Supporting Information

TFPN-mediated racemization/epimerization-free amide and peptide bond formation

Jinhua Yang,^a* Dou Zhang,^a Yajin Chang,^a Bo Zhang,^a Peng Shen,^a Chunyu Han^a* and Junfeng Zhao^b*

^aHubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China

^bAffiliated Cancer Hospital, Guangdong Provincial Key Laboratory of Major Obstetric Diseases,

School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China

E-mail: jhyang@hunu.edu.cn; cyhan@hbnu.edu.cn; zhaojf@gzhmu.edu.cn

Contents

General information	S2
Synthesis of acyl fluorides	S3
General procedure for the challenge amide formation	
General procedure for the synthesis of peptides	S13
The synthesis of protected Leu-enkephalin	S30
HPLC studies for determining epimerization with Ser, Asn, Asp	S35
Procedures for the synthesis of peptides on resin (SPPS)	S38
NMR spectrum	S45

General information

Unless otherwise stated, all components as well as reagents and solvents were bought from commercial suppliers (Leyan, Energy Chemical) and used without further purification. TLC analysis was performed using commercially prepared silica gel plates, and visualization was affected at ultraviolet light (254 nm). ${}^{1}H/{}^{13}C{H}$ NMR spectra were recorded on Bruker Avance 300 MHz and Bruker AMX 300 MHz spectrometer at 300/75 MHz, respectively, in CDCl₃ unless otherwise stated, using either TMS or the undeuterated solvent residual signal as the reference. CDCl₃ referenced at δ 7.26 and 77.00 ppm, DMSO- d_6 referenced at δ 2.50 and 39.8 ppm. Data for ¹H is reported as follows: chemical shift (δ ppm), integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), broad peaks (br), coupling constant (Hz) and assignment. Data for ¹³C{H} NMR are reported in terms of chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant (Hz) and no special nomenclature is used for equivalent carbons. Flash column chromatography purification of compounds was carried out by gradient elution using ethyl acetate (EA) in light petroleum ether (PE). HRMS (ESI) spectra were obtained by the electrospray ionization time-of-flight (ESI-TOF) mass spectrometry. Analytical HPLC was performed on an UltiMate 3000 HPLC system with appropriate columns and elution conditions.

Synthesis of acyl fluorides

In a round bottom flask, 4-methoxybenzoic acid (1a, 0.20 mmol), TFPN (2a, 0.24 mmol) was dissolved in DMF (1 mL), then DIPEA (0.24 mmol) was added to the solution and reaction mixture was stirred at room temperature until 4-methoxybenzoic acid was fully consumed. After the reaction was finished, water (10 mL) was added followed by EtOAc (3 x 10 mL). Combined organic layers were washed with brine (1 x 20 mL), dried over Na₂SO₄, filtered, and concentrated in vacuum. The crude product was purified by silica gel chromatography to afford the 4-methoxybenzoyl fluoride (4a) in 93% yield.

3,4-dicyano-2,5,6-trifluorophenyl 4-methoxybenzoate (3a)

White solid, 92% yield, $R_f = 0.3$ (PE/EA = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.9 Hz, 2H), 7.03 (d, J = 8.9 Hz, 2H), 3.93 (s, 3H). ¹³C{H} NMR (100 MHz, CDCl₃) δ 165.4, 161.1, 154.0 (dt, J = 264.5, 3.4 Hz), 149.7 (ddd, J = 265.5, 14.0, 3.7 Hz), 148.4 (ddd, J = 266.9, 13.7, 4.9 Hz), 134.6 (tt, J = 16.0, 2.9 Hz), 133.4, 117.7, 114.5, 108.8 (dt, J = 10.3, 2.9 Hz), 102.7 (dt, J = 16.3, 2.6 Hz), 100.8 (ddd, J = 17.9, 4.6, 1.8 Hz), 55.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.15 – -117.83 (d, J = 8.8 Hz), -127.02 (dd, J = 21.0, 11.0 Hz), -131.00 (dd, J = 21.0, 8.4 Hz). (s, 1F). HRMS m/z (ESI) calcd for $C_{16}H_8F_3N_2O_3^+$ [M+H]⁺: 333.0482, found: 333.0486.

4-methoxybenzoyl fluoride (4a)¹

Colorless oil, 93% yield, $R_f = 0.5$ (PE/EA = 10:1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.00 (d, *J* = 9.0 Hz, 2H), 7.15 (d, *J* = 9.0 Hz, 2H), 3.89 (s, 3H); ¹³C{H} NMR (100 MHz, DMSO-*d*₆) δ 165.5, 157.1 (d, *J* = 338.9 Hz), 134.0 (d, *J* = 4.1 Hz), 115.9 (d, *J* = 61.5 Hz), 115.2, 56.2. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 16.0 (s, 1F).

4-ethylbenzoyl fluoride (4b)²

Colorless oil, 95% yield, $R_f = 0.5$ (PE/EA = 10:1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.96 (d, *J* = 8.3 Hz, 2H), 7.48 (d, *J* = 7.9 Hz, 1H), 2.73 (q, *J* = 7.6 Hz, 2H), 1.21 (t, *J* = 7.6 Hz, 3H). ¹³C{H} NMR (100 MHz, DMSO-*d*₆) δ 157.3 (d, *J* = 342.2 Hz), 153.2, 131.72 (d, *J* = 4.0 Hz), 129.2, 121.7 (d, *J* = 60.6 Hz), 28.6, 15.2. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 18.0 (s, 1F). (a) ¹H NMR study of acyl fluoride formation and (b) Proposed mechanism for the deoxyfluorination intermediate formation

Acyl fluoride formation reaction monitored by ¹H NMR

(b) Proposed mechanism for the deoxyfluorination intermediate formation

General procedure for the challenge amide formation

To a mixture of compound 1 (0.30 mmol) and TFPN (0.36 mmol) in DMF (1 mL) was added the DIPEA (0.36 mmol). The reaction solution was stirred at room temperature for 10 min. Then amine 5 (0.36 mmol) was added to the above solution and the reaction mixture was stirred at room temperature under air until the acyl fluoride intermediate was fully consumed. After these reactions were finished, water (20 mL) was added followed by EtOAc (3 x 10 mL), and the layers were separated. Combined organic layers were washed with brine (1 x 20 mL), dried over Na₂SO₄, filtered, and concentrated in vacuum. The crude product was purified by silica gel chromatography to afford 6 and 6-1.

4-(N,N-dipropylsulfamoyl)-N-phenylbenzamide (6a)³

White solid, 99% yield, $R_f = 0.3$ (PE/EA = 4:1). ¹H NMR 8.67 (s, 1H), 7.89 (d, J = 8.1 Hz, 2H), 7.69 (t, J = 8.8 Hz, 4H), 7.35 (t, J = 7.8 Hz, 2H), 7.15 (t, J = 7.4 Hz, 1H), 3.05 (t, J = 7.7 Hz, 4H), 1.52 (h, J = 7.5 Hz, 4H), 0.85 (t, J = 7.4 Hz, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 165.0, 142.4, 138.9, 137.9, 129.0, 128.1, 127.1, 124.8, 120.4, 50.0, 21.9, 11.1.

N-(4-chlorophenyl)-4-(N,N-dipropylsulfamoyl)benzamide (6b)⁴

Yellow solid, 98% yield, $R_f = 0.3$ (PE/EA = 5:1). ¹H NMR (300 MHz, CDCl₃) δ 8.59 (s, 1H), 7.89 (d, J = 8.1 Hz, 2H), 7.69 (d, J = 8.1 Hz, 4H), 7.35 (d, J = 8.6 Hz, 2H), 7.27 (s, 1H), 3.22 – 2.86 (m, 4H), 1.53 (q, J = 7.5 Hz, 4H), 0.86 (t, J = 7.4 Hz, 6H). ¹³C{H} NMR (75 MHz, CDCl₃) δ 164.9, 142.5, 138.7, 136.5, 129.8, 129.1, 128.0, 127.2, 121.5, 50.0, 21.9, 11.1.

N-(4-bromophenyl)-4-(N,N-dipropylsulfamoyl)benzamide (6c)⁵

Yellow solid, 98% yield, $R_f = 0.3$ (PE/EA = 5:1). ¹H NMR (300 MHz, CDCl₃) δ 8.70 (s, 1H), 7.87 (d, J = 8.1 Hz, 2H), 7.64 (dd, J = 8.4, 2.0 Hz, 4H), 7.46 (d, J = 8.5 Hz, 2H), 3.05 (t, J = 7.6 Hz, 4H), 1.52 (h, J = 7.2 Hz, 4H), 0.85 (t, J = 7.4 Hz, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 164.9, 142.4, 138.7, 137.1, 132.0, 128.1, 127.1, 121.8, 117.4, 50.0, 21.9, 11.2.

N-(3-chlorophenyl)-4-(N,N-dipropylsulfamoyl)benzamide (6d)⁶

White solid, 90% yield, $R_f = 0.25$ (PE/EA = 5:1). ¹H NMR (300 MHz, CDCl₃) δ 8.83 (s, 1H), 7.86 (t, *J* = 8.1 Hz, 3H), 7.64 (d, *J* = 8.1 Hz, 3H), 7.28 (t, *J* = 8.0 Hz, 1H), 7.13

(d, *J* = 7.0 Hz, 1H), 3.06 (t, *J* = 7.6 Hz, 4H), 1.54 (h, *J* = 7.4 Hz, 4H), 0.87 (t, *J* = 7.4 Hz, 6H). ¹³C{H} NMR (75 MHz, CDCl₃) δ 165.1, 142.4, 139.2, 138.7, 134.6, 130.0, 128.1, 127.1, 124.7, 120.3, 118.3, 50.0, 22.0, 11.2.

N-(3,5-bis(trifluoromethyl)phenyl)-4-(N,N-dipropylsulfamoyl)benzamide (6e)

White solid, 99% yield, $R_f = 0.3$ (PE/EA = 5:1). ¹H NMR (300 MHz, CDCl₃) δ 9.32 (s, 1H), 8.33 (s, 2H), 7.86 (d, J = 8.2 Hz, 2H), 7.65 (s, 1H), 7.59 (d, J = 8.3 Hz, 2H), 3.06 (d, J = 7.5 Hz, 5H), 1.55 (h, J = 7.4 Hz, 4H), 0.86 (t, J = 7.4 Hz, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 165.7, 142.2, 139.8, 138.6, 132.3 (q, J = 33.3 Hz), 128.3, 127.2, 123.2 (d, J = 272.8 Hz), 119.9 (d, J = 3.2 Hz), 117.8, 50.2, 22.0, 11.1. HRMS m/z (ESI) calcd for C₂₁H₂₃F₆N₂O₃S⁺ [M+H]⁺: 497.1328, found: 497.1317.

4-(*N*,*N*-dipropylsulfamoyl)-*N*-(o-tolyl)benzamide (6f)

White solid, 99% yield, $R_f = 0.3$ (PE/EA = 5:1). ¹H NMR (300 MHz, CDCl₃) δ 8.00 (d, J = 8.2 Hz, 2H), 7.95 – 7.83 (m, 3H), 7.79 (s, 1H), 7.34 – 7.23 (m, 2H), 7.18 (t, J = 7.3 Hz, 1H), 3.22 – 3.00 (m, 4H), 2.36 (s, 3H), 1.62 – 1.48 (m, 4H), 0.89 (t, J = 7.4 Hz, 6H). ¹³C{H} NMR (75 MHz, CDCl₃) δ 164.4, 143.2, 138.4, 135.2, 130.7, 129.8, 127.8, 127.5, 127.0, 126.0, 123.5, 50.0, 22.0, 17.9, 11.2. HRMS m/z (ESI) calcd for C₂₀H₂₇N₂O₃S⁺ [M+H]⁺: 375.1737, found: 375.1729.

