Photoinduced Catalyst-free Difluoromethylation-Cyclization

of Indole Derivatives via Electron Donor-acceptor Complexes

Under Visible Light

Hong-Xian Jin,^[a] Yuping Zhu,^[a] Jie Zhang,^a Yun-Peng Zhang,^a Ling Zhu,^[a] Lipeng Long,^[a] Zhengwang Chen^[a], Haiqing Luo^{*a} and Daohong Yu^{*[a]}

^{*a*} Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China

Supporting Information

Table of content

Table of contents	51
General information	52
Figure S1. Reaction setup with cooling by running water	53
Figure S2. The distance from the light source to the irradiation vessel	53
Figure S3. Wavelength of peak intensity and broadband source	54
Figure S4. The EDA complex detected by ¹⁹ F NMR SpetrumS	54
Figure S5. The UV-Vis Spectrum	35
Fugure S6. The radical trap experiments with TEMPOS	35
Scheme S1. Unscessful examples	56
Synthesis of 5-((difluoromethyl) sulfonyl)-1-Phenyl-1 <i>H</i> -tetrazole (DFSPT)	56
General procedure for difluoromethylation-cyclization of indoles	57
References	23
NMR spectra	24

General information

All chemicals, unless otherwise noted, were purchased from commercial sources and used without further purification. All solvents for reactions and measurements were purified by standard methods. ¹H and proton-decoupled ¹³C NMR spectra were recorded on Brucker 400 M or 500 M spectrometers. ¹⁹F NMR spectra were recorded on Brucker 500 M spectrometers. ¹H NMR and ¹³C NMR chemical shifts (δ) were determined relative to TMS at δ 0.0 ppm. Coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. All reactions were monitored by TLC or ¹H NMR analysis. Flash column chromatography was carried out using 300–400 mesh silica-gel at medium pressure.

High resolution mass spectra were recorded using a Q Exactive mass spectrometer (Thermo Fisher Scientific, USA. Gas chromatography-mass spectrometry (GC-MS) analyses were performed with an Agilent Technologies 7890A Network GC System equipped with an Agilent Technologies 5975C Network Mass Selective Detector (MSD).

All the *N*-alkene tethered indoles (1a-1z) were synthesized according to the previous literatures.¹ difluoromethyl (hetero)aryl sulfones (2a-2f) were synthesized according to the previous procedure.²

Unless stated otherwise, visible light irradiation was performed using 24 W 450 nm LEDs (3 W x 8) under argon atmosphere. All the reaction vessels used are the ordinary borosilicate glass test tubes. The illumination instruments were purchased from Hefei Hanhai Star Technology Co., Ltd. The photoreactor model is JH-3B14P45-T2A-M455, light 24 W (3 W x 8). In all the reactions, the filters were not used.

Figure S1. Reaction setup with cooling by running water.

Figure S2. the distance from the light source to the irradiation vessel

The distance is about 3 mm from light source

Firgue S3. Wavelength of peak intensity and broadband source

Mechanistic experiment

Figure S4. The EDA complex detected by ¹⁹F NMR Spetrum

^{-122.8 -122.9 -123.0 -123.1 -123.2 -123.3 -123.4 -123.5 -123.6 -123.7 -123.8 -123.9 -124.0 -124.1 -124.2 -124.3} fl (ppm)

Figure S6. The radical trap experiments with TEMPO.

Scheme S1: unsuccessful examples

a) **1a** (1.5 mmol, 3.0 equiv), **2** (0.5 mmol, 1.0 equiv) and Na₂CO₃ (0.5 mmol, 1.0 equiv) dissolved in acetone (5 mL) was irradiated under 450 nm LEDs for 24 h; b) 1 equiv 1-methyl-1H-indole was added.

Synthesis of 5-((difluoromethyl) sulfonyl)-1-Phenyl-1H-tetrazole (DFSPT):

To a mixture of KOH (144.6 g, 2.58 mol, 10 equiv) dissolved in H₂O (75mL), DME (75 mL), and MeCN (75 mL) in a 500-mL three neck round-bottom flask, which was cooled down to 0 °C, 1-Phenyl-*1H*-tetrazole-5-thiol (46 g, 0.258 mol) was added dropwise. CF₂HCl gas was bubbled into the stirred mixture from a balloon, CF₂HCl gas

was bubbled until TLC indicated the 1-methyl-*1H*-tetrazole-5-thiol was consumed completely. The reaction was quenched by adding excess amount of H₂O, followed by extraction with ethyl acetate, washed with brine. The organic phase was dried over anhydrous NaSO₄. After the solution was filtered and the solvent was evaporated under vacuum, the residue was subjected to next step without further purification.

To a 500-mL beaker containing 5-(difluoromethylthio)-1-methyl-*1H*-tetrazole, were added CH₃CN (85 mL), CCl₄ (85 mL), H₂O (150 mL), NaIO₄ (111.5 g, 0.516 mol). The mixture was stirred with a mechanical stirrer. Ruthenium trichloride hydrate (0.256 g) dissolved in water (20 mL) was added dropwise for 10 minutes. The resulting mixture was stirred at room temperature for 1 h. TLC indicated the substrate was consumed. Thereafter, saturated NaHCO₃ was added until the PH = 8, and the resulting mixture was extracted with DCM (100 mL x 3). The combined organic phase was washed with brine, and then dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (PE:EA = 5:1) on silica gel to afford the product *DFSPT* as colorless solid (47.0 g, 75%).

General procedure for difluoromethylation-cyclization of *N*-alkene tethered indoles

To a 15 mL test tubes charged with a stirred bar, 5-((difluoromethyl)sulfonyl)-1phenyl-1*H*-tetrazole (**DFSPT**) (0.2 mmol, 1.5 equiv), Na₂CO₃ (0.40 mmol, 1.0 eq), MeCN (2.0 mL) were added. Then *N*-alkene tethered indole (0.60 mmol, 3.0 equiv) was added into reaction mixture. The test tube was sealed with a rubber stopper, purged with the argon balloon for 10 minutes. The reaction mixture was stirred and irradiated by using 3 W blue LEDs at room temperature for 24 h. After completion of the reaction, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to afford the product **3**.

9-(2, 2-Difluoroethyl)-2-methoxy-6, 7, 8, 9-tetrahydropyrido [1, 2-*a*] indole (3a) MeO

White solid (42.3 mg, 80%), petroleum ether/ethyl acetate = 50:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, *J* = 8.7 Hz, 1H), 7.08 (d, *J* = 2.4 Hz, 1H), 6.88 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.25 (s, 1H), 6.08 (tt, *J* = 56.5, 4.7 Hz, 1H), 4.17 – 4.11 (m, 1H), 3.96 – 3.90 (m, 1H), 3.89 (s, 3H), 3.30 (tt, *J* = 9.1, 5.1

Hz, 1H), 2.51 (dtt, J = 20.0, 15.1, 5.2 Hz, 1H), 2.27 – 2.00 (m, 4H), 1.72 – 1.60 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 154.4, 139.6, 131.8, 128.3, 117.8 (t, J = 239.2 Hz), 110.8, 109.5, 102.1, 97.2, 55.97, 42.3, 39.1 (t, J = 20.7 Hz), 29.9 (t, J = 5.8 Hz), 27.2, 21.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.20 (d, J = 283.7 Hz), -115.69 (d, J = 283.6 Hz) ppm. HRMS (ESI) Calcd for [C₁₅H₁₇F₂NO – H]⁺: 266.1351, found: 266.1365.

