Supporting Information

Transition Metal-Promoted Switchable Cascade Processes: Diverse Synthesis of N-Containing Compounds through a Remote Trifluoromethylazidation/1, n-Acyl Migration Sequence

Ji-Ming Xi, ^a Yan-Xin Zhang, ^a Zhong-Lin Wei, ^a Wei-Wei Liao ^{a, b*}

^{*a*} Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P R China.

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P R China

E-mail: wliao@jlu.edu.cn

Table of Contents

I.	General Information	SI-2
II.	Reaction Conditions Screening	SI-3
III.	Preparation of Substrates	SI-4
IV.	General Procedure and Experimental Details	SI-7
V.	Scale-up Reaction and Synthetic Transformations	SI-24
VI.	Control Experiments	SI-32
VII	. References	SI-35
VII	I. Crystal Data and Structure Refinement for Compounds	SI-36
IX.	NMR Spectral Copies	SI-59

I. General Information

All reactions were carried out under inert atmospheric condition unless otherwise noted, and solvents were dried according to established procedures. Reactions were monitored by thin layer chromatography (TLC) visualizing with ultraviolet light (UV), KMnO₄, *p*-anisaldehyde stain, and phosphomolybdic acid (PMA) stain; column chromatography purifications were carried out using silica gel. For reactions that require heating, heating mantle was used. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a 300, 400 or 500 MHz spectrometer in CDCl₃ or DMSO, fluorine nuclear magnetic resonance (¹⁹F NMR) spectra were recorded on a 376 or 470 MHz spectrometer in CDCl₃ or DMSO, and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on 125 or 100 MHz spectrometer in CDCl₃ or DMSO unless otherwise noted. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane (TMS) and are referenced to residual protium in the NMR solvent (CHCl₃ = δ 7.26 ppm, DMSO = δ 2.50 ppm). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane (TMS) and are referenced to residual protium in the NMR solvent (CHCl₃ = δ 7.26 ppm, DMSO = δ 39.52 ppm). NMR data are presented as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant in Hertz (Hz), integration. Mass spectra were recorded on the Bruker MicrOTOF Q II.

II. Reaction Conditions Screening

Table S1. Selected optimization of reaction conditions^{*a*}

Ph	Ph CN	F + ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	[M]/L (cat.) TMSN ₃ solvent, T (°C) Ph Ph		$rac{}{}^{+} Ph + N$	$+ \frac{Ph}{Ph} N^{=}$	N CF ₃
	1a	2a 🖁	:	Ba	4a	013	5a
Entry	[M]	L	Solvent	<i>T</i> (°C)	Yield of 3a $(\%)^b$	Yield of $4a$	Yield of 5a $(\%)^b$
1	NiCl ₂ ·DME	L1	EtOAc	60	56	13	nd
2	NiBr ₂ ·DME	L1	EtOAc	60	43	15	nd
3	NiCl ₂ (PPh ₃) ₂	L1	EtOAc	60	48	10	nd
4	NiCl ₂ (dppe)	L1	EtOAc	60	40	7	nd
5	Ni(OTf) ₂	L1	EtOAc	60	15	36	nd
6	Ni(COD) ₂	L1	EtOAc	60	42	trace	nd
7	NiCl ₂ ·DME	-	EtOAc	60	12	29	nd
8	NiCl ₂ ·DME	L2/L3/L4	EtOAc	60	44/32/45	18/21/19	nd
9	NiCl ₂ ·DME	L5/L6/L7/L8	EtOAc	60	29/44/45/33	18/17/19/12	nd
10	NiCl ₂ ·DME	L1	EtOAc	50	59	nd	nd
11^c	NiCl ₂ ·DME	L1	EtOAc	50	53	5	nd
12	NiCl ₂ ·DME	-	EtOAc	80	nd	54	nd
13	NiCl ₂ ·DME	L1	DCM/THF/Acetone	50	24/nd/16	14/nd/5	nd
14	NiCl ₂ ·DME	-	DCM/THF/Acetone	80	nd/nd/nd	52/nd/52	nd
15 ^d	NiCl ₂ ·DME	L1/-	EtOAc	50/80	63 (62)/nd	nd/62 (63)	nd
16	CuCl	L1/-	EtOAc	50/80	31/trace	13/33	19/22
17	Cu(OAc) ₂	L1/-	EtOAc	50/80	21/nd	27/27	23/43
18	FeCl ₂	L1/-	EtOAc	50/80	25/nd	nd/nd	25/34
19	Fe(acac) ₃	L1/-	EtOAc	50/80	52/nd	nd/nd	nd/33
20	-	-	EtOAc	50/80	nd/nd	nd/nd	nd/nd

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (Togni II, 0.24 mmol), catalyst (10 mol %), ligand (10 mol %), and TMSN₃ (0.6 mmol) in solvent (2 mL), 12 h, N₂. ^{*b*} ¹H NMR yield using mesitylene as the internal standard. Isolated yield in parentheses. ^{*c*} Togni I (**2b**). ^{*d*} **2a** (0.3 mmol).

Table S2. Optimized reaction conditions for preparation product 6a ^a

	Ph CN Ph N O 1a	+ , N ₃ 2c 0	[M] (TM: solven	SN ₃ t,T(°C)	O HN N ₃ Ph Ph 6a	N ₃	
Entry	Cat.	solvent	T (°C)	<i>t</i> (h)	L	Conv of 1a (%)	Yield of 6a (%)
1	NiCl ₂ ·DME	EtOAc	50	12	L1	67	nd
2	NiCl ₂ ·DME	EtOAc	30	12	L1	64	26
3	Cu(MeCN) ₄ PF ₆	EtOAc	30	12	L1	79	13
4	Cu(MeCN) ₄ PF ₆	EtOAc	30	12	L2	81	26
5	Cu(MeCN) ₄ PF ₆	EtOAc	30	12	L3	82	31
6	$Cu(OAc)_2$	EtOAc	30	12	L3	61	24
7	Cu(MeCN) ₄ PF ₆	DCM	30	12	L3	79	34
8	Cu(MeCN) ₄ PF ₆	DCE	30	12	L3	79	35
9	Cu(MeCN) ₄ PF ₆	THF	30	12	L3	9	nd
10	Cu(MeCN) ₄ PF ₆	MeCN	30	12	L3	88	30
11	Cu(MeCN) ₄ PF ₆	DCE	30	6	L3	79	41
12	Cu(MeCN) ₄ PF ₆	DCE	30	1	L3	72	49

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2c** (0.3 mmol), catalyst (10 mol %) and TMSN₃ (0.6 mmol) in solvent (2 mL), 12 h, N₂. Isolated vield.

III. Preparation of Substrates

Substrates were prepared according to the known literature, ¹ and NMR spectra data of substrates **1a**, **1e-1q**, **1s-1w** were in accordance with the reported data. ¹

$$R^{3} \xrightarrow{O} OH \xrightarrow{1) (COCI)_{2}, DMF (cat.), DCM, rt}{O} \xrightarrow{2) Et_{3}N, DCM, 0 \ ^{\circ}C - rt} \xrightarrow{R'} N \xrightarrow{N} R^{3}$$

To a suspension of acid **S1** (1.2 mmol, 1.2 equiv.) in DCM (1 ml, 1.2 *M*) was added DMF (2 drops), followed by dropwise addition of (COCl)₂ (1.2 mmol, 1.2 equiv.) under nitrogen atmosphere at 0 °C. The mixture was stirred for 1 hour, whereupon gas evolution ceased and all acid dissolved. The reaction flask was cooled to -12 °C and a solution of Et₃N (2.4 equiv.) in DCM (3.0 *M*) was dropwise added. Thereafter, a solution of cyanamide **S2** (1.0 mmol, 1 equiv.) in CH₂Cl₂/THF (3/1, 0.8 ml, 1.2 *M*) was slowly added at the same temperature. The resulting mixture was allowed to warm up to room temperature and stirred for 20–24 h. Upon completion, the reaction mixture was quenched with H₂O and the aqueous phase was extracted with DCM. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash chromatography (silica gel, EtOAc/Petroleum ether (60-90 °C)) to give the desired substrates.

Spectral data for *N*-(but-3-en-1-yl)-*N*-cyano-2,2-di-p-tolylacetamide (1b)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/20) to afford the title compound (95% yield, 302 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.10 (m, 8H), δ 5.68 (ddt, *J* = 17.1, 10.2, 6.9 Hz, 1H), 5.51 (s, 1H), 5.12 – 5.03 (m, 2H), 3.67 (t, *J* = 6.9 Hz, 2H), 2.44 – 2.37 (m, 2H), 2.32 (s, 6H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 171.9, 137.7, 134.2, 132.8, 129.6, 128.7, 119.0, 110.6, 55.4, 46.1, 32.0, 21.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₃N₂O 319.1805; found: 319.1793.

Spectral data for 2,2-bis(4-bromophenyl)-N-(but-3-en-1-yl)-N-cyanoacetamide (1c)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/20) to afford the title compound (72% yield, 323 mg) as yellowish solid, mp: 73-75 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.45 (m, 4H), 7.17 – 7.11 (m, 4H), 5.67 (ddt, *J* = 17.1, 10.2, 6.9 Hz, 1H), 5.49 (s, 1H), 5.12 – 5.02 (m, 2H), 3.69 (t, *J* = 6.9 Hz, 2H), 2.49 – 2.29 (m, 2H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 170.8, 135.4, 132.6, 132.3, 130.5, 122.5, 119.2, 110.2, 54.8, 46.2, 32.0. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₁₇Br₂N₂O 446.9702; found: 446.9689.

Spectral data for N-(but-3-en-1-yl)-N-cyano-3-phenyl-2-(p-tolyl)propenamide (1d)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/100) to afford the title compound (72% yield, 229 mg) as white solid, mp: 65-67 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.19 (m, 5H), 7.18 – 7.09 (m, 4H), 5.50 (ddt, J = 17.2, 10.4, 6.9 Hz, 1H), 4.97 – 4.79 (m, 2H), 4.40 (dd, J = 9.2, 5.9 Hz, 1H), 3.61 – 3.37 (m, 3H), 3.01 (dd, J = 13.7, 5.9 Hz, 1H), 2.33 (s, 3H), 2.26 – 2.17 (m, 2H). ¹³C {H¹} NMR (100 MHz, CDCl₃) δ 172.4, 138.4, 138.0, 133.8, 132.6, 129.8, 129.2, 128.6, 128.2, 126.8, 118.8, 110.5, 52.5, 45.8, 40.3, 31.9, 21.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₃N₂O 319.1805; found: 319.1814.

Spectral data for N-cyano-N-(2,2-dimethylbut-3-en-1-yl)-2,2-diphenylacetamide (1r)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/30) to afford the title compound (89% yield, 283 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.28 (m, 10H), 5.76 (dd, *J* = 17.4, 10.7 Hz, 1H), 5.66 (s, 1H), 5.05 – 4.92 (m, 2H), 3.53 (s, 2H), 1.04 (s, 6H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 171.9, 143.8, 137.0, 129.0, 128.9, 128.0, 114.1, 111.8, 56.2, 55.8, 39.6, 24.7. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₃N₂O 319.1805; found: 319.1789.

Spectral data for N-cyano-N-(3-methylbut-3-en-1-yl) isobutyramide (1x)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/30) to afford the title compound (89% yield, 160 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 4.86 (t, *J* = 1.7 Hz, 1H), 4.80 – 4.77 (m, 1H), 3.71 (t, *J* = 7.0 Hz, 2H), 3.13 (hept, *J* = 6.8 Hz, 1H), 2.38 (t, *J* = 7.0 Hz, 2H), 1.77 (s, 3H), 1.22 (d, *J* = 6.8 Hz, 6H). ¹³C {H¹} NMR (125 MHz, CDCl₃) δ 176.5, 140.6, 113.9, 110.7, 44.2, 35.8, 33.6, 22.0, 19.1. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₀H₁₇N₂O 181.1335; found: 181.1333.

Spectral data for *N*-cyano-*N*-(3-methylbut-3-en-1-yl)cyclobutanecarboxamide (1y)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/30) to afford the title compound (78% yield, 150 mg) as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 4.86 (t, *J* = 1.6 Hz, 1H), 4.80 – 4.76 (m, 1H), 3.69 (t, *J* = 7.1 Hz, 2H), 3.64 – 3.56 (m, 1H), 2.41 – 2.28 (m, 6H), 2.11 – 1.99 (m, 1H), 1.97 – 1.87 (m, 1H), 1.77 (s, 3H). ¹³C {H¹} NMR (125 MHz, CDCl₃) δ 174.2, 140.6, 113.8, 110.5, 44.0, 38.4, 35.8, 25.1, 22.1, 18.1. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₁₇N₂O 193.1335; found: 193.1342.

Spectral data for *N*-cyano-*N*-(3-methylbut-3-en-1-yl)tetrahydro-2H-pyran-4-carboxamide (1z)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/20) to afford the title compound (87% yield, 193 mg) as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 4.86 (t, *J* = 1.7 Hz, 1H), 4.78 (s, 1H), 4.05 – 3.97 (m, 2H), 3.72 (t, *J* = 6.9 Hz, 2H), 3.52 – 3.43 (m, 2H), 3.15 – 3.04 (m, 1H), 2.38 (t, *J* = 7.0 Hz, 2H), 1.90 – 1.78 (m, 4H), 1.77 (s, 3H). ¹³C {H¹} NMR (100 MHz, CDCl₃) δ 173.7, 140.5, 114.1, 110.5, 66.7, 44.1, 40.2, 35.8, 28.5, 22.0. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₉N₂O₂ 223.1441; found: 223.1437.

IV. General Procedure and Experimental Details

1. General procedure for preparation of products 3

To a flame-dried sealed tube equipped with a magnetic stir bar were added 1 (0.2 mmol, 1 equiv.), Togni's reagent **2a** (0.3 mmol, 1.5 equiv.), NiCl₂·DME (10 mol%, 0.02 mmol) and L1 (10 mol%, 0.02 mmol). The tube was evacuated and backfilled with nitrogen for three times. Then ethyl acetate (2.0 mL) and TMSN₃ (0.6 mmol, 3 equiv.) were added *via* syringe. The tube was stirred at 50 °C for 12 h. After completion, the mixture was cooled to room temperature, and sat. aq. soln. of NaHCO₃ was added. Then the aqueous phase was extracted with DCM, washed with brine, dried over Na₂SO₄. The filtrate was concentrated under reduced pressure and the crude was purified by flash chromatography (silica gel, EtOAc/Petroleum ether (60-90 °C)) to give the desired compounds.

Spectral data for (Z)-2-azido-2,2-diphenyl-N-(3-(2,2,2-trifluoroethyl)pyrrolidin-2-ylidene) acetamide (3a)

N3 Ph Ph CF

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (62% yield, 51 mg) as white solid, mp: 133-135 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.94 (s, 1H), 7.40 – 7.25 (m, 10H), 3.61 – 3.45 (m, 2H), 3.07 – 2.85 (m, 2H), 2.43 – 2.30 (m, 1H), 2.05 – 1.89 (m, 1H), 1.86 – 1.72 (m, 1H). ¹³C{H¹} NMR (125 MHz, CDCl₃) δ 184.8, 174.9, 140.8, 140.7, 128.5, 128.1, 128.0, 127.9, 126.8 (q, *J* = 276.5 Hz), 78.9, 45.6, 39.5, 35.5 (q, *J* = 28.7 Hz), 27.1. ¹⁹F NMR (470 MHz, CDCl₃) δ -64.60 (t, *J* = 11.0 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₁₉F₃N₅O 402.1536; found: 402.1521.

Spectral data for (Z)-2-azido-2,2-di-p-tolyl-N-(3-(2,2,2-trifluoroethyl)pyrrolidin-2-ylidene) acetamide (3b)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/3) to afford the title compound (63% yield, 54 mg) as yellowish oil. ¹H NMR (400 MHz, CDCl₃) δ 9.93 (s, 1H), 7.28 – 7.18 (m, 4H), 7.17 – 7.09 (m, 4H), 3.70 – 3.51 (m, 2H), 3.10 – 2.86 (m, 2H), 2.49 – 2.37 (m, 1H), 2.34 (s, 3H), 2.33 (s, 3H), 2.07 – 1.92 (m, 1H), 1.91 – 1.74 (m, 1H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 185.2, 174.9, 138.0, 137.9, 137.7, 137.6, 128.8, 128.7, 128.4, 128.3, 126.9 (q, *J* = 276.7 Hz), 78.6, 45.6, 39.4 (q, *J* = 2.7 Hz), 35.6 (q, *J* = 29.0 Hz), 27.2, 21.2, 21.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.62 (t, *J* = 11.0 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₃F₃N₅O 430.1849; found: 430.1843.

Spectral data for (*Z*)-2-azido-3-phenyl-2-(p-tolyl)-*N*-(3-(2,2,2-trifluoroethyl)pyrrolidin-2-ylidene) propenamide (3d)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (an inseparable mixture, 19% yield, 17 mg, dr = 1.1/1) as yellowish oil. The mixture: ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 2H), 7.32 – 7.27 (m, 4H), 7.21 – 7.15 (m, 6H), 7.15 – 7.07 (m, 8H), 3.68 – 3.53 (m, 6H), 3.30 (d, *J* = 5.5 Hz, 1H), 3.27 (d, *J* = 5.4 Hz, 1H), 3.10 – 2.93 (m, 4H), 2.49 – 2.35 (m, 2H), 2.33 (s, 3H), 2.33 (s, 3H), 2.08 – 1.91 (m, 2H), 1.90 – 1.76 (m, 2H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 185.1, 185.0, 174.9, 174.6, 137.7, 137.6, 136.9, 136.7, 136.6, 130.9, 130.8, 129.2, 129.1, 127.9, 127.8, 126.9 (q, *J* = 274.3 Hz), 126.7, 126.6, 126.4, 126.3, 75.8, 75.7, 45.6, 45.5, 44.7, 44.5, 39.4 (q, *J* = 3.0 Hz), 39.3 (q, *J* = 3.0 Hz), 35.7 (q, *J* = 28.8 Hz), 35.6 (q, *J* = 29.0 Hz), 27.2, 27.1, 21.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.64 (t, *J* = 11.0 Hz, 6F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₃F₃N₅O 430.1849; found: 430.1846.

Spectral data for (Z)-2-azido-2-methyl-N-(3-(2,2,2-trifluoroethyl)pyrrolidin-2-ylidene) propenamide (3e)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (48% yield, 27 mg) as white solid, mp: 70-72 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.95 (s, 1H), 3.75 – 3.56 (m, 2H), 3.17 – 2.98 (m, 2H), 2.52 – 2.40 (m, 1H), 2.18 – 1.97 (m, 1H), 1.93 – 1.79 (m, 1H), 1.46 (s, 3H), 1.45 (s, 3H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 187.9, 175.0, 126.9 (q, *J* = 276.3 Hz), 76.8, 45.5, 39.4 (q, *J* = 2.4 Hz), 35.8 (q, *J* = 29.0 Hz), 27.3, 25.0, 24.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.72 (t, *J* = 11.0 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₀H₁₅F₃N₅O 278.1223; found: 278.1228.

Spectral data for (Z)-2-azido-2-propyl-N-(3-(2,2,2-trifluoroethyl)pyrrolidin-2-ylidene) pentanamide (3f)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (42% yield, 28 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.94 (s, 1H), 3.76 – 3.48 (m, 2H), 3.15 – 2.93 (m, 2H), 2.51 – 2.38 (m, 1H), 2.16 – 1.97 (m, 1H), 1.93 – 1.77 (m, 3H), 1.75 – 1.63 (m, 2H), 1.49 – 1.33 (m, 2H), 1.31 – 1.12 (m, 2H), 0.91 (t, *J* = 7.3 Hz, 3H), 0.90 (t, *J* = 7.3 Hz, 3H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 187.3, 174.4, 126.9 (q, *J* = 276.7 Hz), 72.9, 45.5, 39.4 (q, *J* = 3.1 Hz), 39.3, 39.2, 35.8 (q, *J* = 29.1 Hz), 27.2, 17.7, 17.6, 14.5, 14.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.61 (t, *J* = 10.9 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₂₃F₃N₅O 334.1849; found: 334.1843.