4-(*N*,*N*-dipropylsulfamoyl)-*N*-mesitylbenzamide (6g)

White solid, 90% yield, $R_f = 0.3$ (PE/EA = 5:1). ¹H NMR (300 MHz, CDCl₃) δ 7.99 (d, J = 8.1 Hz, 2H), 7.85 (d, J = 8.0 Hz, 2H), 7.62 (s, 1H), 6.94 (s, 2H), 3.20 – 3.01 (m, 4H), 2.30 (s, 3H), 2.23 (s, 6H), 1.55 (p, J = 7.4 Hz, 4H), 0.88 (t, J = 7.4 Hz, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 164.9, 142.9, 138.1, 137.5, 135.2, 130.8, 129.1, 128.0, 127.3, 50.0, 22.0, 21.0, 18.4, 11.2. HRMS m/z (ESI) calcd for C₂₂H₃₁N₂O₃S⁺ [M+H]⁺: 403.2050, found: 403.2037.

N-(tert-butyl)-4-(N,N-dipropylsulfamoyl)benzamide (6h)⁷

White solid, 99% yield, $R_f = 0.3$ (PE/EA = 5:1). ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, J = 8.3 Hz, 2H), 7.71 (d, J = 7.8 Hz, 2H), 6.25 (s, 1H), 3.11 – 2.92 (m, 4H), 1.60 – 1.37 (m, 13H), 0.83 (t, J = 7.3 Hz, 6H). ¹³C{H} NMR (75 MHz, CDCl₃) δ 165.7, 142.1, 139.5, 127.6, 127.0, 52.0, 49.9, 28.7, 21.9, 11.1.

N-benzyl-4-(N,N-dipropylsulfamoyl)-N-methylbenzamide (6i)

White solid, 99% yield, $R_f = 0.4$ (PE/EA = 5:1). ¹H NMR (300 MHz, CDCl₃) δ 7.92 – 7.71 (m, 2H), 7.63 – 7.50 (m, 2H), 7.47 – 7.22 (m, 4H), 7.19 – 7.06 (m, 1H), 4.61 (s, 2H), 3.17 – 2.76 (m, 7H), 1.69 – 1.44 (m, 4H), 1.00 – 0.75 (m, 6H). ¹³C{H} NMR (75 MHz, CDCl₃) δ 170.7, 170.0, 141.2, 140.0, 139.9, 136.5, 135.9, 130.5, 129.0, 128.8, 128.2, 127.9, 127.7, 127.6, 127.4, 127.3, 126.6, 55.0, 50.8, 50.1, 49.9, 36.9, 33.4, 22.1,

21.9, 11.2. HRMS m/z (ESI) calcd for $C_{21}H_{29}N_2O_3S^+$ $[M\text{+}H]^+\!\!:$ 389.1893, found: 389.1880

N-(tert-butyl)adamantane-1-carboxamide (6j) 8

White solid, 92% yield, $R_f = 0.4$ (PE/EA = 5:1). ¹H NMR (300 MHz, CDCl₃) δ 5.36 (s, 1H), 2.07 – 1.96 (m, 3H), 1.85 – 1.75 (m, 6H), 1.75 – 1.60 (m, 6H), 1.31 (s, 9H). ¹³C{H} NMR (75 MHz, CDCl₃) δ 177.4, 50.5, 40.8, 39.3, 36.5, 28.8, 28.2.

General procedure for the synthesis of peptides

$$1_{PG} \xrightarrow{H} \underbrace{O}_{\overline{R}} \xrightarrow{O}_{IOH} \underbrace{I}_{IOH} \xrightarrow{TFPN}_{DIPEA} \left[1_{PG} \xrightarrow{H} \underbrace{O}_{\overline{R}} \xrightarrow{I}_{\overline{R}} \right] \xrightarrow{H-L-AA-OPG^{2}(5)}_{IO \min - 1 \text{ h, r.t.}} 1_{PG} \xrightarrow{H} \underbrace{O}_{\overline{R}} \xrightarrow{I}_{O} \xrightarrow{I}_{O}$$

To a mixture of compound 1 (0.30 mmol) and TFPN (0.36 mmol) in DMF (1 mL) was added the DIPEA (0.36 mmol). The reaction solution was stirred at room temperature for 10 min. Then amine 5 (0.36 mmol) was added to the above solution and the reaction mixture was stirred at room temperature under air until the acyl fluoride intermediate was fully consumed. After these reactions were finished, water (20 mL) was added followed by EtOAc (3 x 10 mL), and the layers were separated. Combined organic layers were washed with brine (1 x 20 mL), dried over Na₂SO₄, filtered, and concentrated in vacuum. The crude product was purified by silica gel chromatography to afford 7.

tert-butyl (((9H-fluoren-9-yl)methoxy)carbonyl)-L-alanyl-L-leucinate (7a) ⁹

Yellow solid, 95% yield, $R_f = 0.55$ (PE/EA = 2:1). ¹H NMR (300 MHz, CDCl₃) δ 7.68 (d, J = 7.5 Hz, 2H), 7.51 (d, J = 7.4 Hz, 2H), 7.32 (t, J = 7.4 Hz, 2H), 7.23 (t, J = 7.4 Hz, 2H), 6.41 (d, J = 8.2 Hz, 1H), 5.49 (d, J = 7.8 Hz, 1H), 4.48 – 4.36 (m, 1H), 4.36 – 4.17 (m, 3H), 4.13 (t, J = 7.1 Hz, 1H), 1.62 – 1.48 (m, 2H), 1.47 – 1.25 (m, 13H), 0.83 (d, J = 5.7 Hz, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 171.9, 171.8, 155.9, 143.8, 141.3, 127.7, 127.1, 125.1, 120.0, 82.0, 67.1, 51.5, 50.4, 47.1, 41.7, 28.0, 24.9, 22.8, 22.1, 18.9.

tert-butyl (((9H-fluoren-9-yl)methoxy)carbonyl)glycyl-L-leucinate (7b) ⁹

White solid, 97% yield, $R_f = 0.55$ (PE/EA = 2:1). ¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, J = 7.5 Hz, 2H), 7.60 (d, J = 7.4 Hz, 2H), 7.40 (t, J = 7.4 Hz, 2H), 7.32 (d, J = 7.4 Hz, 2H), 6.73 (d, J = 8.3 Hz, 1H), 5.80 (t, J = 5.5 Hz, 1H), 4.56 (td, J = 8.5, 4.9 Hz, 1H), 4.40 (d, J = 7.1 Hz, 2H), 4.23 (t, J = 7.1 Hz, 1H), 3.96 (d, J = 5.5 Hz, 2H), 1.77 – 1.51 (m, 3H), 1.47 (s, 9H), 0.94 (dd, J = 6.3, 2.4 Hz, 6H). ¹³C{H} NMR (75 MHz, CDCl₃) δ 172.2, 168.8, 156.7, 143.8, 141.3, 127.7, 127.1, 125.1, 120.0, 82.1, 67.3, 51.4, 47.0, 44.4, 41.7, 28.0, 24.9, 22.8, 22.0.

(9H-fluoren-9-yl)methyl (S)-2-(((S)-1-(tert-butoxy)-4-methyl-1-oxopentan-2yl)carbamoyl)pyrrolidine-1-carboxylate (7c) ⁸

White solid, 93% yield, $R_f = 0.5$ (PE/EA = 2:1). ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, J = 7.5 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 7.35 – 7.13 (m, 4H), 6.99 – 6.18 (m, 1H), 4.56 – 4.22 (m, 4H), 4.23 – 4.08 (m, 1H), 3.62 – 3.26 (m, 2H), 2.33 – 2.05 (m, 1H), 2.02 – 1.74 (m, 3H), 1.61 – 1.47 (m, 2H), 1.46 – 1.19 (m, 10H), 0.81 (d, J = 5.8 Hz, 6H). ¹³C{H} NMR (75 MHz, CDCl₃) δ 171.8, 171.2, 156.0, 143.8, 141.3, 127.7, 127.1, 125.1, 120.0, 81.7, 67.8, 61.1, 60.4, 51.6, 47.2, 47.0, 42.0, 41.6, 31.4, 28.3, 28.0, 25.0, 24.7, 23.6, 22.8, 22.2.

tert-butyl (((9H-fluoren-9-yl)methoxy)carbonyl)-L-valyl-L-leucinate (7d)⁸

White solid, 91% yield, $R_f = 0.4$ (PE/EA = 4:1). ¹H NMR (300 MHz, CDCl₃) δ 7.66 (d, J = 7.5 Hz, 2H), 7.50 (d, J = 7.5 Hz, 2H), 7.29 (t, J = 7.5 Hz, 2H), 7.20 (t, J = 7.7 Hz, 2H), 6.45 (d, J = 8.2 Hz, 1H), 5.57 (d, J = 9.0 Hz, 1H), 4.48 – 4.29 (m, 2H), 4.23 (dd, J = 10.5, 7.0 Hz, 1H), 4.12 (t, J = 7.1 Hz, 1H), 4.06 – 3.96 (m, 1H), 2.10 – 1.93 (m,

1H), 1.65 – 1.45 (m, 2H), 1.45 – 1.23 (m, 10H), 0.95 – 0.69 (m, 12H). ¹³C{H} NMR (75 MHz, CDCl₃) δ 171.9, 171.0, 156.4, 143.9, 143.8, 141.3, 127.7, 127.1, 125.2, 125.1, 120.0, 119.9, 81.9, 67.1, 60.2, 51.5, 47.1, 41.6, 31.5, 28.0, 24.9, 22.7, 22.1, 19.2, 18.0.

tert-butyl (((9H-fluoren-9-yl)methoxy)carbonyl)-L-isoleucyl-L-leucinate (7e)⁸

Yellow solid, 92% yield, $R_f = 0.3$ (PE/EA = 3:1). ¹H NMR (300 MHz, CDCl₃) δ 7.65 (d, J = 7.5 Hz, 2H), 7.49 (d, J = 7.4 Hz, 2H), 7.28 (t, J = 7.5 Hz, 2H), 7.19 (t, J = 7.3 Hz, 2H), 6.47 (d, J = 8.1 Hz, 1H), 5.59 (d, J = 9.0 Hz, 1H), 4.48 – 4.28 (m, 2H), 4.27 – 4.18 (m, 1H), 4.16 – 4.06 (m, 1H), 4.03 (t, J = 8.1 Hz, 1H), 1.84 – 1.68 (m, 1H), 1.64 – 1.22 (m, 13H), 1.15 – 0.99 (m, 1H), 0.95 – 0.67 (m, 12H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 171.8, 171.0, 156.3, 143.9, 143.8, 141.3, 127.7, 127.1, 125.2, 125.1, 120.0, 119.9, 81.8, 67.1, 59.5, 51.5, 47.1, 41.6, 37.8, 28.0, 24.9, 22.7, 22.1, 15.4, 11.4.

tert-butyl (((9H-fluoren-9-yl)methoxy)carbonyl)-L-leucyl-L-leucinate (7f) 8

White solid, 99% yield, $R_f = 0.3$ (PE/EA = 5:1). ¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, J = 7.4 Hz, 2H), 7.58 (d, J = 7.2 Hz, 2H), 7.39 (t, J = 7.3 Hz, 2H), 7.31 (t, J = 7.3 Hz, 2H), 6.46 (d, J = 7.8 Hz, 1H), 5.42 (d, J = 8.4 Hz, 1H), 4.53 – 4.43 (m, 1H), 4.44 – 4.29 (m, 2H), 4.29 – 4.13 (m, 2H), 1.77 – 1.49 (m, 6H), 1.45 (s, 9H), 0.94 (d, J = 4.5 Hz, 6H), 0.90 (d, J = 5.4 Hz, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 171.8, 171.8, 156.2, 143.9, 143.7, 141.3, 127.7, 127.1, 125.1, 120.0, 120.0, 81.9, 67.1, 53.4, 51.5, 47.1, 41.7, 28.0, 24.9, 24.6, 23.0, 22.7, 22.1.

