Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supplementary Information

For

Visible-Light-Mediated Synthesis of Polysubstituted Pyrroles via C_{Ar}-I Reduction Triggered 1,5-Hydrogen Atom Transfer Process

Junlei Wang^{a, †,} *, Qinglin Xie^{a, †}, Guocheng Gao^{a, †}, Guofen Wei^a, XinxinWei^a, Xuemei Chen^a, Daohai Zhang^{a,*}, Hongqing Li^a, Binbin Huang^{b, *}

^a School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China.
 E-mail: junleiwang@gzmu.edu.cn; zhangdaohai6235@163..com ^b Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China.

E-mail: binbinhuang@bnu.edu.cn.

Contents

1	General Information	S1
2	Optimization Studies	S2
3	General Procedure for the Reactions	S5
4	General procedure for the synthesis of substrates.	S 6
5	Product Characterization	S 7
6	Synthetic Applications	S18
7	Mechanistic studies	S24
8	Reference	S27
9	The crystallographic data	S28
10	Spectra for Substrates and Products Product Characterization	S29

1. General Information

All of reactions were performed under an ambient temperature, magnetically stirred, and monitored by thin-layer chromatography (TLC) using Qingdao Puke Separation Materials Co., Ltd TLC plates pre-coated with 250 um thickness silica gel 60 F254 plates and visualized by fluorescence quenching under UV light. All of the manipulations were carried out using oven-dried glassware, including standard Schlenk techniques. All of the reagents were purchased from Alfa, Energy-Chemical or Sigma-Aldrich and used without further purification. Solvents were purified according to the method of Grubbs.¹ ¹H NMR, ¹³C NMR were recorded on a Bruker AV-400 (¹H NMR at 400 MHz, ¹³C NMR at 100 MHz, ¹⁹F NMR at 376 MHz) spectrometers using tetramethylsilane (TMS) as internal standard. ¹H and ¹⁹F multiplicities are indicated as follows: singlet (s), doublet (d), triplet (t), doublet of doublets (dd), quartet (q), multiplet (m), and broad resonance (br). Chemical shifts were calibrated using residual undeuterated solvent as an internal reference (CDCl₃: 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR). High resolution massspectra (HRMS) were collected on Bruker Esquire LC mass spectrometer using electrospray ionization. Flash column chromatography was carried out on silica gel (particle size 300-400 mesh) and eluted with petroleum/ethyl acetate.

2. Optimization Studies

Table S1. Photocatalyst Screening.^{*a,b*}

		Photocata	Ph Iysis	∽N~∕	
Ĺ			DIPEA, CH Blue LEDs	H ₃ CN s, r. t. MeO ₂ C	
	1a 2a			3	а
Entry	Photocatalyst	Reductant	Solvent	Conversion(%)	Y(%) ^b
1	Ru(bpy) ₃ Cl ₂	DIPEA	CH ₃ CN	75	28
2	Eosin Y	DIPEA	CH ₃ CN	7	trace
3	4-CzIPN	DIPEA	CH ₃ CN	8	trace
4	<i>fac</i> -Ir(dFppy) ₃	DIPEA	CH ₃ CN	14	trace
5	Ir(dFCF3ppy)2dCF3bpyPF6	DIPEA	CH ₃ CN	58	24
6	Ir(dFppy) ₂ bpyPF ₆	DIPEA	CH ₃ CN	8	trace
7	Ir(dFCF3ppy)2dtbpyPF6	DIPEA	CH ₃ CN	82	22
8	Ir(dFCF3ppy)2bpyPF6	DIPEA	CH ₃ CN	62	48
9	DPA	DIPEA	CH ₃ CN	0	0
11	Thioxanthen-9-one	DIPEA	CH ₃ CN	9	trace
12	Benzophenone	DIPEA	CH ₃ CN	0	0

[a] Reaction conditions: photocatalyst (1 mol%), **1a** (0.1 mmol, 1.0 equiv), **2a** (0.2 mmol, 2 equiv.), Reductant (4 equiv.), CH₃CN (1 mL), room temperature, N₂ atmosphere, 2*12 W blue LEDs. [b] isolated yields.

	O N	lr(dF	-CF3ppv)3bpvPF6	Ph	
	→ + Ph-==	≡−CO ₂ Me [−] CO ₂ Me	ductant and Base CH ₃ CN Blue LEDs, r. t.	Ph MeO ₂ C	
	1a	2a		3a	
Entry	Photocatalyst	Reductant	Solvent	Conversio	Y(%) ^b
				n(%)	
1	Ir(dFCF3ppy)2bpyPF6	DIPEA	CH ₃ CN	62	48
2	Ir(dFCF3ppy)2bpyPF6	Et ₃ N	CH ₃ CN	95	0
3	Ir(dFCF3ppy)2bpyPF6	TMEDA	CH ₃ CN	8	trace
4	Ir(dFCF3ppy)2bpyPF6	quinuclidine	CH ₃ CN	0	0
5	Ir(dFCF3ppy)2bpyPF6	Hantzsch Esters	CH ₃ CN	0	0
6	Ir(dFCF3ppy)2bpyPF6	DIPEA, K ₂ CO ₃	CH ₃ CN	75	23
7	Ir(dFCF3ppy)2bpyPF6	DIPEA,Na2HPO	4 CH ₃ CN	84	33
8	Ir(dFCF3ppy)2bpyPF6	DIPEA, Na ₂ CO ₂	3 CH ₃ CN	65	18
9	Ir(dFCF3ppy)2bpyPF6	DIPEA, NaOAc	CH ₃ CN	85	36
10	Ir(dFCF3ppy)2bpyPF6	DIPEA, NaF	CH ₃ CN	72	31

Table S2. Reductant and Base Screening.^{a,b}

[a] Reaction conditions: photocatalyst (1 mol%), **1a** (0.1 mmol, 1.0 equiv), **2a** (0.2 mmol, 2 equiv.), reductant (4 equiv.), base (2 equiv.), CH₃CN (1 mL), room temperature, N₂ atmosphere, 2*12 W blue

LEDs. [b] isolated yields.

Table S3. Solvent Screening.^a

V + Ph— CO_2Me			lr(dFCF ₃ ppy) ₂ bpyPl	F ₆ Ph	$\overline{}$
			DIPEA, Solvent Blue LEDs, r. t.	DIPEA, Solvent Blue LEDs, r. t. MeO ₂ C	
	1a	2a		За	
Entry	Photocatalyst	Reductant	Solvent	Conversion(%)	Y(%) ^b
1	Ir(dFCF3ppy)2bpyPF6	DIPEA	DCM	80	14
2	Ir(dFCF3ppy)2bpyPF6	DIPEA	DCE	64	21
3	Ir(dFCF3ppy)2bpyPF6	DIPEA	DMF	63	28
4	Ir(dFCF3ppy)2bpyPF6	DIPEA	DMSO	55	19
5	Ir(dFCF3ppy)2bpyPF6	DIPEA	DMA	42	24
6	Ir(dFCF3ppy)2bpyPF6	DIPEA	NMP	66	23
7	Ir(dFCF3ppy)2bpyPF6	DIPEA	THF	12	trace
8	Ir(dFCF3ppy)2bpyPF6	DIPEA	EtOAc	55	20
9	Ir(dFCF3ppy)2bpyPF6	DIPEA	CH ₃ OH	6	trace
10	Ir(dFCF3ppy)2bpyPF6	DIPEA	1,4-dioxane	8	trace
11	Ir(dFCF3ppy)2bpyPF6	DIPEA	Benzotrifluoride	13	trace
12	Ir(dFCF3ppy)2bpyPF6	DIPEA	TFE	7	trace
13	Ir(dFCF3ppy)2bpyPF6	DIPEA	HFIP	none	none

[a] Reaction conditions: photocatalyst (1 mol%), **1a** (0.1 mmol, 1.0 equiv), **2a** (0.2 mmol, 2 equiv.), reductant (4 equiv.), CH₃CN (1 mL), room temperature, N₂ atmosphere, 2*12 W blue LEDs. [b] isolated yields.

Table S4. Additive Screening.^a

$Ph = CO_2Me$			Photo DIPE Blue	ocatalysis A, CH ₃ CN LEDs, r. t.	→ Ph Ph N MeO ₂ C	\rangle
	1a	2a			3a	
Entry	Photocatalyst	Reductant	Additive	Solvent	Conversion(%)	Y(%) ^b
1	Ir(dFCF3ppy)2bpyPF6	DIPEA	-	CH ₃ CN	62	48
2	Ir(dFCF3ppy)2bpyPF6	DIPEA	Bu ₄ NCl	CH ₃ CN	89	43
3	Ir(dFCF3ppy)2bpyPF6	DIPEA	Bu ₄ NBr	CH ₃ CN	69	27
4	Ir(dFCF3ppy)2bpyPF6	DIPEA	Bu ₄ NI	CH ₃ CN	78	37
5	Ir(dFCF3ppy)2bpyPF6	DIPEA	LiCl	CH ₃ CN	89	41
6	Ir(dFCF ₃ ppy) ₂ bpyPF ₆	DIPEA	LiBr	CH ₃ CN	66	25

[a] Reaction conditions: photocatalyst (1 mol%), **1a** (0.1 mmol, 1.0 equiv), **2a** (0.2 mmol, 2 equiv), Reductant (4 equiv.), CH₃CN (1 mL), room temperature, N₂ atmosphere, 2*12 W blue LEDs. [b] isolated yields.