Spectral data for (Z)-2-azido-2-methyl-N-(3-(2,2,2-trifluoroethyl)pyrrolidin-2-ylidene) butanamide (3g)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (an inseparable mixture, 35% yield, 20 mg, dr = 1/1) as colorless oil. The mixture: ¹H NMR (400 MHz, CDCl₃) δ 9.95 (s, 2H), 3.72 – 3.55 (m, 4H), 3.15 – 2.95 (m, 4H), 2.53 – 2.38 (m, 2H), 2.16 – 1.99 (m, 2H), 1.89 (q, *J* = 7.4 Hz,

4H), 1.80 – 1.63 (m, 2H), 1.43 (s, 6H), 0.90 (t, J = 7.4 Hz, 6H). ¹³C {H¹} NMR (100 MHz, CDCl₃) δ 187.6, 174.7, 126.9 (q, J = 276.6 Hz), 69.7, 45.5, 39.4 (q, J = 3.0 Hz), 35.8 (q, J = 28.8 Hz), 31.3, 31.2, 27.3, 22.4, 22.3, 8.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.68 (t, J = 11.1 Hz, 3F), -64.70 (t, J = 11.0 Hz, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₁₇F₃N₅O 292.1380; found: 292.1383.

Spectral data for (Z)-1-azido-N-(3-(2,2,2-trifluoroethyl)pyrrolidin-2-ylidene)cyclobutane-1- carboxamide (3h)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (44% yield, 25 mg) as yellowish solid, mp: 69-71 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.00 (s, 1H), 3.75 – 3.56 (m, 2H), 3.18 – 3.01 (m, 2H), 2.67 – 2.55 (m, 2H), 2.52 – 2.41 (m, 1H), 2.28 – 2.16 (m, 2H), 2.14 – 1.81 (m, 4H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 186.3, 175.0, 126.9 (q, *J* = 276.6 Hz), 68.2, 45.5, 39.4 (q, *J* = 2.9 Hz), 35.8 (q, *J* = 28.9 Hz), 31.4, 31.2, 27.3, 14.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.71 (t, *J* = 11.0 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₁₅F₃N₅O 290.1223; found: 290.1214.

Spectral data for (Z)-1-azido-N-(3-(2,2,2-trifluoroethyl)pyrrolidin-2-ylidene)cyclopentane-1- carboxamide (3i)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (41% yield, 25 mg) as yellowish oil. ¹H NMR (400 MHz, CDCl₃) δ 9.98 (s, 1H), 3.74 – 3.55 (m, 2H), 3.17 – 2.97 (m, 2H), 2.52 – 2.38 (m, 1H), 2.23 – 1.99 (m, 3H), 1.94 – 1.75 (m, 7H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 187.7, 174.6, 126.9 (q, *J* = 276.7 Hz), 77.0, 45.5, 39.4 (q, *J* = 2.9 Hz), 36.8, 36.6, 35.8 (q, *J* = 28.9 Hz), 27.3, 24.8, 24.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.72 (t, *J* = 11.0 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₇F₃N₅O 304.1380; found: 304.1370.

Spectral data for (Z)-3-azido-N-(3-(2,2,2-trifluoroethyl)pyrrolidin-2-ylidene)tetrahydrofuran-3carboxamide (3j)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (an inseparable mixture, 60% yield, 37 mg, dr = 1/1) as purple solid. The mixture: ¹H NMR (400 MHz, CDCl₃) δ 10.01 (s, 2H), 4.21 – 3.98 (m, 6H), 3.99 – 3.87 (m, 2H), 3.78 – 3.56 (m, 4H), 3.16 – 2.94 (m, 4H), 2.65 – 2.52 (m, 2H), 2.52 – 2.40 (m, 2H), 2.21 – 2.00 (m, 4H), 1.96 – 1.79 (m, 2H). ¹³C {H¹} NMR (100 MHz, CDCl₃) δ 184.3, 184.2, 175.2, 126.8 (q, *J* = 276.5 Hz), 76.0, 75.7, 75.6, 68.5, 68.4, 45.6, 39.5 (q, *J* = 3.4 Hz), 37.1, 37.0, 35.7 (q, *J* = 29.1 Hz), 27.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.73 (q, *J* = 9.8 Hz, 3F), -64.75 (q, *J* = 10.2 Hz, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₁₅F₃N₅O 306.1172; found: 306.1177.

Spectral data for (Z)-1-azido-N-(3-(2,2,2-trifluoroethyl)pyrrolidin-2-ylidene)cyclohexane-1- carboxamide (3k)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (46% yield, 29 mg) as white solid, mp: 123-125 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.96 (s, 1H), 3.74 – 3.54 (m, 2H), 3.19 – 2.98 (m, 2H), 2.52 – 2.40 (m, 1H), 2.16 – 1.99 (m, 1H), 1.94 – 1.70 (m, 5H), 1.69 – 1.64 (m, 1H), 1.64 – 1.51 (m, 5H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 187.8, 175.0, 127.0 (q, *J* = 276.6 Hz), 68.9, 45.5, 39.4 (q, *J* = 2.9 Hz), 35.9 (q, *J* = 28.9 Hz), 32.3, 32.2, 27.4, 25.3, 22.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.71 (t, *J* = 11.0 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₉F₃N₅O 318.1536; found: 318.1539.

Spectraldatafor(Z)-4-azido-N-(3-(2,2,2-trifluoroethyl)pyrrolidin-2-ylidene)tetrahydro-2H-pyran-4-carboxamide (3l)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/3) to afford the title compound (46% yield, 30 mg) as white solid, mp: 113-116 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H), 3.82 – 3.49 (m, 6H), 3.09 – 2.89 (m, 2H), 2.47 – 2.34 (m, 1H), 2.18 – 2.05 (m, 2H), 2.05 – 1.94 (m, 1H), 1.89 – 1.75 (m, 1H), 1.73 – 1.57 (m, 2H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 185.9, 175.4, 126.9 (q, *J* = 276.6 Hz), 66.0, 64.1 64.0, 45.6, 39.5 (q, *J* = 3.0 Hz), 35.8 (q, *J* = 29.0 Hz), 32.4, 32.3, 27.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.74 (t, *J* = 11.0 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₇F₃N₅O₂ 320.1329; found: 320.1322.

Spectraldatafor(Z)-2-azido-N-(3-methyl-3-(2,2,2-trifluoroethyl)pyrrolidin-2-ylidene)-2,2-diphenylacetamide (3m)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (56% yield, 47 mg) as white solid, mp: 118-120 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.84 (s, 1H), 7.38 – 7.28 (m, 10H), 3.68 – 3.59 (m, 2H), 2.58 – 2.42 (m, 1H), 2.41 – 2.29 (m, 1H), 2.29 – 2.17 (m, 1H), 2.04 – 1.95 (m, 1H), 1.24 (s, 3H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 185.3, 178.3, 140.8, 140.7, 128.4, 127.9, 127.8, 127.7, 127.6, 126.4 (q, *J* = 278.3 Hz), 78.8, 44.5 (q, *J* = 1.9 Hz), 44.2, 40.7 (q, *J* = 27.5 Hz), 31.9, 23.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.38 (t, *J* = 11.4 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₁F₃N₅O 416.1693; found: 416.1703.

Spectral data for (Z)-2-azido-2,2-diphenyl-N-(3-phenyl-3-(2,2,2-trifluoroethyl)pyrrolidin-2-ylidene)acetamide (3n)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (18% yield, 17 mg) as yellowish oil. ¹H NMR (400 MHz, CDCl₃) δ 9.84 (s, 1H), 7.45 – 7.40 (m, 2H), 7.39 – 7.30 (m, 10H), 7.28 – 7.22 (m, 3H), 3.69 – 3.60 (m, 1H), 3.59 – 3.48 (m, 1H), 3.03 – 2.79 (m, 2H), 2.69 – 2.50 (m, 1H), 2.46

-2.32 (m, 1H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 184.9, 176.0, 140.8, 140.4, 137.4, 128.8, 128.7, 128.2, 128.1, 128.0, 127.9, 127.8, 126.5, 126.1 (q, *J* = 278.4 Hz), 79.3, 51.0 (q, *J* = 2.3 Hz), 44.3, 42.6 (q, *J* = 27.1 Hz), 31.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.25 (t, *J* = 10.9 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₆H₂₃F₃N₅O 478.1849; found: 478.1828.

Spectral data for (*Z*)-2,2-diphenyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)-*N*-(6-(trifluoromethyl)-2-azaspiro[4.4]nonan-1-ylidene)acetamide (30)

According to the general procedure, upon completion, the mixture was cooled to room temperature, diluted with EtOAc (10 mL), and filtered with a pad of silica gel, the filtrate was concentrated under reduced pressure. Then the residue and CuI (20 mol%, 0.04 mmol) were added in a 25 mL oven-dried sealed tube. The tube was evacuated and backfilled with N₂ for three times, after that, phenylacetylene (0.6 mmol, 3.0 equiv.) and THF (2.0 mL) were then added via syringe under N₂. The tube was sealed with a Teflon lined cap and moved into a preheated oil bath at 60 °C for 24 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (10 mL) and filtered through a pad of Celite. The filtrate was concentrated, and the residue was then purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/2) to afford the title compound (35% yield, 38 mg, dr > 19/1) as yellowish oil. ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 1H), 7.93 (s, 1H), 7.81 (d, *J* = 7.6 Hz, 2H), 7.42 – 7.27 (m, 13H), 3.67 – 3.49 (m, 2H), 2.93 – 2.75 (m, 1H), 2.42 – 2.25 (m, 1H), 1.90 – 1.77 (m, 2H), 1.76 – 1.53 (m, 5H). ¹³C {H¹} NMR (100 MHz, CDCl₃) δ 183.0, 178.0, 140.3, 131.2, 129.7, 128.8, 128.3, 128.2, 128.0, 127.9, 127.4 (q, *J* = 278.5 Hz), 125.8, 80.5, 55.1, 48.3 (q, *J* = 26.4 Hz), 44.6, 39.0, 28.9, 25.4 (q, *J* = 2.2 Hz), 22.7. ¹⁹F NMR (470 MHz, CDCl₃) δ -65.45 (d, *J* = 9.8 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₁H₂₉F₃N₅O 544.2319; found: 544.2306.

Spectral data for (Z)-2-azido-2,2-diphenyl-N-(6-(trifluoromethyl)-2-azaspiro[4.5]decan-1- ylidene)acetamide (3p)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/8) to afford the title compound (56% yield, 51 mg, dr > 19/1) as yellowish oil. ¹H NMR (500 MHz, CDCl₃) δ 9.93 (s, 1H), 7.43 – 7.30 (m, 10H), 3.71 – 3.53 (m, 2H), 2.74 – 2.61 (m, 1H), 2.35 – 2.24 (m, 1H), 1.98 – 1.89 (m, 2H), 1.87 – 1.78 (m, 1H), 1.77 – 1.63 (m, 2H), 1.56 – 1.47 (m, 1H), 1.47 – 1.22 (m, 3H). ¹³C{H¹} NMR (125 MHz, CDCl₃) δ 185.3, 179.1, 141.1, 141.0, 128.7, 128.6, 127.9, 127.8, 127.7, 127.6, 127.3 (q, *J* = 281.6 Hz), 78.9, 49.2, 45.4 (q, *J* = 24.2 Hz), 44.4, 36.4, 25.2, 24.3, 22.7, 21.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.74 (d, *J* = 9.1 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₂₅F₃N₅O 456.2006; found: 456.1997.

Spectral data for (*Z*)-2,2-diphenyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)-*N*-(5-phenyl-3-(2,2,2-trifluoroethyl)pyrrolidin-2-ylidene)acetamide (3q)

According to the general procedure, upon completion, the mixture was cooled to room temperature, diluted with EtOAc (10 mL), and filtered with a pad of silica gel, the filtrate was concentrated under reduced pressure. Then the residue and CuI (20 mol%, 0.04 mmol) were added in a 25 mL oven-dried sealed tube. The tube was evacuated and backfilled with N₂ for three times, after that, phenylacetylene (0.6 mmol, 3.0 equiv.) and THF (2.0 mL) were then added via syringe under N₂. The tube was sealed with a Teflon lined cap and moved into a preheated oil bath at 60 °C for 24 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (10 mL) and filtered through a pad of Celite. The filtrate was concentrated, and the residue was then purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/8) to afford the title compound (an inseparable mixture, 39% yield, 45 mg, dr = 1.8/1) as yellowish solid. The major isomer: ¹H NMR (500 MHz, CDCl₃) δ 9.94 (s, 1H), 7.85 – 7.77 (m, 3H), 7.43 - 7.22 (m, 17H), 7.20 - 7.15 (m, 1H), 4.89 (dd, J = 9.9, 6.4 Hz, 1H), 3.17 - 3.01 (m, 1H), 2.80 - 2.71 (m, 1H), 7.43 - 7.22 (m, 17H), 7.20 - 7.15 (m, 1H), 7.43 - 7.22 (m, 17H), 7.20 - 7.15 (m, 1H), 7.43 - 7.22 (m, 17H), 7.43 - 7.22 (m, 17 2.35 – 2.26 (m, 1H), 2.02 – 1.85 (m, 1H), 1.75 – 1.63 (m, 1H). The minor isomer: ¹H NMR (500 MHz, CDCl₃) δ 9.94 (s, 1H), 7.85 – 7.77 (m, 3H), 7.43 – 7.22 (m, 17H), 7.20 – 7.15 (m, 1H), 4.98 (dd, J = 7.9, 3.5 Hz, 1H), 3.17 – 3.01 (m, 1H), 2.71 – 2.61 (m, 1H), 2.59 – 2.50 (m, 1H), 2.02 – 1.85 (m, 1H), 1.75 – 1.63 (m, 1H). ¹³C{H¹} NMR (125 MHz, CDCl₃) & 182.6, 174.0, 173.6, 145.9, 140.0, 139.9, 139.2, 131.0, 129.9, 129.7, 129.3, 128.9, 128.8, 128.6, 128.5, 128.1, 128.0, 126.6 (q, J = 278.4 Hz), 126.2, 125.8, 125.6, 123.0, 80.5, 62.1, 61.2, 40.2, 38.1, 37.9, 35.6 (q, J = 28.7 Hz), 35.5 (q, J = 28.8 Hz), 29.8. The major isomer: ¹⁹F NMR (470 MHz, CDCl₃) δ -64.67 (t, J =10.9 Hz). The minor isomer: ¹⁹F NMR (470 MHz, CDCl₃) δ -64.57 (t, J = 10.9 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₄H₂₉F₃N₅O 580.2319; found: 580.2325.

Spectral data for (*Z*)-2-azido-*N*-(4,4-dimethyl-3-(2,2,2-trifluoroethyl)pyrrolidin-2-ylidene)-2,2-diphenylacetamide (3r)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (61% yield, 52 mg) as yellowish oil. ¹H NMR (400 MHz, CDCl₃) δ 9.78 (s, 1H), 7.38 – 7.26 (m, 10H), 3.37 (d, *J* = 10.8 Hz, 1H), 3.21 (d, *J* = 11.0 Hz, 1H), 2.98 – 2.82 (m, 1H), 2.79 – 2.71 (m, 1H), 2.14 – 1.97 (m, 1H), 1.23 (s, 3H), 1.00 (s, 3H). ¹³C {H¹} NMR (100 MHz, CDCl₃) δ 184.8, 174.6, 140.9, 140.8, 128.1, 128.0, 127.9, 127.8, 126.8 (q, *J* = 276.0 Hz), 78.9, 59.0, 49.0 (q, *J* = 2.7 Hz), 39.4, 29.5 (q, *J* = 30.0 Hz), 25.0 (q, *J* = 1.9 Hz), 22.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.72 (t, *J* = 11.5 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₃F₃N₅O 430.1849; found: 430.1862.

Spectral data for (*Z*)-2,2-diphenyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)-*N*-(9-(2,2,2-trifluoroethyl)-7-azaspiro[4.5]decan-8-ylidene)acetamide (3s)

According to the general procedure, upon completion, the mixture was cooled to room temperature, diluted with EtOAc (10 mL), and filtered with a pad of silica gel, the filtrate was concentrated under reduced pressure. Then the residue and CuI (20 mol%, 0.04 mmol) were added in a 25 mL oven-dried sealed tube. The tube was evacuated and backfilled with N_2 for three times, after that, phenylacetylene (0.6 mmol, 3.0 equiv.) and THF (2.0 mL) were then added via syringe under N_2 . The tube was sealed with a Teflon lined cap and moved into a preheated oil bath at 60 °C for 24 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (10 mL) and filtered

through a pad of Celite. The filtrate was concentrated, and the residue was then purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/8) to afford the title compound (8% yield, 10 mg) as yellowish oil. ¹H NMR (500 MHz, CDCl₃) δ 11.36 (s, 1H), 7.80 (d, J = 7.7 Hz, 2H), 7.77 (s, 1H), 7.40 – 7.27 (m, 13H), 3.24 – 3.08 (m, 2H), 2.76 – 2.62 (m, 2H), 1.99 – 1.85 (m, 2H), 1.80 – 1.72 (m, 1H), 1.70 – 1.58 (m, 5H), 1.53 – 1.40 (m, 3H). ¹³C {H¹} NMR (125 MHz, CDCl₃) δ 182.1, 171.2, 145.8, 140.4, 140.3, 131.1, 130.0, 129.7, 128.8, 128.3, 128.0, 127.9, 126.8 (q, J = 276.6 Hz), 125.8, 123.0, 80.6, 51.9, 40.4, 38.5, 37.8, 35.9 (q, J = 28.1 Hz), 35.0, 34.0, 24.8, 24.2. ¹⁹F NMR (470 MHz, CDCl₃) δ -63.25 (t, J = 11.3 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₃H₃₃F₃N₅O 572.2632; found: 572.2622.

2. General procedure for preparation of products 4

To a flame-dried sealed tube equipped with a magnetic stir bar were added 1 (0.2 mmol, 1 equiv.), Togni's reagent 2a (0.3 mmol, 1.5 equiv.) and NiCl₂·DME (10 mol %, 0.02 mmol). The tube was evacuated and backfilled with nitrogen for three times. Then ethyl acetate (2.0 mL) and TMSN₃ (0.6 mmol, 3 equiv.) were added *via* syringe. The tube was stirred at 80 °C for 12 h. After completion, the mixture was cooled to room temperature, and sat. aq. soln. of NaHCO₃ was added. Then the aqueous phase was extracted with DCM, washed with brine, dried over Na₂SO₄. The filtrate was concentrated under reduced pressure and the crude was purified by flash chromatography (silica gel, EtOAc/Petroleum ether (60-90 °C)) to give the desired compounds 4.

Spectraldatafor2,2-diphenyl-8-(2,2,2-trifluoroethyl)-2,6,7,8-tetrahydropyrrolo[1,2-a][1,3,5]triazine-4(3H)-one (4a)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/3) to afford the title compound (63% yield, 48 mg) as white solid, mp: 205-207 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.23 (m, 10H), 5.85 (brs, 1H), 3.83 (t, *J* = 9.7 Hz, 1H), 3.59 – 3.44 (m, 1H), 3.15 – 2.96 (m, 2H), 2.47 – 2.34 (m, 1H), 2.19 – 1.99 (m, 1H), 1.82 – 1.65 (m, 1H). ¹³C {H¹} NMR (100 MHz, CDCl₃) δ 157.4, 151.1, 145.4, 145.3, 128.5, 128.4, 126.8 (q, *J* = 276.7 Hz), 126.4, 126.1, 79.4, 43.3, 36.8 (q, *J* = 2.9 Hz), 35.9 (q, *J* = 29.1 Hz), 27.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.67 (t, *J* = 11.0 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₁₉F₃N₃O 374.1475; found: 374.1482.

