Supplemental Materials for

Copper-Catalyzed Allenynylative C–P Couplings of Diynylic Acetates with Hydrophosphoryl Compounds Leading to Phosphorylated Allenynes

Shaoqing Liu,^{a,} Kaixin Yin,^{a,} Yishuai Fan,^a Li-Biao Han^b and Ruwei Shen^{a,*}

^aState Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China

^bResearch Center of Advanced Catalytic Materials & Functional Molecular Synthesis, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China; Zhejiang Yangfan New Materials Co., Ltd., Shangyu 312369, Zhejiang Province, China

Email: shenrw@njtech.edu.cn

Contents

1.	General Information	S2
2.	Starting materials 1	S2
3.	Experimental predures and characterization data for the products 3-7	S5
4.	References	. S17
5.	Copies of ¹ H, ¹³ C and ³¹ P NMR spectra	. S17
6.	NOESY Spectra of 5	. S68

1. General Information

Unless otherwise specified, all reactions were performed in Schlenk flasks under dry N₂ atmosphere. All solvents were distilled prior to use using appropriate drying agents. Thin layer chromatography was performed on precoated glass-backed plates and visualized with UV light at 254 nm. Flash chromatography was performed on silica gel using petroleum ether and EtOAc as eluent. Proton nuclear magnetic resonance (1H NMR) spectra were recorded on a Bruker AscendTM 400 spectrometer at 400 MHz. Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker AscendTM 400 spectrometer at 100 MHz. Phosphorus nuclear magnetic resonance (³¹P NMR) spectra were recorded on a Bruker AscendTM 400 spectrometer at 160 MHz. Spectra were obtained in CDCl₃ or acetone-d6. Chemical shifts are expressed in ppm and J values are given in Hz. Proton chemical shifts are reported relative to internal tetramethylsilane (TMS, $\delta 0.0$ ppm), or with the solvent reference relative to TMS employed as an internal standard (CDCl₃, δ 7.26 ppm). Carbon chemical shifts were reported in ppm relative to TMS with the respective solvent resonance as the internal standard (CDCl₃, δ 77.0 ppm). Phosphorus chemical shifts were recorded using 85% phosphoric acid as the external standard. HRMS analysis was performed on an Agilent 6540 UHD accurate-mass quadrupole timeof-flight (Q-TOF) mass spectrometer in the electrospray ionization mode. Starting materials 1 were prepared following literature method and a general procedure was described as below.^[1] Hydrophosphoryl compounds were purchased from commercial source, or prepared via literature methods.^[2] Other chemicals were commercially available and used as received.

2. Starting materials 1

General procedure for the synthesis of diynylic acetates 1.^[1] To a 100 mL Schlenk flask was added CuCl (2.7 mmol, 30 mol%) and aq. *n*-BuNH₂ (30%wt, 25 mL) under N₂. Several pinchs of NH₂OH•HCl was added until a blue color disappeared. The mixture was cooled to 0 °C. Then, trimethylsilylacetylene (10.8 mmol, 1.2 equiv) and alkynyl bromide **S1** (9 mmol) in CH₂Cl₂(15 mL) were successively added dropwise. Approximately

every 2 minutes pinchs of NH₂OH•HCl was added, or when the solution developed a blue color. After the reaction was complete (monitored by TLC), the resulting suspension was filtered through Celite, and washed with DCM. The aqueous mixture was extracted with DCM (3×20 mL); the combined organic phases were washed with brine and dried over MgSO4. After filtration and concentration, the crude oil was dissolved in THF (10 mL) at 0 °C. Then, a solution of tetrabutylammonium fluoride trihydrate dissolved in THF (10 mL) was added dropwise. After stirring for 1.5 h, the reaction mixture was quenched with water (10 mL), and extracted with EtOAc (3×20 mL). The combined organic layers were washed with water and brine, and dried over MgSO4. A brown oil (S3) was obtained after filtration and concentration. The crude S3 was used without further purification. To the above crude S3 dissolved in CH₂Cl₂ (20 mL) was added triethylaminopyridine (DMAP, 0.2 equiv, 1.8 mmol) at 0 °C under N₂. Acetic anhydride (10 equiv) was added dropwise. The reaction was stirred overnight. The reaction was carefully quenched with aq. NaHCO₃ to be neutral, and the organic layer was separated. The aqueous phase was extracted with CH₂Cl₂ (3×20 mL). The combined organic layers were washed with water, brine, and dried with MgSO4. After filtration and concentration, the crude material was purified by column chromatography to afford diynylic acetates 1 as brown oil in moderate to good yields (52%-65%), which were stored below -30 °C under dark.

Characterization data of 1.

Ph AcO Me (m, 2H), 7.39-7.35 (m, 2H), 7.32-7.28 (m, 1H), 2.31 (s, 1H), 2.08 (s, 3H), 1.90 (s, 3H). $^{13}C NMR (CDCl_3, 100 MHz): \delta = 168.5, 141.6, 128.5, 128.1, 124.7, 75.3, 74.9, 71.5, 69.8, 67.4, 31.6, 21.5.$

2-(o-tolyl)hexa-3,5-diyn-2-yl acetate (1b): ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.64-7.62$ (m, 1H), 7.23–7.21 (m, 2H), 7.18–7.15 (m, 1H), 2.50 (s, 3H), 2.30 (s, 1H), 2.10 (s, 3H), 2.04 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 168.4$, 138.2, 134.7, 132.6, 128.3, 126.3, 126.0, 76.4, 75.4, 71.2, 70.0, 67.4, 28.5, 21.4, 21.0. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺

calcd for C₁₅H₁₄O₂Na⁺ 249.0886, found 249.0891.

2-(2,3-dimethylphenyl)hexa-3,5-divn-2-vl acetate (1c): ¹H NMR (CDCl₃, 400 MHz): δ Me = 7.53–7.50 (m, 1H), 7.15–7.09 (m, 2H), 2.39 (s, 3H), 2.29 (s, 1H), 2.28 (s, 3H), 2.08 (s, Me 3H), 2.07 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 168.4$, 138.7, 138.0, 133.6, 130.2, Me 125.4, 124.3, 76.5, 75.7, 71.0, 69.9, 67.5, 28.5, 21.4, 20.9, 16.8. HRMS (ESI/Q-TOF) m/z: ÓAc

 $[M+Na]^+$ calcd for C₁₆H₁₆O₂Na⁺ 263.1043, found 263.1050.

HRMS (ESI/Q-TOF) m/z: $[M+Na]^+$ calcd for $C_{16}H_{16}O_2Na^+$ 263.1043, found 263.1050.

2-(2-methoxyphenyl)hexa-3,5-diyn-2-ol (1e'): ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.43$ $(dd, J_1 = 7.6 Hz, J_2 = 2.0 Hz, 1H), 7.34-7.29 (m, 1H), 7.01-6.96 (m, 2H), 4.52 (s, 1H),$ MeO 3.96 (s, 3H), 2.19 (s, 1H), 1.90 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 156.9, 131.2,$ ÓН 129.5, 125.9, 121.1, 111.8, 79.5, 68.5, 67.8, 67.0, 55.8, 28.6. HRMS (ESI/Q-TOF) m/z: [M-H]⁻ calcd for C₁₃H₁₁O₂⁻ 199.0765, found 199.0759.

