Supporting Information

Remote C(sp³)–H heteroarylation of *N*fluoroarylsulfonamides *via* a silyl radical process under visible light irradiation

Ya-Jian Hu,[‡] Jin-Chang Liu,[‡] Guang-Yi Zhang, Ting-Ting Yuan, Shan Wang, Xiao-Xia Liang, Ping Lan, Ren-Wang Jiang, * Martin G. Banwell, * and Yu-Tao He*

I. General Methods and Materials	S2
II. Procedures for the Synthesis of Substrates 1a-1w and 2a-2r	S3
III. Optimization of the Reaction Conditions	S5
IV. Procedure for the Synthesis of Compounds 3a-z , 3aa-ap , 4a-t .	S9
V. Control Experiments	S10
VI. Absorption Spectra and Stern-Volmer Quenching of 2a	S12
VII. Quantum Yield Measurements	S14
VIII. Compound Characterization and Related Data	S17
IX. X-ray Crystallographic Data	S53
X. References	S62

Appendix I

Copies of Relevant ¹H-, $^{13}C\{^{1}H\}$ - and $^{19}F\text{-}NMR$ Spectra

I. General Methods and Materials.

Unless otherwise specified, proton (¹H) and proton-decoupled carbon $[^{13}C{^{1}H}]$ NMR spectra were recorded at room temperature in base-filtered CDCl₃ on a spectrometer operating at 500 MHz or 300 MHz for proton and 126 MHz or 75 MHz for carbon nuclei. For ¹H NMR spectra, signals arising from the residual protio-forms of the solvent were used as the internal standards. ¹H NMR data are recorded as follows: chemical shift (δ) [multiplicity, coupling constant(s) J (Hz), relative integral] where multiplicity is defined as: s = singlet; d = doublet; t = triplet; q =quartet; m = multiplet or combinations of the above. The signal due to residual CHCl₃ appearing at $\delta_{\rm H}$ 7.26 and the central resonance of the CDCl₃ "triplet" appearing at $\delta_{\rm C}$ 77.0 were used to reference ¹H and ¹³C{¹H} NMR spectra, respectively. Infrared spectra were recorded, as thin films or solids, on a Nicolet iS50 FT-IR spectrometer fitted with a Smart iTX sampling module and only major absorptions are reported (in cm⁻¹). High-resolution ESI mass spectra were recorded on a time-of-flight instrument. Melting points were measured on an automated melting point system and are uncorrected. Analytical thin layer chromatography (TLC) was performed with silica gel GF₂₅₄ plates. Eluted plates were visualized using a 254 nm UV lamp and/or by treatment with a suitable dip followed by heating. These dips included phosphomolybdic acid: ceric sulfate: sulfuric acid (conc.): water (37.5 g : 7.5 g : 37.5 g : 720 mL) or potassium permanganate : potassium carbonate : 5% sodium hydroxide aqueous solution : water (3 g : 20 g: 5 mL : 300 mL). For column chromatography, 200-300 mesh silica gel was employed. Reagents and inorganic salts as well as dried solvents were generally available from commercial sources and used as supplied. Unless indicated otherwise, reactions were performed under a nitrogen atmosphere.

II. Procedures for the Synthesis of Substrates 1a-w and 2a-r

General procedure for the synthesis of N-F sulfonamides

 $\underset{O'}{\overset{Cl}{\operatorname{NaH}}} \overset{(l)}{\operatorname{NaH}} \overset{(l)}{\operatorname{NaH}$

These compounds were prepared using minor modifications of a reported procedure^[1].

Step i: A clean, dry round-bottomed flask was charged with a magnetic stir bar and relevant primary amine (1.0 equiv). While being maintained under a nitrogen atmosphere at ambient temperatures the amine was dissolved in DCM (0.2 M) and the resulting solution was treated with freshly distilled triethylamine (1.5 equiv), 4-(N,N-dimethylamino)pyridine (10 mol %) and the appropriate sulfonyl chloride (1.0 equiv) then added. The ensuing mixture was allowed to stir at ambient temperatures for 16 h then quenched with water (50 mL) and the separated aqueous layer was extracted with DCM (3 $\not S$ 50 mL). The combined organic phases were washed with brine (1 $\not S$ 50 mL) before being dried (Na₂SO₄), filtered and concentrated under reduced pressure. The residue thus obtained was purified by column chromatography (petroleum ether/ethyl acetate elution) to afford the relevant N-H sulfonamides.

Step ii: A oven-dried rounded bottom flask was charged with a solution of the relevant N-H sulfonamide (1.0 equiv) in dry DCM (0.2 M) and the resulting solution coold to 0 °C (icebath) then slowly treated with NaH (2.0 equiv). The ensuing mixture was allowed to warm to ambient tempertures and stirring continued for a further 0.5 h after which time it was treated, in portions, with NFSI (3.0 equiv). The resulting slurry was stirred for 20 h then quenched with NH₄Cl (50 mL of a saturated aqueous solution) and the precipitate so-formed removed by filtration. The filtrate was extracted with DCM (3 $\not S$ 50 mL) and the combined organic phases was washed with water (1 $\not S$ 50 mL) and brine (1 $\not S$ 50 mL) before being dried (Na₂SO₄), filtered and concentrated under reduced pressure. The residue thus obtained was purified by column chromatography (petroleum ether/ethyl acetate elution) to afford the relevant N-F sulfonamides.

General procedure for the synthesis of N-heteroarenium salts

Following a protocol previously reported by our group^[2], a solution of the relevant pyridine N-oxide (5 mmol) and trimethyloxonium tetrafluoroborate (6 mmol, 1.2 equiv.) in DCM (25 mL) maintained at ambient temperatures under nitrogen was stirred for 16 h then concentrated under reduced pressure. The solid thus obtained was recrystallized (twice) from a mixture of DCM (6 mL) and diethyl ether (60 mL) stored at –20 °C.

III. Optimization of the Reaction Conditions

	01	0	•	C	1	[_]
Table	SL.	Scree	ening	ot	bases.	[a]
I HOIV	N I I	00100	UTTTTT S	UI.	Cabeb	•

Ts	F H N 1a	+ CO ₂ Me Ru(bpy) ₃ Cl ₂ •6H ₂ O (2 mol %) TTMSS (1.5 equiv) MeCN, base N ₂ , r.t., 16 h blue LEDs	H Ts ^{-N} 3a
	Entry	Base	Yield (%) ^[b]
	1		15
	2	NaHCO ₃	37
	3	NaOAc	36
	4	NaO ^t Bu	trace
	5	NEt ₃	0
	6	K ₃ PO ₄	35
	7	Na ₂ HPO ₄	30
	8	Na ₃ PO ₄	40

[a] Reactions were performed using a mixture of 1a (0.1 mmol, 1.0 equiv), 2a (0.2 mmol, 2.0 equiv), base (0.2 mmol, 2.0 equiv) and TTMSS (0.15 mmol, 1.5 equiv) in MeCN (1.0 mL) at room temperature under irradiation with 40W Kessil blue LED (100% intensity, 456 nm) for 16 h. [b] Yields of isolated products are given.

Table S2.	Screening	of solvent	concentration.[a]
	Sereening	or borrent	• one entration.

Гs´	F H N	+ CO ₂ Me	Ru(bpy) ₃ Cl ₂ •6H ₂ O (2 mol %) TTMSS (1.5 equiv) MeCN, Na₃PO₄	H T-N CO ₂ Me
	1a	OMe 2a	N ₂ , r.t., 16 h blue LEDs	3a
	Entry	conc	entration	Yield (%) ^[b]
	1	0).1 M	40
	2	0	.05 M	61
	3	0.	025 M	69

[a] Reactions were performed using a mixture of **1a** (0.1 mmol, 1.0 equiv), **2a** (0.2 mmol, 2.0 equiv), Na₃PO₄ (0.2 mmol, 2.0 equiv), and TTMSS (0.15 mmol, 1.5 equiv) in MeCN at room temperature under irradiation with 40W Kessil blue LED (100% intensity, 456 nm) for 16 h. [b] Yields of isolated products are given.

Table S3. Screening of photocatalysts.^[a]

Ts	F H N 1a	+ BF ₄ - 2a BF ₄ - BF ₄ - MeCN (0.025 M) Na ₃ PO ₄ Na ₂ PO ₄ Na ₃ PO ₄	H Ts ^{-N} 3a
	Entry	Photocatalyst	Yield (%) ^[b]
	1	Ru(bpy) ₃ Cl ₂ .6H ₂ O	69
	2	Mes-Acr ⁺	10
	3	Eosin Y	12
	4	4CzIPN	64
	5	<i>fac</i> -Ir(ppy) ₃	15
	6	[Ir{dFCF ₃ ppy} ₂ (bpy)]PF ₆	63
	7 ^[c]	_	68

[a] Reactions were performed using a mixture of 1a (0.1 mmol, 1.0 equiv), 2a (0.2 mmol, 2.0 equiv), Na₃PO₄ (0.2 mmol, 2.0 equiv), and TTMSS (0.15 mmol, 1.5 equiv) in MeCN (4.0 mL) at room temperature under irradiation with 40W Kessil blue LED (100% intensity, 456 nm) for 16 h. [b] Yields of isolated products are given. [c] Without photocatalyst.

Table S4. Screening of solvents.^[a]

Ts´	F H N 1a	CO ₂ Me + BF ₄ OMe 2a TTMSS (1.5 equiv) solvent (0.025 M) Na ₃ PO ₄ N ₂ , r.t., 16 h blue LEDs	H Ts ^{-N} 3a
	Entry	Base	Yield (%) ^[b]
	1	MeCN	68
	2	Benzene	0
	3	EA	trace
	4	DCM	12
	5	DCE	25
	6	Toluene	trace
	7	DMSO	trace

[a] Reactions were performed using a mixture of **1a** (0.1 mmol, 1.0 equiv), **2a** (0.2 mmol, 2.0 equiv), Na₃PO₄ (0.2 mmol, 2.0 equiv), and TTMSS (0.15 mmol, 1.5 equiv) in solvent (4.0 mL) at room temperature under irradiation with 40W Kessil blue LED (100% intensity, 456 nm) for 16 h. [b] Yields of isolated products are given.

Table S5. Screening of silane sources.^[a]

Ts	F H N 1a	+ ⁺ ^N ^N ^{BF4} ^N	N (0.025 M) Na3PO4 r.t., 16 h Je LEDs 3a	₽ ₂ Me
	Entry	Silane	Yield (%) ^[b]	-
	1	TTMSS	68	-
	2	Et ₃ SiH	0	
	3	(MeO) ₃ SiH	H trace	
	4	Ph(Me) ₂ Sil	Н 0	
	5	Ph ₃ SiH	0	

[a] Reactions were performed using a mixture of 1a (0.1 mmol, 1.0 equiv), 2a (0.2 mmol, 2.0 equiv), Na₃PO₄ (0.2 mmol, 2.0 equiv), and silane (0.15 mmol, 1.5 equiv) in MeCN (4.0 mL) at room temperature under irradiation with 40W Kessil blue LED (100% intensity, 456 nm) for 16 h. [b] Yields of isolated products are given.

Table S6. Reaction condition screening.^[a]

Ts-N	+ CO ₂ Me + BF ₄ OMe 2a TTMSS (1.5 equiv) Na ₃ PO ₄ (2.0 equiv) CSF (20 mol %) MeCN (0.025 M) N ₂ , r.t., 16 h blue LEDs	CO ₂ Me
Entry	Deviation from standard conditions	Yield (%) ^[b]
1	none	77
2	without CsF	68
3	NaHCO3 instead of Na3PO4	63
4	Et ₃ N instead of Na ₃ PO ₄	0
5	without Na ₃ PO ₄	20
6 ^[c]	without Na ₃ PO ₄	64
7	1,2-DCE instead of MeCN	27
8	DMSO instead of MeCN	trace
9	MeCN (0.1 M)	42
10	without TTMSS	0
11	Et ₃ SiH instead of (TMS) ₃ SiH	0
12	(MeO) ₃ SiH instead of (TMS) ₃ SiH	trace
13	390/525 nm instead of 456 nm	68/52
14	in dark	0

[a] Reactions were performed using a mixture of **1a** (0.1 mmol, 1.0 equiv), **2a** (0.2 mmol, 2.0 equiv), Na₃PO₄ (0.2 mmol, 2.0 equiv), CsF (20 mol %), and TTMSS (0.15 mmol, 1.5 equiv) in MeCN (4. 0 mL) at room temperature under irradiation with 40W Kessil blue LED (100% intensity, 456 nm) for 16 h. [b] Yields of isolated products are given. [c] With 2.0 equiv of CsF.

IV. Procedure for the Synthesis of Compounds 3a-z, 3aa-ap, 4a-t.

General procedure for the synthesis of compounds 3a-z, 3aa-ap, 4a-e, 4g-i and 4k-t.

An oven-dried reaction tube equipped with a magnetic stirring bar was placed inside a glove box then charged with the relevant *N*-fluorosulfonamide **1** (0.1 mmol, 1.0 equiv), the relevant *N*-methoxyheteroarenium salt **2** (0.2 mmol, 2.0 equiv), Na₃PO₄ (0.2 mmol, 2.0 equiv), CsF (20 mol %), and tris(trimethylsilyl)silane (TTMS) (0.15 mmol, 1.5 equiv). MeCN (4.0 mL, 0.025 M) was then added to the reaction mixture *via* syringe and the ensuing mixture was taken outside the glove box and stirred magentically at ambient temperatures for 16 h while being irradiated, throughout this time, with two Kessil blue LED lamps (456 nm, 40 W, 100% intensity). Thereafter, solvent was removed from the reaction mixture under reduced pressure and the residue thus obtained was purified by column chromatography (petroleum ether/ethyl acetate elution) to afford the relevant product **3a-z**, **3aa-ap**, **4a-e**, **4g-i** and **4k-t**.

General procedure for the synthesis of compounds 4f and 4j.

An oven-dried reaction tube equipped with a magnetic stirring bar was charged with the relevant *N*-fluorosulfonamide **1a** (0.1 mmol, 1.0 equiv), the relevant *N*-methoxyheteroarenium salt **2** (0.2 mmol, 2.0 equiv), Na₃PO₄ (0.2 mmol, 2.0 equiv), CsF (20 mol %), tris(trimethylsilyl)silane (TTMS) (0.15 mmol, 1.5 equiv), and Ru(bpy)₃Cl₂•6H₂O (2 mol %) inside a glove box. MeCN (4.0 mL, 0.025 M) was then added to the reaction mixture *via* syringe. The reaction tube was taken outside the glove box and the resulting solution was stirred at room temperature for 16 hours while being irradiated, throughout this time, with two Kessil blue LED lamps (456 nm, 40 W, 100% intensity). After 16 hours, the entire solvent was evaporated under reduced pressure, and the residue thus obtained was purified by column

chromatography (petroleum ether/ethyl acetate elution) to afford the relevant product **4f** and **4j**.

V. Control Experiments

Radical Trapping Experiment Using TEMPO

An oven-dried reaction tube kept inside a glove box equipped with a magnetic stirring bar was charged with the relevant *N*-fluorosulfonamide **1a** (0.1 mmol, 1.0 equiv), the relevant *N*-methoxyheteroarenium salt **2a** (0.2 mmol, 2.0 equiv), Na₃PO₄ (0.2 mmol, 2.0 equiv), CsF (20 mol %), tris(trimethylsilyl)silane (TTMS) (0.15 mmol, 1.5 equiv) and TEMPO (31.2 mg, 0.2 mmol). MeCN (4.0 mL, 0.025 M) was then added, *via* syringe, to the reaction mixture and the reaction tube was removed from the glove box and the resulting solution was stirred at ambient temperatures for 16 h while being irradiated, throughout this time, with two Kessil blue LED lamps (456 nm, 40 W, 100% intensity). Thereafter the reaction mixture was treated with water (30 mL) and then extracted with ethyl acetate (3 \bigotimes 25 mL). The combined organic phases was washed with water (1 \bigotimes 30 mL) and brine (1 \bigotimes 30 mL) before being dried (Na₂SO₄), filtered and concentrated under reduced pressure. The residue thus obtained was subjected to ESI mass spectral analysis and the derived spectrum (shown immediately below) displayed a molecular-associated ion at *m/z* 397.2 consistent with the presence of the anticipated TEMPO trapping product. No evidence for the formation of pyridine **3a** was obtained.

Figure S1. ESI Mass spectrum arising from TEMPO-trapping experiment.

Remote C(sp³)-H chlorination of sulfonamide

An oven-dried reaction tube contained in a glove box was charged with a magnetic stirring bar, *N*-chlorosulfonamide **6** (0.1 mmol, 1.0 equiv), *N*-methoxyheteroarenium salt **2a** (0.2 mmol, 2.0 equiv), Na₃PO₄ (0.2 mmol, 2.0 equiv), CsF (20 mol %), and tris(trimethylsilyl)silane (TTMS) (0.15 mmol, 1.5 equiv). MeCN (4.0 mL, 0.025 M) was then added, *via* syringe, to the reaction mixture. The reaction tube was then removed from the glove box and the solution contained therein was stirred at room temperature for 16 h while being irradiated, throughout this time, with two Kessil blue LED lamps (456 nm, 40 W, 100% intensity). Thereafter, the reaction mixture was concentrated under reduced pressure and the residue thus obtained was purified by column chromatography on silica gel (4:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.3$ in 4:1 v/v petroleum ether/ethyl acetate) to afford compound **7** as a clear, colorless oil (17.5 mg, 63% yield).

Conversion of compound 3a into cyclic derivative 9

An oven-dried reaction tube contained in a glove box and equipped with a magnetic stirring bar was charged with the pyrinidylation product **3a** (0.1 mmol, 1.0 equiv) and *N*-iodosuccinimide (NIS, 0.2 mmol, 2.0 equiv). DCM (2.0 mL, 0.05 M) was then added to the reaction tube *via* syringe then the tube was removed from the glove box and the solution was stirred at ambient temperatures for 18 h while being irradiated, throughout this time, with two Kessil blue LED lamps (456 nm, 10 W, 25% intensity). Thereafter, the reaction mixture was concentrated under reduced pressure and the residue thus obtained was purified by column chromatography on silica gel (3:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.5$ in 2:1 v/v petroleum ether/ethyl acetate) to afford the unsymmetrically linked *bis*-heterocycle **9** (17.3 mg, 46% yield) as a clear, colorless oil.

VI. Absorption Spectra and Stern–Volmer Quenching of 2a

Figure S2. Asorption spectra for compound **2a** in the presence and absence of caesium fluoride (based on 0.025 M of **2a** in MeCN).

Figure S3. Asorption spectra for compound **2a** in the presence and absence of trisodium phosphate (based on 0.025 M of **2a** in MeCN).

Figure S4. Asorption spectra for **2a** with tris(trimethylsilyl)silane (based on 0.025 M of **2a** in MeCN).

Figure S5. Quenching of the *N*-methoxypyridylinium salt 2a emission (0.005 M in Me CN) in the presence of increasing amounts of CsF. Excitation wavelength : 290 nm, Bandwidth : Ex 15 nm, Em 20 nm.

VII. Quantum Yield Measurements

Determination of the light intensity at 456 nm.

