Supporting Information

Multi-Functionalization of β-Trifluoromethyl Enones Enabled 2,3-

Dihydrofurans Synthesis

Ya-Fei Hu,^a Wei Han,^a Ye-Kun Chen,^a Mengtao Ma,^b and Zhi-Liang Shen,^{*,a} and Xue-Qiang Chu^{*,a}

^a Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China. E-mails: ias zlshen@njtech.edu.cn; xueqiangchu@njtech.edu.cn.

^b Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.

Table of Contents

General information	Page S2
General procedure for the synthesis of trifluoromethyl enones 1	Page S2
General procedure for the synthesis of 2,3-dihydrofurans 3	Page S3
Scale-up synthesis of product 3aa	Page S3
Further transformations of product 3aa and 3ab	Page S3
General procedure for the reactions of trifluoromethyl enone $1a$ with O-/S-/C-nucleophiles 8	Page S5
Mechanistic studies	Page S5
The X-ray crystal structure of product 6	Page S7
Optimization of the reaction conditions	Page S8
Characterization data for products	Page S9
References	Page S23
¹ H, ¹⁹ F, and ¹³ C NMR spectra of products	Page S24

General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out under air or N₂ atmosphere using undistilled solvent. Melting points were recorded on an electrothermal digital melting point apparatus. ¹H, ¹⁹F, and ¹³C NMR spectra were recorded in CDCl₃ on Bruker Avance or Joel 400 MHz spectrometers. NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), broad (br), doublet of doublets (dd), *etc.* The chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. High resolution mass spectrometry (HRMS) data were obtained on a Waters LC-TOF mass spectrometer (Xevo G2-XS QTof) using electrospray ionization (ESI) in positive or negative mode. A suitable crystal was selected and recorded on a XtaLAB AFC12 (RINC): Kappa single diffractometer. Column chromatography was generally performed on silica gel (300-400 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions.

General procedure for the synthesis of trifluoromethyl enones 1

The trifluoromethyl enones **1** *utilized in the reaction are known compounds, which were synthesized by following previously reported methods.*^[1-2]

a) General procedure A (GPA)

$$R^{2} \xrightarrow{O}_{Br} \xrightarrow{Ph}_{Ph} + R^{1} \xrightarrow{F}_{F} \xrightarrow{Et_{3}N (1.5 \text{ equiv.})}_{THF/DMF, 0-80 \circ C, 3 h} R^{2} \xrightarrow{O}_{F} \xrightarrow{F}_{F}$$

To a solution of triphenylphosphonium salt (7.5 mmol, 1.5 equiv.) and triethylamine (758.9 mg, 7.5 mmol, 1.5 equiv.) in THF (20 mL) was added a solution of a trifluoromethyl ketone (5.0 mmol, 1 equiv.) in DMF (1.6 mL) at 0 °C (ice bath) under air. The mixture was stirred for 15 min at this temperature. After warming to room temperature, the solution was heated at 80 °C (oil bath) for 3 h. The solution was quenched with saturated aqueous NH₄Cl solution (30 mL) and extracted with ethyl acetate (50 mL x 3). The organic extract was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate: 100/1) to give the pure trifluoromethylated enones **1a-1r** and **1t-1x**.

b) General procedure B (GPB)

A solution of (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 4-ethynylbenzoate (1.4 g, 5.0 mmol, 1 equiv.), (*E*)-1-(4-bromophenyl)-4,4,4-trifluoro-3-phenylbut-2-en-1-one (2.1 g, 6.0 mmol, 1.2 equiv.), bis(triphenylphosphine)palladium(II) chloride (35.0 mg, 0.05 mmol, 1.0 mol%), copper(I) iodide (9.5 mg, 0.05 mmol, 1.0 mol%), and triphenylphosphine (26.2 mg, 0.1 mmol, 2.0 mol%) in NEt₃ (10 mL) was stirred at 60 °C (oil bath) under N₂ for 12 h. The reaction was then quenched by

saturated NH₄Cl solution (10 mL) and extracted with EtOAc (20 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate ($100/1 \sim 50/1$) as eluent to afford the pure product **1s** (1.8 g, 64% yield).

General procedure for the synthesis of 2,3-dihydrofurans 3

A solution of trifluoromethyl enone (0.3 mmol, 1 equiv.; 1), N-nucleophile (0.45 mmol, 1.5 equiv.; 2), phenylsilane (48.7 mg, 0.45 mmol, 1.5 equiv.), and Cs_2CO_3 (244.4 mg, 0.75 mmol, 2.5 equiv.) in MeCN (3.5 mL) was stirred at 85 °C (oil bath) under nitrogen atmosphere for 24 h. The reaction was then quenched by saturated NH₄Cl solution (10 mL) and extracted with EtOAc (10 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (10/1~4/1) as eluent to afford the pure product **3**.

Scale-up synthesis of product 3aa

A solution of (*E*)-4,4,4-trifluoro-1,3-diphenylbut-2-en-1-one (552.5 mg, 2 mmol, 1 equiv.; **1a**), imidazole (204.3 mg, 3 mmol, 1.5 equiv.; **2a**), phenylsilane (324.6 mg, 3 mmol, 1.5 equiv.), and Cs_2CO_3 (1629.2 mg, 5 mmol, 2.5 equiv.) in MeCN (10 mL) was stirred at 85 °C (oil bath) under nitrogen atmosphere for 24 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and extracted with EtOAc (20 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (10/1~4/1) as eluent to afford the pure product **3aa** (496.0 mg, 86% yield).

Further transformations of products 3aa and 3ab

a) Oxidation of product 3aa

A solution of 1-(3,5-diphenyl-4,5-dihydrofuran-2-yl)-1*H*-imidazole (86.5 mg, 0.3 mmol, 1 equiv.; **3aa**) and MnO₂ (521.6 mg, 6.0 mmol, 20 equiv.) in PhCl (3.5 mL) was stirred at 130 °C (oil bath) under air for 12 h. The reaction was then quenched by saturated NH₄Cl solution (10 mL) and

extracted with EtOAc (10 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate ($10/1 \sim 4/1$) as eluent to afford the pure product **4** (53.3 mg, 62% yield).

b) Oxidation of product 3ab

A solution of 1-(3,5-diphenyl-4,5-dihydrofuran-2-yl)-1*H*-benzo[*d*]imidazole (101.5 mg, 0.3 mmol, 1 equiv.; **3ab**) and MnO₂ (521.6 mg, 6.0 mmol, 20 equiv.) in PhCl (3.5 mL) was stirred at 130 °C (oil bath) under air for 12 h. The reaction was then quenched by saturated NH₄Cl solution (10 mL) and extracted with EtOAc (10 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (10/1~4/1) as eluent to afford the pure product **5** (65.6 mg, 65% yield).

c) The thioetherification of product 3aa

A solution of 1-(3,5-diphenyl-4,5-dihydrofuran-2-yl)-1*H*-imidazole (86.5 mg, 0.3 mmol, 1 equiv.; **3aa**), diphenyl sulfide (65.5 mg, 0.3 mmol, 1 equiv.), and iodine (19.0 mg, 0.15 mmol, 0.5 equiv.) in DMSO (3.5 mL) was stirred at 120 °C (oil bath) under air for 16 h. The reaction was then quenched by saturated NH₄Cl solution (10 mL) and extracted with EtOAc (10 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (10/1~4/1) as eluent to afford the pure product **6** (32.2 mg, 31% yield).

d) The bromination of product 3ab

A solution of 1-(3,5-diphenyl-4,5-dihydrofuran-2-yl)-1*H*-benzo[*d*]imidazole (101.5 mg, 0.3 mmol, 1 equiv.; **3ab**) and NBS (160.2 mg, 0.9 mmol, 3 equiv.) in THF (3.5 mL) was stirred at 50 °C (oil bath) under nitrogen atmosphere for 5 h. The reaction was then quenched by saturated NH₄Cl solution (10 mL) and extracted with EtOAc (10 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude

product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate ($10/1 \sim 4/1$) as eluent to afford the pure product 7 (35.2 mg, 37% yield).