Spectral	data	for	2,2-di-p-tolyl-8-(2,2,2-trifluoroethyl)-2,6,7,8-tetrahydropyrrolo[1,2-a][1,3,5]
triazin-4(3H	I)-one (4b)		

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/3) to afford the title compound (51% yield, 41 mg) as yellowish oil. ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.19 (m, 4H), 7.15 – 7.09 (m, 4H), 5.67 (brs, 1H), 3.89 – 3.76 (m, 1H), 3.59 – 3.45 (m, 1H), 3.13 – 2.96 (m, 2H), 2.49 – 2.37 (m, 1H), 2.33 (s, 3H), 2.32 (s, 3H), 2.16 – 2.01 (m, 1H), 1.81 – 1.68 (m, 1H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 157.1, 151.1, 142.7, 142.5, 137.8, 137.6, 129.2, 129.1, 126.8 (q, *J* = 276.6 Hz), 126.3, 126.0, 79.2, 43.3, 36.7 (q, *J* = 3.1 Hz), 35.9 (q, *J* = 29.2 Hz), 27.4, 21.2, 21.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.69 (t, *J* = 11.0 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₃F₃N₃O 402.1788; found: 402.1775.

Spectraldatafor2,2-bis(4-bromophenyl)-8-(2,2,2-trifluoroethyl)-2,6,7,8-tetrahydropyrrolo[1,2-a][1,3,5]triazin-4(3H)-one (4c)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/2) to afford the title compound (57% yield, 61 mg) as yellowish solid, mp: 208-210 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.45 (m, 4H), 7.31 – 7.20 (m, 4H), 5.88 (brs, 1H), 3.96 – 3.74 (m, 1H), 3.64 – 3.47 (m, 1H), 3.23 – 2.88 (m, 2H), 2.63 – 2.35 (m, 1H), 2.19 – 1.97 (m, 1H), 1.91 – 1.70 (m, 1H). ¹³C {H¹} NMR (100 MHz, CDCl₃) δ 157.9, 151.3, 144.1, 144.0, 131.7, 131.6, 128.2, 127.9, 126.6 (q, *J* = 276.6 Hz), 122.4, 122.2, 78.7, 43.4, 36.8 (q, *J* = 3.0 Hz), 35.8 (q, *J* = 29.2 Hz), 27.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.67 (t, *J* = 10.8 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₁₇Br₂F₃N₃O 529.9685; found: 529.9682.

Spectral data for 2-benzyl-3-methyl-2-(p-tolyl)-8-(2,2,2-trifluoroethyl)-2,6,7,8-tetrahydropyrrolo [1,2-a][1,3,5]triazin-4(3H)-one (4d)

According to the general procedure, upon completion, the mixture was cooled to room temperature, diluted with EtOAc (10 mL), and filtered with a pad of silica gel, the filtrate was concentrated under reduced pressure. Then to a solution of residue in THF (0.8 mL) was added NaH (2.0 equiv) and MeI (1.2 equiv) at 0 °C. The resulting mixture was warmed to room temperature for 20 h. After completion, the solvent was evaporated and the residue was dissolved in EtOAc, washed with H₂O and brine. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/3) to afford the title compound (an inseparable mixture, 30% yield, 25 mg, dr = 1.1/1) as yellowish oil. The mixture: ¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.34 (m, 4H), 7.32 – 7.27 (m, 5H), 7.25 – 7.11 (m, 9H), 3.64 – 3.53 (m, 3H), 3.27 (d, *J* = 7.0 Hz, 1H), 3.25 (d, *J* = 7.0 Hz, 1H), 3.23 – 3.17 (m, 1H), 3.14 – 3.08 (m, 1H), 2.94 – 2.85 (m, 1H), 2.84 – 2.77 (m, 2H), 2.75 (s, 6H), 2.72 – 2.65 (m, 1H), 2.64 – 2.56 (m, 1H), 2.37 (s, 6H), 2.15 – 2.07 (m, 1H), 2.07 – 1.96 (m, 2H), 1.95 – 1.83 (m, 1H), 1.61 – 1.53 (m, 1H), 1.12 – 0.99 (m, 1H). ¹³C {H¹} NMR (100 MHz, CDCl₃) δ 155.9, 155.3, 151.1, 150.8, 141.1, 138.1, 138.0, 136.0, 135.9, 131.0, 130.8, 129.3, 129.2, 127.7, 127.6, 127.1, 127.0, 126.7 (q, *J* = 276.7 Hz), 126.5, 126.4, 82.9, 82.8, 42.8, 42.7, 41.7, 41.3, 36.6 (q, *J* = 2.9 Hz), 36.5 (q, *J* = 3.0 Hz), 35.6 (q, *J* = 28.9 Hz), 35.3 (q, *J* = 28.9 Hz), 30.2, 30.1, 27.0, 26.8, 21.1. ¹⁹F NMR (470

MHz, CDCl₃) δ -64.81 (t, J = 11.0 Hz), -64.92 (t, J = 11.1 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₅F₃N₃O 416.1944; found: 416.1964.

Spectraldatafor2,2-dimethyl-8-(2,2,2-trifluoroethyl)-2,6,7,8-tetrahydropyrrolo[1,2-a][1,3,5]triazin-4(3H)-one (4e)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (47% yield, 24 mg) as yellowish oil. ¹H NMR (400 MHz, CDCl₃) δ 5.43 (brs, 1H), 3.90 – 3.81 (m, 1H), 3.57 – 3.46 (m, 1H), 3.02 – 2.92 (m, 1H), 2.92 – 2.81 (m, 1H), 2.48 – 2.36 (m, 1H), 2.15 – 1.99 (m, 1H), 1.87 – 1.71 (m, 1H), 1.44 (s, 3H), 1.39 (s, 3H). ¹³C {H¹} NMR (100 MHz, CDCl₃) δ 156.5, 151.8, 126.8 (q, *J* = 276.7 Hz), 72.4, 43.0, 36.4 (q, *J* = 2.9 Hz), 35.9 (q, *J* = 29.0 Hz), 31.1, 30.6, 27.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.68 (t, *J* = 10.8 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₀H₁₅F₃N₃O 250.1162; found: 250.1169.

Spectraldatafor2,2-dipropyl-8-(2,2,2-trifluoroethyl)-2,6,7,8-tetrahydropyrrolo[1,2-a][1,3,5]triazin-4(3H)-one (4f)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/3) to afford the title compound (45% yield, 28 mg) as yellowish oil. ¹H NMR (400 MHz, CDCl₃) δ 5.04 (brs, 1H), 3.84 – 3.71 (m, 1H), 3.44 – 3.34 (m, 1H), 2.99 – 2.72 (m, 2H), 2.39 – 2.26 (m, 1H), 2.07 – 1.91 (m, 1H), 1.77 – 1.63 (m, 1H), 1.61 – 1.49 (m, 2H), 1.46 – 1.35 (m, 2H), 1.34 – 1.23 (m, 2H), 1.21 – 1.12 (m, 2H), 0.84 (t, *J* = 7.2 Hz, 3H), δ 0.83 (t, *J* = 7.3 Hz, 3H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 156.1, 151.9, 126.8 (q, *J* = 276.7 Hz), 77.8, 45.2, 45.0, 42.7, 36.5 (q, *J* = 2.8 Hz), 36.0 (q, *J* = 28.9 Hz), 27.4, 16.7, 16.6, 14.3, 14.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.69 (t, *J* = 10.9 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₂₃F₃N₃O 306.1788; found: 306.1783.

Spectral data for 2-ethyl-2-methyl-8-(2,2,2-trifluoroethyl)-2,6,7,8-tetrahydropyrrolo[1,2-a][1,3,5] triazin-4(3H)-one (4g)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/2) to afford the title compound (an inseparable mixture, 53% yield, 28 mg, dr = 1.2/1) as yellowish oil. The major isomer: ¹H NMR (400 MHz, CDCl₃) δ 5.53 (brs, 1H), 3.92 – 3.78 (m, 1H), 3.56 – 3.43 (m, 1H), 3.05 – 2.77 (m, 2H), 2.46 – 2.34 (m, 1H), 2.16 – 1.97 (m, 1H), 1.85 – 1.74 (m, 1H), 1.73 – 1.53 (m, 2H), 1.39 (s, 3H), 0.88 (t, *J* = 7.5 Hz, 3H). The minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 5.48 (brs, 1H), 3.92 – 3.78 (m, 1H), 3.56 – 3.43 (m, 1H), 3.56 – 3.43 (m, 1H), 3.05 – 2.77 (m, 2H), 2.46 – 2.34 (m, 1H), 1.400 MHz, CDCl₃) δ 5.48 (brs, 1H), 3.92 – 3.78 (m, 1H), 3.56 – 3.43 (m, 1H), 3.05 – 2.77 (m, 2H), 2.46 – 2.34 (m, 1H), 2.16 – 1.97 (m, 1H), 1.85 – 1.74 (m, 1H), 1.73 – 1.53 (m, 2H), 1.34 (s, 3H), 0.88 (t, *J* = 7.5 Hz, 3H). ¹³C {H¹} NMR (100 MHz, CDCl₃) δ 156.5, 156.4, 152.1, 151.9, 126.8 (q, *J* = 276.7 Hz), 126.7 (q, *J* = 276.7 Hz), 75.3, 75.1, 42.9, 36.6 (q, *J* = 2.9 Hz), 36.4 (q, *J* = 2.7 Hz), 36.3, 36.2, 36.0 (q, *J* = 28.9 Hz), 35.9 (q, *J* = 28.9 Hz), 29.7, 29.4,

27.4, 27.3, 8.0, 7.9. The mixture: ¹⁹F NMR (376 MHz, CDCl₃) δ -64.69 (t, J = 10.9 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₁₇F₃N₃O 264.1318; found: 264.1328.

Spectral data for 8'-(2,2,2-trifluoroethyl)-7',8'-dihydro-6'H-spiro[cyclobutane-1,2'-pyrrolo[1,2-a] [1,3,5]triazin]-4'(3'H)-one (4h)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/2) to afford the title compound (52% yield, 27 mg) as yellowish oil. ¹H NMR (500 MHz, CDCl₃) δ 5.42 (brs, 1H), 3.92 – 3.75 (m, 1H), 3.55 – 3.41 (m, 1H), 3.04 – 2.86 (m, 2H), 2.49 – 2.32 (m, 2H), 2.30 – 2.15 (m, 3H), 2.14 – 2.03 (m, 1H), 2.03 – 1.89 (m, 1H), 1.86 – 1.67 (m, 2H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 156.2, 151.5, 126.8 (q, *J* = 276.7 Hz), 75.1, 42.9, 40.9, 40.1, 36.4 (q, *J* = 2.9 Hz), 35.9 (q, *J* = 28.8 Hz), 27.4, 12.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.68 (t, *J* = 11.0 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₁₅F₃N₃O 262.1162; found: 262.1155.

Spectral data for 8'-(2,2,2-trifluoroethyl)-7',8'-dihydro-6'H-spiro[cyclopentane-1,2'-pyrrolo [1,2-a][1,3,5]triazin]-4'(3'H)-one (4i)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/2) to afford the title compound (63% yield, 35 mg) as white solid, mp: 140-142 °C. ¹H NMR (400 MHz, CDCl₃) δ 5.95 (brs, 1H), 3.88 – 3.80 (m, 1H), 3.54 – 3.45 (m, 1H), 3.02 – 2.79 (m, 2H), 2.47 – 2.34 (m, 1H), 2.17 – 1.99 (m, 1H), 1.96 – 1.88 (m, 1H), 1.87 – 1.63 (m, 8H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 156.3, 152.2, 126.8 (q, *J* = 276.7 Hz), 82.1, 43.0, 42.1, 41.9, 36.3 (q, *J* = 3.1 Hz), 35.9 (q, *J* = 28.8 Hz), 27.4, 22.9, 22.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.67 (t, *J* = 11.0 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₇F₃N₃O 276.1318; found: 276.1327.

Spectral data for 8'-(2,2,2-trifluoroethyl)-7',8'-dihydro-6'H-spiro[cyclohexane-1,2'-pyrrolo [1,2-a][1,3,5]triazin]-4'(3'H)-one (4k)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (49% yield, 28 mg) as yellowish solid, mp: 154-156 °C. ¹H NMR (400 MHz, CDCl₃) δ 5.29 (brs, 1H), 3.91 – 3.77 (m, 1H), 3.56 – 3.43 (m, 1H), 3.04 – 2.81 (m, 2H), 2.50 – 2.34 (m, 1H), 2.19 – 1.96 (m, 1H), 1.86 – 1.62 (m, 5H), 1.63 – 1.41 (m, 6H). ¹³C {H¹} NMR (100 MHz, CDCl₃) δ 156.1, 151.8, 126.8 (q, *J* = 276.7 Hz), 73.6, 43.0, 39.5, 39.1, 36.4 (q, *J* = 2.8 Hz), 36.0 (q, *J* = 28.9 Hz), 27.5, 25.2, 21.9, 21.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.64 (t, *J* = 10.9 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₉F₃N₃O 290.1475; found: 290.1484.

Spectral data for 8'-(2,2,2-trifluoroethyl)-2,3,5,6,7',8'-hexahydro-6'H-spiro[pyran-4,2'-pyrrolo [1,2-a][1,3,5]triazin]-4'(3'H)-one (4l)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 2/1) to afford the title compound (49% yield, 29 mg) as yellowish solid, mp: 169-171 °C. ¹H NMR (500 MHz, CDCl₃) δ 5.34 (brs, 1H), 3.99 – 3.90 (m, 1H), 3.89 – 3.83 (m, 1H), 3.83 – 3.70 (m, 3H), 3.57 – 3.45 (m, 1H), 3.04 – 2.83 (m, 2H), 2.50 – 2.39 (m, 1H), 2.17 – 2.03 (m, 1H), 1.87 – 1.76 (m, 3H), 1.76 – 1.68 (m, 2H). ¹³C {H¹} NMR (100 MHz, CDCl₃) δ 156.6, 151.6, 126.7 (q, *J* = 276.6 Hz), 71.2, 64.1, 64.0, 43.1, 40.4, 40.2, 36.6 (q, *J* = 2.9 Hz), 35.9 (q, *J* = 29.0 Hz), 27.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.61 (t, *J* = 10.8 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₇F₃N₃O₂ 292.1267; found: 292.1273.

Spectral data for 8-methyl-2,2-diphenyl-8-(2,2,2-trifluoroethyl)-2,6,7,8-tetrahydropyrrolo[1,2-a] [1,3,5]triazin-4(3H)-one (4m)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/3) to afford the title compound (55% yield, 43 mg) as white solid, mp: 159-161 °C; and 12% yield of **7b**. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.16 (m, 10H), 5.67 (brs, 1H), 3.74 – 3.64 (m, 1H), 3.56 – 3.43 (m, 1H), 2.76 – 2.58 (m, 1H), 2.34 – 2.17 (m, 1H), 2.07 – 1.86 (m, 2H), 1.27 (s, 3H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 160.1, 150.1, 144.2, 143.9, 127.3, 127.2, 126.8, 126.7, 125.5 (q, *J* = 277.7 Hz), 125.2, 125.1, 78.0, 41.0, 40.8, 40.2 (q, *J* = 27.7 Hz), 31.6, 22.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.31 (t, *J* = 11.4 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₁F₃N₃O 388.1631; found: 388.1648.

Spectral data for 2,2,8-triphenyl-8-(2,2,2-trifluoroethyl)-2,6,7,8-tetrahydropyrrolo[1,2-a][1,3,5] triazin-4(3H)-one (4n)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (15% yield, 14 mg) as yellowish oil; and 10% yield of **7c**. ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.23 (m, 15H), 5.62 (brs, 1H), 3.90 – 3.79 (m, 1H), 3.41 – 3.30 (m, 1H), 3.18 – 3.01 (m, 1H), 2.92 – 2.66 (m, 2H), 2.33 – 2.17 (m, 1H). ¹³C {H¹} NMR (100 MHz, CDCl₃) δ 159.3, 151.0, 145.1, 144.9, 137.9, 128.9, 128.5, 128.1, 128.0, 127.6 (q, *J* = 277.9 Hz), 126.6, 126.3, 79.7, 49.2 (q, *J* = 2.3 Hz), 42.9 (q, *J* = 27.4 Hz), 41.9, 31.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.20 (t, *J* = 11.0 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₆H₂₃F₃N₃O 450.1779; found: 450.1788.

Spectral data for 2',2'-diphenyl-2-(trifluoromethyl)-2',3',6',7'-tetrahydro-4'H-spiro[cyclopentane-1,8'-pyrrolo[1,2-a][1,3,5]triazin]-4'-one (40)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (30% yield, 25 mg, dr > 19/1) as yellowish oil; and 11% yield of **7d** (dr >19/1). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.20 (m, 10H), 5.62 (brs, 1H), 3.85 – 3.73 (m, 1H), 3.59 – 3.46 (m, 1H), 3.37 – 3.23 (m, 1H), 2.33 – 2.15 (m, 2H), 2.02 – 1.70 (m, 6H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 161.1, 151.2, 145.4, 145.0, 128.4, 128.3, 128.0, 127.9, 127.5 (q, *J* = 278.9 Hz), 126.4, 126.3, 79.2, 52.7, 48.4 (q, *J* = 26.2 Hz), 42.4, 39.4, 29.4, 26.0 (q, *J* = 2.5 Hz), 22.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -65.69 (d, *J* = 10.4 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₃F₃N₃O 414.1788; found: 414.1794.

Spectral data for 2',2'-diphenyl-2-(trifluoromethyl)-2',3',6',7'-tetrahydro-4'H-spiro[cyclohexane-1,8'-pyrrolo[1,2-a][1,3,5]triazin]-4'-one (4p)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (42% yield, 36 mg, dr > 19/1) as yellowish oil and 18% yield of **7e** (dr = 3.3/1). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.37 (m, 2H), 7.36 – 7.26 (m, 8H), 5.52 (brs, 1H), 3.76 – 3.57 (m, 2H), 2.85 – 2.67 (m, 1H), 2.31 – 2.19 (m, 1H), 2.03 – 1.95 (m, 1H), 1.90 – 1.68 (m, 4H), 1.63 – 1.54 (m, 1H), 1.52 – 1.32 (m, 3H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 161.8, 151.3, 145.5, 145.0, 128.3, 128.2, 127.9, 127.8, 127.3 (q, *J* = 281.7 Hz), 126.7, 126.5, 79.3, 46.4 (q, *J* = 24.7 Hz), 46.3, 42.3, 37.8, 25.8, 24.4, 22.8 (q, *J* = 2.8 Hz), 21.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.69 (d, *J* = 9.3 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₂₅F₃N₃O 428.1944; found: 428.1952.