A Kessil LED lamp ($\lambda_{max} = 456$ nm) was used at 100% intensity for the measurement of quantum yield. So, following the procedure of Yoon,^[3] the photon flux of the LED ($\lambda_{max} = 456$ nm) was determined by standard ferrioxalate actinometry. Specifically, a 0.15 M solution of ferrioxalate was prepared by dissolving potassium ferrioxalate hydrate (0.737 g) in H₂SO₄ (10 mL of a 0.05 M solution) while a buffered solution of 1,10-phenanthroline was prepared by dissolving 1,10-phenanthroline (5.0 mg) and sodium acetate (1.13 g) in H₂SO₄ (5.0 mL of a 0.5 M solution). Both solutions were stored in the dark. To determine the photon flux of the LED, the ferrioxalate solution (2.0 mL) was placed in a cuvette and irradiated for 90 seconds at $\lambda_{max} = 456$ nm. After irradiation, the phenanthroline solution (0.35 mL) was added to the cuvette and the resulting mixture was allowed to stir in the dark for 1 h so as to permit the ferrous ions to completely coordinate to the phenanthroline. The absorbance of the resulting solution was measured at 510 nm. A non-irradiated sample was also prepared and the absorbance at 510 nm was measured. Conversion was calculated using eq 1

	Non-irrad	Irrad 01	Irra	d 02	Irrad 03
A _{510nm}	0.552	1.086	1.164		1.121
		Average A 510 r	_{nm} of		
		irradiation sam	ples		1.124

$$mol \ of \ Fe^{2+} = \frac{V \cdot \Delta A_{510 \ nm}}{l \cdot \epsilon} = \frac{(0.00235 \ L) \cdot (0.572)}{(1.00 \ cm) \cdot (11,100 \frac{L}{mol} \cdot cm)} = 1.21 \times 10^{-7} \ mol \quad (1)$$

V is the total volume (0.00235 L) of the solution after addition of phenanthroline, ΔA is the difference in absorbance at 510 nm between the irradiated and non-irradiated solutions, l is the path length (1.00 cm), and ε is the molar absorptivity of the ferrioxalate actinometer at 510 nm (11,100 Lmol⁻¹ cm⁻¹).^[4] The photon flux was calculated using eq 2:

Photon flux =
$$\frac{mol \ of \ Fe^{2+}}{\emptyset \cdot t \cdot f} = \frac{1.21 \times 10^{-7} mol}{(0.84) \cdot (90 \ s) \cdot (0.945)} = 1.69 \times 10^{-9} \ einstein/s$$
 (2)

where Φ is the quantum yield for the ferrioxalate actinometer (0.84 at $\lambda = 456$ nm),^[5] t is the irradiation time (90 s), and f is the fraction of light absorbed at 456 nm by the ferrioxalate actinometer. This value is calculated using eq 3 where A_{456 nm} is the absorbance of the ferrioxalate solution at 456 nm. An absorption spectrum gave an A_{456 nm} value of 1.260, indicating that the fraction of absorbed light (f) is 0.945.

$$f = 1 - 10^{-A_{456\,nm}} \tag{3}$$

The photon flux was thus calculated to be 1.69×10^{-9} Einsteins s⁻¹ (average of three experiments).

Figure S6. Absorption spectra derived from three irradiation experiments and one non-irradiation experiment.

Figure S7. Absorption spectrum of a 0.025 M solution of the reaction mixture in MeCN.

Determination of the reaction quantum yield.

An oven-dried reaction tube contained in a glove box and equipped with a magnetic stirring bar was charged with *N*-fluorosulfonamide **1a** (0.1 mmol, 1.0 equiv), *N*-methoxyheteroarenium

salt **2a** (0.2 mmol, 2.0 equiv), Na₃PO₄ (0.2 mmol, 2.0 equiv), CsF (20 mol %), and tris(trimethylsilyl)silane (TTMS) (0.15 mmol, 1.5 equiv). MeCN (4.0 mL, 0.025 M) was then added, *via* syringe, to the reaction mixture. The reaction tube was then removed from the glove box and reaction mixture was stirred at ambient temperatures for 2100 s while being irradiated, throughout this time, with two Kessil blue LED lamps (456 nm, 40 W, 100% intensity). After this time the reaction mixture was concentrated under reduced pressure and the residue thus obtained was purified by column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution) gave compound **3a** (7.7 mg, 20%) (2.05 × 10⁻⁵ mol of **3a**). The reaction quantum yield (Φ) was determined using eq 4 where the photon flux is 1.69 × 10⁻⁹ Einsteins s⁻¹ (determined by actinometry as described above), t is the reaction time (2100 s) and f is the fraction of incident light absorbed by the catalyst, determined using eq 3. An absorption spectrum of the reaction (0.025 M) gave an absorbance value of 0.072 at 456 nm (Figure S7), indicating that the fraction of light absorbed by the reaction (f) is 0.153.

$$\Phi = \frac{mol \ of \ product}{flux \cdot t \cdot f}$$
(4)
$$\Phi = \frac{2.05 \times 10^{-5} \ mol}{1.69 \times 10^{-9} \ einstein \ s^{-1} \cdot 2100 \ s \cdot 0.153} = 37.8$$

The reaction quantum yield (Φ) was calculated to be 37.8

VIII. Compound Characterization and Related Data

Methyl-2-(5-((4-methylphenyl)sulfonamido)pentan-2-yl)isonicotinate (3a). Reaction of *N*-fluoro-4-methyl-*N*-pentylbenzenesulfonamide **1a** (25.9 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2a** (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_{\rm f} = 0.3$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **3a** (28.9 mg, 77%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.66 (d, J = 5.1 Hz, 1H), 7.71 (d, J = 8.3 Hz, 2H),

7.66 – 7.65 (m, 2H), 7.27 (d, J = 8.1 Hz, 2H), 4.91 (s, 1H), 3.95 (s, 3H), 2.89 (dd, J = 6.4, 2.8 Hz, 3H), 2.41 (s, 3H), 1.76 – 1.71 (m, 1H), 1.61 – 1.56 (m, 1H), 1.46 – 1.41 (m, 1H), 1.34 – 1.30 (m, 1H), 1.24 (d, J = 6.9 Hz, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 166.9, 165.8, 149.8, 143.2, 137.9, 136.9, 129.6, 127.0, 120.9, 120.5, 52.7, 43.1, 41.3, 33.6, 27.4, 21.4, 20.7; IR (ATR) v_{max} 2924, 1731, 1438, 1276, 1158, 751, 551 cm⁻¹; HRMS (ESI) Calcd for C₁₉H₂₄N₂O₄S: [M+H]⁺ = 377.1530. Found: 377.1512.

Methyl-2-(5-((4-methoxyphenyl)sulfonamido)pentan-2-yl)isonicotinate (3b). Reaction of *N*-fluoro-4-methoxy-*N*-pentylbenzenesulfonamide **1b** (27.5 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2a** (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.2$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **3b** (30.1 mg, 77%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.66 (d, *J* = 6.0 Hz, 1H), 7.76 (d, *J* = 8.9 Hz, 2H), 7.66 – 7.65(m, 2H), 6.95 (d, *J* = 8.9 Hz, 2H), 4.74 (t, *J* = 6.1 Hz, 1H), 3.96 (s, 3H), 3.86 (s, 3H), 2.91 – 2.87 (m, 3H), 1.74 – 1.72 (m, 1H), 1.62 – 1.58 (m, 1H), 1.46 – 1.41 (m, 1H), 1.32 – 1.29 (m, 1H), 1.26 (d, *J* = 6.9 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 166.8, 165.8, 162.8, 149.9, 137.8, 131.5, 129.1, 120.9, 120.5, 114.2, 55.6, 52.7, 43.1, 41.3, 33.6, 27.4, 20.8; IR (ATR) v_{max} 2921, 2851, 1730, 1597, 1298, 1154, 834, 561 cm⁻¹; HRMS (ESI) Calcd for C₁₉H₂₄N₂O₅S: [M+H]⁺ = 393.1479. Found: 393.1488.

Methyl-2-(5-((4-(trifluoromethoxy)phenyl)sulfonamido)pentan-2-yl)isonicotinate (3c). Reaction of *N*-fluoro-*N*-pentyl-4-(trifluoromethoxy)benzenesulfonamide 1c (32.9 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate 2a (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (3:1 v/v petroleum ether/ethyl acetate elution, $R_{\rm f} = 0.5$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound 3c (31.6 mg, 71%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.69 (s, 1H), 7.88 (d, *J* = 8.8 Hz, 2H), 7.69 – 7.68 (m, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 5.11 (s, 1H), 3.96 (s, 3H), 2.97 – 2.92 (m, S18) 3H), 1.78 - 1.73 (m, 1H), 1.63 - 1.57 (m, 1H), 1.50 - 1.45 (m, 1H), 1.36 - 1.32 (m, 1H), 1.25 (d, J = 6.9 Hz, 3H); ${}^{13}C{}^{1H}$ NMR (126 MHz, CDCl₃) δ 166.7, 165.8, 152.0, 149.9, 138.5, 137.9, 129.13, 121.0, 120.9, 120.6, 120.2 (q, J = 259.6 Hz), 52.7, 43.1, 41.2, 33.6, 27.4, 20.8; ${}^{19}F$ NMR (471 MHz, CDCl₃) δ -57.7; IR (ATR) ν_{max} 2930, 1731, 1600, 1438, 1253, 1155, 763, 601 cm⁻¹; HRMS (ESI) Calcd for C₁₉H₂₁F₃N₂O₅S: [M+H]⁺ = 447.1196. Found: 447.1198.

Methyl-2-(5-((4-(tert-butyl)phenyl)sulfonamido)pentan-2-yl)isonicotinate (3d). Reaction of 4-(*tert*-butyl)-*N*-fluoro-*N*-pentylbenzenesulfonamide **1d** (30.1 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2a** (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (3:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.5$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **3d** (30.9 mg, 74%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.64 (d, J = 4.8 Hz, 1H), 7.74 (d, J = 8.6 Hz, 2H), 7.64 – 7.63 (m, 2H), 7.48 (d, J = 8.6 Hz, 2H), 4.87 (t, J = 6.1 Hz, 1H), 3.94 (s, 3H), 2.96 – 2.87 (m, 3H), 1.76 – 1.72 (m, 1H), 1.61 – 1.58 (m, 1H), 1.48 – 1.44 (m, 1H), 1.34 – 1.31 (m, 10H), 1.23 (d, J = 6.9 Hz, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 166.9, 165.8, 156.2, 149.9, 137.8, 136.9, 126.8, 126.0, 120.9, 120.5, 52.6, 43.1, 41.3, 35.1, 33.6, 31.0, 27.4, 20.8; IR (ATR) v_{max} 2959, 2869, 1732, 1598, 1292, 1088, 763, 628 cm⁻¹; HRMS (ESI) Calcd for C₂₂H₃₀N₂O₄S: [M+H]⁺ = 419.1999. Found: 419.2000.

Methyl-2-(5-([1,1'-biphenyl]-4-sulfonamido)pentan-2-yl)isonicotinate (3e). Reaction of *N*-fluoro-*N*-pentyl-[1,1'-biphenyl]-4-sulfonamide **1e** (32.1 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2a** (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, R_f = 0.4 in 2:1 v/v petroleum ether/ethyl acetate) gave compound **3e** (39.0 mg, 89%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.65 (s, 1H), 7.89 (d, *J* = 8.5 Hz, 2H), 7.69 – 7.66 (m, 3H), 7.63 (d, *J* = 5.1 Hz, 1H), 7.58 (d, *J* = 7.2 Hz, 2H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.41 (t, *J* = 7.3 Hz, 1H), 5.04 (t, *J* = 6.2 Hz, 1H), 3.93 (s, 3H), 2.99 – 2.94 (m, 3H), 1.79 – 1.74 (m, 1H), s19

 $1.63 - 1.59 \text{ (m, 1H)}, 1.51 - 1.46 \text{ (m, 1H)}, 1.37 - 1.32 \text{ (m, 1H)}, 1.25 \text{ (d, } J = 6.9 \text{ Hz}, 3\text{H}\text{)}; {}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (126 MHz, CDCl₃) δ 166.8, 165.7, 149.8, 145.4, 139.3, 138.5, 137.9, 129.0, 128.4, 127.6, 127.5, 127.3, 120.9, 120.6, 52.7, 43.1, 41.2, 33.6, 27.4, 20.8; IR (ATR) v_{max} 2922, 2852, 1730, 1597, 1294, 1158, 763, 293 cm⁻¹; HRMS (ESI) Calcd for C₂₄H₂₆N₂O₄S: [M+H]⁺ = 439.1686. Found: 439.1692.

Methyl-2-(5-((4-bromophenyl)sulfonamido)pentan-2-yl)isonicotinate (3f). Reaction of 4bromo-*N*-fluoro-*N*-pentylbenzenesulfonamide **1f** (32.3 mg, 0.1 mmol) with the *N*methoxypyridinium tetrafluoroborate **2a** (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (3:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.2$ in 5:1 v/v petroleum ether/ethyl acetate) gave compound **3f** (32.5 mg, 74%) as a lightyellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.64 (dd, J = 4.8, 1.4 Hz, 1H), 7.68 (d, J = 8.6 Hz, 2H), 7.65 (d, J = 4.8 Hz, 2H), 7.60 (d, J = 8.6 Hz, 2H), 5.15 (t, J = 6.0 Hz, 1H), 3.95 (s, 3H), 2.93 – 2.89 (m, 3H), 1.75 – 1.72 (m, 1H), 1.61 – 1.56 (m, 1H), 1.46 – 1.42 (m, 1H), 1.33 – 1.30 (m, 1H), 1.24 (d, J = 6.9 Hz, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 166.7, 165.8, 149.8, 139.1, 137.9, 132.3, 128.5, 127.4, 120.9, 120.6, 52.7, 43.1, 41.2, 33.6, 27.3, 20.8; IR (ATR) v_{max} 2925, 1729, 1574, 1436, 1292, 1158, 737, 603 cm⁻¹; HRMS (ESI) Calcd for C₁₈H₂₁BrN₂O₄S: [M+H]⁺ = 441.0478. Found: 441.0484.

Methyl-2-(5-((4-chlorophenyl)sulfonamido)pentan-2-yl)isonicotinate (3g). Reaction of 4chloro-*N*-fluoro-*N*-pentylbenzenesulfonamide **1g** (27.9 mg, 0.1 mmol) with the *N*methoxypyridinium tetrafluoroborate **2a** (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (3:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.2$ in 3:1 v/v petroleum ether/ethyl acetate) gave compound **3g** (31.2 mg, 79%) as a lightyellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.65 (d, *J* = 5.0 Hz, 1H), 7.75 (d, *J* = 8.6 Hz, 2H), 7.65 (d, *J* = 5.3 Hz, 2H), 7.44 (d, *J* = 8.6 Hz, 2H), 5.07 (t, *J* = 6.0 Hz, 1H), 3.95 (s, 3H), 2.92 – 2.91 (m, 3H), 1.75 – 1.72 (m, 1H), 1.61 – 1.57 (m, 1H), 1.46 – 1.42 (m, 1H), 1.32 – 1.30 (m, szo 1H), 1.25 (d, J = 6.9 Hz, 3H); ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 166.7, 165.8, 149.9, 138.9, 138.6, 137.9, 129.3, 128.5, 120.9, 120.6, 52.7, 43.1, 41.2, 33.6, 27.3, 20.8; IR (ATR) ν_{max} 2926, 1729, 1562, 1436, 1292, 1158, 753, 619 cm⁻¹; HRMS (ESI) Calcd for C₁₈H₂₁ClN₂O₄S: [M+H]⁺ = 397.0983. Found: 397.0971.

Methyl-2-(5-(phenylsulfonamido)pentan-2-yl)isonicotinate (3h). Reaction of *N*-fluoro-*N*-pentylbenzenesulfonamide **1h** (24.5 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2a** (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.3$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **3h** (30.5 mg, 84%) as a light-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.66 (d, J = 5.0 Hz, 1H), 7.82 (d, J = 7.1 Hz, 2H), 7.66 – 7.65 (m, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 5.00 (t, J = 5.9 Hz, 1H), 3.95 (s, 3H), 2.92 – 2.90 (m, 3H), 1.75 – 1.71 (m, 1H), 1.60 – 1.56 (m, 1H), 1.46 – 1.43 (m, 1H), 1.32 – 1.29 (m, 1H), 1.23 (d, J = 6.9 Hz, 3H); ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 166.9, 165.7, 149.8, 139.9, 138.0, 132.5, 129.0, 127.0, 121.0, 120.6, 52.7, 43.1, 41.2, 33.6, 27.4, 20.7; IR (ATR) v_{max} 2925, 2854, 1729, 1561, 1291, 1157, 757, 585 cm⁻¹; HRMS (ESI) Calcd for C₁₈H₂₂N₂O₄S: [M+H]⁺ = 363.1373. Found: 363.1371.

Methyl-2-(5-((2-methylphenyl)sulfonamido)pentan-2-yl)isonicotinate (3i). Reaction of *N*-fluoro-2-methyl-*N*-pentylbenzenesulfonamide **1i** (25.9 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2a** (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.4$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **3i** (24.8 mg, 66%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.61 (d, *J* = 4.9 Hz, 1H), 7.89 (d, *J* = 9.3 Hz, 1H), 7.62 – 7.60 (m, 2H), 7.39 (t, *J* = 8.0 Hz, 1H), 7.24 (d, *J* = 7.5 Hz, 2H), 4.89 (t, *J* = 5.9 Hz, 1H), 3.92 (s, 3H), 2.86 (q, *J* = 6.7 Hz, 3H), 2.58 (s, 3H), 1.71 – 1.65 (m, 1H), 1.56 – 1.51 (m, 1H), 1.41 – 1.38 (m, 1H), 1.29 – 1.25 (m, 1H), 1.20 (d, *J* = 7.0 Hz, 3H); ¹³C{¹H} NMR (126 MHz, S21

CDCl₃) δ 166.8, 165.8, 149.9, 137.9, 137.8, 136.9, 132.6, 132.5, 129.4, 126.1, 120.90, 120.5, 52.7, 42.9, 41.2, 33.6, 27.5, 20.8, 20.2; IR (ATR) ν_{max} 2923, 2853, 1731, 1562, 1438, 1294, 1158, 595 cm⁻¹; HRMS (ESI) Calcd for C₁₉H₂₄N₂O₄S: [M+H]⁺ = 377.1530. Found: 377.1539.

Methyl-2-(5-((2-chlorophenyl)sulfonamido)pentan-2-yl)isonicotinate (3j). Reaction of 2chloro-*N*-fluoro-*N*-pentylbenzenesulfonamide **1j** (27.9 mg, 0.1 mmol) with the *N*methoxypyridinium tetrafluoroborate **2a** (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.3$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **3j** (28.2 mg, 71%) as a lightyellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.64 (d, J = 5.0 Hz, 1H), 8.05 (d, J = 9.1 Hz, 1H), 7.64 – 7.63 (m, 2H), 7.48 – 7.47 (m, 2H), 7.40 – 7.37 (m, 1H), 5.26 (t, J = 6.2 Hz, 1H), 3.94 (s, 3H), 2.88 (q, J = 6.8 Hz, 3H), 1.76 – 1.71 (m, 1H), 1.63 – 1.57 (m, 1H), 1.46 – 1.40 (m, 1H), 1.32 – 1.29 (m, 1H), 1.24 (d, J = 6.9 Hz, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 166.7, 165.8, 149.9, 137.8, 137.2, 133.6, 131.5, 131.3, 131.2, 127.2, 120.8, 120.5, 52.6, 43.2, 41.3, 33.6, 27.4, 20.7; IR (ATR) v_{max} 2926, 1727, 1562, 1453, 1291, 1159, 761, 586 cm⁻¹; HRMS (ESI) Calcd for C₁₈H₂₁ClN₂O₄S: [M+H]⁺ = 397.0983. Found: 397.0971.

Methyl-2-(5-((3-chlorophenyl)sulfonamido)pentan-2-yl)isonicotinate (3k). Reaction of 3-chloro-*N*-fluoro-*N*-pentylbenzenesulfonamide **1k** (27.9 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2a** (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.3$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **3k** (30.5 mg, 77%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.66 (d, J = 5.9 Hz, 1H), 7.82 (t, J = 1.9 Hz, 1H), 7.72 (d, J = 7.8 Hz, 1H), 7.68 – 7.66 (m, 2H), 7.52 (d, J = 11.1 Hz, 1H), 7.43 (t, J = 7.9 Hz, 1H), 5.14 (t, J = 6.0 Hz, 1H), 3.96 (s, 3H), 2.97 – 2.92 (m, 3H), 1.78 – 1.73 (m, 1H), 1.63 – 1.59 (m, 1H), 1.50 – 1.45 (m, 1H), 1.35 – 1.31 (m, 1H), 1.27 (d, J = 6.9 Hz, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 166.7, 165.8, 149.8, 141.8, 138.0, 135.2, 132.6, 130.3, 127.1, 125.1, sze

121.0, 120.6, 52.7, 43.2, 41.2, 33.6, 27.4, 20.8; IR (ATR) v_{max} 2922, 2852, 1716, 1631, 1457, 1259, 1013, 789 cm⁻¹; HRMS (ESI) Calcd for $C_{18}H_{21}CIN_2O_4S$: $[M+H]^+ = 397.0983$. Found: 397.0979.