<u>General procedure for the reactions of trifluoromethyl enone 1a with O-/S-/C-</u> <u>nucleophiles 8</u>

A solution of (*E*)-4,4,4-trifluoro-1,3-diphenylbut-2-en-1-one (82.9 mg, 0.3 mmol, 1 equiv.), O-/S-/C-nucleophile (0.45 mmol, 1.5 equiv.; **8**), phenylsilane (48.7 mg, 0.45 mmol, 1.5 equiv.), and Cs_2CO_3 (244.4 mg, 0.75 mmol, 2.5 equiv.) in MeCN (3.5 mL) was stirred at 85 °C (oil bath) under nitrogen atmosphere for 24 h. The reaction was then quenched by saturated NH₄Cl solution (10 mL) and extracted with EtOAc (10 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (50/1~20/1) as eluent to afford the pure product **10b** (62.6 mg, 42% yield).

Mechanistic studies

a) Hydrodefluorination of trifluoromethylated enone 1a

A solution of (*E*)-4,4,4-trifluoro-1,3-diphenylbut-2-en-1-one (82.9 mg, 0.3 mmol, 1 equiv.; **1a**), phenylsilane (48.7 mg, 0.45 mmol, 1.5 equiv.), and Cs_2CO_3 (244.4 mg, 0.75 mmol, 2.5 equiv.) in MeCN (3.5 mL) was stirred at 70 or 85 °C (oil bath) under nitrogen atmosphere for 10 min or 1 h. The reaction was then quenched by saturated NH₄Cl solution (10 mL) and extracted with EtOAc (10 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. ¹H NMR analysis of the obtained residue by using 4-fluoroanisole (0.1 mmol) as an internal standard indicated the formation of products **3aa-I** and **3aa-I**', as well as the presence of residual **1a**.

This result suggested that OH-containing gem-difluoroalkene 3aa-I might be a reaction intermediate.

b) The intermediacy of gem-difluoroalkene 3aa-I

A solution of 4,4-difluoro-1,3-diphenylbut-3-en-1-ol (78.1 mg, 0.3 mmol, 1 equiv.; **3aa-I**), benzimidazole (53.2 mg, 0.45 mmol, 1.5 equiv.; **2a**), and Cs_2CO_3 (244.4 mg, 0.75 mmol, 2.5 equiv.) in MeCN (3.5 mL) was stirred at 70 °C (oil bath) under nitrogen atmosphere for 12 h. The reaction was then quenched by saturated NH₄Cl solution (10 mL) and extracted with EtOAc (10 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (4/1~2/1) as eluent to afford the pure product **3aa-II** (93.5 mg, 87% yield, Z/E = 1/11).

This result suggested that OH-containing gem-difluoroalkene 3aa-I might be a possible reaction intermediate.

c) The intermediacy of *a*-fluoroenamide 3aa-II

A solution of 4-(1*H*-benzo[*d*]imidazol-1-yl)-4-fluoro-1,3-diphenylbut-3-en-1-ol (107.5 mg, 0.3 mmol, 1 equiv.; **3aa-II**) and Cs₂CO₃ (244.4 mg, 0.75 mmol, 2.5 equiv.) in MeCN (3.5 mL) was stirred at 85 °C (oil bath) under nitrogen atmosphere for 24 h. The reaction was then quenched by saturated NH₄Cl solution (10 mL) and extracted with EtOAc (10 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (10/1~4/1) as eluent to afford the pure product **3ab** (73.1 mg, 72% yield).

This result suggested that α-fluoroenamide 3aa-II might be a reaction intermediate.

d) The effect of R¹ substituent on the reactivity of trifluoromethylated enones

A solution of trifluoromethyl enone (0.3 mmol, 1 equiv.; 1), imidazole (30.6 mg, 0.45 mmol, 1.5 equiv.; 2a), phenylsilane (48.7 mg, 0.45 mmol, 1.5 equiv.), and Cs_2CO_3 (244.4 mg, 0.75 mmol, 2.5 equiv.) in MeCN (3.5 mL) was stirred at 85 °C (oil bath) under nitrogen atmosphere for 24 h. The reaction was then quenched by saturated NH₄Cl solution (10 mL) and extracted with EtOAc (10 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The residue was directly analyzed by NMR analysis. No desired product

3ua was observed, and only trace amounts of the desired products **3va-xa** were formed. <u>This result suggested that the presence of an aryl substituent significantly contributes to electron</u> <u>acceptance into the π -system and subsequent fluoride extrusion</u>.

The X-ray crystal structure of product 6

The single crystal was grown from the mixed solution of EtOAc/DCM by slowly evaporating the above solvents at room temperature.

3,5-Diphenyl-3-(phenylthio)dihydrofuran-2(3*H***)-one (6; displacement ellipsoids are drawn at the 50% probability levels):**

Table S1. Crystal data and structure refinement for product 6.

Identification code	product 6
Empirical formula	$C_{22}H_{18}O_2S$
Formula weight	346.42
Temperature/K	293.15
Crystal system	monoclinic
Space group	Pn
a/Å	11.5209(2)
b/Å	6.01778(11)
c/Å	12.8734(2)
α/°	90
β/°	98.9962(16)
$\gamma/^{\circ}$	90
Volume/Å ³	881.53(3)
Z	2
$\rho_{calc}g/cm^3$	1.305
µ/mm⁻¹	1.717
F(000)	364.0
Crystal size/mm ³	$0.14 \times 0.13 \times 0.12$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/	° 15.574 to 152.288
Index ranges	$-14 \le h \le 14, -5 \le k \le 7, -16 \le l \le 16$
Reflections collected	5356
Independent reflections	2786 [$R_{int} = 0.0171$, $R_{sigma} = 0.0156$]
Data/restraints/parameters	2786/2/226
Goodness-of-fit on F ²	1.066

Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0331, wR_2 = 0.0910$
Final R indexes [all data]	$R_1 = 0.0332, wR_2 = 0.0912$
Largest diff. peak/hole/e Å ⁻³	0.21/-0.26
Flack parameter	0.046(11)

Crystal structure determination of product 6.

Crystal Data for C₂₂H₁₈O₂S (*M* =346.42 g/mol): monoclinic, space group Pn (no. 7), *a* = 11.5209(2) Å, *b* = 6.01778(11) Å, *c* = 12.8734(2) Å, *β* = 98.9962(16)°, *V* = 881.53(3) Å³, *Z* = 2, *T* = 293.15 K, μ (Cu K α) = 1.717 mm⁻¹, *Dcalc* = 1.305 g/cm³, 5356 reflections measured (15.574° $\leq 2\Theta \leq 152.288°$), 2786 unique ($R_{int} = 0.0171$, $R_{sigma} = 0.0156$) which were used in all calculations. The final R_1 was 0.0331 (I > 2 σ (I)) and wR_2 was 0.0912 (all data).