2-(2-bromophenyl)hexa-3,5-diyn-2-yl acetate (1f): ¹H NMR (CDCl₃, 400 MHz): $\delta =$ Br 7.86 (dd, $J_1 = 8.0$ Hz, $J_2 = 2.0$ Hz, 1H), 7.57 (dd, $J_1 = 8.0$ Hz, $J_2 = 2.0$ Hz, 1H), 7.36–7.32 Me (m, 1H), 7.17–7.13 (m, 1H), 2.32 (s, 1H), 2.13 (s, 3H), 2.06 (s, 3H). ¹³C NMR (CDCl₃, ÓAc 100 MHz): δ = 168.5, 138.5, 135.5, 129.6, 129.2, 127.5, 119.0, 76.1, 74.5, 71.8, 70.2, 67.3, 28.3, 21.1. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₁₁O₂BrNa⁺ 312.9835, found 312.9844.

2-(4-chlorophenyl)hexa-3,5-diyn-2-yl acetate (1g): ¹H NMR (CDCl₃, 400 MHz): $\delta =$ 7.47 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 2.32 (s, 1H), 2.07 (s, 3H), 1.87 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 168.4$, 140.2, 134.0, 128.6, 126.3, 74.7, 74.3, 71.7, 70.1, 67.1, 31.4, 21.4. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₁₁O₂ClNa⁺ 269.0340, found 269.0345.

128.1, 127.9, 125.5, 82.6, 72.8, 72.8, 69.0, 67.5, 40.5, 21.5, 17.8, 17.0. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₆H₁₆O₂Na⁺ 263.1043, found 263.1048.

 $\frac{1 - \text{cyclohexyl-1-phenylpenta-2,4-diyn-1-yl acetate (1i): }^{1}\text{H NMR (CDCl_3, 400 MHz): } \delta}{0 - 168.3, 139.9, 128.1, 127.8, 125.5, 82.1, 73.3, 72.8, 69.1, 67.6, 49.9, 27.8, 26.8, 26.04, 26.00, 25.98, 21.5.}$ HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₉H₂₀O₂Na⁺ 303.1356, found 303.1366.

Ph
OAc
$$1-cyclopentyl-1-phenylpenta-2,4-diyn-1-yl acetate (1j): {}^{1}H NMR (CDCl_{3}, 400 MHz):$$

$$\delta = 7.47 (d, J = 7.6 Hz, 2H), 7.35-7.31 (m, 2H), 7.28-7.24 (m, 1H), 2.55-2.46 (m, 1H),$$

$$2.26 (s, 1H), 2.06 (s, 3H), 1.90-1.22 (m, 8H). {}^{13}C NMR (CDCl_{3}, 100 MHz): \delta = 168.4,$$

140.9, 128.36, 127.9, 125.2, 82.1, 73.5, 72.3, 69.0, 67.6, 52.3, 28.6, 27.8, 25.7, 25.4, 21.5. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₈H₁₈O₂Na⁺ 289.1199, found 289.1206.

Ph Me OAc A-phenylocta-5,7-diyn-4-yl acetate (1k): ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.47$ (d, J = 7.6 Hz, 2H), 7.36–7.25 (m, 3H), 2.29 (s, 1H), 2.16–2.09 (m, 1H), 2.07 (s, 3H), 1.98–1.90 (m, 1H), 1.58–1.48 (m, 1H), 1.32–1.24 (m, 1H), 0.89 (d, J = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 168.4$, 140.8, 128.4, 128.0, 125.0, 78.8, 74.3, 72.2, 69.5, 67.5, 46.3, 21.5, 17.5, 13.8. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₆H₁₆O₂Na⁺ 263.1043, found 263.1048.

Ph Ph OAc I,1-diphenylpenta-2,4-diyn-1-yl acetate (11):^[1] ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.47$ (d, J = 7.6 Hz, 4H), 7.34–7.26 (m, 6H), 2.33 (s, 1H), 2.16 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 168.0, 141.4, 128.4, 128.2, 126.2, 79.0, 74.0, 73.8, 70.6, 67.4, 21.6.$

3. Experimental preedures and characterization data for the products 3-7

General procedure for the copper-catalyzed reactions of diynylic acetates with hydrophosphoryl compounds. To an oven-dried Schlenk tube (10 mL) with Teflon plug valves were added CuI (0.04 mmol). The Schlenk tube was then evacuated and back-filled with N₂ (3 cycles). Degassed dry MeOH (0.5 mL), and TMEDA (0.044 mmol) was sequentially injected under N₂ atmosphere at room temperature. The solution was stirred for 15 min and then cooled to 0 °C. *i*-Pr₂NEt (0.4 mmol) was added. Hydrophosphoryl compound **2** (0.2

mmol) and diynylic acetates 1 (1.2 equiv) in MeOH (1.5 mL) were then injected with stirring. The tube was sealed and the resulting mixture was stirred at 0 °C for 15-60 min (monitored by TLC). The reaction mixture was filtrated over celite and the the filtrate was concentrated to dryness with silica gel. The powder residue was purified by column chromatography on silica gel (PE/EtOAc 10/1 to 1/1) to afford phosphorylated allenynes 3. Note: the obtained products 3 were generally not very stable, and should be storred below - 30 °C under dark or used immediately for synthetic purpose.

Diphenyl(5-phenylhexa-3,4-dien-1-yn-1-yl)phosphine oxide (3a): 0.2 mmol scale. Yield: 53.8 mg, 76%. Yellow slurry gum. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.86-7.81$ (m, 4H), 7.53–7.44 (m, 6H), 7.37–7.35 (m, 4H), 7.29–7.27 (m, 1H), 5.86

 $(dq, J_{P-H} = J_{H-H} = 2.8 \text{ Hz}, 1\text{H}), 2.17 (d, J = 2.8 \text{ Hz}, 3\text{H}).$ ¹³C NMR (CDCl₃, 100 MHz): $\delta = 216.3 (d, J_{C-P} = 2.9 \text{ Hz}), 134.1, 133.0 (d, J_{C-P} = 121.5 \text{ Hz}), 132.2 (d, J_{C-P} = 3.2 \text{ Hz}), 131.0 (d, J_{C-P} = 11.0 \text{ Hz}), 128.7, 128.6 (d, J_{C-P} = 10.2 \text{ Hz}), 128.0, 126.4, 104.9, 99.3 (d, J_{C-P} = 29.6 \text{ Hz}), 83.0 (d, J_{C-P} = 169.6 \text{ Hz}), 76.1 (d, J_{C-P} = 4.7 \text{ Hz}), 16.4.$ ³¹P NMR (CDCl₃, 160 MHz): $\delta = 8.3$. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₄H₂₀OP⁺ 355.1246, found 355.1252.

