Supporting Information

Photoinduced Difunctionalization of Unactivated Olefins Enabled by Ligand-to-Iron Charge Transfer and Functional Group Migration Strategies

Mengqi Luo,^a Shibo Zhu,^a Jiawen Yin,^a Chao Yang,^a Lin Guo,^{a,*} and Wujiong Xia

- ^a State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- ^b School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China

Correspondence to: guolin@hit.edu.cn; xiawj@hit.edu.cn

Table of Contents

1. General Information	.3
1.1 General information	.3
1.2 Reaction setup for visible-light reaction	.3
2. Optimization of the Reaction Conditions	.5
3. General Procedures1	0
3.1 General procedure for the photoreactions1	0
3.2 General procedure for the gram-scale reaction1	2
3.3 General procedure for the synthesis of unactivated olefins ¹⁻³ 1	3
3.4 Unreacted substrates1	4
4. Characterization Data of Substrates and Products1	15
4.1 Characterization data of substrates1	5
4.2 Characterization data of products2	23
5. Mechanistic Study	55
5.1 Radical trapping experiments5	55
5.2 Verification of deuteration mechanism5	57
5.3 Verification of the necessity of chlorine source	58
5.4 Verification of reaction intermediates5	59
6. References	50
7. ¹ H, ¹³ C and ¹⁹ F NMR Spectra for Substrates and Products	51

1. General Information

1.1 General information

All commercially available reagents were directly used as received without further purification. All experiments were monitored by analytical thin layer chromatography (TLC). Thin-layer chromatography (TLC) was performed on Silicycle 250 mm silica gel F-254 plates. All yields of products refer to the isolated yields after chromatography.

¹H NMR (400 MHz), ¹³C NMR (101 MHz) and ¹⁹F NMR (376 MHz) spectra were recorded on a Quantum-I Plus 400 spectrometer in CDCl₃. For ¹H NMR, CDCl₃ ($\delta = 7.26$ ppm), or tetramethylsilane (TMS, $\delta = 0$ ppm) serves as the internal standard; for ¹³C NMR, CDCl₃ ($\delta = 77.16$ ppm) serves as the internal standard. Data are reported as follows: chemical shift (in ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = quintet, hept = heptet, m = multiplet, br = broad), coupling constant (in Hz), and integration. HR-MS spectra were recorded on a Waters Xevo G2QTOF/UPLC mass spectrometer using TOF as the mass analyzer type.

1.2 Reaction setup for visible-light reaction

The photoreaction instrument (WP-TEC-1020SL) was purchased from WATTCAS, China. The distance from the light source to the irradiation vessel is 7 mm.

Figure S1. Reaction setup for general photoreactions

SPECTROPHOTOCOLORMETER ANALYSIS REPORT

Color Parameters:

Test Mechanism: ZP OPTO LAB
Tester:MESSI LAN Time: 2019-02-20 15:01
Temperature: 25 °C Humidity:40%
Product Model: HIGH POWER COB Manufacturer: LEARNEW OPTO
Test Project: LED COB TESTING Test Equipment: ZP OPTO SYSTEM
Wavelength Range: 380nm780nm Intergration Time: 1000 ms
Status:
Forward Voltage: VF = 22.68 V Forward Current: IF = 498.9 mA Power = 11.32 W
Eletric Parameters:
Lum Flux: Φ(lm)=4.75lm Optical Power: Φe(mW)=2769.6mW η(lm/W)=0.4lm/W
Photology Parameters:
CRI11=0.0 CRI12=0.0 CRI13=42.0 CRI14=6.3 CRI15=66.7
CRI6=0.0 CRI7=0.0 CRI8=0.0 CRI9=0.0 CRI10=0.0
CRI1=56.1 CRI2=16.3 CRI3=0.0 CRI4=0.0 CRI5=47.6
Color Tolerance: SDCM=186.7 Ra:Ra=15.0
Peak Wave: WL.P=392.5nm Delta Wave: WL.H=18.0nm
Color Temperature: Tc=25000K Dominant Wave: WL.D=435.20nm Purity: PUR=93.54
CIE(1976:) u' =0.2367 v' =0.0888
CIE(1960:) u =0.2367 v =0.0592
CIE(1931:) x =0.1776 y =0.0296

Figure S2. Wavelength of peak and intensity of light source

2. Optimization of the Reaction Conditions

(1) 1,2-fluoroalkylacylation of unactivated olefins *a*, *k*

	^t Bu			
	0		Fe catalyst	-0
	A		Base	
J	[]] X × +	CF ₂ HCO ₂ H -	Solvent	CF ₂ H
^t Bu	1a	2a	390 nm LEDs, N ₂ , rt, 30 h 3	а
Entry	Fe catalyst	Base	Solvent	Yield $^{b}(\%)$
1	Fe(NO ₃) ₃ ·9H ₂ O	K ₂ CO ₃	Dry MeCN $(15 \mu L H_2O)$	22
2	Fe(NO ₃) ₃ ·9H ₂ O	K_2CO_3	MeCN (AR)	n.d.
3	Fe(NO ₃) ₃ ·9H ₂ O	K_2CO_3	Dry MeCN $(25 \ \mu L \ H_2 O)$	trace
4 ^c	Fe(NO ₃) ₃ ·9H ₂ O	K_2CO_3	Dry MeCN $(15 \ \mu L \ H_2 O)$	trace
5 ^d	Fe(NO ₃) ₃ ·9H ₂ O	K_2CO_3	Dry MeCN $(15 \ \mu L \ H_2 O)$	n.d.
6 ^e	Fe(NO ₃) ₃ ·9H ₂ O	K_2CO_3	Dry MeCN $(15 \ \mu L \ H_2 O)$	17
7 ^f	Fe(NO ₃) ₃ ·9H ₂ O	K_2CO_3	Dry MeCN $(15 \ \mu L \ H_2 O)$	trace
8 ^g	Fe(NO ₃) ₃ ·9H ₂ O	K_2CO_3	Dry MeCN $(15 \ \mu L \ H_2 O)$	14
9 ^{<i>h</i>}	Fe(NO ₃) ₃ ·9H ₂ O	K_2CO_3	Dry MeCN $(15 \ \mu L H_2O)$	trace
$10^{\ i}$	Fe(NO ₃) ₃ ·9H ₂ O	K_2CO_3	Dry MeCN $(15 \ \mu L H_2O)$	trace
11	Fe(NO ₃) ₃ ·9H ₂ O	K_2CO_3	Dry DMSO $(15 \ \mu L \ H_2 O)$	49
12	Fe(NO ₃) ₃ ·9H ₂ O	K_2CO_3	Dry DMF $(15 \mu L H_2O)$	31
13	Fe(NO ₃) ₃ ·9H ₂ O	K_2CO_3	Dry DCM $(15 \ \mu L H_2O)$	trace
14	Fe(NO ₃) ₃ ·9H ₂ O	K_2CO_3	Dry THF (15 μLH_2O)	trace
15	Fe(acac) ₃	K_2CO_3	Dry DMSO $(15 \ \mu L \ H_2 O)$	37
16	$Fe_2(SO_4)_3$	K_2CO_3	Dry DMSO $(15 \ \mu L \ H_2 O)$	29
17	FeCl ₃	K_2CO_3	Dry DMSO $(15 \ \mu L \ H_2 O)$	27
18	Fe(OAc) ₂	K_2CO_3	Dry DMSO $(15 \ \mu L \ H_2 O)$	46
19	Fe(NO ₃) ₃ ·9H ₂ O	K_2CO_3	Dry DMSO	59
20	Fe(NO ₃) ₃ ·9H ₂ O	NaHCO ₃	Dry DMSO	69
21	Fe(NO ₃) ₃ ·9H ₂ O	DABCO	Dry DMSO	64
22	Fe(NO ₃) ₃ ·9H ₂ O	Et ₃ N	Dry DMSO	trace
23	Fe(NO ₃) ₃ ·9H ₂ O	2,6-lutidine	e Dry DMSO	23
24	Fe(NO ₃) ₃ ·9H ₂ O	K ₃ PO ₄	Dry DMSO	27
25	Fe(NO ₃) ₃ ·9H ₂ O	Li ₂ CO ₃	Dry DMSO	trace
26	-	NaHCO ₃	Dry DMSO	n.d.
27	Fe(NO ₃) ₃ ·9H ₂ O	-	Dry DMSO	n.d.
28^{j}	Fe(NO ₃) ₃ ·9H ₂ O	NaHCO ₃	Dry DMSO	n.d.

^a Reaction condition: **1a** (0.20 mmol, 1.0 equiv.), **2a** (0.80 mmol, 4.0 equiv.), Fe catalyst (0.02 mmol, 10.0 mol%), Base (0.20 mmol, 1.0 equiv.), TRIP thiol (0.02 mmol, 5.0 µL, 10.0 mol%), anhydrous MeCN (0.1 M, 2.0 mL), H₂O (15 µL), 10 W 390 nm LEDs under N₂ atmosphere at room temperature

for 30 h. ^{*b*} Isolated yield. ^{*c*} **2a** (1.2 mmol, 6.0 equiv.). ^{*d*} K₂CO₃ (0.10 mmol, 0.5 equiv.). ^{*e*} Fe(NO₃)₃·9H₂O (0.04 mmol, 20.0 mol%). ^{*f*} TRIP thiol (0.03 mmol, 7.5 μ L, 15.0 mol%). ^{*g*} PhSSPh (0.02 mmol, 4.4 mg, 10.0 mol%). ^{*h*} p-Toluenethiol (0.02 mmol, 2.5 mg, 10.0 mol%). ^{*i*} (TMS)₃SiH (0.02 mmol, 5.0 mg, 10.0 mol%). ^{*j*} no TRIP thiol. ^{*k*} n.d. = not detected.

r _{Bu} 1a	+ CF ₂ HCO ₂ H 2a	Fe(NO ₃) ₃ • 9H ₂ O (10.0 mol%) NaHCO ₃ (1.0 equiv.) TRIP thiol (10.0 mol%) Solvent 390 nm LEDs, N ₂ , rt, 30 h	^t Bu D CF ₂ H 3a-D
Entry		Solvent	Yield ^{<i>b</i>} (%)
1	Dry DMS0	D (0.1 M, no D ₂ O)	69 (0% D)
2	Dry DMSO ($0.1 \text{ M}) + 30 \ \mu L \ D_2 O$	64 (36% D)
3	Dry DMSO ($0.1 \text{ M}) + 50 \ \mu L \ D_2 O$	64 (42% D)
4	Dry DMSO (0	0.1 M) + 100 μL D ₂ O	62 (72% D)
5	Dry DMSO	: D ₂ O (0.1 M, 4 : 1)	59 (82% D)
6	Dry DMSO	: D ₂ O (0.1 M, 3 : 1)	31 (80% D)
7	Dry DMSO	: D ₂ O (0.1 M, 2 : 1)	trace
8 ^c	Dry DMSO	: D ₂ O (0.1 M, 4 : 1)	28 (72% D)
9 ^d	Dry DMSO	: D ₂ O (0.1 M, 4 : 1)	17 (77% D)
10 ^e	Dry DMSO	: D ₂ O (0.1 M, 4 : 1)	33 (81% D)

(2) Deuteration reaction^{*a*}

^{*a*}Reaction condition: **1a** (0.20 mmol, 1.0 equiv.), **2a** (0.80 mmol, 4.0 equiv.), Fe catalyst (0.02 mmol, 10.0 mol%), NaHCO₃ (0.20 mmol, 1.0 equiv.), TRIP thiol (0.02 mmol, 5.0 μ L, 10.0 mol%), anhydrous DMSO (0.1 M, 2.0 mL), D₂O, 10 W 390 nm LEDs under N₂ atmosphere at room temperature for 30 h. ^{*b*} Isolated yield (the D-incorporation ratio of the product was determined by ¹H NMR). ^{*c*} Fe(acac)₃ (0.02 mmol, 10.0 mol%). ^{*d*} Fe₂(SO₄)₃ (0.02 mmol, 10.0 mol%). ^{*e*} Fe(OAc)₂ (0.02 mmol, 10.0 mol%)

(3) 1,2-fluoroalkylarylation of unactivated olefins

OMe Ts	CEaHCOaH	Fe Catalyst (10.0 mol%) K ₂ CO ₃ (2.0 equiv.)	MeO	
	2 2	MeCN (0.1 M), 0.02 mL H ₂ O 390 nm LEDs, N ₂ , rt, 16 h		
 a	Zđ		Sa	
Entry		Fe Catalyst	Yield ^b (%)	
1		$Fe_2(SO_4)_3$	14	
2		Fe(NO ₃) ₃ ·9H ₂ O	25	
3		Fe(OAc) ₂	trace	
4		Fe(acac) ₃	15	
5		FeBr ₃	trace	
6		FeCl ₃ ·6H ₂ O	trace	
7		FeCl ₃	trace	
8		Fe(acac) ₂	23	
9		FeSO ₄ ·7H ₂ O	21	
10		Cu(OTf) ₂	n.d.	
11		CuCl ₂	n.d.	
12		CeCl ₃ ·7H ₂ O	trace	

a. Screening of catalysts ^{*a*, *c*}

^{*a*} Reaction condition: **4a** (0.10 mmol, 1.0 equiv.), **2a** (0.60 mmol, 6.0 equiv.), **Fe Catalyst** (0.01 mmol, 10.0 mol%), K₂CO₃ (0.20 mmol, 2.0 equiv.), anhydrous MeCN (0.1 M, 1.0 mL), H₂O (20 μ L), 10 W 390 nm LEDs under N₂ atmosphere at room temperature for 16 h. ^{*b*} Isolated yield. ^{*c*} n.d. = not detected.

b. Screening of solvents *a*, *c*

OMe Ts	CF₂HCO₂H	Fe(NO ₃) ₃ • 9H ₂ O (10.0 mol%) K ₂ CO ₃ (2.0 equiv.)	MeO		
		Solvent (0.1 M) , (w/o) H ₂ O 390 nm LEDs, N ₂ , rt, 16 h			
4a	2a		5a		
Entry		Solvent	Yield ^b (%)		
1	Me	$CN (20 \mu L H_2O)$	25		
2		H_2O	n.d.		
3	Me	$CN (50 \ \mu L \ H_2O)$	trace		
4	MeC	$CN (100 \ \mu L H_2O)$	trace		
5	Dry MeCN		trace		
6	$MeCN~(15~\mu LH_2O)$		$MeCN~(15~\mu LH_2O)$		35
7	Me	CN (10 μL H2O)	42		
8	Me	$CN (5 \ \mu L H_2O)$	trace		
9	DC	$M (10 \ \mu L H_2 O)$	trace		
10	Acet	tone $(10 \mu L H_2O)$	36		
11	PhC	$CF_3 (10 \ \mu L H_2O)$	n.d.		

