Supporting Information

Molybdenum-Mediated Reductive Deuteration of Nitroarenes with D₂O: Synthesis of *ortho-* and *para-*Deuterated Anilines

Jin-Liang Lu,[†] Jing-Tong Deng,[†] Ming Lang,^{*,†} and Jin-Bao Peng^{*,†}

[†]School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, P. R. China; orcid.org/0000-0002-0568-7740; E-mail: pengjb_05@126.com

Table of Contents

1.General Information	1
2.General Procedure for the Starting Materials	2
3.Optimization of Reaction Conditions	2
4.Spectroscopic Data of Products	4
5.Mechanistic Experiments	14
6.References	15
7.Copies of NMR Spectra for Compounds	16

1.General Information

Reagents, solvents and analytical methods:

Unless otherwise noted, all reactions were carried out under a carbon monoxide or nitrogen atmosphere. All reagents were from commercial sources and used as received without further purification. All solvents were dried by standard techniques and distilled prior to use. Column chromatography was performed on silica gel (200-300 meshes) using petroleum ether (bp. 60~90 °C) and ethyl acetate as eluent. NMR spectra were recorded on a Bruker Avance operating at for ¹H NMR at 500 MHz, ¹³C NMR at 126 MHz and ¹⁹F NMR at 471 MHz and spectral data were reported in ppm relative to tetramethylsilane (TMS) as internal standard and CDCl3(1H NMR δ 7.27,¹³C NMR δ 77.0) as solvent. High-resolution mass spectra (HRMS) is produced by Thermo Fisher Scientific. Its main body is composed of two parts: Thermo Scientific's UltiMate 3000 Series liquid system and Thermo Scientific Q-Exactive combined quadrupole Orbitrap mass spectrometer. All coupling constants (J) are reported in Hz. The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, dd = doubletdoublet, ddd = double doublet of doublets, t = triplet, dt = double triplet, q = quatriplet, m = multiplet, br = broad. NMR analyses of the unlabelled anilines and labelled anilines were recorded using the same deuterated solvent. After referencing the spectra to the residual solvent signal, integration of the signals on the unlabelled aniline spectra was performed. The same integration areas were applied to the deuterated product spectra, and calibration of the integration was carried out on the same signal. Deuterium content was calculated by the decrease of the area of a specific signal, using the following formula, where Aunlabelled is the area in the unlabelled aniline's spectra and $A_{labelled}$ is the area in the product spectra: $D\% = (1-A_{labelled} / A_{unlabelled})*100\%$.

2.General Procedure for the Starting Materials

The Substrates of nitrocompounds (1a-1ad)

Figure S0 Substrates of nitrocompounds.

3.Optimization of Reaction Conditions

Table S1. Optimization of reaction time.^[a]

	NO ₂	Mo(CO) ₆ (1mmol), D ₂ O (4 eq)	NH ₂
		DME (0.5 mL), 120°C, time	
	16		2b
Entry	Time	Yield (%) ^[b]	D%
1	1 h	37%	47%
2	2 h	53%	66%
3	4 h	71%	66%
4	8 h	87%	69%
5	12 h	86%	67%

[a] Reaction conditions: **1b** (1 mmol), D_2O (4 eq), $Mo(CO)_6$ (1 mmol), DME (0.5 mL), N_2 atmosphere, 120 °C for time. [b] Isolated yield.

Table S2. Optimization of temperature.[a]

	NO ₂	Mo(CO) ₆ (1mmol), D ₂ O (4 eq)	D NH2
		► DME (0.5 mL), T °C, 8 h	
	1b		2b
Entry	Temperature	Yield (%) ^[b]	D%
1	60 °C	trace	
2	80 °C	trace	
3	100 °C	75%	57%
4	120 °C	87%	69%
5	130 °C	85%	67%

[a] Reaction conditions: **1b** (1 mmol), D_2O (4 eq), $Mo(CO)_6$ (1 mmol), DME (0.5 mL), N_2 atmosphere, T °C for 8 h. [b] Isolated yield.