Methyl-2-(1-((4-methylphenyl)sulfonamido)heptan-4-yl)isonicotinate (31). Reaction of *N*-fluoro-*N*-heptyl-4-methylbenzenesulfonamide **11** (28.7 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2a** (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.3$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **3I** (31.6 mg, 78%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.59 (d, J = 5.0 Hz, 1H), 7.63 (d, J = 8.2 Hz, 2H), 7.58 (d, J = 5.0 Hz, 1H), 7.54 (s, 1H), 7.20 (d, J = 7.2 Hz, 2H), 4.79 (t, J = 5.9 Hz, 1H), 3.89 (s, 3H), 2.81 – 2.77 (m, 2H), 2.70 – 2.67 (m, 1H), 2.34 (s, 3H), 1.62 – 1.58 (m, 3H), 1.51 – 1.48 (m, 1H), 1.31 – 1.28 (m, 1H), 1.13 – 1.01 (m, 2H), 1.00 – 0.97 (m, 1H), 0.75 (t, J = 7.3 Hz, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 165.8, 165.7, 149.8, 143.2, 137.7, 136.9, 129.6, 2857, 1731, 1438, 1290, 1158, 763, 551 cm⁻¹; HRMS (ESI) Calcd for C₂₁H₂₈N₂O₄S: [M+H]⁺ = 405.1843. Found: 405.1834.

Methyl-2-(1-((4-methylphenyl)sulfonamido)octan-4-yl)isonicotinate (3m). Reaction of *N*-fluoro-4-methyl-*N*-octylbenzenesulfonamide **1m** (30.1 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2a** (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, R_f = 0.4 in 2:1 v/v petroleum ether/ethyl acetate) gave compound **3m** (31.8 mg, 76%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.65 (d, *J* = 5.0 Hz, 1H), 7.69 (d, *J* = 8.2 Hz, 2H), 7.64 (d, *J* = 5.1 Hz, 1H), 7.59 (s, 1H), 7.26 (d, *J* = 8.0 Hz, 2H), 4.92 (t, *J* = 6.0 Hz, 1H), 3.95 (s, 3H), 2.85 (q, *J* = 6.7 Hz, 2H), 2.73 – 2.69 (m, 1H), 2.40 (s, 3H), 1.67 – 1.64 (m, 3H), 1.58 – 1.56 (m, 1H), 1.37 – 1.34 (m, 1H), 1.23 – 1.18 (m, 3H), 1.12 – 1.10 (m, 1H), 0.98 – 0.96 (m,

1H), 0.79 (t, J = 7.3 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 165.9, 165.8, 149.9, 143.2, 137.6, 136.9, 129.6, 127.0, 121.8, 120.4, 52.6, 47.3, 43.1, 35.4, 32.3, 29.5, 27.4, 22.6, 21.4, 13.9; IR (ATR) ν_{max} 2924, 2854, 1732, 1438, 1290, 1158, 763, 561 cm⁻¹; HRMS (ESI) Calcd for C₂₂H₃₀N₂O₄S: [M+H]⁺ = 419.1999. Found: 419.2000.

Methyl 2-((7R)-7-((4-methylphenyl)sulfonamido)octan-4-yl)isonicotinate (3n). Reaction of (R)-*N*-fluoro-4-methyl-*N*-(octan-2-yl)benzenesulfonamide **1n** (30.1 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2a** (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (3:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.5$ in 3:1 v/v petroleum ether/ethyl acetate) gave compound **3n** (33.5 mg, 80%, d.r. = 1:1) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.69 (d, *J* = 5.1 Hz, 1H), 7.71 (dd, *J* = 17.2, 8.3 Hz, 2H), 7.65 (d, *J* = 5.0 Hz, 1H), 7.58 (s, 1H), 7.26 – 7.24 (m, 2H), 4.74 – 4.64 (m, 1H), 3.95 – 3.95 (m, 3H), 3.25 – 3.19 (m, 1H), 2.69 (s, 1H), 2.40 (d, *J* = 3.4 Hz, 3H), 1.61 – 1.47 (m, 4H), 1.30 – 1.24 (m, 1H), 1.14 – 1.03 (m, 1H), 0.96 (t, *J* = 6.9 Hz, 3H), 0.81 – 0.80 (m, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 166.0 (165.9), 165.9 (165.9), 150.0 (143.0), 138.2 (138.1), 137.5 (137.5), 129.5 (129.5), 127.0 (126.9), 121.9 (121.8), 120.4 (120.3), 52.6 (52.6), 50.2 (49.9), 47.3 (47.0), 38.1 (37.8), 35.2 (34.9), 31.2 (30.6), 21.9 (21.7), 21.4 (21.4), 20.5 (20.4), 14.0 (14.0); IR (ATR) v_{max} 2927, 2869, 1730, 1436, 1289, 1158, 763, 551 cm⁻¹; HRMS (ESI) Calcd for C₂₂H₃₀N₂O₄S: [M+H]⁺ = 419.1999. Found: 419.1990.

Methyl-2-(5,5-dimethyl-6-((4-methylphenyl)sulfonamido)hexan-3-yl)isonicotinate (30). Reaction of *N*-(2,2-dimethylhexyl)-*N*-fluoro-4-methylbenzenesulfonamid*e* 10 (30.1 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate 2a (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (3:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.2$ in 5:1 v/v petroleum ether/ethyl acetate) gave compound 3o (29.6 mg, 71%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.60 (d, *J* = 5.0 Hz, 1H), 7.62 (s, 1H), 7.59 (d, *J* = 8.3 Hz, 2H), 7.56 (d, *J* = 5.1 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 5.17 (dd, *J* = 9.0, 5.0 Hz, 1H), 3.96 (s, 3H), 2.76 (q, J = 9.1 Hz, 1H), 2.54 (dd, J = 12.5, 9.0 Hz, 1H), 2.40 (s, 3H), 2.17 (dd, J = 12.5, 5.1 Hz, 1H), 2.04 (dd, J = 14.6, 9.8 Hz, 1H), 1.61 – 1.57 (m, 2H), 1.43 (dd, J = 14.6, 2.7 Hz, 1H), 0.83 (s, 3H), 0.75 (s, 3H), 0.70 (t, J = 7.4 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 166.5, 165.5, 149.7, 143.0, 137.7, 137.1, 129.5, 126.9, 122.2, 120.6, 52.7, 52.3, 45.0, 43.3, 34.4, 31.2, 26.7, 25.2, 21.4, 11.8; IR (ATR) v_{max} 2959, 2926, 1731, 1437, 1288, 1160, 814, 551 cm⁻¹; HRMS (ESI) Calcd for C₂₂H₃₀N₂O₄S: [M+H]⁺ = 419.1999. Found: 419.1992.

Methyl 2-(2-methyl-5-((4-methylphenyl)sulfonamido)pentan-2-yl)isonicotinate (3p). Reaction of *N*-fluoro-4-methyl-*N*-(4-methylpentyl)benzenesulfonamide 1p (27.3 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate 2a (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.4$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound 3p (9.9 mg, 25%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.63 (d, J = 5.7 Hz, 1H), 7.75 (s, 1H), 7.62 (d, J = 8.3 Hz, 2H), 7.59 (dd, J = 5.0, 1.5 Hz, 1H), 7.19 (d, J = 7.3 Hz, 2H), 4.94 (t, J = 5.9 Hz, 1H), 3.89 (s, 3H), 2.76 (q, J = 6.5 Hz, 2H), 2.34 (s, 3H), 1.66 – 1.63 (m, 2H), 1.29 – 1.21 (m, 8H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 168.7, 165.8, 149.2, 143.2, 137.9, 136.9, 129.6, 127.0, 120.2, 119.5, 52.7, 43.5, 40.4, 39.2, 27.9, 24.8, 21.4; IR (ATR) v_{max} 2925, 2855, 1731, 1437, 1302, 1158, 763, 551 cm⁻¹; HRMS (ESI) Calcd for C₂₀H₂₆N₂O₄S: [M+H]⁺ = 391.1686. Found: 391.1678.

Methyl 2-(1-(3-((4-methylphenyl)sulfonamido)propyl)cyclopentyl)isonicotinate (3q). Reaction of *N*-(3-cyclopentylpropyl)-*N*-fluoro-4-methylbenzenesulfonamide 1q (29.9 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate 2a (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (3:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.3$ in 3:1 v/v petroleum ether/ethyl acetate) gave compound 3q (8.9 mg, 21%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.66 (d, J = 5.6 Hz, 1H), 7.75 (s, 1H), 7.66 (d, J = 8.3 Hz, 2H), 7.61 (d, J = 5.0 Hz, 1H), 7.26 – 7.24 (m, 2H), 4.64 (t, J = 5.9 Hz, 1H), 3.95 (s, 3H), 2.78 (q, J = 6.8 Hz, 2H), 2.40 (s, 3H), 2.11 – 2.07 (m, 2H), 1.74 – 1.67 (m, 6H), 1.64 – 1.56 (m, 2H), 1.16 – 1.10 (m, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 168.4, 166.0, 149.4, 143.2, 137.5, 136.9, 129.6, 127.0, 120.2, 119.9, 53.3, 52.7, 43.5, 37.8, 37.5, 25.5, 23.9, 21.5; IR (ATR) ν_{max} 2951, 2869, 1730, 1436, 1297, 1156, 762, 549 cm⁻¹; HRMS (ESI) Calcd for C₂₂H₂₈N₂O₄S: [M+H]⁺ = 417.1843. Found: 417.1859.

Methyl 2-(4-((4-methylphenyl)sulfonamido)butyl)isonicotinate (3r). Reaction of *N*-butyl-*N*-fluoro-4-methylbenzenesulfonamide 1r (24.5 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate 2a (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (1:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.1$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound 3r (14.8 mg, 41%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.65 (d, J = 6.0 Hz, 1H), 7.73 (d, J = 8.1 Hz, 2H), 7.68 (d, J = 4.6Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 5.02 (t, J = 6.2 Hz, 1H), 3.96 (s, 3H), 2.97 (q, J = 6.6 Hz, 2H), 2.83 (t, J = 7.6 Hz, 2H), 2.41 (s, 3H), 1.79 – 1.73 (m, 2H), 1.57 – 1.51 (m, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 165.6, 162.5, 149.6, 143.3, 138.0, 137.0, 129.6, 127.0, 122.2, 120.5, 52.7, 42.8, 37.0, 28.9, 26.3, 21.5; IR (ATR) v_{max} 2955, 2869, 1685, 1460, 1328, 1152, 733, 580 cm⁻¹; HRMS (ESI) Calcd for C₁₈H₂₂N₂O₄S: [M+H]⁺ = 363.1373. Found: 363.1366.

Methyl 2-(4-((4-methylphenyl)sulfonamido)pentyl)isonicotinate (3s). Reaction of *N*-butyl-*N*-fluoro-4-methylbenzenesulfonamide 1s (24.5 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate 2a (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (1:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.2$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound 3s (22.9 mg, 61%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.67 (dd, J = 5.0, 0.9 Hz, 1H), 7.74 (d, J = 8.4 Hz, 2H), 7.71 – 7.70 (m, 2H), 7.25 (d, J = 8.0 Hz, 2H), 5.05 (d, J = 7.9 Hz, 1H), 3.96 (s, 3H), 3.33 – 3.30 (m, 1H), 2.81 (t, J = 7.6 Hz, 2H), 2.38 (s, 3H), 1.72 – 1.66 (m, 2H), 1.44 (q, J = 7.5 Hz, 2H), 1.01 (d, J = 6.5 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 165.4, 162.4, 149.0, 143.0, 138.4, 138.2, 129.5, 127.0, 122.5, 120.6, 52.8, 49.8, 36.9, 36.6, 25.2, 21.6, 21.4; IR (ATR) v_{max} 2925, 2856, 1730, 1437, 1291, 1157, 665, 551 cm⁻¹; HRMS (ESI) Calcd for $C_{19}H_{24}N_2O_4S$: [M+H]⁺ = 377.1530. Found: 377.1536.

Methyl-2-(1-azido-6-((4-methylphenyl)sulfonamido)hexan-3-yl)isonicotinate (3t). Reaction of *N*-(6-azidohexyl)-*N*-fluoro-4-methylbenzenesulfonamide 1t (31.4 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate 2a (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.4$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound 3t (27.6 mg, 64%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.69 (d, J = 5.0 Hz, 1H), 7.70 – 7.67 (m, 3H), 7.62 (s, 1H), 7.28 – 7.26 (m, 2H), 4.66 (t, J = 6.2 Hz, 1H), 3.96 (s, 3H), 3.17 – 3.12 (m, 1H), 3.03 – 2.98 (m, 1H), 2.88 – 2.84 (m, 3H), 2.41 (s, 3H), 2.02 – 1.98 (m, 1H), 1.90 – 1.85 (m, 1H), 1.76 – 1.72 (m, 1H), 1.67 – 1.63 (m, 1H), 1.41 – 1.36 (m, 1H), 1.24 – 1.19 (m, 1H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 165.6, 164.0, 150.5, 143.3, 137.9, 136.9, 129.6, 127.0, 122.2, 121.0, 52.7, 49.3, 44.3, 43.0, 34.3, 32.2, 27.3, 21.5; IR (ATR) ν_{max} 2931, 2095, 1730, 1437, 1290, 1156, 815, 551 cm⁻¹; HRMS (ESI) Calcd for C₂₀H₂₅N₅O₄S: [M+H]⁺ = 432.1700. Found: 432.1689.

Methyl-2-(1-methoxy-6-((4-methylphenyl)sulfonamido)-1-oxohexan-3-yl) is onicotinate

(3u). Reaction of methyl 6-((*N*-fluoro-4-methylphenyl)sulfonamido)hexanoate 1u (31.7 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate 2a (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (1.5:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.2$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound 3u (29.9 mg, 69%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.59 (d, J = 5.8 Hz, 1H), 7.62 (d, J = 8.3 Hz, 2H), 7.60 – 7.59 (m, 2H), 7.20 (d, J = 8.0 Hz, 2H), 4.65 (t, J = 6.1 Hz, 1H), 3.88 (s, 3H), 3.51 (s, 3H), 3.22 – 3.17 (m, 1H), 2.81 (q, J = 6.8 Hz, 2H), 2.73 (dd, J = 16.2, 8.2 Hz, 1H), 2.54 (dd, J = 16.2, 6.4 Hz, 1H), 2.34 (s, 3H), 1.70 – 1.67 (m, 1H), 1.62 –

1.56 (m, 1H), 1.34 – 1.29 (m, 1H), 1.20 – 1.15 (m, 1H); ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃) δ 172.6, 165.6, 163.7, 150.2, 143.3, 137.7, 136.9, 129.6, 127.0, 122.3, 120.9, 52.7, 51.6, 42.9, 42.8, 39.3, 31.8, 27.1, 21.5; IR (ATR) ν_{max} 2920, 2851, 1732, 1437, 1292, 1159, 763, 550 cm⁻¹; HRMS (ESI) Calcd for C₂₁H₂₆N₂O₆S: [M+H]⁺ = 435.1584. Found: 435.1572.

Methyl-2-(1-(benzoyloxy)-6-((4-methylphenyl)sulfonamido)hexan-3-yl)isonicotinate (3v). Reaction of 6-((*N*-fluoro-4-methylphenyl)sulfonamido)hexyl benzoate **1v** (39.3 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2a** (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (1.5:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.2$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **3v** (37.8 mg, 74%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.66 (d, J = 5.8 Hz, 1H), 7.89 (d, J = 7.1 Hz, 2H), 7.68 (d, J = 8.2 Hz, 2H), 7.63 – 7.62 (m, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.39 (t, J = 7.8 Hz, 2H), 7.26 – 7.24 (m, 2H), 4.79 (t, J = 6.2 Hz, 1H), 4.23 – 4.19 (m, 1H), 4.11 – 4.07 (m, 1H), 3.91 (s, 3H), 2.98 – 2.94 (m, 1H), 2.86 (q, J = 6.7 Hz, 2H), 2.39 (s, 3H), 2.24 – 2.19 (m, 1H), 2.09 – 2.05 (m, 1H), 1.78 – 1.69 (m, 2H), 1.42 – 1.37 (m, 1H), 1.24 – 1.19 (m, 1H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 166.4, 165.5, 164.4, 150.3, 143.3, 137.8, 136.9, 132.9, 130.0, 129.6, 129.4, 128.2, 127.0, 122.1, 120.8, 63.0, 52.6, 44.2, 43.0, 34.1, 32.3, 27.3, 21.4; IR (ATR) v_{max} 2925, 1716, 1600, 1437, 1273, 1156, 714, 551 cm⁻¹; HRMS (ESI) Calcd for C₂₇H₃₀N₂O₆S: [M+H]⁺ = 511.1897. Found: 511.1875.

Methyl-2-(1-acetoxy-6-((4-methylphenyl)sulfonamido)hexan-3-yl)isonicotinate (3w). Reaction of 6-((*N*-fluoro-4-methylphenyl)sulfonamido)hexyl acetate 1w (33.1 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate 2a (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (1.5:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.2$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound 3w (31.4 mg, 70%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.66 (d, J = 5.0 Hz, 1H), 7.68 (d, J = 8.3 Hz, 2H), 7.65 (d, J = 5.0 Hz, 1H), 7.60 (s, 1H), 7.27 – 7.25 (m, 2H), 4.73 (t, J = 6.2 Hz, 1H), 3.94 - 3.91 (m, 4H), 3.82 - 3.79 (m, 1H), 2.86 - 2.83 (m, 3H), 2.40 (s, 3H), 2.07 - 2.03 (m, 1H), 1.95 - 1.91 (m, 4H), 1.74 - 1.71 (m, 1H), 1.67 - 1.64 (m, 1H), 1.39 - 1.35 (m, 1H), 1.24 - 1.20 (m, 1H); ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃) δ 171.0, 165.6, 164.4, 150.3, 143.3, 137.7, 136.9, 129.6, 127.0, 122.1, 120.8, 62.4, 52.7, 43.9, 43.0, 34.0, 32.2, 27.3, 21.4, 20.8; IR (ATR) v_{max} 2926, 1729, 1561, 1437, 1289, 1156, 762, 550 cm⁻¹; HRMS (ESI) Calcd for $C_{22}H_{28}N_2O_6S$: [M+H]⁺ = 449.1741. Found: 449.1761.

Methyl-2-(1-cyclopentyl-6-((4-methylphenyl)sulfonamido)-1-oxohexan-3-yl)isonicotinate (3x). Reaction of *N*-(6-cyclopentyl-6-oxohexyl)-*N*-fluoro-4-methylbenzenesulfonamide **1x** (35.5 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2a** (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.3$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **3x** (31.2 mg, 66%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.62 (dd, J = 5.0, 0.9 Hz, 1H), 7.70 – 7.66 (m, 2H), 7.65 (t, J = 1.2 Hz, 1H), 7.63 (dd, J = 5.0, 1.6 Hz, 1H), 7.27 – 7.25 (m, 2H), 4.75 (t, J = 6.2 Hz, 1H), 3.93 (s, 3H), 3.32 – 3.29 (m, 1H), 3.01 (dd, J = 17.6, 7.7 Hz, 1H), 2.86 (q, J = 6.7 Hz, 2H), 2.76 – 2.69 (m, 2H), 2.40 (s, 3H), 1.73 – 1.67 (m, 4H), 1.59 – 1.52 (m, 6H), 1.39 – 1.35 (m, 1H), 1.24 – 1.20 (m, 1H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 211.7, 165.7, 164.5, 150.1, 143.2, 137.6, 136.9, 129.6, 127.0, 122.7, 120.7, 52.6, 51.6, 46.8, 42.8, 41.6, 31.9, 28.7, 28.6, 27.2, 25.9, 25.8, 21.5; IR (ATR) v_{max} 2951, 2868, 1731, 1438, 1291, 1158, 816, 551 cm⁻¹; HRMS (ESI) Calcd for C₂₅H₃₂N₂O₅S: [M+H]⁺ = 473.2105. Found: 473.2091.