	N + Ph	CO ₂ M	e Photoc DIPEA Blue L	catalysis , CH ₃ CN EDs, r. t.	→ Ph Ph MeO ₂ C	\rangle
	1a	2a			3a	
Entry ^a	Photocatalyst	Reductant	Light source	Solvent	Conversion(%)	Y(%) ^b
1	Ir(dFCF3ppy)2bpyPF6	DIPEA	450 nm	CH ₃ CN	100	56
2	Ir(dFCF3ppy)2bpyPF6	DIPEA	390-395 nm	CH ₃ CN	100	trace
3	Ir(dFCF3ppy)2bpyPF6	DIPEA	400-405 nm	CH ₃ CN	100	trace
4	Ir(dFCF3ppy)2bpyPF6	DIPEA	425-430 nm	CH ₃ CN	100	60
5°	Ir(dFCF3ppy)2bpyPF6	DIPEA	430 nm	CH ₃ CN	100	40
6 ^d	Ir(dFCF3ppy)2bpyPF6	DIPEA	430 nm	CH ₃ CN	100	46

Table S5. Light and amount of reductant screening.

[a] Reaction conditions: photocatalyst (1 mol%), **1a** (0.1 mmol, 1.0 equiv.), **2a** (0.2 mmol, 2 equiv.), Reductant (4 equiv.), CH₃CN (1 mL), room temperature, N₂ atmosphere. [b] isolated yields. [c] the reaction was conducted with 3 equiv DIPEA. [d] the reaction was conducted with 5 equiv DIPEA.

3. General Procedure for the synthesis of polysubstituted pyrroles.

In a dried sealed tube, 1 (0.1 mmol), 2 (0.2 mmol), $Ir(dFCF_3ppy)_2bpyPF_6$ (1.0 mol %), DIPEA (0.4 mmol), were dissolved in CH₃CN (1.0 mL). The flask was caped and degassed oxygen with N₂ for three times at -78 °C. Subsequently, the reaction mixture was exposed to 2 *12 W blue LEDs at room temperature until the starting materials was completely consumed (monitored by TLC). After the reaction finished, the reaction solvent was distill under vacuum, the residue was purified by flash column chromatography on silica gel with ethyl acetate (EA) and petroleum ether (PE) to afford the corresponding products.

4. General procedure for the synthesis of corresponding substrates.

General procedure for the synthesis of amides¹⁻³.

Amine (1.0 equiv.), Et_3N (2 equiv.) were dissolved in DCM (0.2 M). And 2-iodo-benzoylchlorid (1.0 equiv.) was added in dropwise at 0 °C. After addition, the reaction mixture was stirred at room temperature for 12 hours. After the material was completed consumed, 10 mL 1M HCl was added in the reaction mixture, and extracted with EA (20 mL*3), the combine solvents was washed with brine (30 mL), dried over Na₂SO₄. The solvent was concentrated and purification by chromatography on silica gel to afford the desired substrates.

General procedure for the synthesis of esters⁴.

Ethynylbenzene (2 mmol, 1.0 equiv) was dissolved in dry THF (20 mL). And *n*-BuLi (1 mL, 2.5 M in hexanes, 0.3 mmol, 1.25 equiv) was added at -80 °C, the reaction mixture was stirred for 30 min at -80 °C. Isopropyl chloroformate(1.2 equiv., 2.4mmol) was added with dropwise, and the reaction mixture was stirred for additional 2.5 h. When the substrate was completely consumed, the reaction was quenched with ice water (20 mL) and extracted with EA (20 mL*3). The organic layers were then combined and washed with brine (30 mL), dried over MgSO₄. The solvent was concentrated and purification by chromatography on silica gel to afford the desired substrates.

5. Product Characterization

The photoredox reaction was performed according to the general procedure using 1a with CH₃CN as the solvent. The reaction was run for 36 h, the corresponding product 3a was purified by flash column chromatography with PE/EA (30:1) to provide 3a (19.0 mg, 60% yield) as a colorless oil..

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.19-7.07 (m, 8H), 7.06-6.98 (m, 2H), 3.95 (t, *J* = 7.1 Hz, 1H), 3.60 (s, 3H), 3.14 (t, *J* = 7.4 Hz, 2H), 2.45 (p, *J* = 7.3 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃): *δ*_C 165.5, 144.8, 135.4, 132.0, 131.1, 129.3, 128.3, 127.5, 127.2, 127.1, 126.9, 126.3, 105.95, 50.7, 47.2, 26.8, 26.5.

HRMS (ESI): calcd for C₂₁H₂₀NO₂⁺, (M+H)⁺: 318.1489, found: 318.1492.

The photoredox reaction was performed according to the general procedure using **1b** with CH_3CN as the solvent. The reaction was run for 48 h, the corresponding product **3b** was purified by flash column chromatography with PE/EA (30:1) to provide **3b** (12.6 mg, 38% yield) as a colorless oil, (14.3 mg, 43% brsm).

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.26-7.16 (m, 8H), 7.16-7.12 (m, 2H), 4.67 (dqd, J = 12.9, 6.4, 3.5 Hz, 1H), 3.68 (s, 3H), 3.29-3.10 (m, 2H), 2.77 (dq, J = 12.9, 8.2 Hz, 1H), 2.16 (qdd, J = 7.8, 6.2, 4.0 Hz, 1H), 1.00 (d, J = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): *δ*_C 165.6, 144.1, 135.3, 132.1, 131.1, 129.7, 128.3, 127.7, 127.3, 127.1, 126.8, 126.1, 105.5, 55.1, 50.6, 34.5, 25.4, 21.0.

HRMS (ESI): calcd for C₂₂H₂₂NO₂⁺, (M+H)⁺: 332.1645, found: 332.1649.

The phtotoredox reaction was performed according to the general procedure using 1c with CH₃CN as the solvent. The reaction was run for 48 h, the corresponding product 3c was purified by flash column chromatography with PE/EA (30:1) to provide 3c (13.0 mg, 36% yield) as a colorless oil, (15.9 mg, 44% brsm).

¹**H NMR (400 MHz, CDCl₃):** δ_H 7.25-7.16 (m, 8H), 7.13 (dd, J = 7.8, 1.7 Hz, 2H), 4.66 (ddt, J = 8.8, 6.0, 2.9 Hz, 1H), 3.67 (s, 3H), 3.17 (ddd, J = 14.1, 9.4, 4.7 Hz, 3H), 3.07 (s, 3H), 3.03 (dd, J = 9.9, 6.3 Hz, 1H), 2.69 (dq, J = 13.1, 8.8 Hz, 1H), 2.50 (dtd, J = 8.6, 6.0, 2.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): δ_C 165.6, 145.3, 135.2, 132.1, 131.2, 129.7, 128.4, 127.9, 127.4 127.2, 126.9, 126.2, 105.8, 73.2, 59.2, 58.5, 50.7, 29.96, 25.8.
HRMS (ESI): calcd for C₂₃H₂₃NO₃⁺, (M+H)⁺: 362.1751, found: 362.1754.

The photoredox reaction was performed according to the general procedure using 1d with CH₃CN as the solvent.. The reaction was run for 48 h, the corresponding product 3d was purified by flash column chromatography with PE/EA (30:1) to afford 3d (13.8 mg, 40% yield) as a colorless oil, (17.6 mg, 51% brsm).

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.27-7.23 (m, 3H), 7.19-7.05 (m, 7H), 4.44 (dt, J = 12.0, 3.3 Hz, 1H), 3.60 (s, 3H), 3.45 (ddd, J = 12.9, 8.7, 4.4 Hz, 1H), 2.94 (ddd, J = 18.0, 10.7, 7.3 Hz, 1H), 2.18-2.03 (m, 1H), 1.99-1.85 (m, 2H), 1.79 (dd, J = 12.9, 2.8 Hz, 1H), 1.00 (d, J = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 166.3, 136.4, 135.8, 132.3, 131.5, 130.98, 130.7, 128.3, 127.6, 127.0, 125.7, 124.8, 109.3, 50.4, 48.2, 29.6, 24.1, 21.4, 15.8.

HRMS (ESI): calcd for C₂₃H₂₄NO₂⁺, (M+H)⁺: 346.1802, found: 346.1800.

The phtotoredox reaction was performed according to the general procedure using 1e with CH₃CN as the solvent. The reaction was run for 48 h, the corresponding product 3e was purified by flash column chromatography with PE/EA (10:1) to afford 3e (16.0 mg, 48% yield) as a colorless oil, (22.3 mg, 67% brsm).

