Supporting Information

for

Skeletal Editing of Benzodithiol-3-ones for the Assembly of

Benzo[d][1,3]oxathiin-4-ones

Wenxin Lv,[#] Xuan Kong,[#] Yushang Qing, Jing Zheng, Yuan Yin, Yao Zhou*, Dun-jia Wang

Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China

[#]Wenxin Lv and Xuan Kong contributed equally to the experimental work.

*E-mail: yaozhou@hbnu.edu.cn

Table of Contents

1. General information	3
2. General procedure for the synthesis of starting materials 1	.3
3. General procedure to synthesize products 2	.4
4. General procedure to synthesize products 4	.4
5. Crystal data of 4h	.5
6. Characterization data for the products.	6
7. NMR spectroscopic data for the products	19

1. General information

All reagents and solvents were obtained from commercial suppliers and used without further purification. The 3*H*-benzo[c][1,2]dithiol-3-one (**1a**) was purchased from Bide Pharmatech Ltd and paraformaldehyde was purchased from Energy Chemical. Unless otherwise stated, all experiments were conducted in a seal tube under air atmosphere. Reactions were monitored by TLC or GC-MS analysis. Flash column chromatography was performed over silica gel (200-300 mesh).

¹H-NMR and ¹³C-NMR spectra were recorded in CDCl₃ on a Bruker Avance 300 spectrometer (300 MHz ¹H, 75 MHz ¹³C) at room temperature. Chemical shifts were reported in ppm on the scale relative to CDCl₃ (δ = 7.26 for ¹H-NMR, δ = 77.00 for ¹³C-NMR) or DMSO-*d*₆ (δ = 2.50 for ¹H-NMR, δ = 39.96 for ¹³C-NMR) as an internal reference. High resolution mass spectra were recorded using Q-TOF time-of-flight mass spectrometer. Coupling constants (*J*) were reported in Hertz (Hz).

2. General procedure for the synthesis of starting materials 1

1,2-Benzodithiol-3-ones **1** were prepared according to our previous work which are known compounds. AcOH (15 mL) was added to a mixture of benzo[d][1,2,3]triazin-4(3H)-one (3 mmol) and Na₂S·9H₂O or KSCN (12 mmol) in a 150 mL sealed tube. Then the reaction mixture was stirred at 120 °C in an oil bath for 8 h. Upon completion of the reaction, ethyl acetate was added to the mixture, and then washed with saturated brine with thrice. The combined water layers were extracted with ethyl acetate twice. The combined organic layers were dried over anhydrous Na₂SO₄. The solvents were removed via rotary evaporator and the residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 30:1, v/v) to give the desired product as yellow solid.

3. General procedure to synthesize products 2

CH₃CN (2 mL) was added to a mixture of 1,2-benzodithiol-3-ones **1** (0.3 mmol), paraformaldehyde (1.2 mmol, 36 mg) and DPPE (0.2 mmol, 79.4 mg) in a sealed tube. Then the reaction mixture was stirred at 80 °C for 12 h. Upon completion of the reaction, the solvents were removed via rotary evaporator and the residue was purified by flash column chromatograph (silica gel, petroleum ether: EtOAc as the eluent) to give the desired product benzo[d][1,3]oxathiin-4-ones **2**.

[Scale-up for larger synthesis of 2a]: CH₃CN (30 mL) was added to a mixture of 1,2-benzodithiol-3-ones **1a** (0.84 g, 5 mmol), paraformaldehyde (0.45 g, 15 mmol) and DPPE (1.31 g, 3.3 mmol) in a 150 mL sealed tube. Then the reaction mixture was stirred at 80 °C for 18 h. Upon completion of the reaction, the solvents were removed via rotary evaporator and the residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the desired productbenzo[d][1,3]oxathiin-4-ones **2a** as colourless oil (0.67 g, 81%).

4. General procedure to synthesize products 4

CH₃CN (2 mL) was added to a mixture of 1,2-benzodithiol-3-ones **1** (0.3 mmol), aldehydes (0.2 mmol), CrCl₂ (20 mol%, 5 mg), K₂CO₃ (0.4 mmol, 55.2 mg) and DPPE (0.2 mmol, 79.4 mg) in a sealed tube. Then the reaction mixture was stirred at 90 °C for 22 h. Upon completion of the reaction, the solvents were removed via rotary evaporator and the residue was purified by flash column chromatograph (silica gel, petroleum ether: EtOAc as the eluent) to give the desired product benzo[d][1,3]oxathiin-4-ones **4**.

5. Crystal data of 4h

Crystallographic data for compound **4h** (CCDC-2353212) has already been deposited with the Cambridge Crystallographic Data Centre, Copies of the data can be obtained, free of charge, on application to CCDC (Email: deposit@ccdc.cam.ac.uk)