Optimization of the reaction conditions

Table S2. Optimization of reaction conditions^a

Entry <i>H</i> -source	11		T (0C)	G 1 4	T ' (1)	Yield $(\%)^b$	
	Base (x equiv)	Temp. (°C)	Solvent	Time (h)	3aa	3aa' (Z/E) ^c	
1	PhSiH ₃	Cs ₂ CO ₃ (2.5)	70	MeCN	12	12	55 (1/8)
2	PhSiH ₃	Cs ₂ CO ₃ (2.5)	70	MeCN	24	15	60 (1/11)
3	PhSiH ₃	Cs_2CO_3 (2.5)	70	MeCN	2	4	83 (1/7)
4	PhSiH ₃	Cs ₂ CO ₃ (2.5)	70	MeCN	1	5	62 (1/11)
5	PhSiH ₃	Cs ₂ CO ₃ (2.5)	70/85	MeCN	2/24	61	21 (1/6)
6	PhSiH ₃	Cs ₂ CO ₃ (2.5)	85	MeCN	24	83 (80) ^d	6 (1/5)
7	PhSiH ₃	Cs ₂ CO ₃ (2.5)	85	DMF	24	53	trace
8	PhSiH ₃	Cs ₂ CO ₃ (2.5)	85	DMSO	24	52	trace
9	PhSiH ₃	Cs ₂ CO ₃ (2.5)	85	THF	24	22	41 (1/2)
10	PhSiH ₃	Cs ₂ CO ₃ (2.5)	100	Toluene	24	trace	41 (1/2)
11	PhSiH ₃	CsF (2.5)	85	MeCN	24	78	8 (1/8)
12	PhSiH ₃	K ₂ CO ₃ (2.5)	85	MeCN	24	trace	38 (1/11)
13	PhSiH ₃	LiOH (2.5)	85	MeCN	24	trace	22 (1/50)
14	PhSiH ₃	DABCO (2.5)	85	MeCN	24	trace	trace
15	PhSiH ₃	Cs ₂ CO ₃ (3.5)	85	MeCN	24	58	trace
16	PhSiH ₃	Cs ₂ CO ₃ (1.5)	85	MeCN	24	51	33 (1/4)
17	PhMe ₂ SiH	Cs ₂ CO ₃ (2.5)	85	MeCN	24	trace	trace
18	NaBH4	Cs ₂ CO ₃ (2.5)	85	MeCN	24	24	23 (1/3)
19	LiAlH ₄	Cs ₂ CO ₃ (2.5)	85	MeCN	24	trace	trace
20	HP(O)Ph ₂	Cs_2CO_3 (2.5)	85	MeCN	24	trace	trace
21	Rongalite	Cs ₂ CO ₃ (2.5)	85	MeCN	24	trace	trace
22	PhSiH ₃	$Cs_2CO_3(2.5)$	85	MeCN	36	35	30 (1/5)

^{*a*} Reaction conditions: **1a** (0.3 mmol), **2a** (0.45 mmol), *H*-source (0.45 mmol), and base (0.45-1.05 mmol) in solvent (3.5 mL) at 70-100 °C under N₂ for 1-36 h. ^{*b*} Yields were determined by ¹⁹F NMR analysis with 4-fluoroanisole (0.1 mmol) as an internal standard. ^{*c*} Z/E ratio was given in parentheses. ^{*d*} Isolated yield.

Characterization data for products

1-(3,5-Diphenyl-4,5-dihydrofuran-2-yl)-1*H*-imidazole (3aa):

Yield = 80% (69.2 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1). ¹H NMR (400 MHz, CDCl₃): δ = 7.65 (s, 1H), 7.39 (dd, J = 8.2, 1.2 Hz, 2H), 7.37–7.32 (m, 2H), 7.31–7.27 (m, 1H), 7.22–7.16 (m, 2H), 7.13–7.08 (m, 1H), 7.05 (d, J = 6.1 Hz, 2H), 6.97–6.92 (m, 2H), 5.74–5.65 (m, 1H), 3.53 (dd, J = 14.6, 10.2 Hz, 1H), 3.24 (dd, J = 14.6, 8.7 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 141.1, 140.6, 136.6, 132.4, 129.9, 128.9, 128.8, 128.5, 127.0, 126.4, 125.8, 118.1, 100.8, 80.7, 41.8 ppm.

HRMS (m/z): calcd for C₁₉H₁₇N₂O [M+H]⁺ 289.1335, found: 289.1331.

1-(3-(4-Fluorophenyl)-5-phenyl-4,5-dihydrofuran-2-yl)-1*H*-imidazole (3ba):

Yield = 81% (74.4 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1). ¹H NMR (400 MHz, CDCl₃): δ = 7.71 (s, 1H), 7.49–7.41 (m, 4H), 7.39–7.35 (m, 1H), 7.15–7.12 (m, 1H), 7.10–7.09 (m, 1H), 6.99–6.95 (m, 4H), 5.82–5.75 (m, 1H), 3.59 (dd, *J* = 14.6, 10.2 Hz, 1H), 3.29 (dd, *J* = 14.6, 8.7 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 161.6 (d, J = 247.2 Hz), 141.0, 140.5, 136.5, 130.0, 129.0, 128.6, 128.0 (d, J = 7.9 Hz), 125.8, 118.0, 116.0, 115.7, 99.9, 80.7, 41.9 ppm.

HRMS (m/z): calcd for $C_{19}H_{16}FN_2O [M+H]^+ 307.1241$, found: 307.1236.

1-(3-(4-Chlorophenyl)-5-phenyl-4,5-dihydrofuran-2-yl)-1*H*-imidazole (3ca):

Yield = 90% (87.2 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.71 (s, 1H), 7.49–7.41 (m, 4H), 7.40–7.35 (m, 1H), 7.25–7.21 (m, 2H), 7.14 (s, 1H), 7.09 (s, 1H), 6.97–6.91 (m, 2H), 5.83–5.75 (m, 1H), 3.58 (dd, *J* = 14.5, 10.2 Hz, 1H), 3.29 (dd, *J* = 14.5, 8.8 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 141.0, 140.8, 136.5, 134.2, 132.5, 130.9, 130.1, 129.0, 128.6, 127.5, 125.8, 118.0, 99.9, 80.8, 41.6 ppm.

HRMS (m/z): calcd for C₁₉H₁₆ClN₂O [M+H]⁺ 323.0946, found: 323.0941.

1-(3-(4-Bromophenyl)-5-phenyl-4,5-dihydrofuran-2-yl)-1*H*-imidazole (3da):

Yield = 89% (98.1 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.71$ (s, 1H), 7.50–7.42 (m, 4H), 7.40 (d, J = 8.9 Hz, 3H), 7.11 (d, J = 19.2 Hz, 2H), 6.87 (d, J = 8.5 Hz, 2H), 5.79 (t, J = 9.5 Hz, 1H), 3.57 (dd, J = 14.5, 10.2 Hz, 1H), 3.29 (dd, J = 14.5, 8.8 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 141.1, 140.7, 136.4, 131.9, 131.4, 130.1, 129.0, 128.6, 127.8, 125.8, 120.5, 118.0, 99.9, 80.8, 41.5 ppm.

HRMS (m/z): calcd for C₁₉H₁₆BrN₂O [M+H]⁺ 367.0441, found: 367.0443.

1-(5-Phenyl-3-(p-tolyl)-4,5-dihydrofuran-2-yl)-1H-imidazole (3ea):

Yield = 56% (50.8 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1). ¹H NMR (400 MHz, CDCl₃): δ = 7.72 (s, 1H), 7.49–7.41 (m, 4H), 7.39–7.35 (m, 1H), 7.14–7.07 (m, 4H), 6.92 (d, *J* = 8.1 Hz, 2H), 5.77 (t, *J* = 9.4 Hz, 1H), 3.59 (dd, *J* = 14.6, 10.2 Hz, 1H), 3.30 (dd, *J* = 14.6, 8.7 Hz, 1H), 2.32 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 141.2, 140.0, 136.8, 136.6, 129.8, 129.5, 129.4, 128.9, 128.5, 126.3, 125.8, 118.1, 100.8, 80.6, 41.7, 21.2 ppm.

HRMS (m/z): calcd for C₂₀H₁₉N₂O [M+H]⁺ 303.1492, found: 303.1488.