Diphenyl(5-(o-tolyl)hexa-3,4-dien-1-yn-1-yl)phosphine oxide (3b): 1.6 mmol scale reaction. To an ovendried Schlenk tube (10 mL) with Teflon plug valves were added CuI (0.32 mmol, 60.8 mg). The Schlenk tube was then evacuated and back-filled with N₂ (3 cycles). Degassed dry MeOH (1 mL), and TMEDA (0.35 mmol, 52 μ L) was sequentially injected under N₂ atmosphere at room temperature. The solution was stirred for 15 min and then cooled to 0 °C. *i*-Pr₂NEt (3.2 mmol, 640 μ L) was injected. Diphenylphosphine oxide **2a** (1.6 mmol, 323.2 mg) and diynylic acetates **1b** (1.92 mmol, 434.5 mg) in degassed MeOH (3 mL) were then injected under nitrogen with vigorous stirring. The tube was sealed and the resulting mixture was stirred at 0 °C for 60 min (monitored by TLC, see figure above). After filtration over celite, the filtrate was concentrated to dryness with silica gel powder. The powder residue was purified by column chromatography on silica gel (PE/EtOAc 10/1 to 3/1) to afford 430.3 mg of **3b** (73% yield). Yellow slurry gum. ¹H NMR (CDCl₃, 400 MHz): δ = 7.87–7.81 (m, 4H), 7.54–7.45 (m, 6H), 7.22–7.19 (m, 4H), 5.58 (dq, $J_{P-H} = J_{H-H} = 3.2$ Hz, 1H), 2.33 (s, 3H), 2.12 (d, J = 3.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 214.0 (d, $J_{C-P} = 2.9$ Hz), 135.9, 135.0, 133.10 (d, $J_{C-P} = 121.4$ Hz), 133.08 (d, $J_{C-P} = 121.4$ Hz), 132.2 (d, $J_{C-P} = 2.9$ Hz), 131.0 (d, $J_{C-P} = 11.2$ Hz), 130.8, 128.6 (d, $J_{C-P} = 12.6$ Hz), 127.9, 127.4, 126.2, 103.7, 99.8 (d, $J_{C-P} = 29.9$ Hz), 83.5 (d, $J_{C-P} = 170.6$ Hz), 73.6 (d, $J_{C-P} = 4.7$ Hz), 20.6, 20.0. ³¹P NMR (CDCl₃, 160 MHz): δ = 8.2. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₅H₂₂OP⁺ 369.1403, found 369.1408.

(5-(2,3-dimethylphenyl)hexa-3,4-dien-1-yn-1-yl)diphenylphosphine oxide (3c): 0.4 mmol scale. Yield: 123.8 mg, 81%. Yellow slurry gum. ¹H NMR (CDCl₃, 400 MHz): δ = 7.87–7.82 (m, 4H), 7.54–7.46 (m, 6H), 7.11–

7.06 (m, 3H), 5.54 (dq, $J_{P-H} = J_{H-H} = 3.2$ Hz, 1H), 2.28 (s, 3H), 2.23 (s, 3H), 2.09 (d, J = 2.8 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 213.3$ (d, $J_{C-P} = 2.9$ Hz), 137.5, 135.7, 134.0, 133.0 (d, $J_{C-P} = 121.4$ Hz), 132.9 (d, $J_{C-P} = 121.4$ Hz), 132.4 (d, $J_{C-P} = 2.5$ Hz), 130.85 (d, $J_{C-P} = 11.3$ Hz), 130.84 (d, $J_{C-P} = 11.1$ Hz), 129.3, 128.4 (d, $J_{C-P} = 13.3$ Hz), 125.9, 125.3, 104.3, 99.9 (d, $J_{C-P} = 30.0$ Hz), 83.1 (d, $J_{C-P} = 171.0$ Hz), 73.0 (d, $J_{C-P} = 4.8$ Hz), 20.6, 20.2, 16.4. ³¹P NMR (CDCl₃, 160 MHz): $\delta = 8.3$. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₆H₂₄OP⁺ 383.1559, found 383.1566.

(5-(2,4-dimethylphenyl)hexa-3,4-dien-1-yn-1-yl)diphenylphosphine oxide (3d): 0.4 mmol scale. Yield: 121.9 mg, 80%. Yellow slurry gum. ¹H NMR (CDCl₃, 400 MHz): δ = 7.86–7.81 (m, 4H), 7.55–7.45 (m, 6H), 7.11–

7.06 (m, 3H), 5.56 (dq, $J_{P-H} = J_{H-H} = 3.2$ Hz, 1H), 2.31 (s, 3H), 2.30 (s, 3H), 2.10 (d, J = 3.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 214.2$ (d, $J_{C-P} = 2.8$ Hz), 137.7, 135.8, 133.05 (d, $J_{C-P} = 121.7$ Hz), 133.04 (d, $J_{C-P} = 121.4$ Hz), 132.1 (d, $J_{C-P} = 3.0$ Hz), 132.0, 131.5, 131.0 (d, $J_{C-P} = 10.9$ Hz), 128.5 (d, $J_{C-P} = 13.4$ Hz), 127.2, 126.8, 103.5, 100.0 (d, $J_{C-P} = 29.9$ Hz), 83.2 (d, $J_{C-P} = 171.3$ Hz), 73.4 (d, $J_{C-P} = 4.6$ Hz), 21.0, 20.6, 20.0. ³¹P NMR (CDCl₃, 160 MHz): $\delta = 8.2$. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₆H₂₄OP⁺ 383.1559, found 383.1568.