^{*a*} Reaction condition: **4a** (0.10 mmol, 1.0 equiv.), **2a** (0.60 mmol, 6.0 equiv.), $Fe(NO_3)_3 \cdot 9H_2O$ (0.01 mmol, 10.0 mol%), K_2CO_3 (0.20 mmol, 2.0 equiv.), anhydrous **Solvent** (0.1 M, 1.0 mL), (w/o) H_2O , 10 W 390 nm LEDs under N₂ atmosphere at room temperature for 16 h. ^{*b*} Isolated yield. ^{*c*} n.d. = not detected.

c. Screening of photocatalyst loadings^{*a*}

OMe Ts		Fe(NO ₃)₃ • 9H₂O (x mol%) K₂CO₃ (2.0 equiv.)	MeO	
4a	2100 ₂ 11	MeCN (0.1 M), 0.010 mL H ₂ O 390 nm LEDs, N ₂ , rt, 16 h	TSHN CF ₂ H 5a	
Entry	Loa	adings of Fe catalyst	Yield ^b (%)	
1		10.0	42	
2		15.0	50	
3		30.0	63	
4		40.0	71	
5		50.0	59	

^{*a*} Reaction condition: **4a** (0.10 mmol, 1.0 equiv.), **2a** (0.60 mmol, 6.0 equiv.), Fe(NO₃)₃·9H₂O (**x mol%**), K₂CO₃ (0.20 mmol, 2.0 equiv.), anhydrous MeCN (0.1 M, 1.0 mL), H₂O (10 μ L), 10 W 390 nm LEDs under N₂ atmosphere at room temperature for 16 h. ^{*b*} Isolated yield.

d. Screening of bases a

OMe Ts	+ CF ₂ HCO ₂ H	Fe(NO ₃) ₃ • 9H ₂ O (40.0 mol%) Base (2.0 equiv.) MeCN (0.1 M), 0.010 mL H ₂ O	
4a	2a	390 nm LEDs, N ₂ , rt, 16 h	5a
Entry		Base	Yield ^b (%)
1		K ₂ CO ₃	71
2		DABCO	trace
3		CsF	trace
4		NaHCO ₃	48
5		HCO ₂ Na	trace
6		DMAP	15
7		NaOAc	trace
8		K ₂ HPO ₄	33

^{*a*} Reaction condition: **4a** (0.10 mmol, 1.0 equiv.), **2a** (0.60 mmol, 6.0 equiv.), Fe(NO₃)₃·9H₂O (0.04 mmol, 40.0 mol%), **Base** (0.20 mmol, 2.0 equiv.), anhydrous MeCN (0.1 M, 1.0 mL), H₂O (10 μ L), 10 W 390 nm LEDs under N₂ atmosphere at room temperature for 16 h. ^{*b*} Isolated yield.

OMe Ts	+ Ph H	Fe cata Base (2.0 Solvent (equiv.) 0.1 M) TsHN	O Ph
4a	6a	390 nm LEDs	, N ₂ , rt, 16 n	7a
Entry	Fe catalyst	Base	Solvent	Yield $^{b}(\%)$
1	FeCl ₂	/	H_2O	trace
2	$Fe_2(SO_4)_3$	/	H_2O	trace
3	FeCl ₃	/	H_2O	30
4	Fe(NO ₃) ₃ ·9H ₂ O	/	H ₂ O	trace
5	$Fe(acac)_2$	/	H_2O	n.d.
6	FeBr ₃	/	H_2O	n.d.
7	Fe(OAc) ₂	/	H_2O	trace
8	Fe(acac) ₃	/	H_2O	trace
9	FeCl ₃	DABCO	H_2O	trace
10	FeCl ₃	Et ₃ N	H_2O	n.d.
11	FeCl ₃	DBU	H_2O	19
12	FeCl ₃	K_2CO_3	H_2O	35
13	FeCl ₃	Na ₃ PO ₄	H_2O	21
14	FeCl ₃	Cs_2CO_3	H_2O	23
15	FeCl ₃	LiOH	H_2O	trace
16	FeCl ₃	KF	H_2O	20
17 ^c	FeCl ₃	K ₂ CO ₃	H_2O	16
18	FeCl ₃	K ₂ CO ₃	MeCN (20 µL H ₂ O)	20
19	FeCl ₃	K ₂ CO ₃	MeCN : $H_2O = 9:1$	trace
20	FeCl ₃	K ₂ CO ₃	MeCN : $H_2O = 1:1$	n.d.
21	FeCl ₃	K ₂ CO ₃	MeCN : $H_2O = 1:4$	18
22^{d}	FeCl ₃	K ₂ CO ₃	H ₂ O	55
23 ^e	FeCl ₃	K ₂ CO ₃	H ₂ O	trace

(4) 1,2-acylarylation of unactivated olefins a.f

^{*a*} Reaction condition: **4a** (0.10 mmol, 1.0 equiv.), **6a** (0.30 mmol, 3.0 equiv.), **Fe Catalyst** (0.008 mmol, 8.0 mol%), Base (0.20 mmol, 2.0 equiv.), Solvent (0.1 M, 1.0 mL), 10 W 390 nm LEDs under N₂ atmosphere at room temperature for 16 h. ^{*b*} Isolated yield. ^{*c*} FeCl₃ (15.0 mol%). ^{*d*} **6a** (0.50 mmol, 5.0 equiv.). ^{*f*} n.d. = not detected.

3. General Procedures

3.1 General procedure for the photoreactions

General Procedure A1

β,γ-unsaturated ketone **1** (0.20 mmol, 1.0 equiv.), Fe(NO₃)₃·9H₂O (0.02 mmol, 10.0 mol%) and NaHCO₃ (0.20 mmol, 1.0 equiv.) were added in an oven-dried 20 mL quartz tube containing a magnetic stirrer bar. To this was added dry dimethyl sulfoxide (2.0 mL, 0.1 M) followed by addition of TRIP thiol (0.02 mmol, 10.0 mol%) and fluorocarboxylic acid **2** (0.80 mmol, 4.0 equiv.) via pipettor. The reaction vial was sealed, evacuated and backfilled ten times with 1 atm of N₂. The reaction mixture was stirred for 30 hours at room temperature in the presence of 10W 390 nm LED lamp (WATTCAS: WP-TEC-1020SL). After the reaction was completed (monitored by TLC), the mixture was diluted with EtOAc, and organic phase was washed with saturated NaCl solution. The combined organic layers were dried (Na₂SO₄), filtered and concentrated under reduced pressure. The residue was purified by PTLC (Preparative Thin-Layer Chromatography) with a gradient eluent of petroleum ether and ethyl acetate to give the desired product **3**.

General Procedure A2

 β , γ -unsaturated ketone **1** (0.20 mmol, 1.0 equiv.), Fe(NO₃)₃·9H₂O (0.02 mmol, 10.0 mol%) and NaHCO₃ (0.20 mmol, 1.0 equiv.) were added in an oven-dried 20 mL quartz tube containing a magnetic stirrer bar. To this was added dry dimethyl sulfoxide and deuterium oxide (0.1 M, 4:1) followed by addition of TRIP thiol (0.02 mmol, 10.0 mol%) and fluorocarboxylic acid **2** (0.80 mmol, 4.0 equiv.) via pipettor. The reaction vial was sealed, evacuated and backfilled ten times with 1 atm of N₂. The reaction mixture was stirred for 30 hours at room temperature in the presence of 10W 390 nm LED lamp (WATTCAS: WP-TEC-1020SL). After the reaction was completed

(monitored by TLC), the mixture was diluted with EtOAc, and organic phase was washed with saturated NaCl solution. The combined organic layers were dried (Na₂SO₄), filtered and concentrated under reduced pressure. The residue was purified by PTLC (Preparative Thin-Layer Chromatography) with a gradient eluent of petroleum ether and ethyl acetate to give the desired product **3-D**.

General Procedure B

Unactivated olefin **4** (0.10 mmol, 1.0 equiv.), $Fe(NO_3)_3 \cdot 9H_2O$ (0.04 mmol, 40.0 mol%) and K_2CO_3 (0.20 mmol, 2.0 equiv.) were added in an oven-dried 20 mL quartz tube containing a magnetic stirrer bar. To this was added dry MeCN (0.1 M) and 10.0 μ L H₂O followed by addition of fluorocarboxylic acid **2** (0.60 mmol, 6.0 equiv.) via pipettor. The reaction vial was sealed, evacuated and backfilled ten times with 1 atm of N₂. The reaction mixture was stirred for 16 hours at room temperature in the presence of 10W 390 nm LED lamp (WATTCAS: WP-TEC-1020SL). After the reaction was completed (monitored by TLC), the solvent was removed by rotary evaporation and the residue was purified by PTLC (Preparative Thin-Layer Chromatography) with a gradient eluent of petroleum ether and ethyl acetate to give the desired product **5**.

General Procedure C

Unactivated olefin **4** (0.10 mmol, 1.0 equiv.), FeCl₃ (0.008 mmol, 8.0 mol%) and K_2CO_3 (0.20 mmol, 2.0 equiv.) were added in an oven-dried 20 mL quartz tube containing a magnetic stirrer bar. To this was added aldehyde **6** (0.50 mmol, 5.0 equiv.) via pipettor followed by addition of H₂O (0.1 M). The reaction vial was sealed, evacuated and backfilled ten times with 1 atm of N₂. The reaction mixture was stirred for 16 - 30 hours at room temperature in the presence of 10W 390 nm LED lamp (WATTCAS: WP-TEC-1020SL). After the reaction was completed (monitored by

TLC), the mixture was diluted with EtOAc, and organic phase was washed with saturated NaCl solution. The combined organic layers were dried (Na_2SO_4), filtered and concentrated under reduced pressure. and the residue was purified by PTLC (Preparative Thin-Layer Chromatography) with a gradient eluent of petroleum ether and ethyl acetate to give the desired product **7**.

3.2 General procedure for the gram-scale reaction

To an oven-dried 50 mL double-necked flask (charged with a stir bar) was added distal olefinic aryl ether (**4i**, 1.0 mmol, 206 mg, 1.0 equiv.), Fe(NO₃)₃·9H₂O (40 mol%, 162 mg, 0.4 mmol) and K₂CO₃ (2.0 mmol, 276 mg, 2.0 equiv.). The reaction vial was evacuated and back-filled with nitrogen under -78 °C (this process was repeated three times), difluoroacetic acid (**2a**, liquid, 6.0 mmol, 377 µL, 6.0 equiv.), 100 µL H₂O and MeCN (10.0 mL, 0.1M) was added subsequently via syring. The resulting mixture was stirred at room temperature with four 10 W 390 nm LED lamps until the reaction completion. The mixture was filtered and concentrated under reduced pressure. The crude mixture was purified by column chromatography on silica gel (PE : EA = 5:1, v/v). to give the desired product **5i** (175 mg, 68%).

Figure S3. Reaction setup for the gram-scale reaction

3.3 General procedure for the synthesis of unactivated olefins¹⁻³

To an oven-dried 50 mL double-necked flask (charged with a stir bar) was charged with Cp₂TiCl₂ (1.0 mol%, 12.5 mg, 0.05 mmol) and zinc dust (12.5 mmol, 825 mg, 2.5 equiv.) under an atmosphere of N₂ at room temperature. THF (10.0 mL) was added via syringe and the reaction stirred until the solution had turned from red to green. A solution of aldehyde (5.0 mmol, 1.0 equiv.) and 3,3-dimethylallyl bromide (12.5 mmol, 2.5 equiv.) in THF (10.0 mL) was then added via syringe. The reaction was stirred until all starting material was consumed as monitored by TLC. The crude residue was purified by flash chromatography, eluting with hexanes/EtOAc to give the homoallylic alcohol.

The solution of the homoallylic alcohol (1.0 equiv) in DCM (0.5 M) was added to a mixture of Dess-Martin periodinane (1.5 equiv) and DCM (0.5 M). The reaction mixture was stirred until the homoallylic alcohol was consumed. The solvent was removed in vacuo. Purify the residue by silica gel column chromatography (petroleum ether-EtOAc 100:1) to give the β , γ -unsaturated ketones **1**.

To an oven-dried 100 mL round-bottom flask (charged with a stir bar) was added aromatic amine (10.0 mmol), tosyl chloride (2.28 g, 12 mmol, 1.2 equiv), pyridine (2.42 mL, 30.0 mmol, 3.0 equiv), and 30 mL DCM. The mixture was stirred at room temperature until starting material was consumed. This organic solution was washed with 1N HCl and brine. The combined organic layers were dried (Na₂SO₄), filtered and concentrated under reduced pressure.

The crude product that the product of the first step, 4-bromobut-1-ene (2 mL, 20 mmol), and K_2CO_3 (2.7 g, 20 mmol) were dispersed in DMF (20 mL). The mixture was stirred for 12 h at 80 °C and quenched with H₂O and EtOAc. The residue was purified by flash chromatography on a silica gel using petroleum ether and ethyl acetate as the eluent to give unactivated olefin **4**.

3.4 Unreacted substrates

Unreacted alkene substrates :

PhCHO 6a

- Dry DMSO (0.1 M) 390 nm LEDs, N₂, rt, 30 h

no detected

4. Characterization Data of Substrates and Products

4.1 Characterization data of substrates

1-(4-(*tert*-butyl)phenyl)-2,2-dimethylbut-3-en-1-one (1a)

Yellow oil liquid.