Spectral data for 3-methyl-2,2,6-triphenyl-8-(2,2,2-trifluoroethyl)-2,6,7,8-tetrahydropyrrolo[1,2-a] [1,3,5]triazin-4(3H)-one (4q)

According to the general procedure, upon completion, the mixture was cooled to room temperature, diluted with EtOAc (10 mL), and filtered with a pad of silica gel, the filtrate was concentrated under reduced pressure. Then to a solution of residue in THF (0.8 mL) was added NaH (2.0 equiv) and MeI (1.2 equiv) at 0 °C. The resulting mixture was warmed to room temperature for 20 h. After completion, the solvent was evaporated and the residue was dissolved in EtOAc, washed with H₂O and brine. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (an inseparable mixture, 56% yield, 52 mg, dr = 1/1) as white solid. The mixture: ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.39 (m, 6H), 7.38 – 7.29 (m, 12H), 7.29 – 7.26 (m, 2H), 7.23 – 7.19 (m, 6H), 6.89 – 6.83 (m, 4H), 5.46 (dd, *J* = 7.9, 2.5 Hz, 1H), 5.04 (dd, *J* = 9.7, 6.8 Hz, 1H), 3.24 – 3.13 (m, 1H), 3.06 – 2.91 (m, 3H), 2.84 – 2.75 (m, 1H), 2.69 (s, 3H), 2.62 (s, 3H), 2.37 – 2.25 (m, 2H), 2.23 – 2.12 (m, 1H), 2.01 – 1.88 (m, 1H), 1.52 – 1.41 (m, 1H). ¹³C {H¹} NMR (125 MHz, CDCl₃) δ 159.1, 157.9, 152.2, 151.4, 143.2, 142.9, 142.6, 142.3, 141.6, 140.9, 129.2, 128.9, 128.8, 128.5, 128.4, 128.2, 127.8, 127.6, 127.5, 127.2, 126.8 (q, *J* = 276.5 Hz), 125.5, 125.1, 84.1, 83.4, 60.4, 58.5, 38.4, 37.4, 36.0 (q, *J* = 28.3 Hz), 35.7, 35.5 (q, *J* = 29.1 Hz), 34.9, 32.0, 31.9. ¹⁹F NMR (470 MHz, CDCl₃) δ -64.57 (t, *J* = 11.0 Hz, 3F), -64.76 (t, *J* = 10.9 Hz, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₇H₂₅F₃N₃O 464.1944; found: 464.1949.

Spectral data for 7,7-dimethyl-2,2-diphenyl-8-(2,2,2-trifluoroethyl)-2,6,7,8-tetrahydropyrrolo [1,2-a][1,3,5]triazin-4(3H)-one (4r)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (60% yield, 48 mg) as yellowish solid, mp: 174-176 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.42 – 7.36 (m, 4H), 7.34 – 7.23 (m, 6H), 6.02 (brs, 1H), 3.53 (d, *J* = 10.5 Hz, 1H), 3.26 (d, *J* = 10.5 Hz, 1H), 2.99 – 2.83 (m, 1H), 2.79 – 2.72 (m, 1H), 2.23 – 2.09 (m, 1H), 1.20 (s, 3H), 0.74 (s, 3H). ¹³C{H¹} NMR (125 MHz, CDCl₃) δ 157.7, 151.4, 145.4, 145.2, 128.5, 128.3, 127.9, 127.8, 126.8 (q, *J* = 276.7 Hz), 126.4, 126.0, 79.1, 56.3, 46.4, 38.6, 30.2 (q, *J* = 30.0 Hz), 24.3, 21.2. ¹⁹F NMR (470 MHz, CDCl₃) δ -63.72 (t, *J* = 11.5 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₃F₃N₃O 402.1788; found: 402.1780.

3. General procedure for preparation of products 6

To a flame-dried sealed tube equipped with a magnetic stir bar were added 1 (0.2 mmol, 1 equiv.), 2c (0.4 mmol, 2.0 equiv.), Cu(MeCN)₄PF₆ (10 mol%), bpy (10 mol%, 0.02 mmol). The tube was evacuated and backfilled with nitrogen for three times. Then DCE (2.0 mL) and TMSN₃ (0.6 mmol, 3 equiv.) were added *via* syringe. The tube was stirred at 30 °C for 4 h. After completion, the mixture was cooled to room temperature, diluted with EtOAc (10 mL), and filtered with a pad of silica gel, the filtrate was concentrated under reduced pressure. The residue was then purified by flash column chromatography to give the triazoles **6**.

Spectral data for (Z)-2-azido-N-(3-(azidomethyl)pyrrolidin-2-ylidene)-2,2-diphenylacetamide (6a)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (49% yield, 37 mg) as white solid, mp: 135-137 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.01 (s, 1H), 7.43 – 7.26 (m, 10H), 3.73 – 3.62 (m, 2H), 3.62 – 3.53 (m, 2H), 3.08 – 2.87 (m, 1H), 2.30 – 2.15 (m, 1H), 2.05 – 1.91 (m, 1H). ¹³C{H¹} NMR (125 MHz, CDCl₃) δ 184.9, 174.8, 140.9, 140.8, 128.6, 128.5, 128.1, 128.0, 127.9, 78.8, 52.0, 45.8, 44.9, 23.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₁₉N₈O 375.1676; found: 375.1680.

Spectral data for (Z)-2-azido-N-(3-(azidomethyl)-3-methylpyrrolidin-2-ylidene)-2,2- diphenylacetamide (6b)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (68% yield, 53 mg) as white solid, mp: 139-141 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 7.40 – 7.26 (m, 10H), 3.68 – 3.55 (m, 2H), 3.62 (d, *J* = 11.9 Hz, 1H), 3.25 (d, *J* = 11.9 Hz, 1H), 2.29 – 2.16 (m, 1H), 1.86 – 1.75 (m, 1H),

1.15 (s, 3H). ¹³C{H¹} NMR (125 MHz, CDCl₃) δ 185.4, 177.8, 141.1, 141.0, 128.6, 128.5, 128.0, 127.8, 78.9, 58.0, 48.7, 44.4, 30.1, 22.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₁N₈O 389.1833; found: 389.1824.

Spectral data for (Z)-2-azido-N-(3-(azidomethyl)-3-phenylpyrrolidin-2-ylidene)-2,2- diphenylacetamide (6c)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (25% yield, 23 mg) as yellowish oil. ¹H NMR (500 MHz, CDCl₃) δ 10.06 (s, 1H), 7.44 – 7.40 (m, 2H), 7.39 – 7.29 (m, 8H), 7.29 – 7.20 (m, 5H), 3.90 (d, *J* = 12.0 Hz, 1H), 3.68 – 3.62 (m, 1H), 3.56 (d, *J* = 12.1 Hz, 1H), 3.54 – 3.47 (m, 1H), 2.59 – 2.45 (m, 2H). ¹³C{H¹} NMR (125 MHz, CDCl₃) δ 185.0, 175.5, 140.8, 140.5, 138.3, 128.9, 128.7, 128.2, 128.1, 128.0, 127.8, 126.7, 79.2, 57.9, 56.0, 44.3, 30.0. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₂₃N₈O 451.1989; found: 451.1993.

Spectral data for (Z)-2-azido-N-(6-azido-2-azaspiro[4.4]nonan-1-ylidene)-2,2-diphenylacetamide (6d)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (67% yield, dr > 19/1, 56 mg) as white solid, mp: 141-143 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.97 (s, 1H), 7.41 – 7.26 (m, 10H), 4.10 (dd, *J* = 9.3, 7.7 Hz, 1H), 3.69 – 3.61 (m, 1H), 3.59 – 3.51 (m, 1H), 2.39 – 2.28 (m, 1H), 2.19 – 2.06 (m, 1H), 2.01 – 1.88 (m, 1H), 1.78 – 1.68 (m, 3H), 1.67 – 1.56 (m, 2H). ¹³C{H¹} NMR (125 MHz, CDCl₃) δ 185.2, 178.1, 141.1, 140.9, 128.6, 128.5, 128.0, 127.8, 79.0, 67.6, 57.8, 44.8, 35.5, 30.1, 27.8, 20.8. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₃N₈O 415.1989; found: 415.1998.

Spectral data for (Z)-2-azido-N-(6-azido-2-azaspiro[4.5]decan-1-ylidene)-2,2-diphenylacetamide (6e)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (71% yield, dr > 19/1, 61 mg) as white solid, mp: 179-181 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.94 (s, 1H), 7.41 – 7.25 (m, 10H), 3.86 – 3.76 (m, 1H), 3.67 – 3.47 (m, 2H), 2.22 – 2.08 (m, 1H), 2.02 – 1.89 (m, 1H), 1.85 – 1.72 (m, 2H), 1.67 – 1.57 (m, 2H), 1.55 – 1.43 (m, 1H), 1.40 – 1.10 (m, 3H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 185.4, 178.3, 141.2, 141.0, 128.6, 128.5, 128.1, 128.0, 127.8, 127.7, 78.9, 64.3, 53.3, 44.9, 33.6, 28.1, 24.7, 24.2, 21.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₅N₈O 429.2146; found: 429.2129.

Spectral data for (Z)-2-azido-N-(3-(azidomethyl)-3-methylpyrrolidin-2-ylidene)-2-methylpropanamide (6f)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (57% yield, 30 mg) as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 9.93 (s, 1H), 3.86 – 3.70 (m, 1H), 3.70 – 3.56 (m, 2H), 3.30 (d, *J* = 12.0 Hz, 1H), 2.33 – 2.16 (m, 1H), 1.88 – 1.78 (m, 1H), 1.47 (s, 3H), 1.45 (s, 3H), 1.24 (s, 3H). ¹³C{H¹} NMR (125 MHz, CDCl₃) δ 188.3, 177.8, 65.9, 57.9, 48.8, 44.2, 30.1, 24.9, 24.8, 22.3. HRMS (ESI) m/z: [M+H]⁺

calcd for C₁₀H₁₇N₈O 265.1520; found: 265.1525.

Spectral data for (Z)-1-azido-N-(3-(azidomethyl)-3-methylpyrrolidin-2-ylidene)cyclobutane-1-carboxamide (6g)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (45% yield, 25 mg) as yellowish oil. ¹H NMR (500 MHz, CDCl₃) δ 9.95 (s, 1H), 3.76 (d, *J* = 12.0 Hz, 1H), 3.71 – 3.58 (m, 2H), 3.31 (d, *J* = 12.0 Hz, 1H), 2.68 – 2.55 (m, 2H), 2.32 – 2.15 (m, 3H), 2.08 – 1.90 (m, 2H), 1.88 – 1.78 (m, 1H), 1.24 (s, 3H). ¹³C{H¹} NMR (125 MHz, CDCl₃) δ 187.1, 177.6, 68.1, 57.9, 48.9, 44.3, 31.5, 31.2, 30.2, 22.3, 14.7. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₁₇N₈O 277.1520; found: 277.1508.

Spectral data for (Z)-4-azido- N-(3-(azidomethyl) -3-methylpyrrolidin -2-ylidene) tetrahydro-2H -pyran-4carboxamide (6h)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (52% yield, 32 mg) as white solid, mp: 97-99 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.95 (s, 1H), 3.84 – 3.77 (m, 2H), 3.77 – 3.70 (m, 3H), 3.70 – 3.59 (m, 2H), 3.29 (d, *J* = 12.0 Hz, 1H), 2.29 – 2.23 (m, 1H), 2.23 – 2.14 (m, 2H), 1.87 – 1.80 (m, 1H), 1.79 – 1.67 (m, 2H), 1.23 (s, 3H). ¹³C{H¹} NMR (125 MHz, CDCl₃) δ 186.4, 178.2, 65.9, 64.1, 64.0, 58.0, 48.8, 44.3, 32.4, 32.3, 30.1, 22.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁9N₈O₂ 307.1625; found: 307.1632.

4. General procedure for preparation of products 7

The general procedure is the same as that of preparation 4 (Con. B).

Spectraldatafor8-(azidomethyl)-8-methyl-2,2-diphenyl-2,6,7,8-tetrahydropyrrolo[1,2-a][1,3,5]triazin-4(3H)-one (7b)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/3) to afford the title compound (65% yield, 47 mg) as yellowish solid, mp: 158-160 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 4H), 7.35 – 7.22 (m, 6H), 5.90 (brs, 1H), 3.76 – 3.67 (m, 1H), 3.64 – 3.53 (m, 1H), 3.61 (d, *J* = 12.0 Hz, 1H), 3.45 (d, *J* = 12.0 Hz, 1H), 2.17 – 2.03 (m, 1H), 1.84 – 1.67 (m, 1H), 1.26 (s, 3H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 160.3, 151.2, 145.5, 145.2, 128.4, 128.3, 127.9, 126.4, 126.3, 79.2, 58.3, 46.2, 41.9, 30.8, 22.4. HRMS (ESI) m/z: [M+H]⁺ calcd

for C₂₀H₂₁N₆O 361.1771; found: 361.1779.

Spectral data for 8-(azidomethyl)-2,2,8-triphenyl-2,6,7,8-tetrahydropyrrolo[1,2-a][1,3,5]triazine -4(3H)-one (7c)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (36% yield, 31 mg) as yellowish solid, mp: 179-181 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.21 (m, 15H), 5.91 (brs, 1H), 3.95 (d, *J* = 12.3 Hz, 1H), 3.87 – 3.76 (m, 1H), 3.81 (d, *J* = 12.4 Hz, 1H), 3.41 – 3.27 (m, 1H), 2.48 – 2.31 (m, 2H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 158.4, 151.1, 145.1, 145.0, 138.8, 128.9, 128.5, 128.4, 128.0, 127.9, 126.7, 126.6, 126.5, 79.6, 58.1, 54.0, 41.7, 30.7. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₂₃N₆O 423.1936; found: 423.1928.

Spectral data for 2-azido-2',2'-diphenyl-2',3',6',7'-tetrahydro-4'H-spiro[cyclopentane-1,8'- pyrrolo [1,2-a][1,3,5]triazin]-4'-one (7d)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (50% yield, 39 mg, dr > 19/1) as white solid, mp: 183-185 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.34 (m, 4H), 7.34 – 7.29 (m, 4H), 7.28 – 7.23 (m, 2H), 5.80 (brs, 1H), 4.19 (t, *J* = 7.6 Hz, 1H), 3.77 – 3.69 (m, 1H), 3.60 – 3.52 (m, 1H), 2.35 – 2.28 (m, 1H), 2.28 – 2.20 (m, 1H), 2.06 – 1.98 (m, 1H), 1.94 – 1.80 (m, 2H), 1.80 – 1.67 (m, 3H). ¹³C{H¹} NMR (125 MHz, CDCl₃) δ 160.7, 151.2, 145.5, 145.3, 128.4, 127.9, 126.4, 126.3, 79.1, 67.9, 55.6, 42.5, 35.7, 30.2, 28.0, 20.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₃N₆O 387.1928; found: 387.1939.

Spectral data for 2-azido-2',2'-diphenyl-2',3',6',7'-tetrahydro-4'H-spiro[cyclohexane-1,8'-pyrrolo [1,2-a][1,3,5]triazin]-4'-one (7e)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (an inseparable mixture, 52% yield, 42 mg, dr = 3.1/1) as yellowish solid. The major isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.36 (m, 4H), 7.35 – 7.29 (m, 4H), 7.29 – 7.22 (m, 2H), 5.84 (brs, 1H), 3.97 – 3.89 (m, 1H), 3.78 – 3.66 (m, 1H), 3.60 – 3.50 (m, 1H), 2.21 – 2.02 (m, 2H), 1.99 – 1.87 (m, 1H), 1.86 – 1.74 (m, 2H), 1.74 – 1.59 (m, 3H), 1.51 – 1.35 (m, 2H). The minor isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.36 (m, 4H), 7.35 – 7.29 (m, 4H), 7.29 – 7.22 (m, 2H), 5.83 (brs, 1H), 3.78 – 3.66 (m, 1H), 3.60 – 3.50 (m, 1H), 7.35 – 7.29 (m, 4H), 7.29 – 7.22 (m, 2H), 5.83 (brs, 1H), 3.78 – 3.66 (m, 1H), 3.60 – 3.50 (m, 1H), 3.44 – 3.36 (m, 1H), 2.68 – 2.58 (m, 1H), 2.21 – 2.02 (m, 2H), 1.99 – 1.87 (m, 1H), 1.86 – 1.74 (m, 2H), 1.74 – 1.59 (m, 3H), 1.51 – 1.35 (m, 1H). The mixture: ¹³C{H¹} NMR (125 MHz, CDCl₃) δ 161.3, 158.6, 151.6, 151.3, 145.6, 145.5, 145.3, 128.3, 127.9, 127.7, 126.5, 126.3, 79.2, 66.1, 65.2, 50.4, 48.2, 42.5, 42.0, 35.4, 34.3, 33.8, 28.3, 26.3, 24.9, 24.5, 24.2, 21.3, 20.7. The major isomer: HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₅N₆O 401.2084; found: 401.2095. The minor isomer: HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₅N₆O 401.2084; found: 401.2092.

Spectral data for 2-azido-2',2'-diphenyl-2',3',6',7'-tetrahydro-4'H-spiro[cyclohexane-1,8'-pyrrolo [1,2-a][1,3,5]triazin]-4'-one (7e-major)

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.36 (m, 4H), 7.36 – 7.30 (m, 4H), 7.30 – 7.27 (m, 2H), 5.61 (brs, 1H), 3.97 – 3.89 (m, 1H), 3.77 – 3.69 (m, 1H), 3.62 – 3.52 (m, 1H), 2.17 – 2.01 (m, 2H), 1.86 – 1.74 (m, 2H), 1.74 – 1.60 (m, 4H), 1.48 – 1.39 (m, 2H). ¹³C{H¹} NMR (125 MHz, CDCl₃) δ 161.4, 151.1, 145.6, 145.3, 128.4, 127.9, 126.5, 79.3, 65.2, 50.4, 42.5, 34.3, 28.3, 25.0, 24.3, 21.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₅N₆O 401.2084; found: 401.2099.

Spectral data for 2,2,8- trimethyl- 8-((4-phenyl-1H-1,2,3-triazol-1-yl) methyl) -2,6,7,8- tetrahydropyrrolo [1,2-a][1,3,5]triazin-4(3H)-one (7f)

According to the general procedure, upon completion, the mixture was cooled to room temperature, diluted with EtOAc (10 mL), and filtered with a pad of silica gel, the filtrate was concentrated under reduced pressure. Then the residue and CuI (20 mol%, 0.04 mmol) were added in a 25 mL oven-dried sealed tube. The tube was evacuated and backfilled with N₂ for three times, after that, phenylacetylene (0.6 mmol, 3.0 equiv.) and THF (2.0 mL) were then added via syringe under N₂. The tube was sealed with a Teflon lined cap and moved into a preheated oil bath at 60 °C for 24 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (10 mL) and filtered through a pad of Celite. The filtrate was concentrated, and the residue was then purified by column chromatography (silica gel, EtOAc/Petroleum ether: 5/1) to afford the title compound (46% yield, 31 mg) as yellowish solid, mp: 219-221 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.91 (s, 1H), 7.80 (d, *J* = 7.2 Hz, 2H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 1H), 5.59 (brs, 1H), 4.65 (d, *J* = 14.1 Hz, 1H), 4.57 (d, *J* = 14.0 Hz, 1H), 3.54 (dd, *J* = 8.8, 5.2 Hz, 2H), 2.22 - 2.12 (m, 1H), 1.93 - 1.85 (m, 1H), 1.49 (s, 3H), 1.48 (s, 3H), 1.33 (s, 3H). ¹³C {H¹} NMR (125 MHz, CDCl₃) δ 159.1, 151.6, 130.5, 129.0, 128.4, 125.7, 121.4, 72.4, 55.4, 46.1, 41.3, 31.1, 30.9, 30.3, 22.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₈H₂₃N₆O 339.1928; found: 339.1936.