(5-(2-methoxyphenyl)hexa-3,4-dien-1-yn-1-yl)diphenylphosphine oxide (3e): To a solution of 1e' (1.2 mmol, 240.0 mg) in CH₂Cl₂ (5 mL) was added triethylamine (0.5 mL, 3.6 mmol, 3 equiv) and 4dimethylaminopyridine (DMAP, 29.8 mg, 0.2 equiv, 0.24 mmol) at 0 °C under N₂. Acetic anhydride (12 mmol, 1.2 mL, 10 equiv) was added dropwise. The result solution was naturally warmed to room temperature and stirred overnight (18 h). The reaction was carefully quenched with aq. NaHCO₃ to be neutral, and the organic layer was separated. The aqueous phase was quenched with CH₂Cl₂ (3×10 mL). The combined organic layers were washed with water, brine, and dried with MgSO4. After filtration and concentration, the crude 1e was obtained and used directly (Noted: 1e is easily hydrolyzed upon purification by column chromatography on silica gel using elutent with Et₃N. Pleasingly, the copper-catalyzed reaction proceeded well with the crude 1e without further purification.). To an oven-dried Schlenk tube (10 mL) with Teflon plug valves were added CuI (0.08 mmol, 15.5 mg). The Schlenk tube was then evacuated and back-filled with N₂ (3 cycles). MeOH (1 mL) and TMEDA (0.09 mmol, 13 μ L) was sequentially injected under N₂ atmosphere at room temperature. The solution was stirred for 15 min and then cooled to 0 °C. i-Pr2NEt (0.8 mmol, 160 µL) was injected. Diphenylphosphine oxide 2a (0.4 mmol, 80.8 mg) and the above crude 1e in degassed MeOH (2 mL) were then injected under nitrogen with vigorous stirring. The tube was sealed and the resulting mixture was stirred at 0 °C for 15 min (monitored by TLC). After filtration over celite, the filtrate was concentrated to dryness with silica gel powder. The powder residue was purified by column chromatography on silica gel (PE/EtOAc 5/1 to 1/1) to afford 121.5 mg of **3e** (79% yield). Yellow slurry gum. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.88-7.83$ (m, 4H), 7.54–7.45 (m, 6H), 7.29–7.27 (m, 1H), 7.21 (dd, $J_1 = 7.6$ Hz, $J_2 = 2.0$ Hz, 1H), 6.96 (td, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz, 1H), 6.88 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 5.61 (dq, $J_{P-H} = J_{H-H} = 2.8$ Hz, 1H), 3.79 (s, 3H), 2.15 (d, J = 3.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 216.9$ (d, $J_{C-P} = 2.9$ Hz), 156.9, 133.13 (d, $J_{C-P} = 121.6$ Hz), 133.11 (d, *J*_{C-P} = 121.1 Hz), 131.9 (d, *J*_{C-P} = 2.9 Hz), 130.8 (d, *J*_{C-P} = 11.0 Hz), 129.1, 128.4 (d, *J*_{C-P} = 13.3 Hz), 128.2, 123.8, 120.5, 111.1, 100.9, 100.6 (d, $J_{C-P} = 30.4$ Hz), 82.3 (d, $J_{C-P} = 172.1$ Hz), 72.4 (d, J_{C-P} = 172.1 = 5.0 Hz), 55.4, 18.4. ³¹P NMR (CDCl₃, 160 MHz): δ = 8.2. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₅H₂₂O₂P⁺ 385.1352, found 385.1360.

(6-methyl-5-phenylhepta-3,4-dien-1-yn-1-yl)diphenylphosphine oxide (3h):

0.2 mmol scale. Yield: 58.9 mg, 76%. Yellow slurry gum. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.87-7.81$ (m, 4H), 7.55–7.44 (m, 6H), 7.36–7.33 (m, 4H), 7.30–7.27 (m, 1H), 5.90 (dd, $J_{P-H} = J_{H-H} = 2.8$ Hz, 1H), 2.93–2.86 (m, 1H), 1.17 (d, J

= 6.8 Hz, 3H), 1.15 (d, J = 6.8 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 215.1$ (d, $J_{C-P} = 2.9$ Hz), 133.9, 132.1 (d, $J_{C-P} = 121.5$ Hz), 132.2 (d, $J_{C-P} = 2.9$ Hz), 131.0 (d, $J_{C-P} = 11.2$ Hz), 128.7, 128.6 (d, $J_{C-P} = 13.3$ Hz), 127.9, 127.1, 117.3, 99.8 (d, $J_{C-P} = 30.0$ Hz), 83.2 (d, $J_{C-P} = 170.8$ Hz), 77.8 (d, $J_{C-P} = 4.8$ Hz), 29.1, 21.9, 21.8.

³¹P NMR (160 MHz, CDCl₃): δ = 8.3. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₆H₂₄OP⁺ 383.1559, found 383.1566.

(5-cyclohexyl-5-phenylpenta-3,4-dien-1-yn-1-yl)diphenylphosphine oxide (3i): 0.2 mmol scale. Yield: 59.1 mg, 70%. Yellow slurry gum. ¹H NMR (400 MHz, CDCl₃): δ = 7.87–7.82 (m, 4H), 7.55–7.45 (m, 6H), 7.37–7.32 (m, 4H), 7.29–7.26 (m, 1H), 5.87 (dd, *J*_{P-H} = *J*_{H-H} = 2.8 Hz, 1H), 2.55–2.49 (m, 1H), 1.94–

1.70 (m, 4H), 1.41–1.28 (m, 6H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 215.7$ (d, $J_{C-P} = 2.8$ Hz), 133.9, 132.2 (d, $J_{C-P} = 121.4$ Hz), 132.1 (d, $J_{C-P} = 2.9$ Hz), 131.0 (d, $J_{C-P} = 11.2$ Hz), 128.7, 128.6 (d, $J_{C-P} = 13.3$ Hz), 127.9, 127.1, 116.2, 99.9 (d, $J_{C-P} = 29.8$ Hz), 82.7 (d, $J_{C-P} = 170.9$ Hz), 77.6 (d, $J_{C-P} = 4.7$ Hz), 38.6, 32.4, 32.3, 26.39, 26.37, 26.1. ³¹P NMR (160 MHz, CDCl₃): $\delta = 8.3$. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₉H₂₈OP⁺ 423.1872, found 423.1876.

(5-cyclopentyl-5-phenylpenta-3,4-dien-1-yn-1-yl)diphenylphosphine oxide (3j): 0.2 mmol scale. Yield: 53.9 mg, 66%. Yellow slurry gum. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.87-7.81$ (m, 4H), 7.54–7.45 (m, 6H), 7.37–7.35 (m, 4H), 7.29–7.27 (m, 1H), 5.89 (dd, $J_{P-H} = J_{H-H} = 2.8$ Hz, 1H), 3.07–3.01 (m, 1H), 1.99–

1.93 (m, 2H), 1.72–1.60 (m, 6H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 215.1$ (d, $J_{C-P} = 2.9$ Hz), 134.3, 133.1 (d, $J_{C-P} = 121.4$ Hz), 132.1 (d, $J_{C-P} = 2.9$ Hz), 130.9 (d, $J_{C-P} = 11.1$ Hz), 128.6, 128.5 (d, $J_{C-P} = 12.4$ Hz), 127.8, 127.1, 115.1, 99.6 (d, $J_{C-P} = 29.8$ Hz), 82.8 (d, $J_{C-P} = 170.3$ Hz), 77.8 (d, $J_{C-P} = 4.8$ Hz), 39.7, 32.3, 32.0, 24.9, 24.8. ³¹P NMR (160 MHz, CDCl₃): $\delta = 8.2$. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₈H₂₆OP⁺ 409.1716, found 409.1723.