2-(Benzyloxy)-9-(2,2-difluoroethyl)-6,7,8,9-tetrahydropyrido[1,2-*a*]indole (3b)

Orange-red liquid (54.4 mg, 80 %), petroleum ether/ethyl acetate = 20:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.54 (m, 2H), 7.47 – 7.43 (m, 2H), 7.40 – 7.36 (m, 1H), 7.22 (d, *J* = 8.8 Hz, 1H), 7.19 (d, *J* = 2.3 Hz, 1H), 6.99 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.26 (s, 1H), 6.09 (tt, *J* = 56.5, 4.7 Hz, 1H), 5.17 (s, 2H), 4.14 (dt, *J* = 11.1, 4.7 Hz, 1H), 3.93 (ddd, *J* = 11.6, 9.9, 4.8 Hz, 1H), 3.30 (tt, *J* = 9.0, 5.0 Hz, 1H), 2.53 (dtt, *J* = 20.0, 15.1, 5.1 Hz, 1H), 2.28 – 2.15 (m, 3H), 2.11 – 2.02 (m, 1H), 1.70 – 1.61 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 153.7, 139.7, 137.9, 132.0, 128.5, 128.3, 127.7, 127.5, 116.7 (t, *J* = 239.2 Hz), 111.7, 109.5, 103.9, 97.3, 71.0, 42.2, 39.1 (t, *J* = 20.8 Hz), 30.0 (t, *J* = 5.7 Hz), 27.2, 21.9; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.17 (d, *J* = 283.7 Hz), -115.69 (d, *J* = 283.7 Hz) ppm. HRMS (ESI) Calcd for [C₂₁H₂₁F₂NO – H]⁺: 342.1664, found: 342.1671.

9-(2,2-difluoroethyl)-2-ethoxy-6,7,8,9-tetrahydropyrido[1,2-a]indole (3c)

White solid (46.0 mg, 82%), petroleum ether/ethyl acetate = 100:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, *J* = 8.8 Hz, 1H), 7.09 (d, *J* = 2.4 Hz, 1H), 6.89 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.24 (s, 1H), 6.08 (tt, *J* = 56.5, 4.7 Hz, 1H), 4.17 – 4.13 (m, 1H), 4.12 (q, *J* = 7.0 Hz, 2H), 3.96 – 3.89 (m, 1H), 3.29 (tt, *J* = 9.0, 5.1 Hz, 1H), 2.52 (dtt, *J* = 19.9, 15.0, 5.2 Hz, 1H), 2.26 – 2.00 (m, 4H), 1.70 – 1.64 (m, 1H), 1.49 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.65, 139.58, 131.81, 128.29, 116.70 (t, *J* = 239.2 Hz), 111.55, 109.51, 103.20, 97.19, 64.27, 42.23,

39.09 (t, J = 20.7 Hz), 29.94 (t, J = 5.8 Hz), 27.19, 21.85, 15.12; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.18 (d, J = 283.6 Hz), -115.69 (d, J = 283.6 Hz) ppm. HRMS (ESI) Calcd for [C₁₆H₁₉F₂NO + H]⁺: 280.1508, found: 280.1517.

9-(2,2-difluoroethyl)-2-iodo-6,7,8,9-tetrahydropyrido[1,2-a]indole (3d)

Purple solid (43.8 mg, 61 %), petroleum ether/ethyl acetate = 100:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 1.5 Hz, 1H), 7.43 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.06 (d, *J* = 8.5 Hz, 1H), 6.22 (s, 1H), 6.06 (tt, *J* = 56.4, 4.7 Hz, 1H), 4.17 – 4.11 (m, 1H), 3.91 (ddd, *J* = 11.7, 10.0, 4.8 Hz, 1H), 3.29 (tt, *J* = 8.9, 4.9 Hz, 1H), 2.50 (dtt, *J* = 19.8, 15.5, 5.1 Hz, 1H), 2.29 – 1.99 (m, 4H), 1.70 – 1.63 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 139.99, 135.50, 130.41, 129.13, 128.65, 116.47 (d, *J* = 239.4 Hz), 110.87, 96.85, 83.43, 42.22, 38.99 (t, *J* = 20.9 Hz), 29.84 (t, *J* = 5.7 Hz), 27.03, 21.73; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.25 (d, *J* = 284.1 Hz), -115.74 (d, *J* = 284.0 Hz) ppm. HRMS (ESI) Calcd for [C₁₄H₁₄F₂NI + H]⁺: 362.0212, found: 362.0216.

2-Bromo-9-(2,2-difluoroethyl)-6,7,8,9-tetrahydropyrido[1,2-a]indole (3e)

White solid (41.5 mg, 66 %), petroleum ether/ethyl acetate = 100:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 1.8 Hz, 1H), 7.27 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.15 (d, *J* = 8.6 Hz, 1H), 6.24 (s, 1H), 6.06 (tt, *J* = 56.4, 4.7 Hz, 1H), 4.16 (dt, *J* = 10.4, 4.8 Hz, 1H), 3.96 – 3.88 (m, 1H), 3.29 (tt, *J* = 9.0, 4.9 Hz, 1H), 2.51 (dtt, *J* = 20.0, 15.4, 5.1 Hz, 1H), 2.29 – 2.16 (m, 2H), 2.13 – 1.99 (m, 1H), 1.73 – 1.60 (m, 1H), 0.96 – 0.84 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 140.3, 135.0, 129.5, 123.6, 122.3, 116.4 (t, *J* = 239.5 Hz), 113.1, 110.3, 97.1, 42.2, 38.9 (t, *J* = 20.8 Hz), 30.5 – 29.5 (m), 27.0, 21.7; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.25 (d, *J* = 284.1 Hz), -115.73 (d, *J* = 284.0 Hz). HRMS (ESI) Calcd for [C₁₄H₁₄BrF₂N + H]⁺: 314.0350, found:314.0351.

2-Chloro-9-(2,2-difluoroethyl)-6,7,8,9-tetrahydropyrido[1,2-a]indole (3f)

Yellow solid (41.6 mg, 77 %), petroleum ether/ethyl acetate = 20:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 1.8 Hz, 1H), 7.19 (d, *J* = 8.6 Hz, 1H), 7.14 (dd, *J* = 8.6, 1.9 Hz, 1H), 6.25 (s, 1H), 6.07 (tt, *J* = 56.4, 4.7 Hz, 1H), 4.16 – 4.11 (m, 1H), 3.91 (ddd, *J* = 11.7, 10.0, 4.9 Hz, 1H), 3.29 (tt, *J* = 9.0, 4.9 Hz, 1H), 2.54 – 2.43 (m, 1H), 2.30 – 2.12 (m, 3H), 2.11 – 1.99 (m, 1H), 1.72 – 1.60 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 140.6, 134.9, 129.0, 125.5, 121.0, 119.3, 116.5 (t, *J* = 239.3 Hz), 109.8, 97.2, 42.3, 39.0 (t, *J* = 20.8 Hz), 29.9 (t, *J* = 5.7 Hz), 27.0, 21.7; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.23 (d, *J* = 284.2 Hz), -115.70 (d, *J* = 284.1 Hz) ppm. HRMS (ESI) Calcd for [C₁₄H₁₄ClF₂N – H]⁺: 270.0855, found: 270.0869.