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.29-7.26 (m, 1H), 7.25 (dd, J = 5.0, 1.6 Hz, 1H), 7.21-7.11 (m, 2H), 5.18 (s, 2H), 4.06 - 3.97 (t, 2H), 3.87-3.81 (t, 2H), 3.65 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): *δ^C* 165.4, 134.8, 133.6, 131.5, 131.0, 130.99, 130.7, 128.4, 127.8, 127.4, 126.3, 124.2, 108.3, 65.8, 64.0, 50.8, 43.8.

HRMS (ESI): calcd for C₂₁H₂₀NO₃⁺, (M+H)⁺: 334.1438, found: 334.1429.

The phtotoredox reaction was performed according to the general procedure using 1f with CH₃CN as the solvent. The reaction was run for 48 h, the corresponding product 3f was purified by flash column chromatography with PE/EA (30:1) to afford 3f (11.7 mg, 29% yield) as a colorless oil, (13.7 mg, 34% brsm)..

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.26 (dd, J = 8.6, 3.5 Hz, 2H), 7.21-7.07 (m, 7H), 4.21-4.11 (m, 2H), 4.01-3.87 (m, 2H), 3.61 (s, 3H), 3.48-3.36 (m, 1H), 3.21-3.08 (m, 1H), 2.94-2.82 (m, 1H), 2.32 (dd, J = 8.5, 4.8 Hz, 1H), 2.11-1.97 (m, 1H), 1.26 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): *δc* 172.7, 166.0, 135.6, 135.5, 131.3, 131.2, 130.9, 128.3, 127.7, 127.2, 125.98, 124.5, 109.6, 53.6, 50.55, 45.6, 39.9, 23.7, 23.4, 14.3.

HRMS (ESI): calcd for C₂₅H₂₆NO₄⁺, (M+H)⁺:404.1856, found: 404.1862.

3g

The phtotoredox reaction was performed according to the general procedure using 1g with CH₃CN as the solvent. The reaction was run for 48 h, the corresponding product 3g was purified by flash column chromatography with PE/EA (20:1) to afford 3g (13.2 mg, 34% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.20-7.14 (m, 3H), 7.12-7.01 (m, 7H), 5.34-5.22 (m, 1H), 3.84 (ddd, J = 13.2, 8.1, 5.2 Hz, 1H), 3.79-3.70 (m, 1H), 3.55 (s, 3H), 3.43 (dd, J = 18.5, 5.3 Hz, 1H), 3.28 (dd, J = 18.5, 5.1 Hz, 1H), 2.07 (dd, J = 11.1, 5.5 Hz, 2H), 2.03 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): *δC* 170.6, 165.7, 135.3, 133.5, 131.3, 131.2, 131.1, 130.9, 128.3, 127.7, 127.3, 126.0, 124.6, 110.2, 66.2, 50.6, 40.8, 30.4, 27.6, 21.4.

HRMS (ESI): calcd for C₂₄H₂₄NO₄⁺, (M+H)⁺: 390.1700, found: 390.1701.

The phtotoredox reaction was performed according to the general procedure using **1h** with CH₃CN as the solvent. The reaction was run for 48 h, the corresponding product **3h** was purified by flash column chromatography with PE/EA (20:1) to afford **3h** (24.9 mg, 57% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.41-7.34 (m, 4H), 7.33-7.28 (m, 1H), 7.23 (dd, J = 5.6, 4.3 Hz, 3H), 7.13 (dt, J = 5.3, 3.7 Hz, 7H), 4.67 (q, J = 12.0 Hz, 2H), 4.08-3.93 (m, 2H), 3.82-3.70 (m, 1H), 3.62 (s, 3H), 3.43 (qd, J = 18.1, 5.2 Hz, 2H), 2.23-2.02 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ_C 166.0, 138.4, 135.6, 134.7, 131.6, 131.3, 130.96, 130.9, 128.6, 128.2, 127.9, 127.8, 127.6, 127.2, 125.9, 124.4, 110.0, 70.5, 70.2, 50.5, 41.3, 30.5, 28.2.

HRMS (ESI): calcd for C₂₉H₂₈NO₃⁺, (M+H)⁺: 438.2064, found: 438.2072.

The photoredox reaction was performed according to the general procedure using 1i with CH₃CN as the solvent. The reaction was run for 48 h, the corresponding product 3i was purified by flash column chromatography with PE/EA (20:1) to provide 3i (15.3 mg, 40% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.24 (t, J = 5.1 Hz, 3H), 7.20-7.05 (m, 7H), 3.93 (ddd, J = 13.1, 8.1, 5.1 Hz, 1H), 3.84 (q, J = 7.7 Hz, 1H), 3.78-3.70 (m, 1H), 3.62 (s, 3H), 3.45 (s, 3H), 3.42-3.30 (m, 2H), 2.20-2.01 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): *δc* 166.0, 135.6, 134.5, 131.6, 131.3, 130.9, 128.2, 127.6, 127.2, 125.9, 124.4, 110.1, 72.3, 56.4, 50.5, 41.0, 30.0, 27.7.

HRMS (ESI): calcd for C₂₃H₂₃NNaO₃⁺, (M+Na)⁺:384.1570, found: 384.1561.

The phtotoredox reaction was performed according to the general procedure using 1j with CH₃CN as the solvent. The reaction was run for 72 h, the desired product 3j was purified by flash column chromatography with PE/EA (10:1) to afford 3j (27.2 mg, 64% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.18 (dd, J = 4.5, 2.5 Hz, 3H), 7.14- 6.97 (m, 7H), 5.30-5.17 (m, 1H), 3.94 (ddd, J = 13.8, 9.6, 4.6 Hz, 1H), 3.84-3.72 (m, 1H), 3.55 (s, 3H), 3.53-3.41 (m, 2H), 3.03 (s, 3H), 2.35 (dq, J = 14.8, 5.0 Hz, 1H), 2.24-2.09 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ_C 165.7, 135.2, 131.9, 131.4, 131.2, 131.0, 130.9, 128.4, 127.9, 127.3, 126.1, 124.6, 110.6, 73.8, 50.7, 40.1, 39.1, 31.1, 28.9.

HRMS (ESI): calcd for C₂₃H₂₄NSO₅⁺, (M+H)⁺: 426.1370, found: 426.1373.

The reaction was conducted according to the general procedure using 1k with CH₃CN as the solvent. The reaction was run for 72 h, the desired product 3k was purified by flash column chromatography with PE/EA (10:1) to afford 3k as a colorless oil, 58% isolated yield (75% brsm).

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.58-7.50 (m, 1H), 7.44 (dd, J = 10.7, 4.1 Hz, 1H), 7.39-7.34 (m, 2H), 7.34-7.27 (m, 5H), 7.23-7.16 (m, 3H), 6.91 (d, J = 7.7 Hz, 1H), 6.85 (s, 1H), 3.50 (s, 3H), 2.98-2.82 (m, 2H), 2.75 (ddd, J = 13.1, 9.1, 7.0 Hz, 1H), 2.40-2.29 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ_C 168.9, 136.1, 135.5, 134.1, 134.1, 132.97, 130.3, 128.6, 128.4, 128.3, 128.3, 128.2, 128.2, 127.96, 126.6, 126.6, 126.3, 125.2, 57.2, 51.9, 25.99.

HRMS (ESI): calcd for C₂₆H₂₂NO₂⁺, (M+H)⁺: 380.1645, found: 380.1644.

The photoredox reaction was performed according to the general procedure using **2b** with CH₃CN as the solvent. The reaction was run for 48 h, the corresponding product **4a** was purified by flash column chromatography with PE/EA (30:1) to afford **4a** (19.2 mg, 49% yield) as a colorless oil (55% brsm). ¹H NMR (400 MHz, CDCl₃): δ_H 7.31-7.16 (m, 13H), 7.13-7.07 (m, 2H), 5.16 (s, 2H), 4.02 (t, *J* = 7.1 Hz, 2H), 3.21 (dd, *J* = 9.4, 5.5 Hz, 2H), 2.59-2.44 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ_C 164.8, 145.1, 137.0, 135.5, 131.99, 131.2, 129.3, 128.4, 128.3, 127.9, 127.7, 127.6, 127.3, 127.2, 126.9, 126.3, 105.96, 65.1, 47.2, 26.9, 26.5.

HRMS (ESI): calcd for C₂₇H₂₄NO₂⁺, (M+H)⁺: 394.1802, found: 394.1809.

The phtotoredox reaction was performed according to the general procedure using 2c with CH₃CN as the solvent. The reaction was run for 48 h, the corresponding product **4b** was purified by flash column chromatography with PE/EA (60:1) to give **4b** (28.9 mg, 62% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.93 (dd, J = 5.4, 4.3 Hz, 1H), 7.86 (dd, J = 6.2, 3.3 Hz, 1H), 7.80 (dd, J = 6.3, 3.1 Hz, 1H), 7.51-7.46 (m, 2H), 7.37 (dd, J = 6.7, 3.5 Hz, 2H), 7.25-7.13 (m, 8H), 7.10 (dd, J = 8.0, 1.5 Hz, 2H), 5.62 (s, 2H), 3.99 (t, J = 7.1 Hz, 2H), 3.09 (t, J = 7.5 Hz, 2H), 2.49-2.34 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ_C 164.8, 145.2, 135.4, 133.7, 132.5, 131.98, 131.8, 131.1, 129.3, 128.8, 128.6, 128.3, 127.5, 127.3, 127.2, 127.1, 126.9, 126.4, 126.3, 125.8, 125.4, 124.0, 105.9, 63.5, 47.2, 26.8, 26.5.