Spectral data for 8' -(azidomethyl) -8'- methyl- 7',8'- dihydro -6'H- spiro [cyclobutane-1,2'-pyrrolo[1,2-a] [1,3,5]triazin]-4'(3'H)-one (7g)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 2/1) to afford the title compound (61% yield, 30 mg) as yellowish oil. ¹H NMR (500 MHz, CDCl₃) δ 6.23 (brs, 1H), 3.75 – 3.68 (m, 1H), 3.63 (d, *J* = 12.1 Hz, 1H), 3.60 – 3.51 (m, 1H), 3.31 (d, *J* = 12.2 Hz, 1H), 2.41 – 2.28 (m, 2H), 2.28 – 2.19 (m, 2H), 2.19 – 2.11 (m, 1H), 2.04 – 1.90 (m, 1H), 1.82 – 1.68 (m, 2H), 1.23 (s, 3H). ¹³C {H¹} NMR (125 MHz, CDCl₃) δ 159.1, 151.8, 75.0,

57.8, 46.0, 41.4, 40.5, 40.1, 30.7, 22.3, 12.8. HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{11}H_{17}N_6O$ 249.1458; found: 249.1448.

Spectral data for 8'- (azidomethyl) -8'-methyl -2,3,5,6,7',8' -hexahydro-6' H-spiro [pyran-4,2'-pyrrolo[1,2-a] [1,3,5]triazin]-4'(3'H)-one (7h)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 2/1) to afford the title compound (54% yield, 31 mg) as white solid, mp: 183-185 °C. ¹H NMR (400 MHz, CDCl₃) δ 5.92 (brs, 1H), 3.97 – 3.83 (m, 2H), 3.82 – 3.71 (m, 3H), 3.66 – 3.53 (m, 2H), 3.31 (d, *J* = 12.1 Hz, 1H), 2.25 – 2.11 (m, 1H), 1.93 – 1.68 (m, 5H), 1.22 (s, 3H). ¹³C{H¹} NMR (125 MHz, CDCl₃) δ 159.4, 151.9, 71.2, 64.1, 64.0, 58.0, 46.1, 41.6, 40.4, 40.1, 30.6, 22.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₉N₆O₂ 279.1564; found: 279.1556.

V. Scale-up Reaction and Synthetic Transformations

- 1. Scale-up Reaction
- 1) Scale-up reaction for preparation of product 3a

To a flame-dried sealed tube equipped with a magnetic stir bar were added **1a** (2 mmol, 1 equiv.), Togni's reagent **2a** (3 mmol, 1.5 equiv.), NiCl₂·DME (10 mol%, 0.2 mmol) and **L1** (10 mol%, 0.2 mmol). The tube was evacuated and backfilled with nitrogen for three times. Then ethyl acetate (15 mL) and TMSN₃ (6 mmol, 3 equiv.) were added *via* syringe. The tube was stirred at 50 °C for 24 h. After completion, the mixture was cooled to room temperature, and sat. aq. soln. of NaHCO₃ was added. Then the aqueous phase was extracted with DCM, washed with brine, dried over Na₂SO₄. The filtrate was concentrated under reduced pressure and the crude was purified by flash chromatography (silica gel, EtOAc/Petroleum ether (60-90 °C)) to give the desired compounds **3a** (442 mg, 55%).

2) Scale-up reaction for preparation of product 4a

To a flame-dried sealed tube equipped with a magnetic stir bar were added **1a** (2 mmol, 1 equiv.), Togni's reagent **2a** (3 mmol, 1.5 equiv.) and NiCl₂·DME (10 mol%, 0.2 mmol). The tube was evacuated and backfilled with nitrogen for three times. Then ethyl acetate (15 mL) and TMSN₃ (6 mmol, 3 equiv.) were added *via* syringe. The tube was stirred at 80 °C for 24 h. After completion, the mixture was cooled to room temperature, and sat. aq. soln. of NaHCO₃ was added. Then the aqueous phase was extracted with DCM, washed with brine, dried over Na₂SO₄.

The filtrate was concentrated under reduced pressure and the crude was purified by flash chromatography (silica gel, EtOAc/Petroleum ether (60-90 °C)) to give the desired compounds **4a** (456 mg, 61%).

1a + 2a MeO ΗN HN (2 mmol)standard Ph Ph Ph . Me condition A Ph Ρh Ph CF_3 HN 9,85% yield 11,91% yield 16.84% Na Рh́ Ph 61 Ph d b Ρh -CF₃ 3a NHBoc HN HN Mé 55% vield Ph Ρh BocHN е 17 95% Ph `Ph Ph Ρh 12, 62% yield 10, 78% yield Ń Рń Ρh Me Ph Ph 18, 92% ć Ph 13, 73% yield 14,68% yield 7b standard Me condition B HN 2a NHBoc 1a (2 mmol) Me Ph Рń **19,** 93% P۲ 4a 15, 92% yield 61% yield

2. Synthetic Transformations

a Reaction conditions: a) CuI (20 mol %), phenylacetylene (3 equiv.), THF (0.1 M), 60 °C, 24 h. b) CsF (2 equiv.), MeCN (0.1 M), 70 °C, 24 h. c) P(OMe)₃ (1.5 equiv.), toulene (0.2 M), 80 °C, 12 h. d) P(Me)₃ (2 equiv.), THF/H2O = 4/1 (0.05 M), rt, 4 h, then, Boc₂O (1.2 equiv.), Et₃N (1.2 equiv.), DCM (0.2 M), 0 °C to rt, overnight. e) K₂CO₃ (2 equiv.), 3-Bromopropyne (1.1 equiv.), MeCN (0.25 M), 60 °C, 24 h. f) CuI (20 mol %), THF (0.1 M), 60 °C, 24 h. g) NaH (1.2 equiv.), MeI (1.2 equiv.), THF (0.2 M), 0 °C to rt, 20 h. h) CuI (20 mol%), phenylacetylene (6 equiv.), THF (0.1 M), 60 °C, 24 h. i) PPh₃ (2 equiv.), THF/H₂O = 50/1 (0.1 M), rt, 4 h, then, Boc₂O (1.2 equiv.), Et₃N (1.2 equiv.), DCM (0.2 M), 0 °C to rt, overnight.

Preparation of product 9²

CuI (0.02 mmol, 20 mol%) and **3a** (0.1 mmol, 1 equiv.) were added in an oven-dried sealed tube. The vessel was evacuated and backfilled with N_2 (repeated for 3 times), after that, phenylacetylene (0.3 mmol, 3.0 equiv.) and THF (1.0 mL) were then added via syringe under N_2 . The tube was sealed with a Teflon lined cap and moved into a preheated oil bath at 60 °C for 24 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (10 mL) and filtered through a pad of celite. The filtrate was concentrated, and the residue was then purified by flash column chromatography to afford the corresponding product.

Spectral data for (Z)-2,2-diphenyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)-N-(3-(2,2,2-trifluoroethyl) pyrrolidin-2-ylidene)acetamide (9)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/2) to afford the title compound (85% yield, 43 mg) as yellowish solid, (mp: 135-137 °C). ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 7.83 (s, 1H), 7.80 (d, J = 7.7 Hz, 2H), 7.42 – 7.27 (m, 13H), 3.71 – 3.53 (m, 2H), 3.04 – 2.90 (m, 1H), 2.67 – 2.50 (m, 1H), 2.45 –

2.32 (m, 1H), 1.95 - 1.74 (m, 2H). ¹³C {H¹} NMR (125 MHz, CDCl₃) δ 182.4, 174.5, 145.8, 140.1, 140.0, 131.0, 129.8, 129.7, 128.8, 128.5, 128.4, 128.0, 126.7 (q, *J* = 276.2 Hz), 125.8, 123.1, 80.5, 45.6, 39.4, 35.5 (q, *J* = 28.9 Hz), 27.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -64.72 (t, *J* = 11.1 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₈H₂₅F₃N₅O 504.2006; found: 504.2014.

Preparation of product 10³

To a stirred solution of 2-(trimethylsilyl)phenyl trifluoromethanesulfonate (0.2 mmol, 2.0 equiv.) in CH₃CN (1 mL) were added **3a** (0.1 mmol, 1.0 equiv.) and CsF (0.2 mmol, 2.0 equiv.). The mixture was stirred at 70 °C for 24 h. After completion, the reaction mixture was diluted with DCM and washed with brine. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the corresponding product.

Spectral data for (Z)-2-(1H-benzo[d][1,2,3]triazol-1-yl)-2,2-diphenyl-N-(3-(2,2,2-trifluoroethyl) pyrrolidin-2-ylidene)acetamide (10)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/3) to afford the title compound (78% yield, 37 mg) as yellowish solid, (mp: 131-134 °C). ¹H NMR (500 MHz, CDCl₃) δ 9.84 (s, 1H), 8.04 (d, *J* = 8.4 Hz, 1H), 7.42 – 7.28 (m, 10H), 7.23 (t, *J* = 7.9 Hz, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 6.61 (d, *J* = 8.4 Hz, 1H), 3.59 – 3.43 (m, 2H), 2.85 – 2.72 (m, 1H), 2.35 – 2.24 (m, 1H), 2.13 – 1.98 (m, 1H), 1.76 – 1.64 (m, 1H), 1.58 – 1.43 (m, 1H). ¹³C {H¹} NMR (100 MHz, CDCl₃) δ 182.8, 174.5, 146.4, 139.2, 138.8, 135.0, 130.2, 129.9, 128.4, 128.3, 128.0, 127.9, 126.5 (q, *J* = 277.6 Hz), 126.2, 123.3, 119.9, 113.8, 80.3, 45.5, 39.3 (q, *J* = 2.9 Hz), 35.0 (q, *J* = 28.9 Hz), 26.9. ¹⁹F NMR (470 MHz, CDCl₃) δ -64.84 (t, *J* = 10.9 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₆H₂₃F₃N₅O 478.1849; found: 478.1862.

Preparation of product 11³

The mixture solution of azide **3a** (0.1 mmol, 1.0 equiv.) and $P(OMe)_3$ (0.15 mmol, 1.5 equiv.) in toluene (0.5 mL) was heated at 80 °C for 12 h. After completion, the organic solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography on silica gel to afford the corresponding product.

Spectral data for dimethyl (Z)-(2-oxo-1,1-diphenyl-2-((3-(2,2,2-trifluoroethyl)pyrrolidin-2-ylidene)amino)ethyl) phosphoramidate (11)

MeC MeO-HN CF₃

Purified by column chromatography (silica gel, EtOAc) to afford the title compound (91% yield, 44 mg) as yellowish oil. ¹H NMR (300 MHz, CDCl₃) δ 9.94 (s, 1H), 7.54 – 7.46 (m, 4H), 7.33 – 7.21 (m, 6H), 5.72 (d, *J* = 12.0 Hz, 1H), 3.65 – 3.47 (m, 2H), 3.32 (d, *J* = 2.8 Hz, 3H), 3.29 (d, *J* = 2.7 Hz, 3H), 3.05 – 2.90 (m, 1H), 2.90 – 2.67 (m, 1H), 2.43 – 2.29 (m, 1H), 2.02 – 1.70 (m, 2H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 186.0 (d, *J* = 11.9 Hz), 174.6, 141.8, 141.7, 129.9, 129.7, 127.3, 127.2, 127.0, 126.6 (q, *J* = 277.0 Hz), 71.8, 52.8, 52.7, 45.3, 39.3, 35.4 (q, *J* = 28.7 Hz), 26.8. ¹⁹F NMR (470 MHz, CDCl₃) δ -64.52 (t, *J* = 11.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 7.14. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₆F₃N₃O₄P 484.1608; found: 484.1592.

Preparation of product 12⁴

To a solution of the azido **3a** (0.1 mmol, 1 equiv.) in 2 mL of THF/H₂O (4/1), was added P(Me)₃ (0.2 mmol, 2 equiv.) at 0 °C. The resulting mixture was warmed to room temperature and stirred for 4 h. The mixture was washed with water and the aqueous layer was extracted with ethyl acetate. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo affording amine without any further purification. To a suspension of amine (0.1 mmol, 1.0 equiv.) in DCM (0.5 ml) was added Et₃N (0.12 mmol, 1.2 equiv.) and Boc₂O (0.12 mmol, 1.2 equiv.) under nitrogen atmosphere at 0 °C. The resulting mixture was allowed to warm up to room temperature and stirred overnight. Upon completion, the reaction mixture was quenched with H₂O and the aqueous phase was extracted with DCM. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash chromatography to give the desired product.

Spectral data for tert-butyl (Z)-(2-oxo-1,1-diphenyl-2-((3-(2,2,2-trifluoroethyl)pyrrolidin-2-ylidene)amino)ethyl) carbamate (12)

BocHN Ph Ph Cl

Purified by column chromatography (silica gel, EtOAc) to afford the title compound (62% yield, 30 mg) as yellowish oil. ¹H NMR (400 MHz, CDCl₃) δ 10.27 (s, 1H), 7.55 – 7.39 (m, 4H), 7.35 – 7.22 (m, 6H), 4.86 (s, 1H), 3.35 – 3.19 (m, 1H), 3.14 – 2.87 (m, 3H), 2.51 – 2.27 (m, 1H), 1.98 – 1.83 (m, 2H), 1.42 (s, 9H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 183.9, 163.8, 157.4, 140.2, 140.0, 128.5, 128.4, 127.7, 127.4 (q, *J* = 278.9 Hz), 127.1, 127.0, 80.6, 37.8, 36.1 (q, *J* = 29.6 Hz), 35.6, 31.6, 28.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.38. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₂₉F₃N₃O₃ 476.2156; found: 476.2160.

Preparation of product 13³

To a solution of compound **3a** (0.1 mmol, 1.0 equiv.) in CH₃CN (0.4 mL) at 0 °C was added K₂CO₃ (0.2 mmol, 2.0 equiv.) and 3-Bromopropyne (0.11 mmol, 1.1 equiv.). The resulting mixture was heated at 60 °C for

24 h. After cooling to room temperature, the solvent was evaporated and the residue was dissolved in EtOAc, washed with H₂O and brine. The organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the corresponding product.

Spectraldatafor(Z)-2-azido-2,2-diphenyl-N-(1-(prop-2-yn-1-yl)-3-(2,2,2-trifluoroethyl)pyrrolidin-2-ylidene)acetamide (13)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/3) to afford the title compound (73% yield, 32 mg) as yellowish oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.37 (m, 4H), 7.37 – 7.27 (m, 6H), 4.22 (dd, *J* = 2.6 Hz, 2.5 Hz, 2H), 3.83 – 3.71 (m, 1H), 3.64 – 3.48 (m, 2H), 2.37 – 2.29 (m, 1H), 2.28 (t, *J* = 2.6 Hz, 1H), 2.23 – 2.09 (m, 1H), 2.07 – 1.96 (m, 1H), 1.83 – 1.66 (m, 1H). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 179.6, 171.1, 140.6, 140.5, 128.7, 128.6, 128.1, 128.0, 126.2 (q, *J* = 277.4 Hz), 79.3, 76.3, 73.6, 47.1, 36.5 (q, *J* = 2.8 Hz), 34.8, 34.0 (q, *J* = 28.9 Hz), 25.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.94 (t, *J* = 10.6 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₁F₃N₅O 440.1693; found: 440.1684.

Preparation of product 14²

CuI (20 mol%, 0.02 mmol) and **13** (0.1 mmol, 1 equiv.) were added in an oven-dried sealed tube. The vessel was evacuated and backfilled with N_2 (repeated for 3 times), after that, THF (1.0 mL) were then added via syringe under N_2 . The tube was sealed with a Teflon lined cap and moved into a preheated oil bath at 60 °C for 24 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (10 mL) and filtered through a pad of celite. The filtrate was concentrated, and the residue was then purified by flash column chromatography to afford the corresponding product.

Spectral data for (*Z*)-5,5-diphenyl-8-(2,2,2-trifluoroethyl)-9,10-dihydro-5H,12H-pyrrolo [1,2-a][1,2,3]triazolo[1,5-f][1,3,6]triazocin-6(8H)-one (14)

Purified by column chromatography (silica gel, MeOH/DCM : 1/10) to afford the title compound (65% yield, 29 mg) as yellowish oil. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H), 7.26 – 7.11 (m, 10H), 4.44 (d, *J* = 15.1 Hz, 1H), 4.37 (d, *J* = 17.8 Hz, 1H), 3.83 (t, *J* = 10.6 Hz, 1H), 3.54 – 3.33 (m, 2H), 2.45 – 2.09 (m, 2H), 2.05 – 1.74 (m, 2H). ¹³C {H¹} NMR (100 MHz, CDCl₃) δ 177.1, 172.2, 140.6, 140.0, 139.5, 129.6, 129.5, 129.4, 128.3, 128.2, 127.9, 126.4 (q, *J* = 277.7 Hz), 125.9, 80.8, 47.9, 40.5, 36.8, 33.9 (q, *J* = 28.4 Hz), 24.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.78 (d, *J* = 11.3 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₁F₃N₅O 440.1693; found: 440.1702.

Preparation of product 15

To a flame-dried Schlenk tube equipped with a magnetic stir bar were added 4a (0.1 mmol, 1 equiv.), THF (0.5 mL), and NaH (1.2 equiv.) at 0 °C under N₂ atmosphere. After that MeI (1.2 equiv.) were then added via syringe. The resulting mixture was warmed to room temperature for 20 h. After completion, the solvent was evaporated and the residue was dissolved in DCM, washed with H₂O and brine. The organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the corresponding product.

Spectral data for 3-methyl-2,2-diphenyl-8-(2,2,2-trifluoroethyl)-2,6,7,8-tetrahydropyrrolo[1,2-a] [1,3,5]triazin-4(3H)-one (15)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (92% yield, 36 mg) as yellowish solid, mp: 99-101 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.22 (m, 6H), 7.21 – 7.11 (m, 4H), 3.82 – 3.71 (m, 1H), 3.56 – 3.44 (m, 1H), 3.04 – 2.92 (m, 1H), 2.92 – 2.74 (m, 1H), 2.60 (s, 3H), 2.35 – 2.24 (m, 1H), 2.01 – 1.81 (m, 1H), 1.73 – 1.58 (m, 1H). ¹³C {H¹} NMR (100 MHz, CDCl₃) δ 157.4, 152.1, 143.0, 142.4, 128.5, 128.2, 128.1, 128.0, 127.6, 126.7 (q, *J* = 276.8 Hz), 84.1, 44.2, 36.7 (q, *J* = 2.9 Hz), 35.7 (q, *J* = 28.9 Hz), 32.0, 27.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.71 (t, *J* = 11.0 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₁F₃N₃O 388.1637; found: 388.1631.

Preparation of product 16²

CuI (0.02 mmol) and **6b** (0.1 mmol, 1 equiv.) were added in an oven-dried sealed tube. The vessel was evacuated and backfilled with N_2 (repeated for 3 times), after that, phenylacetylene (0.6 mmol, 6.0 equiv.) and THF (1.0 mL) were then added via syringe under N_2 . The tube was sealed with a Teflon lined cap and moved into a preheated oil bath at 60 °C for 24 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (10 mL) and filtered through a pad of celite. The filtrate was concentrated, and the residue was then purified by flash column chromatography to afford the corresponding product.

Spectraldatafor(Z)-N-(3-methyl-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)pyrrolidin-2-ylidene)-2,2-diphenyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)acetamide (16)

$$Ph \xrightarrow{N=N} O HN \xrightarrow{N=N} Ph \xrightarrow{N=N} N$$

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/2) to afford the title compound (84% yield, 50 mg) as yellowish oil. ¹H NMR (400 MHz, CDCl₃) δ 9.66 (s, 1H), 7.76 – 7.63 (m, 5H), 7.49 (s, 1H), 7.41 –

7.19 (m, 15H), 7.17 (s, 1H), 4.24 (d, J = 13.8 Hz, 1H), 4.16 (d, J = 13.8 Hz, 1H), 3.47 – 3.29 (m, 1H), 3.07 – 2.89 (m, 1H), 2.27 – 2.10 (m, 1H), 1.85 – 1.72 (m, 1H), 1.13 (s, 3H). ¹³C {H¹} NMR (100 MHz, CDCl₃) δ 182.9, 176.7, 147.9, 145.9, 140.2, 140.0, 130.9, 130.4, 129.9, 129.7, 128.9, 128.8, 128.7, 128.4, 128.2, 128.1, 128.0, 127.9, 125.9, 125.7, 122.7, 121.5, 80.3, 55.6, 49.5, 44.1, 29.2, 22.8. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₆H₃₃N₈O 593.2772; found: 593.2756.