N-(9-(2,2-difluoroethyl)-6,7,8,9-tetrahydropyrido[1,2-a]indol-2-yl)acetamide (3g)

Brown solid (41.3 mg, 70 %), petroleum ether/ethyl acetate = 20:1 as an eluent for column chromatography.¹H NMR (400 MHz, CDCl₃) δ 7.73 (s, 1H), 7.45 (s, 1H), 7.20 (dd, *J* = 8.3, 2.2 Hz, 2H), 6.16 (s, 1H), 6.04 (dt, *J* = 56.3, 4.5 Hz, 1H), 4.15 (ddd, *J* = 9.9, 8.5, 3.9 Hz, 1H), 4.01 (dt, *J* = 10.0, 7.5 Hz, 1H), 2.96 – 2.82 (m, 1H), 2.47 – 2.30 (m, 2H), 2.22 – 2.07 (m, 1H), 2.19 (s, 3H), 1.82 (br, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 168.49, 146.87, 132.80, 130.19, 130.16, 116.43 (t, *J* = 239.5 Hz), 115.29, 112.94, 109.51, 92.89, 43.13, 38.45 (t, *J* = 20.7 Hz), 35.07, 31.86 (t, *J* = 5.3 Hz), 31.85, 24.47; ¹⁹F NMR (377 MHz, CDCl₃) δ -115.00 (d, *J* = 284.2 Hz), -116.77 (d, *J* = 284.3 Hz) ppm. HRMS (ESI) Calcd for [C₁₆H₁₈F₂N₂O + H]⁺:293.1460, found:293.1465.

9-(2,2-Difluoroethyl)-6,7,8,9-tetrahydropyrido[1,2-*a*]indole(3h)

Yellow liquid (37.0 mg, 79%), petroleum ether/ethyl acetate = 20:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 7.7 Hz, 1H), 7.35

(d, J = 8.0 Hz, 1H), 7.26 (td, J = 7.0, 1.1 Hz, 1H), 7.19 (td, J = 7.5, 1.1 Hz, 1H), 6.36 (s, 1H), 6.11 (tt, J = 56.4, 4.7 Hz, 1H), 4.24 – 4.19 (m, 1H), 3.98 (ddd, J = 11.7, 9.9, 4.9 Hz, 1H), 3.34 (tt, J = 9.0, 5.1 Hz, 1H), 2.56 (dtt, J = 20.1, 15.2, 5.1 Hz, 1H), 2.33 – 2.16 (m, 3H), 2.16 – 2.04 (m, 1H), 1.75 – 1.65 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 139.1, 136.5, 128.0, 120.9, 119.98, 119.95, 116.7 (t, J = 239.2 Hz), 108.9, 97.6, 42.2, 39.2 (t, J = 20.9 Hz), 30.0 (t, J = 5.7 Hz), 27.3, 21.9; ¹⁹F NMR (377 MHz, CDCl₃) δ - 114.10 (d, J = 283.7 Hz), -115.61 (d, J = 283.7 Hz) ppm. HRMS (ESI) Calcd for [C₁₄H₁₅F₂N – H]⁺: 236.1245, found:236.1257.

Yellow solid (46.3 mg, 64 %), petroleum ether/ethyl acetate = 100:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.66 (d, *J* = 8.2 Hz, 1H), 7.29 (d, *J* = 8.2 Hz, 1H), 6.31 (s, 1H), 6.06 (tt, *J* = 56.5, 4.7 Hz, 1H), 4.21 – 4.16 (m, 1H), 3.97 – 3.90 (m, 1H), 3.29 (tt, *J* = 9.1, 4.9 Hz, 1H), 2.53 (dtt, *J* = 19.8, 15.1, 5.1 Hz, 1H), 2.24 – 2.00 (m, 4H), 1.70 – 1.61 (m, 1H), 1.41 (s, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 139.19, 138.41, 127.76, 127.64, 127.15, 116.63 (t, *J* = 239.2 Hz), 108.33, 98.06, 83.44, 42.24, 39.03 (t, *J* = 20.7 Hz), 29.98 (t, *J* = 5.8 Hz), 27.20, 24.96, 24.91, 21.86; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.13 (d, *J* = 283.8 Hz), -115.64 (d, *J* = 283.7Hz) ppm.HRMS (ESI) Calcd for [C₂₀H₂₆BF₂NO₂+H]⁺:362.2097, found:362.2111. **9-(2.2-difluoroethyl)-6,7,8,9-tetrahydropyrido[1,2-a]indole-2-carbaldehyde (3j)**

Yellow solid (21.6 mg, 41 %), petroleum ether/ethyl acetate = 5:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 10.03 (s, 1H), 8.09 (d, *J* = 1.2 Hz, 1H), 7.76 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.37 (d, *J* = 8.5 Hz, 1H), 6.46 (s, 1H), 6.08 (tt, *J* = 56.3, 4.6 Hz, 1H), 4.25 (ddd, *J* = 11.6, 7.2, 2.7 Hz, 1H), 4.00 (ddd, *J* = 11.9, 10.2,

4.8 Hz, 1H), 3.33 (tt, J = 8.8, 4.8 Hz, 1H), 2.54 (dddt, J = 18.5, 16.0, 14.7, 5.0 Hz, 1H), 2.31 – 2.17 (m, 3H), 2.15 – 2.02 (m, 1H), 1.74 – 1.64 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 192.68, 141.26, 139.72, 129.74, 127.68, 125.09, 121.54, 116.34 (t, J = 239.4Hz), 109.42, 99.51, 42.54, 38.98 (t, J = 20.8 Hz), 29.96 (t, J = 5.6 Hz), 26.96, 21.72; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.31 (d, J = 284.3 Hz), -115.74 (d, J = 284.3 Hz) ppm. HRMS (ESI) Calcd for [C₁₅H₁₅F₂NO + H]⁺:293.1460, found:293.1465.

9-(2,2-Difluoroethyl)-6,7,8,9-tetrahydropyrido[1,2-*a*]indole-1-carbonitrile (3k)

Reddish-brown solid (37.9 mg, 73 %), petroleum ether/ethyl acetate = 20:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.2 Hz, 1H), 7.44 (dd, *J* = 7.4, 0.9 Hz, 1H), 7.19 (dd, *J* = 8.2, 7.4 Hz, 1H), 6.50 (s, 1H), 6.08 (tt, *J* = 56.3, 4.6 Hz, 1H), 4.25 – 4.20 (m, 1H), 4.02 – 3.95 (m, 1H), 3.33 (tt, *J* = 9.0, 4.8 Hz, 1H), 2.61 – 2.46 (m, 1H), 2.32 – 2.02 (m, 4H), 1.74 – 1.67 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 142.5, 136.1, 129.4, 125.0, 120.4, 118.9, 116.3 (t, *J* = 239.5 Hz), 113.55, 101.8, 96.7, 42.4, 38.9 (t, *J* = 20.9 Hz), 30.0 (t, *J* = 5.5 Hz), 26.9, 21.6; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.30 (d, *J* = 284.2 Hz), -115.83 (d, *J* = 284.4 Hz) ppm. HRMS (ESI) Calcd for [C₁₅H₁₄F₂N – H]⁺: 261.1197, found: 261.1211.

1-chloro-9-(2,2-Difluoroethyl)-6,7,8,9-tetrahydropyrido[1,2-a]indole (31)

Yellow-brown solid (47.9 mg, 89 %), petroleum ether/ethyl acetate = 20:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.10 (m, 3H), 6.42 (s, 1H), 6.09 (tt, *J* = 56.4, 4.6 Hz, 1H), 4.19 – 4.14 (m, 1H), 3.96 – 3.90 (m, 1H), 3.30 (tt, *J* = 9.1, 4.8 Hz, 1H), 2.63 – 2.48 (m, 1H), 2.27 – 2.14 (m, 3H), 2.11– 2.00 (m, 1H), 1.71 – 1.62 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 140.0, 137.2, 126.7, 125.2, 121.5, 119.6, 116.5 (t, *J* = 239.5 Hz), 107.6, 96.2, 42.5, 39.0 (t, *J* = 21.0 Hz), 30.0 (t, *J* = 5.5

Hz), 27.1, 21.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.16 (d, J = 284.2 Hz), -115.69 (d, J = 284.1 Hz) ppm. HRMS (ESI) Calcd for [C₁₄H₁₄ClF₂N - H]⁺: 270.0855, found: 270.0867.