4-(5-(1*H*-Imidazol-1-yl)-4-phenyl-2,3-dihydrofuran-2-yl)benzonitrile (3fa):

Yield = 91% (85.5 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.82–7.76 (m, 3H), 7.65 (d, *J* = 8.2 Hz, 2H), 7.38–7.32 (m, 2H), 7.31–7.27 (m, 1H), 7.24–7.18 (m, 2H), 7.12–7.07 (m, 2H), 5.95–5.88 (m, 1H), 3.76 (dd, *J* = 14.6, 10.4 Hz, 1H), 3.33 (dd, *J* = 14.6, 8.6 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 146.3, 140.3, 136.4, 132.8, 131.8, 130.0, 128.8, 127.3, 126.34, 126.27, 118.5, 118.0, 112.2, 100.7, 79.4, 41.8 ppm.

HRMS (m/z): calcd for C₂₀H₁₆N₃O [M+H]⁺ 314.1288, found: 314.1283.

1-(5-(4-Bromophenyl)-3-phenyl-4,5-dihydrofuran-2-yl)-1*H*-imidazole (3ga):

Yield = 88% (97.0 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1). ¹H NMR (400 MHz, CDCl₃): δ = 7.80 (s, 1H), 7.66–7.61 (m, 2H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.35 (t, *J* = 7.4 Hz, 2H), 7.31–7.27 (m, 1H), 7.20 (d, *J* = 12.0 Hz, 2H), 7.12–7.08 (m, 2H), 5.82 (t, *J* = 9.4 Hz, 1H), 3.69 (dd, *J* = 14.6, 10.2 Hz, 1H), 3.35 (dd, *J* = 14.6, 8.7 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 140.4, 140.1, 136.5, 132.1, 132.0, 129.9, 128.8, 127.5, 127.1, 126.3, 122.4, 118.0, 100.7, 80.0, 41.7 ppm.

HRMS (m/z): calcd for C₁₉H₁₆BrN₂O [M+H]⁺ 367.0441, found: 367.0439.

1-(5-(3-Bromophenyl)-3-phenyl-4,5-dihydrofuran-2-yl)-1*H*-imidazole (3ha):

Yield = 83% (91.4 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1).

¹**H NMR (400 MHz, CDCl₃):** $\delta = 7.74-7.71$ (m, 1H), 7.61 (t, J = 1.7 Hz, 1H), 7.50–7.48 (m, 1H), 7.39 (d, J = 7.8 Hz, 1H), 7.28 (dd, J = 8.5, 1.4 Hz, 2H), 7.25 (d, J = 1.4 Hz, 1H), 7.22–7.18 (m, 1H), 7.15–7.13 (m, 1H), 7.11 (t, J = 1.3 Hz, 1H), 7.03–7.00 (m, 2H), 5.77–5.71 (m, 1H), 3.60 (dd, J = 14.6, 10.2 Hz, 1H), 3.28 (dd, J = 14.6, 8.8 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 143.3, 140.4, 136.6, 136.5, 132.1, 131.5, 130.6, 130.0, 128.9, 127.1, 126.4, 124.4, 123.0, 118.1, 100.8, 79.7, 41.8 ppm.

HRMS (m/z): calcd for C₁₉H₁₆BrN₂O [M+H]⁺ 367.0441, found: 367.0438.

1-(5-(2-Chlorophenyl)-3-phenyl-4,5-dihydrofuran-2-yl)-1*H*-imidazole (3ia):

Yield = 89% (86.2 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.75 (s, 1H), 7.61–7.57 (m, 1H), 7.42 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.34 (dd, *J* = 7.4, 1.3 Hz, 1H), 7.32–7.26 (m, 2H), 7.25 (d, *J* = 1.4 Hz, 1H), 7.20–7.15 (m, 3H), 7.03–6.98 (m, 2H), 6.06 (dd, *J* = 10.3, 8.3 Hz, 1H), 3.80 (dd, *J* = 14.8, 10.4 Hz, 1H), 3.13 (dd, *J* = 14.8, 8.3 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): *δ* = 140.3, 139.1, 136.5, 132.1, 131.3, 130.0, 129.9, 129.3, 128.8, 127.3, 127.1, 126.4, 126.2, 118.1, 100.9, 77.7, 41.1 ppm.

HRMS (m/z): calcd for C₁₉H₁₆ClN₂O [M+H]⁺ 323.0946, found: 323.0941.

1-(3-Phenyl-5-(p-tolyl)-4,5-dihydrofuran-2-yl)-1H-imidazole (3ja):

Yield = 78% (70.8 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1). ¹H NMR (400 MHz, CDCl₃): δ = 7.72 (s, 1H), 7.38 (d, *J* = 8.1 Hz, 2H), 7.29–7.27 (m, 1H), 7.26– 7.17 (m, 4H), 7.12 (d, *J* = 6.0 Hz, 2H), 7.05–7.01 (m, 2H), 5.75 (t, *J* = 9.5 Hz, 1H), 3.58 (dd, *J* = 14.6, 10.1 Hz, 1H), 3.32 (dd, *J* = 14.6, 8.8 Hz, 1H), 2.39 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 140.6, 138.4, 138.0, 136.6, 132.5, 129.8, 129.6, 128.8, 126.9, 126.3, 125.9, 118.1, 100.8, 80.8, 41.7, 21.3 ppm.

HRMS (m/z): calcd for $C_{20}H_{19}N_2O [M+H]^+ 303.1492$, found: 303.1487.

1-(5-([1,1'-Biphenyl]-4-yl)-3-phenyl-4,5-dihydrofuran-2-yl)-1*H*-imidazole (3ka):

Yield = 94% (102.8 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1).

¹**H** NMR (400 MHz, CDCl₃): δ = 7.76 (s, 1H), 7.70–7.66 (m, 2H), 7.64–7.61 (m, 2H), 7.59–7.55 (m, 2H), 7.50–7.46 (m, 2H), 7.41–7.37 (m, 1H), 7.33–7.27 (m, 2H), 7.24–7.19 (m, 1H), 7.16–7.14 (m, 2H), 7.07–7.05 (m, 2H), 5.88–5.81 (m, 1H), 3.65 (dd, *J* = 14.6, 10.2 Hz, 1H), 3.38 (dd, *J* = 14.6, 8.8 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 141.5, 140.6, 140.5, 140.0, 136.5, 132.4, 129.9, 128.9, 128.8, 127.7, 127.6, 127.2, 127.0, 126.34, 126.33, 118.1, 100.8, 80.5, 41.7 ppm.

HRMS (m/z): calcd for $C_{25}H_{21}N_2O [M+H]^+$ 365.1648, found: 365.1643.

1-(5-(4-Methoxyphenyl)-3-phenyl-4,5-dihydrofuran-2-yl)-1*H*-imidazole (3la):

Yield = 58% (55.4 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1). ¹**H NMR (400 MHz, CDCl₃):** δ = 7.79 (s, 1H), 7.51 (d, *J* = 8.7 Hz, 2H), 7.36 (dd, *J* = 9.2, 5.7 Hz, 2H), 7.29 (d, *J* = 7.3 Hz, 1H), 7.19 (d, *J* = 6.3 Hz, 2H), 7.14–7.10 (m, 2H), 7.04 (d, *J* = 8.7 Hz, 2H), 5.82 (t, *J* = 9.5 Hz, 1H), 3.92 (s, 3H), 3.64 (dd, *J* = 14.6, 10.1 Hz, 1H), 3.42 (dd, *J* = 14.6, 8.9 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 159.9, 140.5, 136.6, 132.9, 132.5, 129.8, 128.8, 127.5, 126.9, 126.3, 118.1, 114.3, 100.8, 80.8, 55.5, 41.6 ppm.

HRMS (m/z): calcd for C₂₀H₁₉N₂O₂ [M+H]⁺ 319.1441, found: 319.1443.

