	n
1	1.05 ± 0.03	3
3	1.24 ± 0.09	4
10	1.50 ± 0.10	4
30	1.54 ± 0.09	5
60	1.57 ± 0.08	5

 Table S3. Effects of Retigabine on current of KCNQ2 channel at different concentrations

^{*a*}The amplitude change of the outward current: I_{control} , amplitude of the outward current without the compound; I_{drug} , amplitude of the outward current with the compound; $I_{\text{drug}}/I_{\text{control}}$, effect of compound on the amplitude of the outward current of KCNQ2 channel.

Figure S2. Representative current traces of the RTG on human KCNQ2 channels.

		Control otte	ensinin (10 <i>µ</i> M)
Activation	V _{1/2} (mv)	-9.53 ± 1.91	-12.26 ± 3.23
	k	18.73 ± 1.13	24.05 ± 2.99
τ activation		247.75 ± 35.03	237.56 ± 30.32
τ deactivation		12.81 ± 0.73	14.92 ± 0.18

Table S4. Effects of ottensinin on current of KCNQ2 channel kinetics

Electrophysiological recordings

Whole cell voltage clamp recording was performed with cultured CHO cells at room temperature using an Axopatch-200B amplifier (Molecular Devices, Sunnyvale, CA). The borosilicate glass capillaries (World Precision Instruments, Sarasota, Fl) were prepared as glass electrodes for infusion of internal buffer liquid by electrode drawing instrument with the resistance of 3-5M Ω . The pipette solution contained the following (mM): 145 KCl, 10 HEPES, 1 MgCl₂, 5 EGTA, 1 CaCl₂, and 10 HEPES (pH 7.2 adjusted by KOH), bath or extracellular solution contained the following (mM): 140 NaCl, 5KCl, 2 CaCl₂, 1 MgCl₂, 10 glucose, and 10 HEPES (pH 7.4 adjusted by NaOH). The cells were clamped to a holding potential of -80 mV, and then depolarization to -10 mV, duration 1500 ms, recording potassium current. For perfusion testing, the BPS perfusion system (ALA Scientific Instruments, Westburg, NY) was used to continuously infuse the bath solution. The Axopatch-200B amplifier (Axon Instruments,

Burlingame, CA, USA) was used for data acquisition at room temperature, filtering at 2 kHz, and digitizing at 50 kHz using the Digidata 1440A interface (Axon Instruments, Burlingame, CA, USA).

Patch clamp data Analysis

Patch clamp data were processed using Clampfit 10.6 (Molecular Devices, Sunnyvale, CA, USA) and then analyzed using GraphPad Prism 5(GraphPad Software, San Diego, CA, USA). The data were presented as mean \pm SEM. The significance was estimated using unpaired two-tailed Student's t test or one-way ANOVA with Tukey's post hoc procedure. Statistical significance: *p \leq 0.05, **p \leq 0.01, ***p \leq 0.001.

NMR Spectra

Compound S1 ¹H NMR (CDCl₃)

Compound S1 ¹³C NMR (CDCl₃)

36
Compound S2 ¹H NMR (CDCl₃)

Compound S2 ¹³C NMR (CDCl₃)

Compound 4¹H NMR (CDCl₃)

Compound 7¹H NMR (CDCl₃)

Compound 7¹³C NMR (CDCl₃)

185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 f1 (ppm)

Compound 6¹H NMR (CDCl₃)

f1 (ppm)

150 140 f1 (ppm) 190 180

Compound 1¹H NMR (CDCl₃)

Compound 11 ¹H NMR (CDCl₃)

Compound 11 ¹³C NMR (CDCl₃)

Compound 10¹H NMR (CDCl₃)

Compound S4¹H NMR (CDCl₃)

Compound S4¹³C NMR (CDCl₃)

Compound 17¹H NMR (CDCl₃)

Compound 17¹³C NMR (CDCl₃)

Compound S5¹H NMR (CDCl₃)

Compound S5¹³C NMR (CDCl₃)

fl (ppm)

Compound 18¹H NMR (CDCl₃)

Compound 18 ¹³C NMR (CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

Compound S6¹H NMR (CDCl₃)

Compound S6¹³C NMR (CDCl₃)

Compound 9¹H NMR (CDCl₃)

Compound 9¹³C NMR (CDCl₃)

64

Compound 19¹H NMR (CDCl₃)

Compound 19¹³C NMR (CDCl₃)

Compound 2¹H NMR (CDCl₃)

230 220 210 200 -10 140 130 fl (ppm)

Compound 13 ¹H NMR (CDCl₃)

150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

Compound 3 ¹H NMR (CDCl₃)