Compound **1a** was purified by flash chromatography eluted with PE/EA = 100:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.87 (d, J = 8.5 Hz, 2H), 7.39 (d, J = 8.5 Hz, 2H), 6.20

(dd, J = 17.6, 10.6 Hz, 1H), 5.27 - 5.16 (m, 2H), 1.40 (s, 6H), 1.32 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 203.9, 155.4, 144.3, 134.1, 129.6, 125.0, 113.9, 50.1, 35.1, 31.2, 26.3.

HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{16}H_{23}O^+$ 231.1743; found 231.1745.

1-(4-(but-2-yn-1-yloxy)phenyl)-2,2-dimethylbut-3-en-1-one (1d)

Yellow oil liquid.

Compound 1d was purified by flash chromatography eluted with PE/EA = 100:1.

¹**H NMR (400 MHz, CDCl**₃) δ 7.96 (d, J = 9.0 Hz, 2H), 6.92 (d, J = 9.0 Hz, 2H), 6.20 (dd, J = 17.6, 10.6 Hz, 1H), 5.27 - 5.15 (m, 2H), 4.71 - 4.64 (m, 2H), 1.85 (t, J = 2.2 Hz, 3H), 1.39 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 202.4, 160.7, 144.4, 132.0, 129.6, 114.0, 113.7, 84.3, 73.5, 56.5, 49.9, 26.4, 3.7.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₉O₂⁺ 243.1380; found 243.1376.

1-(3-methoxyphenyl)-2,2-dimethylbut-3-en-1-one (1i)

Yellow oil liquid.

Compound **1i** was purified by flash chromatography eluted with PE/EA = 100:1. ¹H NMR (**400 MHz, CDCl**₃) δ 7.48 (d, *J* = 7.7 Hz, 1H), 7.41 (s, 1H), 7.30 – 7.26 (m, 1H), 7.01 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.19 (dd, *J* = 17.5, 10.6 Hz, 1H), 5.28 – 5.19 (m, 2H), 3.81 (s, 3H), 1.39 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 204.5, 159.3, 144.0, 138.5, 129.0, 121.9, 117.9, 114.2, 114.1, 55.4, 50.3, 26.1.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₇O₂⁺ 205.1223; found 205.1219.

2,2-dimethyl-1-(o-tolyl)but-3-en-1-one (1j)

Yellow oil liquid.

Compound 1j was purified by flash chromatography eluted with PE/EA = 100:1.

¹**H NMR (400 MHz, CDCl**₃) δ 7.27 - 7.12 (m, 4H), 6.03 (dd, J = 17.4, 10.6 Hz, 1H), 5.22 - 5.12 (m, 2H), 2.23 (s, 3H), 1.33 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 211.1, 142.8, 140.6, 134.6, 130.9, 129.1, 125.6, 124.8, 114.3, 51.5, 24.6, 20.1.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₇O⁺ 189.1274; found 189.1276.

2,2-dimethyl-1-phenylbut-3-en-1-one (11)

Yellow oil liquid.

Compound **11** was purified by flash chromatography eluted with PE/EA = 100:1.

¹**H NMR (400 MHz, CDCl**₃) δ 7.91 – 7.85 (m, 2H), 7.45 (t, J = 7.4 Hz, 1H), 7.36 (t,

J = 7.5 Hz, 2H), 6.18 (dd, J = 17.6, 10.6 Hz, 1H), 5.27 - 5.17 (m, 2H), 1.39 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 204.8, 144.0, 137.2, 131.8, 129.4, 128.1, 114.2, 50.3, 26.2.

HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{12}H_{15}O^+$ 175.1117; found 175.1120.

4,4-dimethyl-1-phenylhex-5-en-3-one (10)

Yellow oil liquid.

Compound **10** was purified by flash chromatography eluted with PE/EA = 100:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.28 – 7.24 (m, 2H), 7.17 (t, *J* = 8.1 Hz, 3H), 5.86 (dd, *J* = 17.3, 10.7 Hz, 1H), 5.15 – 5.04 (m, 2H), 2.87 – 2.80 (m, 2H), 2.81 – 2.74 (m, 2H), 1.19 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 212.2, 142.5, 141.5, 128.5, 128.5, 126.1, 114.5, 50.9, 39.5, 30.3, 23.5.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₉O⁺ 203.1430; found 203.1426.

4-(2,2-dimethylbut-3-enoyl)phenyl 2-(4-isobutylphenyl)propanoate (1p)

Yellow oil liquid.

Compound **1p** was purified by flash chromatography eluted with PE/EA = 100:1.

¹**H NMR (400 MHz, CDCl**₃) δ 7.91 (d, *J* = 8.6 Hz, 2H), 7.28 (d, *J* = 7.8 Hz, 2H), 7.14 (d, *J* = 7.8 Hz, 2H), 7.01 (d, *J* = 8.6 Hz, 2H), 6.15 (dd, *J* = 17.6, 10.6 Hz, 1H), 5.25 – 5.13 (m, 2H), 3.93 (q, *J* = 7.1 Hz, 1H), 2.46 (d, *J* = 7.2 Hz, 2H), 1.90 - 1.83 (m, 1H), 1.60 (d, *J* = 7.1 Hz, 3H), 1.37 (s, 6H), 0.90 (d, *J* = 6.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 203.1, 172.8, 153.6, 143.9, 141.1, 137.0, 134.2, 131.2, 129.7, 127.3, 121.0, 114.2, 50.2, 45.4, 45.2, 30.3, 26.2, 22.5, 18.5.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₃₁O₃⁺ 379.2268; found 379.2266.

Colorless oil.

Compound 4a was purified by flash chromatography eluted with PE/EA = 10:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.54 (d, J = 8.1 Hz, 2H), 7.28 (t, J = 8.0 Hz, 2H), 7.22 (d, J = 8.1 Hz, 2H), 6.92 (t, J = 7.6 Hz, 1H), 6.78 (d, J = 8.1 Hz, 1H), 5.74 (ddt, J = 17.1, 10.4, 6.7 Hz, 1H), 5.02 (d, J = 7.8 Hz, 1H), 4.98 (s, 1H), 3.63 (br, 2H), 3.36 (s, 3H), 2.40 (s, 3H), 2.20 (q, J = 7.2 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 156.7, 142.7, 137.6, 135.2, 133.5, 129.8, 129.0, 127.6, 126.5, 120.6, 116.8, 111.7, 54.9, 49.3, 33.5, 21.5.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₈H₂₂NO₃S⁺ 332.1315; found 332.1317.

N-(**but-3-en-1-yl**)-*N*-(**2,5-dimethoxyphenyl**)-**4-methylbenzenesulfonamide** (**4c**) Colorless oil.

Compound 4c was purified by flash chromatography eluted with PE/EA = 10:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.56 (d, J = 8.1 Hz, 2H), 7.22 (d, J = 8.1 Hz, 2H), 6.85 – 6.81 (m, 2H), 6.70 (d, J = 8.5 Hz, 1H), 5.74 (ddt, J = 17.1, 10.3, 6.7 Hz, 1H), 5.05 – 5.01 (m, 1H), 4.99 (s, 1H), 3.74 (s, 3H), 3.63 (br, 2H), 3.32 (s, 3H), 2.40 (s, 3H), 2.20 (q, J = 7.2 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 153.1, 151.0, 142.8, 137.5, 135.2, 129.0, 127.6, 127.0, 118.9, 116.8, 115.0, 112.2, 55.8, 55.3, 49.3, 33.5, 21.5.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₄NO₄S⁺ 362.1421; found 362.1419.

Methyl 2-((*N*-(but-3-en-1-yl)-4-methylphenyl)sulfonamido)benzoate (4f) Colorless oil.

Compound 4f was purified by flash chromatography eluted with PE/EA = 10:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.87 (dd, J = 7.4, 2.0 Hz, 1H), 7.49 (d, J = 8.2 Hz, 2H), 7.44 – 7.38 (m, 2H), 7.23 (d, J = 8.2 Hz, 2H), 6.96 (dd, J = 7.6, 1.4 Hz, 1H), 5.73 (ddt, J = 17.1, 10.3, 6.7 Hz, 1H), 5.05 – 4.97 (m, 2H), 3.79 (s, 3H), 3.71 (br, 2H), 2.41 (s, 3H), 2.41 – 2.25 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 166.7, 143.3, 138.2, 136.5, 134.9, 132.9, 132.2, 131.5, 130.4, 129.5, 128.3, 127.6, 117.0, 52.3, 51.3, 33.3, 21.6.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₂NO₄S⁺ 360.1264; found 360.1262.

N-(**but-3-en-1-yl**)-*N*-(**2-methoxyphenyl**)-**2**,**4**,**6-trimethylbenzenesulfonamide** (**4m**) White solid.

Compound 4m was purified by flash chromatography eluted with PE/EA = 10:1.

¹**H NMR (400 MHz, CDCl**₃) δ 7.44 (dd, J = 7.8, 1.7 Hz, 1H), 7.26 – 7.20 (m, 1H), 6.91 (td, J = 7.6, 1.1 Hz, 1H), 6.80 (s, 2H), 6.70 (d, J = 8.3 Hz, 1H), 5.78 (ddt, J = 17.1, 10.4, 6.8 Hz, 1H), 5.08 – 5.00 (m, 2H), 3.82 (br, 2H), 3.35 (s, 3H), 2.37 (s, 6H), 2.27 – 2.22 (m, 5H).

¹³C NMR (101 MHz, CDCl₃) δ 157.3, 141.6, 140.5, 135.3, 134.3, 133.9, 131.2, 129.9, 125.9, 120.6, 116.9, 111.7, 54.9, 49.3, 33.5, 23.2, 21.0.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₆NO₃S⁺ 360.1628; found 360.1625.

N-(**but-3-en-1-yl**)-**5-chloro**-*N*-(**2-methoxyphenyl**)**thiophene-2-sulfonamide** (**4n**) Colorless oil.

Compound **4n** was purified by flash chromatography eluted with PE/EA = 10:1.

¹**H NMR (400 MHz, CDCl**₃) δ 7.35 – 7.27 (m, 2H), 7.16 (d, J = 4.0 Hz, 1H), 6.96 (td, J = 7.6, 1.1 Hz, 1H), 6.88 (d, J = 4.0 Hz, 1H), 6.85 (d, J = 8.3 Hz, 1H), 5.74 (ddt, J =

16.3, 11.0, 6.7 Hz, 1H), 5.07 – 5.03 (m, 1H), 5.01 (s, 1H), 3.69 (br, 2H), 3.54 (s, 3H), 2.23 (q, *J* = 7.2 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 156.5, 139.2, 136.4, 134.9, 133.6, 131.1, 130.3, 126.4, 125.8, 120.9, 117.1, 111.8, 55.1, 49.6, 33.5.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₇ClNO₃S₂⁺ 358.0333; found 358.0337.

N-(but-3-en-1-yl)-*N*-(2-methoxyphenyl)pyridine-3-sulfonamide (40)

Yellow oil liquid.

Compound 40 was purified by flash chromatography eluted with PE/EA = 8:1.

¹**H NMR (400 MHz, CDCl**₃) δ 8.85 (d, J = 1.9 Hz, 1H), 8.74 (dd, J = 4.9, 1.6 Hz, 1H), 7.93 (dt, J = 8.0, 1.9 Hz, 1H), 7.41 – 7.30 (m, 3H), 6.97 (td, J = 7.6, 1.2 Hz, 1H), 6.78 (dd, J = 8.3, 1.0 Hz, 1H), 5.75 (ddt, J = 18.1, 9.6, 6.7 Hz, 1H), 5.07 – 5.01 (m, 2H), 3.68 (br, 2H), 3.32 (s, 3H), 2.23 (q, J = 7.2 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 156.0, 152.5, 148.3, 137.0, 135.0, 134.7, 133.9, 130.3, 125.4, 123.1, 120.9, 117.1, 111.7, 54.8, 49.3, 33.4.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₉N₂O₃S⁺ 319.1111; found 319.1106.

N-(but-3-en-1-yl)-*N*-(2-methoxyphenyl)naphthalene-1-sulfonamide (4p)

Yellow oil liquid.

Compound **4p** was purified by flash chromatography eluted with PE/EA = 10:1.

¹**H NMR (400 MHz, CDCl**₃) δ 8.38 (d, J = 8.7 Hz, 1H), 8.08 (dd, J = 7.4, 1.1 Hz, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.46 – 7.32 (m, 4H), 7.20 (td, J = 8.2, 1.7 Hz, 1H), 6.91 (td, J = 7.6, 1.2 Hz, 1H), 6.47 (dd, J = 8.3, 1.0 Hz, 1H), 5.72 (ddt, J = 17.0, 10.2, 6.7 Hz, 1H), 5.04 – 4.94 (m, 2H), 3.71 (br, 2H), 2.68 (s, 3H), 2.21 (q, J =

7.2 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 156.7, 136.0, 135.0, 134.0, 133.9, 133.5, 129.8, 129.6, 129.1, 128.2, 127.0, 126.3, 125.8, 125.7, 123.8, 120.2, 116.7, 111.2, 54.0, 49.0, 33.4.
HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₂NO₃S⁺ 368.1315; found 368.1311.

N-(**but-3-en-1-yl**)-*N*-(**2-methoxyphenyl**)naphthalene-2-sulfonamide (4q) Yellow oil liquid. Compound 4q was purified by flash chromatography eluted with PE/EA = 10:1. ¹H NMR (400 MHz, CDCl₃) δ 8.23 – 8.16 (m, 1H), 7.88 – 7.81 (m, 3H), 7.68 (dd, *J* = 8.7, 1.7 Hz, 1H), 7.60 – 7.50 (m, 2H), 7.33 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.29 – 7.24 (m, 1H), 6.96 – 6.89 (m, 1H), 6.70 (d, *J* = 8.1 Hz, 1H), 5.76 (ddt, *J* = 17.0, 10.3, 6.7 Hz, 1H), 5.07 – 4.95 (m, 2H), 3.71 (br, 2H), 3.07 (s, 3H), 2.23 (q, *J* = 7.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.5, 137.3, 135.0, 134.5, 133.6, 131.9, 129.9, 129.0,

128.4, 128.3, 128.2, 127.7, 127.2, 126.2, 123.3, 120.5, 116.7, 111.6, 54.6, 49.3, 33.4. **HRMS** (ESI) *m*/*z*: [M+H]⁺ calcd for C₂₁H₂₂NO₃S⁺ 368.1315; found 368.1317.