Di-*p*-tolyl(5-(*o*-tolyl)hexa-3,4-dien-1-yn-1-yl)phosphine oxide (3l): 0.2 mmol scale. Yield: 56.2 mg, 71%. Yellow slurry gum. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.73$ (d, J = 8.0 Hz, 2H), 7.69 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 7.21–7.19 (m, 4H), 5.56 (dq, $J_{P-H} = J_{H-H} = 2.8$ Hz, 1H). 2.39 (s, 6H), 2.34 (s, 3H), 2.11 (d, J = 2.8 Hz, 3H). ¹³C NMR

(CDCl₃, 100 MHz): $\delta = 213.8$ (d, $J_{C-P} = 2.7$ Hz), 142.6 (d, $J_{C-P} = 3.0$ Hz), 135.9, 135.0, 130.9 (d, $J_{C-P} = 11.6$ Hz), 130.7, 130.0 (d, $J_{C-P} = 123.8$ Hz), 129.2 (d, $J_{C-P} = 13.9$ Hz), 127.8, 127.3, 126.1, 103.4, 99.1 (d, $J_{C-P} = 29.7$ Hz), 83.9 (d, $J_{C-P} = 169.1$ Hz), 73.1 (d, $J_{C-P} = 4.6$ Hz), 21.59, 21.57, 20.6, 19.9. ³¹P NMR (CDCl₃, 160 MHz): $\delta = 8.6$. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₇H₂₆OP⁺ 397.1716, found 397.1721.

di-o-tolyl(5-(o-tolyl)hexa-3,4-dien-1-yn-1-yl)phosphine oxide (3m): 0.2 mmol scale. Yield: 54.9 mg, 69%. Yellow slurry gum. ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.01-7.95$ (m, 2H), 7.46–7.42 (m, 2H), 7.34–7.31 (m, 2H), 7.23– 7.19 (m, 6H), 5.58 (dq, $J_{P-H} = J_{H-H} = 2.8$ Hz, 1H), 2.37 (s, 6H), 2.32 (s, 3H),

2.11 (d, J = 2.8 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 213.8$ (d, $J_{C-P} = 2.8$ Hz), 141.6 (d, $J_{C-P} = 10.6$ Hz), 141.5 (d, $J_{C-P} = 10.6$ Hz), 135.9, 135.1, 132.8 (d, $J_{C-P} = 11.9$ Hz), 132.2 (d, $J_{C-P} = 2.8$ Hz), 131.6 (d, $J_{C-P} = 11.7$ Hz), 130.7 (d, $J_{C-P} = 118.5$ Hz), 130.67 (d, $J_{C-P} = 118.2$ Hz), 130.71, 127.8, 127.4, 126.1, 125.7 (d, $J_{C-P} = 13.2$ Hz), 103.5, 99.3 (d, $J_{C-P} = 29.1$ Hz), 83.7 (d, $J_{C-P} = 168.1$ Hz), 73.8 (d, $J_{C-P} = 4.5$ Hz), 21.14, 21.09, 20.5, 20.0. ³¹P NMR (CDCl₃, 160 MHz): $\delta = 8.8$. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₇H₂₆OP⁺ 397.1716, found 397.1721.

bis(4-fluorophenyl)(6-methyl-5-phenylhepta-3,4-dien-1-yn-1-yl)phosphine oxide (3n): 0.2 mmol scale. Yield: 48.0 mg, 57%. Yellow slurry gum. ¹H NMR (400 MHz, CDCl₃): δ = 7.85–7.78 (m, 4H), 7.42–7.28 (m, 5H), 7.23–7.14 (m, 4H), 5. 89 (dd, *J*_{*P*-*H*} = *J*_{*H*-*H*} = 2.8 Hz, 1H), 2.94–2.87 (m, 1H), 1.17 (d, *J* = 6.4 Hz, 3H), 1.15 (d, *J* = 6.8 Hz, 3H). ¹³C

NMR (CDCl₃, 100 MHz): $\delta = 215.3$ (d, $J_{C-P} = 2.8$ Hz), 165.3 (dd, $J_{C-F} = 252.5$ Hz, $J_{C-P} = 3.5$ Hz), 133.8, 133.5 (dd, $J_{C-P} = 12.8$ Hz, $J_{C-F} = 8.8$ Hz), 128.96 (d, $J_{C-P} = 125.2$ Hz), 128.93 (d, $J_{C-P} = 125.7$ Hz), 128.8, 128.0, 127.1, 117.5, 116.1 (dd, $J_{C-F} = 21.5$ Hz, $J_{C-P} = 14.8$ Hz), 100.5 (d, $J_{C-P} = 30.8$ Hz), 82.3 (d, $J_{C-P} = 174.0$ Hz), 77.6 (d, $J_{C-P} = 4.8$ Hz), 29.1, 21.9, 21.8. ³¹P NMR (160 MHz, CDCl₃): $\delta = 6.2$. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₆H₂₂OPF₂⁺ 419.1371, found 419.1376.

bis(3-chlorophenyl)(5-(o-tolyl)hexa-3,4-dien-1-yn-1-yl)phosphine oxide (30): 0.2 mmol scale. Yield: 58.9 mg, 68%. Yellow slurry gum. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.79$ (d, J = 6.0 Hz, 2H), 7.73 (d, J = 8.0 Hz, 2H), 7.69 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 7.21–7.19 (m, 4H), 5.56 (dq, $J_{P-H} = J_{H-H} = 2.8$ Hz, 1H). 2.35 (s, 3H), 2.14 (d, J = 3.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 213.8$ (d, J = 2.7 Hz), 135.9, 135.2 (d, $J_{C-P} = 17.9$ Hz),

134.90 (d, J = 120.8 Hz), 134.87 (d, J = 120.9 Hz), 134.81, 132.6 (d, J = 2.7 Hz), 130.8, 130.7, 130.2 (d, $J_{C-P} = 14.6$ Hz), 129.0 (d, $J_{C-P} = 10.7$ Hz), 128.0, 127.4, 126.2, 104.1, 101.4 (d, $J_{C-P} = 31.3$ Hz), 82.1 (d, $J_{C-P} = 176.9$ Hz), 73.3 (d, $J_{C-P} = 4.9$ Hz), 20.6, 19.9. ³¹P NMR (CDCl₃, 160 MHz): $\delta = 8.6$. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₅H₂₀OPCl₂⁺ 437.0623, found 437.0631.

(5-(2,3-dimethylphenyl)hexa-3,4-dien-1-yn-1-yl)bis(4-

methoxyphenyl)phosphine oxide (3p): 0.2 mmol scale. Yield: 39.0 mg, 45%. Yellow slurry gum. ¹H NMR (400 MHz, CDCl₃): δ = 7. 76 (d, *J* = 8.0 Hz, 2H), 7. 72 (d, *J* = 8.0 Hz, 2H), 7.11–7.05 (m, 3H), 6. 96 (d, *J* = 8.8 Hz, 4H), 5.52 (dq, *J*_{*P*-*H*} = *J*_{*H*-*H*} = 3.2 Hz, 1H), 3.84 (s, 6H),

2.28 (s, 3H), 2.23 (s, 3H), 2.08 (d, J = 3.6 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 213.2$ (d, J = 2.8 Hz), 162.6 (d, $J_{C-P} = 2.9$ Hz), 137.6, 136.0, 134.2, 133.0, 132.9 (d, $J_{C-P} = 12.4$ Hz), 129.4, 125.6 (d, $J_{C-P} = 24.2$ Hz), 124.8 (d, $J_{C-P} = 128.9$ Hz), 114.1 (d, $J_{C-P} = 14.5$ Hz), 104.3, 99.2 (d, $J_{C-P} = 30.1$ Hz), 84.0 (d, $J_{C-P} = 169.9$ Hz), 73.2 (d, $J_{C-P} = 4.9$ Hz), 55.4, 20.7, 20.4, 16.6. ³¹P NMR (160 MHz, CDCl₃): $\delta = 7.98$. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₈H₂₈O₃P⁺ 443.1771, found 433.1782.