Table S3. Optimization of the amount of Mo(CO)₆.^[a]

	NO ₂	Mo(CO) ₆ , D ₂ O (4 eq) DME (0.5 mL), 120 °C, 8 h	► NH ₂
- Endance	1b	\mathbf{X}_{1}^{*} 1.1 (0/\[b]	2b
Entry	$Mo(CO)_6$	Y teld $(\%)^{[0]}$	D%0
1	0.5 mmol	53%	45%
2	1 mmol	87%	69%
3	1.5 mmol	85%	65%

[a] Reaction conditions: **1b** (1 mmol), D_2O (4 eq), $Mo(CO)_6$, DME (0.5 mL), N_2 atmosphere, 120 °C for 8 h. [b] Isolated yield.

Table S4. Optimization of the equivalent of D₂O.^[a]

	NO ₂	Mo(CO) ₆ (1 mmol), D ₂ O	NH ₂
			2b
Entry	D ₂ O	Yield (%) ^[b]	D%
1	$NO D_2O$	NR	
2	1 equiv.	50%	13%
3	2 equiv.	65%	55%
4	3 equiv.	83%	67%
5	4 equiv.	87%	69%
6	5 equiv.	85%	68%

7	10 equiv.	89%	94%
8	15 equiv.	76%	92%
9	30 equiv.	NR	

[a] Reaction conditions: **1b** (1 mmol), D_2O , $Mo(CO)_6$ (1 mmol), DME (0.5 mL), N_2 atmosphere, 120 °C for 8 h. [b] Isolated yield.

Table S5. Optimization of solvent.[a]

	NO ₂	Mo(CO) ₆ (1 mmol), D ₂ O (4 eq) solvent (0.5 mL), 120 °C, 8 h	NH ₂	
	1b		2b	
Entry	Solvent	Yield (%) ^[b]	D%	
1	1,4-dioxane	62%	60%	
2	THF	63%	92%	
3	MeCN	69%	39%	
4	toluene	60%	87%	
5	DCE	ND		
6	MTBE	83%	91%	
7	DME	89%	94%	
8	CpME	50%	90%	
9	D_2O	NR		

[a] Reaction conditions: **1b** (1 mmol), D_2O (10 eq), $Mo(CO)_6$ (1 mmol), solvent (0.5 mL), N_2 atmosphere, 120 °C for 8 h. [b] Isolated yield.

4.Spectroscopic Data of Products

Benzen-2,4,6-d3-amine (2a)

The title compound was prepared from Nitrobenzene (123.0 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.30) to give the product as a brown solid. (general procedure: 83.6 mg, 87%).

¹**H NMR (500 MHz, CDCl₃)** δ 7.17 (s, 2H), 6.77 (t, *J* = 7.4 Hz, 0.08H), 6.70 (d, *J* = 8.4 Hz, 0.23H), 3.31 (s, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 146.2, 129.2 (d, *J* = 13.9 Hz), 118.4 (dd, *J* = 41.6, 16.7 Hz), 115.0 (dd, *J* = 41.6, 17.9 Hz).

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₆H₅D₃N⁺ 97.0840; Found 97.0845.

2,6-d2.p-Toluidine (2b)

The title compound was prepared from 1-Methyl-4-nitrobenzene (137.1 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.30) to give the product as a brown solid (general procedure: 97.1 mg, 89%).

¹H NMR (500 MHz, CDCl₃) δ 7.01 (s, 2H), 6.65 (d, J = 8.6 Hz, 0.11H), 3.46 (s, 2H), 2.29 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 143.7, 129.7, 127.9, 116.2 – 113.8 (m), 20.5.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_7H_8D_2N^+$ 110.0933; Found 110.0937.

2,4,6-*d*₃-*m*-Toluidine (2c)

The title compound was prepared from 1-Methyl-3-nitrobenzene (137.1 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.30) to give the product as a brown solid (general procedure: 91.3 mg, 83%).

¹**H NMR (500 MHz, CDCl₃)** δ 7.09 (s, 1H), 6.63 (d, *J* = 7.5 Hz, 0.09H), 6.57 – 6.52 (m, 0.17H), 3.44 (s, 2H), 2.31 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 146.2, 139.0, 129.0, 119.3 (dd, *J* = 42.2, 18.1 Hz), 115.8 (dd, *J* = 42.6, 19.0 Hz), 112.1 (dd, *J* = 41.4, 17.3 Hz), 21.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₇H₇D₃N⁺ 111.0996; Found 111.1000.

(94%D) (94%D)

4,6-*d*₂-*o*-Toluidine (2d)

The title compound was prepared from 1-Methyl-2-nitrobenzene (137.1 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.30) to give the product as a brown solid (general procedure: 97.1 mg, 89%).