Preparation of product 17⁵

To a flame-dried Schlenk tube were added azide product **6b** (0.1 mmol, 1 equiv.), THF (1.0 mL) and H₂O (20.0 μ L) under the atmosphere of nitrogen, a solution of PPh₃ (0.2 mmol, 2 equiv.) in THF (0.5 mL) was added drop-wise at 0 °C. The mixture was warmed up to 50 °C and stirred for 12 h. The mixture was then concentrated in vacuo and the residue was extracted with EtOAc. The combined organic layers were washed with water and brine, dried over Na₂SO₄, filtered and concentrated in vacuo affording amine without any further purification. To a suspension of amine (0.1 mmol, 1.0 equiv.) in DCM (0.5 mL) was added Et₃N (0.12 mmol, 1.2 equiv.) and Boc₂O (0.12 mmol, 1.2 equiv.) under nitrogen atmosphere at 0 °C. The resulting mixture was allowed to warm up to room temperature and stirred overnight. Upon completion, the reaction mixture was quenched with H₂O and the aqueous phase was extracted with DCM. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash chromatography to give the desired product.

Spectral data for Tert-butyl (Z)-((2-((2-azido-2,2-diphenylacetyl)imino)-3-methylpyrrolidin-3-yl) methyl)carbamate (17)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/3) to afford the title compound (95% yield, 44 mg) as yellowish oil. ¹H NMR (500 MHz, CDCl₃) δ 9.77 (s, 1H), 7.45 – 7.40 (m, 2H), 7.38 – 7.28 (m, 8H), 5.01 (t, *J* = 6.6 Hz, 1H), 3.65 – 3.44 (m, 2H), 3.26 – 3.07 (m, 2H), 2.08 – 1.96 (m, 1H), 1.85 – 1.72 (m, 1H), 1.40 (s, 9H), 1.11 (s, 3H). ¹³C{H¹} NMR (125 MHz, CDCl₃) δ 184.8, 178.8, 156.6, 141.0, 140.5, 128.6, 128.5, 128.2, 128.1, 128.0, 127.9, 79.2, 48.2, 46.5, 44.2, 30.7, 28.4, 21.1. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₃₁N₆O₃ 463.2452; found: 463.2447.

Preparation of product 18

Product 18 was prepared from 7b (0.1 mmol) by the same procedure as product 9. Spectral data for 8-methyl-2,2-diphenyl-8-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)-2,6,7,8tetrahydropyrrolo[1,2-a][1,3,5]triazin-4(3H)-one (18)

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (92% yield, 43 mg) as yellowish solid, mp: 114-116 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.51 – 7.42 (m, 4H), 7.41 – 7.26 (m, 11H), 7.05 (s, 1H), 6.04 (brs, 1H), 4.68 (d, *J* = 14.0 Hz, 1H), 4.60 (d, *J* = 14.0 Hz, 1H), 3.61 – 3.47 (m, 1H), 3.38 – 3.26 (m, 1H), 1.97 – 1.78 (m, 2H), 1.45 (s, 3H). ¹³C{H¹} NMR (125 MHz, CDCl₃) δ 159.8, 150.6, 148.0, 145.9, 145.1, 130.2, 128.8, 128.6, 128.5, 128.2, 128.1, 128.0, 126.3, 126.2, 126.0, 120.4, 79.7, 55.8, 46.9, 41.6, 29.7, 23.5. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₈H₂₇N₆O 463.2241; found: 463.2236.

Preparation of product 19

Product 19 was prepared from 7b (0.1 mmol) according to the same method for the preparation of product 17. Spectral data for Tert-butyl ((8-methyl-4-oxo-2,2-diphenyl-2,3,4,6,7,8-hexahydropyrrolo[1,2-a] [1,3,5]triazin-8-yl)methyl)carbamate (19)

Ph Ph Ph Me

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/2) to afford the title compound (93% yield, 40 mg) as yellowish solid, mp: 83-85 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.42 – 7.27 (m, 10H), 5.99 (brs, 1H), 4.83 (t, *J* = 6.3 Hz, 1H), 3.71 – 3.53 (m, 2H), 3.36 – 3.21 (m, 2H), 2.01 – 1.91 (m, 1H), 1.79 – 1.68 (m, 1H), 1.39 (s, 9H), 1.26 (s, 3H). ¹³C {H¹} NMR (125 MHz, CDCl₃) δ 161.6, 156.4, 151.3, 145.3, 128.5, 128.4, 127.9, 127.8, 126.4, 125.9, 79.3, 79.0, 46.9, 46.0, 41.9, 30.7, 28.4, 21.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₃₁N₄O₃ 435.2391; found: 435.2409.

VI. Control Experiments

1. Radical Trapping Experiment

TEMPO-CF3: ¹⁹F NMR (376 MHz, CDCl₃) δ -55.71. HRMS m/z (ESI) calcd for C₁₀H₁₉F₃NO [M+H]⁺ 226.1413, found 226.1416. The ¹⁹F NMR spectra data were in accordance with the reported data of the known literatures. ⁶

Characterization of TEMPO-1a-N₃ additive product S-1 by mass spectrometry

Reaction mixture was analyzed on a LC/MS (Agilent 1290 Infinity LC System connected to the Bruker micrOTOF-QII MS instrument). The high-resolution mass spectrometry was performed to confirm the elemental compositions of TEMPO-**1a**-N₃ additive product **20**. **20**: HRMS (ESI) m/z: $[M+H]^+$ calcd for C₂₈H₃₇N₆O₂ 489.2973; found: 489.2969 (Figure S2, a). The major product ions were observed in the fragmentation of protonated TEMPO additive product by CID mass spectra with argon as collision gas after isolation of the target precursor ion (Figure S2, b). The possible chemical structure of TEMPO additive product **20** and the major product ions observed in the fragmentation of its $[M+H]^+$ ion were given in Scheme S1.

Figure S2. (a) High resolution mass spectra of TEMPO additive product **20** from reaction mixture by LC/MS. (b) MS² mass spectra of protonated TEMPO additive product **20**.

20: HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{28}H_{37}N_6O_2$ 489.2973; found: 489.2969.

Scheme S1. The possible chemical structure of TEMPO additive product 20 and the major product ions observed in the fragmentation of its $[M+H]^+$ ion.

2. Intermolecular cross-over reaction

3. Nitrene intermediates verification experiment

Con. B: NiCl₂•DME (10 mol%), EtOAc (0.1 M), 80 °C, 12 h

Under our reaction condition B, the substrates in the literature that generate products through nitrene intermediates are unable to generate target products. These experiments show that under our reaction condition, there may be no nitrene intermediates produced. ^{7, 8} Notably, compound **3a** cannot underwent a similar 1,2-acylmigration to give cyclic compound **25**, presumably due to the attenuated reactivity of carbonyl group of **3a**.

VII. References

- 1. Xi, J.-M.; Sun, Y.-H.; Li, W.-C.; Wu, Y.-H.; Wei, Z.-L.; Liao, W.-W. Org. Lett. 2022, 24, 1110-1115.
- 2. Bian, K.-J.; Li, Y.; Zhang, K.-F.; He, Y.; Wu, T.-R.; Wang, C.-Y.; Wang, X.-S. Chem. Sci. 2020, 11, 10437-10443.
- Lv, D.; Sun, Q.; Zhou, H.; Ge, L.; Qu, Y.; Li, T.; Ma, X.; Li, Y.; Bao, H. Angew. Chem. Int. Ed. 2021, 60, 12455-12460.
- 4. Gomes, R. S.; Reddy, K. M.; Corey, E. J. Org. Lett. 2018, 20, 6310-6313.
- 5. Luo, Y.; Lv, L.; Li, Z. Org. Lett. 2022, 24, 8052-8056.
- 6. Choi, G.; Lee, G. S.; Park, B.; Kim, D.; Hong, S. H. Angew. Chem. Int. Ed. 2021, 60, 5467-5474.
- 7. Yang, T.; Fan, X.; Zhao, X.; Yu, W. Org. Lett. 2018, 20, 1875-1879.
- 8. Zhao, X.; Liang, S.; Fan, X.; Yang, T.; Yu, W. Org. Lett. 2019, 21, 1559-1563.

VIII. Crystal Data and Structure Refinement for Compounds

1)

X-ray crystal structure of compound **3a**. Single crystal of **3a** was obtained by slow evaporation of Petroleum ether /EtOAc solution. Crystal measurement of **3a** was measured on R-Axis RAPID of Rigaku Corporation plus 291.2 k. Thermal ellipsoids are set at 30% probability.

CCDC number: 2341706

Table S-crystal1-1. Crystal data and structure refinement for 3a.

Identification code	Y				
Empirical formula	C20 H18 F3 N5 O				
Formula weight	401.39				
Temperature	293(2) K				
Wavelength	0.71073 Å				
Crystal system	Monoclinic				
Space group	P21/c				
Unit cell dimensions	a = 13.4542(7) Å	α=90°.			
	b = 19.2551(10) Å	β=104.380(2)°.			
	c = 7.9463(4) Å	$\gamma = 90^{\circ}.$			
Volume	1994.09(18) Å ³				
Z	4				
Density (calculated)	1.337 Mg/m ³				
Absorption coefficient	0.106 mm ⁻¹				
F(000)	832				
Crystal size	0.210 x 0.200 x 0.180 mm ³				
Theta range for data collection	2.630 to 25.649°.				
Index ranges	-16<=h<=16, -23<=k<=23, -9<=l<=9				
Reflections collected	35677				
Independent reflections	3771 [R(int) = 0.0393]				
Completeness to theta = 25.242°	99.9 %				
Absorption correction	Semi-empirical from equivalents				
Max. and min. transmission	0.9812 and 0.9782				
Refinement method	Full-matrix least-squares on F ²				
-----------------------------------	---				
Data / restraints / parameters	3771 / 0 / 317				
Goodness-of-fit on F ²	1.012				
Final R indices [I>2sigma(I)]	R1 = 0.0484, wR2 = 0.1180				
R indices (all data)	R1 = 0.0635, wR2 = 0.1309				
Extinction coefficient	n/a				
Largest diff. peak and hole	0.199 and -0.230 e.Å ⁻³				

Table S-crystal1-2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³)

for Y. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	у	Z	U(eq)
O(1)	8758(1)	30(1)	8712(2)	61(1)
N(1)	6756(1)	17(1)	4898(2)	54(1)
N(2)	6793(1)	483(1)	3843(2)	61(1)
N(3)	6772(2)	859(1)	2748(2)	91(1)
N(4)	8680(1)	603(1)	6122(2)	48(1)
N(5)	10379(1)	626(1)	7936(2)	55(1)
C(1)	8286(1)	268(1)	7311(2)	42(1)
C(2)	7094(1)	222(1)	6783(2)	42(1)
C(3)	6894(2)	-1051(1)	7346(3)	64(1)
C(4)	6589(2)	-1598(1)	8236(3)	79(1)
C(5)	6118(2)	-1470(1)	9550(3)	74(1)
C(6)	5961(2)	-802(1)	9984(3)	71(1)
C(7)	6262(1)	-252(1)	9095(3)	58(1)
C(8)	6730(1)	-372(1)	7758(2)	46(1)
C(9)	5636(1)	1088(1)	6278(3)	57(1)
C(10)	5216(2)	1716(1)	6585(3)	69(1)
C(11)	5780(2)	2187(1)	7701(3)	75(1)
C(12)	6772(2)	2032(1)	8542(4)	86(1)
C(13)	7202(2)	1404(1)	8238(3)	70(1)
C(14)	6645(1)	925(1)	7099(2)	45(1)
C(15)	9665(1)	759(1)	6532(2)	46(1)
C(16)	11390(2)	899(2)	7951(3)	89(1)
C(17)	11226(2)	1251(1)	6233(3)	66(1)
C(18)	10150(5)	1020(4)	5126(8)	45(1)
C(19)	9426(4)	1541(3)	4007(7)	61(2)

C(20)	9870(20)	1686(10)	2360(30)	60(3)
F(1)	9949(8)	1296(5)	1497(10)	202(4)
F(2)	9116(4)	2206(4)	1489(11)	136(3)
F(3)	10665(11)	2177(7)	3113(16)	155(5)
C(18')	10124(4)	1304(3)	5491(8)	44(1)
C(19')	9723(4)	1174(3)	3558(5)	55(1)
C(20')	9850(20)	1863(9)	2600(30)	70(4)
F(1')	9633(4)	1633(4)	811(5)	110(2)
F(2')	9418(6)	2340(3)	2720(9)	129(2)
F(3')	10837(8)	1933(6)	2690(13)	110(3)

Table S-crystal1-3. Bond lengths [Å] and angles $[\circ]$ for Y.

O(1)-C(1)	1.225(2)
N(1)-N(2)	1.238(2)
N(1)-C(2)	1.506(2)
N(2)-N(3)	1.126(2)
N(4)-C(15)	1.318(2)
N(4)-C(1)	1.357(2)
N(5)-C(15)	1.304(2)
N(5)-C(16)	1.455(2)
N(5)-H(5N)	0.8495
C(1)-C(2)	1.555(2)
C(2)-C(8)	1.529(2)
C(2)-C(14)	1.529(2)
C(3)-C(8)	1.379(3)
C(3)-C(4)	1.386(3)
C(3)-H(3)	0.9300
C(4)-C(5)	1.372(3)
C(4)-H(4)	0.9300
C(5)-C(6)	1.362(3)
C(5)-H(5)	0.9300
C(6)-C(7)	1.387(3)
C(6)-H(6)	0.9300
C(7)-C(8)	1.383(3)
C(7)-H(7)	0.9300
C(9)-C(10)	1.381(3)

C(9)-C(14)	0.0200
C(9)-H(9)	0.9300
C(10)-C(11)	1.300(3)
$C(10)-\Pi(10)$	0.9300
C(11)-C(12)	1.370(3)
C(11)-H(11)	1.296(2)
C(12)-C(13)	1.380(3)
$C(12)-\Pi(12)$	0.9300
C(13)-C(14)	1.370(3)
C(13)-H(13)	0.9300
C(15)-C(18)	1.513(6)
C(15)-C(18)	1.556(6)
C(16) - C(17)	1.491(3)
$C(16) - \Pi(16R)$	0.9700
$C(10)-\Pi(10B)$	1.457(6)
C(17) - C(18)	1.437(0)
C(17) + C(18)	1.301(7)
C(17) + H(17R)	0.9700
$C(17) - \Pi(17B)$	0.9700
C(18) - C(19)	0.0800
C(10) - H(10)	0.9800
C(19)-C(20)	0.0700
C(19)-H(19R)	0.9700
C(19)-H(19B)	1.041(10)
C(20)- $F(1)$	1.041(19)
C(20) - F(3)	1.44(2)
$C(20) - \Gamma(2)$	1.47(3)
C(18) - C(19)	0.0801
$C(10) - \Pi(10)$ C(10) C(20)	1.56(2)
C(19) - C(20)	1.50(2)
$C(19) - \Pi(19C)$	0.9700
C(19')-H(19D)	0.9700
$C(20^{\circ})-F(2^{\circ})$	1.11(2)
$C(20^{\circ})-F(3^{\circ})$	1.32(3)
C(20')-F(1')	1.45(2)
N(2)-N(1)-C(2)	115.46(15)
N(3)-N(2)-N(1)	172.4(2)

C(15)-N(4)-C(1)	118.65(14)
C(15)-N(5)-C(16)	115.11(16)
C(15)-N(5)-H(5N)	125.5
C(16)-N(5)-H(5N)	119.3
O(1)-C(1)-N(4)	127.29(15)
O(1)-C(1)-C(2)	119.45(14)
N(4)-C(1)-C(2)	113.21(14)
N(1)-C(2)-C(8)	104.59(13)
N(1)-C(2)-C(14)	111.20(13)
C(8)-C(2)-C(14)	112.90(13)
N(1)-C(2)-C(1)	108.68(13)
C(8)-C(2)-C(1)	110.14(13)
C(14)-C(2)-C(1)	109.20(13)
C(8)-C(3)-C(4)	121.0(2)
C(8)-C(3)-H(3)	119.5
C(4)-C(3)-H(3)	119.5
C(5)-C(4)-C(3)	120.2(2)
C(5)-C(4)-H(4)	119.9
C(3)-C(4)-H(4)	119.9
C(6)-C(5)-C(4)	119.5(2)
C(6)-C(5)-H(5)	120.3
C(4)-C(5)-H(5)	120.3
C(5)-C(6)-C(7)	120.6(2)
C(5)-C(6)-H(6)	119.7
C(7)-C(6)-H(6)	119.7
C(8)-C(7)-C(6)	120.6(2)
C(8)-C(7)-H(7)	119.7
C(6)-C(7)-H(7)	119.7
C(3)-C(8)-C(7)	118.09(18)
C(3)-C(8)-C(2)	119.94(16)
C(7)-C(8)-C(2)	121.94(17)
C(10)-C(9)-C(14)	120.69(19)
С(10)-С(9)-Н(9)	119.7
С(14)-С(9)-Н(9)	119.7
C(11)-C(10)-C(9)	120.8(2)
С(11)-С(10)-Н(10)	119.6
C(9)-C(10)-H(10)	119.6
C(10)-C(11)-C(12)	119.4(2)

C(10)-C(11)-H(11)	120.3
С(12)-С(11)-Н(11)	120.3
C(11)-C(12)-C(13)	120.2(2)
С(11)-С(12)-Н(12)	119.9
C(13)-C(12)-H(12)	119.9
C(14)-C(13)-C(12)	121.0(2)
C(14)-C(13)-H(13)	119.5
С(12)-С(13)-Н(13)	119.5
C(13)-C(14)-C(9)	117.85(17)
C(13)-C(14)-C(2)	121.87(16)
C(9)-C(14)-C(2)	120.25(16)
N(5)-C(15)-N(4)	130.41(16)
N(5)-C(15)-C(18)	109.7(3)
N(4)-C(15)-C(18)	118.9(3)
N(5)-C(15)-C(18')	106.4(3)
N(4)-C(15)-C(18')	122.0(2)
N(5)-C(16)-C(17)	103.39(16)
N(5)-C(16)-H(16A)	111.1
C(17)-C(16)-H(16A)	111.1
N(5)-C(16)-H(16B)	111.1
C(17)-C(16)-H(16B)	111.1
H(16A)-C(16)-H(16B)	109.0
C(18')-C(17)-C(16)	107.8(3)
C(16)-C(17)-C(18)	107.0(3)
C(16)-C(17)-H(17A)	110.3
C(18)-C(17)-H(17A)	110.3
C(16)-C(17)-H(17B)	110.3
C(18)-C(17)-H(17B)	110.3
H(17A)-C(17)-H(17B)	108.6
C(15)-C(18)-C(19)	108.7(5)
C(15)-C(18)-C(17)	100.8(4)
C(19)-C(18)-C(17)	120.7(5)
C(15)-C(18)-H(18)	108.7
C(19)-C(18)-H(18)	108.6
C(17)-C(18)-H(18)	108.7
C(18)-C(19)-C(20)	106.1(10)
C(18)-C(19)-H(19A)	110.5
C(20)-C(19)-H(19A)	110.5