1-(3-Phenyl-5-(4-(phenylethynyl)phenyl)-4,5-dihydrofuran-2-yl)-1*H*-imidazole (3ma):

Yield = 87% (101.4 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1). ¹**H NMR (400 MHz, CDCl₃):** δ = 7.70 (s, 1H), 7.58–7.51 (m, 4H), 7.41 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 2.0 Hz, 3H), 7.24 (dd, *J* = 7.2, 6.0 Hz, 2H), 7.19–7.14 (m, 1H), 7.12–7.08 (m, 2H), 7.02–6.98 (m, 2H), 5.75 (t, *J* = 9.5 Hz, 1H), 3.57 (dd, *J* = 14.6, 10.2 Hz, 1H), 3.26 (dd, *J* = 14.6, 8.8 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 141.0, 140.5, 136.5, 132.2, 132.1, 131.7, 129.9, 128.8, 128.51, 128.47, 127.0, 126.3, 125.9, 123.5, 123.1, 118.1, 100.8, 90.1, 89.0, 80.3, 41.7 ppm. HRMS (m/z): calcd for C₂₇H₂₁N₂O [M+H]⁺ 389.1648, found: 389.1651.

1-(5-(Naphthalen-2-yl)-3-phenyl-4,5-dihydrofuran-2-yl)-1*H*-imidazole (3na):

Yield = 82% (83.2 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.95–7.86 (m, 4H), 7.80 (s, 1H), 7.60 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.56–7.50 (m, 2H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.24–7.16 (m, 3H), 7.09–7.04 (m, 2H), 5.95 (t, *J* = 9.5 Hz, 1H), 3.66 (dd, *J* = 14.6, 10.2 Hz, 1H), 3.42 (dd, *J* = 14.6, 8.9 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 140.6, 138.2, 136.6, 133.24, 133.15, 132.3, 129.9, 129.0, 128.8, 128.1, 127.8, 126.9, 126.6, 126.5, 126.3, 124.9, 123.4, 118.1, 100.8, 80.9, 41.7 ppm. HRMS (m/z): calcd for C₂₃H₁₉N₂O [M+H]⁺ 339.1492, found: 339.1490.

1-(3-Phenyl-5-(thiophen-2-yl)-4,5-dihydrofuran-2-yl)-1*H*-imidazole (30a):

Yield = 84% (74.2 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1). ¹H NMR (400 MHz, CDCl₃): δ = 7.75 (s, 1H), 7.41 (dd, *J* = 5.1, 1.1 Hz, 1H), 7.37–7.32 (m, 2H), 7.30–7.27 (m, 1H), 7.24 (dd, *J* = 5.3, 2.3 Hz, 1H), 7.16 (d, *J* = 13.5 Hz, 2H), 7.12–7.08 (m, 3H), 6.04 (dd, *J* = 9.4, 8.0 Hz, 1H), 3.72 (dd, *J* = 14.7, 9.8 Hz, 1H), 3.47 (dd, *J* = 14.7, 7.7 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 143.6, 140.1, 136.5, 132.2, 129.9, 128.8, 127.02, 126.98, 126.3, 126.1, 125.8, 118.1, 101.0, 76.6, 41.8 ppm.

HRMS (m/z): calcd for C₁₇H₁₅N₂OS [M+H]⁺ 295.0900, found: 295.0905.

1-(5-Phenyl-3-(4-(thiophen-2-yl)phenyl)-4,5-dihydrofuran-2-yl)-1*H***-imidazole (3pa):** Yield = 84% (93.4 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1). ¹**H NMR (400 MHz, CDCl₃):** δ = 7.71 (s, 1H), 7.51–7.41 (m, 5H), 7.37 (dd, *J* = 8.1, 4.4 Hz, 4H), 7.11 (d, *J* = 16.6 Hz, 3H), 6.91–6.83 (m, 2H), 5.82–5.76 (m, 1H), 3.58 (dd, *J* = 14.5, 10.2 Hz, 1H), 3.30 (dd, *J* = 14.5, 8.8 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 141.1, 140.7, 136.5, 134.6, 134.4, 133.9, 133.7, 131.9, 131.4, 130.1, 129.0, 128.6, 127.8, 125.8, 120.6, 118.0, 99.9, 80.8, 41.5 ppm.

HRMS (m/z): calcd for C₂₃H₁₉N₂OS [M+H]⁺ 371.1213, found: 371.1210.

3-(5-(1*H*-Imidazol-1-yl)-4-phenyl-2,3-dihydrofuran-2-yl)pyridine (3qa):

Yield = 61% (52.9 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1).

¹**H NMR (400 MHz, CDCl₃):** $\delta = 8.79$ (d, J = 1.7 Hz, 1H), 8.73-8.69 (m, 1H), 7.90 (d, J = 7.9 Hz, 1H), 7.80 (s, 1H), 7.44 (dd, J = 7.8, 4.8 Hz, 1H), 7.35 (t, J = 7.5 Hz, 2H), 7.29 (d, J = 7.3 Hz, 1H), 7.20 (d, J = 11.9 Hz, 2H), 7.10 (d, J = 7.3 Hz, 2H), 5.89 (t, J = 9.4 Hz, 1H), 3.74 (dd, J = 14.6, 10.2 Hz, 1H), 3.38 (dd, J = 14.6, 8.6 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 150.0, 147.7, 140.4, 139.6, 136.5, 133.4, 131.9, 130.0, 128.9, 127.2, 126.4, 123.8, 118.0, 100.7, 78.4, 41.6 ppm.

HRMS (m/z): calcd for C₁₈H₁₆N₃O [M+H]⁺ 290.1288, found: 290.1283.

1-(5-Cyclohexyl-3-phenyl-4,5-dihydrofuran-2-yl)-1*H*-imidazole (3ra):

Yield = 42% (37.1 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.75 (s, 1H), 7.38–7.34 (m, 2H), 7.30–7.27 (m, 1H), 7.21 (s, 1H), 7.15 (s, 1H), 7.10–7.07 (m, 2H), 4.66–4.59 (m, 1H), 3.30–3.10 (m, 2H), 2.09 (d, *J* = 12.7 Hz, 1H), 1.95–1.79 (m, 5H), 1.45–1.34 (m, 4H), 1.27–1.16 (m, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 140.8, 136.5, 132.9, 129.7, 128.8, 126.6, 126.2, 118.1, 100.9, 84.1, 43.0, 36.7, 28.4, 28.1, 26.5, 25.9, 25.8 ppm.

HRMS (m/z): calcd for C₁₉H₂₃N₂O [M+H]⁺ 295.1805, found: 295.1804.

1-(3,5-Diphenyl-4,5-dihydrofuran-2-yl)-1*H*-benzo[*d*]imidazole (3ab):

Yield = 71% (72.1 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 2/1). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.06-8.05$ (m, 1H), 7.88–7.86 (m, 1H), 7.57–7.52 (m, 2H), 7.48– 7.43 (m, 2H), 7.41–7.38 (m, 1H), 7.37–7.32 (m, 2H), 7.30–7.27 (m, 1H), 7.22–7.14 (m, 3H), 6.99– 6.93 (m, 2H), 5.92–5.84 (m, 1H), 3.77–3.70 (m, 1H), 3.48–3.42 (m, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 143.5, 142.0, 141.1, 140.2, 132.32, 132.28, 132.2, 129.0, 128.8, 128.6, 126.9, 125.9, 124.3, 123.4, 120.6, 112.2, 103.5, 80.7, 41.2 ppm.

HRMS (m/z): calcd for C₂₃H₁₉N₂O [M+H]⁺ 339.1492, found: 339.1491.