9-(2,2-difluoroethyl)-3-methoxy-6,7,8,9-tetrahydropyrido[1,2-a]indole (3m)

White solid (44.6 mg, 84 %), petroleum ether/ethyl acetate = 50:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.5 Hz, 1H), 6.83 (dd, *J* = 8.5, 2.2 Hz, 1H), 6.79 (d, *J* = 2.0 Hz, 1H), 6.24 (s, 1H), 6.08 (tt, *J* = 56.5, 4.7 Hz, 1H), 4.12 (dq, *J* = 10.9, 6.2, 5.4 Hz, 1H), 3.91 (s, 3H), 3.93 – 3.86 (m, 1H) 3.28 (tt, *J* = 9.0, 5.1 Hz, 1H), 2.51 (dtt, *J* = 19.9, 14.9, 5.1 Hz, 1H), 2.29 – 2.01 (m, 4H), 1.70 – 1.60 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 155.79, 137.99, 137.10, 122.14, 120.52, 116.72 (t, *J* = 239.1 Hz), 109.47, 97.26, 92.95, 55.83, 42.25, 39.07 (t, *J* = 20.8 Hz), 30.01 (t, *J* = 5.8 Hz), 27.34, 21.93; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.11 (d, *J* = 283.6 Hz), -115.65 (d, *J* = 283.6 Hz) ppm. HRMS (ESI) Calcd for [C₁₅H₁₇F₂NO+H]⁺: 266.1351, found:266.1351.

9-(2,2-Difluoroethyl)-3-methyl-6,7,8,9-tetrahydropyrido[1,2-*a*]indole (3n)

Yellow oily liquid (38.1 mg, 76 %), petroleum ether/ethyl acetate = 50:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.0 Hz, 1H), 7.15 (s, 1H), 7.04 (dd, *J* = 7.9, 1.4 Hz, 1H), 6.30 (s, 1H), 6.11 (tt, *J* = 56.5, 4.7 Hz, 1H), 4.21 – 4.15 (m, 1H), 3.98 – 3.91 (m, 1H), 3.32 (tt, *J* = 9.1, 5.1 Hz, 1H), 2.58 (s, 1H), 2.61 – 2.47 (m, 1H), 2.31 – 2.15 (m, 3H), 2.13 – 2.03 (m, 1H), 1.73 – 1.63 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 138.4, 136.9, 130.7, 125.8, 121.6, 119.6, 116.8 (t, *J* = 239.1 Hz), 109.0, 97.3, 42.1, 39.2 (t, *J* = 20.5 Hz), 30.0 (t, *J* = 5.8 Hz), 27.4, 21.95, 21.89; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.08 (d, *J* = 283.6 Hz), -115.61 (d, *J* = 283.6 Hz) ppm. HRMS (ESI) Calcd for [C₁₅H₁₇F₂N – H]⁺: 250.1401, found: 250.1414.

3-Bromo-9-(2,2-difluoroethyl)-6,7,8,9-tetrahydropyrido[1,2-*a*]indole (30)

Brown solid (50.2 mg, 80 %), petroleum ether/ethyl acetate = 100:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.43 (m, 2H), 7.25 (dd, J = 8.4, 1.7 Hz, 1H), 6.29 (s, 1H), 6.08 (tt, J = 56.5, 4.7 Hz, 1H), 4.12 – 4.07 (m, 1H), 3.91 – 3.84 (m, 1H), 3.27 (tt, J = 8.9, 4.8 Hz, 1H), 2.60 – 2.44 (m, 1H), 2.27– 2.19 (m, 2H), 2.16 – 1.95 (m, 2H), 1.70 – 1.60 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 140.0, 137.3, 126.8, 123.0, 121.2, 116.6 (t, J = 239.2 Hz), 114.3, 112.0, 97.8, 42.2, 39.0 (t, J = 21.1 Hz), 30.0 (t, J = 5.7 Hz), 27.1, 21.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.22 (d, J = 284.0 Hz), -115.67 (d, J = 284.0 Hz) ppm. HRMS (ESI) Calcd for [C₁₄H₁₄BrF₂N – H]⁺: 314.0350, found: 314.0353.

9-(2,2-Difluoroethyl)-3-fluoro-6,7,8,9-tetrahydropyrido[1,2-a]indole (3p)

Yellow-green solid (30.7 mg, 61 %), petroleum ether/ethyl acetate = 100:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, *J* = 8.6, 5.3 Hz, 1H), 6.98 (dd, *J* = 9.8, 2.4 Hz, 1H), 6.92 (ddd, *J* = 9.7, 8.5, 2.3 Hz, 1H), 6.30 (s, 1H), 6.09 (tt, *J* = 56.5, 4.7 Hz, 1H), 4.13 – 4.06 (m, 1H), 3.88 (ddd, *J* = 11.6, 10.0, 4.9 Hz, 1H), 3.29 (tt, *J* = 9.1, 5.0 Hz, 1H), 2.52 (dtt, *J* = 19.9, 15.4, 5.1 Hz, 1H), 2.30 – 2.10 (m, 3H), 2.12 – 2.02 (m, 1H), 1.72 – 1.62 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.3 (d, *J* = 236.7 Hz), 139.6 (d, *J* = 3.7 Hz), 136.4 (d, *J* = 11.8 Hz), 124.3, 120.5 (d, *J* = 10.0 Hz), 116.6 (t, *J* = 239.1 Hz), 108.3 (d, *J* = 24.3 Hz), 97.5, 95.4 (d, *J* = 26.1 Hz), 42.3, 39.1 (t, *J* = 21.0 Hz), 30.0 (t, *J* = 5.8 Hz), 27.2, 21.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.22 (d, *J* = 284.0 Hz), -115.71 (d, *J* = 283.9 Hz), -121.74 (s) ppm. HRMS (ESI) Calcd for [C₁₄H₁₄F₃N – H]⁺: 254.1151, found: 254.1164.

9-(2,2-Difluoroethyl)-4-ethyl-6,7,8,9-tetrahydropyrido[1,2-a]indole (3q)

Bright yellow solid (32.0 mg, 61 %), petroleum ether/ethyl acetate = 100:1 as an eluent

for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 7.7 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 7.01 (d, J = 7.1 Hz, 1H), 6.36 (s, 1H), 6.09 (tt, J = 56.6, 4.7 Hz, 1H), 4.57 (dt, J = 10.7, 4.9 Hz, 1H), 4.31 (ddd, J = 11.4, 9.7, 4.8 Hz, 1H), 3.34 (tt, J =9.4, 5.4 Hz, 1H), 3.24 – 3.07 (m, 2H), 2.56 (dtt, J = 20.0, 14.9, 5.2 Hz, 1H), 2.33 – 2.16 (m, 3H), 2.16 – 2.02 (m, 1H), 1.66 (qd, J = 12.6, 11.0, 2.0 Hz,1H), 1.42 (t, J = 7.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.4, 135.1, 129.0, 127.7, 122.5, 120.0, 118.0, 116.7 (t, J = 239.1 Hz), 98.9, 45.5, 39.3 (t, J = 20.7 Hz), 30.4 (t, J = 5.8 Hz), 26.8, 26.2, 22.8, 16.7; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.20 (d, J = 283.7 Hz), -115.70 (d, J =283.8 Hz).ppm. HRMS (ESI) Calcd for [C₁₆H₁₉F₂N – H]⁺: 264.1558, found: 264.1572.