tert-butyl (((9H-fluoren-9-yl)methoxy)carbonyl)-L-phenylalanyl-L-leucinate (7g)

White solid, 92% yield, $R_f = 0.3$ (PE/EA = 5:1). ¹H NMR (300 MHz, CDCl₃) δ 7.66 (d, J = 7.5 Hz, 2H), 7.44 (t, J = 6.4 Hz, 2H), 7.30 (t, J = 7.4 Hz, 2H), 7.25 – 7.03 (m, 7H), 6.39 (s, 1H), 5.46 (s, 1H), 4.51 – 4.26 (m, 3H), 4.18 (t, J = 8.6 Hz, 1H), 4.12 – 4.02 (m, 1H), 2.99 (d, J = 6.5 Hz, 2H), 1.53 – 1.42 (m, 2H), 1.42 – 1.27 (m, 10H), 0.79 (t, J = 4.8 Hz, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 171.7, 170.5, 155.9, 143.8, 143.7, 141.3, 136.3, 129.5, 128.6, 127.7, 127.1, 127.0, 125.2, 125.1, 120.0, 82.0, 67.1, 55.9, 51.5, 47.1, 41.8, 38.6, 28.0, 24.8, 22.7, 22.1.

tert-butyl ((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(4-(tertbutoxy)phenyl)propanoyl)-L-leucinate (7h)

White solid, 91% yield, $R_f = 0.75$ (PE/EA = 2:1). ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, J = 7.5 Hz, 2H), 7.47 (dd, J = 7.4, 2.4 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 7.22 (t, J = 7.4 Hz, 2H), 7.00 (d, J = 8.0 Hz, 2H), 6.80 (d, J = 8.1 Hz, 2H), 6.26 (d, J = 8.0 Hz, 1H), 5.37 (d, J = 8.3 Hz, 1H), 4.46 – 4.28 (m, 3H), 4.24 (d, J = 7.4 Hz, 1H), 4.10 (t, J = 6.9 Hz, 1H), 2.96 (t, J = 6.6 Hz, 2H), 1.54 – 1.42 (m, 2H), 1.42 – 1.29 (m, 10H), 1.22 (s, 9H), 0.80 (dd, J = 6.0, 3.5 Hz, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 171.6, 170.4, 155.9, 154.4, 143.8, 143.7, 141.3, 131.0, 129.9, 127.7, 127.1, 125.1, 125.1, 124.2, 120.0, 82.0, 78.4, 67.1, 55.9, 51.5, 47.1, 41.7, 37.8, 28.8, 28.0, 24.8, 22.7, 22.1. HRMS m/z (ESI) calcd for C₃₈H₄₉N₂O₆⁺ [M+H]⁺: 629.3585, found: 629.3577.

tert-butyl 3-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(((S)-1-(tertbutoxy)-4-methyl-1-oxopentan-2-yl)amino)-3-oxopropyl)-1H-indole-1carboxylate (7i) ¹⁰

White solid, 93% yield, $R_f = 0.75$ (PE/EA = 2:1). ¹H NMR (300 MHz, CDCl₃) δ 8.04 (d, J = 8.1 Hz, 1H), 7.65 (d, J = 7.5 Hz, 2H), 7.57 (d, J = 7.6 Hz, 1H), 7.44 (t, J = 6.1 Hz, 3H), 7.28 (q, J = 5.7, 4.1 Hz, 2H), 7.24 – 7.09 (m, 4H), 6.25 (dd, J = 7.9, 4.3 Hz, 1H), 5.58 (d, J = 8.0 Hz, 1H), 4.50 (q, J = 7.2 Hz, 1H), 4.39 – 4.18 (m, 3H), 4.09 (t, J = 7.2 Hz, 1H), 3.28 – 2.97 (m, 2H), 1.54 (s, 9H), 1.48 – 1.38 (m, 2H), 1.39 – 1.24 (m, 10H), 0.77 (dd, J = 5.9, 2.7 Hz, 7H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 171.4, 170.5, 156.0, 149.5, 143.8, 143.7, 141.3, 135.5, 130.3, 127.7, 127.1, 125.2, 125.1, 124.7, 124.6, 122.8, 120.0, 119.1, 115.4, 115.3, 83.6, 81.9, 67.3, 54.7, 51.7, 47.1, 41.7, 28.4, 28.2, 28.0, 24.8, 22.7, 22.2.

tert-butyl 5-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(((S)-1-(tertbutoxy)-4-methyl-1-oxopentan-2-yl)amino)-3-oxopropyl)-1H-imidazole-1carboxylate (7j) ⁸

White solid, 96% yield, $R_f = 0.4$ (PE/EA = 2:1). ¹H NMR (300 MHz, CDCl₃) δ 7.96 (s, 1H), 7.68 (d, J = 7.5 Hz, 2H), 7.63 – 7.48 (m, 2H), 7.32 (t, J = 7.4 Hz, 2H), 7.23 (t, J = 7.5 Hz, 2H), 7.11 (d, J = 7.0 Hz, 2H), 6.62 (d, J = 7.5 Hz, 1H), 4.50 (d, J = 6.3 Hz, 1H), 4.40 – 4.22 (m, 3H), 4.19 (d, J = 7.4 Hz, 1H), 3.09 (dd, J = 14.8, 5.0 Hz, 1H), 2.89 (dd,

J = 14.9, 5.9 Hz, 1H), 1.51 (s, 9H), 1.44 – 1.22 (m, 12H), 0.77 (t, *J* = 6.0 Hz, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 171.6, 170.5, 156.2, 146.8, 143.9, 141.2, 139.1, 136.7, 127.7, 127.1, 125.2, 119.9, 114.9, 85.7, 81.7, 67.3, 54.7, 51.4, 47.1, 41.5, 30.3, 27.9, 27.8, 24.6, 22.8, 21.8.

tert-butyl N-(((9H-fluoren-9-yl)methoxy)carbonyl)-O-(tert-butyl)-L-seryl-Lleucinate (7k) ¹¹

White solid, 98% yield, $R_f = 0.25$ (PE/EA = 4:1). ¹H NMR (300 MHz, CDCl₃) δ 7.77 (d, J = 7.0 Hz, 2H), 7.69 – 7.53 (m, 2H), 7.40 (t, J = 6.8 Hz, 2H), 7.32 (t, J = 6.9 Hz, 2H), 7.28 – 7.19 (m, 1H), 5.79 (s, 1H), 4.60 – 4.33 (m, 3H), 4.25 (d, J = 5.9 Hz, 2H), 3.91 – 3.76 (m, 1H), 3.40 (t, J = 7.7 Hz, 1H), 1.70 – 1.57 (m, 2H), 1.54 (s, 1H), 1.46 (s, 9H), 1.22 (s, 9H), 0.95 (d, J = 4.8 Hz, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 171.6, 169.9, 156.0, 143.9, 143.8, 141.3, 127.7, 127.1, 125.1, 120.0, 81.7, 74.3, 67.1, 61.8, 54.3, 51.6, 47.1, 41.9, 28.0, 27.4, 24.9, 22.8, 22.1.

tert-butyl N-(((9H-fluoren-9-yl)methoxy)carbonyl)-O-(tert-butyl)-L-threonyl-Lleucinate (7l)

Yellow solid, 97% yield, $R_f = 0.5$ (PE/EA = 4:1). ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, J = 7.5 Hz, 2H), 7.53 (d, J = 7.5 Hz, 3H), 7.31 (t, J = 7.5 Hz, 2H), 7.23 (t, J = 7.4 Hz, 2H), 5.96 (d, J = 4.8 Hz, 1H), 4.49 – 4.23 (m, 3H), 4.22 – 3.98 (m, 3H), 1.66 – 1.50 (m, 2H), 1.51 – 1.32 (m, 10H), 1.22 (s, 9H), 1.05 (d, J = 6.2 Hz, 3H), 0.88 (t, J = 6.3 Hz, 6H). ¹³C{H} NMR (75 MHz, CDCl₃) δ 171.5, 169.2, 156.1, 144.0, 143.7, 141.3, 141.3, 127.7, 127.1, 125.2, 120.0, 120.0, 81.6, 75.6, 66.9, 66.8, 58.3, 51.9, 47.2, 41.4, S_{112}

28.2, 28.0, 25.1, 22.8, 22.1, 16.5. HRMS m/z (ESI) calcd for $C_{33}H_{47}N_2O_6^+$ [M+H]⁺: 567.3429, found: 567.3409.

tert-butyl N2-(((9H-fluoren-9-yl)methoxy)carbonyl)-N6-(tert-butoxycarbonyl)-Llysyl-L-leucinate (7m)¹²

White solid, 99% yield, $R_f = 0.3$ (PE/EA = 4:1). ¹H NMR (300 MHz, CDCl₃) δ 7.74 (d, J = 7.5 Hz, 2H), 7.58 (d, J = 7.5 Hz, 2H), 7.38 (t, J = 7.5 Hz, 2H), 7.30 (d, J = 7.5 Hz, 2H), 6.63 (d, J = 8.1 Hz, 1H), 5.68 (d, J = 8.3 Hz, 1H), 4.78 (d, J = 6.1 Hz, 1H), 4.53 – 4.41 (m, 1H), 4.36 (d, J = 7.2 Hz, 2H), 4.29 – 4.15 (m, 2H), 3.23 – 2.95 (m, 2H), 1.85 (p, J = 6.5 Hz, 1H), 1.74 – 1.57 (m, 3H), 1.43 (d, J = 6.3 Hz, 23H), 0.89 (d, J = 5.8 Hz, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 171.9, 171.5, 156.2, 143.9, 143.7, 141.3, 127.7, 127.1, 125.1, 120.0, 120.0, 81.9, 79.1, 67.1, 54.5, 51.5, 47.1, 41.4, 39.9, 32.4, 29.5, 28.4, 28.0, 24.9, 22.7, 22.3, 22.0.

tert-butyl N-(((9H-fluoren-9-yl)methoxy)carbonyl)-S-trityl-L-cysteinyl-Lleucinate (7n) ¹³

Yellow solid, 96% yield, $R_f = 0.5$ (PE/EA = 4:1). ¹H NMR (300 MHz, CDCl₃) δ 8.08 (d, J = 7.7 Hz, 1H), 7.88 (d, J = 7.6 Hz, 2H), 7.78 – 7.60 (m, 3H), 7.50 – 7.10 (m, 19H), 4.42 – 4.10 (m, 4H), 4.05 (q, J = 7.7 Hz, 1H), 2.44 – 2.27 (m, 2H), 1.62 – 1.37 (m, 3H), 1.27 (s, 9H), 0.80 (dd, J = 17.4, 6.3 Hz, 6H). ¹³C{H} NMR (75 MHz, CDCl₃) δ 171.4,

169.6, 155.9, 144.4, 143.8, 143.7, 141.3, 129.6, 128.1, 127.8, 127.1, 126.9, 125.1, 120.0, 81.9, 67.3, 67.1, 54.0, 51.6, 47.1, 41.7, 33.9, 27.9, 24.9, 22.7, 22.2.

tert-butyl (((9H-fluoren-9-yl)methoxy)carbonyl)-L-methionyl-L-leucinate (70)

White solid, 97% yield, $R_f = 0.4$ (PE/EA = 4:1). ¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, J = 7.5 Hz, 2H), 7.59 (d, J = 7.4 Hz, 2H), 7.39 (t, J = 7.4 Hz, 2H), 7.35 – 7.23 (m, 2H), 6.80 (d, J = 8.1 Hz, 1H), 5.87 (d, J = 8.3 Hz, 1H), 4.56 – 4.32 (m, 4H), 4.22 (d, J = 7.2 Hz, 1H), 2.61 (t, J = 7.3 Hz, 2H), 2.18 – 1.90 (m, 5H), 1.72 – 1.58 (m, 2H), 1.57 – 1.38 (m, 10H), 0.92 (d, J = 5.7 Hz, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 171.7, 170.9, 156.1, 143.8, 143.7, 141.3, 127.7, 127.1, 125.1, 125.1, 120.0, 120.0, 81.9, 67.1, 53.5, 51.6, 47.1, 41.5, 32.0, 29.9, 28.0, 24.9, 22.7, 22.1, 15.1. HRMS m/z (ESI) calcd for C₃₀H₄₁N₂O₅S⁺ [M+H]⁺: 541.2731, found: 541.2715.