C(18)-C(19)-H(19B)	110.5
C(20)-C(19)-H(19B)	110.5
H(19A)-C(19)-H(19B)	108.7
F(1)-C(20)-F(3)	124(2)
F(1)-C(20)-F(2)	110.4(19)
F(3)-C(20)-F(2)	95.9(14)
F(1)-C(20)-C(19)	122.2(19)
F(3)-C(20)-C(19)	99.6(14)
F(2)-C(20)-C(19)	98.5(15)
C(17)-C(18')-C(19')	117.9(5)
C(17)-C(18')-C(15)	103.6(4)
C(19')-C(18')-C(15)	109.8(4)
C(17)-C(18')-H(18')	108.4
C(19')-C(18')-H(18')	108.4
C(15)-C(18')-H(18')	108.3
C(18')-C(19')-C(20')	107.3(9)
C(18')-C(19')-H(19C)	110.2
C(20')-C(19')-H(19C)	110.2
C(18')-C(19')-H(19D)	110.2
C(20')-C(19')-H(19D)	110.2
H(19C)-C(19')-H(19D)	108.5
F(2')-C(20')-F(3')	117.2(17)
F(2')-C(20')-F(1')	110.7(18)
F(3')-C(20')-F(1')	92.4(16)
F(2')-C(20')-C(19')	123(2)
F(3')-C(20')-C(19')	107.1(16)
F(1')-C(20')-C(19')	101.4(11)

Symmetry transformations used to generate equivalent atoms:

Table S-crystal1-4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for Y.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
38(1)	88(1)	56(1)	29(1)	6(1)	-5(1)
51(1)	67(1)	42(1)	-5(1)	7(1)	-5(1)
55(1)	84(1)	39(1)	-3(1)	6(1)	-2(1)
	U ¹¹ 38(1) 51(1) 55(1)	U ¹¹ U ²² 38(1) 88(1) 51(1) 67(1) 55(1) 84(1)	U ¹¹ U ²² U ³³ 38(1) 88(1) 56(1) 51(1) 67(1) 42(1) 55(1) 84(1) 39(1)	U ¹¹ U ²² U ³³ U ²³ 38(1) 88(1) 56(1) 29(1) 51(1) 67(1) 42(1) -5(1) 55(1) 84(1) 39(1) -3(1)	U^{11} U^{22} U^{33} U^{23} U^{13} 38(1)88(1)56(1)29(1)6(1)51(1)67(1)42(1)-5(1)7(1)55(1)84(1)39(1)-3(1)6(1)

N(3)	101(2)	120(2)	45(1)	16(1)	7(1)	-7(1)
N(4)	36(1)	64(1)	42(1)	9(1)	11(1)	-1(1)
N(5)	38(1)	77(1)	49(1)	19(1)	8(1)	-7(1)
C(1)	36(1)	50(1)	41(1)	4(1)	10(1)	1(1)
C(2)	34(1)	56(1)	37(1)	-2(1)	7(1)	-1(1)
C(3)	69(1)	61(1)	66(1)	-9(1)	27(1)	-12(1)
C(4)	90(2)	59(1)	86(2)	-6(1)	22(1)	-24(1)
C(5)	60(1)	82(2)	81(2)	14(1)	17(1)	-26(1)
C(6)	51(1)	93(2)	74(1)	18(1)	29(1)	0(1)
C(7)	46(1)	70(1)	61(1)	9(1)	21(1)	8(1)
C(8)	31(1)	57(1)	48(1)	-1(1)	7(1)	-6(1)
C(9)	42(1)	66(1)	58(1)	1(1)	6(1)	4(1)
C(10)	56(1)	75(1)	74(1)	9(1)	11(1)	20(1)
C(11)	78(2)	67(1)	82(2)	-3(1)	21(1)	21(1)
C(12)	78(2)	75(2)	99(2)	-33(1)	7(1)	6(1)
C(13)	50(1)	77(1)	74(1)	-21(1)	-1(1)	8(1)
C(14)	39(1)	56(1)	40(1)	2(1)	10(1)	1(1)
C(15)	40(1)	56(1)	43(1)	7(1)	13(1)	2(1)
C(16)	42(1)	137(2)	84(2)	41(2)	7(1)	-21(1)
C(17)	52(1)	80(1)	68(1)	10(1)	20(1)	-15(1)
C(18)	47(2)	46(3)	48(3)	-1(3)	22(2)	-2(3)
C(19)	68(3)	57(3)	60(3)	15(2)	22(2)	0(2)
C(20)	82(5)	44(8)	53(6)	-3(5)	13(4)	-6(5)
F(1)	368(11)	185(7)	81(4)	22(4)	109(5)	67(7)
F(2)	122(3)	163(5)	111(4)	90(4)	6(3)	-17(4)
F(3)	170(10)	152(8)	125(7)	74(6)	4(5)	-91(7)
C(18')	48(2)	44(3)	44(3)	0(2)	18(2)	-2(2)
C(19')	63(3)	59(3)	46(2)	-1(2)	18(2)	-12(2)
C(20')	108(6)	47(9)	56(7)	9(6)	24(5)	-8(7)
F(1')	121(3)	156(5)	52(2)	14(2)	20(2)	-36(3)
F(2')	194(6)	100(3)	114(4)	45(3)	77(4)	52(3)
F(3')	87(3)	160(7)	89(4)	34(4)	33(3)	-39(4)

Table S-crystal1-5.Hydrogen coordinates ($x \ 10^4$) and isotropicdisplacement parameters (Å²x 10 ³)for Y.

у

х

z

U(eq)

H(5N)	10287	424	8836	66
H(3)	7214	-1144	6459	76
H(4)	6704	-2053	7941	94
H(5)	5907	-1837	10141	89
H(6)	5650	-713	10884	85
H(7)	6147	202	9401	69
H(9)	5239	772	5513	68
H(10)	4540	1818	6021	83
H(11)	5494	2610	7892	90
H(12)	7159	2348	9319	104
H(13)	7878	1305	8813	84
H(16A)	11889	528	8063	107
H(16B)	11620	1226	8896	107
H(17A)	11756	1116	5663	79
H(17B)	11248	1751	6380	79
H(18)	10239	626	4395	54
H(19A)	9403	1966	4648	73
H(19B)	8738	1351	3646	73
H(18')	9899	1767	5755	53
H(19C)	9006	1041	3295	66
H(19D)	10109	803	3188	66

2)

X-ray crystal structure of compound **4a**. Single crystal of **4a** was obtained by slow evaporation of Petroleum ether /EtOAc solution. Crystal measurement of **4a** was measured on R-Axis RAPID of Rigaku Corporation plus 291.2 k. Thermal ellipsoids are set at 40% probability. **CCDC number:** 2341707

Table S-crystal2-1.Crystal data and structu	re refinement for 4a.	
Identification code	Y	
Empirical formula	C20 H18 F3 N3 O	
Formula weight	373.37	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Pbca	
Unit cell dimensions	a = 8.3452(5) Å	<i>α</i> = 90°.
	b = 16.1586(8) Å	β= 90°.
	c = 26.0208(15) Å	$\gamma = 90^{\circ}.$
Volume	3508.8(3) Å ³	
Ζ	8	
Density (calculated)	1.414 Mg/m ³	
Absorption coefficient	0.111 mm ⁻¹	
F(000)	1552	
Crystal size	0.180 x 0.170 x 0.150 mm	3
Theta range for data collection	2.521 to 25.095°.	
Index ranges	-9<=h<=9, -19<=k<=19, -	31<=l<=31
Reflections collected	62306	
Independent reflections	3086 [R(int) = 0.1087]	
Completeness to theta = 25.095°	98.8 %	
Max. and min. transmission	0.9835 and 0.9803	
Refinement method	Full-matrix least-squares of	n F ²
Data / restraints / parameters	3086 / 0 / 215	
Goodness-of-fit on F ²	1.056	
Final R indices [I>2sigma(I)]	R1 = 0.0978, wR2 = 0.247	2
R indices (all data) $R1 = 0.1276$, wR2 = 0.2955		5
Extinction coefficient	0.0027(13)	
Largest diff. peak and hole	1.732 and -0.744 e.Å ⁻³	

Table S	-crystal2-2.	Atomic coordinates	$(x 10^4)$ and equivalent	isotropic displacement parameters (Å ² x 10 ³)
for Y.	U(eq) is defined	d as one third of the	trace of the orthogonalize	ed U ^{ij} tensor.

	х	У	Z	U(eq)
O(1)	3108(4)	5456(2)	-79(1)	43(1)
F(1)	-2613(4)	6586(2)	1848(1)	64(1)

F(2)	-1770(7)	6062(3)	2536(2)	100(2)
F(3)	-568(5)	7088(3)	2220(2)	88(1)
N(1)	1454(5)	5346(2)	619(1)	38(1)
N(2)	2381(5)	4821(3)	1413(1)	40(1)
N(3)	3919(5)	4736(2)	631(1)	34(1)
C(1)	-1294(8)	6386(4)	2102(2)	62(2)
C(2)	-398(9)	5673(5)	1838(3)	72(2)
C(3)	173(9)	5848(5)	1349(2)	84(3)
C(4)	-896(8)	5974(5)	875(2)	67(2)
C(5)	253(6)	5938(3)	431(2)	44(1)
C(6)	1443(6)	5273(3)	1153(2)	45(1)
C(7)	2871(5)	5186(3)	357(2)	36(1)
C(8)	3475(5)	4304(3)	1105(2)	34(1)
C(9)	5014(2)	4115(1)	1403(1)	32(1)
C(10)	5207(2)	4358(1)	1912(1)	34(1)
C(11)	6597(2)	4150(2)	2176(1)	37(1)
C(12)	7793(2)	3699(1)	1932(1)	39(1)
C(13)	7601(2)	3456(1)	1424(1)	38(1)
C(14)	6211(2)	3664(1)	1159(1)	38(1)
C(15)	2587(2)	3484(1)	995(1)	34(1)
C(16)	1998(2)	3020(1)	1409(1)	42(1)
C(17)	1184(2)	2302(1)	1334(1)	48(1)
C(18)	892(2)	1999(1)	829(1)	53(1)
C(19)	1481(2)	2451(2)	411(1)	52(1)
C(20)	2342(2)	3195(1)	495(1)	43(1)

Table S-crystal 2-3. Bond lengths [Å] and angles [°] for $\ \ Y.$

O(1)-C(7)	1.231(6)
F(1)-C(1)	1.324(7)
F(2)-C(1)	1.307(7)
F(3)-C(1)	1.322(8)
N(1)-C(7)	1.389(6)
N(1)-C(6)	1.395(6)
N(1)-C(5)	1.469(6)
N(2)-C(6)	1.266(6)
N(2)-C(8)	1.474(6)

N(3)-C(7)	1.343(6)
N(3)-C(8)	1.464(6)
N(3)-H(3N)	0.8600
C(1)-C(2)	1.535(9)
C(2)-C(3)	1.388(9)
C(2)-H(2A)	0.9700
C(2)-H(2B)	0.9700
C(3)-C(6)	1.499(7)
C(3)-C(4)	1.535(7)
C(3)-H(3)	0.9800
C(4)-C(5)	1.503(8)
C(4)-H(4A)	0.9700
C(4)-H(4B)	0.9700
C(5)-H(5A)	0.9700
C(5)-H(5B)	0.9700
C(8)-C(9)	1.532(4)
C(8)-C(15)	1.545(5)
C(9)-C(10)	1.3900
C(9)-C(14)	1.3900
C(10)-C(11)	1.3900
C(10)-H(10)	0.9300
C(11)-C(12)	1.3900
С(11)-Н(11)	0.9300
C(12)-C(13)	1.3900
С(12)-Н(12)	0.9300
C(13)-C(14)	1.3900
С(13)-Н(13)	0.9300
C(14)-H(14)	0.9300
C(15)-C(20)	1.3970
C(15)-C(16)	1.4028
C(16)-C(17)	1.3600
C(16)-H(16)	0.9300
C(17)-C(18)	1.4244
С(17)-Н(17)	0.9300
C(18)-C(19)	1.3987
C(18)-H(18)	0.9300
C(19)-C(20)	1.4175
C(19)-H(19)	0.9300

C(20)-H(20)	0.9300
C(7)-N(1)-C(6)	118.6(4)
C(7)-N(1)-C(5)	122.6(4)
C(6)-N(1)-C(5)	112.4(4)
C(6)-N(2)-C(8)	114.7(4)
C(7)-N(3)-C(8)	122.7(4)
C(7)-N(3)-H(3N)	118.6
C(8)-N(3)-H(3N)	118.6
F(2)-C(1)-F(3)	106.5(5)
F(2)-C(1)-F(1)	106.0(5)
F(3)-C(1)-F(1)	106.7(5)
F(2)-C(1)-C(2)	103.6(5)
F(3)-C(1)-C(2)	121.6(6)
F(1)-C(1)-C(2)	111.4(6)
C(3)-C(2)-C(1)	115.2(6)
C(3)-C(2)-H(2A)	108.5
C(1)-C(2)-H(2A)	108.5
C(3)-C(2)-H(2B)	108.5
C(1)-C(2)-H(2B)	108.5
H(2A)-C(2)-H(2B)	107.5
C(2)-C(3)-C(6)	115.4(6)
C(2)-C(3)-C(4)	124.3(7)
C(6)-C(3)-C(4)	102.7(4)
C(2)-C(3)-H(3)	104.1
C(6)-C(3)-H(3)	104.1
C(4)-C(3)-H(3)	104.1
C(5)-C(4)-C(3)	104.0(5)
C(5)-C(4)-H(4A)	111.0
C(3)-C(4)-H(4A)	111.0
C(5)-C(4)-H(4B)	111.0
C(3)-C(4)-H(4B)	111.0
H(4A)-C(4)-H(4B)	109.0
N(1)-C(5)-C(4)	101.9(4)
N(1)-C(5)-H(5A)	111.4
C(4)-C(5)-H(5A)	111.4
N(1)-C(5)-H(5B)	111.4
C(4)-C(5)-H(5B)	111.4

H(5A)-C(5)-H(5B)	109.3
N(2)-C(6)-N(1)	125.3(4)
N(2)-C(6)-C(3)	127.8(5)
N(1)-C(6)-C(3)	106.9(4)
O(1)-C(7)-N(3)	125.2(4)
O(1)-C(7)-N(1)	121.5(4)
N(3)-C(7)-N(1)	113.2(4)
N(3)-C(8)-N(2)	110.2(3)
N(3)-C(8)-C(9)	108.0(3)
N(2)-C(8)-C(9)	110.9(3)
N(3)-C(8)-C(15)	111.9(3)
N(2)-C(8)-C(15)	106.8(3)
C(9)-C(8)-C(15)	108.9(3)
C(10)-C(9)-C(14)	120.0
C(10)-C(9)-C(8)	121.54(18)
C(14)-C(9)-C(8)	118.43(18)
C(9)-C(10)-C(11)	120.0
C(9)-C(10)-H(10)	120.0
C(11)-C(10)-H(10)	120.0
C(12)-C(11)-C(10)	120.0
C(12)-C(11)-H(11)	120.0
C(10)-C(11)-H(11)	120.0
C(11)-C(12)-C(13)	120.0
С(11)-С(12)-Н(12)	120.0
C(13)-C(12)-H(12)	120.0
C(14)-C(13)-C(12)	120.0
C(14)-C(13)-H(13)	120.0
C(12)-C(13)-H(13)	120.0
C(13)-C(14)-C(9)	120.0
C(13)-C(14)-H(14)	120.0
C(9)-C(14)-H(14)	120.0
C(20)-C(15)-C(16)	119.1
C(20)-C(15)-C(8)	121.99(18)
C(16)-C(15)-C(8)	118.93(18)
C(17)-C(16)-C(15)	121.4
C(17)-C(16)-H(16)	119.3
C(15)-C(16)-H(16)	119.3
C(16)-C(17)-C(18)	120.8

С(16)-С(17)-Н(17)	119.6
C(18)-C(17)-H(17)	119.6
C(19)-C(18)-C(17)	118.5
C(19)-C(18)-H(18)	120.8
C(17)-C(18)-H(18)	120.8
C(18)-C(19)-C(20)	120.2
C(18)-C(19)-H(19)	119.9
C(20)-C(19)-H(19)	119.9
C(15)-C(20)-C(19)	120.1
C(15)-C(20)-H(20)	120.0
C(19)-C(20)-H(20)	120.0

Symmetry transformations used to generate equivalent atoms:

Table S-crystal2-4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for Y.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	40(2)	48(2)	40(2)	6(2)	-6(1)	7(2)
F(1)	50(2)	70(2)	71(2)	14(2)	17(2)	27(2)
F(2)	160(4)	71(2)	69(2)	24(2)	-11(3)	-4(3)
F(3)	61(2)	84(3)	119(3)	35(3)	0(2)	4(2)
N(1)	35(2)	42(2)	36(2)	-1(2)	-6(2)	11(2)
N(2)	38(2)	50(2)	33(2)	-3(2)	-1(2)	18(2)
N(3)	32(2)	36(2)	36(2)	4(2)	-3(2)	7(2)
C(1)	68(4)	71(4)	47(3)	10(3)	13(3)	32(3)
C(2)	63(4)	67(4)	87(5)	6(3)	6(3)	17(3)
C(3)	89(5)	124(6)	38(3)	-28(3)	-18(3)	79(5)
C(4)	63(4)	88(5)	50(3)	-5(3)	-10(3)	46(3)
C(5)	39(3)	43(3)	49(3)	-2(2)	-15(2)	17(2)
C(6)	43(3)	56(3)	36(2)	-6(2)	-7(2)	17(2)
C(7)	36(2)	34(2)	39(2)	-4(2)	-9(2)	5(2)
C(8)	34(2)	38(2)	31(2)	-1(2)	-1(2)	10(2)
C(9)	30(2)	33(2)	33(2)	1(2)	-5(2)	5(2)
C(10)	31(2)	37(2)	35(2)	1(2)	2(2)	4(2)
C(11)	35(2)	41(2)	34(2)	-1(2)	-4(2)	-1(2)
C(12)	32(2)	39(2)	46(3)	3(2)	-8(2)	2(2)

SI-50

C(13)	32(2)	39(2)	43(2)	0(2)	1(2)	9(2)
C(14)	39(2)	43(3)	31(2)	-4(2)	-3(2)	10(2)
C(15)	26(2)	36(2)	39(2)	1(2)	-4(2)	8(2)
C(16)	31(2)	48(3)	47(3)	3(2)	2(2)	6(2)
C(17)	28(2)	49(3)	67(3)	9(2)	3(2)	8(2)
C(18)	39(3)	37(3)	83(4)	1(3)	-9(3)	7(2)
C(19)	57(3)	40(3)	59(3)	-10(2)	-16(3)	9(2)
C(20)	51(3)	34(2)	45(3)	-3(2)	-8(2)	9(2)

Table S-crystal 2-5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å ^2x\ 10\ ^3) for Y.

	х	У	Z	U(eq)
H(3N)	4891	4700	524	41
H(2A)	501	5515	2053	87
H(2B)	-1111	5201	1817	87
H(3)	728	6378	1389	101
H(4A)	-1695	5540	850	80
H(4B)	-1434	6506	889	80
H(5A)	-268	5739	122	52
H(5B)	727	6476	364	52
H(10)	4406	4660	2075	41
H(11)	6726	4312	2517	44
H(12)	8723	3560	2109	47
H(13)	8401	3154	1260	46
H(14)	6082	3501	819	45
H(16)	2169	3208	1743	50
H(17)	813	2004	1616	57
H(18)	321	1511	777	64
H(19)	1308	2263	78	63
H(20)	2745	3491	217	52

X-ray crystal structure of compound 7e (major). Single crystal of 7e was obtained by slow evaporation of Petroleum ether /EtOAc solution. Crystal measurement of 7e was measured on R-Axis RAPID of Rigaku Corporation plus 291.2 k. Thermal ellipsoids are set at 30% probability.