Displacement ellipsoids are drawn at 50% probability leve

Bond precision:	C-C = 0.0	C-C = 0.0044 A		Wavelength=0.71073	
Cell:	a=9.4078(8)	b=13.1508(11)) c	=10.7940(9)	
	alpha=90	beta=107.573(9) g	amma=90	
Temperature:	296 K				
	Calculated]	Reported	
Volume	1273.1	1273.1(2)		1273.11(19)	
Space group	P 21/c	P 21/c		P 1 21/c 1	
Hall group	-P 2yt	-P 2ybc		-P 2ybc	
Moiety formula	ety formula C14 H9 Br O2 S		(C14 H9 Br O2 S	
Sum formula C14 H9 F		19 Br O2 S	(C14 H9 Br O2 S	
Mr	321.17			321.18	
Dx,g cm-3	, cm-3 1.676		1	1.676	
Ζ	4		2	4	
Mu (mm-1)	4u (mm-1) 3.382			3.382	
F000	000 640.0		(640.0	
F000'	639.61	l			
h,k,lmax	12,18,	12,18,14		12,17,14	
Nref	Iref 3453		4	2933	
Tmin,Tmax	0.608,	0.608,0.666		0.847,1.000	
Tmin'	0.596				
Correction meth	nod= # Reported	d T Limits: Tmi	n=0.847	7	
Tmax=1.000 At	psCorr = MULT	ΓI-SCAN			
Data completen	ess = 0.849	Theta(max)=	= 29.214		
R(reflections)=	0.0406(2037)		wR2(re	eflections)= 0.0912(2933)	
S = 1.022	Npar=16	53			

6. Characterization data for the products

4H-benzo[d][1,3]oxathiin-4-one (2a) (CAS Number: 5651-33-2)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a colourless oil (44.3 mg, 89%). ¹H NMR (300 MHz, CDCl₃) ¹H

NMR (300 MHz, CDCl₃) δ 8.16 (d, J = 7.9 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.38 – 7.28 (m, 2H), 5.41 (s, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 163.2, 138.7, 133.4, 132.7, 127.6, 126.8, 124.5, 68.8.

7-methoxy-4H-benzo[d][1,3]oxathiin-4-one (2b)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 15:1, v/v) to give the product as a white solid (54.6 mg, 93%). ¹H NMR (300 MHz,

CDCl₃) δ 7.65 (d, J = 2.8 Hz, 1H), 7.25 (d, J = 8.6 Hz, 1H), 7.07 (dd, J = 8.6, 2.8 Hz, 1H), 5.39 (s, 2H), 3.84 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 163.3, 158.5, 129.6, 128.7, 125.3, 121.8, 115.6, 69.1, 55.7. HRMS (ESI, m/z) calcd for C₉H₉O₃S [M+H]⁺: 197.0267; found: 197.0270.

6-(naphthalen-2-yl)-4H-benzo[d][1,3]oxathiin-4-one (2c)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a white solid (74.5 mg, 85%). ¹H NMR (300 MHz, CDCl₃) δ 8.56 (d, J = 1.9

Hz, 1H), 8.06 (s, 1H), 7.93 (d, J = 8.6 Hz, 2H), 7.89 – 7.81 (m, 2H), 7.72 (dd, J = 8.5, 1.7 Hz, 1H), 7.56 – 7.49 (m, 2H), 7.46 (d, J = 8.2 Hz, 1H), 5.47 (s, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 163.4, 139.9, 137.4, 136.0, 133.5, 132.8 132.1, 131.2, 128.8, 128.2, 128.1, 127.6, 126.6, 126.4, 125.8, 124.8, 124.7, 68.8. HRMS (ESI, m/z) calcd for C₁₈H₁₃O₂S [M+H]⁺: 293.0631; found: 293.0631.

6-methyl-4H-benzo[d][1,3]oxathiin-4-one (2d)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a colourless oil (47.5 mg, 88%). ¹H NMR (300

MHz, CDCl₃) δ 7.99 (s, 1H), 7.38 – 7.21 (m, 2H), 5.40 (s, 2H), 2.38 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 163.5, 137.0, 135.2, 134.5, 132.9, 127.4, 124.2, 68.8, 20.9. HRMS (ESI, m/z) calcd for C₉H₉O₂S [M+H]⁺: 181.0318; found: 181.0323.

8-methyl-4H-benzo[d][1,3]oxathiin-4-one (2e)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a white solid (48.6 mg, 90%). ¹H NMR (300 MHz, CDCl₃) δ 8.04 (d, *J* = 7.8 Hz, 1H), 7.37 (d, *J* = 7.4 Hz, 1H), 7.22 (d, *J* = 7.7 Hz, 1H), 5.39 (s,

2H), 2.35 (s, 3H). ${}^{13}C{}^{1}H$ NMR (75 MHz, CDCl₃) δ 163.7, 138.6, 135.6, 134.5, 130.3, 126.0, 124.4, 68.0, 19.8. HRMS (ESI, m/z) calcd for C₉H₉O₂S [M+H]⁺: 181.0318; found: 181.0319.

7-(4-((1s,4r)-4-propylcyclohexyl)phenyl)-4H-benzo[d][1,3]oxathiin-4-one (2f)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a white solid (101.0 mg, 92%). ¹H NMR (300 MHz, CDCl₃) δ 8.41 (d, *J* =

2.0 Hz, 1H), 7.71 (dd, J = 8.2, 2.1 Hz, 1H), 7.53 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 8.2 Hz, 1H), 7.31 (d, J = 8.2 Hz, 2H), 5.45 (s, 2H), 2.51 (ddd, J = 12.2, 7.7, 3.0 Hz, 1H), 1.91 (t, J = 11.0 Hz, 4H), 1.59 – 1.43 (m, 2H), 1.42 – 1.28 (m, 3H), 1.28 – 1.18 (m, 2H), 1.15 – 0.99 (m, 2H), 0.91 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 163.3, 148.0, 140.0, 136.9, 136.3, 131.8, 130.8, 128.3, 127.5, 126.7, 124.7, 68.8, 44.3, 39.7, 37.0, 34.2, 33.5, 20.0, 14.4. HRMS (ESI, m/z) calcd for C₂₃H₂₇O₂S [M+H]⁺: 367.1726; found: 367.1727.