1-(3,5-Diphenyl-4,5-dihydrofuran-2-yl)-5,6-dimethyl-1*H*-benzo[*d*]imidazole (3ac): Yield = 68% (74.8 mg). Yellow oil. Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1). ¹**H NMR (400 MHz, CDCl₃):** δ = 7.90 (s, 1H), 7.62 (s, 1H), 7.57–7.53 (m, 2H), 7.49–7.43 (m, 2H), 7.41–7.36 (m, 1H), 7.22–7.14 (m, 4H), 6.99–6.92 (m, 2H), 5.88 (t, *J* = 9.5 Hz, 1H), 3.72 (dd, *J* = 14.7, 10.2 Hz, 1H), 3.44 (dd, *J* = 14.7, 8.8 Hz, 1H), 2.38 (s, 3H), 2.31 (s, 3H) ppm. ¹³**C NMR (100 MHz, CDCl₃):** δ = 142.0, 141.2, 140.5, 134.3, 133.5, 132.32, 132.30, 130.9, 128.9, 128.7, 128.5, 126.7, 125.92, 125.87, 120.5, 112.2, 103.4, 80.6, 41.1, 20.6, 20.4 ppm. **HRMS (m/z):** calcd for C₂₅H₂₃N₂O [M+H]⁺ 367.1805, found: 367.1808.

1-(3,5-Diphenyl-4,5-dihydrofuran-2-yl)-5,6-dimethoxy-1*H***-benzo**[*d*]**imidazole (3ad):** Yield = 59% (70.5 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.93 (s, 1H), 7.56–7.52 (m, 2H), 7.47–7.41 (m, 2H), 7.40–7.35 (m, 1H), 7.28 (s, 1H), 7.21–7.13 (m, 3H), 6.96–6.92 (m, 2H), 6.57 (s, 1H), 5.86 (dd, *J* = 10.1, 8.4 Hz, 1H), 3.91 (s, 3H), 3.75 (dd, *J* = 14.6, 10.2 Hz, 1H), 3.61 (s, 3H), 3.44 (dd, *J* = 14.7, 8.3 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 147.8, 147.2, 141.1, 140.22, 140.18, 136.7, 132.4, 129.0, 128.7, 128.6, 126.8, 126.1, 125.9, 125.6, 102.3, 102.0, 94.9, 80.5, 56.3, 56.0, 41.0 ppm. HRMS (m/z): calcd for C₂₅H₂₃N₂O₃ [M+H]⁺ 399.1703, found: 399.1701.

5,6-Dibromo-1-(3,5-diphenyl-4,5-dihydrofuran-2-yl)-1*H*-benzo[*d*]imidazole (3ae):

Yield = 56% (83.4 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.12 (d, *J* = 1.8 Hz, 1H), 7.99 (d, *J* = 1.1 Hz, 1H), 7.66–7.62 (m, 1H), 7.53 (d, *J* = 7.9 Hz, 2H), 7.47 (t, *J* = 7.4 Hz, 2H), 7.42 (d, *J* = 7.2 Hz, 1H), 7.25–7.19 (m, 3H), 6.93 (d, *J* = 7.5 Hz, 2H), 5.90 (t, *J* = 9.6 Hz, 1H), 3.70 (dd, *J* = 14.8, 10.2 Hz, 1H), 3.48 (dd, *J* = 14.8, 9.1 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 143.6, 140.6, 139.0, 134.1, 132.2, 131.6, 129.0, 128.9, 128.7, 127.8, 127.3, 125.9 (d, *J* = 3.0 Hz), 124.9, 119.8, 118.9, 116.8, 104.2, 81.1, 41.0 ppm. HRMS (m/z): calcd for C₂₃H₁₇Br₂N₂O [M+H]⁺ 494.9702, found: 494.9701.

5,6-Dichloro-1-(3,5-diphenyl-4,5-dihydrofuran-2-yl)-1*H***-benzo**[*d*]**imidazole (3af):** Yield = 40% (48.9 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.00$ (s, 1H), 7.91 (s, 1H), 7.53–7.50 (m, 2H), 7.47–7.41 (m, 4H), 7.25–7.21 (m, 2H), 7.19 (dd, J = 3.4, 2.0 Hz, 1H), 6.91 (dd, J = 8.1, 1.3 Hz, 2H), 5.88 (t, J = 9.6 Hz, 1H), 3.69 (dd, J = 14.8, 10.2 Hz, 1H), 3.46 (dd, J = 14.8, 9.1 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 143.7, 142.7, 140.6, 139.1, 131.7, 131.4, 129.1, 129.0, 128.8, 128.5, 127.7, 127.3, 125.98, 125.96, 121.8, 113.7, 104.2, 81.1, 41.1 ppm.

HRMS (m/z): calcd for C₂₃H₁₇Cl₂N₂O [M+H]⁺ 407.0712, found: 407.0713.

1-(3,5-Diphenyl-4,5-dihydrofuran-2-yl)-1*H*-pyrazole (3ag):

Yield = 51% (44.1 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.71 (d, *J* = 1.5 Hz, 1H), 7.56 (d, *J* = 2.5 Hz, 1H), 7.46 (d, *J* = 7.3 Hz, 2H), 7.35 (t, *J* = 7.4 Hz, 2H), 7.28 (dd, *J* = 5.9, 3.7 Hz, 1H), 7.17 (t, *J* = 7.4 Hz, 2H), 7.09 (dd, *J* = 8.3, 6.4 Hz, 1H), 6.91 (s, 2H), 6.35–6.33 (m, 1H), 5.79–5.72 (m, 1H), 3.57 (dd, *J* = 14.6, 10.2 Hz, 1H), 3.28 (dd, *J* = 14.6, 8.8 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 143.2, 142.0, 141.3, 132.6, 130.8, 128.8, 128.4, 128.3, 126.6, 126.4, 125.9, 107.3, 102.1, 80.5, 41.6 ppm.

1-(3,5-Diphenyl-4,5-dihydrofuran-2-yl)-4-methyl-1*H*-pyrazole (3ah):

Yield = 55% (49.9 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1). ¹H NMR (400 MHz, CDCl₃): δ = 7.51 (s, 1H), 7.47–7.42 (m, 2H), 7.37–7.31 (m, 3H), 7.29–7.27 (m, 1H), 7.19–7.15 (m, 2H), 7.11–7.06 (m, 1H), 6.95 (dd, *J* = 8.3, 1.2 Hz, 2H), 5.75–5.68 (m, 1H), 3.55 (dd, *J* = 14.5, 10.2 Hz, 1H), 3.26 (dd, *J* = 14.5, 8.7 Hz, 1H), 2.04 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃): *δ* = 143.3, 142.8, 141.4, 132.8, 128.84, 128.75, 128.3, 128.2, 126.39, 126.35, 125.9, 117.8, 101.2, 80.3, 41.6, 8.9 ppm.

HRMS (m/z): calcd for C₂₀H₁₉N₂O [M+H]⁺ 303.1492, found: 303.1489.

4-Bromo-1-(3,5-diphenyl-4,5-dihydrofuran-2-yl)-1*H*-pyrazole (3ai):

Yield = 48% (52.9 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1). ¹H NMR (400 MHz, CDCl₃): δ = 7.61 (dd, J = 12.2, 1.2 Hz, 2H), 7.45–7.40 (m, 2H), 7.34 (t, J = 6.6 Hz, 2H), 7.31–7.27 (m, 1H), 7.22–7.17 (m, 2H), 7.14–7.10 (m, 1H), 6.99–6.93 (m, 2H), 5.73 (t, J = 9.5 Hz, 1H), 3.56 (dd, J = 14.7, 10.2 Hz, 1H), 3.28 (dd, J = 14.7, 8.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 150.7, 142.5, 141.0, 132.1, 130.5, 128.9, 128.5, 128.4, 126.9, 126.5, 125.9, 102.5, 95.4, 80.7, 41.6 ppm.