N-(**but-3-en-1-yl**)-*N*-(**2-methoxyphenyl**)cyclopropanesulfonamide (4r) Colorless oil.

Compound 4r was purified by flash chromatography eluted with PE/EA = 10:1.

¹**H NMR (400 MHz, CDCl**₃) δ 7.36 – 7.29 (m, 2H), 6.95 (t, *J* = 7.4 Hz, 2H), 5.76 (ddt, *J* = 17.1, 10.4, 6.7 Hz, 1H), 5.04 (d, *J* = 8.9 Hz, 1H), 5.01 (s, 1H), 3.87 (s, 3H), 3.71 (br, 2H), 2.49 (ddd, *J* = 12.9, 8.0, 4.9 Hz, 1H), 2.21 (q, *J* = 7.2 Hz, 2H), 1.09 – 1.00 (m, 2H), 0.88 (d, *J* = 7.7 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 156.8, 135.2, 133.8, 129.9, 127.1, 120.9, 116.9, 111.7, 55.5, 49.5, 33.7, 30.0, 5.2.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₂₀NO₃S⁺ 282.1158; found 282.1160.

N-(but-3-en-1-yl)-*N*-(2-methoxyphenyl)-1-phenylmethanesulfonamide (4s)Yellow oil liquid.Compound 4s was purified by flash chromatography eluted with PE/EA = 10:1.

¹**H NMR (400 MHz, CDCl**₃) δ 7.44 – 7.40 (m, 2H), 7.35 – 7.30 (m, 4H), 7.25 (dd, J = 7.7, 1.7 Hz, 1H), 6.97 – 6.91 (m, 2H), 5.74 – 5.60 (m, 1H), 5.01 – 4.92 (m, 2H), 4.26 (s, 2H), 3.86 (s, 3H), 3.58 (t, J = 7.4 Hz, 2H), 2.14 (q, J = 7.1 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 156.2, 134.8, 133.7, 130.9, 129.9, 129.4, 128.5, 128.3, 126.4, 120.8, 116.7, 111.9, 58.2, 55.4, 49.5, 33.4.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₈H₂₂NO₃S⁺ 332.1315; found 332.1319.

N-(but-3-en-1-yl)-1-((1*S*,4*R*)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)-*N*-(2-methoxyphenyl)methanesulfonamide (4t)

White solid.

Compound 4t was purified by flash chromatography eluted with PE/EA = 10:1.

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.31 (m, 2H), 6.99 – 6.95 (m, 2H), 5.77 (ddt, J = 17.1, 10.4, 6.7 Hz, 1H), 5.08 – 5.03 (m, 1H), 5.02 (s, 1H), 3.89 (s, 3H), 3.84 – 3.63 (m, 2H), 3.60 (d, J = 14.9 Hz, 1H), 2.97 (d, J = 14.9 Hz, 1H), 2.58 – 2.50 (m, 1H), 2.36 (dt, J = 18.4, 3.9 Hz, 1H), 2.22 (q, J = 7.1 Hz, 2H), 2.07 – 1.98 (m, 2H), 1.91 (d, J = 18.4 Hz, 1H), 1.61 – 1.55 (m, 1H), 1.40 – 1.35 (m, 1H), 1.12 (s, 3H), 0.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 215.6, 156.3, 135.1, 134.2, 130.0, 126.7, 121.0, 116.9, 112.0, 58.6, 55.4, 49.2, 48.5, 47.6, 43.0, 42.7, 33.7, 26.9, 25.2, 20.3, 19.8.

4.2 Characterization data of products

1-(4-(tert-butyl)phenyl)-4,4-difluoro-2-isopropylbutan-1-one (3a)

Colorless liquid.

Compound **3a** was purified by PTLC with PE/EA = 35:1, 69% yield (38.9 mg) following the procedure A_1 .

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.89 (d, J = 8.6 Hz, 2H), 7.49 (d, J = 8.6 Hz, 2H), 5.90 - 5.60 (m, 1H), 3.57 - 3.48 (m, 1H), 2.61 - 2.43 (m, 1H), 2.16 - 2.05 (m, 1H), 2.02 -1.89 (m, 1H), 1.35 (s, 9H), 1.01 (d, J = 6.8 Hz, 3H), 0.84 (d, J = 6.8 Hz, 3H). ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 201.9, 157.2, 134.5, 128.4, 125.9, 116.7 (t, J = 238.8 Hz), 45.7 (dd, J = 6.6, 2.2 Hz), 35.3, 31.7 (t, J = 21.1 Hz), 31.2, 30.7, 21.2, 18.4.

¹⁹**F NMR (376 MHz, CDCl**₃) δ -113.25 – -117.42 (m).

HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{17}H_{25}F_2O^+$ 283.1868; found 283.1870.

4,4-difluoro-2-isopropyl-1-(4-isopropylphenyl)butan-1-one (3b)

Colorless liquid.

Compound **3b** was purified by PTLC with PE/EA = 35:1, 70% yield (37.5 mg) following the procedure A_1 .

¹**H NMR (400 MHz, CDCl₃)** δ 7.89 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 5.91 – 5.59 (m, 1H), 3.55 – 3.49 (m, 1H), 2.97 (p, J = 6.9 Hz, 1H), 2.60 – 2.43 (m, 1H), 2.16 – 2.06 (m, 1H), 2.02 – 1.89 (m, 1H), 1.28 (d, J = 6.9 Hz, 6H), 1.01 (d, J = 6.8 Hz, 3H), 0.84 (d, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 201.9, 154.9, 135.0, 128.7, 127.0, 116.7 (t, J = 238.8 Hz), 45.7 (dd, J = 6.6, 2.2 Hz), 34.4, 31.7 (t, J = 21.2 Hz), 30.7, 23.8, 21.2, 18.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.26 - -117.42 (m).

1-(4-(benzyloxy)phenyl)-4,4-difluoro-2-isopropylbutan-1-one (3c)

Colorless liquid.

Compound **3c** was purified by PTLC with PE/EA = 35:1, 61% yield (40.5 mg) following the procedure A_1 .

¹**H NMR (400 MHz, CDCl**₃) δ 7.94 (d, J = 8.8 Hz, 2H), 7.46 – 7.31 (m, 5H), 7.02 (d, J = 8.8 Hz, 2H), 5.90 – 5.58 (m, 1H), 5.13 (s, 2H), 3.56 – 3.38 (m, 1H), 2.60 – 2.41 (m, 1H), 2.12 – 1.89 (m, 2H), 0.99 (d, J = 6.8 Hz, 3H), 0.85 (d, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 200.8, 163.0, 136.2, 130.8, 130.3, 128.9, 128.4, 127.6, 116.7 (t, J = 238.8 Hz), 114.9, 70.3, 45.6 – 45.3 (m), 31.9 (t, J = 21.1 Hz), 30.9, 21.2, 18.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -113.29 - -117.39 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₃F₂O₂⁺ 333.1661; found 333.1657.

1-(4-(but-2-yn-1-yloxy)phenyl)-4,4-difluoro-2-isopropylbutan-1-one (3d)

Colorless liquid.

Compound **3d** was purified by PTLC with PE/EA = 35:1, 64% yield (37.6 mg) following the procedure A_1 .

¹**H NMR (400 MHz, CDCl**₃) δ 7.94 (d, J = 8.8 Hz, 2H), 7.02 (d, J = 8.8 Hz, 2H), 5.94 - 5.56 (m, 1H), 4.77 - 4.66 (m, 2H), 3.55 - 3.42 (m, 1H), 2.60 - 2.41 (m, 1H), 2.15 - 1.90 (m, 2H), 1.87 (t, J = 2.2 Hz, 3H), 1.00 (d, J = 6.8 Hz, 3H), 0.85 (d, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 200.8, 162.0, 130.7, 130.6, 116.7 (t, *J* = 239.4 Hz), 114.9, 84.7, 73.4, 56.7, 45.6 - 45.5 (m), 31.9 (t, *J* = 21.2 Hz), 30.9, 21.2, 18.6, 3.8.

¹⁹F NMR (**376** MHz, CDCl₃) δ -113.32 - -117.39 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₂₁F₂O₂⁺ 295.1504; found 295.1502.

.OPh

4,4-difluoro-2-isopropyl-1-(4-phenoxyphenyl)butan-1-one (3e)

Colorless liquid.

Compound **3e** was purified by PTLC with PE/EA = 35:1, 73% yield (46.4 mg) following the procedure A₁.

¹**H NMR (400 MHz, CDCl₃)** δ 7.94 (d, J = 8.8 Hz, 2H), 7.40 (t, J = 7.9 Hz, 2H), 7.21 (t, J = 7.4 Hz, 1H), 7.08 (d, J = 7.8 Hz, 2H), 7.01 (d, J = 8.8 Hz, 2H), 5.94 – 5.58 (m, 1H), 3.53 – 3.44 (m, 1H), 2.60 – 2.42 (m, 1H), 2.13 – 1.90 (m, 2H), 1.00 (d, J = 6.8 Hz, 3H), 0.86 (d, J = 6.8 Hz, 3H).

¹³**C NMR (101 MHz, CDCl₃)** δ 200.9, 162.4, 155.5, 131.7, 130.7, 130.2, 124.9, 120.4, 117.5, 116.7 (t, *J* = 238.8 Hz), 45.6 (dd, *J* = 6.4, 2.2 Hz), 31.9 (t, *J* = 21.1 Hz), 30.9, 21.2, 18.6.

¹⁹**F NMR (376 MHz, CDCl**₃) δ -113.41 - -117.34 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₁F₂O₂⁺ 319.1504; found 319.1507.

4,4-difluoro-2-isopropyl-1-(4-(methylthio)phenyl)butan-1-one (3f)

Colorless liquid.

Compound **3f** was purified by PTLC with PE/EA = 35:1, 81% yield (44.1 mg) following the procedure A₁.

¹**H NMR (400 MHz, CDCl**₃) δ 7.86 (d, J = 8.5 Hz, 2H), 7.28 (d, J = 8.5 Hz, 2H), 5.91 – 5.59 (m, 1H), 3.51 – 3.45 (m, 1H), 2.57 – 2.45 (m, 4H), 2.12 – 2.03 (m, 1H), 2.02 – 1.90 (m, 1H), 0.99 (d, J = 6.8 Hz, 3H), 0.85 (d, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 201.3, 146.4, 133.4, 128.8, 125.2, 116.7 (t, J = 238.9 Hz), 45.6 (dd, J = 6.4, 2.3 Hz), 31.9 (t, J = 21.1 Hz), 30.9, 21.1, 18.6, 14.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -113.42 - -117.31 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₉F₂OS⁺ 273.1119; found 273.1123.

OCF₃

4,4-difluoro-2-isopropyl-1-(4-(trifluoromethoxy)phenyl)butan-1-one (3g)

Colorless liquid.

Compound **3g** was purified by PTLC with PE/EA = 35:1, 42% yield (26.0 mg) following the procedure A_1 .

¹**H NMR (400 MHz, CDCl**₃) δ 8.00 (d, J = 8.8 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 5.94 – 5.62 (m, 1H), 3.55 – 3.48 (m, 1H), 2.61 – 2.45 (m, 1H), 2.13 – 2.04 (m, 1H), 2.03 – 1.91 (m, 1H), 1.01 (d, J = 6.8 Hz, 3H), 0.85 (d, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 200.9, 152.9, 135.4, 130.5, 120.7, 120.4 (q, *J* = 260.6 Hz), 116.5 (t, *J* = 238.9 Hz), 45.8 (dd, *J* = 6.0, 2.5 Hz), 31.8 (t, *J* = 21.1 Hz), 30.8, 21.1, 18.5.

¹⁹F NMR (376 MHz, CDCl₃) δ -57.58 (s), -113.82 - -117.21 (m).

HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{14}H_{16}F_5O_2^+$ 311.1065; found 311.1070.

4,4-difluoro-2-isopropyl-1-(3-methoxyphenyl)butan-1-one (3i)

Colorless liquid.

Compound **3i** was purified by PTLC with PE/EA = 35:1, 56% yield (28.7 mg) following the procedure A₁.

¹**H NMR (400 MHz, CDCl**₃) δ 7.52 (d, J = 7.6 Hz, 1H), 7.49 - 7.44 (m, 1H), 7.39 (t, J = 7.9 Hz, 1H), 7.13 (dd, J = 8.0, 2.3 Hz, 1H), 5.95 - 5.59 (m, 1H), 3.87 (s, 3H), 3.58 - 3.43 (m, 1H), 2.63 - 2.42 (m, 1H), 2.15 - 1.90 (m, 2H), 1.01 (d, J = 6.8 Hz, 3H), 0.84 (d, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 202.2, 160.1, 138.5, 129.9, 120.9, 119.7, 116.6 (t, *J* = 238.9 Hz), 112.8, 55.6, 46.1 – 45.8 (m), 31.7 (t, *J* = 20.2 Hz), 30.8, 21.1, 18.4.

¹⁹F NMR (376 MHz, CDCl₃) δ -113.42 - -117.29 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₉F₂O₂⁺ 257.1348; found 257.1349.

4,4-difluoro-2-isopropyl-1-(o-tolyl)butan-1-one (3j)

Colorless liquid.

Compound **3j** was purified by PTLC with PE/EA = 35:1, 54% yield (25.9 mg) following the procedure A₁.

¹**H NMR (400 MHz, CDCl₃)** δ 7.59 (d, J = 7.7 Hz, 1H), 7.38 (t, J = 7.2 Hz, 1H), 7.28 (d, J = 7.8 Hz, 2H), 6.02 - 5.70 (m, 1H), 3.49 - 3.37 (m, 1H), 2.62 - 2.43 (m, 4H), 2.07 - 1.84 (m, 2H), 0.98 (d, J = 6.9 Hz, 3H), 0.82 (d, J = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 206.0, 138.4, 132.2, 131.4, 128.2, 125.9, 116.9 (t, J = 238.7 Hz), 48.7 (dd, J = 6.4, 2.4 Hz), 30.8 (t, J = 21.2 Hz), 30.1, 21.2, 21.0, 18.2.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -113.23 – -117.60 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₉F₂O⁺ 241.1398; found 241.1395.