6-(dibenzo[b,d]thiophen-4-yl)-4H-benzo[d][1,3]oxathiin-4-one (2g)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 10:1, v/v) to give the product as a white solid (80.4 mg, 77%). ¹H NMR (300 MHz, CDCl₃) δ 8.57 (d, *J* =

1.9 Hz, 1H), 8.20 (d, J = 6.7 Hz, 2H), 7.92 (dd, J = 8.1, 2.0 Hz, 1H), 7.88 – 7.82 (m, 1H), 7.60 – 7.54 (m, 1H), 7.49 (dd, J = 6.0, 4.5 Hz, 4H), 7.33 (s, 1H), 5.52 (s, 2H).¹³C{¹H} NMR (75 MHz, CDCl₃) δ 163.1, 139.5, 139.2, 138.3, 136.5, 135.6, 134.6, 133.1, 132.4, 128.4, 128.1, 127.0, 126.8, 125.3, 124.9, 124.6, 122.7, 121.8, 121.2, 68.8. HRMS (ESI, m/z) calcd for C₂₀H₁₃O₂S₂[M+H]⁺: 349.0351; found: 349.0354.

6-morpholino-4H-benzo[d][1,3]oxathiin-4-one (2h)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the product as a yellow oil (68.5 mg, 91%). ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, *J* = 2.8 Hz, 1H), 7.30 –

7.25 (m, 1H), 7.10 (dd, J = 8.7, 2.8 Hz, 1H), 5.42 (s, 2H), 4.01 – 3.78 (m, 4H), 3.30 – 3.13 (m, 4H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 163.81 (s), 150.1, 128.4, 127.8, 125.1, 121.3, 118.5, 69.1, 66.6, 48.7. HRMS (ESI, m/z) calcd for C₂₀H₁₃O₂S₂[M+H]⁺: 252.0689; found: 252.0693.

6-chloro-4H-benzo[d][1,3]oxathiin-4-one (2i)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a white solid (48.6 mg, 81%). ¹H NMR (300 MHz, CDCl₃) δ 8.10 (d, *J* = 2.1 Hz, 1H), 7.43 (dd, *J* = 8.4, 2.2 Hz,

1H), 7.29 (d, J = 8.4 Hz, 1H), 5.40 (s, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.0, 137.0, 133.5, 132.7, 132.2, 128.8, 125.5, 68.7. HRMS (ESI, m/z) calcd for C₈H₆ClO₂S [M+H]⁺: 200.9772; found: 200.9774.

7-chloro-4H-benzo[d][1,3]oxathiin-4-one (2j)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a white solid (50.4 mg, 84%). ¹H NMR (300 MHz, CDCl₃) δ 8.05 (d, *J* = 8.5 Hz, 1H), 7.31 (d, *J* = 1.5 Hz, 1H),

7.28 - 7.20 (m, 1H), 5.37 (s, 2H). ${}^{13}C{}^{1}H$ NMR (75 MHz, CDCl₃) δ 162.5, 140.4, 140.1, 134.0, 127.4, 127.3, 122.6, 68.6. HRMS (ESI, m/z) calcd for C₈H₆ClO₂S [M+H]⁺: 200.9772; found: 200.9777.

6-fluoro-4H-benzo[d][1,3]oxathiin-4-one (2k)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a white solid (47.4 mg, 86%). ¹H NMR (300 MHz, CDCl₃) δ 7.85 (dd, *J* = 8.7, 2.8 Hz, 1H), 7.34 (dd, *J* = 8.7, 4.9

Hz, 1H), 7.26 - 7.18 (m, 1H), 5.41 (s, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 161.1 (d, J = 246.8 Hz), 162.2 (d, J = 2.6 Hz), 134.0 (d, J = 3.3 Hz), 129.3 (d, J = 7.4 Hz), 126.0 (d, J = 7.4 Hz), 121.4 (d, J = 22.5 Hz), 119.1 (d, J = 24.0 Hz), 69.0. HRMS (ESI, m/z) calcd for C₈H₆FO₂S [M+H]⁺: 185.0067; found: 185.0070.

5-fluoro-4H-benzo[d][1,3]oxathiin-4-one (2l)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a white solid (41.4 mg, 75%). ¹H NMR (300 MHz, CDCl₃) δ 7.45 (td, *J* = 8.1, 5.1 Hz, 1H), 7.18 (d, *J* = 7.9 Hz, 1H), 7.11 – 6.98 (m, 1H),

5.38 (s, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 164.1 (d, J = 265.5 Hz), 158.8 (d, J = 4.9 Hz), 141.3, 134.4 (d, J = 10.5 Hz), 123.6 (d, J = 4.1 Hz), 115.5 (d, J = 21.8 Hz), 113.7 (d, J = 8.7 Hz), 68.8. HRMS (ESI, m/z) calcd for C₈H₆FO₂S [M+H]⁺: 185.0067; found: 185.0069.