HRMS (ESI): calcd for C₃₁H₂₅NNaO₂⁺, (M+Na)⁺: 466.1778, found: 466.1774.

The phtotoredox reaction was performed according to the general procedure using 2d with CH₃CN as the solvent. The reaction was run for 48 h, the corresponding product 4c was purified by flash column chromatography with PE/EA (30:1) to give 4c (22.4 mg, 61% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.25-7.15 (m, 8H), 7.14-7.08 (m, 2H), 5.06 (dt, J = 12.5, 6.2 Hz, 1H), 4.03 (t, J = 7.1 Hz, 2H), 3.23 (t, J = 7.4 Hz, 2H), 2.54 (p, J = 7.3 Hz, 2H), 1.16 (d, J = 6.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃): δ_C 164.6, 144.6, 135.6, 132.1, 131.2, 129.3, 128.3, 127.4, 127.1, 126.96, 126.8, 126.2, 106.8, 66.3, 47.1, 26.8, 26.5, 22.2.

HRMS (ESI): calcd for C₂₃H₂₃NNaO₂⁺, (M+Na)⁺:368.1621, found: 368.1620.

The phtotoredox reaction was performed according to the general procedure using 2e with CH₃CN as the solvent. The reaction was run for 48 h, the corresponding product 4d was purified by flash column chromatography with PE/EA (40:1) to afford 4d (23.0 mg, 64% yield) as a colorless oil, (27.3 mg, 76% brsm).

¹**H NMR (400 MHz, CDCl₃):** δ_H 7.25-7.14 (m, 8H), 7.14-7.07 (m, 2H), 4.09 (t, J = 6.4 Hz, 2H), 4.03 (t, J = 7.1 Hz, 2H), 3.22 (t, J = 7.5 Hz, 2H), 2.60-2.45 (m, 2H), 1.51 (dt, J = 14.5, 6.5 Hz, 2H), 1.25 (dd, J = 15.1, 7.4 Hz, 2H), 0.86 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): *δ*_C 165.3, 144.8, 135.6, 132.1, 131.2, 129.3, 128.3, 127.5, 127.2, 127.0, 126.8, 126.2, 106.4, 63.2, 47.2, 30.95, 26.8, 26.5, 19.4, 13.9.

HRMS (ESI): calcd for C₂₄H₂₆NO₂⁺, (M+H)⁺: 360.1958, found: 360.1964.

The phtotoredox reaction was performed according to the general procedure using 2f with CH₃CN as the solvent. The reaction was run for 72 h, the corresponding product 4e was purified by flash column chromatography with PE/EA (60:1) to afford 4e (15.1 mg, 41% yield) as a colorless oil, (16.6 mg, 45% brsm)..

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.25-7.15 (m, 8H), 7.14-7.08 (m, 2H), 4.17 (t, J = 6.0 Hz, 2H), 4.04 (t, J = 7.1 Hz, 2H), 3.23 (t, J = 7.4 Hz, 2H), 2.55 (p, J = 7.3 Hz, 2H), 2.03 (td, J = 7.2, 2.6 Hz, 2H), 1.92 (t, J = 2.6 Hz, 1H), 1.79-1.64 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): *δ*_C 165.1, 144.9, 135.7, 132.0, 131.1, 129.3, 128.3, 127.5, 127.1, 127.1, 126.9, 126.4, 106.2, 83.7, 68.8, 61.8, 47.2, 27.9, 26.7, 26.6, 15.4.

HRMS (ESI): calcd for C₂₅H₂₄NO₂⁺, (M+H)⁺: 370.1802, found: 370.1800.

The phtotoredox reaction was performed according to the general procedure using 2g with CH₃CN as the solvent. The reaction was run for 48 h, the corresponding product 4f was purified by flash column chromatography with PE/EA (10:1) to provide 4f (12.2 mg, 33% yield) as a colorless oil, (16.3 mg, 44% brsm).

¹**H NMR (400 MHz, CDCl₃):** δ_H 7.25-7.15 (m, 8H), 7.14-7.08 (m, 2H), 5.29 (ddd, J = 7.0, 5.7, 1.3 Hz, 1H), 4.60 (d, J = 7.0 Hz, 2H), 4.03 (t, J = 7.1 Hz, 2H), 3.22 (t, J = 7.4 Hz, 2H), 2.53 (p, J = 7.3 Hz, 2H), 1.70 (d, J = 12.4 Hz, 3H), 1.63 (d, J = 11.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): *δ*_C 165.1, 144.8, 137.7, 135.5, 132.2, 131.2, 129.4, 128.3, 127.5, 127.3, 127.1, 126.9, 126.2, 119.7, 106.3, 60.3, 47.2, 26.8, 26.5, 25.8, 18.2.

HRMS (ESI): calcd for C₂₅H₂₆NO₂⁺, (M+H)⁺: 372.1958, found: 372.1966.

The phtotoredox reaction was performed according to the general procedure using **2h** with CH₃CN as the solvent. The reaction was run for 72 h, the corresponding product **4g** was purified by flash column chromatography with PE/EA (10:1) to provide **4g** (15.9 mg, 42% yield) as a colorless oil, (20.4 mg, 54% brsm).

¹**H NMR (400 MHz, CDCl₃):** δ_H 7.40 (t, J = 3.5 Hz, 5H), 7.25 - 7.19 (m, 3H), 7.18-7.08 (m, 7H), 6.96 (t, J = 7.2 Hz, 1H), 4.06 (t, J = 7.1 Hz, 2H), 3.36 (t, J = 7.4 Hz, 2H), 2.62-2.50 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): *δ*_C 163.4, 144.7, 138.8, 135.4, 131.9, 131.7, 129.2, 129.0, 128.9, 128.4, 127.9, 126.9, 126.5, 123.5, 123.2, 119.1, 110.2, 46.96, 26.8, 26.5.

HRMS (ESI): calcd for C₂₆H₂₃N₂O⁺, (M+H)⁺: 379.1805, found: 379.1810.

The phtotoredox reaction was performed according to the general procedure using 2i with CH₃CN as the solvent. The reaction was run for 48 h, the corresponding product 4h was purified by flash column chromatography with PE/EA (20:1) to afford 4h (15.1 mg, 43% yield) as a colorless oil, (18.9 mg, 54% brsm).

¹**H NMR (400 MHz, CDCl₃):** δ_H 7.36 -7.10 (m, 6H), 6.99-6.85 (m, 2H), 5.09 (dt, J = 12.5, 6.2 Hz, 1H), 4.00 (t, J = 7.1 Hz, 2H), 3.21 (t, J = 7.5 Hz, 2H), 2.62 - 2.41 (m, 2H), 1.20 (d, J = 6.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 164.3, 144.6, 136.7, 131.8, 129.3, 128.6, 128.4, 128.2, 127.3, 126.3, 125.0, 118.6, 107.7, 66.4, 47.2, 26.7, 26.5, 22.2.

HRMS (ESI): calcd for C₂₁H₂₂NSO₂⁺, (M+H)⁺: 352.1366, found: 352.1368.

The photoredox reaction was performed according to the general procedure using 2j with CH₃CN as the solvent. The reaction was run for 48 h, the corresponding product 4i was purified by flash column chromatography with PE/EA (10:1) to give 4i (12.7 mg, 34% yield) as a colorless oil, (16.1 mg, 43% brsm).

¹H NMR (400 MHz, CDCl₃): δ_H 7.25-7.09 (m, 7H), 6.80-6.72 (m, 2H), 5.07 (dt, *J* = 12.5, 6.2 Hz, 1H), 4.03 (t, *J* = 7.1 Hz, 2H), 3.78 (s, 3H), 3.21 (t, *J* = 7.5 Hz, 2H), 2.52 (p, *J* = 7.3 Hz, 2H), 1.18 (d, 6H). ¹³C NMR (101 MHz, CDCl₃): δ_C 164.6, 158.2, 144.5, 132.3, 132.2, 129.3, 128.3, 127.9, 126.9, 126.8, 126.8, 113.0, 106.7, 66.2, 55.3, 47.2, 29.8, 26.9, 26.5, 22.3.

HRMS (ESI): calcd for C₂₄H₂₆NO₃⁺, (M+H)⁺: 376.1907, found: 376.1913.