¹**H NMR (500 MHz, CDCl₃)** δ 7.09 (d, *J* = 6.6 Hz, 2H), 6.76 (t, *J* = 7.4 Hz, 0.06H), 6.72 (d, *J* = 7.7 Hz, 0.06H), 3.44 (s, 2H), 2.21 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 144.5, 130.4, 126.8, 122.4, 118.5 (dd, *J* = 41.9, 17.4 Hz), 114.8 (dd, *J* = 41.7, 18.1 Hz), 17.4.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_7H_8D_2N^+$ 110.0933; Found 110.0938.

(93%D) H_2N

(93%D) **4-Ethylbenzen-***2*,*6*-*d*₂-amine (2e)

The title compound was prepared from 1-Ethyl-4-nitrobenzene (151.1 mg, 0.9 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.30) to give the product as a brown solid (general procedure: 109.5 mg, 89%).

¹**H NMR (500 MHz, CDCl₃)** δ 7.03 (s, 2H), 6.67 (d, *J* = 8.6 Hz, 0.15H), 3.33 (s, 2H), 2.58 (q, *J* = 7.6 Hz, 2H), 1.23 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 143.9, 134.5, 128.5, 115.1 (dd, J = 41.1, 17.3 Hz), 28.0, 16.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₈H₁₀D₂N⁺ 124.1090; Found 124.1091.

4-Isopropylbenzen-2,6-d₂-amine (2f)

The title compound was prepared from 1-Isopropyl-4-nitrobenzene (165.1 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.30) to give the product as a brown solid (general procedure: 121.9 mg, 89%).

¹**H NMR (500 MHz, CDCl₃)** δ 7.06 (s, 2H), 6.68 (d, *J* = 8.6 Hz, 0.24H), 3.26 (s, 2H), 2.90 – 2.78 (m, 1H), 1.24 (d, *J* = 6.9 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 144.0, 139.2, 127.0, 115.1 (dd, J = 41.3, 17.8 Hz), 33.3, 24.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₉H₁₂D₂N⁺ 138.1246; Found 138.1247.

4-Methoxybenzen-2,6-d₂-amine (2g)

The title compound was prepared from 1-Methoxy-4-nitrobenzene (153.1mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.20) to give the product as a brown solid (general procedure: 112.6 mg, 90%).

¹**H NMR (500 MHz, CDCl₃)** δ 6.77 (s, 2H), 6.68 (d, *J* = 12.3 Hz, 0.87H), 3.77 (s, 3H), 3.12 (s, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 152.9, 139.8, 116.5, 114.8 (dd, J = 12.2, 2.0 Hz), 55.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₇H₈D₂NO⁺ 126.0882; Found 126.0885.

4-Phenoxybenzen-2,6-d2-amine (2h)

The title compound was prepared from 1-Nitro-4-phenoxybenzene (215.1 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.20) to give the product as a yellow solid (general procedure: 162.7 mg, 87%).

¹**H NMR (500 MHz, CDCl₃)** δ 7.36 – 7.30 (m, 2H), 7.06 (t, *J* = 7.4 Hz, 1H), 6.99 (d, *J* = 7.7 Hz, 2H), 6.92 (s, 2H), 6.71 (d, *J* = 9.1 Hz, 0.44H), 3.51 (s, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 159.0, 148.6, 142.6, 129.6, 122.1, 121.1, 117.3, 116.1 (dd, J = 41.0, 16.9 Hz). HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₂H₁₀D₂NO⁺ 188.1039; Found 188.1040.

(89%D) H₂N (89%D)

4-(Methylthio)benzen-2,6-d2-amine (2i)

The title compound was prepared from Methyl(4-nitrophenyl)sulfane (169.2 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.20) to give the product as a yellow solid (general procedure: 108.6 mg, 77%).

¹H NMR (500 MHz, CDCl₃) δ 7.20 (s, 2H), 6.65 (d, *J* = 8.8 Hz, 0.22H), 3.51 (s, 2H), 2.44 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 146.2, 138.9, 120.3 (dd, *J* = 43.5, 19.6 Hz), 112.9 (dd, *J* = 42.3, 18.8 Hz), 21.2.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₇H₈D₂NS⁺ 142.0654; Found 142.0655.