Methyl-2-(1-(1,3-dioxoisoindolin-2-yl)-6-((4-methylphenyl)sulfonamido)hexan-3yl)isonicotinate (3y). Reaction of *N*-(6-(1,3-dioxoisoindolin-2-yl)hexyl)-*N*-fluoro-4methylbenzenesulfonamide 1y (41.8 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate 2a (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (1.5:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.3$ in 2:1 S29

v/v petroleum ether/ethyl acetate) gave compound **3**y (37.9 mg, 71%) as a light-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.60 (d, *J* = 5.0 Hz, 1H), 7.76 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.69 – 7.66 (m, 4H), 7.61 (s, 1H), 7.57 (d, *J* = 4.9 Hz, 1H), 7.25 (d, *J* = 8.3 Hz, 2H), 4.82 (t, *J* = 5.5 Hz, 1H), 3.93 (s, 3H), 3.56 (t, *J* = 7.3 Hz, 2H), 2.85 (q, *J* = 6.7 Hz, 2H), 2.78 (t, *J* = 8.7 Hz, 1H), 2.39 (s, 3H), 2.19 – 2.15 (m, 1H), 1.98 – 1.95 (m, 1H), 1.74 – 1.70 (m, 1H), 1.34 – 1.30 (m, 1H), 1.25 – 1.22 (m, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.2, 165.6, 164.3, 150.2, 143.2, 137.6, 136.9, 133.9, 131.9, 129.6, 127.0, 123.1, 122.0, 120.7, 52.6, 44.7, 42.8, 36.1, 33.6, 31.9, 27.1, 21.4; IR (ATR) ν_{max} 2926, 1706, 1599, 1397, 1288, 1156, 721, 550 cm⁻¹; HRMS (ESI) Calcd for C₂₈H₂₉N₃O₆S: [M+H]⁺ = 536.1850. Found: 536.1860.

Methyl-2-(1-(2-((4-methylphenyl)sulfonamido)ethoxy)ethyl)isonicotinate (3z). Reaction of *N*-(2-ethoxyethyl)-*N*-fluoro-4-methylbenzenesulfonamid*e* 1z (26.1 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate 2a (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (1.5:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.2$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound 3z (19.3 mg, 51%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.65 (d, J = 5.8 Hz, 1H), 7.76 (s, 1H), 7.69 – 7.66 (m, 3H), 7.21 (d, J = 8.6 Hz, 2H), 5.50 (t, J = 5.7 Hz, 1H), 4.46 (q, J = 6.6 Hz, 1H), 3.90 (s, 3H), 3.4 – 3.44 (m, 1H), 3.31 – 3.27 (m, 1H), 3.10 – 3.04 (m, 2H), 2.35 (s, 3H), 1.36 (d, J = 6.6 Hz, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 165.5, 163.5, 150.0, 143.3, 138.3, 137.0, 129.6, 127.0, 121.8, 119.6, 78.8, 67.4, 52.8, 43.1, 22.0, 21.5; IR (ATR) v_{max} 2924, 1730, 1600, 1438, 1292, 1158, 764, 551 cm⁻¹; HRMS (ESI) Calcd for C₁₈H₂₂N₂O₅S: [M+H]⁺ = 379.1322. Found: 379.1333.

Methyl-2-(1-methoxy-4-((4-methylphenyl)sulfonamido)butyl)isonicotinate(3aa).Reaction of N-fluoro-N-(4-methoxybutyl)-4-methylbenzenesulfonamide1aa(27.5 mg, 0.1mmol) with the N-methoxypyridinium tetrafluoroborate2a(51.0 mg, 0.2 mmol) followed bystandard work-up and flash column chromatography on silica gel(1.5:1 v/v petroleumS30

ether/ethyl acetate elution, $R_f = 0.2$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **3aa** (20.3 mg, 52%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.69 (d, J = 5.0 Hz, 1H), 7.89 (s, 1H), 7.75 (dd, J = 5.0, 1.5 Hz, 1H), 7.72 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 7.5 Hz, 2H), 4.88 (t, J = 6.1 Hz, 1H), 4.29 (t, J = 6.3 Hz, 1H), 3.97 (s, 3H), 3.27 (s, 3H), 2.98 – 2.94 (m, 2H), 2.41 (s, 3H), 1.77 – 1.74 (m, 2H), 1.60 – 1.54 (m, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 165.6, 163.0, 149.9, 143.3, 138.4, 137.0, 129.6, 127.1, 121.8, 119.6, 83.9, 57.4, 52.8, 43.0, 33.6, 25.6, 21.5; IR (ATR) v_{max} 2923, 1729, 1451, 1330, 1156, 663, 546 cm⁻¹; HRMS (ESI) Calcd for C₁₉H₂₄N₂O₅S: [M+H]⁺ = 393.1479. Found: 393.1477.

Methyl 2-(2-(2-((4-methylphenyl)sulfonamido)ethyl)cyclopentyl)isonicotinate (3ab). Reaction of *N*-(2-cyclopentylethyl)-*N*-fluoro-4-methylbenzenesulfonamide 1ab (28.5 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate 2a (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.4$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound 3ab (29.0 mg, 72%, d.r. > 20:1) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.64 (d, *J* = 5.0 Hz, 1H), 7.66 – 7.63 (m, 4H), 7.23 (d, *J* = 8.0 Hz, 2H), 5.28 (t, *J* = 5.9 Hz, 1H), 3.95 (s, 3H), 2.87 – 2.80 (m, 3H), 2.39 (s, 3H), 2.20 (q, *J* = 8.9 Hz, 1H), 2.12 – 2.06 (m, 1H), 1.94 – 1.90 (m, 1H), 1.78 – 1.70 (m, 3H), 1.52 – 1.48 (m, 2H), 1.29 – 1.26 (m, 2H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 165.8, 165.6, 149.9, 143.1, 137.8, 137.0, 129.5, 127.0, 121.5, 120.5, 53.5, 52.7, 43.4, 42.0, 34.4, 34.1, 32.7, 24.3, 21.4; IR (ATR) ν_{max} 2951, 2868, 1729, 1436, 1288, 1155, 762, 549 cm⁻¹; HRMS (ESI) Calcd for C₂₁H₂₆N₂O₄S: [M+H]⁺ = 403.1686. Found: 403.1694.

Methyl 2-(2-(2-((4-methylphenyl)sulfonamido)ethyl)cyclohexyl)isonicotinate (3ac). Reaction of *N*-(2-cyclohexylethyl)-*N*-fluoro-4-methylbenzenesulfonamide 1ac (29.9 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate 2a (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.4$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound 3ac (32.9 mg, S31 79%, d.r. > 20:1) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.65 (d, *J* = 5.9 Hz, 1H), 7.66 – 7.62 (m, 4H), 7.24 (d, *J* = 8.0 Hz, 2H), 5.21 (t, *J* = 5.4 Hz, 1H), 3.94 (s, 3H), 2.85 – 2.80 (m, 1H), 2.74 – 2.72 (m, 1H), 2.46 (t, *J* = 11.2 Hz, 1H), 2.39 (s, 3H), 1.80 – 1.70 (m, 5H), 1.46 – 1.39 (m, 1H), 1.30 – 1.25 (m, 2H), 1.16 – 1.12 (m, 2H), 1.02 – 0.94 (m, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 166.2, 165.7, 149.9, 143.0, 137.9, 136.8, 129.5, 127.0, 122.0, 120.5, 52.7, 51.8, 40.7, 37.9, 34.8, 33.9, 32.0, 26.2, 25.9, 21.4; IR (ATR) v_{max} 2925, 2854, 1730, 1438, 1291, 1159, 763, 551 cm⁻¹; HRMS (ESI) Calcd for C₂₂H₂₈N₂O₄S: [M+H]⁺ = 417.1843. Found: 417.1836.

Methyl 2-((1r,3s,5R,7S)-1-(2-((4-methylphenyl)sulfonamido)ethyl)adamantan-2-yl)isonicotinate (3ad). Reaction of *N*-(2-((3r,5r,7r)-adamantan-1-yl)ethyl)-*N*-fluoro-4-methylbenzenesulfonamide 1ad (35.1 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate 2a (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (3:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.2$ in 5:1 v/v petroleum ether/ethyl acetate) gave compound 3ad (28.5 mg, 61%, d.r. > 20:1) as a light-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.62 (d, *J* = 5.0 Hz, 1H), 7.69 (t, *J* = 1.2 Hz, 1H), 7.61 – 7.59 (m, 3H), 7.23 (d, *J* = 8.0 Hz, 2H), 4.41 (t, *J* = 5.9 Hz, 1H), 3.95 (s, 3H), 2.93 (s, 1H), 2.85 – 2.80 (m, 2H), 2.71 (d, *J* = 12.2 Hz, 1H), 2.41 (s, 3H), 2.12 (d, *J* = 12.3 Hz, 1H), 2.01 (d, *J* = 4.9 Hz, 2H), 1.91 (s, 1H), 1.84 (s, 2H), 1.72 (d, *J* = 12.2 Hz, 1H), 1.64 (d, *J* = 11.8 Hz, 2H), 1.51 (d, *J* = 14.9 Hz, 1H), 1.41 (d, *J* = 12.6 Hz, 1H), 1.35 – 1.34 (m, 1H), 1.29 – 1.26 (m, 2H), 1.14 – 1.10 (m, 1H); ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 165.9, 165.4, 148.9, 143.1, 137.3, 136.9, 129.5, 127.0, 123.4, 119.8, 55.7, 52.6, 44.0, 40.1, 39.4, 38.2, 37.6, 37.3, 35.0, 35.0, 30.4, 28.8, 28.1, 21.5; IR (ATR) v_{max} 2904, 2850, 1730, 1437, 1294, 1158, 762, 550 cm⁻¹; HRMS (ESI) Calcd for C₂₆H₃₂N₂O₄S: [M+H]⁺ = 469.2156. Found: 469.2158.

Methyl2-(3-(((4-methylphenyl)sulfonamido)methyl)cyclohexyl)isonicotinate(3ae).\$32

Reaction of N-(cyclohexylmethyl)-N-fluoro-4-methylbenzenesulfonamide 1ae (28.5 mg, 0.1 mmol) with the N-methoxypyridinium tetrafluoroborate 2a (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution,) gave compound **3ae** (16.1 mg, 40%, d.r. = 2.4:1). (major, 11.4 mg, $R_f = 0.2$ in 2:1 v/v petroleum ether/ethyl acetateas a colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.66 (d, J = 5.0 Hz, 1H), 7.72 (d, J = 8.3 Hz, 2H), 7.67 – 7.65 (m, 2H), 7.27 (d, J = 8.1 Hz, 2H), 4.69 (t, J = 6.5 Hz, 1H), 3.94 (s, 3H), 2.84 - 2.76 (m, 3H), 2.40 (s, 3H), 1.91 (dd, J = 27.3, 11.1 Hz, 1.1 Hz)4H), 1.77 (d, J = 12.9 Hz, 1H), 1.46 - 1.37 (m, 2H), 1.22 - 1.14 (m, 1H), 0.97 - 0.89 (m, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 166.6, 165.8, 149.8, 143.3, 137.0, 129.6, 127.0, 120.5, 52.6, 49.3, 45.6, 37.9, 36.3, 32.4, 29.8, 25.5, 21.5. HRMS (ESI) Calcd for C₂₁H₂₆N₂O₄S: $[M+H]^+ = 403.1686$. Found: 403.1674. (minor, 4.7 mg, $R_f = 0.3$ in 2:1 v/v petroleum ether/ethyl acetateas a colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.67 (d, J = 5.1 Hz, 1H), 7.76 (d, J = 8.3 Hz, 2H), 7.72 (s, 1H), 7.66 (d, J = 4.5 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 4.76 (s, 1H), 3.95 (s, 3H), 3.03 (t, J = 7.1 Hz, 2H), 2.95 (s, 1H), 2.41 (s, 3H), 1.96 - 1.95 (m, 1H), 1.87 - 1.85 (m, 2H), 1.79 – 1.76 (m, 1H), 1.72 – 1.66 (m, 1H), 1.56 – 1.53 (m, 3H), 1.49 – 1.44 (m, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 166.5, 165.8, 149.6, 143.3, 138.0, 137.1, 129.7, 127.1, 120. 8, 120.5, 52.7, 45.6, 40.1, 33.6, 33.4, 31.7, 27.7, 21.5, 20.8. IR (ATR) v_{max} 2923, 2854, 1729, 1437, 1294, 1156, 661, 550 cm⁻¹; HRMS (ESI) Calcd for $C_{21}H_{26}N_2O_4S$: $[M+H]^+ =$ 403.1686. Found: 403.1679.

Methyl 2-(4-((4-methylphenyl)sulfonamido)cycloheptyl)isonicotinate (3af). Reaction of *N*-cycloheptyl-*N*-fluoro-4-methylbenzenesulfonamide **1af** (28.5 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2a** (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution,) gave compound **3af** (17.1 mg, 42%, d.r. = 1.1:1). (major, 9.1 mg, R_f = 0.3 in 2:1 v/v petroleum ether/ethyl acetate ac colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.70 (d, *J* = 5.0 Hz, 1H), 7.77 (d, *J* = 8.3 Hz, 2H), 7.66 (d, *J* = 8.0 Hz, 2H), 7.38 – 7.26 (m, 2H), 5.95 (d, *J* = 8.4 Hz, 1H), 3.94 (s, 3H), 3.62 – 3.59 (m, 1H), 3.07 – 3.03 (m, 1H), 2.40 (s, 3H), 1.97 – 1.93 (m, 2H), 1.83 – 1.72 (m, 5H), 1.64 – 1.60 (m, 1H), 1.56 – 1.52 (m, 1H), 1.40 – 1.33 (m, 1H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 167.7, 165.7, 149.5, 142.9, 138.6, 138.0, 129.6, 126.9, 121.1, 120.5, s33

53.4, 52.7, 46.4, 36.3, 35.0, 32.8, 27.7, 22.5, 21.5. HRMS (ESI) Calcd for $C_{21}H_{26}N_2O_4S$: $[M+H]^+ = 403.1686$. Found: 403.1678. (minor, 8.0 mg, $R_f = 0.3$ in 2:1 v/v petroleum ether/ethyl acetateas a colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.65 (d, J = 4.6 Hz, 1H), 7.77 (d, J =8.4 Hz, 2H), 7.64 – 7.63 (m, 2H), 7.30 (d, J = 8.0 Hz, 2H), 4.60 (d, J = 7.7 Hz, 1H), 3.94 (s, 3H), 3.44 – 3.42 (m, 1H), 2.93 (s, 1H), 2.42 (s, 3H), 2.01 – 1.94 (m, 2H), 1.88 – 1.84 (m, 2H), 1.70 – 1.63 (m, 5H), 1.53 – 1.46 (m, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 167.9, 165.8, 149.8, 143.2, 138.1, 137.9, 129.7, 127.0, 120.5, 120.4, 54.8, 52.7, 48.4, 35.5, 35.1, 34.2, 30.6, 22.0, 21.5; IR (ATR) v_{max} 2925, 2857, 1729, 1437, 1293, 1155, 665, 550 cm⁻¹; HRMS (ESI) Calcd for C₂₁H₂₆N₂O₄S: [M+H]⁺ = 403.1686. Found: 403.1674.

Methyl 2-(5-(methylsulfonamido)pentan-2-yl)isonicotinate (3ag). Reaction of *N*-fluoro-*N*-pentylmethanesulfonamide 1ag (18.3 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate 2a (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (50:1 v/v dichloromethane/methanol elution, $R_f = 0.3$ in 40:1 v/v dichloromethane/methanol elution, $R_f = 0.3$ in 40:1 v/v dichloromethane/methanol elution, $R_f = 0.3$ in 40:1 v/v dichloromethane/methanol) gave compound 3ag (27.7 mg, 92%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.68 (d, J = 5.0 Hz, 1H), 7.70 (s, 1H), 7.67 (d, J = 5.0 Hz, 1H), 4.57 (s, 1H), 3.96 (s, 3H), 3.10 (q, J = 6.8 Hz, 2H), 3.02 – 2.98 (m, 1H), 2.91 (s, 3H), 1.88 – 1.84 (m, 1H), 1.70 – 1.67 (m, 1H), 1.59 – 1.54 (m, 1H), 1.45 – 1.41 (m, 1H), 1.32 (d, J = 6.9 Hz, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 166.8, 165.8, 149.9, 138.0, 121.0, 120.6, 52.7, 43.2, 41.4, 40.3, 33.6, 28.0, 20.9; IR (ATR) ν_{max} 2927, 1729, 1561, 1437, 1294, 1147, 763, 521 cm⁻¹; HRMS (ESI) Calcd for C₁₃H₂₀N₂O₄S: [M+H]⁺ = 301.1217. Found: 301.1218.

Methyl 2-(5-((1-methylethyl)sulfonamido)pentan-2-yl)isonicotinate (3ah). Reaction of *N*-fluoro-*N*-pentylpropane-2-sulfonamide 1ah (21.1 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate 2a (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (1.5:1 v/v petroleum ether/ethyl acetate elution, $R_{\rm f} = 0.2$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound 3ah (26.6 mg, 81%) as a S34

light-yellow oil. ¹H NMR (500 MHz, CDCl₃) $\delta\delta$ 8.68 (d, *J* = 5.1 Hz, 1H), 7.69 (s, 1H), 7.66 (d, *J* = 5.1 Hz, 1H), 4.50 – 4.48 (m, 1H), 3.94 (s, 3H), 3.12 – 3.07 (m, 3H), 3.00 (q, *J* = 6.9 Hz, 1H), 1.85 – 1.80 (m, 1H), 1.70 – 1.65 (m, 1H), 1.55 – 1.50 (m, 1H), 1.41 (d, *J* = 6.8 Hz, 1H), 1.33 – 1.29 (m, 9H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 166.9, 165.8, 149.9, 137.8, 120.9, 120.5, 53.2, 52.6, 43.5, 41.4, 33.6, 28.5, 20.8, 16.6, 16.6; IR (ATR) ν_{max} 2934, 1729, 1561, 1437, 1292, 1131, 763, 512 cm⁻¹; HRMS (ESI) Calcd for C₁₅H₂₄N₂O₄S: [M+H]⁺ = 329.1530. Found: 329.1522.

Methyl 2-(5-(butylsulfonamido)pentan-2-yl)isonicotinate (3ai). Reaction of *N*-fluoro-*N*-pentylbutane-1-sulfonamide **1ai** (22.5 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2a** (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.3$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **3ai** (20.4 mg, 60%) as a light-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.68 (dd, J = 5.0, 0.9 Hz, 1H), 7.69 (s, 1H), 7.67 (dd, J = 5.0, 1.6 Hz, 1H), 4.48 (t, J = 5.9 Hz, 1H), 3.95 (s, 3H), 3.07 (q, J = 6.8 Hz, 2H), 3.00 – 2.95 (m, 3H), 1.85 – 1.82 (m, 1H), 1.76 – 1.73 (m, 2H), 1.70 – 1.67 (m, 1H), 1.56 – 1.52 (m, 1H), 1.44 – 1.40 (m, 3H), 1.31 (d, J = 6.9 Hz, 3H), 0.92 (t, J = 7.4 Hz, 3H); ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 166.8, 165.8, 149.9, 137.9, 120.9, 120.6, 52.7, 52.3, 43.2, 41.4, 33.7, 28.2, 25.6, 21.5, 20.9, 13.6; IR (ATR) v_{max} 2959, 2873, 1730, 1437, 1293, 1139, 763, 564 cm⁻¹; HRMS (ESI) Calcd for C₁₆H₂₆N₂O₄S: [M+H]⁺ = 343.1686. Found: 343.1703.