4-(Benzyloxy)-9-(2,2-difluoroethyl)-6,7,8,9-tetrahydropyrido[1,2-a]indole(3r)

Orange solid (54.5 mg, 80 %), petroleum ether/ethyl acetate = 50:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.55 (m, 2H), 7.52 – 7.48 (m, 2H), 7.46 – 7.42 (m, 1H), 7.25 (d, *J* = 7.9 Hz, 1H), 7.06 (t, *J* = 7.8 Hz, 1H), 6.75 (d, *J* = 7.6 Hz, 1H), 6.33 (s, 1H), 6.10 (tt, *J* = 56.5, 4.7 Hz, 1H), 5.25 (s, 2H), 4.77 (dt, *J* = 12.7, 5.2 Hz, 1H), 4.39 (ddd, *J* = 12.9, 9.7, 4.6 Hz, 1H), 3.33 (tt, *J* = 9.6, 5.1 Hz, 1H), 2.55 (dtt, *J* = 19.9, 14.9, 5.2 Hz, 1H), 2.27 – 2.12 (m, 3H), 2.06 – 1.96 (m, 1H), 1.68 – 1.61 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 146.9, 139.4, 137.4, 130.3, 128.6, 127.9, 127.5, 120.2, 116.8 (t, *J* = 239.2 Hz), 113.3, 103.5, 98.4, 70.5, 46.0, 39.4 (t, *J* = 20.7 Hz), 30.2 (t, *J* = 5.8 Hz), 26.9, 22.5; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.26 (d, *J* = 283.6 Hz), -115.69 (d, *J* = 283.7 Hz) ppm. HRMS (ESI) Calcd for [C₂₁H₂₁F₂NO – H]⁺: 342.1664, found: 342.1685.

9-(2,2-Difluoroethyl)-4-methyl-6,7,8,9-tetrahydropyrido[1,2-a]indole (3s)

Yellow solid (40.7 mg, 82 %), petroleum ether/ethyl acetate = 50:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 7.8 Hz, 1H), 7.06

(t, J = 7.5 Hz, 1H), 6.95 (d, J = 7.1 Hz, 1H), 6.35 (d, J = 1.2 Hz, 1H), 6.11 (tt, J = 56.5, 4.7 Hz, 1H), 4.71 – 4.65 (m, 1H), 4.38 (ddd, J = 11.6, 9.7, 4.9 Hz, 1H), 3.34 (tt, J = 9.2, 5.2 Hz, 1H), 2.84 (s, 3H), 2.57 (dtt, J = 20.0, 14.9, 5.2 Hz, 1H), 2.29 – 2.15 (m, 3H), 2.13 – 2.02 (m, 1H), 1.71 – 1.60 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 139.3, 135.8, 128.8, 124.2, 121.1, 120.0, 118.1, 116.8 (t, J = 239.0 Hz), 98.6, 45.8, 39.3 (t, J = 20.7 Hz), 30.4 (t, J = 5.8 Hz), 26.8, 22.7, 20.6; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.20 (d, J = 283.8 Hz), -115.68 (d, J = 283.6 Hz).ppm. HRMS (ESI) Calcd for [C₁₅H₁₇F₂N – H]⁺: 250.1401, found: 250.1414.

4-chloro-9-(2,2-Difluoroethyl)-6,7,8,9-tetrahydropyrido[1,2-a]indole (3t)

Yellow-green solid (35.1 mg, 65 %), petroleum ether/ethyl acetate = 50:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 7.8 Hz, 1H), 7.14 (d, *J* = 7.7 Hz, 1H), 7.01 (t, *J* = 7.7 Hz, 1H), 6.34 (d, *J* = 1.3 Hz, 1H), 6.07 (tt, *J* = 56.4, 4.7 Hz, 1H), 4.90 (dt, *J* = 12.3, 5.0 Hz, 1H), 4.46 (ddd, *J* = 12.3, 9.8, 4.9 Hz, 1H), 3.30 (tt, *J* = 9.3, 5.1 Hz, 1H), 2.56 – 2.45 (m, 1H), 2.27 – 2.09 (m, 3H), 2.08 – 1.98 (m, 1H), 1.67 – 1.58 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 140.7, 132.2, 131.0, 122.9, 120.5, 118.7, 116.8, 116.5 (t, *J* = 239.3 Hz), 99.0, 45.6, 39.3 (t, *J* = 20.8 Hz), 30.3 (t, *J* = 5.6 Hz), 26.5, 22.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.31 (d, *J* = 283.7 Hz), -115.65 (d, *J* = 283.8 Hz) ppm. HRMS (ESI) Calcd for [C₁₄H₁₄ClF₂N – H]⁺: 270.0855, found: 270.0869.

4-Bromo-9-(2,2-difluoroethyl)-6,7,8,9-tetrahydropyrido[1,2-a]indole (3u)

Bright yellow solid (43.3 mg, 69 %), petroleum ether/ethyl acetate = 50:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, *J* = 7.8, 0.8 Hz, 1H), 7.34 (dd, *J* = 7.6, 0.8 Hz, 1H), 6.94 (t, *J* = 7.7 Hz, 1H), 6.32 (d, *J* = 1.3 Hz, 1H), 6.06 (tt, *J* = 56.5, 4.7 Hz, 1H), 4.96 (dt, *J* = 12.1, 4.9 Hz, 1H), 4.48 (ddd, *J* = 12.3, 9.8,

5.0 Hz, 1H), 3.30 (tt, J = 9.3, 5.3 Hz, 1H), 2.51 (dtt, J = 20.2, 15.2, 5.2 Hz, 1H), 2.27 – 2.11 (m, 3H), 2.07 – 1.96 (m, 1H), 1.67 – 1.58 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 140.8, 133.3, 131.2, 126.4, 120.9, 119.3, 116.5 (t, J = 239.3 Hz), 103.6, 99.0, 45.7, 39.3 (t, J = 20.8 Hz), 30.4 (t, J = 5.7 Hz), 26.5, 22.3; ¹⁹F NMR (377 MHz, CDCl₃) δ – 114.42 (d, J = 284.0 Hz), -115.78 (d, J = 284.1 Hz) ppm. HRMS (ESI) Calcd for [C₁₄H₁₄BrF₂N – H]⁺: 314.0350, found: 314.0354.

9-(2,2-Difluoroethyl)-6,7,8,9-tetrahydropyrido[1,2-*a*]indole-4-carbonitrile (3v)

Bright yellow solid (27.1 mg, 52 %), petroleum ether/ethyl acetate = 50:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.49 (dd, *J* = 7.5, 1.1 Hz, 1H), 7.13 (t, *J* = 7.7 Hz, 1H), 6.40 (d, *J* = 1.3 Hz, 1H), 6.07 (tt, *J* = 56.3, 4.6 Hz, 1H), 4.77 (dt, *J* = 11.9, 4.9 Hz, 1H), 4.37 (ddd, *J* = 12.1, 9.9, 5.1 Hz, 1H), 3.32 (tt, *J* = 9.3, 4.9 Hz, 1H), 2.59 – 2.44 (m, 1H), 2.33 – 2.21 (m, 2H), 2.20 – 2.03 (m, 2H), 1.71 – 1.62 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 141.3, 134.8, 129.4, 127.8, 125.3, 119.6, 119.1, 116.3 (t, *J* = 239.5 Hz), 99.0, 93.5, 43.9, 39.1 (t, *J* = 21.0 Hz), 30.1 (t, *J* = 5.7 Hz), 26.5, 21.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.47 (d, *J* = 284.4 Hz), -115.75 (d, *J* = 284.4 Hz) ppm. HRMS (ESI) Calcd for [C1₅H14F2N2 – H]⁺: 261.1197, found: 261.1215.