HRMS (m/z): calcd for C₁₉H₁₆BrN₂O [M+H]⁺ 367.0441, found: 367.0440.

9,9'-(3,5-Diphenylfuran-2,4-diyl)bis(*N*,*N*-dimethyl-9*H*-purin-6-amine) (3aj): Yield = 30% (48.8 mg). Yellow oil. Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 1/1). ¹H NMR (400 MHz, CDCl₃): δ = 8.45 (s, 1H), 8.40 (s, 1H), 7.74 (s, 1H), 7.66 (s, 1H), 7.23 (s, 5H), 7.16–7.10 (m, 1H), 7.07 (t, *J* = 7.5 Hz, 2H), 6.99 (d, *J* = 7.8 Hz, 2H), 3.51 (brs, 12H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 155.2, 155.1, 153.9, 153.7, 152.8, 152.0, 149.0, 138.5, 138.3, 134.9, 134.1, 129.4, 128.9, 128.6, 128.1, 127.4, 127.1, 125.3, 122.8, 119.8, 119.3, 115.5, 39.2–38.0 (m, 2C) ppm.

HRMS (m/z): calcd for C₃₀H₂₇N₁₀O [M+H]⁺ 543.2364, found: 543.2359.

4-((4-(5-(1*H*-imidazol-1-yl)-4-phenyl-2,3-

(1*R*,2*S*,5*R*)-2-Isopropyl-5-methylcyclohexyl dihydrofuran-2-yl)phenyl)ethynyl)benzoate (3sa):

Yield = 84% (143.8 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.96 (d, *J* = 8.3 Hz, 2H), 7.64 (d, *J* = 8.8 Hz, 1H), 7.52 (dd, *J* = 8.2, 3.7 Hz, 4H), 7.38 (d, *J* = 8.1 Hz, 2H), 7.18 (dd, *J* = 9.4, 5.3 Hz, 2H), 7.11 (t, *J* = 6.8 Hz, 1H), 7.07–7.03 (m, 2H), 6.97–6.92 (m, 2H), 5.71 (t, *J* = 9.5 Hz, 1H), 4.90–4.84 (m, 1H), 3.57–3.48 (m, 1H), 3.26–3.12 (m, 1H), 2.05 (d, *J* = 12.0 Hz, 1H), 1.92–1.85 (m, 1H), 1.65 (d, *J* = 11.7 Hz, 2H), 1.55–1.42 (m, 2H), 1.13–0.98 (m, 2H), 0.85 (d, *J* = 6.6 Hz, 7H), 0.72 (d, *J* = 6.9 Hz, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 165.6, 141.6, 140.5, 136.5, 132.3, 131.6, 130.4, 129.9, 129.6, 128.8, 127.6, 127.1, 126.3, 125.8, 122.9, 118.1, 100.8, 91.7, 89.4, 80.2, 75.2, 47.3, 41.8, 41.0, 34.3, 31.5, 26.6, 23.7, 22.1, 20.9, 16.6 ppm.

HRMS (m/z): calcd for C₃₈H₃₉N₂O₃ [M+H]⁺ 571.2955, found: 571.2952.

1-(5-(4-(9,9-Dimethyl-9*H*-fluoren-2-yl)phenyl)-3-phenyl-4,5-dihydrofuran-2-yl)-1*H*-imidazole (3ta):

Yield = 81% (116.8 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1). ¹H NMR (400 MHz, CDCl₃): δ = 7.84–7.79 (m, 2H), 7.79–7.73 (m, 3H), 7.70 (d, *J* = 1.3 Hz, 1H), 7.63–7.58 (m, 3H), 7.51–7.48 (m, 1H), 7.41–7.36 (m, 2H), 7.34–7.29 (m, 2H), 7.25–7.21 (m, 1H), 7.20–7.17 (m, 2H), 7.10–7.06 (m, 2H), 5.85 (t, *J* = 9.4 Hz, 1H), 3.66 (dd, *J* = 14.6, 10.2 Hz, 1H), 3.40 (dd, *J* = 14.6, 8.7 Hz, 1H), 1.58 (s, 6H) ppm.

¹³C NMR (100 MHz, CDCl₃): *δ* = 154.4, 153.9, 141.9, 140.6, 139.8, 139.7, 138.81, 138.77, 136.6, 134.3, 134.2, 132.4, 129.9, 128.8, 127.7, 127.5, 127.1, 126.9, 126.34, 126.25, 122.7, 121.4, 120.4, 120.2, 118.1, 100.8, 80.5, 47.0, 41.7, 27.3 ppm.

HRMS (m/z): calcd for C₃₄H₂₉N₂O [M+H]⁺ 481.2274, found: 481.2273.

1-(3,5-Diphenylfuran-2-yl)-1*H*-imidazole (4):

Yield = 62% (53.3 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.72 (s, 1H), 7.70 (t, *J* = 1.6 Hz, 1H), 7.69–7.68 (m, 1H), 7.43–7.40 (m, 2H), 7.35–7.28 (m, 4H), 7.21 (d, *J* = 1.7 Hz, 2H), 7.19 (t, *J* = 1.5 Hz, 1H), 7.17 (d, *J* = 1.3 Hz, 1H), 6.95 (s, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): *δ* = 151.0, 137.7, 137.5, 130.4, 130.2, 129.5, 129.1, 129.0, 128.4, 128.0, 127.0, 123.9, 119.8, 118.4, 106.6 ppm.

HRMS (m/z): calcd for C₁₉H₁₅N₂O [M+H]⁺ 287.1179, found: 287.1179.

1-(3,5-Diphenylfuran-2-yl)-1*H*-benzo[*d*]imidazole (5):

Yield = 65% (65.6 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1). ¹H NMR (400 MHz, CDCl₃): δ = 7.97 (s, 1H), 7.89 (d, *J* = 7.6 Hz, 1H), 7.72–7.68 (m, 2H), 7.40 (t, *J* = 7.7 Hz, 2H), 7.35–7.28 (m, 4H), 7.24–7.20 (m, 3H), 7.17–7.14 (m, 2H), 7.06 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 151.9, 143.2, 142.8, 136.3, 133.9, 130.2, 129.5, 129.1, 129.0, 128.5, 128.0, 126.7, 124.5, 123.9, 123.5, 120.6, 120.4, 111.2, 106.3 ppm. HRMS (m/z): calcd for C₂₃H₁₇N₂O [M+H]⁺ 337.1335, found: 337.1330.

3,5-Diphenyl-3-(phenylthio)dihydrofuran-2(3*H*)-one (6):

Yield = 31% (32.2 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.61–7.52 (m, 3H), 7.39–7.34 (m, 6H), 7.30–7.28 (m, 3H), 7.23 (dd, *J* = 7.2, 1.7 Hz, 3H), 5.73 (dd, *J* = 10.5, 5.6 Hz, 1H), 3.14 (dd, *J* = 13.8, 5.6 Hz, 1H), 2.77 (dd, *J* = 13.8, 10.5 Hz, 1H) ppm.

¹³**C NMR (100 MHz, CDCl₃):** *δ* = 172.8, 144.6, 138.3 (d, *J* = 6.4 Hz), 137.0, 130.2, 129.5, 128.9, 128.8, 128.3, 128.0, 127.6, 125.8, 122.1, 77.8, 57.3, 46.3 ppm.

HRMS (m/z): calcd for C₂₂H₁₉O₂S [M+H]⁺ 347.1100, found: 347.1102.

3-Bromo-3,5-diphenyldihydrofuran-2(3*H*)-one (7):

Yield = 37% (35.2 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1).

¹**H** NMR (400 MHz, CDCl₃): δ = 7.86–7.83 (m, 2H), 7.45–7.37 (m, 8H), 5.80 (dd, *J* = 10.1, 4.7 Hz, 1H), 3.35 (dd, *J* = 14.5, 4.7 Hz, 1H), 2.80 (dd, *J* = 14.5, 10.1 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 172.0, 137.3, 136.9, 129.5, 129.2, 129.1, 128.9, 127.8, 126.0, 78.9, 57.2, 49.0 ppm.