Methyl 2-(5-(cyclopropanesulfonamido)pentan-2-yl)isonicotinate (3aj). Reaction of *N*-fluoro-*N*-pentylcyclopropanesulfonamide 1aj (20.9 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate 2a (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (1:1 v/v petroleum ether/ethyl acetate elution, $R_{\rm f}$ = 0.1 in 1:1 v/v petroleum ether/ethyl acetate) gave compound 3aj (27.1 mg, 83%) as a light-
yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.66 (d, J = 5.6 Hz, 1H), 7.68 (s, 1H), 7.65 (dd, J = 5.0, 1.5 Hz, 1H), 4.64 (t, J = 6.1 Hz, 1H), 3.94 (s, 3H), 3.11 (q, J = 6.8 Hz, 2H), 3.00 – 2.96 (m, 1H), 2.37 – 2.32 (m, 1H), 1.85 – 1.81 (m, 1H), 1.69 – 1.66 (m, 1H), 1.55 – 1.52 (m, 1H), 1.43 – 1.40 (m, 1H), 1.30 (d, J = 6.9 Hz, 3H), 1.12 – 1.11 (m, 2H), 0.93 (dd, J = 7.8, 2.2 Hz, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 166.9, 165.8, 149.9, 137.8, 120.9, 120.5, 52.7, 43.3, 41.4, 33.7, 29.9, 28.1, 20.8, 5.2, 5.2; IR (ATR) v_{max} 2923, 1729, 1561, 1437, 1296, 1145, 892, 763 cm⁻¹; HRMS (ESI) Calcd for C₁₅H₂₂N₂O₄S: [M+H]⁺ = 327.1373. Found: 327.1368.

Methyl 2-(5-(thiophene-2-sulfonamido)pentan-2-yl)isonicotinate (3ak). Reaction of *N*-fluoro-*N*-pentylthiophene-2-sulfonamide **1ak** (25.1 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2a** (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (1.5:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.2$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **3ak** (19.0 mg, 52%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.64 (d, *J* = 4.9 Hz, 1H), 7.64 (d, *J* = 5.1 Hz, 2H), 7.55 - 7.53 (m, 2H), 7.05 - 7.03 (m, 1H), 5.20 (t, *J* = 5.9 Hz, 1H), 3.94 (s, 3H), 3.02 - 2.97 (m, 2H), 2.94 - 2.90 (m, 1H), 1.78 - 1.73 (m, 1H), 1.65 - 1.59 (m, 1H), 1.50 - 1.44 (m, 1H), 1.36 - 1.32 (m, 1H), 1.25 (d, *J* = 6.9 Hz, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 166.8, 165.8, 149.8, 141.0, 137.9, 131.9, 131.57, 127.3, 120.9, 120.5, 52.7, 43.4, 41.2, 33.59, 27.2, 20.8; IR (ATR) v_{max} 2920, 2851, 1730, 1437, 1295, 1156, 763, 592 cm⁻¹; HRMS (ESI) Calcd for C₁₆H₂₀N₂O₄S₂: [M+H]⁺ = 369.0937. Found: 369.0927.

Methyl 2-(5-((((1R,4S)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methyl)sulfonamideo)pentan-2-yl)isonicotinate (3al). Reaction of 1-((1R,4S)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)-*N*-fluoro-*N*-pentylmethanesulfonamide 1al (31.9 mg, 0.1 mmol) with the *N*methoxypyridinium tetrafluoroborate 2a (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_{\rm f}$ = 0.3 in 2:1 v/v petroleum ether/ethyl acetate) gave compound **3al** (24.9 mg, 57%) as a lightyellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.71 (s, 1H), 7.71 (s, 1H), 7.68 (d, *J* = 5.0 Hz, 1H), 5.24 – 5.22 (m, 1H), 3.95 (s, 3H), 3.36 (d, *J* = 15.1 Hz, 1H), 3.15 – 3.11 (m, 2H), 2.88 (d, *J* = 15.1 Hz, 1H), 2.37 (d, *J* = 18.6 Hz, 1H), 2.22 (t, *J* = 14.8 Hz, 1H), 2.11 (t, *J* = 4.5 Hz, 1H), 2.04 – 2.01 (m, 1H), 1.94 – 1.92 (m, 2H), 1.85 – 1.81 (m, 2H), 1.73 – 1.71 (m, 1H), 1.60 – 1.56 (m, 1H), 1.47 – 1.43 (m, 2H), 1.32 (d, *J* = 6.9 Hz, 3H), 1.01 (s, 3H), 0.89 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 217.0, 167.0, 165.8, 149.9, 138.0, 121.0, 120.6, 59.2, 52.7, 49.2, 48.8, 43.6, 42.9, 42.8, 41.5, 33.8, 28.1, 27.0, 26.6, 20.7, 19.9, 19.5; IR (ATR) v_{max} 2955, 2924, 1730, 1437, 1291, 1145, 763, 568 cm⁻¹; HRMS (ESI) Calcd for C₂₂H₃₂N₂O₅S: [M+H]⁺ = 437.2105. Found: 437.2094.

Methyl 2-(1-((2-(4-(4-chlorobenzoyl)phenoxy)-2-methylpropanoyl)oxy)-6-((4-methylphenyl)sulfonamido)hexan-3-yl)isonicotinate (3am). Reaction of 6-((N-fluoro-4methylphenyl)sulfonamido)hexyl 2-(4-(4-chlorobenzoyl)phenoxy)-2-methylp-

ropanoate **1am** (58.9 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2a** (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (1.5:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.2$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **3am** (43.6 mg, 62%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.65 (d, J = 5.0 Hz, 1H), 7.72 – 7.68 (m, 6H), 7.64 (d, J = 6.3 Hz, 1H), 7.48 (s, 1H), 7.43 (d, J = 8.5 Hz, 2H), 7.26 – 7.25 (m, 2H), 6.84 (d, J = 8.8 Hz, 2H), 4.88 (t, J = 6.3 Hz, 1H), 4.10 – 4.06 (m, 1H), 3.92 (s, 3H), 3.89 – 3.85 (m, 1H), 2.80 – 2.76 (m, 2H), 2.62 (s, 1H), 2.40 (s, 3H), 2.02 – 1.99 (m, 1H), 1.90 – 1.85 (m, 1H), 1.64 (d, J = 6.9 Hz, 7H), 1.56 – 1.53 (m, 1H), 1.21– 1.17 (m, 1H), 1.11– 1.05 (m, 1H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 194.5, 173.5, 165.5, 164.1, 159.7, 150.4, 143.2, 138.6, 137.8, 137.0, 136.1, 132.0, 131.3, 130.3, 129.6, 128.6, 127.0, 122.2, 120.9, 117.0, 79.3, 63.6, 52.7, 43.7, 43.0, 33.8, 32.1, 27.4, 25.9, 24.9, 21.5; IR (ATR) v_{max} 2925, 1733, 1651, 1596, 1277, 1140, 750, 550 cm⁻¹; HRMS (ESI) Calcd for C₃₇H₃₉ClN₂O₈S: [M+H]⁺ = 707.2188. Found: 707.2108.

Methyl 2-(1-((2-acetoxybenzoyl)oxy)-6-((4-methylphenyl)sulfonamido)hexan-3-yl)isoni-6-((N-fluoro-4-methylphenyl)sulfonamido)hexyl cotinate (3an). Reaction of 2acetoxybenzoate 1an (45.1 mg, 0.1 mmol) with the N-methoxypyridinium tetrafluoroborate 2a (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (1.5:1 v/v petroleum ether/ethyl acetate elution, $R_{\rm f} = 0.2$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **3an** (32.8 mg, 58%) as a light-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.67 (d, J = 5.0 Hz, 1H), 7.86 (d, J = 7.8 Hz, 1H), 7.67 (d, J = 8.3 Hz, 2H), 7.64 (d, J = 5.0Hz, 1H), 7.62 (s, 1H), 7.55 (t, J = 7.8 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 7.25 (d, J = 8.7 Hz, 2H), 7.08 (d, J = 9.0 Hz, 1H), 4.67 (t, J = 6.3 Hz, 1H), 4.16 – 4.13 (m, 1H), 4.07 – 4.04 (m, 1H), 3.93 (s, 3H), 2.94 – 2.92 (m, 1H), 2.85 (q, *J* = 6.7 Hz, 2H), 2.40 (s, 3H), 2.32 (s, 3H), 2.21 -2.17 (m, 1H), 2.07 - 2.04 (m, 1H), 1.78 - 1.75 (m, 1H), 1.71 - 1.69 (m, 1H), 1.39 - 1.35 (m, 1H), 1.25 – 1.23 (m, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 169.7, 165.6, 164.3, 164.2, 150.6, 150.4, 143.3, 137.8, 136.9, 133.8, 131.6, 129.6, 127.0, 125.9, 123.7, 123.1, 122.2, 120.9, 63.1, 52.7, 44.0, 42.9, 34.1, 32.2, 27.3, 21.5, 21.0; IR (ATR) v_{max} 2925, 1723, 1605, 1452, 1292, 1157, 756, 550 cm⁻¹; HRMS (ESI) Calcd for $C_{29}H_{32}N_2O_8S$: $[M+H]^+ = 569.1952$. Found: 569.1947.

Methyl 2-(5-((4-(5-(p-tolyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)phenyl)sulfonamido)pentan-2-yl)isonicotinate (3ao). Reaction of *N*-fluoro-*N*-pentyl-4-(5-(p-tolyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide **1ao** (46.9 mg, 0.1 mmol) with the *N*methoxypyridinium tetrafluoroborate **2a** (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_{\rm f} = 0.3$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **3ao** (41.7 mg, 71%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.67 (d, *J* = 5.1 Hz, 1H), 7.80 (d, *J* = 8.6 Hz, 2H), 7.68 – 7.66 (m, 2H), 7.43 (d, *J* = 8.6 Hz, 2H), 7.16 (d, *J* = 7.8 Hz, 2H), 7.09 (d, *J* = 8.3 Hz, 2H), 6.73 (s, 1H), 5.19 (t, J = 6.0 Hz, 1H), 3.94 (s, 3H), 2.98 – 2.89 (m, 3H), 2.36 (s, 3H), 1.79 – 1.74 (m, 1H), 1.62 – 1.58 (m, 1H), 1.47 – 1.43 (m, 1H), 1.35 – 1.32 (m, 1H), 1.25 (d, J = 6.9 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 166.8, 165.6, 149.8, 145.2, 144.0 (q, J = 38.5 Hz), 142.3, 139.7, 139.5, 138.2, 129.7, 128.7, 128.0, 125.6, 125.5, 121.1, 121.0 (q, J = 269.6 Hz), 120.7, 106.2, 52.7, 43.1, 41.1, 33.6, 27.3, 21.3, 20.8; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.43; IR (ATR) v_{max} 2926, 1731, 1599, 1471, 1236, 1160, 975, 616 cm⁻¹; HRMS (ESI) Calcd for C₂₉H₂₉F₃N₄O₄S: [M+H]⁺ = 587.1934. Found: 587.1917.

Methyl 2-(5-((4-(5-methyl-3-phenylisoxazol-4-yl)phenyl)sulfonamido)pentan-2-yl)isonicotinate (3ap). Reaction of *N*-fluoro-4-(5-methyl-3-phenylisoxazol-4-yl)-*N*-pentylbenzenesulfonamide 1ap (40.2 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate 2a (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (1.5:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.2$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound 3ao (38.7 mg, 74%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.66 (d, J = 5.0 Hz, 1H), 7.82 (d, J = 8.4 Hz, 2H), 7.67 – 7.65 (m, 2H), 7.39 – 7.31 (m, 5H), 7.29 (d, J = 8.4 Hz, 2H), 4.95 (t, J = 6.0 Hz, 1H), 3.94 (s, 3H), 3.00 – 2.93 (m, 3H), 2.48 (s, 3H), 1.80 – 1.74 (m, 1H), 1.65 – 1.61 (m, 1H), 1.52 – 1.46 (m, 1H), 1.38 – 1.35 (m, 1H), 1.27 (d, J = 6.9 Hz, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 167.2, 166.7, 165.8, 161.1, 149.9, 139.2, 137.9, 135.0, 130.2, 129.7, 128.7, 128.4, 127.4, 120.9, 120.6, 114.5, 52.7, 43.2, 41.2, 33.6, 27.4, 20.9, 11.8; IR (ATR) ν_{max} 2921, 2851, 1729, 1437, 1292, 1158, 740, 607 cm⁻¹; HRMS (ESI) Calcd for C₂₈H₂₉N₃O₅S: [M+H]⁺ = 520.1901. Found: 520.1892.

4-Methyl-*N***-(4-(pyridin-2-yl)pentyl)benzenesulfonamide (4a).** Reaction of *N*-fluoro-4methyl-*N*-pentylbenzenesulfonamide **1a** (25.9 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2b** (39.4 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 ~ 1:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.5$ in 1:1 v/v petroleum ether/ethyl acetate) gave compound as a light-yellow oil (21.4 mg, 67% yield; C2 (**4a**, 16.7 mg): C4 (**4a'**, 4.7 mg) = 3.6 : 1). ¹H NMR (500 MHz, CDCl₃) δ 8.41 (d, *J* = 4.6 Hz, 1H), 7.64 (d, *J* = 8.2 Hz, 2H), 7.51 (t, *J* = 7.7 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.03 – 7.00 (m, 2H), 5.18 – 5.16 (m, 1H), 2.83 – 2.81 (m, 2H), 2.75 – 2.71 (m, 1H), 2.33 (s, 3H), 1.66 – 1.60 (m, 1H), 1.50 – 1.44 (m, 1H), 1.40 – 1.34 (m, 1H), 1.27 – 1.23 (m, 1H), 1.14 (d, *J* = 6.9 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 165.5, 148.9, 143.1, 137.0, 136.5, 129.5, 127.0, 121.6, 121.2, 43.1, 41.1, 33.7, 27.3, 21.4, 20.8; IR (ATR) v_{max} 2926, 2867, 1594, 1434, 1323, 1155, 660, 550 cm⁻¹; HRMS (ESI) Calcd for C₁₇H₂₂N₂O₂S: [M+H]⁺ = 319.1475. Found: 319.1488.

4-Methyl-*N***-(4-(pyridin-4-yl)pentyl)benzenesulfonamide (4a').** Reaction of *N*-fluoro-4methyl-*N*-pentylbenzenesulfonamide **1a** (25.9 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2b** (39.4 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 ~ 1:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.2$ in 1:1 v/v petroleum ether/ethyl acetate) gave compound as a light-yellow oil (21.4 mg, 67% yield; C2 (**4a**, 16.7 mg): C4 (**4a'**, 4.7 mg) = 3.6 : 1). ¹H NMR (500 MHz, CDCl₃) δ 8.46 (d, *J* = 5.5 Hz, 2H), 7.70 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.04 (d, *J* = 5.6 Hz, 2H), 4.76 (t, *J* = 6.3 Hz, 1H), 2.89 (q, *J* = 6.7 Hz, 2H), 2.61 (q, *J* = 7.1 Hz, 1H), 2.42 (s, 3H), 1.56 (q, *J* = 7.8 Hz, 2H), 1.43 – 1.38 (m, 1H), 1.31 – 1.27 (m, 1H), 1.19 (d, *J* = 6.9 Hz, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 155.9, 149.6, 143.34, 137.0, 129.7, 127.0, 122.5, 43.0, 39.0, 34.3, 27.5, 21.5, 21.4; IR (ATR) ν_{max} 2925, 2867, 1601, 1417, 1322, 1155, 660, 551 cm⁻¹; HRMS (ESI) Calcd for C₁₇H₂₂N₂O₂S: [M+H]⁺ = 319.1475. Found: 319.1476.

N-(4-(4-Cyanopyridin-2-yl)pentyl)-4-methylbenzenesulfonamide (4b). Reaction of N-fluoro-4-methyl-N-pentylbenzenesulfonamide 1a (25.9 mg, 0.1 mmol) with the N-methoxypyridinium tetrafluoroborate 2c (44.4 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution,

 $R_{\rm f}$ = 0.3 in 2:1 v/v petroleum ether/ethyl acetate) gave compound **4b** (25.1 mg, 73%) as a lightyellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.68 (d, *J* = 4.9 Hz, 1H), 7.71 (d, *J* = 8.3 Hz, 2H), 7.32 (dd, *J* = 5.0, 1.4 Hz, 1H), 7.30 – 7.27 (m, 3H), 4.86 (t, *J* = 6.1 Hz, 1H), 2.91 – 2.86 (m, 3H), 2.41 (s, 3H), 1.74 – 1.69 (m, 1H), 1.61 – 1.55 (m, 1H), 1.46 – 1.41 (m, 1H), 1.33 – 1.29 (m, 1H), 1.22 (d, *J* = 6.9 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 167.4, 150.2, 143.3, 136.9, 129.6, 127.0, 123.4, 122.7, 120.7, 116.7, 43.0, 41.3, 33.3, 27.4, 21.5, 20.5; IR (ATR) v_{max} 2929, 2238, 1595, 1400, 1322, 1155, 660, 549 cm⁻¹; HRMS (ESI) Calcd for C₁₈H₂₁N₃O₂S: [M+H]⁺ = 344.1427. Found: 344.1418.

4-Methyl-*N***-(4-(trifluoromethyl)pyridin-2-yl)pentyl)benzenesulfonamide** (4c). Reaction of *N*-fluoro-4-methyl-*N*-pentylbenzenesulfonamide **1a** (25.9 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2d** (53.0 mg, 0.2 mmol) followed by standard workup and flash column chromatography on silica gel (3:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.2$ in 3:1 v/v petroleum ether/ethyl acetate) gave compound **4c** (28.6 mg, 74%) as a light-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.66 (d, J = 5.1 Hz, 1H), 7.70 (d, J = 8.3Hz, 2H), 7.30 (d, J = 5.1 Hz, 1H), 7.27 – 7.25 (m, 3H), 5.03 (t, J = 6.1 Hz, 1H), 2.91 – 2.87 (m, 3H), 2.39 (s, 3H), 1.75 – 1.70 (m, 1H), 1.61 – 1.56 (m, 1H), 1.46 – 1.41 (m, 1H), 1.32 – 1.28 (m, 1H), 1.22 (d, J = 6.9 Hz, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 167.3, 150.1, 143.3, 138.6 (q, J = 33.7 Hz), 136.9, 129.6, 127.0, 122.8 (q, J = 273.2 Hz), 117.2, 117.2, 116.9, 116.9, 43.0, 41.4, 33.4, 27.4, 21.4, 20.6; ¹⁹F NMR (565 MHz, Chloroform-d) δ -64.74; IR (ATR) v_{max} 2929, 1599, 1411, 1324, 1133, 664, 549 cm⁻¹; HRMS (ESI) Calcd for C₁₈H₂₁F₃N₂O₂S: [M+H]⁺ = 387.1349. Found: 387.1350.

N-(4-(4-Chloropyridin-2-yl)pentyl)-4-methylbenzenesulfonamide (4d). Reaction of N-fluoro-4-methyl-N-pentylbenzenesulfonamide 1a (25.9 mg, 0.1 mmol) with the N-methoxypyridinium tetrafluoroborate 2e (46.2 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution,

 $R_{\rm f}$ = 0.2 in 3:1 v/v petroleum ether/ethyl acetate) gave compound **4d** (25.2 mg, 71%) as a lightyellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.31 (d, *J* = 5.3 Hz, 1H), 7.64 (d, *J* = 8.2 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.04 – 7.01 (m, 2H), 5.12 (t, *J* = 6.1 Hz, 1H), 2.83 – 2.80 (m, 2H), 2.72 – 2.68 (m, 1H), 2.33 (s, 3H), 1.64 – 1.59 (m, 1H), 1.50 – 1.45 (m, 1H), 1.38 – 1.34 (m, 1H), 1.26 – 1.21 (m, 1H), 1.12 (d, *J* = 6.9 Hz, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 167.4, 149.9, 144.3, 143.2, 136.9, 129.6, 127.0, 121.9, 121.6, 43.0, 41.1, 33.4, 27.3, 21.4, 20.6; IR (ATR) v_{max} 2927, 2868, 1575, 1467, 1322, 1154, 659, 549 cm⁻¹; HRMS (ESI) Calcd for C₁₇H₂₁ClN₂O₂S: [M+H]⁺ = 353.1085. Found: 353.1076.