tert-butyl ((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-5-(((Z)-amino ((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran)-5-sulfonamido)methylene) amino)pentanoyl)-L-leucinate (7p)

Colorless oil, 80% yield, $R_f = 0.4$ (PE/EA = 1:1). ¹H NMR (300 MHz, CDCl₃ δ 7.72 (d, J = 7.5 Hz, 2H), 7.55 (d, J = 7.5 Hz, 2H), 7.35 (t, J = 7.3 Hz, 3H), 7.25 (d, J = 8.0 Hz, 3H), 6.38 (s, 2H), 6.09 (d, J = 8.2 Hz, 2H), 4.48 – 4.26 (m, 4H), 4.13 (t, J = 7.0 Hz, 1H), 3.24 (s, 2H), 2.89 (s, 2H), 2.59 (s, 3H), 2.51 (s, 3H), 2.06 (s, 3H), 2.00 – 1.89 (m,

1H), 1.80 - 1.68 (m, 1H), 1.68 - 1.49 (m, 5H), 1.41 (d, J = 2.7 Hz, 15H), 0.83 (d, J = 6.2 Hz, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 172.5, 172.1, 158.7, 156.4, 143.9, 143.7, 141.2, 141.2, 138.4, 132.9, 132.3, 127.7, 127.1, 125.2, 124.6, 119.9, 117.5, 86.4, 81.9, 67.1, 60.4, 53.9, 51.9, 47.0, 43.2, 40.5, 28.6, 28.0, 25.1, 24.8, 22.7, 21.8, 19.4, 18.0, 14.2, 12.5. HRMS m/z (ESI) calcd for C₄₄H₆₀N₅O₈S⁺ [M+H]⁺: 818.4157, found: 818.4140.

tert-butyl ((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-(tert-butoxy)-4oxobutanoyl)-L-leucinate (7q)

Colorless oil, 95% yield, $R_f = 0.3$ (PE/EA = 4:1). ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, J = 7.5 Hz, 2H), 7.50 (d, J = 7.4 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 7.22 (t, J = 7.4 Hz, 2H), 6.87 (d, J = 8.2 Hz, 1H), 5.97 (d, J = 8.4 Hz, 1H), 4.49 (q, J = 6.6 Hz, 1H), 4.44 – 4.26 (m, 3H), 4.14 (t, J = 7.1 Hz, 1H), 2.85 (dd, J = 17.3, 4.3 Hz, 1H), 2.54 (dd, J = 17.2, 6.8 Hz, 1H), 1.66 – 1.29 (m, 21H), 0.84 (d, J = 6.0 Hz, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 171.5, 171.4, 170.2, 156.0, 143.8, 143.7, 141.3, 127.8, 127.1, 125.1, 120.0, 81.9, 81.8, 67.3, 51.6, 51.0, 47.1, 41.6, 37.7, 28.0, 28.0, 24.8, 22.9, 22.0. HRMS m/z (ESI) calcd for C₃₃H₄₄N₂NaO₇⁺ [M+Na]⁺: 603.3041, found: 603.3027.

tert-butyl (S)-4-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-5-(((S)-1-(tertbutoxy)-4-methyl-1-oxopentan-2-yl)amino)-5-oxopentanoate (7r)

Yellow oil, 93% yield, $R_f = 0.7$ (PE/EA = 5:1). ¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, J = 7.4 Hz, 2H), 7.59 (d, J = 7.3 Hz, 2H), 7.39 (t, J = 7.4 Hz, 2H), 7.30 (t, J = 7.4 Hz, 2H), 6.77 (d, J = 7.8 Hz, 1H), 5.79 (d, J = 7.6 Hz, 1H), 4.54 – 4.41 (m, 1H), 4.36 (d, J = 7.1 Hz, 2H), 4.32 – 4.25 (m, 1H), 4.21 (t, J = 7.1 Hz, 1H), 2.54 – 2.35 (m, 2H), 2.20 – 2.02 (m, 1H), 2.02 – 1.92 (m, 1H), 1.74 – 1.60 (m, 2H), 1.58 – 1.32 (m, 20H), 0.92 (d, J = 5.6 Hz, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 173.0, 171.6, 170.9, 156.1, 143.9, 143.7, 141.3, 141.3, 127.7, 127.1, 125.1, 120.0, 81.9, 81.0, 67.1, 53.9, 51.7, 47.1, 41.5, 31.6, 28.6, 28.1, 28.0, 24.9, 22.8, 22.0. HRMS m/z (ESI) calcd for C₃₄H₄₇N₂O₇⁺ [M+H]⁺: 595.3378, found:595.3362.

tert-butyl N²-(((9H-fluoren-9-yl)methoxy)carbonyl)-N⁵-trityl-L-glutaminyl-L-leucinate (7s)

Yellow solid, 91% yield, $R_f = 0.3$ (PE/EA = 2:1). ¹H NMR (300 MHz, CDCl₃) δ 7.66 (d, J = 7.5 Hz, 2H), 7.49 (d, J = 7.4 Hz, 2H), 7.29 (t, J = 7.5 Hz, 2H), 7.26 – 7.09 (m, 17H), 7.06 (s, 1H), 6.82 (d, J = 7.6 Hz, 1H), 5.79 (d, J = 7.2 Hz, 1H), 4.26 (d, J = 6.9 Hz, 3H), 4.18 – 4.07 (m, 1H), 4.08 – 3.96 (m, 1H), 2.44 (t, J = 6.5 Hz, 2H), 2.09 – 1.82 (m, 3H), 1.55 – 1.38 (m, 2H), 1.33 (s, 9H), 0.77 (d, J = 5.9 Hz, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 172.0, 171.9, 171.2, 156.1, 144.6, 143.9, 143.8, 141.3, 141.3, 128.7, 128.0, 127.7, 127.1, 127.0, 125.2, 120.0, 81.7, 70.7, 67.0, 53.5, 51.7, 47.2, 40.7, 33.4, 30.1, 28.0, 24.8, 22.8, 21.8. HRMS m/z (ESI) calcd for C₄₉H₅₄N₃O₆⁺ [M+H]⁺: 780.4007, found: 780.3986.

tert-butyl N²-(((9H-fluoren-9-yl)methoxy)carbonyl)-N⁴-trityl-L-asparaginyl-Lleucinate (7t)

White solid, 90% yield, $R_f = 0.4$ (PE/EA = 2:1). ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, J = 7.4 Hz, 2H), 7.60 (d, J = 7.4 Hz, 2H), 7.44 (d, J = 7.4 Hz, 2H), 7.38 – 7.10 (m, 19H), 7.03 (s, 1H), 6.49 (d, J = 7.4 Hz, 1H), 4.67 – 4.54 (m, 1H), 4.49 – 4.32 (m, 3H), 4.22 (t, J = 7.2 Hz, 1H), 3.10 (d, J = 15.2 Hz, 1H), 2.72 (dd, J = 15.6, 6.4 Hz, 1H), 1.71 – 1.54 (m, 2H), 1.53 – 1.36 (m, 10H), 0.91 (d, J = 4.9 Hz, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 170.9, 170.2, 155.8, 143.8, 143.3, 143.2, 140.8, 140.8, 128.2, 127.5, 127.2, 126.6, 124.7, 119.5, 81.1, 70.4, 66.8, 51.4, 50.6, 46.6, 40.5, 38.0, 27.5, 24.4, 22.2, 21.6. HRMS m/z (ESI) calcd for C₄₈H₅₂N₃O₆⁺ [M+H]⁺: 766.3851, found:766.3839.

tert-butyl ((benzyloxy)carbonyl)-L-alanyl-L-leucinate (7u)¹⁴

White solid, 95% yield, $R_f = 0.2$ (PE/EA = 5:1). ¹H NMR (300 MHz, CDCl₃) δ 7.43 – 7.27 (m, 5H), 6.70 (d, J = 6.1 Hz, 1H), 5.65 (d, J = 6.5 Hz, 1H), 5.08 (s, 2H), 4.52 – 4.40 (m, 1H), 4.39 – 4.21 (m, 1H), 1.68 – 1.53 (m, 2H), 1.50 – 1.40 (m, 10H), 1.36 (d, J = 6.9 Hz, 3H), 0.90 (d, J = 5.5 Hz, 6H). ¹³C{H} NMR (75 MHz, CDCl₃) δ 172.0, 171.8, 155.8, 136.2, 128.5, 128.1, 127.9, 81.8, 66.8, 51.4, 50.3, 41.5, 27.9, 24.8, 22.7, 22.0, 18.8.

tert-butyl (tert-butoxycarbonyl)-L-alanyl-L-leucinate (7v)¹⁵

White solid, 91% yield, $R_f = 0.55$ (PE/EA = 2:1). ¹H NMR (300 MHz, CDCl₃) δ 6.58 (d, J = 7.6 Hz, 1H), 5.15 (d, J = 7.2 Hz, 1H), 4.44 (q, J = 8.3 Hz, 1H), 4.17 (s, 1H), 1.69

- 1.50 (m, 3H), 1.42 (s, 9H), 1.41 (s, 9H), 1.32 (d, J = 7.0 Hz, 3H), 0.89 (d, J = 6.0 Hz, 6H).¹³C {H} NMR (75 MHz, CDCl₃) δ 172.2, 171.9, 155.4, 81.7, 79.9, 51.3, 49.9, 41.7, 28.3, 27.9, 24.8, 22.8, 22.0, 18.3.

methyl N-((((9H-fluoren-9-yl)methoxy)carbonyl)-L-alanyl)-N-methyl-L-leucinate (7w)

White solid, 93% yield, $R_f = 0.25$ (PE/EA = 5:1). ¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, J = 7.5 Hz, 2H), 7.60 (d, J = 7.5 Hz, 2H), 7.39 (t, J = 7.5 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 5.85 (d, J = 8.0 Hz, 1H), 5.39 – 5.24 (m, 1H), 4.72 (p, J = 7.1 Hz, 1H), 4.36 (d, J = 7.3 Hz, 2H), 4.21 (t, J = 7.3 Hz, 1H), 3.70 (s, 3H), 2.98 (s, 3H), 1.81 – 1.66 (m, 2H), 1.58 – 1.45 (m, 1H), 1.40 (d, J = 6.8 Hz, 3H), 0.94 (t, J = 6.8 Hz, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 173.4, 172.0, 155.6, 144.0, 143.8, 141.3, 127.7, 127.1, 125.2, 125.2, 120.0, 67.0, 54.7, 52.3, 47.3, 47.2, 36.9, 31.0, 24.9, 23.2, 21.4, 18.6. HRMS m/z (ESI) calcd for C₂₆H₃₃N₂O₅⁺ [M+H]⁺: 453.2384, found: 453.2371.

tert-butyl N-(((9H-fluoren-9-yl)methoxy)carbonyl)-N-methyl-L-alanyl-Lleucinate (7x)

Yellow oil, 94% yield, $R_f = 0.65$ (PE/EA = 4:1). ¹H NMR (300 MHz, CDCl₃) δ 7.77 (d, J = 7.5 Hz, 2H), 7.58 (d, J = 7.3 Hz, 2H), 7.40 (t, J = 7.4 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 6.38 (s, 1H), 4.81 (s, 1H), 4.56 – 4.39 (m, 3H), 4.26 (t, J = 6.8 Hz, 1H), 2.84 (s, 3H), 1.68 – 1.52 (m, 2H), 1.50 – 1.39 (m, 10H), 1.34 (d, J = 7.1 Hz, 3H), 0.90 (d, J = 5.4 Hz, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 171.8, 170.6, 157.0, 143.8, 141.3, 127.8,