Benzo[d][1,3]dioxol-4,6-d2-5-amine (2j)

The title compound was prepared from 4-Nitrobenzo[d][1,3]dioxole (167.5 mg, 1.5 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.20) to give the product as a yellow solid (general procedure: 115.5 mg, 83%).

¹H NMR (500 MHz, CDCl₃) δ 6.62 (s, 1H), 6.30 (s, 0.9H), 5.86 (s, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 108.5 (d, J = 11.0 Hz), 100.7, 98.2

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₇H₆D₂NO⁺ 140.0675; Found 140.0684.

4-Bromobenzen-2,6-d2-amine (2k)

The title compound was prepared from 1-Bromo-4-nitrobenzene (201.0 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.30) to give the product as a red solid (general procedure: 143.6 mg, 83%).

¹**H NMR (500 MHz, CDCl₃)** δ 7.26 (s, 2H), 6.57 (d, *J* = 9.1 Hz, 0.18H), 3.59 (s, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 145.4, 131.9, 116.6 (dd, *J* = 41.4, 17.2 Hz), 110.1.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₆H₅D₂BrN⁺ 173.9882; Found 173.9882.

The 2 mg of 4-Bromoaniline and 2k was weighed separately into a 2 mL glass bottle. Then 2 mL DCM was added and the sample concentration was 1 mg/mL. Measure the sample using GCMS and calculate the deuteratation rate based on the results of GCMS.

(75%D)

4-Chlorobenzen-2,6-d₂-amine (21)

The title compound was prepared from 1-Chloro-4-nitrobenzene (157.0 mg, 0.9 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.30) to give the product as a brown solid (general procedure: 104.5 mg, 81%).

¹**H NMR (500 MHz, CDCl₃)** δ 7.13 (s, 2H), 6.62 (d, *J* = 9.0 Hz, 0.51H), 3.58 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 144.9, 129.0, 123.1, 116.4 – 115.7 (m).

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₆H₅ClD₂N⁺ 130.0387; Found 130.0388.

(45%D) H₂N (45%D)

4-Fluorobenzen-2,6-d2-amine (2m)

The title compound was prepared from 1-Fluoro-4-nitrobenzene (141.1 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.30) to give the product as a brown solid (general procedure: 96.1 mg, 85%).

¹**H NMR (500 MHz, CDCl₃)** δ 6.88 (ddd, *J* = 8.6, 4.4, 1.0 Hz, 2H), 6.68 – 6.59 (m, 1.1H), 3.40 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 156.5 (d, *J* = 235.8 Hz), 142.3, 115.9 (d, *J* = 60.8 Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ -126.79 (td, J = 8.6, 3.3 Hz). HRMS (ESI) m/z: [M+H]⁺ Calcd for C₆H₅D₂FN⁺ 114.0683; Found 114.0686.

3-Fluorobenzen-2,4,6-d₃-amine (2n)

The title compound was prepared from 1-Fluoro-3-nitrobenzene (141.1 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.30) to give the product as a brown solid (general procedure: 76.8 mg, 69%).

¹**H NMR (500 MHz, CDCl₃)** δ 7.11 (d, J = 6.6 Hz, 1H), 6.47 (t, J = 8.7 Hz, 0.25H), 6.40 (d, J = 11.0 Hz, 0.13H), 3.58 (s, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 163.8 (d, *J* = 243.3 Hz), 148.1 (d, *J* = 10.08 Hz), 130.2 (d, *J* = 9.7 Hz), 110.9–110.1 (m), 105.4–104.5 (m), 102.5–101.4 (m).

¹⁹F NMR (471 MHz, CDCl₃) δ -111.43 - -116.46 (m).

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₆H₄D₃FN⁺ 115.0745; Found 115.0749.

1-(4-Aminophenyl-3,5-d₂)ethan-1-one (20)

The title compound was prepared from 1-(4-Aminophenyl)ethan-1-one (165.1 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.20) to give the product as a red solid (general procedure: 112.3 mg, 82%).

¹**H NMR (500 MHz, CDCl₃)** δ 7.79 (s, 2H), 6.64 (d, *J* = 9.0 Hz, 0.3H), 4.27 (s, 2H), 2.46 (s, 0.45H).

¹³C NMR (126 MHz, CDCl₃) δ 196.9, 151.4, 130.7, 127.5, 113.5 (dd, J = 41.7, 17.6 Hz), 29.7. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₈H₅D₅NO⁺ 141.0502; Found 141.0511.