(5-cyclohexyl-5-phenylpenta-3,4-dien-1-yn-1-yl)bis(3,5-di-*tert*-**butylphenyl)phosphine oxide (3q)**: 0.2 mmol scale. Yield: 78.2 mg, 61%. Yellow slurry gum. ¹H NMR (400 MHz, CDCl₃): δ = 7. 71–7.70 (m, 2H), 7. 67–7.66 (m, 2H), 7. 57 (s, 2H), 7. 33 (s, 2H), 7. 32 (s, 2H), 7.27–7.23 (m, 1H), 5.87 (dd, *J*_{P-H} = *J*_{H-H} = 2.8 Hz, 1H), 2.54–2.47 (m, 1H), 1.95–1.88 (m, 2H), 1.95–1.69 (m, 3H), 1.32–1.18 (m, 5H), 1.29 (d, *J* = 0.8 Hz, 36H). ¹³C

NMR (CDCl₃, 100 MHz): $\delta = 215.4$ (d, J = 2.8 Hz), 151.0 (d, $J_{C-P} = 13.1$ Hz), 133.9, 132.2 (d, $J_{C-P} = 120.2$ Hz), 128.7, 127.8, 127.1, 126.2 (d, $J_{C-P} = 3.0$ Hz), 125.3 (d, $J_{C-P} = 11.8$ Hz), 115.9, 98.7 (d, $J_{C-P} = 28.5$ Hz), 83.9 (d, $J_{C-P} = 165.6$ Hz), 77.9 (d, $J_{C-P} = 4.6$ Hz), 38.5, 35.1, 32.5, 32.4, 31.3, 26.4, 26.1. ³¹P NMR (160 MHz, CDCl₃): $\delta = 10.7$. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₄₅H₆₀OP⁺ 647.4376, found 647.4391.

dibenzyl(6-methyl-5-phenylhepta-3,4-dien-1-yn-1-yl)phosphine oxide (3r): 0.4 mmol scale. Yield: 87.2 mg, 53%. Yellow slurry gum. ¹H NMR (400 MHz, CDCl₃): δ = 7.39–7.24 (m, 15H), 5.73 (dd, $J_{P-H} = J_{H-H} = 2.8$ Hz, 1H), 3.27 (d, J= 2.4 Hz, 2H), 3.23 (d, J = 2.0 Hz, 2H), 2.93–2.86 (m, 1H), 1.16 (d, J = 3.2 Hz,

3H), 1.14 (d, J = 3.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 214.9$ (d, $J_{C-P} = 2.7$ Hz), 133.9, 131.7 (d, $J_{C-P} = 7.0$ Hz), 131.0 (d, $J_{C-P} = 8.0$ Hz), 130.0 (d, $J_{C-P} = 5.6$ Hz), 129.8 (d, $J_{C-P} = 5.1$ Hz), 128.8 (d, $J_{C-P} = 2.4$ Hz), 128.7, 128.6 (d, $J_{C-P} = 3.0$ Hz), 127.9, 127.1 (d, $J_{C-P} = 3.4$ Hz), 127.0, 126.9 (d, $J_{C-P} = 2.7$ Hz), 117.0, 99.0 (d, $J_{C-P} = 25.4$ Hz), 82.0 (d, $J_{C-P} = 155.7$ Hz), 77.7 (d, $J_{C-P} = 4.3$ Hz), 38.5 (d, $J_{C-P} = 75.6$ Hz), 35.4 (d, $J_{C-P} = 60.9$ Hz), 28.8, 21.9, 21.7. ³¹P NMR (160 MHz, CDCl₃): $\delta = 20.2$. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₈H₂₈OP⁺ 411.1872, found 411.1878.

dimethyl (5-(2,4-dimethylphenyl)hexa-3,4-dien-1-yn-1-yl)phosphonate (3u): 0.3 mmol scale. Yield: 69.7 mg, 80%. Yellow liquid. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.11$ (d, J = 8.0 Hz, 1H), 7.04–7.02 (m, 2H), 5.48 (dq, $J_{P-H} =$

 $J_{H-H} = 3.2$ Hz, 1H), 3.80 (d, J = 3.0 Hz, 6H), 2.33 (s, 3H), 2.31 (s, 3H), 2.10 (d, J = 2.4 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 214.5$ (d, $J_{C-P} = 3.6$ Hz), 137.7, 135.7, 131.7, 131.5, 127.2, 126.8, 103.7, 94.6 (d, $J_{C-P} = 53.0$ Hz), 77.1 (d, $J_{C-P} = 302.7$ Hz), 72.7 (d, $J_{C-P} = 6.6$ Hz), 53.3 (d, $J_{C-P} = 5.5$ Hz), 21.0, 20.5, 19.8. ³¹P NMR (CDCl₃, 160 MHz): $\delta = -2.7$. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₁₆H₂₀O₃P⁺ 291.1145, found 291.1150.

diisopropyl (5-(2,4-dimethylphenyl)hexa-3,4-dien-1-yn-1yl)phosphonate (3v): 0.3 mmol scale. Yield: 49.8 mg, 48%. Yellow liquid. ¹H NMR (CDCl₃, 400 MHz): δ = 7.11–7.09 (m, 1H), 7.03–7.01 (m, 2H), 5.45 (t, *J* = 3.2 Hz, 1H), 4.80–4.68 (m, 2H), 2.32 (s, 3H), 2.31 (s, 3H), 2.09 (d, *J* = 3.2 Hz, 3H), 1.36 (d, *J* = 6.4 Hz, 12H). ¹³C NMR

(CDCl₃, 100 MHz): $\delta = 214.2$ (d, $J_{C-P} = 3.5$ Hz), 137.7, 135.8, 132.0, 131.6, 127.3, 126.8, 103.4, 92.7 (d, $J_{C-P} = 52.5$ Hz), 80.2 (d, $J_{C-P} = 298.6$ Hz), 73.1 (d, $J_{C-P} = 6.6$ Hz), 72.2 (d, $J_{C-P} = 5.4$ Hz), 23.9 (d, $J_{C-P} = 4.6$ Hz), 23.6 (d, $J_{C-P} = 4.8$ Hz), 21.0, 20.6, 19.9. ³¹P NMR (CDCl₃, 160 MHz): $\delta = -8.5$. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₀H₂₈O₃P⁺ 347.1771, found 347.1778.

3H), 3.79 (s, 3H), 2.52–2.46 (m, 2H), 1.61–1.55 (m, 2H), 1.00 (t, J = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 216.3$ (d, $J_{C-P} = 3.6$ Hz), 133.7, 128.6, 128.0, 126.5, 110.0, 94.0 (d, $J_{C-P} = 52.9$ Hz), 76.9 (d, $J_{C-P} = 302.2$ Hz), 76.4 (d, $J_{C-P} = 6.5$ Hz), 53.3 (d, $J_{C-P} = 5.5$ Hz), 31.8, 20.3, 13.7. ³¹P NMR (CDCl₃, 160 MHz): $\delta = -2.8$. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₁₆H₂₀O₃P⁺ 291.1145, found 291.1150.