6-bromo-4H-benzo[d][1,3]oxathiin-4-one (2m)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a white solid (50.3 mg, 69%). ¹H NMR (300 MHz, CDCl₃) δ 8.33 (d, *J* = 2.1 Hz, 1H), 7.63 (dd, *J* = 8.4, 2.2 Hz, 1H), 7.29 (d, *J* =

1.2 Hz, 1H), 5.45 (s, 2H). ${}^{13}C{}^{1}H$ NMR (75 MHz, CDCl₃) δ 162.0, 137.7, 136.4, 135.3, 129.0, 125.8, 120.3, 68.7. HRMS (ESI, m/z) calcd for C₈H₆BrO₂S [M+H]⁺: 244.9266; found: 244.9272.

6-(trifluoromethyl)-4H-benzo[d][1,3]oxathiin-4-one (2n)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a white solid (56.1 mg, 80%). ¹H NMR (300 MHz, CDCl₃) δ 8.31 (d, *J* = 8.2 Hz, 1H), 7.64 (s, 1H), 7.58 (d, *J* = 8.2

Hz, 1H), 5.47 (s, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.0, 140.0, 134.9 (q, J = 33.0 Hz), 129.8 (q, J = 273.4 Hz), 124.7 (q, J = 3.9 Hz), 123.4 (q, J = 3.6 Hz), 121.0, 68.8. HRMS (ESI, m/z) calcd for C₉H₆F₃O₂S [M+H]⁺: 235.0035; found: 235.0038.

6-nitro-4H-benzo[d][1,3]oxathiin-4-one (20)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the product as a vellow solid (46.8 mg, 74%). ¹H NMR (300 MHz, CDCl₃) δ

8.38 (d, J = 8.6 Hz, 1H), 8.24 (d, J = 2.1 Hz, 1H), 8.13 (dd, J = 8.6, 2.1 Hz, 1H), 5.50 (s, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 161.4, 141.0, 134.2, 131.1, 129.0, 122.7, 121.2, 68.9. HRMS (ESI, m/z) calcd for C₈H₆NO₄S [M+H]⁺: 212.0012; found: 212.0016.

7-bromo-6-fluoro-4H-benzo[d][1,3]oxathiin-4-one (2p)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a white solid (54.8 mg, 70%). ¹H NMR (300 MHz, CDCl₃) δ 8.39 (d, *J* = 7.0 Hz, 1H), 7.13 (d, *J* = 7.9 Hz, 1H),

5.43 (s, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 161.4 (d, J = 258.0 Hz), 161.3, 140.4

(d, J = 9.1 Hz), 138.3 (d, J = 2.6 Hz), 121.7 (d, J = 3.5 Hz), 115.3 (d, J = 25.5 Hz), 107.9 (d, J = 25.5 Hz), 68.7. HRMS (ESI, m/z) calcd for C₈H₅BrFO₂S [M+H]⁺: 262.9172; found: 262.9177.

6-chloro-8-methyl-4H-benzo[d][1,3]oxathiin-4-one (2q)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a white solid (53.2 mg, 83%). ¹H NMR (300 MHz, CDCl₃) δ 8.01 (d, *J* = 2.0 Hz, 1H), 7.35 (d, *J* = 1.6 Hz, 1H), 5.38 (s, 2H), 2.33

(s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.6, 137.5, 137.1, 134.3, 132.0, 129.8, 125.5, 68.0, 19.6. HRMS (ESI, m/z) calcd for C₉H₈ClO₂S [M+H]⁺: 214.9928; found: 214.9929.

2-phenyl-4H-benzo[d][1,3]oxathiin-4-one (4a) (CAS Number: 5651-35-4)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a colourless oil (21.8 mg, 45%).¹H NMR (300 MHz, CDCl₃) δ 8.23 (d, *J* = 7.9 Hz, 1H), 7.60 (dd, *J* = 6.6,

2.8 Hz, 2H), 7.56 – 7.50 (m, 1H), 7.47 – 7.42 (m, 3H), 7.36 (t, *J* = 7.5 Hz, 2H), 6.58 (s, 1H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 164.0, 138.7, 134.6, 133.7, 132.7, 129.9, 128.8, 127.4, 126.8, 126.7, 124.2, 83.6.

2-(p-tolyl)-4H-benzo[d][1,3]oxathiin-4-one (4b) (CAS Number: 146853-01-2)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a pink solid (20.5 mg, 40%).¹H NMR (300 MHz, CDCl₃) δ 8.22 (d, *J* = 7.9 Hz, 1H), 7.51

(dd, J = 13.3, 7.5 Hz, 3H), 7.35 (t, J = 7.4 Hz, 2H), 7.24 (d, J = 9.0 Hz, 2H), 6.54 (s, 1H), 2.39 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 164.1, 140.0, 138.8, 133.7, 132.7, 131.7, 129.4, 127.4, 126.8, 126.7, 124.3, 83.6, 21.4.