127.1, 124.9, 120.0, 81.9, 67.9, 54.4, 51.3, 47.2, 41.6, 29.6, 28.0, 25.0, 22.8, 22.0, 13.7. HRMS m/z (ESI) calcd for C₂₉H₃₈N₂NaO₅⁺ [M+H]⁺: 517.2673, found:517.2665.

methyl N-(N-(((9H-fluoren-9-yl)methoxy)carbonyl)-N-methyl-L-alanyl)-Nmethyl-L-leucinate (7y)

Yellow oil, 94% yield, $R_f = 0.6$ (PE/EA = 4:1). ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.89 (d, J = 7.3 Hz, 2H), 7.63 (t, J = 6.8 Hz, 2H), 7.42 (t, J = 7.4 Hz, 2H), 7.38 – 7.29 (m, 2H), 5.09 – 4.48 (m, 3H), 4.47 – 4.09 (m, 2H), 3.61 (s, 3H), 2.87 – 2.54 (m, 3H), 2.51 – 2.34 (m, 2H), 1.87 – 1.51 (m, 2H), 1.35 – 1.21 (m, 1H), 1.11 (d, J = 6.7 Hz, 2H), 0.99 – 0.73 (m, 7H). ¹³C {H} NMR (75 MHz, DMSO-*d*₆) δ 172.0, 171.8, 171.5, 170.5, 155.5, 144.2, 141.3, 128.1, 128.0, 127.5, 125.3, 125.2, 125.1, 120.6, 120.5, 66.9, 56.8, 55.0, 52.4, 51.5, 51.1, 47.4, 38.2, 37.1, 31.4, 29.7, 29.5, 29.1, 28.7, 24.9, 24.8, 23.6, 23.2, 21.8, 21.4, 14.9, 14.6. HRMS m/z (ESI) calcd for C₂₇H₃₅N₂O₅⁺ [M+H]⁺: 467.2540, found: 467.2532.

methyl (((9H-fluoren-9-yl)methoxy)carbonyl)-L-alanyl-L-prolinate (7z)¹⁶

Colorless oil, 91% yield, $R_f = 0.2$ (PE/EA = 2:1). ¹H NMR (300 MHz, CDCl₃) δ 7.64 (d, J = 7.5 Hz, 2H), 7.49 (dd, J = 7.5, 2.9 Hz, 2H), 7.28 (t, J = 7.4 Hz, 2H), 7.19 (t, J = 7.5 Hz, 2H), 5.77 (d, J = 8.0 Hz, 1H), 4.54 – 4.37 (m, 2H), 4.31 – 4.16 (m, 2H), 4.10 (t, J = 7.2 Hz, 1H), 3.69 – 3.38 (m, 5H), 2.20 – 2.02 (m, 1H), 2.01 – 1.75 (m, 3H), 1.32 (d, J = 6.8 Hz, 3H). ¹³C{H} NMR (75 MHz, CDCl₃) δ 172.3, 171.3, 155.7, 143.9, 143.8, 141.2, 127.7, 127.1, 125.2, 119.9, 67.0, 58.8, 52.3, 48.3, 47.1, 46.8, 28.9, 24.9, 18.3.

Colorless oil, 90% yield, $R_f = 0.2$ (PE/EA = 1:1). ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.19 (d, *J* = 7.7 Hz, 1H), 7.89 (d, *J* = 7.5 Hz, 2H), 7.79 – 7.67 (m, 2H), 7.56 (d, *J* = 7.7 Hz, 1H), 7.42 (t, *J* = 7.4 Hz, 2H), 7.34 (d, *J* = 7.4 Hz, 2H), 5.09 (t, *J* = 5.5 Hz, 1H), 4.40 – 4.32 (m, 1H), 4.30 – 4.13 (m, 4H), 3.77 – 3.68 (m, 1H), 3.62 (s, 4H), 1.23 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (75 {H} MHz, DMSO-*d*₆) δ 172.9, 171.1, 155.7, 143.9, 143.8, 140.7, 127.7, 127.1, 125.3, 120.1, 65.6, 61.3, 54.6, 51.9, 49.7, 46.7, 18.3. HRMS m/z (ESI) calcd for C₂₂H₂₅N₂O₆⁺ [M+H]⁺: 413.1707, found: 413.1717.

tert-butyl (((9H-fluoren-9-yl)methoxy)carbonyl)-L-alanyl-L-glutaminate (7ab)⁸

White solid, 93% yield, $R_f = 0.3$ (PE/EA = 4:1). ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.13 (d, J = 7.2 Hz, 1H), 7.82 (d, J = 7.4 Hz, 2H), 7.73 – 7.61 (m, 2H), 7.47 (d, J = 7.7 Hz, 1H), 7.35 (t, J = 7.3 Hz, 2H), 7.31 – 7.19 (m, 3H), 6.75 (s, 1H), 4.18 (d, J = 6.7 Hz, 3H), 4.10 – 3.93 (m, 2H), 2.10 (t, J = 7.5 Hz, 2H), 1.87 (dd, J = 14.9, 7.3 Hz, 1H), 1.73 (dt, J = 13.9, 8.0 Hz, 1H), 1.32 (s, 9H), 1.19 (d, J = 7.0 Hz, 3H). ¹³C{H} NMR (75 MHz, DMSO-*d*₆) δ 173.8, 173.2, 171.4, 156.1, 144.4, 144.2, 141.2, 128.1, 127.5, 125.8, 120.5, 80.9, 66.1, 52.8, 50.1, 47.1, 31.6, 28.0, 27.1, 18.7.

methyl (((9H-fluoren-9-yl)methoxy)carbonyl)-L-alanyl-L-tyrosinate (7ac)

White solid, 99% yield, $R_f = 0.2$ (PE/EA = 1:1). ¹H NMR (300 MHz, DMSO-*d*₆) δ 10.93 (s, 1H), 8.45 – 8.23 (m, 1H), 7.88 (d, *J* = 7.5 Hz, 2H), 7.75 (t, *J* = 6.8 Hz, 2H), 7.63 – 7.48 (m, 2H), 7.50 – 7.26 (m, 5H), 7.30 – 7.16 (m, 1H), 7.09 (t, *J* = 7.5 Hz, 1H), 7.01 (t, *J* = 7.4 Hz, 1H), 4.59 (q, *J* = 7.1 Hz, 1H), 4.42 – 4.09 (m, 4H), 3.58 (s, 3H), 3.30 – 3.04 (m, 2H), 1.27 (d, *J* = 7.0 Hz, 3H). ¹³C{H} NMR (75 MHz, DMSO-*d*₆) δ 173.0, 172.3, 156.3, 155.9, 144.2, 144.1, 141.0, 130.3, 127.9, 127.4, 127.3, 125.6, 120.4, 115.4, 65.9, 54.3, 52.1, 50.0, 47.0, 36.2, 18.5. HRMS m/z (ESI) calcd for C₂₈H₂₉N₂O₆⁺ [M+H]⁺: 489.2020, found: 489.2010.

methyl (((9H-fluoren-9-yl)methoxy)carbonyl)-L-alanyl-L-tryptophanate (7ad)

White solid, 90% yield, $R_f = 0.3$ (PE/EA = 2:1). ¹H NMR (300 MHz, DMSO-*d*₆) δ 10.93 (s, 1H), 8.46 – 8.22 (m, 1H), 7.88 (d, *J* = 7.5 Hz, 2H), 7.75 (t, *J* = 6.9 Hz, 2H), 7.54 (dd, *J* = 12.6, 7.9 Hz, 2H), 7.37 (dq, *J* = 15.7, 7.5 Hz, 5H), 7.23 (s, 0H), 7.09 (t, *J* = 7.5 Hz, 1H), 7.01 (t, *J* = 7.4 Hz, 1H), 4.59 (q, *J* = 7.1 Hz, 1H), 4.39 – 4.08 (m, 4H), 3.58 (s, 3H), 3.30 – 3.03 (m, 2H), 1.27 (d, *J* = 7.1 Hz, 3H). ¹³C {H} NMR (75 MHz, DMSO-*d*₆) δ 173.2, 172.7, 156.1, 144.4, 144.2, 141.2, 136.5, 128.1, 127.5, 125.8, 124.2, 121.4, 120.5, 118.9, 118.4, 111.9, 109.7, 66.1, 53.6, 52.3, 50.2, 47.1, 27.5, 18.7. HRMS m/z (ESI) calcd for C₃₀H₃₀N₃O₅⁺ [M+H]⁺: 512.2180, found: 512.2173.

(9H-fluoren-9-yl)methyl ((S)-1-(((S)-1-amino-1-oxopropan-2-yl)amino)-1oxopropan-2-yl)carbamate (7ae)

White solid, 91% yield, $R_f = 0.3$ (PE/EA = 4:1). ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.08 (s, 1H), 7.90 (d, *J* = 6.2 Hz, 2H), 7.73 (s, 2H), 7.64 (s, 1H), 7.53 - 7.21 (m, 5H), 7.09 S27

(s, 1H), 4.39 – 4.11 (m, 4H), 4.05 (s, 1H), 1.31 – 1.10 (m, 6H); ¹³C {H} NMR (75 MHz, DMSO-*d*₆) δ 174.6, 172.6, 156.3, 144.2, 141.1, 128.1, 127.5, 125.7, 120.6, 66.1, 50.6, 48.4, 47.0, 18.7, 18.3. HRMS m/z (ESI) calcd for C₂₁H₂₃N₃NaO₄⁺ [M+H]⁺: 404.1581, found: 404.1574.

tert-butyl ((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanoyl)-L-leucinate (7af)

Yellow solid, 94% yield, $R_f = 0.55$ (PE/EA = 5:1). ¹H NMR (300 MHz, CDCl₃) δ 6.01 (d, J = 8.3 Hz, 1H), 5.24 (d, J = 9.5 Hz, 1H), 4.56 – 4.40 (m, 1H), 3.81 (d, J = 9.5 Hz, 1H), 1.69 – 1.53 (m, 2H), 1.52 – 1.46 (m, 1H), 1.44 (s, 9H), 1.41 (s, 9H), 0.99 (s, 9H), 0.91 (d, J = 5.9 Hz, 6H). ¹³C{H} NMR (75 MHz, CDCl₃) δ 171.7, 170.5, 155.8, 81.8, 79.6, 62.5, 51.4, 41.9, 34.5, 28.3, 27.9, 26.5, 24.8, 22.7, 22.1. HRMS m/z (ESI) calcd for C₂₁H₄₁N₂O₅⁺ [M+H]⁺: 401.3010, found:401.2999.

tert-butyl 2-(2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2methylpropanamido)-2-methylpropanoate (7ag)⁸

White solid, 91% yield, $R_f = 0.4$ (PE/EA = 3:1). ¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, J = 7.4 Hz, 2H), 7.62 (d, J = 7.3 Hz, 2H), 7.40 (t, J = 7.3 Hz, 2H), 7.32 (t, J = 7.4 Hz, 2H), 6.95 (s, 1H), 5.66 (s, 1H), 4.40 (d, J = 6.2 Hz, 2H), 4.22 (t, J = 6.7 Hz, 1H), 1.54 (s, 12H), 1.46 (s, 9H). ¹³C{H} NMR (75 MHz, CDCl₃) δ 173.8, 173.3, 155.0, 143.9, 141.3, 127.7, 127.1, 125.1, 120.0, 81.6, 66.5, 56.9, 56.8, 47.2, 27.8, 25.3, 24.2.