1-(9-(2,2-Difluoroethyl)-6,7,8,9-tetrahydropyrido[1,2-*a*]indol-10-yl)ethan-1-one (3w)

Light yellow solid (42.5 mg, 77 %), petroleum ether/ethyl acetate = 20:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.91 (m, 1H), 7.39 – 7.29 (m, 3H), 6.32 (dddd, *J* = 58.0, 56.1, 6.5, 3.0 Hz, 1H), 4.33 (dd, *J* = 12.2, 5.4 Hz, 1H), 4.05 – 4.02 (m, 1H), 3.93 – 3.86 (m, 1H), 2.73 (s, 3H), 2.39 – 2.08 (m, 5H), 1.95 – 1.85 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 193.8, 148.8, 136.1, 126.2, 122.6, 122.1,

120.4, 118.2 (t, J = 239.7 Hz), 112.0, 109.8, 42.5, 37.9 (t, J = 19.9 Hz), 31.6, 28.5 (dd, J = 9.2, 2.1 Hz), 24.0 (d, J = 2.6 Hz), 17.5; ¹⁹F NMR (377 MHz, CDCl₃) δ -110.31 (d, J = 282.5 Hz), -117.26 (d, J = 282.4 Hz) ppm. HRMS (ESI) Calcd for [C₁₆H₁₇F₂NO – H]⁺: 278.1351, found: 278.1363.

9-(2,2-Difluoroethyl)-10-methyl-6,7,8,9-tetrahydropyrido[1,2-a]indole (3x)

Yellow solid (22.2 mg, 45 %), petroleum ether/ethyl acetate = 50:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 7.7 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.27 (t, *J* = 7.4 Hz, 1H), 7.21 (t, *J* = 7.4 Hz, 1H), 5.98 (tt, *J* = 56.8, 3.8 Hz, 1H), 4.31 (dd, *J* = 12.0, 4.8 Hz, 1H), 3.82 (td, *J* = 11.4, 4.4 Hz, 1H), 3.57 – 3.56 (m, 1H), 2.36 (s, 3H), 2.31 – 2.20 (m, 3H), 2.11 – 2.02 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 136.4, 134.6, 128.8, 121.0. 119.4, 118.1, 116.8 (t, *J* = 239.2 Hz), 108.8, 105.7, 42.4, 38.9 (t, *J* = 20.3 Hz), 26.5 (t, *J* = 5.6 Hz), 26.0, 18.8, 8.5; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.99 (d, *J* = 282.8 Hz), -116.08 (d, *J* = 282.5 Hz) ppm. HRMS (ESI) Calcd for [C₁₅H₁₇F₂N – H]⁺: 250.1401, found: 250.1412.

Methyl-9-(2,2-difluoroethyl)-6,7,8,9-tetrahydropyrido[1,2-a]indole-10-

carboxylate (3y)

Red-brown solid (18.5 mg, 63 %), petroleum ether/ethyl acetate = 50:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, *J* = 7.6, 1.0 Hz, 1H), 7.47 (dt, *J* = 8.2, 0.9 Hz, 1H), 7.22 (t, *J* = 7.8 Hz, 1H), 6.95 (t, *J* = 1.0 Hz, 1H), 6.09 (tt, *J* = 56.4, 4.7 Hz, 1H), 4.22 – 4.17 (m, 1H), 4.01 (s, 3H), 3.99 – 3.92 (m, 1H), 3.32 (tt, *J* = 9.3, 5.0 Hz, 1H), 2.62 – 2.52 (m, 1H), 2.27 – 2.13 (m, 3H), 2.11 – 2.03 (m, 1H), 1.70 – 1.62 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 168.1, 141.7, 137.3, 127. 7, 123.4, 120.5, 120.0, 116.5 (t, *J* = 239.3 Hz), 113.6, 99.0, 51.7, 42.3, 39.0 (t, *J* = 20.8 Hz), 30.0 (t, *J* = 5.7 Hz), 27.1, 21.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.15 (d, *J* = 283.8 Hz), -

115.76 (d, J = 283.9 Hz) ppm. HRMS (ESI) Calcd for $[C_{16}H_{17}F_2NO_2 - H]^+: 294.1300$,

found: 294.1317.

Methyl 2-(9-(2,2-difluoroethyl)-6,7,8,9-tetrahydropyrido[1,2-a]indol-10-yl)acetate (3z)

Yellow oily liquid (22.0 mg, 36 %), petroleum ether/ethyl acetate = 10:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (dm, J = 7.5 Hz, 1H), 7.31 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.24 (td, *J* = 8.1, 1.3 Hz, 1H), 7.18 (td, *J* = 7.4, 1.2 Hz, 1H), 6.01 (tt, *J* = 56.4, 4.5 Hz, 1H), 4.31 (ddd, *J* = 12.0, 6.3, 1.8 Hz, 1H), 3.83 (td, *J* = 11.6, 5.0 Hz, 1H), 3.77 (s, 2H), 3.73 (s, 3H), 3.62 – 3.57 (m, 1H), 2.43 – 2.32 (m, 1H), 2.30 – 2.18(m, 2H), 2.13 – 2.08 (m, 2H), 2.02 – 1.95 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 172.40, 136.37, 136.25, 127.82, 121.28, 119.99, 118.39, 116.69 (t, *J* = 239.4 Hz), 109.03, 102.93, 52.04, 42.31, 38.64 (t, *J* = 20.4 Hz), 30.04, 26.09 (t, *J* = 5.5 Hz), 25.42, 18.30; ¹⁹F NMR (377 MHz, CDCl₃) δ -115.13 (d, *J* = 283.2 Hz), -116.44 (d, *J* = 283.2 Hz) ppm. HRMS (ESI) Calcd for [C₁₇H₁₉F₂NO₂ + H]⁺: 308.1457, found:308.1457.

1-(2,2-difluoroethyl)-2,3-dihydro-1H-pyrrolo[1,2-a]indole (3aa)

White solid (38.1 mg, 76 %), petroleum ether/ethyl acetate = 100:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.8 Hz, 1H), 7.29 – 7.27 (m, 1H), 7.18 (td, *J* = 8.1, 1.2 Hz, 1H), 7.11 (td, *J* = 7.5, 1.1 Hz, 1H), 6.23 (s, 1H), 6.07 (tdd, *J* = 56.4, 5.0, 4.0 Hz, 1H), 4.20 (ddd, *J* = 10.0, 8.4, 4.0 Hz, 1H), 4.06 (dt, *J* = 10.0, 7.5 Hz, 1H), 3.58 (p, *J* = 7.5 Hz, 1H), 2.90 (dtd, *J* = 11.9, 7.7, 4.0 Hz, 1H), 2.50 – 2.33 (m, 2H), 2.25 – 2.12 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 145.86, 132.74, 132.59, 120.83, 120.68, 119.44, 116.47 (t, *J* = 239.5 Hz), 109.50, 92.64, 43.00, 38.54 (t, *J* = 20.8 Hz), 35.12, 31.77 (t, *J* = 5.3 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -114.97

(dd, J = 284.3, 25.9 Hz), -116.77 (dd, J = 284.3, 25.9 Hz) ppm. HRMS (ESI) Calcd for $[C_{13}H_{13}F_{2}N + H]^{+}$: 222.1089, found: 222.1091.

1-(1,1-difluoro-2-methylpropan-2-yl)-2,3-dihydro-1H-pyrrolo[1,2-a]indole (3ab)

Colorless liquid (23.9 mg, 48%), petroleum ether/ethyl acetate = 100:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 7.7 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.22 (ddd, *J* = 8.1, 7.0, 1.3 Hz, 1H), 7.15 (td, *J* = 7.5, 1.1 Hz, 1H), 6.39 (s, 1H), 6.05 (td, *J* = 55.5, 2.9 Hz, 1H), 4.35 (ddd, *J* = 11.9, 5.5, 4.0 Hz, 1H), 3.97 (ddd, *J* = 11.9, 9.8, 5.5 Hz, 1H), 2.40 – 2.16 (m, 3H), 1.62 (s, 3H), 1.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.86, 135.81, 128.23, 120.78, 120.02, 119.97, 116.90 (t, *J* = 240.8 Hz), 108.96, 96.29, 46.59 (t, *J* = 19.0 Hz), 41.04, 33.84 (dd, *J* = 5.6, 2.1 Hz), 30.34 (d, *J* = 1.5 Hz), 26.64 (d, *J* = 1.7 Hz), 18.57 (dd, *J* = 6.5, 4.9 Hz) ppm. HRMS (ESI) Calcd for [C₁₅H₁₈F₂N + H]⁺: 250.1420, found: 250.1415.