N-(4-(4-Acetylpyridin-2-yl)pentyl)-4-methylbenzenesulfonamide (4e). Reaction of *N*-fluoro-4-methyl-*N*-pentylbenzenesulfonamide **1a** (25.9 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2f** (47.8 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.2$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **4e** (18.5 mg, 51%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.61 (d, J = 5.7 Hz, 1H), 7.63 (d, J = 8.3 Hz, 2H), 7.45 (dd, J = 3.0, 1.1 Hz, 2H), 7.20 (d, J = 7.9 Hz, 2H), 4.97 (t, J = 6.1 Hz, 1H), 2.82 (q, J = 6.7 Hz, 3H), 2.54 (s, 3H), 2.34 (s, 3H), 1.69 – 1.65 (m, 1H), 1.54 – 1.50 (m, 1H), 1.40 – 1.35 (m, 1H), 1.27 – 1.24 (m, 1H), 1.17 (d, J = 6.9 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 197.7, 167.2, 150.2, 143.3, 143.2, 136.9, 129.6, 127.0, 119.1, 119.0, 43.0, 41.3, 33.5, 27.4, 26.7, 21.4, 20.8; IR (ATR) v_{max} 2928, 1693, 1406, 1322, 1154, 659, 549 cm⁻¹; HRMS (ESI) Calcd for C₁₉H₂₄N₂O₃S: [M+H]⁺ = 361.1580. Found: 361.1576.

4-Methyl-*N***-(4-(4-methylpyridin-2-yl)pentyl)benzenesulfonamide (4f).** Reaction of *N*-fluoro-4-methyl-*N*-pentylbenzenesulfonamide **1a** (25.9 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2g** (42.2 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_{\rm f} = 0.2$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **4f** (16.5 mg, 50%) as a light-S42

yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 8.34 (d, *J* = 4.9 Hz, 1H), 7.71 (d, *J* = 8.2 Hz, 2H), 7.27 (d, *J* = 8.3 Hz, 2H), 6.93 – 6.90 (m, 2H), 5.38 (t, *J* = 6.0 Hz, 1H), 2.89 (q, *J* = 6.4 Hz, 2H), 2.79 – 2.72 (m, 1H), 2.41 (s, 3H), 2.31 (s, 3H), 1.72 – 1.66 (m, 1H), 1.58 – 1.51 (m, 1H), 1.46 – 1.40 (m, 1H), 1.35 – 1.31 (m, 1H), 1.20 (d, *J* = 6.9 Hz, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 165.3, 148.6, 147.6, 143.0, 137.0, 129.5, 127.0, 122.4, 122.3, 43.1, 40.9, 33.7, 27.3, 21.4, 21.0, 20.9; IR (ATR) ν_{max} 2925, 2866, 1606, 1451, 1323, 1155, 659, 549 cm⁻¹; HRMS (ESI) Calcd for C₁₈H₂₄N₂O₂S: [M+H]⁺ = 333.1631. Found: 333.1640.

N-(4-(4-Methoxypyridin-2-yl)pentyl)-4-methylbenzenesulfonamide (4g). Reaction of *N*-fluoro-4-methyl-*N*-pentylbenzenesulfonamide **1a** (25.9 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2h** (45.4 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.2$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **4g** (19.7 mg, 57%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.32 (d, J = 5.8 Hz, 1H), 7.70 (d, J = 8.3 Hz, 2H), 7.27 – 7.25 (m, 2H), 6.64 (dd, J = 5.7, 2.5 Hz, 1H), 6.60 (d, J = 2.5 Hz, 1H), 5.18 (s, 1H), 3.83 (s, 3H), 2.90 – 2.88 (m, 2H), 2.77 – 2.73 (m, 1H), 2.40 (s, 3H), 1.72 – 1.67 (m, 1H), 1.55 – 1.51 (m, 1H), 1.46 – 1.41 (m, 1H), 1.34 – 1.31 (m, 1H), 1.20 (d, J = 6.9 Hz, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 167.2, 166.2, 150.2, 143.1, 137.1, 129.6, 127.0, 107.7, 107.4, 55.0, 43.1, 41.1, 33.7, 27.3, 21.5, 20.9; IR (ATR) v_{max} 2923, 2853, 1597, 1459, 1305, 1155, 759, 550 cm⁻¹; HRMS (ESI) Calcd for C₁₈H₂₄N₂O₃S: [M+H]⁺ = 349.1580. Found: 349.1573.

4-Methyl-*N***-(4-(4-phenylpyridin-2-yl)pentyl)benzenesulfonamide (4h).** Reaction of *N*-fluoro-4-methyl-*N*-pentylbenzenesulfonamide **1a** (25.9 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2i** (54.6 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_{\rm f}$ = 0.3 in 2:1 v/v petroleum ether/ethyl acetate) gave compound 4g (28.0 mg, 71%) as a light-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.54 (d, *J* = 5.2 Hz, 1H), 7.70 (d, *J* = 8.2 Hz, 2H),

7.61 (d, J = 7.0 Hz, 2H), 7.48 (t, J = 7.4 Hz, 2H), 7.43 (t, J = 7.3 Hz, 1H), 7.31 – 7.29 (m, 2H), 7.24 (d, J = 8.0 Hz, 2H), 5.17 (t, J = 6.0 Hz, 1H), 2.93 – 2.87 (m, 3H), 2.38 (s, 3H), 1.79 – 1.75 (m, 1H), 1.63 – 1.58 (m, 1H), 1.50 – 1.45 (m, 1H), 1.37 – 1.34 (m, 1H), 1.26 (d, J = 6.9 Hz, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 166.1, 149.4, 149.0, 143.1, 138.3, 137.0, 129.6, 129.0, 128.9, 127.0, 127.0, 119.6, 119.4, 43.1, 41.3, 33.7, 27.4, 21.4, 21.0; IR (ATR) v_{max} 2927, 2865, 1598, 1450, 1323, 1155, 762, 550 cm⁻¹; HRMS (ESI) Calcd for C₂₃H₂₆N₂O₂S: [M+H]⁺ = 395.1788. Found: 395.1781.

N-(4-(6-Chloropyridin-2-yl)pentyl)-4-methylbenzenesulfonamide (4i). Reaction of *N*-fluoro-4-methyl-*N*-pentylbenzenesulfonamide **1a** (25.9 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2j** (46.2 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (4:1 ~ 2:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.2$ in 5:1 v/v petroleum ether/ethyl acetate) gave compound as a light-yellow oil (23.9 mg, 68% yield; C6 (4i, 13.6 mg): C4 (4i', 10.3 mg) = 1.3 : 1). ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 8.2 Hz, 2H), 7.54 (t, *J* = 7.7 Hz, 1H), 7.28 (d, *J* = 8.1 Hz, 2H), 7.13 (d, *J* = 7.8 Hz, 1H), 7.00 (d, *J* = 7.6 Hz, 1H), 4.55 (t, *J* = 6.2 Hz, 1H), 2.90 (q, *J* = 6.8 Hz, 2H), 2.81 – 2.76 (m, 1H), 2.42 (s, 3H), 1.73 – 1.69 (m, 1H), 1.56 – 1.53 (m, 1H), 1.47 – 1.43 (m, 1H), 1.34 – 1.32 (m, 1H), 1.21 (d, *J* = 6.9 Hz, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 166.9, 150.8, 143.3, 139.0, 136.9, 129.7, 127.1, 121.7, 119.9, 43.1, 41.1, 33.5, 27.5, 21.5, 20.6; IR (ATR) v_{max} 2924, 1585, 1436, 1323, 1156, 1093, 663, 551 cm⁻¹; HRMS (ESI) Calcd for C₁₇H₂₁ClN₂O₂S: [M+H]⁺ = 353.1085. Found: 353.1081.

N-(4-(2-Chloropyridin-4-yl)pentyl)-4-methylbenzenesulfonamide (4i'). Reaction of *N*-fluoro-4-methyl-*N*-pentylbenzenesulfonamide 1a (25.9 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate 2j (46.2 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (4:1 ~ 2:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.1$ in 5:1 v/v petroleum ether/ethyl acetate) gave compound as a light-yellow oil

(23.9 mg, 68% yield; C6 (**4i**, 13.6 mg): C4 (**4i'**, 10.3 mg) = 1.3 : 1). ¹H NMR (500 MHz, CDCl₃) δ 8.25 (d, J = 5.1 Hz, 1H), 7.70 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.07 (s, 1H), 6.97 (d, J = 6.4 Hz, 1H), 4.45 (t, J = 6.4 Hz, 1H), 2.91 (q, J = 6.8 Hz, 2H), 2.62 (q, J = 7.0 Hz, 1H), 2.42 (s, 3H), 1.57 – 1.54 (m, 2H), 1.43 – 1.39 (m, 1H), 1.32 – 1.29 (m, 1H), 1.20 (d, J = 6.9 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 159.3, 151.7, 149.7, 143.5, 136.9, 129.7, 127.0, 122.8, 121.2, 43.0, 38.9, 34.1, 27.5, 21.5, 21.2; IR (ATR) v_{max} 2922, 1593, 1458, 1322, 1155, 1089, 661, 550 cm⁻¹; HRMS (ESI) Calcd for C₁₇H₂₁ClN₂O₂S: [M+H]⁺ = 353.1085. Found: 353.1080.

4-Methyl-*N*-(**4**-(**6-methylpyridin-2-yl)pentyl)benzenesulfonamide** (**4j**). Reaction of *N*-fluoro-4-methyl-*N*-pentylbenzenesulfonamide **1a** (25.9 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2k** (42.2 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 ~ 1:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.3$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound as a light-yellow oil (20.9 mg, 63% yield; C6 (**4j**, 15.8 mg): C4 (**4j'**, 5.1 mg) = 3.1 : 1). ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, J = 8.2 Hz, 2H), 7.40 (t, J = 7.7 Hz, 1H), 7.21 – 7.19 (m, 2H), 6.88 (d, J = 7.6 Hz, 1H), 6.81 (d, J = 7.7 Hz, 1H), 5.28 (d, J = 5.1 Hz, 1H), 2.87 – 2.80 (m, 2H), 2.72 – 2.68 (m, 1H), 2.45 (s, 3H), 2.34 (s, 3H), 1.62 – 1.59 (m, 1H), 1.48 – 1.43 (m, 1H), 1.35 – 1.27 (m, 2H), 1.12 (d, J = 7.0 Hz, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 165.0, 157.5, 143.1, 137.1, 136.7, 129.5, 127.0, 120.7, 117.8, 43.1, 40.9, 34.1, 27.0, 24.4, 21.4, 20.9; IR (ATR) v_{max} 2925, 2866, 1593, 1453, 1322, 1154, 1092, 660, 549 cm⁻¹; HRMS (ESI) Calcd for C₁₈H₂₄N₂O₂S: [M+H]⁺ = 333.1631. Found: 333.1643.

4-Methyl-*N***-(4-(2-methylpyridin-4-yl)pentyl)benzenesulfonamide (4j').** Reaction of *N*-fluoro-4-methyl-*N*-pentylbenzenesulfonamide **1a** (25.9 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2k** (42.2 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 ~ 1:1 v/v petroleum ether/ethyl acetate

elution, $R_f = 0.1$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound as a light-yellow oil (20.9 mg, 63% yield; C6 (**4j**, 15.8 mg): C4 (**4j'**, 5.1 mg) = 3.1 : 1). ¹H NMR (500 MHz, CDCl₃) 8.26 (d, J = 5.1 Hz, 1H), 7.63 (d, J = 8.1 Hz, 2H), 7.21 (d, J = 9.2 Hz, 2H), 6.82 (s, 1H), 6.76 (d, J = 5.1 Hz, 1H), 4.73 (t, J = 6.4 Hz, 1H), 2.82 (q, J = 6.7 Hz, 2H), 2.49 (q, J = 7.0 Hz, 1H), 2.43 (s, 3H), 2.35 (s, 3H), 1.47 (q, J = 7.7 Hz, 2H), 1.35 – 1.31 (m, 1H), 1.25 – 1.20 (m, 1H), 1.10 (d, J = 6.9 Hz, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 158.3, 156.1, 149.0, 143.3, 137.0, 129.6, 127.0, 122.0, 119.5, 43.0, 38.9, 34.2, 27.6, 24.3, 21.5, 21.4; IR (ATR) v_{max} 2923, 1604, 1454, 1322, 1154, 1092, 659, 550 cm⁻¹; HRMS (ESI) Calcd for C₁₈H₂₄N₂O₂S: [M+H]⁺ = 333.1631. Found: 333.1639.

4-Methyl-*N*-(**4**-(**6**-phenylpyridin-2-yl)pentyl)benzenesulfonamide (**4**k). Reaction of *N*-fluoro-4-methyl-*N*-pentylbenzenesulfonamide **1a** (25.9 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate **2l** (54.6 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (5:1 ~ 3:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.6$ in 3:1 v/v petroleum ether/ethyl acetate) gave compound as a light-yellow oil (27.7 mg, 70% yield; C6 (**4k**, 9.2 mg): C4 (**4k'**, 18.5 mg) = 1 : 2). ¹H NMR (500 MHz, CDCl₃) δ 8.01 (dd, J = 8.3, 1.3 Hz, 2H), 7.68 (d, J = 8.3 Hz, 2H), 7.64 (d, J = 7.7 Hz, 1H), 7.54 (d, J = 8.6 Hz, 1H), 7.47 (t, J = 7.4 Hz, 2H), 7.41 (t, J = 7.3 Hz, 1H), 7.24 (d, J = 7.9 Hz, 2H), 7.02 (d, J = 8.4 Hz, 1H), 4.78 (t, J = 6.1 Hz, 1H), 2.94 – 2.90 (m, 3H), 2.39 (s, 3H), 1.83 – 1.79 (m, 1H), 1.64 – 1.59 (m, 1H), 1.48 – 1.44 (m, 1H), 1.40 – 1.37 (m, 1H), 1.28 (d, J = 6.9 Hz, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 165.4, 156.4, 143.1, 139.6, 137.0, 137.0, 129.6, 128.7, 128.6, 127.0, 126.9, 119.8, 117.8, 43.2, 41.3, 33.9, 27.4, 21.4, 20.9; IR (ATR) v_{max} 2924, 2854, 1570, 1445, 1323, 1155, 662, 551 cm⁻¹; HRMS (ESI) Calcd for C₂₃H₂₆N₂O₂S: [M+H]⁺ = 395.1788. Found: 395.1791.

4-Methyl-N-(4-(2-phenylpyridin-4-yl)pentyl)benzenesulfonamide (4k'). Reaction of N-fluoro-4-methyl-N-pentylbenzenesulfonamide 1a (25.9 mg, 0.1 mmol) with the N-

methoxypyridinium tetrafluoroborate **21** (54.6 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (5:1 ~ 3:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.3$ in 3:1 v/v petroleum ether/ethyl acetate) gave compound as a light-yellow oil (27.7 mg, 70% yield; C6 (**4k**, 9.2 mg): C4 (**4k'**, 18.5 mg) = 1 : 2). ¹H NMR (500 MHz, CDCl₃) δ 8.57 (d, J = 5.1 Hz, 1H), 7.95 (d, J = 8.6 Hz, 2H), 7.69 (d, J = 8.3 Hz, 2H), 7.49 – 7.46 (m, 3H), 7.41 (t, J = 7.3 Hz, 1H), 7.26 (d, J = 2.2 Hz, 2H), 6.99 (d, J = 6.6 Hz, 1H), 4.42 (t, J = 6.2 Hz, 1H), 2.91 (q, J = 6.8 Hz, 2H), 2.69 (q, J = 7.1 Hz, 1H), 2.39 (s, 3H), 1.63 – 1.59 (m, 2H), 1.46 – 1.42 (m, 1H), 1.35 – 1.31 (m, 1H), 1.25 (d, J = 6.9 Hz, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 157.6, 156.6, 149.7, 143.4, 139.4, 136.9, 129.7, 128.9, 128.7, 127.0, 127.0, 120.9, 119.5, 43.1, 39.3, 34.3, 27.6, 21.5, 21.5; IR (ATR) ν_{max} 2921, 2852, 1599, 1447, 1323, 1155, 661, 551 cm⁻¹; HRMS (ESI) Calcd for C₂₃H₂₆N₂O₂S: [M+H]⁺ = 395.1788. Found: 395.1795.

N-(4-(4-Chloro-5,6-dimethylpyridin-2-yl)pentyl)-4-methylbenzenesulfonamide (4). Reaction of *N*-fluoro-4-methyl-*N*-pentylbenzenesulfonamide 1a (25.9 mg, 0.1 mmol) with the *N*-methoxypyridinium tetrafluoroborate 2m (51.8 mg, 0.2 mmol) followed by standard workup and flash column chromatography on silica gel (3:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.2$ in 5:1 v/v petroleum ether/ethyl acetate) gave compound 4m (23.7 mg, 62%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, J = 8.3 Hz, 2H), 7.20 (d, J = 8.3Hz, 2H), 6.86 (s, 1H), 5.24 (t, J = 6.0 Hz, 1H), 2.89 – 2.79 (m, 2H), 2.67 – 2.63 (m, 1H), 2.45 (s, 3H), 2.34 (s, 3H), 2.23 (s, 3H), 1.60 – 1.55 (m, 1H), 1.47 – 1.42 (m, 1H), 1.36 – 1.28 (m, 2H), 1.09 (d, J = 6.9 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 162.8, 157.8, 144.5, 143.1, 137.0, 129.6, 127.2, 127.0, 119.4, 43.0, 40.3, 34.0, 27.0, 23.4, 21.5, 20.7, 15.2; IR (ATR) v_{max} 2924, 2856, 1555, 1453, 1322, 1156, 660, 549 cm⁻¹; HRMS (ESI) Calcd for C₁₉H₂₅ClN₂O₂S: [M+H]⁺ = 381.1398. Found: 381.1390.

N-(4-(2,6-Dimethylpyridin-4-yl)pentyl)-4-methylbenzenesulfonamide (4m). Reaction of *N*-fluoro-4-methyl-*N*-pentylbenzenesulfonamide 1a (25.9 mg, 0.1 mmol) with the *N*-547

methoxypyridinium tetrafluoroborate **2n** (45.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.2$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **4m** (22.6 mg, 65%) as a lightyellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.70 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 7.9 Hz, 2H), 6.69 (s, 2H), 4.67 (t, J = 5.9 Hz, 1H), 2.88 (q, J = 6.8 Hz, 2H), 2.52 – 2.49 (m, 1H), 2.46 (s, 6H), 2.41 (s, 3H), 1.52 (q, J = 8.0, 7.6 Hz, 2H), 1.40 – 1.37 (m, 1H), 1.30 – 1.27 (m, 1H), 1.15 (d, J = 6.9 Hz, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 157.6, 156.4, 143.4, 136.9, 129.6, 127.0, 119.0, 43.1, 38.9, 34.2, 27.6, 24.3, 21.5, 21.4; IR (ATR) v_{max} 2924, 2855, 1608, 1453, 1324, 1157, 661, 551 cm⁻¹; HRMS (ESI) Calcd for C₁₉H₂₆N₂O₂S: [M+H]⁺ = 347.1788. Found: 347.1781.

4-Methyl-*N*-(**4**-(**quinolin-2-yl)pentyl)benzenesulfonamide** (**4n**). Reaction of *N*-fluoro-4methyl-*N*-pentylbenzenesulfonamide **1a** (25.9 mg, 0.1 mmol) with the *N*-methoxyquinolinium tetrafluoroborate **2o** (49.4 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (4:1 ~ 2:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.5$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound as a light-yellow oil (22.9 mg, 62% yield; C2 (**4n**, 13.7 mg): C4 (**4n'**, 9.2 mg) = 1.5 : 1). ¹H NMR (600 MHz, CDCl₃) δ 8.08 (dd, *J* = 12.1, 8.5 Hz, 2H), 7.77 (d, *J* = 8.1 Hz, 1H), 7.70 – 7.67 (m, 3H), 7.50 (t, *J* = 7.9 Hz, 1H), 7.24 (d, *J* = 8.5 Hz, 1H), 7.20 (d, *J* = 8.0 Hz, 2H), 5.44 (t, *J* = 5.8 Hz, 1H), 3.03 – 3.00 (m, 1H), 2.97 – 2.94 (m, 1H), 2.90 – 2.87 (m, 1H), 2.36 (s, 3H), 1.85 – 1.81 (m, 1H), 1.66 – 1.62 (m, 1H), 1.47 – 1.43 (m, 1H), 1.37 – 1.34 (m, 1H), 1.30 (d, *J* = 7.0 Hz, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 165.9, 147.5, 143.0, 137.0, 136.9, 129.5, 129.5, 128.8, 127.4, 127.0, 126.9, 125.9, 119.6, 43.1, 41.8, 33.7, 27.1, 21.4, 21.0; IR (ATR) v_{max} 2923, 2854, 1599, 1454, 1321, 1154, 661, 550 cm⁻¹; HRMS (ESI) Calcd for C₂₁H₂₄N₂O₂S: [M+H]⁺ = 369.1631. Found: 369.1626.