The photoredox reaction was performed according to the general procedure using $2\mathbf{k}$ with CH₃CN as the solvent. The reaction was run for 48 h, the corresponding product $4\mathbf{j}$ was purified by flash column chromatography with PE/EA (15:1) to give $4\mathbf{j}$ (26.1 mg, 72% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.25-7.15 (m, 5H), 7.13-7.05 (m, 2H), 6.97-6.86 (m, 2H), 5.07 (dt, *J* = 12.5, 6.2 Hz, 1H), 4.03 (t, *J* = 7.1 Hz, 2H), 3.22 (t, *J* = 7.5 Hz, 2H), 2.54 (p, *J* = 7.3 Hz, 2H), 1.18 (d, *J* = 6.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃): δ_C 164.5,161.73 (d, J = 244.3 Hz), 144.7, 132.69 (d, J = 8.0 Hz), 131.9, 131.53 (d, J = 3.4 Hz), 131.5, 129.3, 128.4, 127.1, 126.98, 126.0, 114.34 (d, J = 21.2 Hz), 106.7, 66.4, 47.1, 29.8, 26.8, 26.5, 22.2.

¹⁹F NMR (376 MHz, CDCl₃): δ_F -117.1.

HRMS (ESI): calcd for C₂₃H₂₃FNO₂⁺, (M+H)⁺: 364.1707, found: 364.1710.

The photoredox reaction was performed according to the general procedure using **21** with CH_3CN as the solvent. The reaction was run for 48 h, the corresponding product **4k** was purified by flash column chromatography with PE/EA (10:1) to afford **4k** (14.4 mg, 38% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ_H 7.25-7.14 (m, 7H), 7.12-7.07 (m, 2H), 5.06 (dt, J = 12.4, 6.2 Hz, 1H), 4.02 (t, J = 7.1 Hz, 2H), 3.22 (t, J = 7.4 Hz, 2H), 2.53 (p, J = 7.3 Hz, 2H), 1.18 (d, J = 6.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ_C 164.5, 144.8, 134.1, 132.5, 132.1, 131.8, 129.3, 128.5, 127.7, 127.2,

127.1, 125.8, 106.6, 66.5, 47.1, 29.8, 26.8, 26.5, 22.2.

HRMS (ESI): calcd for C₂₃H₂₃ClNO₂⁺, (M+H)⁺: 380.1412, found: 380.1407.

The photoredox reaction was performed according to the general procedure using 2m with CH₃CN as the solvent. The reaction was run for 72 h, the corresponding product **4l** was purified by flash column chromatography with PE/EA (10:1) to afford **4l** (12.3 mg, 29% yield) as a colorless oil, (16.5 mg, 39% brsm).

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.24-7.17 (m, 7H), 7.12 (d, J = 6.9 Hz, 2H), 5.06 (dt, J = 12.4, 6.2 Hz, 1H), 4.03 (t, J = 7.1 Hz, 2H), 3.23 (t, J = 7.4 Hz, 2H), 2.54 (p, J = 7.3 Hz, 2H), 1.15 (d, J = 6.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃): δ_C 164.6, 144.6, 135.6, 132.2, 131.2, 129.3, 128.3, 127.4, 127.2, 126.97, 126.8, 126.2, 106.8, 66.3, 47.1, 26.8, 26.5, 22.2.

HRMS (ESI): calcd for C₂₃H₂₃BrNO₂⁺, (M+H)⁺: 424.0907, found: 424.0915.

The phtotoredox reaction was performed according to the general procedure using 2n with CH₃CN as the solvent. The reaction was run for 48 h, the corresponding product 4m was purified by flash column chromatography with PE/EA (10:1) to provide 4m (19.2 mg, 48% yield) as a colorless oil, (23.2 mg, 58% brsm).

¹**H NMR (400 MHz, CDCl**₃): δ_H 7.19-7.11 (m, 5H), 7.11-7.02 (m, 5H), 4.98 (dt, J = 12.4, 6.2 Hz, 1H), 3.94 (t, J = 7.1 Hz, 2H), 3.14 (t, J = 7.4 Hz, 2H), 2.43 (dd, J = 14.6, 7.2 Hz, 2H), 1.22 (s, 9H), 1.07 (d, J = 6.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃): *δc* 164.6, 148.8, 144.5, 132.4, 132.3, 130.7, 129.4, 128.2, 127.2, 126.9, 126.7, 124.3, 106.9, 66.1, 47.1, 34.5, 31.6, 26.8, 26.5, 22.2.

HRMS (ESI): calcd for C₂₇H₃₂NO₂⁺, (M+H)⁺: 402.2428, found: 402.2431.

The phtotoredox reaction was performed according to the general procedure using 20 with CH₃CN as the solvent. The reaction was run for 48 h, the corresponding product 4n was purified by flash column chromatography with PE/EA (10:1) to give 4n (23.1 mg, 56% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.39 (d, J = 8.1 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.20-7.13 (m, 3H), 7.01 (dd, J = 7.8, 1.6 Hz, 2H), 4.98 (dt, J = 12.5, 6.2 Hz, 1H), 3.95 (t, J = 7.1 Hz, 2H), 3.15 (t, J = 7.5 Hz, 2H), 2.47 (p, J = 7.3 Hz, 2H), 1.10 (d, J = 6.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃): $δ_C$ 164.4, 144.96, 139.5, 131.6, 131.5, 129.4, 128.5, 127.3, 126.0, 128.4-125.9 (m), 125.6, 124.4 (q, J = 3.8 Hz), 123.3, 106.6, 66.5, 47.1, 26.8, 26.5, 22.2. ¹⁹F NMR (376 MHz, CDCl₃): $δ_F$ -62.25 (s). HRMS (ESI): calcd for C₂₄H₂₃F₃NO₂⁺, (M+H)⁺: 414.1675, found: 414.1667.

CI Ph N O Me Me

40

The photoredox reaction was performed according to the general procedure using 2p with CH₃CN as the solvent. The reaction was run for 48 h, the corresponding product 4o was purified by flash column chromatography with PE/EA (10:1) to give 4o (16.7 mg, 44% yield) as a colorless oil, (20.8 mg, 55% brsm).

¹**H NMR (400 MHz, CDCl₃)**: δ 7.19-7.12 (m, 4H), 7.11-7.01 (m, 4H), 7.01-6.96 (m, 1H), 4.98 (dt, *J* = 12.5, 6.2 Hz, 1H), 3.95 (t, *J* = 7.1 Hz, 2H), 3.15 (t, *J* = 7.4 Hz, 2H), 2.46 (p, *J* = 7.3 Hz, 2H), 1.08 (d, *J* = 6.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃): *δ*_C 164.5, 144.9, 137.7, 133.0, 131.7, 131.5, 129.4, 129.3, 128.6, 128.5, 127.2, 127.2, 126.3, 125.4, 106.8, 66.5, 47.1, 26.7, 26.6, 22.2.

HRMS (ESI): calcd for C₂₃H₂₃ClNO₂⁺, (M+H)⁺:380.1412, found: 380.1409.

The phtotoredox reaction was performed according to the general procedure using 2q with CH₃CN as the solvent. The reaction was run for 72 h, the corresponding product 4p was purified by flash column chromatography with PE/EA (10:1) to give 4p (20.1 mg, 53% yield) as a colorless oil, (26.1 mg, 69% brsm).

¹**H** NMR (400 MHz, CDCl₃): δ_H 7.37 (dd, J = 7.9, 0.6 Hz, 1H), 7.22 (dd, J = 7.9, 6.3 Hz, 2H), 7.19-7.06 (m, 6H), 5.00 (dt, J = 12.4, 6.2 Hz, 1H), 4.14 (dt, J = 10.7, 7.3 Hz, 1H), 4.01 (dt, J = 10.7, 6.9 Hz, 1H), 3.32-3.12 (m, 2H), 2.56 (p, J = 7.3 Hz, 2H), 1.10 (d, J = 6.2 Hz, 3H), 1.04 (d, J = 6.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): *δ*_C 164.4, 144.5, 135.8, 135.6, 132.7, 131.9, 128.8, 128.6, 128.4, 128.0, 127.1, 126.9, 126.1, 123.9, 107.6, 66.2, 47.2, 26.7, 26.4, 22.1, 21.9.

HRMS (ESI): calcd for C₂₃H₂₃ClNO₂⁺, (M+H)⁺:380.1412, found: 380.1417.

The photoredox reaction was performed according to the general procedure using 2q with CH₃CN as the solvent. The reaction was run for 48 h, the corresponding product 4q was purified by flash column chromatography with PE/EA (10:1) to give 4q (11.5 mg, 33% yield) as a colorless oil, (15.0 mg, 43% brsm).

¹**H NMR (400 MHz, CDCl₃):** $\delta_{\rm H}$ 7.33 (t, *J* = 6.5 Hz, 4H), 7.23 (dd, *J* = 8.7, 4.4 Hz, 1H), 5.44 (s, 1H), 5.17 (dt, *J* = 12.5, 6.2 Hz, 1H), 3.97 (t, *J* = 7.1 Hz, 2H), 3.15 (t, *J* = 7.4 Hz, 2H), 2.47 (p, *J* = 7.3 Hz, 2H), 2.26 (d, *J* = 1.8 Hz, 2H), 2.05-1.95 (m, 2H), 1.74-1.66 (m, 2H), 1.60 (dd, *J* = 7.4, 3.8 Hz, 2H), 1.29 (d, *J* = 6.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃): δ_C 164.7, 144.4, 132.8, 132.6, 130.0, 128.7, 128.2, 127.2, 126.6, 125.97, 106.6, 66.1, 47.1, 30.7, 29.8, 26.7, 26.5, 25.8, 23.4, 22.5, 22.3.