9-(2,2-difluoroethyl)-3-(trifluoromethyl)-6,7,8,9-tetrahydropyrido[1,2-a]indole (3ae)

Yellow oily liquid (37.3 mg, 61 %), petroleum ether/ethyl acetate = 100:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.3 Hz, 1H), 7.59 (s, 1H), 7.38 (d, *J* = 8.2 Hz, 1H), 6.38 (s, 1H), 6.08 (tt, *J* = 56.4, 4.6 Hz, 1H), 4.24 (dt, *J* = 10.5, 4.7 Hz, 1H), 4.01 (td, *J* = 11.7, 10.8, 4.8 Hz, 1H), 3.34 (tt, *J* = 9.0, 5.0 Hz, 1H), 2.54 (dtt, *J* = 20.3, 15.6, 5.1 Hz, 1H), 2.33 – 2.03 (m, 4H), 1.75 – 1.65 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 142.06, 135.32, 130.27, 125.41 (q, *J* = 271.3 Hz), 122.84 (q, *J* = 31.7 Hz), 120.14, 116.60 (q, *J* = 3.6 Hz), 116.40 (t, *J* = 239.4 Hz), 106.42 (q, *J* = 4.4 Hz), 97.96, 42.32, 38.99 (t, *J* = 21.0 Hz), 30.01 (d, *J* = 5.4 Hz), 27.00, 21.67; ¹⁹F NMR (377 MHz, CDCl₃) δ -60.25, -114.34 (d, *J* = 284.3 Hz), -115.76 (d, *J* = 284.0 Hz) ppm. HRMS (ESI) Calcd for [C₁₅H₁₅F₅N + H]⁺: 304.1119, found: 304.1110. **6-(2,2-Difluoroethyl)-6,7,8,9-tetrahydropyrido[3,2-***b***]indolizine(3af)**

Yellow-green liquid (18.6 mg, 39 %), petroleum ether/ethyl acetate = 5:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (dd, *J* = 4.8, 1.6 Hz, 1H), 7.83 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.06 (dd, *J* = 7.8, 4.8 Hz, 1H), 6.25 (d, *J* = 1.4 Hz, 1H), 6.06 (tt, *J* = 56.4, 4.7 Hz, 1H), 4.45 – 4.41 (m, 1H), 4.05 (ddd, *J* = 12.5, 10.1, 4.7 Hz, 1H), 3.30 (tt, *J* = 9.1, 4.9 Hz, 1H), 2.57 – 2.44 (m, 1H), 2.28 – 2.11 (m, 3H), 2.09 – 1.98 (m, 1H), 1.71 – 1.61 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 147.7, 141.8, 139.9, 127.7, 120.7, 116.4 (t, *J* = 239.3 Hz), 116.1, 95.7, 41.1, 39.0 (t, *J* = 21.0 Hz), 30.0 (t, *J* = 5.7 Hz), 27.2, 21.6; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.40 (d, *J* = 284.2 Hz), -115.71 (d, *J* = 284.2 Hz) ppm. HRMS (ESI) Calcd for [C₁₃H₁₄F₂N₂ – H]⁺: 237.1197, found: 237.1210.

4-(2,2-Difluoroethyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine(3ag)

White solid (36.5 mg, 77 %), petroleum ether/ethyl acetate = 10:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.71 (m, 1H), 7.34 – 7.25 (m, 3H), 6.41 (tdd, *J* = 56.8, 5.4, 3.9 Hz, 1H), 4.21 (ddd, *J* = 12.0, 5.4, 3.4 Hz, 1H), 3.99 (td, *J* = 11.5, 4.8 Hz, 1H), 3.33 (dq, *J* = 12.3, 6.2 Hz, 1H), 2.78 (dtdd, *J* = 24.0, 14.2, 6.0, 3.8 Hz, 1H), 2.36 – 2.15 (m, 3H), 2.13 – 2.04 (m, 1H), 1.83 – 1.72 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 153.3, 142.5, 134.6, 122.4, 122.2, 119.1, 116.8 (t, *J* = 239.0 Hz), 109.0, 42.4, 38.0 (t, *J* = 21.3 Hz), 31.3 (dd, *J* = 6.4, 5.0 Hz), 27.5, 21.7; ¹⁹F NMR (377 MHz, CDCl₃) δ -113.55 (d, *J* = 283.3 Hz), -117.60 (d, *J* = 283.2 Hz) ppm. HRMS (ESI) Calcd for [C₁₃H₁₄F₂N₂ – H]⁺: 237.1197, found: 237.1210. **11-(2,2-difluoroethyl)-1,2,8,9,10,11-hexahydro-3H-benzo[cd]pyrido[1,2-a]indol-**

3-one (3ah)

Brown solid (26.9 mg, 46%), petroleum ether/ethyl acetate = 10:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 7.3 Hz, 1H), 7.44 (d, *J* = 7.9 Hz, 1H), 7.25 (t, *J* = 7.7 Hz, 1H), 5.98 (tt, *J* = 56.4, 4.6 Hz, 1H), 4.19 (dt, *J* = 11.4, 5.5 Hz, 1H), 4.04 (ddd, *J* = 11.5, 7.8, 5.0 Hz, 1H), 3.50 (dq, *J* = 10.7, 5.6 Hz, 1H), 3.26 – 3.16 (m, 2H), 2.94 – 2.90 (m, 2H), 2.45 (dddt, *J* = 19.2, 16.3, 14.7, 5.0 Hz, 1H), 2.24 – 2.10 (m, 4H), 1.96 – 1.89 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 198.51, 135.16, 134.53, 132.48, 125.08, 121.53, 116.36 (t, *J* = 239.5 Hz), 115.63, 113.67, 105.20, 42.92, 39.41, 38.49 (t, *J* = 20.6 Hz), 28.33 (t, *J* = 5.6 Hz), 26.47, 21.18, 20.09 ppm. HRMS (ESI) Calcd for [C17H17F2NO + H]⁺: 290.1351, found: 290.1328.

2-(2-(9-(2,2-difluoroethyl)-6,7,8,9-tetrahydropyrido[1,2-a]indol-10-yl)ethyl) isoindoline-1,3-dione (3ai)

Yellow solid (35.1 mg, 43%), petroleum ether/ethyl acetate = 5:1 as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (dt, *J* = 4.7, 2.1 Hz, 1H), 7.83 – 7.68 (m, 2H), 7.30 (d, *J* = 7.6 Hz, 1H), 7.23 – 7.02 (m, 1H), 6.07 (tt, *J* = 56.2, 4.5 Hz, 1H), 4.29 (dt, *J* = 11.9, 3.8 Hz, 1H), 4.09 – 3.89 (m, 1H), 3.83 (td, *J* = 11.2, 4.8 Hz, 1H), 3.63 (q, *J* = 4.2 Hz, 1H), 3.11 (tt, *J* = 7.5, 3.1 Hz, 1H), 2.31 (dddd, *J* = 36.2, 18.3, 9.8, 4.6 Hz, 1H), 2.17 – 2.03 (m, 1H), 1.97 (tt, *J* = 10.9, 4.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 168.30, 136.31, 135.86, 133.92, 132.25, 127.87, 123.23, 121.11, 119.80, 118.38, 116.76 (t, *J* = 239.7 Hz), 108.96, 106.25, 42.32, 39.08 (t, *J* = 20.2 Hz), 38.20, 26.40 (t, *J* = 5.4 Hz), 25.48, 23.47, 18.50 ppm. HRMS (ESI) Calcd for [C₂₄H₂₃F₂N₂O₂ + H]⁺: 409.1722, found: 409.1709.