(91%D) H₂N COOMe (91%D)

Methyl-4-aminobenzoate-3,5-d₂ (2p)

The title compound was prepared from methyl-4-nitrobenzoate (181.1 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.30) to give the product as a brown solid (general procedure: 147.1 mg, 96%).

¹**H NMR (500 MHz, CDCl₃)** δ 7.84 (s, 2H), 6.62 (d, *J* = 8.9 Hz, 0.18H), 4.05 (s, 2H), 3.84 (s, 3H). ¹³**C NMR (126 MHz, CDCl₃)** δ 144.5, 138.1, 116.6 (d, *J* = 12.8 Hz), 115.7 (d, *J* = 13.7 Hz), 42.3, 29.7.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₈H₈D₂NO₂⁺ 153.0831; Found 153.0833.

3,5-Dimethylbenzen-2,4,6-d₃-amine (2q)

The title compound was prepared from 1,3-Dimethyl-5-nitrobenzene (151.2 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.30) to give the product as a brown solid (general procedure: 100.5 mg, 81%). ¹H NMR (500 MHz, CDCl₃) δ 6.48 (s, 0.09H), 6.38 (s, 0.12H), 3.41 (s, 2H), 2.28 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 145.0, 131.0, 125.8, 115.6 (dd, *J* = 41.2, 17.2 Hz), 18.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₈H₉D₃N⁺ 125.1153; Found 125.1154.

2,3-Dimethylbenzen-4,6-d₂-amine (2r)

The title compound was prepared from 1,2-Dimethyl-3-nitrobenzene (151.2 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.30) to give the product as a brown solid (general procedure: 102.1 mg, 83%).

¹**H NMR (500 MHz, CDCl₃)** δ 7.00 (s, 1H), 6.71 (d, *J* = 7.5 Hz, 0.05H), 6.63 (d, *J* = 7.9 Hz, 0.05H), 3.53 (s, 2H), 2.35 (s, 3H), 2.15 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 144.5, 137.1, 125.9, 120.7 (d, J = 72.5 Hz), 113.0, 20.5, 12.9. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₈H₁₀D₂N⁺ 124.1090; Found 124.1092.

2,3-Dimethylbenzen-4,6-d2-amine (2s)

The title compound was prepared from 1,2-Dimethyl-4-nitrobenzene (151.2 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.30) to give the product as a brown solid (general procedure: 104.7 mg, 85%).

¹**H NMR (500 MHz, CDCl₃)** δ 6.96 (s, 1H), 6.56 (s, 0.05H), 6.50 (d, *J* = 7.9 Hz, 0.05H), 3.33 (s, 2H), 2.22 (s, 3H), 2.20 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 144.1, 137.3, 130.2, 126.6, 116.7 (dd, *J* = 43.0, 19.5 Hz), 112.5 (dd, *J* = 41.5, 17.2 Hz), 19.8, 18.8.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₈H₁₀D₂N⁺ 124.1090; Found 124.1092.

3-Methoxy-4-methylbenzen-2,6-d2-amine (2t)

The title compound was prepared from 2-Methoxy-1-methyl-4-nitrobenzene (167.1 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.20) to give the product as a yellow solid (general procedure: 126.5 mg, 91%). ¹H NMR (500 MHz, CDCl₃) δ 6.96 – 6.92 (m, 1H), 6.26 (d, *J* = 7.8 Hz, 0.7H), 3.81 (s, 3H), 3.47 (s, 2H), 2.16 (s, 3H).

¹³**C NMR (126 MHz, CDCl₃)** δ 158.4, 145.5, 131.0, 116.5, 106.8, 98.4 (dd, *J* = 40.2, 16.5 Hz), 55.2, 15.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₈H₁₀D₂NO⁺ 140.1039; Found 140.1039.

4-Chloro-3-methylbenzen-2,6-d2-amine (2u)

The title compound was prepared from 1-Chloro-2-methyl-4-nitrobenzene (171.0 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.30) to give the product as a brown solid (general procedure: 115.9 mg, 81%).