(**Z**)-(**4-iodo-5-(o-tolyl)hexa-3,5-dien-1-yn-1-yl)diphenylphosphine oxide (5)**: An oven-dried flask was charged with **3b** (88.2 mg, 0.24 mmol) and MeCN (2 mL). The solution was cooled with an ice bath. N-iodosuccinimide (0.36 mmol, 82.1 mg) was added slowly. The reaction mixture was stirred for 1 hour. After removing the solvent in vacuo, the residues were purified with flash chromatography on silica (petroleum ether/ethyl acetate: 5/1-3:1 v/v) to afford **5** as a yellow slurry solid. Yield: 63.6 mg, 51%. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.92-7.86$ (m, 4H), 7.56–7.54 (m, 2H), 7.49–7.46 (m, 4H), 7.27–7.16 (m, 3H), 7.05 (d, J = 7.6 Hz, 1H), 6.06 (d, J = 2.8 Hz, 1H), 5.99 (s, 1H), 5.52 (s, 1H), 2.41 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 148.8, 137.2, 136.0, 132.5$ (d, $J_{C-P} = 2.9$ Hz), 131.9 (d, $J_{C-P} = 131.1$ Hz), 131.2 (d, $J_{C-P} = 11.6$ Hz), 130.4, 129.6, 129.3, 128.7 (d, $J_{C-P} = 168.5$ Hz), 19. 6. ³¹P NMR (160 MHz, CDCl₃): $\delta = 8.4$. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₅H₂₁OPI⁺ 495.0369, found 495.0375.

136.0, 134.6, 132.6 (d, $J_{C-P} = 121.7 \text{ Hz}$), 132.4 (d, $J_{C-P} = 2.9 \text{ Hz}$), 131.1 (d, $J_{C-P} = 11.3 \text{ Hz}$), 129.7, 128.8, 128.7 (d, $J_{C-P} = 13.5 \text{ Hz}$), 124.3, 121.4 (d, $J_{C-P} = 3.6 \text{ Hz}$), 120.0 (d, $J_{C-P} = 4.8 \text{ Hz}$), 105.0 (d, $J_{C-P} = 29.1 \text{ Hz}$), 91.4 (d, $J_{C-P} = 164.2 \text{ Hz}$). ³¹P NMR (160 MHz, CDCl₃): $\delta = 8.5$. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₄H₁₈OPClI⁺ 514.9823, found 514.9834.

An oven-dried Schlenk tube containing a Teflon-coated stir bar was charged with PdCl₂(Ph₃P)₂ (8.5 mg, 10 mol %) and CuI (2.3 mg, 10 mol %). The Schlenk tube was sealed and then evacuated and backfilled with N2 (3 cycles). A solution of **5** (62.5 mg, 0.12 mmol) in 2 mL of THF, 1-octyne (27 μ L, 0.18 mmol) and 0.5 mL of Et₃N was subsequently injected to the Schlenk tube. The reaction mixture was stirred at room temperature overnight. After removing the solvent in vacuo, the residues were purified with flash chromatography on silica(petroleum ether/ethyl acetate: 5/1-3:1 v/v) to afford **6** as a yellow slurry solid. Yield: 30.6 mg, 54%. Yellow slurry gum. ¹H NMR (400 MHz, CDCl₃): δ = 7.89–7.84 (m, 4H), 7.52–7.50 (m, 2H), 7.47–7.42 (m, 4H), 7.24–7.17 (m, 3H), 7.04 (d, *J* = 7.6 Hz, 1H), 6.12 (s, 1H), 5.39 (d, *J* = 3.2 Hz, 1H), 5.32 (s, 1H), 2.38 (d, *J* = 6.8 Hz, 2H), 2.16 (s, 3H), 1.58–1.50 (m, 2H), 1.42–1.26 (m, 6H), 0.89 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 146.5, 140.3 (d, *J*_{C-P} = 3.1 Hz), 138.1, 136.1, 133.3 (d, *J*_{C-P} = 121.5 Hz), 132.0 (d, *J*_{C-P} = 2.9 Hz), 131.0 (d, *J*_{C-P} = 30.4 Hz), 102.4, 90.4 (d, *J*_{C-P} = 170.6 Hz), 76.4, 31.3, 28.7, 28.5, 22.5, 19.8, 19.5, 14.1. ³¹P NMR (160 MHz, CDCl₃): δ = 7.9. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₃₃H₃₄OP⁺ 477.2342, found 477.2351.

To an oven-dried Schlenk tube (10 mL) with Teflon plug valves were added CuI (0.03 mmol, 6.0 mg). The Schlenk tube was then evacuated and back-filled with N₂ (3 cycles). MeOD (0.2 mL) and TMEDA (0.036 mmol, 6 μ L) were sequentially injected under N₂ atmosphere at room temperature. The solution was stirred for 15 min and then cooled to 0 °C. *i*-Pr₂NEt (0.3 mmol, 60 μ L) was added. Diphenylphosphine oxide **2a** (0.15 mmol, 30.5 mg) and diynylic acetate **1b** (0.18 mmol, 40.9 mg) in MeOD (0.4 mL) were then injected under

nitrogen with vigorous stirring. The tube was sealed and the resulting mixture was stirred at 0 °C. After the reaction was complete (ca. 15 min, monitored by TLC), the reaction mixture was concentrated to dryness with silica gel. The powder residue was purified by column chromatography on silica gel (PE/EtOAc 3/1) to afford **3b-D**. 40.2 mg, 72%. Yellow slurry gum. Identity of the product and deuterium content was determined by NMR. For ¹H and ¹³C NMR spectra of **3b-D**, see Figures S1 and S2. ¹H NMR (CDCl₃, 400 MHz): δ = 7.87–7.81 (m, 4H), 7.54–7.45 (m, 6H), 7.22–7.19 (m, 4H), 5.58 (t, *J* = 3.2 Hz, 0.09H), 2.34 (s, 3H), 2.12 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 214.0 (d, *J*_{C-P} = 2.9 Hz), 135.9, 135.0, 133.10 (d, *J*_{C-P} = 121.4 Hz), 133.08 (d, *J*_{C-P} = 121.4 Hz), 132.2 (d, *J*_{C-P} = 2.9 Hz), 131.0 (d, *J*_{C-P} = 170.6 Hz), 19.6, 18.9. ³¹P NMR (CDCl₃, 160 MHz): δ = 8.3. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₅H₂₁DOP⁺ 370.1466, found 370.1471.