Leuphasyl (L-Ala) (7ah)

A 10 mL round-bottomed flask was charged with **1ah** (Cbz-*L*-Tyr(O'Bu)-*L*-Ala-Gly-OH, 0.30 mmol), **TFPN** (0.36 mmol), DIPEA (0.36 mmol) and DMF (1 mL). The reaction solution was stirred at room temperature for 10 min. Then amine **5** (NH₂-*L*-Phe-*L*-Leu-O'Bu, 0.36 mmol) was added to the above solution and the reaction mixture was stirred at room temperature under air until the acyl fluoride intermediate was fully consumed. After these reactions were finished, water (20 mL) was added followed by EtOAc (3 x 10 mL), and the layers were separated. Combined organic layers were washed with brine (1 x 20 mL), dried over Na₂SO₄, filtered, and concentrated in vacuum. The crude product was purified by silica gel chromatography to afford **7ah**.

White solid, 92% yield, $R_f = 0.3$ (DCM/MeOH = 10:1). ¹H NMR (300 MHz, CDCl₃) δ 8.44 – 7.47 (m, 3H), 7.39 – 7.23 (m, 5H), 7.25 – 6.87 (m, 8H), 6.81 (d, *J* = 7.2 Hz, 2H), 6.64 (s, 1H), 5.31 (s, 1H), 5.13 (d, *J* = 12.3 Hz, 2H), 5.00 (d, *J* = 12.4 Hz, 1H), 4.83 (s, 1H), 4.52 (s, 2H), 3.90 (d, *J* = 16.6 Hz, 1H), 3.23 – 2.77 (m, 4H), 2.10 – 1.84 (m, 1H), 1.70 – 1.54 (m, 2H), 1.49 – 1.36 (m, 12H), 1.27 (s, 9H), 0.95 – 0.79 (m, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 172.8, 172.1, 171.4, 170.7, 168.5, 156.5, 154.2, 136.9, 136.6, 131.8, 130.0, 129.7, 128.4, 128.3, 128.0, 127.9, 126.7, 124.1, 81.8, 78.3, 66.8, 56.2, 53.8, 51.5, 48.6, 43.2, 42.0, 39.7, 28.9, 28.1, 25.0, 22.7, 22.6, 20.7. HRMS m/z (ESI) calcd for C₄₅H₆₂N₅O₉⁺ [M+H]⁺: 816.4542, found: 816.4536.

The synthesis of protected Leu-enkephalin

Boc-L-Phe-L-Leu-OMe (8) ¹⁷:

A 10 mL round-bottomed flask was charged with **Boc-***L***-Phe-OH** (10 mmol, 2.65 g), **TFPN** (11 mmol), DIPEA (12 mmol) and DMF (15 mL). The reaction solution was stirred at room temperature for 10 min. Then amine **5** (NH₂-*L*-Leu-OMe, 12 mmol) was added to the above solution and the reaction mixture was stirred at room temperature under air until the acyl fluorides intermediates was fully consumed. After these reactions were finished, water (50 mL) was added followed by EtOAc (3 x 20 mL) and the layers were separated. Combined organic layers was washed with brine (1 x 30 mL), dried over Na₂SO₄, filtered and concentrated in vacuum. The crude product was purified by silica gel chromatography to afford **8** (93%, 3.65g).

¹H NMR (300 MHz, CDCl₃) δ 7.38 – 7.14 (m, 5H), 6.28 (s, 1H), 5.02 (s, 1H), 4.69 – 4.49 (m, 1H), 4.45 – 4.25 (m, 1H), 3.69 (s, 3H), 3.07 (d, *J* = 6.4 Hz, 2H), 1.64 – 1.45 (m, 3H), 1.42 (s, 9H), 0.90 (t, *J* = 5.0 Hz, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 172.8, 170.9, 155.4, 136.6, 129.4, 128.6, 126.9, 80.2, 55.6, 52.3, 50.7, 41.6, 38.0, 28.2, 24.6, 22.8, 21.9.

Boc-Gly-L-Phe-L-Leu-OMe (9) 17:

8 (7.2 mmol, 2.82 g) was dissolved in 10 mL of DCM and TFA (6 mL) was added dropwise at 0 °C. The mixture was allowed to warm to room temperature and stirred for 4 h. After the reaction was finished, the solvent was removed under reduced pressure. Then NaHCO₃ (30 mL, 2 M) was added and extracted with DCM (3 x 20 mL). The combined organic layers were washed with water (50 mL), brine (30 mL), dried over Na₂SO₄, filtered, and concentrated in vacuum. The crude product was used for further reaction without purification.

A 10 mL round-bottomed flask was charged with **Boc-Gly-OH** (6.0 mmol, 1.05 g), **TFPN** (6.6 mmol), DIPEA (7.2 mmol), and DMF (15 mL). The reaction solution was stirred at room temperature for 10 min. Then the crude amine (6.6 mmol) was added to the above solution and the reaction mixture was stirred at room temperature under air until the acyl fluoride intermediate was fully consumed. After these reactions were finished, water (40 mL) was added followed by EtOAc (3 x 20 mL), and the layers were separated. Combined organic layers were washed with brine (1 x 30 mL), dried over Na₂SO₄, filtered, and concentrated in vacuum. The crude product was purified by silica gel chromatography to afford **9** (96%, 2.59 g).

¹H NMR (300 MHz, CDCl₃) δ 7.34 – 7.23 (m, 3H), 7.23 – 7.17 (m, 2H), 6.95 – 6.72 (m, 1H), 6.69 – 6.38 (m, 1H), 5.22 (s, 1H), 4.73 (d, *J* = 6.0 Hz, 1H), 4.62 – 4.44 (m, 1H), 3.77 (s, 2H), 3.69 (s, 3H), 3.22 – 2.91 (m, 2H), 1.66 – 1.47 (m, 4H), 1.43 (s, 9H), 0.88 (d, *J* = 4.2 Hz, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 172.8, 170.5, 169.5, 156.1, 136.4, 129.5, 128.7, 127.2, 80.5, 54.2, 52.4, 51.0, 44.5, 41.3, 38.2, 28.4, 24.8, 22.8, 22.0.

Boc-Gly-Gly-L-Phe-L-Leu-OMe (10) 17:

9 (3.6 mmol, 1.12 g) was dissolved in 5 mL of DCM and TFA (3 mL) was added dropwise at 0 °C. The mixture was allowed to warm to room temperature and stirred for 4 h. After the reaction was finished, the solvent was removed under reduced pressure. Then NaHCO₃ (20 mL, 2 M) was added and extracted with DCM (3 x 15 mL). The combined organic layers were washed with water (30 mL), brine (30 mL), dried over Na₂SO₄, filtered, and concentrated in vacuum. The crude product was used for further reaction without purification.

A 10 mL round-bottomed flask was charged with **Boc-Gly-OH** (3.0 mmol, 0.53 g), **TFPN** (3.3 mmol), DIPEA (3.6 mmol), and DMF (15 mL). The reaction solution was stirred at room temperature for 10 min. Then the crude amine (3.6 mmol) was added to the above solution and the reaction mixture was stirred at room temperature under air until the acyl fluoride intermediate was fully consumed. After these reactions were finished, water (30 mL) was added followed by EtOAc (3 x 20 mL), and the layers were separated. Combined organic layers were washed with brine (1 x 30 mL), dried over Na₂SO₄, filtered, and concentrated in vacuum. The crude product was purified by silica gel chromatography to afford **10** (90%, 1.37 g).

¹H NMR (300 MHz, CDCl₃) δ 8.01 – 7.54 (m, 3H), 7.30 – 7.06 (m, 5H), 5.90 (s, 1H), 5.04 (s, 1H), 4.59 (s, 1H), 4.18 – 3.84 (m, 4H), 3.71 (s, 3H), 3.24 – 3.05 (m, 1H), 2.96 (s, 1H), 1.71 – 1.56 (m, 3H), 1.45 (s, 9H), 0.90 (s, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 173.1, 171.4, 169.9, 168.6, 156.2, 136.5, 129.4, 128.3, 126.8, 79.8, 54.2, 52.2, 50.9, 43.7, 42.9, 40.9, 39.0, 28.4, 24.8, 22.7, 21.9.

Fmoc-L-Tyr(O'Bu)-Gly-Gly-L-Phe-L-Leu-OMe (11):

10 (0.48 mmol, 0.243 g) was dissolved in 1 mL of DCM, and TFA (1 mL) was added dropwise at 0 °C. The mixture was allowed to warm to room temperature and stirred for 4 h. After the reaction was finished, the solvent was removed under reduced pressure. Then NaHCO₃ (10 mL, 2 M) was added and extracted with DCM (3 x 10 mL). The combined organic layers were washed with water (10 mL), brine (10 mL), dried over Na₂SO₄, filtered, and concentrated in vacuum. The crude product was used for further reaction without purification.

A 10 mL round-bottomed flask was charged with Fmoc-*L*-Tyr(O'Bu)-OH (0.4 mmol, 0.15 g), **TFPN** (0.44 mmol), DIPEA (0.48 mmol) and DMF (1 mL). The reaction solution was stirred at room temperature for 10 min. Then the crude amine (0.48 mmol) was added to the above solution and the reaction mixture was stirred at room temperature under air until the acyl fluoride intermediate was fully consumed. After these reactions were finished, water (20 mL) was added followed by EtOAc (3 x 10 mL) and the layers were separated. Combined organic layers were washed with brine (1 x 10 mL), dried over Na₂SO₄, filtered, and concentrated in vacuum. The crude product was purified by silica gel chromatography to afford **14** (92%, 0.31 g).

¹H NMR (300 MHz, CDCl₃) δ 8.67 – 7.92 (m, 3H), 7.69 (d, *J* = 7.8 Hz, 3H), 7.57 (d, *J* = 7.0 Hz, 1H), 7.47 – 7.14 (m, 5H), 7.13 – 6.87 (m, 8H), 6.75 (d, *J* = 7.7 Hz, 2H), 5.34 (s, 1H), 5.01 (s, 1H), 4.69 (s, 1H), 4.61 – 4.44 (m, 1H), 4.45 – 4.03 (m, 6H), 3.29 (s, 3H), 3.19 – 2.79 (m, 4H), 1.64 – 1.34 (m, 3H), 1.15 (s, 9H), 0.78 (s, 6H). ¹³C {H} NMR (75 MHz, CDCl₃) δ 172.9, 172.0, 170.6, 168.5, 168.1, 156.3, 154.1, 144.2, 143.8, 141.2, 136.4, 131.5, 130.0, 129.6, 128.1, 127.6, 127.0, 126.6, 125.6, 125.3, 123.9, 119.8, 78.1, 67.3, 55.5, 53.9, 51.8, 50.6, 46.9, 43.7, 43.3, 41.6, 39.9, 39.6, 28.7, 24.8, 22.6, 22.3. HRMS m/z (ESI) calcd for C₄₈H₅₈N₅O₉⁺ [M+H]⁺: 848.4229, found: 848.4224.

HPLC studies for determining epimerization with Ser, Asn, Asp

HPLC Studies for Determining Racemization of 7k

HPLC condition: Chiralpak®IC 250×4.6 mm column; hexanes (solvent A): isopropanol (solvent B); isocratic 15% solvent B in 30 min; flow rate = 1.0 mL/min; detection wavelength = 254 nm.

Peak No	RT (min)	Area (%)	Area	Height (mAU)
1	21.877	49.64	615.1429	2250.94
2	23.537	50.36	624.0292	2095.08
Total:		100.00	1239.1721	4346.02

(1)) Mixed	HPLC	data	of 7k	and	7k'
-----	---------	------	------	-------	-----	-----

(2) Crude HPLC data of reaction mixture for preparing compound 7k

Peak No	RT (min)	Area (%)	Area	Height (mAU)
1	23.643	100.00	236.0804	910.23
Total:		100.00	236.0804	910.23

(3) Pure HPLC data of 7k

Peak No	RT (min)	Area (%)	Area	Height (mAU)
1	23.537	100.00	538.4030	1875.91
Total:		100.00	538.4030	1875.91

HPLC Studies for Determining Racemization of 7q

HPLC condition: Chiralpak®IC 250×4.6 mm column; hexanes (solvent A): isopropanol (solvent B); isocratic 15% solvent B in 35 min; flow rate = 1.0 mL/min; detection wavelength = 254 nm.