¹**H NMR (500 MHz, CDCl₃)** δ 7.12 (s, 1H), 6.57 (s, 0.07H), 6.48 (d, *J* = 8.4 Hz, 0.07H), 3.53 (s, 2H), 2.31 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 144.9, 136.6, 129.4, 123.5, 117.3 (dd, *J* = 42.6, 18.8 Hz), 113.7 (dd, *J* = 40.9, 16.8 Hz), 20.1.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₇H₇D₂ClN⁺ 144.0544; Found 144.0544.

(93%D) H₂N (93%D)

3-Chloro-4-methylbenzen-2,6-d₂-amine (2v)

The title compound was prepared from 2-Chloro-1-methyl-4-nitrobenzene (171.0 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.30) to give the product as a yellow solid (general procedure: 123.0 mg, 86%).

¹**H NMR (500 MHz, CDCl₃)** δ 7.02 (s, 1H), 6.73 (s, 0.07H), 6.52 (d, *J* = 8.1 Hz, 0.07H), 3.51 (s, 2H), 2.29 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 145.3, 134.5, 131.3, 125.5, 115.4 (dd, *J* = 42.2, 17.8 Hz), 113.6 (dd, *J* = 41.3, 17.2 Hz), 19.0.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₇H₇D₂ClN⁺ 144.0544; Found 144.0545.

(91%D) H₂N (87%D)

4-Fluoro-3-methylbenzen-2,6-d₂-amine (2w)

The title compound was prepared from 1-fluoro-2-methyl-4-nitrobenzene (155.0 mg, 0.9 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.30) to give the product as a red oil (general procedure: 110.5 mg, 87%).

¹**H NMR (500 MHz, CDCl₃)** δ 6.82 (d, J = 9.4 Hz, 1H), 6.52 (d, J = 6.4 Hz, 0.1H), 6.47 (dd, J = 8.6, 4.0 Hz, 0.1H), 3.35 (s, 2H), 2.22 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ155.1 (d, *J* = 234.0 Hz), 141.9 (d, *J* = 2.52 Hz), 125.2 (d, *J* = 18.9 Hz), 117.8, 115.2 (d, *J* = 23.94 Hz), 113.4, 14.6.

¹⁹F NMR (471 MHz, CDCl₃) δ -130.23 – -132.59 (m).

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₇H₇D₂FN⁺ 128.0839; Found 128.0841.

3-Fluoro-5-methylbenzen-2,4,6-d₃-amine (2x)

The title compound was prepared from 1-Fluoro-3-methyl-5-nitrobenzene (155.0 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.30) to give the product as a yellow solid (general procedure: 101.2 mg, 79%).

¹**H NMR (500 MHz, CDCl₃)** δ 6.31 (d, *J* = 9.9 Hz, 0.13H), 6.29 (s, 0.15H), 6.22 (d, *J* = 10.7 Hz, 0.11H), 3.60 (s, 2H), 2.27 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 163.8 (d, *J* = 242.6 Hz), 147.7 (d, *J* = 11.34 Hz), 140.8 (d, *J* = 10.08 Hz), 111.2, 105.9, 99.1, 21.3.

¹⁹F NMR (471 MHz, CDCl₃) δ -112.42 - -118.13 (m).

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₇H₆D₃FN⁺ 129.0902; Found 129.0903.

3-Fluoro-4-methoxybenzen-2,6-d₂-amine (2y)

The title compound was prepared from 2-Fluoro-1-methoxy-4-nitrobenzene (171.0 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.20) to give the product as a yellow solid (general procedure: 128.7 mg, 90%).

¹**H NMR (500 MHz, CDCl₃)** δ 6.86 (d, *J* = 11.3 Hz, 1H), 6.32 (d, *J* = 7.2 Hz, 0.06H), 6.17 (dd, *J* = 8.5, 3.4 Hz, 0.11H), 3.83 (s, 3H), 3.49 (s, 2H).

¹³**C NMR (126 MHz, CDCl₃)** δ 147.9 (d, *J* = 11.34 Hz), 147.1, 145.2, 143.0, 116.1 (d, *J* = 18.9 Hz), 106.4, 56.1.

¹⁹F NMR (471 MHz, CDCl₃) δ -144.08 – -153.51 (m).

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₇H₇D₂FNO⁺ 144.0788; Found 144.0802.

3-Chloro-4-fluorobenzen-2,6-d2-amine (2z)

The title compound was prepared from 2-Chloro-1-fluoro-4-nitrobenzene (175.0 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.30) to give the product as a red solid (general procedure: 127.9 mg, 87%).