4-Methyl-*N*-(**4**-(**quinolin-4-yl**)**pentyl**)**benzenesulfonamide** (**4n**'). Reaction of *N*-fluoro-4methyl-*N*-pentylbenzenesulfonamide **1a** (25.9 mg, 0.1 mmol) with the *N*-methoxyquinolinium tetrafluoroborate **2o** (49.4 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (4:1 ~ 2:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.2$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound as a light-yellow oil (22.9 mg, 62% yield; C2 (**4n**, 13.7 mg): C4 (**4n'**, 9.2 mg) = 1.5 : 1). ¹H NMR (600 MHz, CDCl₃) δ 8.80 (d, *J* = 4.6 Hz, 1H), 8.11 (d, *J* = 8.1 Hz, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.71 – 7.67 (m, 3H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 4.6 Hz, 1H), 4.61 (t, *J* = 6.3 Hz, 1H), 3.55 (q, *J* = 7.0 Hz, 1H), 2.92 (q, *J* = 6.7 Hz, 2H), 2.39 (s, 3H), 1.80 – 1.76 (m, 1H), 1.72 – 1.69 (m, 1H), 1.49 – 1.45 (m, 1H), 1.42 – 1.39 (m, 1H), 1.32 (d, *J* = 6.9 Hz, 3H); ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 152.9, 150.2, 148.3, 143.4, 136.9, 130.3, 129.7, 129.0, 127.1, 127.0, 126.4, 122.8, 117.5, 43.1, 34.0, 32.9, 27.6, 21.5, 21.3; IR (ATR) v_{max}2922, 2853, 1589, 1457, 1323, 1155, 762, 550 cm⁻¹; HRMS (ESI) Calcd for C₂₁H₂₄N₂O₂S: [M+H]⁺ = 369.1631. Found: 369.1621.

4-Methyl-*N*-(**4**-(**4-methylquinolin-2-yl)pentyl)benzenesulfonamide (40).** Reaction of *N*-fluoro-4-methyl-*N*-pentylbenzenesulfonamide **1a** (25.9 mg, 0.1 mmol) with the *N*-methoxyquinolinium tetrafluoroborate **2p** (52.2 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.3$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **4o** (25.7 mg, 67%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.13 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.3 Hz, 1H), 7.71 – 7.67 (m, 3H), 7.53 (t, J = 7.6 Hz, 1H), 7.20 (d, J = 8.0 Hz, 2H), 7.10 (s, 1H), 5.60 (t, J = 6.0 Hz, 1H), 3.03 – 2.94 (m, 2H), 2.91 – 2.86 (m, 1H), 2.68 (s, 3H), 2.36 (s, 3H), 1.85 – 1.80 (m, 1H), 1.67 – 1.61 (m, 1H), 1.48 – 1.44 (m, 1H), 1.39 – 1.35 (m, 1H), 1.29 (d, J = 7.0 Hz, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 165.5, 146.8, 145.3, 143.0, 137.0, 129.5, 129.4, 129.0, 127.0, 125.8, 123.6, 120.2, 43.0, 41.4, 33.7, 27.0, 21.4, 21.0, 18.9; IR (ATR) v_{max} 2925, 2855, 1602, 1450, 1323, 1157, 761, 551 cm⁻¹; HRMS (ESI) Calcd for C₂₂H₂₆N₂O₂S: [M+H]⁺ = 383.1788. Found: 383.1795.

N-(4-(4-Methoxyquinolin-2-yl)pentyl)-4-methylbenzenesulfonamide (4p). Reaction of *N*-fluoro-4-methyl-*N*-pentylbenzenesulfonamide **1a** (25.9 mg, 0.1 mmol) with the *N*-methoxyquinolinium tetrafluoroborate **2q** (55.4 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.3$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **4p** (22.0 mg, 55%) as a light-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.14 (d, *J* = 9.3 Hz, 1H), 8.03 (d, *J* = 8.2 Hz, 1H), 7.68 – 7.66 (m, 3H), 7.48 – 7.43 (m, 1H), 7.18 (d, *J* = 7.9 Hz, 2H), 6.57 (s, 1H), 5.71 (t, *J* = 5.9 Hz, 1H), 4.03 (s, 3H), 2.99 – 2.95 (m, 2H), 2.90 – 2.86 (m, 1H), 2.36 (s, 3H), 1.86 – 1.82 (m, 1H), 1.66 – 1.62 (m, 1H), 1.48 – 1.44 (m, 1H), 1.40 – 1.36 (m, 1H), 1.29 (d, *J* = 7.0 Hz, 3H); ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 167.2, 162.9, 148.16, 143.0, 137.0, 129.9, 129.5, 128.2, 127.0, 125.1, 121.6, 120.2, 98.0, 55.6, 43.0, 42.2, 33.8, 27.0, 21.4, 21.1; IR (ATR) v_{max} 2923, 2853, 1596, 1457, 1322, 1157, 662, 551 cm⁻¹; HRMS (ESI) Calcd for C₂₂H₂₆N₂O₃S: [M+H]⁺ = 399.1737. Found: 399.1730.

N-(4-(4-Bromoquinolin-2-yl)pentyl)-4-methylbenzenesulfonamide (4q). Reaction of *N*-fluoro-4-methyl-*N*-pentylbenzenesulfonamide **1a** (25.9 mg, 0.1 mmol) with the *N*-methoxyquinolinium tetrafluoroborate **2r** (64.8 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (3:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.3$ in 3:1 v/v petroleum ether/ethyl acetate) gave compound **4q** (22.6 mg, 51%) as a light-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.12 (d, *J* = 9.3 Hz, 1H), 8.05 (d, *J* = 8.4 Hz, 1H), 7.73 (t, *J* = 8.3 Hz, 1H), 7.67 (d, *J* = 8.3 Hz, 2H), 7.58 (t, *J* = 8.2 Hz, 1H), 7.52 (s, 1H), 7.20 (d, *J* = 7.9 Hz, 2H), 5.31 (t, *J* = 5.9 Hz, 1H), 2.97 – 2.94 (m, 2H), 2.91 – 2.88 (m, 1H), 2.36 (s, 3H), 1.83 – 1.79 (m, 1H), 1.66 – 1.61 (m, 1H), 1.48 – 1.43 (m, 1H), 1.38 – 1.34 (m, 1H), 1.28 (d, *J* = 7.0 Hz, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 165.9, 148.2, 143.1, 136.9, 134.5, 130.4, 129.5, 129.3, 127.1, 127.0, 126.5, 126.4, 123.7, 43.0, 41.6, 33.4, 27.1, 21.4, 20.8; IR

(ATR) v_{max} 2924, 1584, 1491, 1322, 1155, 1092, 761, 549 cm⁻¹; HRMS (ESI) Calcd for $C_{21}H_{23}BrN_2O_2S$: $[M+H]^+ = 447.0736$. Found: 447.0730.

N-(4-(4-Chloroquinolin-2-yl)pentyl)-4-methylbenzenesulfonamide (4r). Reaction of *N*-fluoro-4-methyl-*N*-pentylbenzenesulfonamide **1a** (25.9 mg, 0.1 mmol) with the *N*-methoxyquinolinium tetrafluoroborate **2s** (56.2 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (3:1 v/v petroleum ether/ethyl acetate elution, $R_{\rm f}$ = 0.3 in 3:1 v/v petroleum ether/ethyl acetate) gave compound **4r** (21.4 mg, 53%) as a light-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, *J* = 9.3 Hz, 1H), 8.07 (d, *J* = 8.4 Hz, 1H), 7.73 (t, *J* = 8.4 Hz, 1H), 7.68 (d, *J* = 8.3 Hz, 2H), 7.58 (t, *J* = 8.2 Hz, 1H), 7.31 (s, 1H), 7.19 (d, *J* = 7.9 Hz, 2H), 5.39 (t, *J* = 5.9 Hz, 1H), 2.97 – 2.94 (m, 2H), 2.91 – 2.87 (m, 1H), 2.35 (s, 3H), 1.83 – 1.78 (m, 1H), 1.65 – 1.61 (m, 1H), 1.47 – 1.42 (m, 1H), 1.37 – 1.34 (m, 1H), 1.28 (d, *J* = 7.0 Hz, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 166.0, 148.3, 143.1, 142.9, 136.9, 130.4, 129.5, 129.2, 127.0, 126.8, 125.0, 123.8, 119.8, 43.0, 41.8, 33.4, 27.1, 21.4, 20.8; IR (ATR) v_{max} 2926, 1589, 1494, 1322, 1155, 1092, 762, 549 cm⁻¹; HRMS (ESI) Calcd for C₂₁H₂₃ClN₂O₂S: [M+H]⁺ = 403.1242. Found: 403.1236.

N-(4-(4-acetylquinolin-2-yl)pentyl)-4-methylbenzenesulfonamide (4s). Reaction of *N*-fluoro-4-methyl-*N*-pentylbenzenesulfonamide 1a (25.9 mg, 0.1 mmol) with the *N*-methoxyquinolinium tetrafluoroborate 2t (57.8 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (3:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.4$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound 4r (20.6 mg, 50%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.34 (d, J = 9.4 Hz, 1H), 8.11 (d, J = 8.5 Hz, 1H), 7.73 (t, J = 8.4 Hz, 1H), 7.66 (d, J = 8.3 Hz, 2H), 7.57 (t, J = 8.3 Hz, 1H), 7.43 (s, 1H), 7.20 (d, J = 8.0 Hz, 2H), 5.15 (t, J = 5.5 Hz, 1H), 3.09 – 3.04 (m, 1H), 2.95 – 2.89 (m, 2H), 2.73 (s, 3H), 2.36 (s, 3H), 1.90 – 1.87 (m, 1H), 1.71 – 1.66 (m, 1H), 1.51 – 1.47 (m, 1H), 1.41 – 1.37 st

(m, 1H), 1.33 (d, J = 7.0 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 201.7, 165.4, 148.6, 143.8, 143.2, 136.9, 129.9, 129.6, 129.5, 127.5, 127.0, 125.2, 122.3, 118.6, 43.0, 41.9, 33.4, 30.2, 27.2, 21.4, 20.9; IR (ATR) v_{max} 2925, 1690, 1594, 1454, 1323, 1155, 763, 549 cm⁻¹; HRMS (ESI) Calcd for C₂₃H₂₆N₂O₃S: [M+H]⁺ = 411.1737. Found: 411.1738.

4-Methyl-*N*-(**4**-(**2-methylquinolin-4-yl)pentyl)benzenesulfonamide (4t).** Reaction of *N*-fluoro-4-methyl-*N*-pentylbenzenesulfonamide **1a** (25.9 mg, 0.1 mmol) with the *N*-methoxyquinolinium tetrafluoroborate **2u** (52.2 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (2:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.2$ in 2:1 v/v petroleum ether/ethyl acetate) gave compound **4r** (27.0 mg, 71%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, J = 8.0 Hz, 1H), 7.95 (d, J = 8.3 Hz, 1H), 7.68 – 7.66 (m, 2H), 7.63 (d, J = 8.3 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.22 (d, J = 8.0 Hz, 2H), 7.09 (s, 1H), 4.76 (t, J = 6.3 Hz, 1H), 3.48 (q, J = 7.0 Hz, 1H), 2.91 (q, J = 6.8 Hz, 2H), 2.69 (s, 3H), 2.38 (s, 3H), 1.77 – 1.73 (m, 1H), 1.70 – 1.66 (m, 1H), 1.49 – 1.46 (m, 1H), 1.43 – 1.39 (m, 1H), 1.30 (d, J = 6.9 Hz, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 158.6, 152.9, 148.0, 143.4, 136.8, 129.6, 129.4, 129.0, 127.0, 125.5, 125.3, 122.6, 118.4, 43.1, 34.0, 32.8, 27.6, 25.4, 21.4, 21.2; IR (ATR) v_{max} 2921, 2852, 1599, 1458, 1325, 1157, 762, 551 cm⁻¹; HRMS (ESI) Calcd for C₂₂H₂₆N₂O₂S: [M+H]⁺ = 383.1788. Found: 383.1785.

N-(4-chloropentyl)-4-methylbenzenesulfonamide (7). Reaction of *N*-chlorosulfonimide 6 (27.5 mg, 0.1 mmol) with the *N*-methoxyheteroarenium salt **2a** (51.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (4:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.3$ in 4:1 v/v petroleum ether/ethyl acetate) gave compound 7 (17.5 mg, 63%) as a colorless oil. The spectral data obtained was in accord with the assigned structure and matched the reported in the literature.^[7] ¹H NMR (600 MHz, CDCl₃) δ 7.74 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 7.5 Hz, 2H), 4.63 (t, *J* = 6.3 Hz, 1H), 3.97 – 3.95 (m, 1H), 2.96 (q, *J* = 6.5 Hz, 2H), 2.43 (s, 3H), 1.72 – 1.61 (m, 4H), 1.46 (d, *J* = 6.5 Hz, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 143.5, 136.8, 129.7, 127.1, 58.0, 42.6, 37.0, 26.7, 25.3, 21.5. (Known

compounds, HRMS data detailed in Ref.)

Methyl 2-(2-methyl-1-tosylpyrrolidin-2-yl)isonicotinate (9). Reaction of pyridine-based product **3a** (37.6 mg, 0.1 mmol) with the relevant *N*-iodosuccinimide (45.0 mg, 0.2 mmol) followed by standard work-up and flash column chromatography on silica gel (3:1 v/v petroleum ether/ethyl acetate elution, $R_f = 0.5$ in 2:1 v/v petroleum ether/ethyl acetate) gave the unsymmetrically linked *bis*-heterocycle **9** (17.3 mg, 46%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 8.60 (d, J = 5.0 Hz, 1H), 8.17 (s, 1H), 7.72 (d, J = 5.9 Hz, 1H), 7.56 (d, J = 8.3 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 3.98 (s, 3H), 3.75 – 3.70 (m, 1H), 3.63 – 3.58 (m, 1H), 2.41 (s, 3H), 2.40 – 2.36 (m, 1H), 2.03 – 1.99 (m, 1H), 1.96 (s, 3H), 1.93 – 1.88 (m, 2H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 165.7, 165.7, 149.0, 142.8, 138.0, 137.9, 129.3, 127.2, 121.1, 120.3, 70.5, 52.8, 50.0, 44.1, 25.3, 22.9, 21.5; IR (ATR) v_{max} 2948, 2363, 1730, 1445, 1337, 1152, 1001, 664 cm⁻¹; HRMS (ESI) Calcd for C₁₉H₂₂N₂O₄S: [M+H]⁺ = 375.1373. Found: 375.1362.

IX. X-ray Crystallographic Data

All single-crystal diffraction data collection were performed on a Rigaku XtaLAB Pro diffractometer using CuK α ($\lambda = 1.5418$ Å) radiation. The initial structure elucidation and the subsequent refinement used the same method as the literature.^[6] Briefly, the structures were solved by direct method using ShelXT-2014. In the structure refinements, non-H atoms were refined anisotropically. H-Atoms bonded to carbons were placed on geometrically ideal positions using the riding model. H-Atoms bonded to oxygen were located using the difference Fourier map and were included in the calculation of structure factors with isotropic temperature factors. Crystallographic data for the molecular structures of PSCC@3a, PSCC@3r, PSCC@3ab, PSCC@4c, PSCC@4m, PSCC@4o and PSCC@4t reported in this paper have been deposited with the Cambridge Crystallographic Data Centre, can be accessed via www.ccdc.cam.ac.uk/data request/cif.

MOF EF @ Guest

Items	MOF EF⊃ 3a-BTHH	MOF EF⊃ 3r-BTHH	MOF EF⊃ 3ab-BTHH	MOF EF⊃ 4c-BTHH	MOF EF⊃ 4m-BTHH	MOF EF⊃ 40-BTHH	MOF EF⊃ 4t-BTHH
Asymmetric Formula	CuIC ₂₃ H ₁₄ N ₂ ⊃	CuIC ₂₃ H ₁₄ N ₂ ⊃	CuIC ₂₃ H ₁₄ N ₂ ⊃	CuIC ₂₃ H ₁₄ N ₂ ⊃	$CuIC_{23}H_{14}N_2 \supset$	CuIC ₂₃ H ₁₄ N ₂ ⊃	CuIC ₂₃ H ₁₄ N ₂ ⊃
	$0.5^{*}(C_{19}H_{24}N_{2}O_{4}S)$	$\begin{array}{c} 0.5^*(C_{18}H_{22}N_2O_4\\S) \end{array}$	$\begin{array}{c} 0.5^*(C_{21}H_{26}N_2O_4\\S) \end{array}$	$\begin{array}{c} 0.5*(C_{18}H_{21}F_{3}N_{2}\\ O_{2}S) \end{array}$	$0.25^{*}(C_{19}H_{26}N_{2}O_{3}S)$	$\begin{array}{c} 0.5^*(C_{22}H_{26}N_2O_2\\S) \end{array}$	$\begin{array}{c} 0.5^*(C_{22}H_{26}N_2O_3\\ S) \end{array}$
Mw [g mol ⁻¹]	697.06	690.04	710.08	702.04	599.44	700.08	708.08
System	orthorhombic	orthorhombic	orthorhombic	orthorhombic	orthorhombic	orthorhombic	orthorhombic
Space group	Pccn	Pccn	Pccn	Pccn	Pccn	Pccn	Pccn
a(Å)	19.4830(3)	19.7563(4)	21.1353(3)	19.5675(6)	21.7880(2)	21.7171(6)	21.6760(4)
b(Å)	21.8147(3)	21.3754(5)	19.9080(3)	21.5385(7)	19.38730(10)	19.5864(5)	19.3535(4)
c(Å)	15.0660(2)	15.1394(3)	15.09944(20)	15.1075(4)	15.04640(10)	14.9909(4)	15.1099(3)
α(°)	90	90	90	90	90	90	90
β(°)	90	90	90	90	90	90	90
γ(°)	90	90	90	90	90	90	90
V(Å)	6403.29(16)	6393.4(2)	6353.23(15)	6367.1(3)	6355.76(8)	6376.5(3)	6338.7(2)
Z	4	4	4	4	4	4	4
dcalcd[mg cm-3]	1.434	1.420	1.471	1.452	1.240	1.446	1.455
R _{int}	0.0646	0.1246	0.0342	0.1083	0.1368	0.1142	0.0834
GooF	1.074	1.161	1.063	1.141	1.141	1.100	1.050
Flack	None	None	None	None	None	None	None
Temperatur e (K)	99.97(12)	99.97(13)	99.95(18)	100.01(10)	100.0(3)	99.9(3)	99.98(14)
R1 [I > 2σ(I)]	0.0996	0.1290	0.0608	0.1371	0.0599	0.0973	0.0915
wR2(all data)	0.2869	0.3087	0.1689	0.3486	0.1719	0.2413	0.2394
F(000)	2760	2724	2812.0	2768.0	2348	2776	2776
CCDC No.	2341937	2341936	2341938	2341940	2341941	2341939	2341942

Crystallographic Data for 3a (CCDC : 2341937)

Datablock: ef-hyt-1-bthh

Bond precision:		C-C = 0.0129 A				Vavelength=1.54184
Cell: a=19.4830((3) b=21.8147(3)		c=15.0660(2)		
	alpha=90		beta=90		gamma=90	
Temperature:	100 K					
		Calculat	ed			Reported
Volume		6403.29	(16)			6403.29(16)
Space group		Pccn				Pccn
Hall group		-P 2ab 2	ac			-P 2ab 2ac
Moiety formu	ıla	C45 H2	8 Cu2 I2	N4, C19 H	24 N2 O4 S	C64 H52 Cu2 I2 N6 O4 S
Sum formula		C64 H52	2 Cu2 I2	N6 O4 S		C64 H52 Cu2 I2 N6 O4 S
Mr		1382.08				1382.05
Dx,g cm-3		1.434				1.434
Ζ		4				4
Mu (mm-1)		9.080				9.080
F000		2760.0				2760.0
F000'		2749.48				
h,k,lmax		24,27,18	3			23,27,18
Nref		6543				6347
Tmin,Tmax		0.387,0.	484			0.331,1.000
Tmin'		0.223				
Correction m MULTI-SCA	ethod= # Re N	ported T	Limits: '	Tmin=0.33	1 Tmax=1.000) AbsCorr =
Data complet	70 Theta(max)=)= 74.324		
R(reflections)	5610) w			wR2(re	eflections)= 0.2869(6347)	
S = 1.074		Npa	r=451			