Peak No	RT (min)	Area (%)	Area	Height (mAU)
1	19.140	48.95	203.2103	365.79
2	21.363	51.05	211.9121	334.10
Total:		100.00	415.1224	699.89

(1) Mixed HPLC data of 7q and 7q'

(2) Crude HPLC data of reaction mixture for preparing compound 7q

Peak No	RT (min)	Area (%)	Area	Height (mAU)
1	19.553	0.40	5.4583	22.92
2	21.743	99.60	1367.4906	1778.45
Total:		100.00	1372.9489	1801.37

(3) Pure HPLC data of 7q

Peak No	RT (min)	Area (%)	Area	Height (mAU)
1	19.227	0.49	5.1248	11.54
2	21.010	99.51	1045.5387	1499.59
Total:		100.00	1050.6635	1511.13

HPLC Studies for Determining Racemization of 7t

HPLC condition: Chiralpak®IC 250×4.6 mm column; hexanes (solvent A): isopropanol (solvent B); isocratic 15% solvent B in 35 min; flow rate = 1.0 mL/min; detection wavelength = 254 nm.

Peak No	RT (min)	Area (%)	Area	Height (mAU)
1	19.750	53.13	853.7111	1248.72
2	21.503	46.87	753.2121	844.08
Total:		100.00	1606.9232	2092.80

(1) Mixed HPLC data of 7t and 7t'

(2) Crude HPLC data of reaction mixture for preparing compound 7t

Peak No	RT (min)	Area (%)	Area	Height (mAU)
1	19.507	0.04	0.3512	0.85
2	21.953	99.96	937.0125	1078.06
Total:		100.00	937.3637	1078.92

(3) Pure HPLC data of 7t

Peak No	RT (min)	Area (%)	Area	Height (mAU)
1	20.633	0.02	0.2424	19.25
2	21.343	99.98	1172.9898	1341.83
Total:		100.00	1173.2322	1361.08

Procedures for the synthesis of peptides on resin (SPPS)

General procedure for incorporating the first amino acid on the solid support (2-CTC resin)

2-CTC resin (39.0 mg, 0.03 mmol) with a loading of 0.77 mmol/g was placed in a 5.0 mL fritted syringe, and the resin was swollen in DCM (2 mL) for 30 min. Then the syringe was drained, and Fmoc-Gly-OH (0.09 mmol 3.0 equiv.), DIPEA (18.2 mg, 6.0 equiv.), and 2 mL of a 1:1 DMF/DCM mixture (v/v) were added to the fritted syringe. The loading reaction was left to proceed for 2 h at room temperature before the syringe was drained. Then, the resin was washed with DMF (4 × 2 mL) and DCM (4 × 2 mL).

General procedure for incorporating the first amino acid on the solid support (MBHA resin)

MBHA resin (0.03 mmol) with a loading of 0.79 mmol/g was placed in a 5.0 mL fritted syringe. The resin was successively swollen in DCM (2 mL) for 30 min, then drained and treated with a solution (2 mL) of piperidine: DMF (20:80, v/v, 20% piperidine in DMF) for 5 min before being drained. The solution was added again for 15 min, then drained and the resin was washed with DMF (4×2 mL) and DCM (4×2 mL). A 5 mL tube was charged with Fmoc-Xaa-OH (0.09 mmol), TFPN (0.09 mmol), DIPEA (0.11 mmol), and DMF (1 mL). The reaction solution was reacted at room temperature for 10 min. Then this solution was added to the fritted syringe. The loading reaction was left to proceed until the resin gave a negative color test. Then, the resin was washed with DMF (4×2.0 mL) and DCM (4×2.0 mL) before being drained.

General procedure for removing Fmoc-protection group

The solution of 20% piperidine in DMF (1 mL) was added to the fritted syringe to react for 5 min before being drained. A further 1 mL of 20% piperidine was added to react for 15 min. Then, the resin was again carefully washed with DMF (4×2 mL) and DCM (4×2 mL) before being drained.

General procedure for peptide elongation

A 5 mL tube was charged with Fmoc-Xaa-OH (0.09 mmol), TFPN (0.09 mmol), DIPEA (0.11 mmol), and DMF (1 mL). The reaction solution was reacted at room temperature for 10 min. Then this solution was added to the fritted syringe. The loading reaction was left to proceed until the resin gave a negative color test. Then, the resin was washed with DMF (4×2.0 mL) and DCM (4×2.0 mL) before being drained.

General procedure of resin cleavage

The resin was washed with DCM (4 \times 2 mL) and diethyl ether (4 \times 2 mL) immediately after synthesis was completed. Cleavage was then performed with 0.5 mL of a freshly prepared TFA/TIS/H₂O (95:2.5:2.5) solution for 2 h. The resin was then filtered and washed with pure TFA (2 \times 0.5 mL). After combining the TFA solution, TFA was removed by Nitrogen, the residue was washed by ice-cold ether (4 \times 5 mL) and dissolved in MeCN/H₂O (1:1, 3 mL). This solution was analyzed by analytical RP-HPLC subsequently.

NH₂-Ala-Ala-Val-Gly-Phe-OH (12): HRMS m/z (ESI) calcd for $C_{22}H_{34}N_5O_6^+$ $[M+H]^+$: 464.2504, found: 464.2501.

HPLC condition: Jupiter 5 μ m C18 4.6 × 250 mm² column; 0.05% TFA (v/v) in H₂O (solvent A), 0.05% TFA (v/v) in MeCN (solvent B); gradient 10%-100% (solvent B) in 30 min; flow rate = 1.0 mL/min; detection wavelength = 214 nm.

100.00

484.4316

Total

NH₂-Tyr-Ala-Gly-Phe-Leu-OH (13): HRMS m/z (ESI) calcd for $C_{29}H_{40}N_5O_7^+$ [M+H]⁺: 570.2922, found: 570.2916.

HPLC condition: Jupiter 5 μ m C18 4.6 × 250 mm² column; 0.05% TFA (v/v) in H₂O (solvent A), 0.05% TFA (v/v) in MeCN (solvent B); gradient 10%-100% (solvent B) in 30 min; flow rate = 1.0 mL/min; detection wavelength = 214 nm.

NH₂-Tyr-Aib-Aib-Phe-Leu-NH₂ (14): HRMS m/z (ESI) calcd for $C_{32}H_{47}N_6O_6^+$ [M+H]⁺: 611.3552, found: 611.3549.

HPLC condition: Jupiter 5 μ m C18 4.6 × 250 mm² column; 0.05% TFA (v/v) in H₂O (solvent A), 0.05% TFA (v/v) in MeCN (solvent B); gradient 10%-100% (solvent B) in 30 min; flow rate = 1.0 mL/min; detection wavelength = 214 nm.

NH₂-Me-Ala-Tyr-Me-Ala-Gly-Phe-Leu-NH₂ (15): HRMS m/z (ESI) calcd for $C_{34}H_{50}N_7O_7^+$ [M+H]⁺: 668.3766, found: 668.3757.

HPLC condition: Jupiter 5 μ m C18 4.6 × 250 mm² column; 0.05% TFA (v/v) in H₂O (solvent A), 0.05% TFA (v/v) in MeCN (solvent B); gradient 10%-100% (solvent B) in 30 min; flow rate = 1.0 mL/min; detection wavelength = 214 nm.

NH2-Val-Gln-Ala-Ala-Ile-Asp-Tyr-Ile-Asn-Gly-OH (16): HRMS m/z (ESI) calcd for

 $C_{47}H_{75}N_{12}O_{16}^{+}$ [M+H]⁺: 1063.5419, found: 1063.5422.

HPLC condition: Jupiter 5 μ m C18 4.6 × 250 mm² column; 0.05% TFA (v/v) in H₂O (solvent A), 0.05% TFA (v/v) in MeCN (solvent B); gradient 10%-100% (solvent B) in 30 min; flow rate = 1.0 mL/min; detection wavelength = 214 nm.

NMR spectrum

Figure S1. ¹H NMR of compound **3a** in DMSO-*d*₆, 400 MHz for ¹H NMR.

Figure S2. ¹³C NMR of compound 3a in DMSO- d_6 , 100 MHz for ¹³C NMR.

Figure S3. ¹³F NMR of compound **3a** in DMSO- d_6 , 376 MHz for ¹³F NMR.

Figure S4. ¹H NMR of compound 4a in DMSO-*d*₆, 400 MHz for ¹H NMR.

Figure S5. ¹³C NMR of compound 4a in DMSO- d_6 , 100 MHz for ¹³C NMR.

Figure S6. ¹H NMR of compound 4b in DMSO-*d*₆, 400 MHz for ¹H NMR.

Figure S7. ¹³C NMR of compound 4b in DMSO- d_6 , 100 MHz for ¹³C NMR.

Figure S8. ¹H NMR of compound 6a in CDCl₃, 300 MHz for ¹H NMR.

Figure S9. ¹³C NMR of compound 6a in CDCl₃, 75 MHz for ¹³C NMR.

Figure S10. ¹H NMR of compound **6b** in CDCl₃, 300 MHz for ¹H NMR.

Figure S11. ¹³C NMR of compound 6b in CDCl₃, 75 MHz for ¹³C NMR.

Figure S12. ¹H NMR of compound 6c in CDCl₃, 300 MHz for ¹H NMR.

Figure S13. ¹³C NMR of compound 6c in CDCl₃, 75 MHz for ¹³C NMR.

Figure S14. ¹H NMR of compound 6d in CDCl₃, 300 MHz for ¹H NMR.

Figure S15. ¹³C NMR of compound 6d in CDCl₃, 75 MHz for ¹³C NMR.

Figure S16. ¹H NMR of compound 6e in CDCl₃, 300 MHz for ¹H NMR.

Figure S17. ¹³C NMR of compound 6e in CDCl₃, 75 MHz for ¹³C NMR.

Figure S18. ¹H NMR of compound 6f in CDCl₃, 300 MHz for ¹H NMR.

Figure S19. ¹³C NMR of compound 6f in CDCl₃, 75 MHz for ¹³C NMR.

Figure S10. ¹H NMR of compound 6g in CDCl₃, 300 MHz for ¹H NMR.

Figure S21. ¹³C NMR of compound 6g in CDCl₃, 75 MHz for ¹³C NMR.

Figure S22. ¹H NMR of compound 6h in CDCl₃, 300 MHz for ¹H NMR.

Figure S23. ¹³C NMR of compound 6h in CDCl₃, 75 MHz for ¹³C NMR.

Figure S24. ¹H NMR of compound 6i in CDCl₃, 300 MHz for ¹H NMR.

Figure S25. ¹³C NMR of compound 6i in CDCl₃, 75 MHz for ¹³C NMR.

Figure S26. ¹H NMR of compound 6j in CDCl₃, 300 MHz for ¹H NMR.

Figure S27. ¹³C NMR of compound 6j in CDCl₃, 75 MHz for ¹³C NMR.

Figure S28. ¹H NMR of compound 7a in CDCl₃, 300 MHz for ¹H NMR.

Figure S29. ¹³C NMR of compound 7a in CDCl₃, 75 MHz for ¹³C NMR.

Figure S30. ¹H NMR of compound 7b in CDCl₃, 300 MHz for ¹H NMR.

Figure S31. ¹³C NMR of compound 7b in CDCl₃, 75 MHz for ¹³C NMR.

Figure S32. ¹H NMR of compound 7c in CDCl₃, 300 MHz for ¹H NMR.

Figure S33. ¹³C NMR of compound 7c in CDCl₃, 75 MHz for ¹³C NMR.

Figure S34. ¹H NMR of compound 7d in CDCl₃, 300 MHz for ¹H NMR.