2-(2,2-difluoroethyl)-3,3,7-trimethyl-2,3-dihydro-1H-inden-1-one (3k)

Colorless liquid.

Compound **3k** was purified by PTLC with PE/EA = 35:1, 35% yield (16.7 mg) following the procedure A_1 .

¹**H NMR (400 MHz, CDCl₃)** δ 7.48 (t, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 7.7 Hz, 1H), 7.12 (d, *J* = 7.4 Hz, 1H), 6.40 (tdd, *J* = 57.5, 6.8, 2.8 Hz, 1H), 2.64 - 2.55 (m, 4H), 2.41 - 2.26 (m, 1H), 2.07 - 1.92 (m, 1H), 1.50 (s, 3H), 1.13 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 206.6, 163.1, 138.7, 134.5, 131.5, 129.6, 120.7, 116.7 (t, J = 238.8 Hz), 54.3 (dd, J = 6.8, 2.3 Hz), 41.2, 30.9 (t, J = 22.1 Hz), 28.0, 26.9, 18.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.04 – -118.98 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₇F₂O⁺ 239.1242; found 239.1247.

4,4-difluoro-2-isopropyl-1-phenylbutan-1-one (3l)

Colorless liquid.

Compound **31** was purified by PTLC with PE/EA = 35:1, 41% yield (18.5 mg) following the procedure A₁.

¹**H NMR (400 MHz, CDCl₃)** δ 7.94 (d, J = 7.7 Hz, 2H), 7.58 (t, J = 7.3 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 5.96 - 5.59 (m, 1H), 3.68 - 3.42 (m, 1H), 2.64 - 2.44 (m, 1H), 2.16 - 1.89 (m, 2H), 1.01 (d, J = 6.8 Hz, 3H), 0.84 (d, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 202.4, 137.2, 133.4, 128.9, 128.4, 116.7 (t, *J* = 238.9 Hz), 45.8 (dd, *J* = 6.4, 2.3 Hz), 31.6 (t, *J* = 21.2 Hz), 30.7, 21.2, 18.4.

¹⁹F NMR (376 MHz, CDCl₃) δ -113.40 - -117.40 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₇F₂O⁺ 227.1242; found 227.1243.

4,4-difluoro-2-isopropyl-1-(thiophen-2-yl)butan-1-one (3m)

Colorless liquid.

Compound **3m** was purified by PTLC with PE/EA = 35:1, 39% yield (18.1 mg) following the procedure A_1 .

¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 3.8 Hz, 1H), 7.68 (d, *J* = 4.9 Hz, 1H), 7.17 – 7.13 (m, 1H), 5.92 – 5.61 (m, 1H), 3.35 – 3.28 (m, 1H), 2.54 – 2.42 (m, 1H), 2.17 – 2.09 (m, 1H), 2.04 – 1.94 (m, 1H), 1.01 (d, *J* = 6.8 Hz, 3H), 0.93 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 195.1, 144.8, 134.5, 132.3, 128.4, 116.4 (t, *J* = 239.0 Hz), 48.0 (dd, *J* = 6.3, 2.3 Hz), 32.6 (t, *J* = 21.3 Hz), 31.4, 21.1, 19.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.72 – -117.24 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₁₅F₂OS⁺ 233.0806; found 233.0805.

1-cyclohexyl-4,4-difluoro-2-isopropyl-4-phenylbutan-1-one (3n)

Colorless liquid.

Compound **3n** was purified by PTLC with PE/EA = 35:1, 53% yield (32.6 mg) following the procedure A_1 .

¹**H NMR (400 MHz, CDCl**₃) δ 7.48 – 7.39 (m, 5H), 2.97 (dd, J = 9.5, 3.7 Hz, 1H), 2.88 – 2.70 (m, 1H), 2.50 – 2.40 (m, 1H), 2.03 – 1.90 (m, 2H), 1.84 – 1.66 (m, 5H), 1.31 – 1.13 (m, 5H), 0.99 (d, J = 6.8 Hz, 3H), 0.75 (d, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 214.4, 137.5 (t, *J* = 26.5 Hz), 129.9, 128.5, 125.1 (t, *J* = 6.2 Hz), 122.8 (t, *J* = 243.4 Hz), 50.8, 49.5, 35.1 (t, *J* = 26.9 Hz), 29.4, 28.0, 26.3, 26.0, 25.7, 21.4, 17.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -94.33 – -97.22 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₇F₂O⁺ 309.2024; found 309.2028.

6,6-difluoro-4-isopropyl-1,6-diphenylhexan-3-one (30)

Colorless liquid.

Compound **30** was purified by PTLC with PE/EA = 35:1, 61% yield (31.0 mg) following the procedure A_1 .

¹**H NMR (400 MHz, CDCl₃)** δ 7.31 - 7.25 (m, 2H), 7.23 - 7.14 (m, 3H), 5.69 (tdd, J = 57.1, 5.4, 3.2 Hz, 1H), 2.92 - 2.72 (m, 4H), 2.64 - 2.55 (m, 1H), 2.39 - 2.22 (m, 1H), 2.02 - 1.92 (m, 1H), 1.86 - 1.72 (m, 1H), 0.94 (d, J = 6.8 Hz, 3H), 0.78 (d, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 211.6, 141.1, 128.6, 128.5, 126.3, 116.5 (t, J = 238.9 Hz), 51.4 (dd, J = 5.0, 3.0 Hz), 45.0, 31.5 (t, J = 21.2 Hz), 29.8, 29.7, 21.0, 18.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -113.93 - -117.03 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₅H₂₁F₂O⁺ 255.1555; found 255.1558.

4-(4,4-difluoro-2-isopropylbutanoyl)phenyl 2-(4-isobutylphenyl)propanoate (3p) Colorless liquid.

Compound **3p** was purified by PTLC with PE/EA = 35:1, 27% yield (23.2 mg) following the procedure A_1 .

¹**H NMR (400 MHz, CDCl**₃) δ 7.93 (d, J = 8.7 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.16 - 7.10 (m, 4H), 5.90 - 5.60 (m, 1H), 3.95 (q, J = 7.1 Hz, 1H), 3.52 - 3.44 (m, 1H), 2.69 - 2.33 (m, 4H), 2.11 - 1.80 (m, 4H), 1.61 (d, J = 7.1 Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H), 0.91 (d, J = 6.6 Hz, 6H), 0.82 (d, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 201.1, 172.8, 154.8, 141.2, 136.9, 134.5, 130.0, 129.7, 127.3, 121.9, 116.6 (t, *J* = 238.8 Hz), 45.8 - 45.7 (m), 45.4, 45.2, 31.6 (t, *J* = 21.5 Hz), 30.7, 30.4, 29.9, 22.5, 21.1, 18.6, 18.4.

¹⁹**F NMR (376 MHz, CDCl**₃) δ -113.53 - -117.34 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₆H₃₃F₂O₃⁺ 431.2392; found 431.2391.

1-(4-(tert-butyl)phenyl)-2-(2,2-difluoroethyl)-3-methylbutan-1-one-3-d (3a-D) Colorless liquid.

Compound **3a-D** was purified by PTLC with PE/EA = 35:1, 59% yield (82% D, 33.4 mg) following the procedure A_2 .

¹**H NMR (400 MHz, CDCl**₃) δ 7.89 (d, J = 8.5 Hz, 2H), 7.49 (d, J = 8.5 Hz, 2H), 5.75 (tdd, J = 58.9, 6.4, 2.7 Hz, 1H), 3.52 (d, J = 10.4 Hz, 1H), 2.60 – 2.44 (m, 1H), 2.16 – 2.08 (m, 0H), 2.02 – 1.89 (m, 1H), 1.35 (s, 9H), 1.01 (d, J = 5.7 Hz, 3H), 0.84 (d, J = 7.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 201.9, 157.2, 134.4, 128.4, 125.9, 116.8 (t, *J* = 238.7 Hz), 45.6 (dd, *J* = 6.7, 1.8 Hz), 35.3, 31.5 (t, *J* = 21.3 Hz), 31.2, 30.7 (t, *J* = 24.5 Hz, C-D), 21.1, 18.2.

¹⁹F NMR (**376** MHz, CDCl₃) δ -113.23 - -117.47 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₂₄DF₂O⁺ 284.1931; found 284.1930.

2-(2,2-difluoroethyl)-1-(4-isopropylphenyl)-3-methylbutan-1-one-3-d (3b-D) Colorless liquid.

Compound **3b-D** was purified by PTLC with PE/EA = 35:1, 61% yield (80% D, 32.8 mg) following the procedure A₂.

¹**H NMR (400 MHz, CDCl₃)** δ 7.88 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 5.92 – 5.58 (m, 1H), 3.51 (d, J = 10.8 Hz, 1H), 2.97 (hept, J = 6.9 Hz, 1H), 2.60 – 2.43 (m, 1H), 2.15 – 2.07 (m, 0H), 2.02 – 1.89 (m, 1H), 1.28 (d, J = 6.9 Hz, 6H), 1.01 (d, J = 5.7 Hz, 3H), 0.84 (d, J = 7.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 201.9, 154.9, 135.0, 128.7, 127.0, 116.8 (t, *J* = 238.9 Hz), 45.7 (dd, *J* = 6.8, 2.1 Hz), 34.4, 31.6 (t, *J* = 21.0 Hz), 30.3 (t, *J* = 19.6 Hz, C-D), 23.8, 21.1, 18.3.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -113.20 – -117.39 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₂₂DF₂O⁺ 270.1774; found 270.1772.

1-(4-(but-2-yn-1-yloxy)phenyl)-2-(2,2-difluoroethyl)-3-methylbutan-1-one-3-d (3d-D)

Colorless liquid.

Compound **3d-D** was purified by PTLC with PE/EA = 35:1, 52% yield (77% D, 30.7 mg) following the procedure A_2 .

¹**H NMR (400 MHz, CDCl₃)** δ 7.95 (d, J = 8.9 Hz, 2H), 7.02 (d, J = 8.9 Hz, 2H), 5.96 – 5.53 (m, 1H), 4.72 (q, J = 2.2 Hz, 2H), 3.48 (d, J = 10.0 Hz, 1H), 2.61 – 2.42 (m, 1H), 2.14 - 2.06 (m, 0H), 2.04 - 1.90 (m, 1H), 1.87 (t, J = 2.3 Hz, 3H), 1.00 (d, J = 5.7

Hz, 3H), 0.85 (d, *J* = 7.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 200.8, 162.0, 130.7, 130.5, 116.7 (t, *J* = 239.4 Hz), 114.9, 84.7, 73.4, 56.7, 45.5 - 45.4 (m), 31.8 (t, *J* = 21.1 Hz), 30.4 (t, *J* = 19.6 Hz, C-D), 21.1, 18.4, 3.9.

¹⁹F NMR (376 MHz, CDCl₃) δ -113.30 - -117.45 (m).

HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{17}H_{20}DF_2O_2^+$ 296.1567; found 296.1568.

2-(2,2-difluoroethyl)-3-methyl-1-(4-phenoxyphenyl)butan-1-one-3-d (3e-D)

Colorless liquid.

Compound **3e-D** was purified by PTLC with PE/EA = 35:1, 60% yield (82% D, 38.3 mg) following the procedure A_2 .

¹**H NMR (400 MHz, CDCl₃)** δ 7.93 (d, J = 8.8 Hz, 2H), 7.40 (t, J = 7.9 Hz, 2H), 7.21 (t, J = 7.4 Hz, 1H), 7.08 (d, J = 7.7 Hz, 2H), 7.01 (d, J = 8.8 Hz, 2H), 5.91 – 5.60 (m, 1H), 3.51 – 3.44 (m, 1H), 2.59 – 2.43 (m, 1H), 2.13 – 2.06 (m, 0H), 2.03 – 1.90 (m, 1H), 1.00 (d, J = 5.8 Hz, 3H), 0.86 (d, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 200.9, 162.4, 155.5, 131.7, 130.7, 130.2, 124.9, 120.5, 117.5, 116.7 (t, *J* = 238.9 Hz), 45.86 – 44.98 (m), 31.9 (t, *J* = 21.1 Hz), 30.4 (t, *J* = 19.6 Hz, C-D), 21.1, 18.4.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -108.13 – -117.36 (m).

HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{19}H_{20}DF_2O_2^+$ 320.1567; found 320.1567.

2-(2,2-difluoroethyl)-3-methyl-1-(4-(methylthio)phenyl)butan-1-one-3-d (3f-D)

Colorless liquid.

Compound **3f-D** was purified by PTLC with PE/EA = 35:1, 68% yield (83% D, 37.1 mg) following the procedure A_2 .

¹**H NMR (400 MHz, CDCl**₃) δ 7.86 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 5.91

-5.60 (m, 1H), 3.48 (d, J = 10.4 Hz, 1H), 2.57 -2.47 (m, 4H), 2.11 -2.05 (m, 0H), 2.03 -1.91 (m, 1H), 0.99 (d, J = 5.7 Hz, 3H), 0.85 (d, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.3, 146.4, 133.4, 128.9, 125.2, 116.7 (t, J = 238.9 Hz), 46.0 -44.9 (m), 31.9 (t, J = 21.2 Hz), 30.5 (t, J = 19.6 Hz, C-D), 21.0, 18.4, 14.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.29 - -117.22 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₈DF₂OS⁺ 274.1182; found 274.1187.

2-(2,2-difluoroethyl)-1-(3-methoxyphenyl)-3-methylbutan-1-one-3-d (3i-D)

Colorless liquid.

Compound **3i-D** was purified by PTLC with PE/EA = 35:1, 40% yield (81% D, 20.6 mg) following the procedure A_2 .