2-(4-(tert-butyl)phenyl)-4H-benzo[d][1,3]oxathiin-4-one (4c)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a colourless oil (27.4 mg, 46%). ¹H NMR (300 MHz, CDCl₃) δ 8.30 – 8.14 (m, 1H), 7.51 (dd, *J* = 11.2, 4.9 Hz, 3H), 7.46 (d, *J* =

8.5 Hz, 2H), 7.41 – 7.31 (m, 2H), 6.55 (s, 1H), 1.34 (s, 9H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 164.1, 153.1, 138.8, 133.7, 132.7, 131.7, 127.4, 126.8, 126.5, 125.7, 124.2, 83.6, 34.8, 31.2. HRMS (ESI, m/z) calcd for C₁₈H₁₉O₂S [M+H]⁺: 299.1100; found: 299.1105.

2-([1,1'-biphenyl]-4-yl)-4H-benzo[d][1,3]oxathiin-4-one (4d)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a white solid (31.8 mg, 50%).¹H NMR (300 MHz, CDCl₃) δ 8.32 – 8.19 (m, 1H),

7.67 (s, 4H), 7.64 – 7.59 (m, 2H), 7.58 – 7.51 (m, 1H), 7.47 (t, J = 7.3 Hz, 2H), 7.42 – 7.35 (m, 3H), 6.63 (s, 1H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 164.0, 142.8, 140.2, 138.7, 133.8, 133.5, 132.8, 128.9, 127.8, 127.5, 127.4, 127.3, 127.2, 126.9, 124.2, 83.5. HRMS (ESI, m/z) calcd for C₂₀H₁₅O₂S [M+H]⁺: 319.0787; found: 319.0789.

2-(naphthalen-1-yl)-4H-benzo[d][1,3]oxathiin-4-one (4e)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a yellow oil (33.2 mg, 57%). ¹H NMR (300 MHz, CDCl₃) δ 8.30 (dd, J = 8.2,

1.3 Hz, 1H), 8.19 – 8.08 (m, 1H), 7.99 (d, J = 7.2 Hz, 1H), 7.96 – 7.87 (m, 2H), 7.62 – 7.50 (m, 4H), 7.46 – 7.35 (m, 2H), 7.24 (s, 1H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 164.3, 139.1, 133.9, 133.7, 133.0, 130.6, 129.9, 129.5, 129.1, 127.5, 127.0, 126.8, 126.2, 125.9, 125.3, 124.2, 123.0, 81.6. HRMS (ESI, m/z) calcd for C₁₈H₁₃O₂S [M+H]⁺: 293.0631; found: 293.0632.

2-(4-fluorophenyl)-4H-benzo[d][1,3]oxathiin-4-one (4f)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a white solid (28.6 mg, 55%). ¹H NMR (300 MHz, CDCl₃) δ 8.22 (dd, *J* = 8.1, 1.1 Hz,

1H), 7.65 – 7.48 (m, 3H), 7.41 – 7.32 (m, 2H), 7.12 (t, J = 8.6 Hz, 2H), 6.54 (s, 1H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 163.4 (d, J = 247.5 Hz), 163.8, 138.4, 133.8, 132.7, 130.6 (d, J = 3.2 Hz), 128.7 (d, J = 8.6 Hz), 127.4, 126.9, 124.1, 115.8 (d, J = 8.6 Hz), 82.9. HRMS (ESI, m/z) calcd for C₁₄H₁₀FO₂S [M+H]⁺: 261.0380; found: 261.0385.

2-(4-chlorophenyl)-4H-benzo[d][1,3]oxathiin-4-one (4g) (CAS Number: 38058-00-3)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a white solid (29.2 mg, 53%). ¹H NMR (300 MHz, CDCl₃) δ 8.28 – 8.18 (m, 1H), 7.53

(dd, J = 11.0, 4.9 Hz, 3H), 7.43 (s, 1H), 7.42 – 7.33 (m, 3H), 6.55 (s, 1H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 163.7, 138.3, 135.8, 133.9, 133.2, 132.8, 129.0, 128.1, 127.4, 127.0, 124.1, 82.8.

2-(4-bromophenyl)-4H-benzo[d][1,3]oxathiin-4-one (4h)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a white solid (37.8 mg, 59%). ¹H NMR (300 MHz, CDCl₃) δ 8.22 (d, *J* = 7.9 Hz, 1H),

7.57 (d, J = 8.4 Hz, 2H), 7.49 (t, J = 10.2 Hz, 3H), 7.40 – 7.33 (m, 2H), 6.53 (s, 1H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 163.6, 138.2, 133.9, 133.7, 132.8, 132.0, 128.3, 127.4, 127.0, 124.1, 124.0, 82.8. C₁₄H₁₀BrO₂S [M+H]⁺: 320.9579; found: 320.9582.

2-(4-(trifluoromethyl)phenyl)-4H-benzo[d][1,3]oxathiin-4-one (4i)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 15:1, v/v) to give the product as a white solid (32.2 mg, 52%). ¹H NMR (300 MHz, CDCl₃) δ 8.24 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.72 (t, *J* = 5.9 Hz, 4H), 7.61 – 7.50 (m,

1H), 7.46 – 7.34 (m, 2H), 6.64 (s, 1H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 163.5, 138.4 (q, *J* = 1.3 Hz), 138.0, 134.0, 132.8, 132.0 (q, *J* = 32.3 Hz), 127.5, 127.2, 127.1, 125.8 (q, *J* = 3.8 Hz), 124.1, 123.7 (q, *J* = 271.5 Hz), 82.5. HRMS (ESI, m/z) calcd for C₁₅H₁₀F₃O₂S [M+H]⁺: 311.0348; found: 311.0349.