Figure S35. ¹³C NMR of compound 7d in CDCl₃, 75 MHz for ¹³C NMR.

Figure S36. ¹H NMR of compound 7e in CDCl₃, 300 MHz for ¹H NMR.

Figure S37. ¹³C NMR of compound 7e in CDCl₃, 75 MHz for ¹³C NMR.

Figure S38. ¹H NMR of compound 7f in CDCl₃, 300 MHz for ¹H NMR.

Figure S39. ¹³C NMR of compound 7f in CDCl₃, 75 MHz for ¹³C NMR.

Figure S40. ¹H NMR of compound 7g in CDCl₃, 300 MHz for ¹H NMR.

Figure S41. ¹³C NMR of compound 7g in CDCl₃, 75 MHz for ¹³C NMR.

Figure S42. ¹H NMR of compound 7h in CDCl₃, 300 MHz for ¹H NMR.

Figure S43. ¹³C NMR of compound 7h in CDCl₃, 75 MHz for ¹³C NMR.

Figure S44. ¹H NMR of compound 7i in CDCl₃, 300 MHz for ¹H NMR.

Figure S45. ¹³C NMR of compound 7i in CDCl₃, 75 MHz for ¹³C NMR.

Figure S46. ¹H NMR of compound 7j in CDCl₃, 300 MHz for ¹H NMR.

Figure S47. ¹³C NMR of compound 7j in CDCl₃, 75 MHz for ¹³C NMR.

Figure S48. ¹H NMR of compound 7k in CDCl₃, 300 MHz for ¹H NMR.

Figure S49. ¹³C NMR of compound 7k in CDCl₃, 75 MHz for ¹³C NMR.

Figure S50. ¹H NMR of compound 71 in CDCl₃, 300 MHz for ¹H NMR.

Figure S51. ¹³C NMR of compound 7l in CDCl₃, 75 MHz for ¹³C NMR.

Figure S52. ¹H NMR of compound 7m in CDCl₃, 300 MHz for ¹H NMR.

Figure S53. ¹³C NMR of compound 7m in CDCl₃, 75 MHz for ¹³C NMR.

Figure S54. ¹H NMR of compound 7n in CDCl₃, 300 MHz for ¹H NMR.

Figure S55 ¹³C NMR of compound 7n in CDCl₃, 75 MHz for ¹³C NMR.

Figure S56. ¹H NMR of compound 70 in CDCl₃, 300 MHz for ¹H NMR.

Figure S57. ¹³C NMR of compound 70 in CDCl₃, 75 MHz for ¹³C NMR.

Figure S58. ¹H NMR of compound 7p in CDCl₃, 300 MHz for ¹H NMR.

Figure S59. ¹³C NMR of compound 7p in CDCl₃, 75 MHz for ¹³C NMR.

Figure S60. ¹H NMR of compound 7q in CDCl₃, 300 MHz for ¹H NMR.

Figure S61. ¹³C NMR of compound 7q in CDCl₃, 75 MHz for ¹³C NMR.

Figure S62. ¹H NMR of compound 7r in CDCl₃, 300 MHz for ¹H NMR.

Figure S63. ¹³C NMR of compound 7r in CDCl₃, 75 MHz for ¹³C NMR.

Figure S64. ¹H NMR of compound 7s in CDCl₃, 300 MHz for ¹H NMR.

Figure S65. ¹³C NMR of compound 7s in CDCl₃, 75 MHz for ¹³C NMR.

Figure S66. ¹H NMR of compound 7t in CDCl₃, 300 MHz for ¹H NMR.

Figure S67. ¹³C NMR of compound 7t in CDCl₃, 75 MHz for ¹³C NMR.

Figure S68. ¹H NMR of compound 7u in CDCl₃, 300 MHz for ¹H NMR.

Figure S69. ¹³C NMR of compound 7u in CDCl₃, 75 MHz for ¹³C NMR.

Figure S70. ¹H NMR of compound 7v in CDCl₃, 300 MHz for ¹H NMR.

Figure S71. ¹³C NMR of compound 7v in CDCl₃, 75 MHz for ¹³C NMR.

Figure S72. ¹H NMR of compound 7w in CDCl₃, 300 MHz for ¹H NMR.

Figure S73. ¹³C NMR of compound 7w in CDCl₃, 75 MHz for ¹³C NMR.

Figure S74. ¹H NMR of compound 7x in CDCl₃, 300 MHz for ¹H NMR.

Figure S75. ¹³C NMR of compound 7x in CDCl₃, 75 MHz for ¹³C NMR.

Figure S76. ¹H NMR of compound 7y in DMSO-*d*₆, 300 MHz for ¹H NMR.

Figure S77. ¹³C NMR of compound 7y in DMSO-*d*₆, 75 MHz for ¹³C NMR.

Figure S78. ¹H NMR of compound 7z in CDCl₃, 300 MHz for ¹H NMR.

Figure S79. ¹³C NMR of compound 7z in CDCl₃, 75 MHz for ¹³C NMR.

Figure S80. ¹H NMR of compound 7aa in CDCl₃, 300 MHz for ¹H NMR.

Figure S81. ¹³C NMR of compound 7aa in CDCl₃, 75 MHz for ¹³C NMR.

Figure S82. ¹H NMR of compound 7ab in CDCl₃, 300 MHz for ¹H NMR.

Figure S83. ¹³C NMR of compound 7ab in CDCl₃, 75 MHz for ¹³C NMR.

Figure S84. ¹H NMR of compound 7ac in DMSO-*d*₆, 300 MHz for ¹H NMR.

Figure S85. ¹³C NMR of compound 7ac in DMSO-*d*₆, 75 MHz for ¹³C NMR.

Figure S86. ¹H NMR of compound 7ad in DMSO-*d*₆, 300 MHz for ¹H NMR.

Figure S87. ¹³C NMR of compound 7ad in DMSO-*d*₆, 75 MHz for ¹³C NMR.

Figure S88. ¹H NMR of compound 7ae in DMSO-*d*₆, 300 MHz for ¹H NMR.

Figure S89. ¹³C NMR of compound 7ae in DMSO-*d*₆, 75 MHz for ¹³C NMR.

Figure S90. ¹H NMR of compound 7af in CDCl₃, 300 MHz for ¹H NMR.

Figure S91. ¹³C NMR of compound 7af in CDCl₃ 75 MHz for ¹³C NMR.

Figure S92. ¹H NMR of compound 7ag in CDCl₃, 300 MHz for ¹H NMR.

Figure S93. ¹³C NMR of compound 7ag in CDCl₃, 75 MHz for ¹³C NMR.

Figure S94. ¹H NMR of compound 7ah in CDCl₃, 300 MHz for ¹H NMR.

Figure S95. ¹³C NMR of compound 7ah in CDCl₃, 75 MHz for ¹³C NMR.

Figure S96. ¹H NMR of compound 8 in CDCl₃, 300 MHz for ¹H NMR.

Figure S97. ¹³C NMR of compound 8 in CDCl₃, 75 MHz for ¹³C NMR.

Figure S98. ¹H NMR of compound 10 in CDCl₃, 300 MHz for ¹H NMR.

Figure S99. ¹³C NMR of compound 10 in CDCl₃, 75 MHz for ¹³C NMR.

Figure S100. ¹H NMR of compound 12 in CDCl₃, 300 MHz for ¹H NMR.

Figure S101. ¹³C NMR of compound 12 in CDCl₃, 75 MHz for ¹³C NMR.

Figure S102. ¹H NMR of compound 14 in CDCl₃, 300 MHz for ¹H NMR.

Figure S103. ¹³C NMR of compound 14 in CDCl₃, 75 MHz for ¹³C NMR.

Reference:

- 1. W. D. G. Brittain and S. L. Cobb, Carboxylic acid deoxyfluorination and one-pot amide bond formation using pentafluoropyridine (PFP), *Org. Lett.*, 2021, **23**, 5793.
- 2. L. Bao, Z. X. Wang and X. Y. Chen, Photoinduced N-heterocyclic nitreniumcatalyzed single electron reduction of acyl fluorides for phenanthridine synthesis, *Org. Lett.*, 2023, **25**, 565.
- 3. W. Xiong, Y. Wang, X. Yang and W. H. Liu, Selective hydrolysis of primary and secondary amides enabled by visible light, *Org. Lett.*, 2023, **25**, 2948.
- 4. S.-P. Wang, C. W. Cheung and J.-A. Ma, Direct Amidation of Carboxylic Acids with Nitroarenes, *J. Org. Chem.*, 2019, **84**, 13922.
- 5. J.-X. Liang, P.-F. Yang and W. Shu, Synthesis of (hetero)aryl/alkenyl Iodides via Ni-catalyzed finkelstein reaction from bromides or chlorides, *Organometallics*, 2022, **41**, 3795.
- M. D'Ascenzio, S. Carradori, D. Secci, D. Vullo, M. Ceruso, A. Akdemir and C. T. Supuran, Selective inhibition of human carbonic anhydrases by novel amide derivatives of probenecid: synthesis, biological evaluation and molecular modelling studies, *Bioorg. Med. Chem.*, 2014, 22, 3982.
- 7. D. Chen, L. Xu, B. Ren, Z. Wang and C. Liu, Triflylpyridinium as coupling reagent for rapid amide and ester synthesis, *Org. Lett.*, 2023, **25**, 4571.
- 8. Z. Wang, X. Wang, P. Wang and J. Zhao, Allenone-mediated racemization/epimerization-free peptide bond formation and its application in peptide synthesis, *J. Am. Chem. Soc.*, 2021, **143**, 10374.
- 9. K. Manzor and F. Kelleher, Synthesis of orthogonally protected thioamide dipeptides for use in solid-phase peptide synthesis, *Tetrahedron Lett.*, 2016, **57**, 5237.
- L. Gonnet, T. Tintillier, N. Venturini, L. Konnert, J.-F. Hernandez, F. Lamaty, G. Laconde, J. Martinez and E. Colacino, N-acyl benzotriazole derivatives for the synthesis of dipeptides and tripeptides and peptide biotinylation by mechanochemistry, ACS Sustainable Chem. Eng., 2017, 5, 2936.
- 11. L. Hu, S. Xu, Z. Zhao, Y. Yang, Z. Peng, M. Yang, C. Wang and J. Zhao, Ynamides as racemization-free coupling reagents for amide and peptide synthesis, *J. Am. Chem. Soc.*, 2016, **138**, 13135.
- Z. Yuan, M. B. Nodwell, H. Yang, N. Malik, H. Merkens, F. Benard, R. E. Martin, P. Schaffer and R. Britton, Site-selective, late-stage C-H (18) F-fluorination on unprotected peptides for positron emission tomography imaging, *Angew. Chem. Int. Ed.*, 2018, 57, 12733.
- 13. T. Liu, X. Zhang, Z. J. Peng and J. F. Zhao, Water-removable ynamide coupling reagent for racemization-free syntheses of peptides, amides, and esters, *Green Chem.*, 2021, **23**, 9916.
- 14. W. Muramatsu, H. Tsuji and H. Yamamoto, Catalytic peptide synthesis: amidation of N-hydroxyimino esters, *ACS Catal.*, 2018, **8**, 2181.

- T. G. Bolduc, C. Lee, W. P. Chappell and G. M. Sammis, Thionyl fluoridemediated one-pot substitutions and reductions of carboxylic acids, *J. Org. Chem.*, 2022, 87, 7308.
- 16. J. W. Ren, M. N. Tong, Y. F. Zhao and F. Ni, Synthesis of dipeptide, amide, and ester without racemization by oxalyl chloride and catalytic triphenylphosphine oxide, *Org. Lett.*, 2021, **23**, 7497.
- 17. M. Huang, J.-J. Li and C. Zhang, Halogen-bonding-mediated synthesis of amides and peptides, *Green Chem.*, 2023, **25**, 9187.