HRMS (ESI): calcd for C₂₃H₂₈NO₂⁺, (M+H)⁺: 350.2115, found: 350.2124.

6. Synthetic applications

a) Gram Scale-up Reaction

In a sealed tube, 1 (2.0 mmol), 2 (4.0 mmol), $Ir(dFCF_3ppy)_2bpyPF_6$ (1.0 mol %), DIPEA (4.0 mmol) were dissolved in CH₃CN (10.0 mL). The reaction mixture was degassed oxygen with N₂ for three times at -78 °C. Subsequently, the reaction was exposed to 430 nm blue LEDs at room temperature until 1a was completely consumed. When the reaction finished, the solvent was removed under vacuum, the residue was purified by flash column chromatography on silica gel with a eluent of ethyl acetate (EA) and petroleum ether (PE) to provide the corresponding product 3a in 53% yield.

b) Late-stage modification of complex molecules

Synthesis of 5a:

Synthesis of substrate L-Menthol derivative: L-Menthol (312 mg, 2.0 mmol), DMAP (244 mg, 2 mmol) were added in DCM (20 mL) at room temperature and then stirring overnight at the same temperature. 20 ml saturated NH₄Cl was added to the reaction system when the starting material was completely consumed, extracted with EA (20 ml*3), the combined phase was washed with brine, dried over MgSO₄, concentrated and purified by chromatography on silica gel to provide the L-Menthol derivative.

Characterization data of L-Menthol derivative:

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.64-7.55 (m, 2H), 7.50-7.41 (m, 1H), 7.36 (dd, J = 11.5, 4.4 Hz, 2H), 4.85 (td, J = 10.9, 4.4 Hz, 1H), 2.14-2.03 (m, 1H), 1.97 (dtd, J = 13.9, 7.0, 2.6 Hz, 1H), 1.75-1.65 (m, 2H), 1.56-1.42 (m, 2H), 1.16-1.01 (m, 2H), 0.89 (ddd, J = 15.7, 9.3, 2.0 Hz, 7H), 0.80 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): *δ*_C 153.9, 133.1, 130.6, 128.7, 119.9, 85.98, 81.1, 76.5, 47.0, 40.8, 34.3, 31.6, 26.3, 23.5, 22.1, 20.9, 16.4.

Photoredox reaction: In a dried sealed tube, 1a (0.2 mmol), L-Menthol derivative (0.1 mmol),

 $Ir(dFCF_3ppy)_2bpyPF_6$ (1.0 mol %), DIPEA (0.4 mmol) were dissolved in CH₃CN (1.0 mL). The flask was caped and degassed oxygen with nitrogen for three times at -78 °C. Subsequently, the reaction mixture was exposed to blue LEDs (425-430 nm, 10 W) at room temperature. The reaction finished when the starting materials was completely consumed (monitored by TLC). The residue was purified by flash column chromatography on silica gel with a eluent of petroleum ether (PE) and ethyl acetate (EA) to give the corresponding product **5a**.

Characterization data of 5a:

¹**H** NMR (400 MHz, CDCl₃): δ_H 7.25 - 7.14 (m, 8H), 7.14-7.05 (m, 2H), 4.69 (td, J = 10.7, 4.3 Hz, 1H), 4.03 (tdd, J = 14.4, 9.0, 5.4 Hz, 2H), 3.33-3.14 (m, 2H), 2.54 (p, J = 7.3 Hz, 2H), 2.08 (d, J = 11.6 Hz, 1H), 1.97-1.86 (m, 1H), 1.80-1.73 (m, 1H), 1.67 (d, J = 11.4 Hz, 1H), 1.59 (d, J = 3.1 Hz, 1H), 1.43 (dd, J = 7.7, 4.4 Hz, 1H), 1.25 (d, J = 5.4 Hz, 1H), 1.12 (dd, J = 8.2, 5.2 Hz, 1H), 1.03-0.95 (m, 1H), 0.87 (d, J = 6.5 Hz, 3H), 0.79 (d, J = 7.0 Hz, 3H), 0.68 (d, J = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 164.6, 144.7, 135.7, 132.1, 131.3, 129.3, 128.3, 127.4, 127.2, 127.0, 126.8, 126.2, 106.8, 72.8, 47.3, 47.1, 41.5, 34.5, 31.5, 26.8, 26.5, 25.99, 23.3, 22.2, 21.1, 16.3.
HRMS (ESI): calcd for C₃₀H₃₆NO₂⁺, (M+H)⁺: 442.2741, found: 442.2750.

Synthesis of 5b:

Synthesis of substrate Citronellol derivative: Citronellol (312 mg, 2.0 mmol), DMAP (244 mg, 2 mmol) were added in DCM (20 mL) at room temperature and then stirring overnight at the same temperature. 20 ml saturated NH₄Cl was added to the reaction system when the starting material was completely consumed, extracted with EA (20 ml*3), the combined phase was washed with brine, dried over MgSO₄, concentrated and purified by chromatography on silica gel with a eluent of ethyl acetate (EA) and petroleum ether (PE) to provide the corresponding substrate.

Characterization data of Citronellol derivative:

¹**H** NMR (400 MHz, CDCl₃): δ_H 7.58 (dd, J = 5.2, 3.2 Hz, 2H), 7.45 (ddd, J = 6.6, 3.8, 1.3 Hz, 1H), 7.40 - 7.32 (m, 2H), 5.10 (ddd, J = 7.1, 5.8, 1.3 Hz, 1H), 4.38-4.16 (m, 2H), 2.14 - 1.88 (m, 2H), 1.81-1.72 (m, 1H), 1.69 (s, 3H), 1.65-1.58 (m, 4H), 1.56-1.45 (m, 1H), 1.43-1.31 (m, 1H), 1.27-1.17 (m, 1H), 0.94 (d, J = 6.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 154.4, 133.1, 131.6, 130.7, 128.7, 124.6, 119.9, 86.2, 80.9, 64.8, 37.1, 35.4, 29.5, 25.9, 25.5, 19.5, 17.8.

Photoredox reaction: In a dried sealed tube, 1a (0.2 mmol), L-Menthol derivative (0.1 mmol),

Ir(dFCF₃ppy)₂bpyPF₆ (1.0 mol %), DIPEA (0.4 mmol) were dissolved in CH₃CN (1.0 mL). The flask was caped and degassed oxygen with nitrogen for three times at -78 °C. Subsequently, the reaction mixture was exposed to blue LEDs (425-430 nm, 10 W) at room temperature. The reaction finished when the starting materials was completely consumed (monitored by TLC). The residue was purified by flash column chromatography on silica gel with a eluent of petroleum ether (PE) and ethyl acetate (EA) to give the corresponding products.

Characterization data of 5b:

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.17-7.07 (m, 8H), 7.06-6.99 (m, 2H), 5.00 (t, J = 7.1 Hz, 1H), 4.14 – 4.00 (m, 2H), 3.97 (t, J = 7.1 Hz, 2H), 3.15 (t, J = 7.4 Hz, 2H), 2.47 (p, J = 7.3 Hz, 2H), 1.95-1.74 (m, 2H), 1.60 (s, 3H), 1.52 (s, 3H), 1.53-1.45 (m, 1H), 1.35 (dd, J = 12.6, 6.1 Hz, 1H), 1.25 (d, J = 6.7 Hz, 1H), 1.21-1.17 (m, 1H), 1.09-0.98 (m, 1H), 0.76 (d, J = 6.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 165.2, 144.7, 135.6, 132.1, 131.3, 131.2, 129.3, 128.3, 127.5, 127.2, 127.1, 126.9, 126.3, 124.93, 106.4, 61.7, 47.2, 37.2, 35.8, 29.4, 26.8, 26.6, 25.9, 25.5, 19.3, 17.8.
HRMS (ESI): calcd for C₃₀H₃₆NO₂⁺, (M+H)⁺: 442..2741, found: 442.2739.

Synthesis of 5c:

Synthesis of substrate Geraniol derivative: Geraniol (308 mg, 2.0 mmol), DMAP (244 mg, 2 mmol) were added in DCM (20 mL) at room temperature and then stirring overnight at the same temperature. 20 ml saturated NH₄Cl was added to the reaction system when the starting material was completely consumed, extracted with EA (20 ml*3), the combined phase was washed with brine, dried over MgSO₄, concentrated and purified by chromatography on silica gel to provide the Geraniol derivative.

Characterization data of Geraniol derivative:

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.62-7.50 (m, 2H), 7.41 (ddd, J = 6.5, 3.8, 1.3 Hz, 1H), 7.37-7.29 (m, 2H), 5.41 (td, J = 7.2, 1.1 Hz, 1H), 5.14-5.02 (m, 1H), 4.74 (d, J = 7.3 Hz, 2H), 2.22-1.99 (m, 4H), 1.73 (s, 3H), 1.67 (s, 3H), 1.59 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): *δ*_C 154.0, 143.5, 132.9, 131.9, 130.6, 128.6, 123.7, 119.7, 117.5, 86.1, 80.8, 62.8, 39.5, 26.3, 25.7, 17.7, 16.5.