Crystallographic Data for 3r (CCDC : 2341936)

Datablock: ef-hyt-241-bthh

Bond precision:		C-C = 0.0183 A		Wavelength=1.54184	
Cell:	a=19.7563((4)	b=21.3754(5)	c=15.1394(3)	
	alpha=90		beta=90	gamma=90	
Temperature:	: 100 K				
		Calculate	d		Reported
Volume		6393.4(2))		6393.4(2)
Space group		Рссп			Pccn
Hall group		-P 2ab 2a	ıc		-P 2ab 2ac
Moiety form	ula	C45 H28	Cu2 I2 N4, C18 H	22 N2 O4 S	C45 H28 Cu2 I2 N4, C18 H22 N2 O4 S
Sum formula		C63 H50	Cu2 I2 N6 O4 S		C63 H49 Cu2 I2 N6 O4 S
Mr		1368.05			1367.02
Dx,g cm-3		1.421			1.420
Ζ		4			4
Mu (mm-1)		9.088			9.088
F000		2728.0			2724.0
F000'		2717.42			
h,k,lmax		24,26,18			24,25,18
Nref		6252			6199
Tmin,Tmax		0.386,0.4	41		0.113,1.000
Tmin'		0.292			
Correction m MULTI-SCA	ethod= # Re	ported T	Limits: Tmin=0.113	3 Tmax=1.000	AbsCorr =
Data complet	teness= 0.99	2	Theta(max)= 71.579	
R(reflections)= 0.1228(5664)		664)		wR2(ref	flections)= 0.3070(6199)
S = 1.162		Npar	= 456		

Crystallographic Data for 3ab (CCDC : 2341938)

Datablock: ef-hyt-152-bthh-red

Bond precision:		C-C = 0.0064 A		V	Vavelength=1.54184
Cell:	a=21.1353((3)	b=19.9080(3)	c=15.0994(2)	
	alpha=90		beta=90	gamma=90	
Temperature	: 100 K				
		Calcula	ted		Reported
Volume		6353.26	6(16)		6353.23(15)
Space group		Pccn			Pccn
Hall group		-P 2ab 2	lac		-P 2ab 2ac
Moiety form	ula	C45 H2	8 Cu2 I2 N4, C2	1 H26 N2 O4 S	C45 H28 Cu2 I2 N4, C21 H26 N2 O4 S
Sum formula		C66 H5	4 Cu2 I2 N6 O4	S	C66 H53 Cu2 I2 N6 O4 S
Mr		1408.11			1407.08
Dx,g cm-3		1.472			1.471
Ζ		4			4
Mu (mm-1)		9.163			9.163
F000		2816.0			2812.0
F000'		2805.61			
h,k,lmax		26,24,1	8		25,24,18
Nref		6461			6288
Tmin,Tmax		0.240,0	.160		0.260,1.000
Tmin'		0.107			
Correction m MULTI-SCA	ethod= # Re N	ported T	Limits: Tmin=0	0.260 Tmax=1.000) AbsCorr =
Data complet	eness= 0.97	3	Theta(1	max)= 74.082	
R(reflections)= 0.0533(5	410)		wR2(re	eflections)= 0.1685(6288)
S = 1.060		Npa	r = 481		

Crystallographic Data for 4c (CCDC : 2341940)

Datablock: ef-hyt-288-bthh

Bond precision:		C-C = 0.0196 A		А	Wavelength=1.54184	
Cell:	a=19.5675((6)	b=21.53	885(7)	c=15.1075(4)	
	alpha=90		beta=90)	gamma=90	
Temperature:	100 K					
		Calculate	d			Reported
Volume		6367.1(3))			6367.1(3)
Space group		Рссп				Pccn
Hall group		-P 2ab 2a	.c			-P 2ab 2ac
Moiety formu	ıla	C45 H28	Cu2 I2 N	N4, C18 H2	1 F3 N2 O2 S	C45 H28 Cu2 I2 N4, C18 H21 F3 N2 O2 S
Sum formula		C63 H49	Cu2 F3	I2 N6 O2 S		C63 H49 Cu2 F3 I2 N6 O2 S
Mr		1392.04				1392.02
Dx,g cm-3		1.452				1.452
Z		4				4
Mu (mm-1)		9.181				9.181
F000		2768.0				2768.0
F000'		2757.89				
h,k,lmax		23,25,17				23,25,17
Nref		5622				5614
Tmin,Tmax		0.318,0.3	99			0.154,1.000
Tmin'		0.240				
Correction m MULTI-SCA	ethod= # Re N	ported T I	Limits: T	`min=0.154	Tmax=1.000	AbsCorr =
Data complet	eness= 0.99	9	r	Theta(max)	= 66.599	
R(reflections)= 0.1271(4929)		929)			wR2(ref	lections)= 0.3486(5614)
S = 1.141		Npar	= 452			

Crystallographic Data for 4m (CCDC : 2341941)

Datablock: ef-hyt-300-bthh2

Bond precision:		C-C = (0.0068 A	Wavelength=1.54184		
Cell: a=21.7		b=19.3873(1)		c=15.0464(1)	
	alpha=90)	beta=90	gamma=90		
Temperature:	100 K					
		Calculated			Reported	
Volume		6355.76(8))		6355.76(8)	
Space group		Pccn			Pccn	
Hall group		-P 2ab 2ac			-P 2ab 2ac	
Moiety formula	L	2(C45 H28 4(C2 H2.2	8 Cu2 I2 N4), C7 H 5 N0.25), 4(C0.25	I8 N O2 S,	C90 H56 Cu4 I4 N8, C19 H26 N2 O2 S	
Sum formula		C109 H82	Cu4 I4 N10 O2 S		C109 H82 Cu4 I4 N10 O3 S	
Mr		2357.71			2373.66	
Dx,g cm-3		1.232			1.240	
Ζ		2			2	
Mu (mm-1)		8.869			8.878	
F000		2332.0			2348.0	
F000'		2319.56				
h,k,lmax		27,24,18			26,23,18	
Nref		6476			6375	
Tmin,Tmax		0.837,0.97	4			
Tmin'		0.837				
Correction meth	nod= Not	given				
Data completeness= 0.984			Theta(max)	= 74.225		
R(reflections)= 0.0591(6231)				wR2(ref	lections)= 0.1719(6375)	
S = 1.141		Npar=	446			

Crystallographic Data for 4o (CCDC : 2341939)

Datablock: ef-hyt-245-1-bthh

Bond precision:		C-C = (0.0122 A	Wavelength=1.54184		
Cell:	a=21.71′	71(6)	b=19.5864(5)	c=14.9909(4	•)	
	alpha=90)	beta=90	gamma=90		
Temperature:	100 K					
		Calculated			Reported	
Volume		6376.5(3)			6376.5(3)	
Space group		Pccn			Pccn	
Hall group		-P 2ab 2ac			-P 2ab 2ac	
Moiety formula		C45 H28 C	Cu2 I2 N4, C22 H2	6 N2 O2 S	C45 H28 Cu2 I2 N4, C22 H26 N2 O2 S	
Sum formula		C67 H54 C	Cu2 I2 N6 O2 S		C67 H54 Cu2 I2 N6 O2 S	
Mr		1388.12			1388.10	
Dx,g cm-3		1.446			1.446	
Ζ		4			4	
Mu (mm-1)		9.097			9.097	
F000		2776.0			2776.0	
F000'		2765.29				
h,k,lmax		27,24,18			26,24,18	
Nref		6603			6378	
Tmin,Tmax		0.463,0.40	3		0.329,1.000	
Tmin'		0.350				
Correction meth MULTI-SCAN	nod= # Re	eported T L	imits: Tmin=0.329	Tmax=1.000) AbsCorr =	
Data completen	ess= 0.96	6	Theta(max)	= 75.218		
R(reflections)=	0.0909(5	5628)		wR2(ref	flections)= 0.2413(6378)	
S = 1.100		Npar=	462			

Crystallographic Data for 4t (CCDC : 2341942)

Datablock: ef-hyt-305-bthh

Bond precision:		C-C = (0.0092 A	Wavelength=1.54184			
Cell:	a=21.670	60(4)	b=19.3535(4)	c=15.1099(3	3)		
	alpha=90)	beta=90	gamma=90			
Temperature:	100 K						
		Calculated			Reported		
Volume		6338.7(2)			6338.7(2)		
Space group		Pccn			Pccn		
Hall group		-P 2ab 2ac			-P 2ab 2ac		
Moiety formula		C45 H28 C	Cu2 I2 N4, C22 H2	6 N2 O2 S	C45 H28 Cu2 I2 N4, C22 H26 N2 O2 S		
Sum formula		C67 H54 C	Cu2 I2 N6 O2 S		C67 H54 Cu2 I2 N6 O2 S		
Mr		1388.12			1388.10		
Dx,g cm-3		1.455			1.455		
Ζ		4			4		
Mu (mm-1)		9.151			9.151		
F000		2776.0			2776.0		
F000'		2765.29					
h,k,lmax		25,23,17			25,23,17		
Nref		5600			5596		
Tmin,Tmax		0.308,0.40	0		0.130,1.000		
Tmin'		0.220					
Correction method= # Reported T Limits: Tmin=0.130 Tmax=1.000 AbsCorr = MULTI-SCAN							
Data completen	ess= 0.99	9	Theta(max)	= 66.585			
R(reflections) = 0.0793(4)		4775)		wR2(ret	flections)= 0.2295(5596)		
S = 1.065		Npar=	448				

X. References

- [1] H. Zhang, Y. Zhou, P. Tian, C. Jiang, Org. Lett. 2019, 21, 1921-1925.
- [2] Y. Chen, G.-Y. Zhang, C. Guo, P. Lan, M. G. Banwell, Y.-T. He, *Chem. Eur. J.* 2022, 28, e202104627.
- [3] M. A. Cismesia, T. P. Yoon, *Chem. Sci.* **2015**, *6*, 5426-5434.
- [4] H. J. Kuhn, S. E. Braslavsky, R. Schmidt, Pure Appl. Chem. 2004, 76, 2105-2146.
- [5] J. N. Demas, W. D. Bowman, E. F. Zalewski, R. A. Velapoldi, J. Phys. Chem. 1981, 85, 2766-2771.
- [6] S.-Q. Qin, W. Xu, Q.-Q. Wang, R.-Y. Chen, D.-Z. Yang, Y. Lu, W.-C. Ye, R.-W. Jiang, Org. Chem. Front. 2024, 11, 194-204.
- [7] C. Wang, C. Tan, Y. Zhu, G. Liu, Y. Huang, R. Liu, ACS Catal. 2023, 13, 13896-13901.

Appendix I

Copies of Relevant ¹H-, ¹³C{¹H}- and ¹⁹F-NMR Spectra

Methyl-2-(5-((4-methylphenyl)sulfonamido)pentan-2-yl)isonicotinate (3a). 500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

Methyl-2-(5-((4-methoxyphenyl)sulfonamido)pentan-2-yl)isonicotinate (3b). 500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

Methyl-2-(5-((4-(trifluoromethoxy)phenyl)sulfonamido)pentan-2-yl)isonicotinate (3c). 500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

471 MHz ¹⁹F NMR Spectrum (recorded in CDCl₃)

hyt20220531-252.3.fid

-----57.72

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 f1 (ppm)

Methyl-2-(5-((4-(tert-butyl)phenyl)sulfonamido)pentan-2-yl)isonicotinate (3d). 500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

Methyl-2-(5-([1,1'-biphenyl]-4-sulfonamido)pentan-2-yl)isonicotinate (3e). 500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

Methyl-2-(5-((4-bromophenyl)sulfonamido)pentan-2-yl)isonicotinate (3f). 500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

Methyl-2-(5-((4-chlorophenyl)sulfonamido)pentan-2-yl)isonicotinate (3g). 600 MHz ¹H NMR Spectrum (recorded in CDCl₃)

Methyl-2-(5-(phenylsulfonamido)pentan-2-yl)isonicotinate (3h). 600 MHz ¹H NMR Spectrum (recorded in CDCl₃)

Methyl-2-(5-((2-methylphenyl)sulfonamido)pentan-2-yl)isonicotinate (3i). 500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

Methyl-2-(5-((2-chlorophenyl)sulfonamido)pentan-2-yl)isonicotinate (3j). 500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

Methyl-2-(5-((3-chlorophenyl)sulfonamido)pentan-2-yl)isonicotinate (3k). 500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

Methyl 2-((7R)-7-((4-methylphenyl)sulfonamido)octan-4-yl)isonicotinate (3n). 500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

Methyl-2-(5,5-dimethyl-6-((4-methylphenyl)sulfonamido)hexan-3-yl)isonicotinate (30). 500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

Methyl 2-(2-methyl-5-((4-methylphenyl)sulfonamido)pentan-2-yl)isonicotinate (3p). 500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

Methyl 2-(1-(3-((4-methylphenyl)sulfonamido)propyl)cyclopentyl)isonicotinate (3q). 500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

Methyl 2-(4-((4-methylphenyl)sulfonamido)butyl)isonicotinate (3r). 500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

Methyl 2-(4-((4-methylphenyl)sulfonamido)pentyl)isonicotinate (3s). 500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

Methyl-2-(1-azido-6-((4-methylphenyl)sulfonamido)hexan-3-yl)isonicotinate (3t). 500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

Methyl-2-(1-methoxy-6-((4-methylphenyl)sulfonamido)-1-oxohexan-3-yl)isonicotinate (3u).

500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

Methyl-2-(1-(benzoyloxy)-6-((4-methylphenyl)sulfonamido)hexan-3-yl)isonicotinate (3v). 500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

S86

500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

Methyl-2-(1-cyclopentyl-6-((4-methylphenyl)sulfonamido)-1-oxohexan-3-yl)isonicotinate

yl)isonicotinate (3y).

Methyl-2-(1-methoxy-4-((4-methylphenyl)sulfonamido)butyl)isonicotinate (3aa).

500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

Methyl 2-(2-((4-methylphenyl)sulfonamido)ethyl)cyclopentyl)isonicotinate (3ab).

Methyl 2-(2-((4-methylphenyl)sulfonamido)ethyl)cyclohexyl)isonicotinate (3ac).

Methyl 2-((1r,3s,5R,7S)-1-(2-((4-methylphenyl)sulfonamido)ethyl)adamantan-2-yl)isoni-

cotinate (3ad).

Methyl 2-(3-(((4-methylphenyl)sulfonamido)methyl)cyclohexyl)isonicotinate (3ae').

S95

Methyl 2-(4-((4-methylphenyl)sulfonamido)cycloheptyl)isonicotinate (3af).

Methyl 2-(4-((4-methylphenyl)sulfonamido)cycloheptyl)isonicotinate (3af').

500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

Methyl 2-(5-(methylsulfonamido)pentan-2-yl)isonicotinate (3ag).

Methyl 2-(5-((1-methylethyl)sulfonamido)pentan-2-yl)isonicotinate (3ah).

Methyl 2-(5-(butylsulfonamido)pentan-2-yl)isonicotinate (3ai).

Methyl 2-(5-(cyclopropanesulfonamido)pentan-2-yl)isonicotinate (3aj).

Methyl 2-(5-(thiophene-2-sulfonamido)pentan-2-yl)isonicotinate (3ak).

Methyl 2-(5-((((1R,4S)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methyl)sulfonamide-

S103

o)pentan-2-yl)isonicotinate (3al). 600 MHz ¹H NMR Spectrum (recorded in CDCl₃) hyt20220527-249.1.fid ⊂ ≂ ₹23 223 1.62 -7.26 3.95 MeO₂C 3al F80 1-00.1 18 1.08 4 22288258 22288258 22288258 3.02 -1.02 1-80 1.0 10.0 9.5 5.0 fl (ppm) 0.5 0.0 9.0 8.5 8.0 7.5 7.0 6. 5 6.0 5.5 4.5 4.0 3.5 3.0 2. 5 2.0 1.5 151 MHz ¹³C{¹H} NMR Spectrum (recorded in CDCl₃) × 167.03 <120.98 137.91 - 59.16 149.8 MeO₂C 3al 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm) 0

Methyl 2-(1-((2-(4-(4-chlorobenzoyl)phenoxy)-2-methylpropanoyl)oxy)-6-((4-methylphe-

Methyl 2-(1-((2-acetoxybenzoyl)oxy)-6-((4-methylphenyl)sulfonamido)hexan-3-yl)isoni-

S105

cotinate (3an).

600 MHz ¹H NMR Spectrum (recorded in CDCl₃)

ntan-2-yl)isonicotinate (3ao).

500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

S107

Methyl 2-(5-((4-(5-methyl-3-phenylisoxazol-4-yl)phenyl)sulfonamido)pentan-2-yl)isonic-

otinate (3ap).

4-Methyl-N-(4-(pyridin-2-yl)pentyl)benzenesulfonamide (4a).

4-Methyl-*N*-(4-(pyridin-4-yl)pentyl)benzenesulfonamide (4a').

N-(4-(4-Cyanopyridin-2-yl)pentyl)-4-methylbenzenesulfonamide (4b).

4-Methyl-N-(4-(4-(trifluoromethyl)pyridin-2-yl)pentyl)benzenesulfonamide (4c).

565 MHz ¹⁹F NMR Spectrum (recorded in CDCl₃)

 $\it N-(4-(4-Chloropyridin-2-yl) pentyl)-4-methyl benzenesul fon a mide~(4d).$

N-(4-(4-Acetylpyridin-2-yl)pentyl)-4-methylbenzenesulfonamide (4e).

4-Methyl-N-(4-(4-methylpyridin-2-yl)pentyl)benzenesulfonamide (4f).

 $\label{eq:N-(4-Methoxypyridin-2-yl)pentyl)-4-methyl benzene sulfon a mide (4g).$

4-Methyl-N-(4-(4-phenylpyridin-2-yl)pentyl)benzenesulfonamide (4h).

N-(4-(6-Chloropyridin-2-yl)pentyl)-4-methylbenzenesulfonamide (4i).

N-(4-(2-Chloropyridin-4-yl)pentyl)-4-methylbenzenesulfonamide (4i').

4-Methyl-N-(4-(6-methylpyridin-2-yl)pentyl)benzenesulfonamide (4j).

4-Methyl-N-(4-(2-methylpyridin-4-yl)pentyl)benzenesulfonamide (4j').

4-Methyl-N-(4-(6-phenylpyridin-2-yl)pentyl)benzenesulfonamide (4k).

4-Methyl-*N*-(4-(2-phenylpyridin-4-yl)pentyl)benzenesulfonamide (4k').

N-(4-(4-Chloro-5,6-dimethylpyridin-2-yl)pentyl)-4-methylbenzenesulfonamide (41).

N-(4-(2,6-Dimethylpyridin-4-yl)pentyl)-4-methylbenzenesulfonamide (4m).

4-Methyl-*N*-(4-(quinolin-2-yl)pentyl)benzenesulfonamide (4n).

4-Methyl-N-(4-(quinolin-4-yl)pentyl)benzenesulfonamide (4n').

4-Methyl-*N*-(4-(4-methylquinolin-2-yl)pentyl)benzenesulfonamide (40).

N-(4-(4-Methoxyquinolin-2-yl)pentyl)-4-methylbenzenesulfonamide (4p).

N-(4-(4-Bromoquinolin-2-yl)pentyl)-4-methylbenzenesulfonamide (4q).

N-(4-(4-Chloroquinolin-2-yl)pentyl)-4-methylbenzenesulfonamide (4r).

N-(4-(4-acetylquinolin-2-yl)pentyl)-4-methylbenzenesulfonamide (4s).

4-Methyl-N-(4-(2-methylquinolin-4-yl)pentyl)benzenesulfonamide (4t).

N-(4-chloropentyl)-4-methylbenzenesulfonamide (7).

Methyl 2-(2-methyl-1-tosylpyrrolidin-2-yl)isonicotinate (9).

500 MHz ¹H NMR Spectrum (recorded in CDCl₃)