¹**H NMR (400 MHz, CDCl₃)** δ 7.52 (d, J = 7.6 Hz, 1H), 7.49 – 7.43 (m, 1H), 7.39 (t, J = 7.9 Hz, 1H), 7.13 (dd, J = 8.2, 2.1 Hz, 1H), 5.93 – 5.61 (m, 1H), 3.87 (s, 3H), 3.57 – 3.45 (m, 1H), 2.61 – 2.44 (m, 1H), 2.14 – 2.06 (m, 0H), 2.04 – 1.90 (m, 1H), 1.01 (d, J = 5.8 Hz, 3H), 0.84 (d, J = 7.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 202.2, 160.1, 138.6, 129.9, 120.9, 119.7, 116.7 (t, J = 238.9 Hz), 112.8, 55.6, 45.9 (dd, J = 6.5, 2.3 Hz), 31.7 (t, J = 21.2 Hz), 30.3 (t, J = 19.6 Hz, C-D), 21.0, 18.3.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -113.42 – -117.31 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₈DF₂O₂⁺ 258.1410; found 258.1412.

2-(2,2-difluoroethyl)-3-methyl-1-(o-tolyl)butan-1-one-3-d (3j-D)

Colorless liquid.

Compound **3j-D** was purified by PTLC with PE/EA = 35:1, 43% yield (80% D, 20.7 mg) following the procedure A_2 .

¹**H NMR (400 MHz, CDCl**₃) δ 7.59 (d, J = 7.7 Hz, 1H), 7.38 (t, J = 7.4 Hz, 1H), 7.27

(t, J = 7.7 Hz, 2H), 6.09 - 5.66 (m, 1H), 3.42 (d, J = 10.7 Hz, 1H), 2.72 - 2.32 (m, 4H), 2.08 - 1.99 (m, 0H), 1.97 - 1.83 (m, 1H), 0.98 (d, J = 6.2 Hz, 3H), 0.82 (d, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 206.0, 138.4, 132.2, 131.4, 128.2, 125.9, 116.9 (t, J = 238.7 Hz), 48.7 - 48.5 (m), 30.8 (t, J = 21.2 Hz), 29.6 (t, J = 19.6 Hz, C-D), 21.1, 20.6, 18.1.

¹⁹F NMR (376 MHz, CDCl₃) δ -113.23 - -117.62 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₈DF₂O⁺ 242.1461; found 242.1457.

2-(2,2-difluoroethyl)-3-methyl-1-(thiophen-2-yl)butan-1-one-3-d (3m-D)

Colorless liquid.

Compound **3m-D** was purified by PTLC with PE/EA = 35:1, 26% yield (76% D, 12.1 mg) following the procedure A_2 .

¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 3.8 Hz, 1H), 7.68 (d, *J* = 4.9 Hz, 1H), 7.15 (t, *J* = 4.4 Hz, 1H), 5.92 – 5.61 (m, 1H), 3.33 – 3.28 (m, 1H), 2.56 – 2.41 (m, 1H), 2.17 – 2.09 (m, 0H), 2.06 – 1.95 (m, 1H), 1.01 (d, *J* = 6.0 Hz, 3H), 0.93 (d, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 195.1, 144.8, 134.6, 132.3, 128.5, 116.5 (t, *J* = 239.3 Hz), 48.0 - 47.8 (m), 32.77 – 32.18 (m), 31.78 – 31.35 (m), 21.0, 19.0.

¹⁹F NMR (376 MHz, CDCl₃) δ -113.72 - -117.30 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₁₄DF₂OS⁺ 234.0869; found 234.0871.

N-(**5**,**5**-difluoro-3-(**2**-methoxyphenyl)pentyl)-4-methylbenzenesulfonamide (**5**a) Yellow oil liquid.

Compound **5a** was purified by PTLC with PE/EA = 3:1, 71% yield (27.2 mg) following the procedure B.

¹**H NMR (400 MHz, CDCl**₃) δ 7.66 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 8.2 Hz, 2H), 7.23

- 7.18 (m, 1H), 7.03 - 7.01 (m, 1H), 6.91 (td, J = 7.5, 0.8 Hz, 1H), 6.85 (d, J = 8.2 Hz, 1H), 5.46 (tdd, J = 56.8, 6.5, 3.2 Hz, 1H), 4.85 - 4.56 (m, 1H), 3.81 (s, 3H), 3.28 - 3.21 (m, 1H), 2.93 - 2.85 (m, 1H), 2.67 - 2.57 (m, 1H), 2.41 (s, 3H), 2.26 - 2.10 (m, 1H), 2.06 - 1.94 (m, 1H), 1.87 - 1.70 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 157.2, 143.4, 137.2, 129.8, 129.3, 128.3, 128.0, 127.1, 121.5, 116.7 (t, *J* = 238.9 Hz), 111.3, 55.7, 41.1, 39.6 (t, *J* = 20.8 Hz), 35.3, 30.6, 21.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.13 – -117.23 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₄F₂NO₃S⁺ 384.1439; found 384.1441.

N-(5,5-difluoro-3-(2-(methylthio)phenyl)pentyl)-4-methylben zenesulfon amide

(**5b**)

Yellow oil liquid.

Compound **5b** was purified by PTLC with PE/EA = 3:1, 55% yield (21.9 mg) following the procedure B.

¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 8.2 Hz, 2H), 7.25 – 7.18 (m, 2H), 7.18 – 7.13 (m, 1H), 7.07 (d, J = 7.5 Hz, 1H), 5.61 – 5.30 (m, 1H), 4.91 (br, 1H), 3.46 – 3.31 (m, 1H), 3.01 – 2.89 (m, 1H), 2.65 – 2.57 (m, 1H), 2.45 (s, 3H), 2.41 (s, 3H), 2.17 – 1.97 (m, 2H), 1.92 – 1.83 (m, 1H), 1.76 – 1.66 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.5, 139.6, 137.4, 129.8, 127.9, 127.1, 126.5, 126.1, 116.3 (t, J = 239.4 Hz), 40.8, 36.5, 32.4, 29.8, 21.6, 16.3.

¹⁹F NMR (376 MHz, CDCl₃) δ -113.84 - -116.21 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₄F₂NO₂S₂⁺ 400.1211; found 400.1215.

N-(**3**-(**2**,**5**-dimethoxyphenyl)-**5**,**5**-difluoropentyl)-**4**-methylbenzenesulfonamide (5c) Yellow oil liquid.

Compound 5c was purified by PTLC with PE/EA = 3:1, 54% yield (22.3 mg) following

the procedure B.

¹**H NMR (400 MHz, CDCl₃)** δ 7.66 (d, J = 8.2 Hz, 2H), 7.29 - 7.26 (m, 2H), 6.82 - 6.76 (m, 1H), 6.74 - 6.69 (m, 1H), 6.60 (d, J = 2.9 Hz, 1H), 5.47 (tdd, J = 56.8, 6.5, 3.2 Hz, 1H), 4.94 - 4.70 (m, 1H), 3.78 (s, 3H), 3.75 (s, 3H), 3.28 - 3.17 (m, 1H), 2.96 - 2.85 (m, 1H), 2.65 - 2.55 (m, 1H), 2.41 (s, 3H), 2.23 - 2.09 (m, 1H), 2.06 - 1.91 (m, 1H), 1.87 - 1.77 (m, 1H), 1.74 - 1.67 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 154.2, 151.4, 143.4, 137.3, 130.7, 129.8, 127.1, 116.6 (t, *J* = 240.4 Hz), 114.4, 112.5, 112.0, 56.4, 55.7, 41.0, 39.6 (t, *J* = 20.9 Hz), 35.4, 30.5, 21.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -114.24 - -117.25 (m).

HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{20}H_{26}F_2NO_4S^+$ 414.1545; found 414.1548.

Methyl-4-(1,1-difluoro-5-((4-methylphenyl)sulfonamido)pentan-3-yl)-3-methoxyb enzoate (5d)

Yellow oil liquid.

Compound **5d** was purified by PTLC with PE/EA = 3:1, 75% yield (33.1 mg) following the procedure B.

¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.2 Hz, 2H), 7.61 - 7.55 (m, 1H), 7.52 - 7.48 (m, 1H), 7.28 - 7.24 (m, 2H), 7.10 (d, J = 7.9 Hz, 1H), 5.64 - 5.34 (m, 1H), 4.73 (br, 1H), 3.92 (s, 3H), 3.87 (s, 3H), 3.36 - 3.26 (m, 1H), 2.90 - 2.81 (m, 1H), 2.67 - 2.57 (m, 1H), 2.41 (s, 3H), 2.26 - 2.14 (m, 1H), 2.10 - 2.00 (m, 1H), 1.90 - 1.78 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 157.2, 143.6, 137.0, 135.0, 130.2, 129.8, 128.2, 127.1, 122.7, 116.4 (t, J = 239.3 Hz), 111.9, 55.9, 52.4, 41.0, 39.2 (t, J = 21.0 Hz), 34.9, 31.1, 21.6.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -114.19 – -117.17 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₆F₂NO₅S⁺ 442.1494; found 442.1493.

Methyl-4-(1,1-difluoro-5-((4-methylphenyl)sulfonamido)pentan-3-yl)-3-iodobenz oate (5e)

Yellow oil liquid.

Compound **5e** was purified by PTLC with PE/EA = 3:1, 29% yield (15.6 mg) following the procedure B.

¹**H NMR (400 MHz, CDCl₃)** δ 8.48 (s, 1H), 7.97 (d, J = 8.1 Hz, 1H), 7.67 (d, J = 8.2 Hz, 2H), 7.30 - 7.27 (m, 2H), 7.16 (d, J = 8.1 Hz, 1H), 5.71 - 5.39 (m, 1H), 4.55 (t, J = 6.2 Hz, 1H), 3.92 (s, 3H), 3.43 - 3.35 (m, 1H), 2.87 - 2.71 (m, 2H), 2.42 (s, 3H), 2.15 - 2.03 (m, 2H), 1.98 - 1.90 (m, 1H), 1.85 - 1.77 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 165.3, 149.6, 143.8, 141.2, 136.8, 130.7, 130.1, 129.9, 128.4, 127.2, 126.7, 115.7 (t, *J* = 240.0 Hz), 52.6, 41.1 (t, *J* = 5.0 Hz), 40.7, 36.5, 29.8, 21.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -114.33 - -114.75 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₃F₂INO₄S⁺ 538.0355; found 538.0353.

Methyl-2-(1,1-difluoro-5-((4-methylphenyl)sulfonamido)pentan-3-yl)benzoate (5f) Yellow oil liquid.

Compound **5f** was purified by PTLC with PE/EA = 3:1, 57% yield (23.4 mg) following the procedure B.

¹**H NMR (400 MHz, CDCl₃)** δ 7.68 (d, J = 8.2 Hz, 3H), 7.48 (t, J = 7.6 Hz, 1H), 7.29 - 7.22 (m, 4H), 5.98 (dd, J = 8.7, 3.5 Hz, 1H), 5.31 (tdd, J = 56.5, 6.3, 3.4 Hz, 1H), 3.95 (s, 3H), 3.82 - 3.72 (m, 1H), 3.09 - 3.00 (m, 1H), 2.56 - 2.46 (m, 1H), 2.39 (s, 3H), 2.06 - 1.86 (m, 3H), 1.79 - 1.73 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 169.4, 143.1, 142.4, 137.8, 132.5, 131.6, 130.1, 129.6, 127.1, 127.0, 126.9, 116.1 (t, *J* = 239.4 Hz), 53.0, 41.6 (t, *J* = 20.8 Hz), 40.4, 36.4, 31.2

- 31.1 (m), 21.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -114.75 - -117.68 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₄F₂NO₄S⁺ 412.1389; found 412.1387.

N-(**3**-(**2**-acetylphenyl)-5,5-difluoropentyl)-4-methylbenzenesulfonamide (5g) Yellow oil liquid.

Compound **5g** was purified by PTLC with PE/EA = 3:1, 23% yield (9.1 mg) following the procedure B.

¹**H NMR (400 MHz, CDCl**₃) δ 7.69 (d, J = 9.4 Hz, 2H), 7.51 (d, J = 7.8 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.23 (d, J = 7.1 Hz, 2H), 6.36 (d, J = 8.8 Hz, 1H), 5.45 – 5.14 (m, 1H), 3.53 - 3.42 (m, 1H), 3.12 - 3.03 (m, 1H), 2.60 (s, 3H), 2.50 - 2.44 (m, 1H), 2.39 (s, 3H), 2.03 – 1.85 (m, 3H), 1.78 – 1.71 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 205.4, 143.0, 140.6, 140.3, 138.1, 132.0, 129.6, 128.1, 127.5, 127.0, 126.8, 116.2 (t, *J* = 239.4 Hz), 41.8 (t, *J* = 20.4 Hz), 40.2, 36.5, 30.6, 30.3, 21.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -115.29 - -117.72 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₄F₂NO₃S⁺ 396.1439; found 396.1434.

Methyl-3-(1,1-difluoro-5-((4-methylphenyl)sulfonamido)pentan-3-yl)thiophene-2carboxylate (5h)

Yellow oil liquid.

Compound **5h** was purified by PTLC with PE/EA = 3:1, 42% yield (17.5 mg) following the procedure B.

¹**H NMR (400 MHz, CDCl**₃) δ 7.70 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 5.2 Hz, 1H), 7.28 - 7.26 (m, 2H), 6.95 (d, J = 5.2 Hz, 1H), 5.59 - 5.30 (m, 2H), 4.09 - 4.01 (m, 1H), 3.90 (s, 3H), 3.08 - 2.99 (m, 1H), 2.56 - 2.47 (m, 1H), 2.42 (s, 3H), 2.09 - 1.85 (m, 3H), 1.68 - 1.62 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 163.6, 150.3, 143.4, 137.7, 132.2, 129.7, 127.9, 127.1, 127.0, 116.1 (t, *J* = 239.7 Hz), 52.6, 40.7, 40.5 (t, *J* = 21.2 Hz), 36.2, 29.8 - 29.7 (m), 21.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -114.04 - -117.02 (m).

HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{18}H_{22}F_2NO_4S_2^+$ 418.0953; found 418.0952.

4-(1,1-difluoro-5-hydroxypentan-3-yl)-3-methoxybenzaldehyde (5i)

Yellow oil liquid.