Photoredox reaction: In a dried sealed tube, **1a** (0.2 mmol), Geraniol derivative (0.1 mmol), Ir(dFCF₃ppy)₂bpyPF₆ (1.0 mol %), DIPEA (0.4 mmol) were dissolved in CH₃CN (1.0 mL). The flask was caped and degassed oxygen with nitrogen for three times at -78 °C. Subsequently, the reaction mixture was exposed to blue LEDs (425-430 nm, 10 W) at room temperature. The reaction finished when the starting materials was completely consumed (monitored by TLC). The residue was purified

by flash column chromatography on silica gel with a eluent of petroleum ether (PE) and ethyl acetate (EA) to give the corresponding product **5c**.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.17-7.07 (m, 8H), 7.06-7.00 (m, 2H), 5.31-5.15 (m, 1H), 5.02 (dd, *J* = 9.5, 4.0 Hz, 1H), 4.54 (d, *J* = 6.8 Hz, 2H), 3.96 (t, *J* = 7.1 Hz, 2H), 3.15 (t, *J* = 7.4 Hz, 2H), 2.46 (p, *J* = 7.3 Hz, 2H), 2.01 (dd, *J* = 15.1, 6.7 Hz, 2H), 1.92 (dd, *J* = 12.7, 7.5 Hz, 2H), 1.61 (s, 3H), 1.57 (s, 3H), 1.54 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 165.1, 144.8, 140.98, 135.5, 132.2, 131.8, 131.2, 129.4, 128.3, 127.5, 127.3, 127.1, 126.9, 126.2, 124.1, 119.4, 106.4, 60.3, 47.2, 39.6, 26.8, 26.6, 26.5, 25.8, 17.8, 16.6. HRMS (ESI): calcd for C₃₀H₃₃NNaO₂⁺, (M+Na)⁺: 462.2404, found: 462.2411.

Synthesis of 5d:

Synthesis of substrate Nerol derivative: Nerol (308 mg, 2.0 mmol), DMAP (244 mg, 2 mmol) were added in DCM (20 mL) at room temperature and then stirring overnight at the same temperature. 20 ml saturated NH₄Cl was added to the reaction system when the starting material was completely consumed, extracted with EA (20 ml*3), the combined phase was washed with brine, dried over MgSO₄, concentrated and purified by chromatography on silica gel to provide the Nerol derivative.

Characterization data of Nerol derivative:

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.61-7.51 (m, 2H), 7.44 (t, J = 7.4 Hz, 1H), 7.36 (t, J = 7.5 Hz, 2H), 5.43 (t, J = 7.3 Hz, 1H), 5.11 (t, J = 6.3 Hz, 1H), 4.72 (d, J = 7.4 Hz, 2H), 2.21-2.04 (m, 4H), 1.79 (s, 3H), 1.69 (s, 3H), 1.61 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): *δ*_C 154.2, 144.0, 133.1, 132.5, 130.7, 128.7, 123.6, 119.9, 118.4, 86.2, 80.8, 62.7, 32.3, 26.7, 25.8, 23.7, 17.8.

Photoredox reaction: In a dried sealed tube, **1a** (0.2 mmol), Nerol derivative (0.1 mmol), $Ir(dFCF_3ppy)_2bpyPF_6$ (1.0 mol %), DIPEA (0.4 mmol) were dissolved in CH₃CN (1.0 mL). The flask was caped and degassed oxygen with nitrogen for three times at -78 °C. Subsequently, the reaction mixture was exposed to blue LEDs (425-430 nm, 10 W) at room temperature. The reaction finished when the starting materials was completely consumed (monitored by TLC). The residue was purified by flash column chromatography on silica gel with a eluent of petroleum ether (PE) and ethyl acetate (EA) to give the corresponding product **5d**.

Characterization data of 5d:

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.25-7.15 (m, 8H), 7.14-7.08 (m, 2H), 5.30 (dd, J = 7.0, 5.9 Hz, 1H), 5.14-5.01 (m, 1H), 4.60 (d, J = 7.0 Hz, 2H), 4.03 (t, J = 7.1 Hz, 2H), 3.22 (t, J = 7.4 Hz, 2H), 2.58-2.47 (m, 2H), 2.10-2.01 (m, 4H), 1.73 (d, J = 1.0 Hz, 3H), 1.66 (s, 3H), 1.58 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 165.0, 144.8, 141.0, 135.5, 132.1, 132.1, 131.2, 129.3, 128.3, 127.5, 127.3, 127.0, 126.8, 126.2, 123.9, 120.3, 106.3, 60.1, 47.2, 32.31, 26.8, 26.8, 26.5, 25.8, 23.6, 17.8. HRMS (ESI): calcd for C₃₀H₃₃NNaO₂⁺, (M+Na)⁺: 462.2404, found: 462.2401.

Synthesis of 5e:

Synthesis of substrate Perillyl alcohol derivative: Perillyl alcohol (312 mg, 2.0 mmol), DMAP (244 mg, 2 mmol) were added in DCM (20 mL) at room temperature and then stirring overnight at the same temperature. 20 ml saturated NH₄Cl was added to the reaction system when the starting material was completely consumed, extracted with EA (20 ml*3), the combined phase was washed with brine, dried over MgSO₄, concentrated and purified by chromatography on silica gel to provide the corresponding substrate.

Characterization data of Perillyl alcohol derivative:

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.48 (dd, J = 5.2, 3.3 Hz, 2H), 7.39-7.31 (m, 1H), 7.30-7.22 (m, 2H), 5.75 (s, 1H), 4.70-4.60 (m, 2H), 4.53 (s, 2H), 2.16- 2.01 (m, 4H), 1.96-1.84 (m, 1H), 1.82- 1.72 (m, 1H), 1.65 (s, 3H), 1.42 (tt, J = 12.6, 8.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): δ_C 154.0, 149.4, 133.0, 131.9, 130.7, 128.6, 127.2, 119.7, 108.9, 86.3, 80.7, 70.0, 40.7, 30.5, 27.3, 26.5, 20.8.

Photoredox reaction: In a dried sealed tube, **1a** (0.2 mmol), Perillyl alcohol derivative (0.1 mmol), $Ir(dFCF_3ppy)_2bpyPF_6$ (1.0 mol %), DIPEA (0.4 mmol) were dissolved in CH₃CN (1.0 mL). The flask was caped and degassed oxygen with nitrogen for three times at -78 °C. Subsequently, the reaction mixture was exposed to blue LEDs (425-430 nm, 10 W) at room temperature. The reaction finished when the starting materials was completely consumed (monitored by TLC). The residue was purified by flash column chromatography on silica gel with a eluent of petroleum ether (PE) and ethyl acetate (EA) to give the corresponding product **5e**.

Characterization data of 5e:

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.25-7.14 (m, 8H), 7.13-7.07 (m, 2H), 5.59 (d, J = 3.1 Hz, 1H), 4.73 -4.63 (m, 2H), 4.55-4.43 (m, 2H), 4.04 (t, J = 7.1 Hz, 2H), 3.24 (t, J = 7.5 Hz, 2H), 2.61-2.45 (m, 2H), 2.09 (dt, J = 12.5, 7.3 Hz, 2H), 1.97-1.85 (m, 3H), 1.80-1.71 (m, 4H), 1.40 (ddd, J = 20.2, 12.4, 8.4 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): δ_C 165.0, 150.0, 144.9, 135.7, 133.3, 132.1, 131.2, 129.3, 128.3, 127.5, 127.3, 127.1, 126.9, 126.3, 124.6, 108.7, 106.3, 67.5, 47.2, 41.1, 30.6, 27.6, 26.8, 26.6, 26.5, 20.9. HRMS (ESI): calcd for C₃₀H₃₂NO₂⁺, (M+H)⁺: 438.2428, found: 438.2427.