CCDC number: 2341708

Table S-crystal3-1. Crystal data and structure refinement for 7e.

Identification code	YY		
Empirical formula	C23 H24 N6 O		
Formula weight	400.48		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C2/c		
Unit cell dimensions	a = 12.6779(12) Å	α= 90°.	
	b = 15.4791(12) Å	β=96.233(5)°.	
	c = 21.483(2) Å	$\gamma = 90^{\circ}.$	
Volume	4190.9(6) Å ³		
Z	8		
Density (calculated)	1.269 Mg/m ³		
Absorption coefficient	0.082 mm ⁻¹		
F(000)	1696		
Crystal size	$0.200 \ge 0.180 \ge 0.170 \text{ mm}^3$		
Theta range for data collection	2.632 to 27.562°.		
Index ranges	-16<=h<=16, -20<=k<=20, -27	l<=l<=27	
Reflections collected	89621		
Independent reflections	4839 [R(int) = 0.0583]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9862 and 0.9838		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4839 / 0 / 241		
Goodness-of-fit on F ²	1.049		

Final R indices [I>2sigma(I)]	R1 = 0.0596, wR2 = 0.1525
R indices (all data)	R1 = 0.0792, wR2 = 0.1658
Extinction coefficient	n/a
Largest diff. peak and hole	0.221 and -0.220 e.Å ⁻³

Table S-crystal3-2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for YY. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)5443(1)3315(1) $C(2)$ 5905(1)3978(1) $C(3)$ 6202(1)4741(1) $C(4)$ 6037(1)4841(1) $C(5)$ 5575(1)4179(1) $C(6)$ 5278(1)3416(1) $C(7)$ 5446(1)2399(1) $C(8)$ 6417(1)2073(1)	5502(1) $5189(1)$ $5501(1)$ $6126(1)$ $6439(1)$ $6127(1)$ $4514(1)$	42(1) 52(1) 69(1) 77(1) 77(1) 61(1)
C(2)5905(1)3978(1) $C(3)$ $6202(1)$ $4741(1)$ $C(4)$ $6037(1)$ $4841(1)$ $C(5)$ $5575(1)$ $4179(1)$ $C(6)$ $5278(1)$ $3416(1)$ $C(7)$ $5446(1)$ $2399(1)$ $C(8)$ $6417(1)$ $2073(1)$	5189(1) 5501(1) 6126(1) 6439(1) 6127(1) 4514(1)	52(1) 69(1) 77(1) 77(1) 61(1)
C(3) $6202(1)$ $4741(1)$ $C(4)$ $6037(1)$ $4841(1)$ $C(5)$ $5575(1)$ $4179(1)$ $C(6)$ $5278(1)$ $3416(1)$ $C(7)$ $5446(1)$ $2399(1)$ $C(8)$ $6417(1)$ $2073(1)$	5501(1) 6126(1) 6439(1) 6127(1) 4514(1)	69(1) 77(1) 77(1) 61(1)
C(4) $6037(1)$ $4841(1)$ $C(5)$ $5575(1)$ $4179(1)$ $C(6)$ $5278(1)$ $3416(1)$ $C(7)$ $5446(1)$ $2399(1)$ $C(8)$ $6417(1)$ $2073(1)$	6126(1) 6439(1) 6127(1) 4514(1)	77(1) 77(1) 61(1)
C(5)5575(1)4179(1)C(6)5278(1)3416(1)C(7)5446(1)2399(1)C(8)6417(1)2073(1)	6439(1) 6127(1) 4514(1)	77(1) 61(1)
C(6)5278(1)3416(1)C(7)5446(1)2399(1)C(8)6417(1)2073(1)	6127(1) 4514(1)	61(1)
C(7) 5446(1) 2399(1) C(8) 6417(1) 2073(1)	4514(1)	
C(8) 6417(1) 2073(1)		41(1)
	4388(1)	50(1)
C(9) 6704(1) 2072(1)	3785(1)	62(1)
C(10) 6009(1) 2373(1)	3295(1)	71(1)
C(11) 5041(1) 2706(1)	3408(1)	75(1)
C(12) 4749(1) 2718(1)	4024(1)	58(1)
C(13) 5159(1) 2434(1)	5188(1)	38(1)
C(14) 3544(1) 1640(1)	5471(1)	36(1)
C(15) 5321(1) 1186(1)	5812(1)	35(1)
C(16) 5879(1) 474(1)	6207(1)	39(1)
C(17) 4956(2) -10(2)	6464(1)	64(1)
C(18) 3938(2) 305(2)	6120(1)	66(1)
C(19) 6516(2) -95(2)	5797(1)	63(1)
C(20) 7192(2) -765(2)	6181(1)	79(1)
C(21) 7929(2) -333(2)	6687(1)	78(1)
C(22) 7315(2) 221(2)	7108(1)	65(1)
C(23) 6653(2) 886(1)	6717(1)	45(1)
N(1) 5788(1) 1783(1)	5556(1)	44(1)
N(2) 3999(1) 2293(1)	5199(1)	45(1)
N(3) 4241(1) 1065(1)	5779(1)	44(1)
N(4) 6014(2) 1433(2)	7101(1)	77(1)
N(5) 6491(3) 1890(2)	7482(1)	100(1)

N(6)	6845(5)	2330(3)	7863(2)	201(2)
O(1)	2579(1)	1546(1)	5457(1)	51(1)

 $Table \ S\text{-crystal3-3}. \qquad Bond \ lengths \ [\text{\AA}] \ and \ angles \ [^\circ] \ for \quad YY.$

C(1)-C(2)	1.3900
C(1)-C(6)	1.3900
C(1)-C(13)	1.546(2)
C(2)-C(3)	1.3900
C(3)-C(4)	1.3900
C(4)-C(5)	1.3900
C(5)-C(6)	1.3900
C(7)-C(8)	1.3845
C(7)-C(12)	1.3895
C(7)-C(13)	1.532(2)
C(8)-C(9)	1.3829
C(9)-C(10)	1.3779
C(10)-C(11)	1.3765
C(11)-C(12)	1.4137
C(13)-N(1)	1.463(2)
C(13)-N(2)	1.489(2)
C(14)-O(1)	1.229(2)
C(14)-N(2)	1.330(2)
C(14)-N(3)	1.373(2)
C(15)-N(1)	1.256(2)
C(15)-N(3)	1.377(2)
C(15)-C(16)	1.517(2)
C(16)-C(23)	1.529(3)
C(16)-C(19)	1.535(3)
C(16)-C(17)	1.542(3)
C(17)-C(18)	1.497(3)
C(18)-N(3)	1.459(2)
C(19)-C(20)	1.529(3)
C(20)-C(21)	1.509(4)
C(21)-C(22)	1.520(4)
C(22)-C(23)	1.521(3)
C(23)-N(4)	1.482(3)

N(4)-N(5)	1.196(3)
N(5)-N(6)	1.120(4)
C(2)-C(1)-C(6)	120.0
C(2)-C(1)-C(13)	122.04(7)
C(6)-C(1)-C(13)	117.86(7)
C(1)-C(2)-C(3)	120.0
C(2)-C(3)-C(4)	120.0
C(5)-C(4)-C(3)	120.0
C(4)-C(5)-C(6)	120.0
C(5)-C(6)-C(1)	120.0
C(8)-C(7)-C(12)	119.2
C(8)-C(7)-C(13)	120.37(7)
C(12)-C(7)-C(13)	120.44(7)
C(9)-C(8)-C(7)	120.9
C(10)-C(9)-C(8)	120.3
C(11)-C(10)-C(9)	120.0
C(10)-C(11)-C(12)	119.9
C(7)-C(12)-C(11)	119.7
N(1)-C(13)-N(2)	111.82(13)
N(1)-C(13)-C(7)	108.33(13)
N(2)-C(13)-C(7)	110.26(13)
N(1)-C(13)-C(1)	106.58(13)
N(2)-C(13)-C(1)	107.79(13)
C(7)-C(13)-C(1)	112.03(11)
O(1)-C(14)-N(2)	123.86(16)
O(1)-C(14)-N(3)	121.46(16)
N(2)-C(14)-N(3)	114.67(14)
N(1)-C(15)-N(3)	126.25(15)
N(1)-C(15)-C(16)	124.43(15)
N(3)-C(15)-C(16)	109.32(14)
C(15)-C(16)-C(23)	108.79(14)
C(15)-C(16)-C(19)	109.78(15)
C(23)-C(16)-C(19)	108.28(16)
C(15)-C(16)-C(17)	103.12(14)
C(23)-C(16)-C(17)	113.46(17)
C(19)-C(16)-C(17)	113.23(19)
C(18)-C(17)-C(16)	108.18(17)

N(3)-C(18)-C(17)	104.52(16)
C(20)-C(19)-C(16)	112.25(18)
C(21)-C(20)-C(19)	110.7(2)
C(20)-C(21)-C(22)	111.2(2)
C(21)-C(22)-C(23)	109.91(18)
N(4)-C(23)-C(22)	112.46(18)
N(4)-C(23)-C(16)	106.86(16)
C(22)-C(23)-C(16)	112.67(17)
C(15)-N(1)-C(13)	119.22(14)
C(14)-N(2)-C(13)	126.50(14)
C(14)-N(3)-C(15)	121.39(14)
C(14)-N(3)-C(18)	125.09(15)
C(15)-N(3)-C(18)	113.48(15)
N(5)-N(4)-C(23)	117.0(2)
N(6)-N(5)-N(4)	173.2(4)

Symmetry transformations used to generate equivalent atoms:

displacement factor exponent takes the form:				$-2\pi^{2}[h^{2} a^{*2}U^{11} + \dots + 2h k a^{*} b^{*} U^{12}]$		
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	24(1)	43(1)	58(1)	4(1)	-4(1)	1(1)

Table S-crystal3-4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for YY.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}]$

C(1)	24(1)	43(1)	58(1)	4(1)	-4(1)	1(1)
C(2)	42(1)	42(1)	71(1)	7(1)	-6(1)	-8(1)
C(3)	51(1)	45(1)	105(2)	2(1)	-14(1)	-10(1)
C(4)	46(1)	61(2)	119(2)	-31(2)	-12(1)	5(1)
C(5)	54(1)	95(2)	82(2)	-33(2)	3(1)	8(1)
C(6)	47(1)	70(2)	68(1)	-7(1)	11(1)	-4(1)
C(7)	33(1)	32(1)	55(1)	4(1)	-1(1)	-3(1)
C(8)	35(1)	53(1)	60(1)	7(1)	1(1)	0(1)
C(9)	46(1)	73(2)	68(1)	2(1)	13(1)	2(1)
C(10)	66(2)	92(2)	55(1)	2(1)	11(1)	4(1)
C(11)	67(2)	101(2)	54(1)	11(1)	-5(1)	18(1)
C(12)	46(1)	68(1)	58(1)	7(1)	-2(1)	12(1)
C(13)	23(1)	36(1)	55(1)	10(1)	-1(1)	-1(1)
C(14)	27(1)	32(1)	47(1)	1(1)	0(1)	-1(1)
C(15)	28(1)	34(1)	40(1)	0(1)	-2(1)	1(1)

SI-56

C(16)	36(1)	36(1)	42(1)	4(1)	-2(1)	2(1)
C(17)	46(1)	60(1)	83(2)	34(1)	-7(1)	-9(1)
C(18)	42(1)	57(1)	100(2)	39(1)	4(1)	-4(1)
C(19)	79(2)	54(1)	52(1)	-4(1)	-3(1)	29(1)
C(20)	95(2)	65(2)	76(2)	0(1)	0(1)	45(2)
C(21)	58(1)	87(2)	85(2)	21(2)	-1(1)	35(1)
C(22)	58(1)	79(2)	52(1)	8(1)	-14(1)	12(1)
C(23)	41(1)	49(1)	43(1)	-1(1)	-2(1)	5(1)
N(1)	26(1)	44(1)	62(1)	15(1)	-1(1)	2(1)
N(2)	23(1)	41(1)	68(1)	19(1)	-2(1)	-1(1)
N(3)	29(1)	39(1)	63(1)	15(1)	-1(1)	-2(1)
N(4)	83(2)	92(2)	56(1)	-22(1)	1(1)	22(1)
N(5)	137(2)	85(2)	77(2)	-33(2)	15(2)	-2(2)
N(6)	234(5)	190(5)	178(4)	-133(4)	28(4)	-40(4)
O(1)	26(1)	46(1)	81(1)	17(1)	2(1)	-2(1)

Table S-crystal3-5.Hydrogen coordinates ($x \ 10^4$) and isotropicdisplacement parameters (Å²x 10 ³)for YY.

	Х	у	Z	U(eq)
H(2)	6015	3911	4771	63
H(3)	6511	5184	5292	82
H(4)	6236	5352	6335	92
H(5)	5464	4246	6857	93
H(6)	4968	2972	6336	73
H(8)	6883	1852	4713	60
H(9)	7368	1868	3710	74
H(10)	6194	2350	2888	85
H(11)	4580	2923	3079	90
H(12)	4093	2937	4101	70
H(17A)	5029	-627	6404	77
H(17B)	4962	101	6909	77
H(18A)	3627	-133	5834	80
H(18B)	3432	456	6410	80
H(19A)	6031	-389	5488	75
H(19B)	6975	269	5576	75

H(20A)	6733	-1166	6371	95
H(20B)	7605	-1091	5908	95
H(21A)	8431	26	6495	93
H(21B)	8326	-770	6937	93
H(22A)	7805	512	7416	77
H(22B)	6854	-143	7328	77
H(23)	7136	1262	6515	54
H(2N)	3516	2693	4983	54

IX. NMR Spectral Copies

 333
 33
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5

SI-66

12xjm116cw.1.fid

4.4.8 4.4.8 5 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	4.03	4.00 3.73	3.72 3.70 3.50 3.49	3.47 3.47 3.45 3.45 3.45	3.13 3.13 3.12 3.11 3.10	3.09 3.08 3.07 2.40 2.40	2.37 2.37 1.89 1.88 1.86	1.86 1.85 1.85 1.84 1.84 1.83	1.81 1.81 1.81 1.81 1.80 1.80 1.80 1.79 1.79 1.77 1.77
<u> </u>							<u></u>		

1z ¹H NMR (500 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

^{20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2} f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

20 10 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 f1 (ppm)

20 10 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 -0--10 -20 -30 -40 -50 -60 -70 -80 -90 -100 f1 (ppm)

²⁰ -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -210 -70 0 -10 -20 -30 -40 -50 -60 -80 -90 -100 fl (ppm)

9x ind Dial we had a to to to to	<u>4 - 0 0 0 0 0 0 7 7 0 0 - 0 0 0 0 0 0 0 0</u>	o v 4 4 n 7 n 0 0 0 0 7 7 9 4 7 0 0 0 0 9 0 7 6
<u> </u>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0

Q HN N_3 CF₃

3h ¹H NMR (400 MHz, CDCl₃)

20 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 10 -20 0 -10 -30 -40 -50 -60 -70 -80 -90 -100 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

-10xjm110cw.1 9. fi	d																																	
· · ·	4 0	0 r	0	4 4	101	3	<u> </u>	0	3	- (N 0		· 10	0	6	-	6 0	γa	04	-	5 I	<u> </u>	> 4	0	4	0	\circ \circ		9	4.	4 -	- ∞	9	3
<u> </u>		- 0	0	00	5	N	~ ~	9	6	9,			\sim	0	6	9	in u	0 U	n u	0	4	4 4	- 4	_	-	-		\sim	0	0	20	Νœ	00	×
<u> </u>				<u> </u>	:	· • • •						:				- 1			3 a 3		- i - i		: .:			- i - i		: .:			•	• •		•
_	77	ৰ ৰ	িব	<u>र</u> ए	2 63	. 63. 1	a) a	6.00	C .	62.6	19 (1	1 4	6.00	C 1	2	2	<u>()</u> (7 6			2	7 0	1 (1	2	2	2		1 (1	2	N 1				_
																							L						\sim	1_				
																												100100		100				

3j ¹H NMR (400 MHz, CDCl₃)

10xjm110cw.11.fid

20 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -210 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 fl (ppm)

3k ¹H NMR (400 MHz, CDCl₃)

^{20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2} f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

²⁰ 10 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 -0--10 -20 -30 -40 -50 -60 -70 -80 -90 -100 f1 (ppm)

SI-110

^{20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2} f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

4c ¹H NMR (400 MHz, CDCl₃)

^{20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2} f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

SI-144

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

20 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 fl (ppm)

4h ¹H NMR (500 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

4i ¹H NMR (400 MHz, CDCl₃)

²⁰ -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 fl (ppm)

4k ¹H NMR (400 MHz, CDCl₃)

^{20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2} f1 (ppm)

4l ¹H NMR (500 MHz, CDCl₃)

^{20 10} -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 -20 - b -10 -30 -40 -50 -60 -70 -80 -90 -100 f1 (ppm)

4m ¹H NMR (400 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

 $\frac{1}{20}$ 10 0 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 -20 -10 -30 -40 -50 -60 -70 -80 -90 -100 fl (ppm)

⁴⁰ ¹H NMR (400 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

11x 🖽 16 🕮 w 🔿 4. 🗗 i d🗙 🗴 🧑	n n n	- 10	00	60	N 90	8 r	-	9	o v	0 0	4	4	m c	1 4	0		0	4 c	1 -	0	6 0	0 0	0	0	4	0	ωı	- 4	o lo	0	4 4	> 4
4400000	n n n	in m	n n	00	10	00	0	0.0	7 0	10	0	2	<u> </u>	o vi	10	0	0	್ರ ರ	5	9	တ္၀	0 1		1		0				-		11
	\neg \neg \neg	F F	F	1 7		F F	-	<u>г</u> і			1	F	<u>r' v</u>	i ni	s.	ŝ	÷ m	ni n	i d	o di	d c	ic	i di	ાં	d.	d.	d d	ni c	id	i di	d -	- 0
			~~~											_		_			<u> </u>	~1.	1	<u> </u>										



**4r** ¹H NMR (500 MHz, CDCl₃)







20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)



fl (ppm)






6b





12xjm92cw.142.fid			
1 1 0 <b></b> 0 0 <b>- -</b>	0 0 0 7 7 7 8 8 8 7 0 7 7 7 8 8 8 7		4 4 1 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
444444000	000000000000000000000000000000000000000	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	9 9 10 10 10 10 10 10 10 10 10 10 10 10 10
	~~~~~		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~


Q HŅ⁻

¹H NMR (500 MHz, CDCl₃)

6d ¹H NMR (500 MHz, CDCl₃)

13x7m8tw. 59 ft& 5 6 6 6 7	$\begin{array}{c}$		$\begin{array}{c}$
	• • • • • • • • • • • • • • • • • • •	8888888888888888888888888888888888888	

¹H NMR (500 MHz, CDCl₃)

7.3.000 2.3.000 7.3.0000 7.3.0000 7.3.0000 7.3.0000 7.3.0000 7.3.0000 7.3.0000 7.3.0000 7.3.000000 7.3.0000000000	127 G i 127 G i 1276 1271	7.3 3 7.33	7.32	7.30	7.30	7.28	7.26	7.25	7.25	5.80	4.20	4.17	3.75	3.74	3.74	3.74	3.73	3.72	3.58	5.57	3.56	70.7	2.26	2.25	2.23	2.03	2.02	2.00	1.78	1.77	1.75	1.75	1.74	1.74	1.73	1.72	1.71	1.70
	L L					1				<u> </u>		_						_	_	ц	5				L			 5	5	~		_	_	_				

7f ¹H NMR (500 MHz, CDCl₃)

SI-211

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

11xjm66cw.13.fid

- 7.14

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

13 ¹H NMR (400 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