Compound **5i** was purified by PTLC with PE/EA = 3:1, 81% yield (20.9 mg) following the procedure B.

¹H NMR (400 MHz, CDCl₃) δ 9.96 (s, 1H), 7.49 - 7.45 (m, 1H), 7.41 (s, 1H), 7.35 (d, J = 7.6 Hz, 1H), 5.77 - 5.45 (m, 1H), 3.92 (s, 3H), 3.59 - 3.49 (m, 2H), 3.43 - 3.35 (m, 1H), 2.36 - 2.19 (m, 2H), 2.05 - 1.98 (m, 1H), 1.96 - 1.89 (m, 1H), 1.89 - 1.83 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 191.8, 158.1, 138.3, 136.5, 129.0, 124.8, 116.6 (t, J = 240.4 Hz), 109.4, 60.4, 55.9, 39.2 (t, J = 20.8 Hz), 37.9, 31.0 - 30.8 (m).

¹⁹**F NMR (376 MHz, CDCl₃)** δ -114.13 – -117.11 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₇F₂O₃⁺ 259.1140; found 259.1136.

4-(1,1-difluoro-5-hydroxypentan-3-yl)-3,5-dimethoxybenzaldehyde (5j)

Yellow oil liquid.

Compound **5j** was purified by PTLC with PE/EA = 3:1, 67% yield (19.3 mg) following the procedure B.

¹**H NMR (400 MHz, CDCl**₃) δ 9.92 (s, 1H), 7.09 (s, 2H), 5.58 (tdd, J = 56.9, 5.9, 3.6

Hz, 1H), 3.91 (s, 6H), 3.85 - 3.78 (m, 1H), 3.54 - 3.47 (m, 1H), 3.36 - 3.28 (m, 1H), 2.63 - 2.50 (m, 1H), 2.29 - 2.17 (m, 1H), 2.14 - 2.06 (m, 1H), 1.99 - 1.91 (m, 1H), 1.72 (br, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 191.7, 136.4, 125.0, 117.3 (t, *J* = 238.9 Hz), 105.5, 61.1, 37.5 (t, *J* = 20.5 Hz), 36.0, 29.8, 26.5 - 26.4 (m).

¹⁹F NMR (376 MHz, CDCl₃) δ -115.10 - -115.55 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₉F₂O₄⁺ 289.1246; found 289.1251.

5,5-difluoro-3-(p-tolyl)pentan-1-ol (5k)

Yellow oil liquid.

Compound **5k** was purified by PTLC with PE/EA = 3:1, 56% yield (12.0 mg) following the procedure B.

¹**H NMR (400 MHz, CDCl₃)** δ 7.24 - 6.93 (m, 4H), 5.50 (tdd, J = 56.8, 6.7, 3.3 Hz, 1H), 3.58 - 3.49 (m, 1H), 3.49 - 3.39 (m, 1H), 3.01 - 2.92 (m, 1H), 2.33 (s, 3H), 2.20 - 2.06 (m, 2H), 1.99 - 1.78 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 139.4, 136.7, 129.7, 127.4, 116.7 (t, *J* = 238.6 Hz), 60.6, 41.1 (t, *J* = 20.7 Hz), 39.3, 36.6 - 36.5 (m), 21.1.

¹⁹F NMR (376 MHz, CDCl₃) δ -114.87 - -118.27 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₇F₂O⁺ 215.1242; found 215.1245.

5,5-difluoro-3-(4-(trifluoromethyl)phenyl)pentan-1-ol (5l)

Yellow oil liquid.

Compound **51** was purified by PTLC with PE/EA = 3:1, 43% yield (11.5 mg) following the procedure B.

¹**H NMR (400 MHz, CDCl**₃) δ 7.60 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 5.53

(tdd, J = 56.6, 6.4, 3.3 Hz, 1H), 3.61 - 3.53 (m, 1H), 3.46 - 3.38 (m, 1H), 3.20 - 3.10 (m, 1H), 2.29 - 2.13 (m, 2H), 2.05 - 1.96 (m, 1H), 1.91 - 1.82 (m, 1H), 1.58 (br, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.0, 129.5 (q, J = 32.9 Hz), 128.0, 126.0 (q, J = 3.6 Hz), 124.2 (q, J = 272.7 Hz), 116.2 (t, J = 239.1 Hz), 60.1, 40.7 (t, J = 21.0 Hz), 39.0, 36.7 - 36.6 (m).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.47 (s), -114.76 – -117.88 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₄F₅O⁺ 269.0959; found 269.0961.

N-(5,5-difluoro-3-(2-methoxyphenyl)pentyl)-2,4,6-trimethylbenzenesulfonamide (5m)

Yellow oil liquid.

Compound **5m** was purified by PTLC with PE/EA = 3:1, 57% yield (23.4 mg) following the procedure B.

¹**H NMR (400 MHz, CDCl₃)** δ 7.24 – 7.18 (m, 1H), 7.01 – 6.98 (m, 1H), 6.96 – 6.83 (m, 4H), 5.42 (tdd, J = 56.8, 6.6, 3.2 Hz, 1H), 4.88 – 4.61 (m, 1H), 3.82 (s, 3H), 3.30 - 3.16 (m, 1H), 2.93 - 2.82 (m, 1H), 2.66 – 2.56 (m, 7H), 2.29 (s, 3H), 2.21 – 2.08 (m, 1H), 1.99 – 1.86 (m, 1H), 1.79 – 1.66 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 157.2, 142.2, 139.0, 134.3, 132.1, 129.4, 128.3, 127.9, 121.5, 116.7 (t, J = 238.9 Hz), 111.3, 55.7, 40.5, 39.6 (t, J = 20.9 Hz), 35.5, 30.5 - 30.4 (m), 23.0, 21.0.

¹⁹**F NMR (376 MHz, CDCl**₃) δ -114.25 - -117.28 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₈F₂NO₃S⁺ 412.1752; found 412.1757.

5-chloro-*N*-(5,5-difluoro-3-(2-methoxyphenyl)pentyl)thiophene-2-sulfonamide (5n)

Yellow oil liquid.

Compound **5n** was purified by PTLC with PE/EA = 3:1, 49% yield (20.0 mg) following the procedure B.

¹**H NMR (400 MHz, CDCl₃)** δ 7.28 (d, J = 4.0 Hz, 1H), 7.26 - 7.21 (m, 1H), 7.07 (d, J = 7.4 Hz, 1H), 6.95 (t, J = 7.4 Hz, 1H), 6.91 - 6.86 (m, 2H), 5.68 - 5.36 (m, 1H), 5.01 - 4.65 (m, 1H), 3.84 (s, 3H), 3.37 - 3.25 (m, 1H), 3.04 - 2.93 (m, 1H), 2.75 - 2.64 (m, 1H), 2.31 - 2.18 (m, 1H), 2.14 - 2.03 (m, 1H), 1.98 - 1.88 (m, 1H), 1.85 - 1.75 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 157.1, 139.1, 137.2, 131.4, 129.1, 128.5, 128.0, 126.8, 121.6, 116.6 (t, *J* = 239.0 Hz), 111.4, 55.8, 41.4, 39.7 (t, *J* = 20.9 Hz), 35.2, 30.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.27 – -117.35 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₉ClF₂NO₃S₂⁺ 410.0457; found 410.0454.

N-(5,5-difluoro-3-(2-methoxyphenyl)pentyl)pyridine-3-sulfonamide (50)

Yellow oil liquid.

Compound **50** was purified by PTLC with PE/EA = 3:1, 54% yield (20.0 mg) following the procedure B.

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.98 (s, 1H), 8.78 (d, J = 4.8 Hz, 1H), 8.04 (dt, J = 8.0, 1.9 Hz, 1H), 7.42 (dd, J = 8.0, 4.9 Hz, 1H), 7.22 (t, J = 7.8 Hz, 1H), 7.04 (d, J = 9.0 Hz, 1H), 6.93 (t, J = 7.4 Hz, 1H), 6.87 (d, J = 8.2 Hz, 1H), 5.49 (tdd, J = 56.7, 6.5, 3.1 Hz, 1H), 5.02 - 4.94 (m, 1H), 3.83 (s, 3H), 3.32 - 3.24 (m, 1H), 2.99 - 2.91 (m, 1H), 2.72 - 2.62 (m, 1H), 2.26 - 2.16 (m, 1H), 2.11 - 1.99 (m, 1H), 1.93 - 1.85 (m, 1H), 1.84 - 1.77 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 157.1, 153.2, 148.0, 136.9, 134.7, 129.1, 128.5, 127.9, 123.8, 121.6, 116.6 (t, J = 239.0 Hz), 111.4, 55.8, 41.2, 39.6 (t, J = 20.8 Hz), 35.3, 30.6 - 30.4 (m).

¹⁹**F NMR (376 MHz, CDCl₃)** *δ* -114.30 – -117.38 (m).

HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{17}H_{21}F_2N_2O_3S^+$ 371.1235; found 371.1235.

N-(5,5-difluoro-3-(2-methoxyphenyl)pentyl)naphthalene-1-sulfonamide (5p)

Yellow oil liquid.

Compound **5p** was purified by PTLC with PE/EA = 3:1, 32% yield (13.4 mg) following the procedure B.

¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, J = 8.6 Hz, 1H), 8.24 – 8.14 (m, 1H), 8.06 (d, J = 8.2 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.68 (t, J = 7.7 Hz, 1H), 7.61 (t, J = 7.8 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.20 – 7.14 (m, 1H), 6.90 – 6.80 (m, 3H), 5.46 – 5.14 (m, 1H), 5.04 – 4.93 (m, 1H), 3.79 (s, 3H), 3.14 - 3.06 (m, 1H), 2.94 - 2.86 (m, 1H), 2.64 - 2.55 (m, 1H), 2.12 – 2.00 (m, 1H), 1.85 – 1.75 (m, 1H), 1.67 – 1.61 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.1, 135.1, 134.4, 134.3, 129.6, 129.3, 128.4, 128.2, 127.9, 127.0, 124.4, 124.3, 121.4, 116.6 (t, J = 239.1 Hz), 111.3, 55.7, 41.2, 39.4 (t, J = 20.8 Hz), 35.3, 30.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -114.20 - -117.02 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₄F₂NO₃S⁺ 420.1439; found 420.1443.

N-(5,5-difluoro-3-(2-methoxyphenyl)pentyl)naphthalene-2-sulfonamide (5q)

Yellow oil liquid.

Compound **5q** was purified by PTLC with PE/EA = 3:1, 30% yield (12.6 mg) following the procedure B.

¹**H NMR (400 MHz, CDCl₃)** δ 8.34 (s, 1H), 7.92 (t, J = 9.3 Hz, 3H), 7.74 (d, J = 8.6 Hz, 1H), 7.63 (p, J = 6.9 Hz, 2H), 7.16 (t, J = 7.8 Hz, 1H), 6.98 (d, J = 7.5 Hz, 1H), 6.88 – 6.78 (m, 2H), 5.59 – 5.28 (m, 1H), 4.84 (t, J = 5.9 Hz, 1H), 3.77 (s, 3H), 3.31 - 3.21 (m, 1H), 2.99 - 2.88 (m, 1H), 2.71 - 2.61 (m, 1H), 2.23 - 2.10 (m, 1H), 2.04 - 1.94 (m, 1H), 1.87 - 1.79 (m, 1H), 1.77 – 1.72 (m, 1H).

¹³**C NMR (101 MHz, CDCl**₃) δ 157.1, 136.9, 134.9, 132.2, 129.6, 129.3, 128.9, 128.4, 128.3, 128.0, 127.7, 122.3, 121.5, 116.6 (t, *J* = 238.8 Hz), 111.3, 55.7, 41.2, 39.6 (t, *J* =

20.6 Hz), 35.3, 30.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -114.30 - -117.28 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₄F₂NO₃S⁺ 420.1439; found 420.1440.

N-(5,5-difluoro-3-(2-methoxyphenyl)pentyl)cyclopropanesulfonamide (5r)

Yellow oil liquid.

Compound **5r** was purified by PTLC with PE/EA = 3:1, 70% yield (23.3 mg) following the procedure B.

¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, J = 7.7 Hz, 1H), 7.14 (d, J = 7.5 Hz, 1H), 6.97 (t, J = 7.4 Hz, 1H), 6.91 (d, J = 8.2 Hz, 1H), 5.72 - 5.40 (m, 1H), 4.53 (br, 1H), 3.85 (s, 3H), 3.45 - 3.34 (m, 1H), 3.12 - 3.02 (m, 1H), 2.92 - 2.80 (m, 1H), 2.33 - 2.10 (m, 3H), 2.04 - 1.96 (m, 1H), 1.95 - 1.84 (m, 1H), 1.14 - 1.05 (m, 2H), 0.92 (d, J = 7.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.3, 129.5, 128.4, 128.1, 121.5, 116.7 (t, J = 239.4 Hz), 111.3, 55.7, 41.3, 39.7 (t, J = 20.7 Hz), 36.0, 30.8 - 30.6 (m), 30.1, 5.4, 5.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.21 - -117.29 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₅H₂₂F₂NO₃S⁺ 334.1283; found 334.1288.

N-(**5**,**5**-difluoro-3-(**2**-methoxyphenyl)pentyl)-1-phenylmethanesulfonamide (**5**s) Yellow oil liquid.

Compound **5s** was purified by PTLC with PE/EA = 3:1, 56% yield (21.4 mg) following the procedure B.

¹**H NMR (400 MHz, CDCl₃)** δ 7.37 - 7.28 (m, 5H), 7.26 - 7.20 (m, 1H), 7.07 (dd, J = 7.6, 1.6 Hz, 1H), 6.95 (t, J = 7.4 Hz, 1H), 6.86 (d, J = 8.2 Hz, 1H), 5.72 - 5.32 (m, 1H), 4.48 - 4.36 (m, 1H), 4.16 (d, J = 1.7 Hz, 2H), 3.71 (s, 3H), 3.38 - 3.22 (m, 1H), 2.95 - 2.83 (m, 1H), 2.72 - 2.62 (m, 1H), 2.28 - 2.04 (m, 2H), 1.90 - 1.70 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 157.1, 130.7, 129.6, 129.3, 128.9, 128.8, 128.3, 127.9,

121.5, 116.7 (t, J = 239.4 Hz), 111.3, 58.8, 55.6, 41.5, 39.7 (t, J = 20.8 Hz), 36.3, 30.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.21 – -117.20 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₄F₂NO₃S⁺ 384.1439; found 384.1441.