7. Mechanistic Studies

a) Control experiment

To illustrate the mechanism, control experiment was performed: In a dried sealed tube, **6** (0.1 mmol), **ethyl acrylate** (0.2 mmol), $Ir(dFCF_3ppy)_2bpyPF_6$ (1.0 mol %), DIPEA (0.4 mmol) were dissolved in CH₃CN (1.0 mL). The reaction was caped and degassed oxygen with N₂ for three times at -78 °C. Subsequently, the reaction flask was exposed to 425-430 nm blue leds. After 24 hours, the mixture was extracted with DCM (5 mL*3). The combined solvent were dried over Na₂SO₄, filtered,and detected with GC, there was no desired product **3a** detected, which demonstrate the activation of C-I bond are crucial to the successful transformation of the procedure.

b) Radical inhibition experiments

In a dried sealed tube, **1a** (0.1 mmol), **2a** (0.2 mmol), $Ir(dFCF_3ppy)_2bpyPF_6$ (1.0 mol %), DIPEA (0.4 mmol), TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) (0.2 mmol) were dissolved in CH₃CN (1.0 mL). The reaction was degassed with N₂ for three times at -78 °C. Subsequently, the reaction flask was exposed to 425-430 nm blue LEDs at room temperature. 36 hours later, the reaction was stopped, **3a** was isolated in 8% yield and there was no other radical product isolated from the reaction mixture. The yield was obviously decreased to 8%, which indicate this transformation was radical involved through a single-electron transfer process.

c) Radical addition procedure

To illustrate the mechanism, the radical addition experiment was conducted: In a dried sealed tube, **1k** (0.1 mmol), **2a** (0.2 mmol), Ir(dFCF₃ppy)₂bpyPF₆ (1.0 mol %), DIPEA (0.4 mmol) were dissolved in CH₃CN (1.0 mL). The flask was caped and degassed oxygen with N₂ for three times at -78 °C. Subsequently, the reaction flask was exposed to 425-430 nm blue leds until the starting material completely consumed and quenched with 4 mL saturated NH₄Cl. The mixture was extracted with DCM (5 mL*3). The combined solvent were dried over Na₂SO₄ and filtered. The filtrate was concentrated and purification by chromatography on silica gel with a eluent of petroleum ether (PE) and ethyl acetate (EA) to afford the alkylation product **3k** in 58% yield, and the radical addition product **7** was also isolated in 17% yield. ¹**H NMR (400 MHz, CDCl₃) of** 7: δ_H 7.56 (d, *J* = 7.3 Hz, 2H), 7.44 (d, *J* = 7.2 Hz, 1H), 7.36 (t, *J* = 7.5 Hz, 2H), 7.33-7.27 (m, 5H), 7.23-7.17 (m, 3H), 6.89 (dd, *J* = 15.0, 7.9 Hz, 2H), 5.04 (dd, *J* = 15.1, 8.4 Hz, 1H), 3.50 (s, 3H), 3.01-2.82 (m, 2H), 2.74 (ddd, *J* = 13.5, 9.1, 6.6 Hz, 1H), 2.46-2.30 (m, 1H).

d) Deuterium labeling experiment to rule out 1,5-HAT of intermolecular

To illustrate the mechanism, the radical addition experiment was conducted: In a dried sealed tube, d_2 -1k (0.1 mmol), 2a (0.2 mmol), Ir(dFCF₃ppy)₂bpyPF₆ (1.0 mol %), DIPEA (0.4 mmol) were dissolved in CH₃CN (1.0 mL). The flask was caped and degassed oxygen with N₂ for three times at -78 °C. Subsequently, the reaction flask was exposed to 425-430 nm blue leds until the starting material completely consumed and quenched with 4 mL saturated NH₄Cl. The mixture was extracted with DCM (5 mL*3). The combined solvent were dried over Na₂SO₄ and filtered. The filtrate was concentrated and purification by chromatography on silica gel with a eluent of petroleum ether (PE) and ethyl acetate (EA) to afford the alkylation product d_1 -3k in 49% yield.¹H NMR (400 MHz, CDCl₃) δ 7.34 (dd, J = 11.8, 4.7 Hz, 1H), 7.29 – 7.26 (m, 1H), 7.24 (dd, J = 6.1, 2.3 Hz, 1H), 7.17 (d, J = 7.7 Hz, 1H), 7.06 – 7.00 (m, 1H), 6.92 (t, J = 7.6 Hz, 1H), 6.81 – 6.70 (m, 1H), 3.56 (s, 1H), 2.80 (dd, J = 10.1, 4.7 Hz, 1H), 2.64 – 2.49 (m, 1H), 2.06 – 1.94 (m, 1H)

7,288 7,7,197 7,7,197 7,7,197 7,7,197 7,7,198 7,7,198 7,7,198 7,7,198 7,7,198 7,7,198 7,7,198 7,7,198 7,7,198 7,7,198 6,995 6,995 6,995 6,995 6,995 6,995 6,996 6,996 6,595 6,

8. Reference

- 1. S. Sarkar, W. Sidhant, X. Jia, V. Gevorgyan, Chem 2022, 8, 3096-3108.
- 2. R. Guo, H. Xiao, S. Li, Y. Luo, J. Bai, M. Zhang, Y. Guo, X. Qi, G. Zhang, *Angew. Chem. Int. Ed.*, **2022**, *61*, e202208232.
- 3. J. B. McManus, N. P. R. Onuska, D. A. Nicewicz, J. Am. Chem. Soc., 2018, 140, 9056-9060.
- 4. Z. Han, G. Liu, X. Zhang, A. Li, X. Dong, X. Zhang. Org. Lett. 2019, 21, 3923-3926.

9. The crystallographic data

Identification code	CCDC 2330634					
Bond precision:	C-C = 0.0045 A		Wavelength=1.54184			
Cell:	a=14.0601(3)	b=15.6594(4)	c=7.7115(2)			
	alpha=90	beta=101.332(2)) gamma=90			
Temperature:	301 K					
	Calculated		Reported			
Volume	1664.76(7)		1664.76(7)			
Space group	Сс		Сс			
Hall group	C -2yc		C -2yc			
Moiety formula	C21 H19 N O2		C21 H19 N O2			
Sum formula	C21 H19 N O2		C21 H19 N O2			
Mr	317.37		317.37			
Dx,g cm-3	1.266		1.266			
Z	4		4			
Mu (mm-1)	0.644		0.644			
F000	672.0		672.0			
F000'	673.94		673.94			
h,k,lmax	17,19,9		17,19,9			
Nref	3505[1757]		2454			
Tmin,Tmax						
Tmin'						
Correction method= Not given						
Data completeness= 1	.40/0.70	Theta(max)= 76.34	3			
R(reflections)= 0.0341(2319) wR2(reflections)= 0.0988(2454)						
S = 1.095 Npar= 21)				

10. Spectra for Substrates and Products Product Characterization

L-Menthol derivative, ¹H+¹³C NMR

$\begin{array}{c} 7.597\\ 7.578\\ 7.578\\ 7.455\\ 7.758\\ 7.455\\ 7.745\\ 7.745\\ 7.745\\ 7.745\\ 7.745\\ 7.745\\ 7.745\\ 7.745\\ 7.745\\ 7.745\\ 7.745\\ 7.745\\ 7.742\\ 7.745\\ 7.755\\ 7.745\\ 7.755\\ 7.$

Citronellol derivative, ¹H+¹³C NMR

Geraniol derivative, ¹H+¹³C NMR

Perillyl alcohol derivative, ¹H+¹³C NMR

3b, ¹H+¹³C NMR

3d,¹H+¹³C NMR

S37

3f,¹H+¹³C NMR

 $\begin{array}{c} 7.250\\ 7.176\\ 7.$

7,2,396 7,7,377 7,7,377 7,7,377 7,7,377 7,7,317 7,7,318 7,7,318 7,7,318 7,7,329 7,7,239 7,7,239 7,249 7,24

3j,¹H+¹³C NMR

7,204 7,11867,1186 7,1186 7,11867,1186 7,1186 7,1

7,75617,75717,74867,74867,74867,74867,74867,74867,74867,74867,73862,23862

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

7,230 7,230 7,228 7,228 7,228 7,228 7,228 7,228 7,228 7,228 7,228 7,228 7,219

7, 344 7, 320 7, 320 7, 320 7, 320 7, 320 7, 321 7, 325 7,

7,223 7,722

7,238 7,215 7,22,215 7,2

7.244 7.7205 7.7

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

$\begin{array}{c} 7.281\\ 7.277\\ 7.277\\ 7.260\\ 7.7.126\\ 7.7.196\\ 7.7.196\\ 7.7.196\\ 7.7.196\\ 7.7.196\\ 7.7.196\\ 7.7.196\\ 7.7.196\\ 7.7.196\\ 7.7.196\\ 7.7.196\\ 7.7.196\\ 7.7.196\\ 7.7.196\\ 7.7.196\\ 7.7.196\\ 7.7.2533\\ 5.077\\ 5.077\\ 5.077\\ 5.072\\$

7,1212 7,1152 7,1158 7,

4j, ¹⁹F NMR

 $F \rightarrow \begin{array}{c} Ph \\ \downarrow \\ \downarrow \\ \downarrow \\ 4j \end{array} Me$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

7.228 7.229 7.229 7.229 7.229 7.229 7.229 7.229 7.229 7.229 7.229 7.229 7.2000 7.2000

 $F_{1,100}^{0,000} = \frac{1}{2} + \frac{1}$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

5a, ¹H+¹³C NMR

7, 230 7, 7, 129 7, 7, 129 7, 7, 129 7, 7, 120 7, 7, 150 7, 7, 150 7, 15

5b, ¹H+¹³C NMR

7,171 7,171 7,118 7,

7.7.244 7.7.239 7.7.239 7.7.239 7.7.195 7.7.105 7.7.10

5e, ¹H+¹³C NMR

7,243 7,7210 7,7210 7,7210 7,7210 7,7210 7,7211 7,7211 7,7211 7,7211 7,7211 7,7211 7,7211 7,7211 7,7211 7,7211 7,7211 7,7211 7,7211 7,7211 7,7211 7,7211 7,7211 7,7211 7,7211 7,72222 7,72222 7,7222 7,72222 7,72222 7,7222 7,7222 7,7222