4-(4-oxo-4H-benzo[d][1,3]oxathiin-2-yl)benzonitrile (4j)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 10:1, v/v) to give the product as a white solid (32.0 mg, 60%).¹H NMR (300 MHz, CDCl₃) δ 8.22 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.74 (s, 4H), 7.55 (t, *J* = 8.3 Hz, 1H), 7.39

(t, J = 7.1 Hz, 2H), 6.63 (s, 1H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 163.2, 139.4, 137.6, 134.1, 132.8, 132.6, 127.5, 127.3, 127.2, 124.0, 118.0, 113.6, 82.2. HRMS (ESI, m/z) calcd for C₁₅H₁₀NO₂S [M+H]⁺: 268.0427; found: 268.0427.

2-(3,5-dibromophenyl)-4H-benzo[d][1,3]oxathiin-4-one (4k)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a white solid (30.1 mg, 38%). ¹H NMR (300 MHz, CDCl₃) δ 8.22 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.77 – 7.63 (m, 3H), 7.55 (t, *J* = 6.9 Hz, 1H), 7.39 (t,

J = 7.0 Hz, 2H), 6.50 (s, 1H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 163.2, 138.1, 137.7, 135.4, 134.1, 132.9, 128.4, 127.5, 127.4, 123.9, 123.3, 81.5. HRMS (ESI, m/z) calcd for C₁₄H₉Br₂O₂S [M+H]⁺: 398.8685; found: 398.8688.

2-(4-acetylphenyl)-4H-benzo[d][1,3]oxathiin-4-one (4l)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 15:1, v/v) to give the product as a white solid (28.8 mg, 51%). ¹H NMR (300 MHz, CDCl₃) δ 8.24 (dd, *J* = 8.1,

1.2 Hz, 1H), 8.04 (d, J = 8.3 Hz, 2H), 7.72 (d, J = 8.3 Hz, 2H), 7.61 – 7.52 (m, 1H), 7.44 – 7.35 (m, 2H), 6.65 (s, 1H), 2.64 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 197.4, 163.6, 139.3, 138.1, 138.0, 134.0, 132.8, 128.7, 127.5, 127.1, 126.9, 124.1, 82.8, 26.8. HRMS (ESI, m/z) calcd for C₁₆H₁₃O₃S [M+H]⁺: 285.0580; found: 285.0585.

2-(4-ethynylphenyl)-4H-benzo[d][1,3]oxathiin-4-one (4m)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a white solid (24.5 mg, 46%). ¹H NMR (300 MHz, CDCl₃) δ 8.23 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.56 (s, 3H), 7.55 - 7.50 (m, 1H), 7.42 -

7.33 (m, 2H), 7.26 (s, 1H), 6.57 (s, 1H), 3.15 (s, 1H). ${}^{13}C{}^{1}H$ NMR (75 MHz, CDCl₃) δ 163.8, 138.3, 135.0, 133.9, 132.8, 132.5, 127.4, 127.0, 126.7, 124.1, 123.8, 83.1, 82.8, 78.6. HRMS (ESI, m/z) calcd for C₁₆H₁₁O₂S [M+H]⁺: 267.0474; found: 267.0476.

2-(4-(phenylethynyl)phenyl)-4H-benzo[d][1,3]oxathiin-4-one (4n)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a white solid (36.4 mg, 53%). ¹H NMR (300 MHz, CDCl₃) δ 8.24 (d, *J* = 7.7 Hz, 1H), 7.60 (s, 4H), 7.58 – 7.51 (m, 3H), 7.37

(dd, J = 8.4, 5.1 Hz, 5H), 6.59 (s, 1H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 163.9, 138.4, 134.4, 133.9, 132.8, 131.9, 131.7, 128.6, 128.4, 127.4, 127.0, 126.7, 125.0, 124.2, 122.8, 90.7, 88.5, 83.2. HRMS (ESI, m/z) calcd for C₂₂H₁₅O₂S [M+H]⁺: 343.0787; found: 343.0790.

2-(pyridin-2-yl)-4H-benzo[d][1,3]oxathiin-4-one (4o)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 2:1, v/v) to give the product as a white solid (39.3 mg, 81%). ¹H NMR (300 MHz, CDCl₃) δ 8.60 (d, *J* = 4.7 Hz, 1H), 8.20 (d, *J* = 7.0 Hz, 1H), 7.80 (ddd, *J* = 12.7, 9.6, 4.5 Hz, 2H),

7.57 – 7.46 (m, 1H), 7.42 – 7.30 (m, 3H), 6.72 (s, 1H). ${}^{13}C{}^{1}H$ NMR (75 MHz, CDCl₃) δ 163.5, 153.6, 149.2, 138.2, 137.3, 133.8, 132.6, 127.7, 126.8, 124.3, 124.0, 121.5, 83.9. HRMS (ESI, m/z) calcd for C₁₃H₁₀NO₂S [M+H]⁺: 244.0427; found: 244.0427.