Figure S1. ¹H NMR of **3b-D**

Figure S2. Comparison on ¹³C NMR spectra between **3b** and **3b-D**

To an oven-dried Schlenk tube (10 mL) with Teflon plug valves were added CuI (0.04 mmol, 7.6 mg). The Schlenk tube was then evacuated and back-filled with N₂ (3 cycles). MeOH (0.5 mL) and TMEDA (0.044 mmol, 7 μ L) were sequentially injected under N₂ atmosphere at room temperature. The solution was stirred for 15 min and then cooled to 0 °C. *i*-Pr₂NEt (0.4 mmol, 80 μ L) was added. Aniline **2a** (0.3 mmol, 27.9 mg) and diynylic acetate **1h** (0.2 mmol, 48.1 mg) in MeOH (1.5 mL) were then injected under nitrogen with vigorous stirring. The tube was sealed and the resulting mixture was stirred at 0 °C for 1 hour. After the reaction was complete, the reaction mixture was concentrated to dryness. The powder residue was purified by column

chromatography on silica gel (PE with 0.5% Et₃N) to afford pure product 7 (14.3 mg, 26%). Light yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ = 7.59 (d, *J* = 7.6 Hz, 2H), 7.35–7.25 (m, 3H), 7.06–7.02 (m, 2H), 6.69 (t, *J* = 7.2 Hz, 1H), 6.49 (d, *J* = 7.6 Hz, 2H), 4.28 (s, 1H), 2.12 (s, 3H), 2.02–1.86 (m, 2H), 1.57–1.48 (m, 1H), 137–1.26 (m, 1H), 0.89 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 144.57, 141.96, 128.58, 128.48, 127.48, 126.02, 118.48, 115.63, 78.38, 69.26, 67.89, 67.45, 59.66, 49.21, 17.72, 13.86. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₀H₂₀N⁺ 274.1590, found 274.1595.

4. References

[1] S. Ghorai, D. Lee, Org. Lett. 2021, 23, 697-701.

[2] (a) H. R. Hays, J. Org. Chem. 1968, 33, 3690. (b) C. A. Busacca, J. C. Lorenz, N. Grinberg, N. Haddad, M. Hrapchak, B. Latli, H. Lee, P. Sabila, A. Saha, M. Sarvestani, S. Shen, R. Varsolona, X. Wei, C. H. Senanayake, Org. Lett. 2005, 7, 4277.

5. Copies of ¹H, ¹³C and ³¹P NMR spectra

¹H NMR of **1b** (CDCl₃, 400 MHz)

¹H NMR of 1d (CDCl₃, 400 MHz)

¹H NMR of **1e** (CDCl₃, 400 MHz)

-10 f1 (ppm)

¹H NMR of **1f** (CDCl₃, 400 MHz)

¹H NMR of **1g** (CDCl₃, 400 MHz)

S26

¹H NMR of **1**j (CDCl₃, 400 MHz)

¹H NMR of 1k (CDCl₃, 400 MHz)

¹H NMR of **11** (CDCl₃, 400 MHz)

¹H NMR of **3a** (CDCl₃, 400 MHz)

¹³C NMR of **3a** (CDCl₃, 100 MHz)

¹H NMR of **3b** (CDCl₃, 400 MHz)

¹³C NMR of **3b** (CDCl₃, 100 MHz)

³¹P NMR of **3b** (CDCl₃, 160 MHz)

— 8.216

¹H NMR of **3b-D** (CDCl₃, 400 MHz)

¹³C NMR of **3b-D** (CDCl₃, 100 MHz)

213.967 213.962	135.825 134.954 133.600 133.600 133.540 132.384 132.386 132.120 132.120 132.120 132.120 132.692 130.692 130.692 128.447 130.692 128.447 1127.811 127.811 127.811 127.811 127.811 127.811 126.091 103.666 99.905 99.905	84.277 82.570 77.317 77.000 76.681	20.506 19.872
\vee		\sim	\sim

¹³C NMR of **3c** (CDCl₃, 100 MHz)

-50 90 80 70 60 50 40 30 20 -20 -30 -40 -60 -80 -90 -100 -110 100 10 0 f1 (ppm) -70 -10

¹³C NMR of **3d** (CDCl₃, 100 MHz)

¹H NMR of **3e** (CDCl₃, 400 MHz)

¹³C NMR of **3e** (CDCl₃, 100 MHz)

¹H NMR of **3h** (CDCl₃, 400 MHz)

¹³C NMR of **3h** (CDCl₃, 100 MHz)

¹³C NMR of **1i** (CDCl₃, 100 MHz)

-100 -110 120 110 100 90 80 70 60 50 40 30 20 10 C f1 (ppm) -10 -20 -30 -40 -50 -60 -70 -80 -90 ò

¹H NMR of **3j** (CDCl₃, 400 MHz)

¹³C NMR of **3j** (CDCl₃, 100 MHz)

³¹P NMR of **3j** (CDCl₃, 160 MHz)

¹H NMR of **31** (CDCl₃, 400 MHz)

¹³C NMR of **31** (CDCl₃, 100 MHz)

¹³C NMR of **3m** (CDCl₃, 100 MHz)

< 213.760 213.760	141.555 141.555 141.468 141.448 141.448 1735.866 1325.116 1325.116 1325.116 1322.239 1222.239 1222.239 1222.239 1222.239 1222.239 1222.239	84.585 77.309 77.309 77.082 77.808 73.763 73.763	21.137 21.086 20.500 19.960

³¹P NMR of **3m** (CDCl₃, 160 MHz)

— 8.761

¹H NMR of **3n** (CDCl₃, 400 MHz)

¹³C NMR of **3n** (CDCl₃, 100 MHz)

¹H NMR of **30** (CDCl₃, 400 MHz)

¹³C NMR of **30** (CDCl₃, 100 MHz)

¹³C NMR of **3p** (CDCl₃, 100 MHz)

90

80

70

60

50

40

30

20

10

-10

-20

-30

-40

-50

-60

-70

-80

-90

¹H NMR of **3q** (CDCl₃, 400 MHz)

¹³C NMR of **3q** (CDCl₃, 100 MHz)

³¹P NMR of **3q** (CDCl₃, 160 MHz)

— 10.688

¹H NMR of **3r** (CDCl₃, 400 MHz)

¹³C NMR of **3r** (CDCl₃, 100 MHz)

¹H NMR of **3t** (CDCl₃, 400 MHz)

¹³C NMR of **3t** (CDCl₃, 100 MHz)

¹³C NMR of **3u** (CDCl₃, 100 MHz)

0 f1 (ppm) 100 90 80 70 60 50 40 30 20 10 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100

³¹P NMR of **3u** (CDCl₃, 160 MHz)

1 H NMR of **3v** (CDCl₃, 400 MHz)

¹³C NMR of **3v** (CDCl₃, 100 MHz)

³¹P NMR of **3v** (CDCl₃, 160 MHz)

¹³C NMR of **3w** (CDCl₃, 100 MHz)

¹H NMR of **3x** (CDCl₃, 400 MHz)

¹³C NMR of **3x** (CDCl₃, 100 MHz)

f1 (ppm) -10

³¹P NMR of **3**x (CDCl₃, 160 MHz)

¹³C NMR of **4** (CDCl₃, 100 MHz)

f1 (ppm)

-1

-2

¹³C NMR of **6**(CDCl₃, 100 MHz)