¹**H NMR (500 MHz, CDCl₃)** δ 6.93 (dt, *J* = 8.8, 4.4 Hz, 1H), 6.70 (d, *J* = 6.1 Hz, 0.37H), 6.51 (dd, *J* = 8.8, 3.8 Hz, 0.33H), 3.53 (s, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 151.6 (d, *J* = 238.2 Hz), 143.2, 120.8, 116.7 (d, *J* = 21.42 Hz), 114.3 (d, *J* = 6.3 Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ -128.55 – -131.60 (m).

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₆H₄D₂ClFN⁺ 148.0293; Found 148.0282.

(46%D) H₂N (55%D)

3,4-Difluorobenzen-2,6-d2-amine (2aa)

The title compound was prepared from 3,4-Difluoro-1-nitrobenzene (159.0 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.30) to give the product as a brown solid (general procedure: 108.9 mg, 83%).

¹H NMR (500 MHz, CDCl₃) δ 6.95 (t, J = 9.1 Hz, 1.45H), 6.50 (dd, J = 12.0, 6.7 Hz, 0.54H), 3.57 (s, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 152.7 (dd, J = 10.2, 5.9 Hz), 150.7 (dd, J = 10.3, 5.8 Hz), 133.9 (t, J = 15.4 Hz), 132.0 (t, J = 15.6 Hz), 98.5 (dd, J = 47.7, 22.8 Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ -130.23 – -140.35 (m).

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₆H₄D₂F₂N⁺ 132.0588; Found 132.0581.

(95%D)

2,6-Dimethylbenzen-4-d-amine (2ab)

The title compound was prepared from 1,3-Dimethyl-2-nitrobenzene (151.1 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.30) to give the product as a yellow oil (general procedure: 85.5 mg, 70%).

¹H NMR (500 MHz, CDCl₃) δ 6.97 (s, 2H), 6.67 (t, J = 7.4 Hz, 0.05H), 3.41 (s, 2H), 2.20 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 142.7, 128.2, 121.8, 117.9 (dd, J = 41.0, 16.8 Hz), 17.7. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₈H₁₁DN⁺ 123.1027; Found 123.1030.

D(89%D) (87%D)

Naphthalen-2,4-d2-1-amine (2ac)

The title compound was prepared from 1-nitronaphthalene (173.1 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.30) to give the product as a yellow solid (general procedure: 123.3 mg, 85%).

¹**H NMR (500 MHz, CDCl₃)** δ 7.92 – 7.82 (m, 2H), 7.57 – 7.46 (m, 2.13H), 7.37 (s, 1H), 6.83 (d, *J* = 7.4 Hz, 0.11H), 3.98 (s, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 142.1, 134.4, 128.6, 126.2, 125.9, 124.9, 123.7, 120.9, 118.8 (dd, *J* = 43.7, 19.1 Hz), 109.6 (dd, *J* = 41.6, 17.6 Hz).

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₀H₈D₂N⁺ 146.0933; Found 146.0934.

Quinolin-6,8-d2-5-amine (2ad)

The title compound was prepared from 5-Nitroquinoline (174.1 mg, 1 mmol). The crude residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1, Rf = 0.20) to give the product as a red solid (general procedure: 112.5 mg, 77%).

¹**H NMR (500 MHz, CDCl₃)** δ 8.87 (dd, *J* = 4.2, 1.5 Hz, 1H), 8.17 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 0.15H), 7.50 (s, 1H), 7.30 (dd, *J* = 8.5, 4.2 Hz, 1H), 6.80 (d, *J* = 7.5 Hz, 0.3H), 4.22 (s, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 150.2, 149.0, 142.4, 130.0, 129.9, 129.7, 119.7 (d, *J* = 42.8 Hz), 118.7, 110.1 – 109.4 (m).

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₉H₇D₂N₂⁺ 147.0886; Found 147.0889.

5.Mechanistic Experiments

Control experiments

X (1 mmol), Mo(CO)₆ (1 mmol) were transferred into an 15 mL tube which was filled with nitrogen. Then, DME (0.5 mL) and D₂O (10 equiv.) were added to the reaction tube by syringe or microsyringe. The tube was sealed and the mixture was stirred at 120 °C for 8 h. After the reaction was completed, the reaction mixture was filtered and concentrated under vacuum. The crude pr-

oduct was purified by column chromatography on silica gel to afford the corresponding product.