2-(quinolin-2-yl)-4H-benzo[d][1,3]oxathiin-4-one (4p)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 2:1, v/v) to give the product as a white solid (27.5 mg, 47%). ¹H NMR (300 MHz, CDCl₃) δ 8.36 (d, *J* = 8.6

Hz, 1H), 8.27 (d, J = 7.7 Hz, 1H), 8.18 (d, J = 8.5 Hz, 1H), 7.94 (d, J = 8.8 Hz, 1H), 7.80 (t, J = 7.0 Hz, 2H), 7.64 (t, J = 7.7 Hz, 1H), 7.57 – 7.50 (m, 1H), 7.47 – 7.36 (m, 2H), 6.98 (s, 1H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 163.6, 153.5, 138.1, 133.9, 132.7, 131.8, 131.1, 131.0, 130.5, 129.1, 128.8, 128.7, 128.2, 127.8, 127.7, 126.9, 124.2, 118.6, 84.2. HRMS (ESI, m/z) calcd for C₁₇H₁₂NO₂S [M+H]⁺: 294.0583; found: 294.0588.

2-phenethyl-4H-benzo[d][1,3]oxathiin-4-one (4q)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 10:1, v/v) to give the product as a colourless oil (39.4 mg, 73%). ¹H NMR (300 MHz, CDCl₃) δ 8.17 (d, *J* = 8.0 Hz, 1H), 7.57 – 7.42 (m, 1H), 7.36 – 7.27 (m, 4H),

7.25 – 7.19 (m, 3H), 5.54 (t, J = 5.5 Hz, 1H), 2.94 (t, J = 7.8 Hz, 2H), 2.56 – 2.42 (m, 1H), 2.40 – 2.23 (m, 1H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 164.1, 139.8, 138.3, 133.6, 132.6, 128.6, 128.5, 127.6, 126.6, 126.4, 124.1, 81.9, 35.7, 30.9. HRMS (ESI, m/z) calcd for C₁₆H₁₅O₂S [M+H]⁺: 271.0787; found: 271.0787.

2-(2,2-dimethyl-1,3-dioxolan-4-yl)-4H-benzo[d][1,3]oxathiin-4-one (4r)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 2:1, v/v) to give the product as a yellow oil (34.0 mg, 64%). ¹H NMR (300 MHz, CDCl₃) δ 8.08 (d, *J* = 7.8 Hz, 1H), 7.48 – 7.39 (m, 1H), 7.29 (s, 1H), 7.21 – 7.16 (m, 1H),

5.67 (d, J = 4.8 Hz, 0.5 H), 5.47 (d, J = 7.4 Hz, 0.5 H), 4.57 – 4.50 (d, J = 6.4, 0.5 H), 4.47 – 4.39 (m, 0.5 H), 4.25 – 4.18 (m, 0.5 H), 4.15 – 4.09 (m, 1.5 H), 1.48 (s, 1.5 H), 1.42 (s, 1.5 H), 1.33 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 197.4, 163.1, 162.9, 142.4, 137.6, 137.5, 135.5, 133.8, 133.7, 132.5, 132.4, 131.2, 131.0, 128.0, 127.9, 126.7, 126.5, 125.1, 123.9, 123.8, 110.9, 110.9, 83.2, 82.9, 75.3, 74.9, 66.5, 65.6, 26.6, 26.1, 24.9, 24.7. HRMS (ESI, m/z) calcd for C₁₃H₁₅O4S [M+H]⁺: 267.0686; found: 267.0689.

Diethyl 2,2'-disulfanediyldibenzoate (5)

EtOH (2 mL) was added to a mixture of 2a (51 mg, 0.3 mmol), DMAP (7.3 mg, 0.06 mmol) and Et₃N (61.2 mg, 0.6 mmol) in a sealed tube. Then, the mixture was stirred at 80 °C under O₂ atmosphere for 12 h. Upon completion of the reaction, the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatograph

(silica gel, petroleum ether:EtOAc = 15:1, v/v) to give the desired **5** as white solid (33 mg, 61%). ¹H NMR (300 MHz, CDCl₃) δ 8.04 (dd, *J* = 7.7, 0.9 Hz, 2H), 7.71 (d, *J* = 8.1 Hz, 2H), 7.36 (t, *J* = 7.1 Hz, 2H), 7.20 (dd, *J* = 12.4, 4.5 Hz, 2H), 4.42 (q, *J* = 7.1 Hz, 4H), 1.41 (t, *J* = 7.1 Hz, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 166.5, 140.3, 132.9, 131.4, 127.6, 125.8, 125.4, 61.5, 14.3. HRMS (ESI, m/z) calcd for C₁₈H₁₉O₄S₂ [M+H]⁺: 363.0720; found: 363.0723.

2H,4H-benzo[d][1,3]oxathiin-4-one 1-oxide (6) (CAS Number: 36665-23-3)

CH₂Cl₂ (2 mL) was added to a mixture of **2a** (51 mg, 0.3 mmol), *m*-CPBA (69.0 mg, 0.4 mmol) in a sealed tube. Then, the mixture was stirred at RT for about 2 h. Upon completion of the reaction, the solvent was evaporated under reduced pressure and the residue

was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 10:1, v/v) to give the desired **6** as white solid (42.5 mg, 78%). ¹H NMR (300 MHz, CDCl₃) δ 8.20 (d, *J* = 7.5 Hz, 1H), 7.96 (d, *J* = 7.3 Hz,

1H), 7.86 (dt, J = 15.3, 7.3 Hz, 2H), 5.34 (s, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 159.2, 138.6, 135.2, 134.2, 132.7, 123.4, 122.6, 79.5.