White solid (23.2 mg, 41%), petroleum ether as an eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, *J* = 8.8 Hz, 1H), 7.07 (d, *J* = 2.3 Hz, 1H), 6.87 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.25 (s, 1H), 4.19 (ddd, *J* = 11.5, 5.7, 3.6 Hz, 1H), 3.97 – 3.86 (m, 1H), 3.88 (s, 3H), 3.38 (tt, *J* = 9.8, 4.4 Hz, 1H), 2.86 (dqd, *J* = 15.4, 11.8, 3.7 Hz, 1H), 2.42 – 2.01 (m, 3H), 2.11 – 2.00 (m, 1H), 1.68 – 1.59 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 154.47, 139.01, 131.77, 128.18, 120.34 (q, *J* = 289.3 Hz), 111.07, 109.57, 102.03, 97.15, 55.94, 42.17, 39.02 (q, *J* = 28.3 Hz), 29.88 (q, *J* = 2.9 Hz), 27.08, 21.97 ppm.

1-(difluoromethoxy)-2,2,6,6-tetramethylpiperidine (4)

¹H NMR (400 MHz, CDCl₃) δ 6.37 (t, *J* = 72.8 Hz, 1H), 1.60 – 1.48 (m, 4H), 1.41 – 1.34 (m, 2H), 1.19 (s, 6H), 1.18 (s, 6H) ppm.

Reference:

- 1 (a) S. Nishio, T. Somete, A. Sugie, T. Kobayashi, T. Yaita and A. Mori, Axially Chiral Macrocyclic E-Alkene Bearing Bisazole Component Formed by Sequential C-H Homocoupling and Ring-Closing Metathesis, Org. Lett., 2012, 14, 2476-2479; (b) P. N. Naik, A. Khan and R. S. Kusurkar, Intramolecular Diels-Alder reaction for the synthesis of tetracyclic carbazoles and isocanthines, Tetrahedron, 2013, 69, 10733-10738; (c) E. L. Glaisyer, M. S. Watt and K. I. Booker-Milburn, Pd(II)-Catalyzed [4 + 2] Heterocyclization Sequence for Polyheterocycle Generation, Org. Lett., 2018, 20, 5877-5880; (d) S.-Z. Sun, L. Talavera, P. Spieß, C. S. Day and R. Martin, sp3 Bis-Organometallic Reagents via Catalytic 1,1-Difunctionalization of Unactivated Olefins, Angew. Chem. Int. Ed., 2021, 60, 11740-11744; (e) A. Banerjee, S. Sarkar, J. A. Shah, N. C. Frederiks, E. A. Bazan-Bergamino, C. J. Johnson and M.-Y. Ngai, Excited-State Copper Catalysis for the Synthesis of Heterocycles, Angew. Chem. Int. Ed., 2022, 61, e202113841.
- 2 (a) Y. Zhao, W. Huang, L. Zhu and J. Hu, Difluoromethyl 2-Pyridyl Sulfone: A New gem-Difluoroolefination Reagent for Aldehydes and Ketones, Org. Lett., 2010, 12, 1444-1447; (b) M. R. R., J. T. Edwards, T. Qin, M. M. Kruszyk, C. Bi, G. Che, D.-H. Bao, W. Qiao, L. Sun, M. R. Collins, O. O. Fadeyi, G. M. Gallego, J. J. Mousseau, P. Nuhant and S. Baran Phil, Modular radical cross-coupling with sulfones enables access to sp3-rich (fluoro)alkylated scaffolds, Science, 2018, 360, 75-80; (c) Z. Wei, W. Miao, C. Ni and J. Hu, Iron-Catalyzed Fluoroalkylation of Arylborates with Sulfone Reagents: Beyond the Limitation of Reduction Potential, Angew. Chem. Int. Ed., 2021, 60, 13597-13602; (d) Z. Wei, Z. Lou, C. Ni, W. Zhang and J. Hu, Visible-light-promoted S-trifluoromethylation of thiophenols with trifluoromethyl phenyl sulfone, Chem. Commun., 2022, 58, 10024-10027; (e) H. Liang, Q. Wang, X. Zhou, R. Zhang, M. Zhou, J. Wei, C. Ni and J. Hu, N-Heteroaromatic Fluoroalkylation through Ligand Coupling Reaction of Sulfones, Angew. Chem. Int. Ed., 2024, 63, e202401091.
- 3 Q.-H. Zhou, J.-Y. Dai, W.-J. Zhao, X.-Y. Zhong, C.-Y. Liu, W.-W. Luo, Z.-W. Li, J.-S. Li and W.-D. Liu, *Photocatalytic synthesis of azaheterocycle-fused piperidines* and pyrrolidines via tandem difunctionalization of unactivated alkenes, Org. Biomol. Chem., 2023, 21, 3317-3322.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR of 3a

-110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 -117.5 -118.0 -118.5 -119.0 -119.5 -12 fl (ppm)

¹HNMR of 3b

^{-110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 -117.5 -118.0 -118.5 -119.0 -119.5 -12(} f1 (ppm)

¹HNMR of 3c

¹³C NMR of 3c

 Description
 Description

¹H NMR of 3f

¹H NMR of 3g

-110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 -117.5 -118.0 -118.5 -119.0 -119.5 f1 (ppm)
¹H NMR of 3i

¹³C NMR of 3i

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 -117.5 -118.0 -118.5 f1 (ppm)

¹H NMR of 3j

¹³C NMR of 3j

^{-113. 2 -113. 4 -113. 6 -113. 8 -114. 0 -114. 2 -114. 4 -114. 6 -114. 8 -115. 0 -115. 4 -115. 6 -115. 8 -116. 0 -116. 2 -116. 4 -116. 6 -116. 8 -11} f1 (ppm)

¹³C NMR of 3l

¹H NMR of 30

-111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 -117.5 -118.0 -118.5 f1 (ppm)

¹H NMR of 3p

.06 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -125 -126 -127 -128 -129 -130 -131 f1 (ppm)

-110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 -117.5 -118.0 -118.5 -119.0 -119.5 -120.0 f1 (ppm)

¹H NMR of 3r

¹⁹F NMR of 3s

10. 0 -110. 5 -111. 0 -111. 5 -112. 0 -112. 5 -113. 0 -113. 5 -114. 0 -114. 5 -115. 5 -116. 0 -116. 5 -117. 0 -117. 5 -118. 0 -118. 5 -119. 0 -119. 5 f1 (ppm)

¹H NMR of 3t

-110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 -117.5 -118.0 -118.5 -119.0 -119.5 -120. fl (ppm)

-110.0 -110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.5 -115.5 -116.0 -116.5 -117.0 -117.5 -118.0 -118.5 -119.0 -119.5 -120.0 -120. f1 (ppm)

¹H NMR of 3x

¹⁹F NMR of 3y

-110.0 -110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 -117.5 -118.0 -118.5 -119.0 -119.5 -120.0 f1 (ppm)

¹H NMR of 3z

¹³C NMR of 3z

¹H NMR of 3aa

¹⁹F NMR of 3aa

¹³C NMR of 3ab

¹³C NMR of 3ae

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

¹³C NMR of 3ag

-106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -125 f1 (ppm)

¹H NMR of 3ah

¹H NMR of 3ai

¹H NMR of 3aj