HRMS (m/z): calcd for C₁₆H₁₄BrO₂ [M+H]⁺ 317.0172, found: 317.0176.

2,4-Bis((4-methoxyphenyl)thio)-3,5-diphenylfuran (10b):

Yield = 42% (62.6 mg). Colorless oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 20/1). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.02$ (d, J = 7.2 Hz, 2H), 7.30 (t, J = 7.4 Hz, 2H), 7.23 (d, J = 9.5Hz, 6H), 7.17–7.14 (m, 2H), 6.87 (d, J = 8.8 Hz, 2H), 6.72 (d, J = 8.8 Hz, 2H), 6.59 (d, J = 8.8 Hz, 2H), 3.67 (s, 3H), 3.62 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 159.3$, 158.2, 141.8, 137.2, 131.5, 131.3, 130.2, 129.8, 129.2, 129.0, 128.6, 127.99-127.94 (3C), 127.5, 126.7, 125.8, 115.0, 114.8, 112.2, 55.5, 55.4 ppm. HRMS (m/z): calcd for C₃₀H₂₅O₃S₂ [M+H]⁺ 497.1240, found: 497.1242.

4,4-Difluoro-1,3-diphenylbut-3-en-1-ol (3aa-I):

Yield = 36% (28.1 mg). Colorless oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 100/1). ¹H NMR (400 MHz, CDCl₃): δ = 7.43–7.38 (m, 2H), 7.37–7.33 (m, 5H), 7.32–7.28 (m, 3H), 4.62 (dd, *J* = 8.1, 5.7 Hz, 1H), 2.99–2.88 (m, 1H), 2.81–2.75 (m, 1H), 2.13 (brs, 1H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -89.9 – -90.0 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 163.5–149.5 (m, 1C), 143.6, 133.3, 128.7, 128.6, 128.5, 128.0, 127.6, 126.0, 89.6 (dd, *J* = 19.3, 16.9 Hz), 72.3 (t, *J* = 2.9 Hz), 37.7 ppm.

HRMS (m/z): calcd for $C_{16}H_{15}F_2O [M+H]^+ 261.1085$, found: 261.1080.

4-(1*H*-Benzo[*d*]imidazol-1-yl)-4-fluoro-1,3-diphenylbut-3-en-1-ol (3aa-II):

Yield = 87% (93.5 mg, Z/E= 1/11). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 2/1).

¹**H NMR (400 MHz, CDCl₃) of** *E*-isomer: δ = 7.60–7.56 (m, 1H), 7.34–7.31 (m, 5H), 7.29–7.27 (m, 1H), 7.25–7.21 (m, 2H), 7.11–7.07 (m, 4H), 6.90–6.87 (m, 2H), 4.66 (t, *J* = 7.1 Hz, 1H), 3.74 (brs, 1H), 3.25–3.10 (m, 2H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -92.68 (s, 1F) ppm; *Z*-isomer: δ = -91.31 (s, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: *δ* = 144.0, 143.7, 142.3, 141.4, 134.6 (d, *J* = 3.8 Hz), 133.1 (d, *J* = 3.9 Hz), 128.8, 128.4, 128.1, 127.9, 127.74, 127.71, 126.3, 120.2, 115.7, 115.4, 111.0, 72.0 (d, *J* = 2.9 Hz), 39.6 ppm.

HRMS (m/z): calcd for C₂₃H₂₀FN₂O [M+H]⁺ 359.1554, found: 359.1553.

References

[1] Chu, X.-Q.; Sun, L.-W.; Chen, Y.-L.; Chen, J.-W.; Yu, Z.-L.; Ma, M.; Shen, Z.-L. HP(O)Ph₂/H₂O-Promoted Hydrodefluorination of Trifluoromethyl Alkenes, *Green Chem.* **2022**, *24*, 2777–2782.

[2] Hu, Y.-F.; Feng, M.-H.; Zhang, P.-Y.; Xu, H.; Ma, M.; Shen, Z.-L.; Chu, X.-Q. Combining Hydrodefluorination and Defluorophosphorylation for Chemo- and Stereoselective Synthesis of *gem*-Fluorophosphine Alkenes, *Org. Lett.* **2023**, *25*, 6368–6373.

¹H, ¹⁹F, and ¹³C NMR spectra of products

¹H NMR spectra of the product **3aa** (400 MHz, CDCl₃)

¹³C NMR spectra of the product **3aa** (100 MHz, CDCl₃)

¹³C NMR spectra of the product **3ca** (100 MHz, CDCl₃)

¹H NMR spectra of the product **3da** (400 MHz, CDCl₃)

¹H NMR spectra of the product **3ea** (400 MHz, CDCl₃)

S28

¹H NMR spectra of the product **3fa** (400 MHz, CDCl₃)

¹H NMR spectra of the product **3ga** (400 MHz, CDCl₃)

¹³C NMR spectra of the product **3ha** (100 MHz, CDCl₃) $\int_{0}^{0} \int_{0}^{0} \int_{0}$

¹H NMR spectra of the product **3ja** (400 MHz, CDCl₃)

¹H NMR spectra of the product **3ka** (400 MHz, CDCl₃)

¹H NMR spectra of the product **3la** (400 MHz, CDCl₃)

¹H NMR spectra of the product **3ma** (400 MHz, CDCl₃)

S37

¹H NMR spectra of the product **3oa** (400 MHz, CDCl₃)

¹H NMR spectra of the product **3pa** (400 MHz, CDCl₃)

¹H NMR spectra of the product **3qa** (400 MHz, CDCl₃)

¹H NMR spectra of the product **3ra** (400 MHz, CDCl₃)

¹³C NMR spectra of the product **3ra** (100 MHz, CDCl₃)

¹H NMR spectra of the product **3ab** (400 MHz, CDCl₃)

¹H NMR spectra of the product **3ad** (400 MHz, CDCl₃)

¹H NMR spectra of the product **3af** (400 MHz, CDCl₃)

¹H NMR spectra of the product **3ag** (400 MHz, CDCl₃)

¹H NMR spectra of the product **3ah** (400 MHz, CDCl₃)

 ¹H NMR spectra of the product **3aj** (400 MHz, CDCl₃)

¹³C NMR spectra of the product **3aj** (100 MHz, CDCl₃)

¹H NMR spectra of the product **3sa** (400 MHz, CDCl₃)

 $\begin{array}{c} 7.97\\ 7.95\\ 7.56\\ 7.56\\ 7.56\\ 7.55\\ 7.55\\ 7.57\\ 7.55\\ 7.57\\ 7.57\\ 7.57\\ 7.57\\ 7.57\\ 7.57\\ 7.57\\ 7.19\\ 7.57\\ 7.19\\ 7.19\\ 7.19\\ 7.19\\ 7.57\\ 7.19$

¹³C NMR spectra of the product **3sa** (100 MHz, CDCl₃)

¹H NMR spectra of the product **3ta** (400 MHz, CDCl₃)

^{220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2}

¹³C NMR spectra of the product **4** (100 MHz, CDCl₃)

¹³C NMR spectra of the product 6 (100 MHz, CDCl₃)

¹³C NMR spectra of the product 7 (100 MHz, CDCl₃)

¹⁹F NMR spectra of the product **3aa-I** (376 MHz, CDCl₃)

¹³C NMR spectra of the product **3aa-I** (100 MHz, CDCl₃)

¹H NMR spectra of the product **3aa-II** (400 MHz, CDCl₃)

¹⁹F NMR spectra of the product **3aa-II** (376 MHz, CDCl₃)

^{20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2}