2-benzylbenzo[d]isothiazol-3(2H)-one (7) (CAS Number: 2514-36-5)

PhMe (2 mL) was added to a mixture of 2H,4H-benzo[d][1,3] ∞ athiin-4-one 1-oxide **6** (0.2 mmol, 36.4 mg,), BnNH₂ (0.3 mmol, 32.1 mg) in a sealed tube. Then, the mixture was stirred at 50 °C for about 5 h. Upon completion of the reaction, the solvent was evaporated under reduced pressure and the residue was purified by

flash column chromatograph (silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the desired 7 as yellow oil (44.3 mg, 92%). ¹H NMR (300 MHz, CDCl₃) δ 8.07 (d, *J* = 7.9 Hz, 1H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.42 (d, *J* = 7.6 Hz, 1H), 7.35 (s, 5H), 5.06 (s, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 165.3, 140.4, 136.1, 131.8, 128.8, 128.4, 128.3, 126.8, 125.5, 124.5, 120.4, 47.6. HRMS (ESI, m/z) calcd for C₁₄H₁₂NOS [M+H]⁺: 242.0634; found: 242.0637.

6H,12H-dibenzo[b,f][1,5]dithiocine-6,12-dione (8) (CAS Number: 21083-38-5)

CH₃CN (2 mL) was added to a mixture of benzo[c][1,2]dithiol-3-one **1a** (0.3 mmol, 50.4 mg), DPPE (0.2 mmol, 79.4 mg) in a sealed tube. Then, the mixture was stirred at 80 °C for about 12 h. Upon completion of the reaction, the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatograph

(silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the desired **8** as white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.41 – 7.31 (m, 4H), 7.29 – 7.22 (m, 4H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 197.4, 142.5, 135.6, 131.2, 131.0, 126.5, 125.2. HRMS (ESI, m/z) calcd for C₁₄H₉O₂S₂ [M+H]⁺: 273.0038; found: 273.0039.

7. NMR spectroscopic data for the products

4H-benzo[d][1,3]oxathiin-4-one (2a)

6-methoxy-4H-benzo[d][1,3]oxathiin-4-one (2b)

6-methyl-4H-benzo[d][1,3]oxathiin-4-one (2d)

8-methyl-4H-benzo[d][1,3]oxathiin-4-one (2e)

6-(dibenzo[b,d]thiophen-4-yl)-4H-benzo[d][1,3]oxathiin-4-one (2g)

6-morpholino-4H-benzo[d][1,3]oxathiin-4-one (2h)

6-chloro-4H-benzo[d][1,3]oxathiin-4-one (2i)

7-chloro-4H-benzo[d][1,3]oxathiin-4-one (2j)

6-fluoro-4H-benzo[d][1,3]oxathiin-4-one (2k)

6-bromo-4H-benzo[d][1,3]oxathiin-4-one (2m)

6-(trifluoromethyl)-4H-benzo[d][1,3]oxathiin-4-one (2n)

6-nitro-4H-benzo[d][1,3]oxathiin-4-one (2o)

7-bromo-6-fluoro-4H-benzo[d][1,3]oxathiin-4-one (2p)

6-chloro-8-methyl-4H-benzo[d][1,3]oxathiin-4-one (2q)

phenyl-4H-benzo[d][1,3]oxathiin-4-one (4a)

2-(p-tolyl)-4H-benzo[d][1,3]oxathiin-4-one (4b)

2-(4-(tert-butyl)phenyl)-4H-benzo[d][1,3]oxathiin-4-one (4c)

2-([1,1'-biphenyl]-4-yl)-4H-benzo[d][1,3]oxathiin-4-one (4d)

2-(naphthalen-1-yl)-4H-benzo[d][1,3]oxathiin-4-one (4e)

2-(4-fluorophenyl)-4H-benzo[d][1,3]oxathiin-4-one (4f)

2-(4-chlorophenyl)-4H-benzo[d][1,3]oxathiin-4-one (4g)

2-(4-bromophenyl)-4H-benzo[d][1,3]oxathiin-4-one (4h)

2-(4-(trifluoromethyl)phenyl)-4H-benzo[d][1,3]oxathiin-4-one (4i)

4-(4-oxo-4H-benzo[d][1,3]oxathiin-2-yl)benzonitrile (4j)

2-(3,5-dibromophenyl)-4H-benzo[d][1,3]oxathiin-4-one (4k)

2-(4-acetylphenyl)-4H-benzo[d][1,3]oxathiin-4-one (4l)

2-(4-ethynylphenyl)-4H-benzo[d][1,3]oxathiin-4-one (4m)

2-(4-(phenylethynyl)phenyl)-4H-benzo[d][1,3]oxathiin-4-one (4n)

2-(pyridin-2-yl)-4H-benzo[d][1,3]oxathiin-4-one (4o)

2-(quinolin-2-yl)-4H-benzo[d][1,3]oxathiin-4-one (4p)

2-phenethyl-4H-benzo[d][1,3]oxathiin-4-one (4q)

Diethyl 2,2'-disulfanediyldibenzoate (5)

2H,4H-benzo[d][1,3]oxathiin-4-one 1-oxide (6)

2-benzylbenzo[d]isothiazol-3(2H)-one (7)

6H,12H-dibenzo[b,f][1,5]dithiocine-6,12-dione (8)