6.References

[1] Prechtl, M.-H., Teltewskoi, M., Dimitrov, A., et al., Catalytic C–H bond activation at nanoscale Lewis acidic aluminium fuorides: H/D exchange reactions at aromatic and aliphatic hydrocarbons[J]. Chem. Eur. J. **2011**, *17*, 14385-14 388.

[2] Atzrodt, J., Derdau, V., Fey, T., et al., The renaissance of H/D exchange[J]. Angew. Chem. Int. Ed. 2007, 46, 7744-7765.

[3] Florian B., Nils R., Stephan B., et al., Manganese-Catalysed Deuterium Lab elling of Anilines and Electron-Rich (Hetero)Arenes[J]. Angew. Chem. Int. Ed. **2022**, *61*, e202202423.

[4] Hironao S., Nobuhiro I., Hiroyoshi E., et al., Aromatic ring favorable and efficient H–D exchange reaction catalyzed by Pt/C[J]. Tetrahedron Letters **2005**, *46*, 6995-6998.

7. Copies of NMR Spectra for Compounds

Figure S1. ¹H NMR (500 MHz, CDCl₃) spectrum of 2a

Figure S2. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2a

Figure S3. ¹H NMR (500 MHz, CDCl₃) spectrum of 2b

Figure S4. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2b

Figure S6. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2c

Figure S7. ¹H NMR (500 MHz, CDCl₃) spectrum of 2d

Figure S8. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2d

Figure S10. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2e

Figure S11. ¹H NMR (500 MHz, CDCl₃) spectrum of 2f

Figure S12. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2f

Figure S13. ¹H NMR (500 MHz, CDCl₃) spectrum of 2g

Figure S14. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2g

Figure S15. ¹H NMR (500 MHz, CDCl₃) spectrum of 2h

Figure S16. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2h

Figure S17. ¹H NMR (500 MHz, CDCl₃) spectrum of 2i

Figure S18. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2i

Figure S19. ¹H NMR (500 MHz, CDCl₃) spectrum of 2j

Figure S20. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2j

Figure S21. ¹H NMR (500 MHz, CDCl₃) spectrum of 2k

Figure S22. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2k

Figure S24. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2l

Figure S25. ¹H NMR (500 MHz, CDCl₃) spectrum of 2m

Figure S26. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2m

Figure S27. ¹H NMR (500 MHz, CDCl₃) spectrum of 2n

Figure S28. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2n

Figure S29. ¹H NMR (500 MHz, CDCl₃) spectrum of 20

Figure S30. ¹³C NMR (126 MHz, CDCl₃) spectrum of 20

Figure S31. ¹H NMR (500 MHz, CDCl₃) spectrum of 2p

Figure S32. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2p

Figure S33. ¹H NMR (500 MHz, CDCl₃) spectrum of 2q

Figure S34. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2q

Figure S35. ¹H NMR (500 MHz, CDCl₃) spectrum of 2r

Figure S36. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2r

Figure S37. ¹H NMR (500 MHz, CDCl₃) spectrum of 2s

Figure S38. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2s

Figure S39. ¹H NMR (500 MHz, CDCl₃) spectrum of 2t

Figure S40. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2t

Figure S41. ¹H NMR (500 MHz, CDCl₃) spectrum of 2u

Figure S42. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2u

Figure S44. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2v

Figure S45. ¹H NMR (500 MHz, CDCl₃) spectrum of 2w

Figure S46. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2w

Figure S47. ¹H NMR (500 MHz, CDCl₃) spectrum of 2x

Figure S48. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2x

Figure S49. ¹H NMR (500 MHz, CDCl₃) spectrum of 2y

Figure S50. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2y

Figure S51. ¹H NMR (500 MHz, CDCl₃) spectrum of 2z

Figure S52. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2z

Figure S53. ¹H NMR (500 MHz, CDCl₃) spectrum of 2aa

Figure S54. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2aa

Figure S55. ¹H NMR (500 MHz, CDCl₃) spectrum of 2ab

Figure S56. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2ab

Figure S57. ¹H NMR (500 MHz, CDCl₃) spectrum of 2ac

Figure S58. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2ac

Figure S59. ¹H NMR (500 MHz, CDCl₃) spectrum of 2ad

Figure S60. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2ad