N-(5,5-difluoro-3-(2-methoxyphenyl)pentyl)-1-((1S,4R)-7,7-dimethyl-2-

oxobicyclo[2.2.1]heptan-1-yl)methanesulfonamide (5t)

Yellow oil liquid.

Compound **5t** was purified by PTLC with PE/EA = 3:1, 53% yield (23.5 mg) following the procedure B.

¹**H NMR (400 MHz, CDCl₃)** δ 7.22 (t, *J* = 7.8 Hz, 1H), 7.14 (d, *J* = 7.5 Hz, 1H), 6.94 (t, *J* = 7.5 Hz, 1H), 6.89 (d, *J* = 8.2 Hz, 1H), 5.55 (tdd, *J* = 56.8, 6.4, 3.3 Hz, 1H), 5.16 (q, *J* = 7.1, 6.6 Hz, 1H), 3.84 (s, 3H), 3.40 - 3.27 (m, 2H), 3.11 - 3.00 (m, 1H), 2.98 - 2.87 (m, 1H), 2.83 (d, J = 15.1 Hz, 1H), 2.39 - 2.11 (m, 5H), 2.04 - 1.88 (m, 5H), 1.48 - 1.40 (m, 1H), 1.01 (s, 3H), 0.87 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 216.8, 157.4, 129.6, 128.3, 128.2, 121.2, 116.9 (t, J = 238.8 Hz), 111.2, 59.2, 55.6, 49.6, 49.4, 48.8, 42.8 (d, J = 16.6 Hz), 41.7, 39.5 (td, J = 20.7, 4.7 Hz), 35.6 (d, J = 15.9 Hz), 31.6, 27.1, 26.5, 20.0, 19.7.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -114.15 – -117.08 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₃₂F₂NO₄S⁺ 444.2015; found 444.2019.

3-methoxy-4-(5,5,6,6,6-pentafluoro-1-hydroxyhexan-3-yl)benzaldehyde (5u)

Yellow oil liquid.

Compound **5u** was purified by PTLC with PE/EA = 3:1, 71% yield (23.1 mg) following the procedure B.

¹**H NMR (400 MHz, CDCl**₃) δ 9.96 (s, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.41 (s, 1H), 7.35

(d, J = 7.6 Hz, 1H), 3.93 (s, 3H), 3.78 - 3.66 (m, 1H), 3.57 - 3.50 (m, 1H), 3.41 - 3.32 (m, 1H), 2.69 - 2.54 (m, 1H), 2.48 - 2.36 (m, 1H), 2.14 - 1.98 (m, 2H), 1.65 (br, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 191.8, 158.0, 138.1, 136.6, 129.5, 124.8, 121.5 - 111.7 (m), 109.5, 60.4, 55.9, 37.9, 35.1 (t, J = 20.6 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -85.85 (s), -116.86 - -117.35 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₆F₅O₃⁺ 327.1014; found 327.1015.

N-(5,5-difluoro-3-(2-methoxyphenyl)-5-phenylpentyl)cyclopropanesulfonamide (5v)

Yellow oil liquid.

Compound **5v** was purified by PTLC with PE/EA = 3:1, 74% yield (30.3 mg) following the procedure B.

¹**H NMR (400 MHz, CDCl**₃) δ 7.39 - 7.32 (m, 5H), 7.17 (t, *J* = 7.8 Hz, 1H), 7.06 (d, *J* = 7.5 Hz, 1H), 6.89 (t, *J* = 7.4 Hz, 1H), 6.80 (d, *J* = 8.2 Hz, 1H), 4.57 - 4.41 (m, 1H), 3.77 (s, 3H), 3.49 - 3.35 (m, 1H), 3.07 - 2.96 (m, 1H), 2.80 - 2.70 (m, 1H), 2.66 - 2.41 (m, 2H), 2.28 - 2.18 (m, 1H), 2.13 - 2.02 (m, 1H), 1.92 - 1.82 (m, 1H), 1.09 - 1.03 (q, J = 5.7, 4.8 Hz, 2H), 0.91 - 0.85 (m, 2H).

¹³**C NMR (101 MHz, CDCl₃)** δ 156.8, 137.3 (t, *J* = 26.4 Hz), 130.9, 129.7, 128.3, 127.9, 125.0 (t, *J* = 6.3 Hz), 123.0 (t, *J* = 244.4 Hz), 121.3, 111.0, 55.6, 44.7 (t, *J* = 26.7 Hz), 41.4, 36.4, 30.9, 30.1, 5.4, 5.3.

¹⁹**F NMR (376 MHz, CDCl**₃) δ -91.43 – -95.83 (m).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₆F₂NO₃S⁺ 410.1596; found 410.1592.

N-(3-(2-methoxyphenyl)-5-oxo-5-phenylpentyl)-4-methylbenzenesulfonamide (7a) Yellow oil liquid.

Compound 7a was purified by PTLC with PE/EA = 3:1, 55% yield (24.0 mg) following

the procedure C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.90 – 7.85 (m, 2H), 7.67 (d, J = 8.2 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.43 (t, J = 7.7 Hz, 2H), 7.24 (d, J = 8.2 Hz, 2H), 7.19 – 7.16 (m, 1H), 7.03 (d, J = 8.8 Hz, 1H), 6.89 – 6.82 (m, 2H), 4.90 (t, J = 6.1 Hz, 1H), 3.80 (s, 3H), 3.75 – 3.68 (m, 1H), 3.30 – 3.18 (m, 2H), 2.91 – 2.84 (m, 1H), 2.79 – 2.71 (m, 1H), 2.38 (s, 3H), 1.88 – 1.79 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 199.1, 157.1, 143.2, 137.2, 137.0, 133.2, 131.3, 129.7, 128.7, 128.2, 128.1, 127.9, 127.2, 121.1, 111.1, 55.6, 44.3, 41.5, 34.7, 32.0, 21.6.
HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₅H₂₈NO4S⁺ 438.1734; found 438.1731.

N-(3-(2-methoxyphenyl)-5-(4-methoxyphenyl)-5-oxopentyl)-4-methylbenzenesulf onamide (7b)

Yellow oil liquid.

Compound **7b** was purified by PTLC with PE/EA = 3:1, 41% yield (19.1 mg) following the procedure C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.87 (d, J = 8.6 Hz, 2H), 7.67 (d, J = 8.1 Hz, 2H), 7.24 (d, J = 8.1 Hz, 2H), 7.18 (t, J = 7.8 Hz, 1H), 7.02 (d, J = 7.4 Hz, 1H), 6.90 (d, J = 8.6 Hz, 2H), 6.88 – 6.81 (m, 2H), 4.92 (t, J = 6.0 Hz, 1H), 3.86 (s, 3H), 3.80 (s, 3H), 3.73 – 3.66 (m, 1H), 3.26 – 3.12 (m, 2H), 2.91 – 2.93 (m, 1H), 2.79 – 2.71 (m, 1H), 2.39 (s, 3H), 1.87 – 1.78 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 197.7, 163.6, 157.1, 143.2, 137.2, 131.5, 130.5, 130.1, 129.7, 128.0, 127.8, 127.2, 121.1, 113.8, 111.1, 55.6, 43.9, 41.5, 34.7, 32.0, 21.6.
HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₆H₃₀NO₅S⁺ 468.1839; found 468.1835.

N-(5-(4-(tert-butyl)phenyl)-3-(2-methoxyphenyl)-5-oxopentyl)-4-methylbenzenes ulfonamide (7c)

Yellow oil liquid.

Compound **7c** was purified by PTLC with PE/EA = 3:1, 48% yield (23.7 mg) following the procedure C.

¹**H NMR (400 MHz, CDCl**₃) δ 7.82 (d, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 8.2 Hz, 2H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 8.2 Hz, 2H), 7.19 – 7.15 (m, 1H), 7.05 – 7.01 (m, 1H), 6.89 – 6.81 (m, 2H), 4.95 (t, *J* = 6.1 Hz, 1H), 3.79 (s, 3H), 3.75 – 3.66 (m, 1H), 3.30 – 3.16 (m, 2H), 2.91 – 2.82 (m, 1H), 2.79 – 2.70 (m, 1H), 2.38 (s, 3H), 1.87 – 1.77 (m, 2H), 1.33 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 198.8, 157.1, 156.9, 143.2, 137.2, 134.4, 131.4, 129.7, 128.1, 128.0, 127.8, 127.2, 125.6, 121.1, 111.1, 55.6, 44.2, 41.5, 35.2, 34.6, 31.9, 31.2, 21.6.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₉H₃₆NO₄S⁺ 494.2360; found 494.2358.

N-(5-(4-isopropylphenyl)-3-(2-methoxyphenyl)-5-oxopentyl)-4-methylbenzenesulf onamide (7d)

Yellow oil liquid.

Compound **7d** was purified by PTLC with PE/EA = 3:1, 41% yield (19.6 mg) following the procedure C.

¹**H NMR (400 MHz, CDCl**₃) δ 7.82 (d, *J* = 7.9 Hz, 2H), 7.66 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 7.9 Hz, 2H), 7.17 (t, *J* = 7.8 Hz, 1H), 7.03 (d, *J* = 7.4 Hz, 1H), 6.85 (dd, *J* = 18.3, 7.8 Hz, 2H), 4.94 (t, *J* = 5.8 Hz, 1H), 3.80 (s, 3H), 3.75 – 3.67 (m, 1H), 3.29 – 3.14 (m, 2H), 2.99 – 2.91 (m, 1H), 2.89 – 2.83 (m, 1H), 2.79 – 2.71 (m, 1H), 2.38 (s, 3H), 1.87 – 1.77 (m, 2H), 1.27 (s, 3H), 1.25 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 198.8, 157.1, 154.7, 143.2, 137.2, 134.9, 131.4, 129.7, 128.4, 128.0, 127.8, 127.2, 126.7, 121.1, 111.1, 55.6, 44.2, 41.5, 34.6, 34.4, 31.9, 23.8, 21.6.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₈H₃₄NO₄S⁺ 480.2203; found 480.2208.

N-(5-([1,1'-biphenyl]-4-yl)-3-(2-methoxyphenyl)-5-oxopentyl)-4-methylbenzenesu lfonamide (7e)

Yellow oil liquid.

Compound **7e** was purified by PTLC with PE/EA = 3:1, 40% yield (20.5 mg) following the procedure C.

¹**H NMR (400 MHz, CDCl**₃) δ 7.95 (d, J = 8.4 Hz, 2H), 7.69 – 7.60 (m, 6H), 7.47 (t, J = 7.4 Hz, 2H), 7.42 – 7.38 (m, 1H), 7.24 (d, J = 8.1 Hz, 2H), 7.20 – 7.16 (m, 1H), 7.07 – 7.03 (m, 1H), 6.91 – 6.82 (m, 2H), 4.90 (t, J = 6.1 Hz, 1H), 3.81 (s, 3H), 3.77 – 3.71 (m, 1H), 3.34 – 3.21 (m, 2H), 2.94 – 2.85 (m, 1H), 2.81 – 2.72 (m, 1H), 2.38 (s, 3H), 1.92 – 1.78 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 198.7, 157.2, 145.9, 143.2, 139.9, 137.2, 135.7, 131.3, 129.7, 129.1, 128.8, 128.4, 128.1, 127.9, 127.4, 127.3, 127.2, 121.2, 111.1, 55.6, 44.3, 41.5, 34.7, 32.0, 21.6.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₁H₃₂NO₄S⁺ 514.2047; found 514.2048.

N-(5-(4-fluorophenyl)-3-(2-methoxyphenyl)-5-oxopentyl)-4-methylbenzenesulfon amide (7f)

Yellow oil liquid.

Compound **7f** was purified by PTLC with PE/EA = 3:1, 42% yield (19.1 mg) following the procedure C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.90 (dd, J = 8.7, 5.5 Hz, 2H), 7.66 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.2 Hz, 2H), 7.20 – 7.15 (m, 1H), 7.09 (t, J = 8.6 Hz, 2H), 7.04 – 7.00 (m, 1H), 6.89 – 6.81 (m, 2H), 4.88 (t, J = 6.1 Hz, 1H), 3.79 (s, 3H), 3.73 – 3.65 (m, 1H),

3.22 (qd, *J* = 17.0, 6.8 Hz, 2H), 2.92 – 2.83 (m, 1H), 2.79 – 2.70 (m, 1H), 2.39 (s, 3H), 1.90 – 1.77 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 197.6, 165.8 (d, J = 254.7 Hz), 157.1, 143.2, 137.2, 133.5, 131.1, 130.8 (d, J = 9.3 Hz), 129.7, 128.0 (d, J = 11.4 Hz), 127.2, 121.1, 115.8, 115.6, 111.1, 55.6, 44.2, 41.5, 34.6, 32.2, 21.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -105.2 (p, J = 8.1 Hz).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₂₇FNO₄S⁺ 456.1639; found 456.1640.

N-(5-(4-chlorophenyl)-3-(2-methoxyphenyl)-5-oxopentyl)-4-methylbenzenesulfon amide (7g)

Yellow oil liquid.

Compound **7g** was purified by PTLC with PE/EA = 3:1, 43% yield (20.3 mg) following the procedure C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.80 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 8.1 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.1 Hz, 2H), 7.19 – 7.15 (m, 1H), 7.02 (d, J = 6.6 Hz, 1H), 6.89 – 6.81 (m, 2H), 4.87 (t, J = 5.7 Hz, 1H), 3.79 (s, 3H), 3.73 – 3.64 (m, 1H), 3.28 – 3.14 (m, 2H), 2.92 – 2.82 (m, 1H), 2.78 – 2.68 (m, 1H), 2.39 (s, 3H), 1.90 – 1.77 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 197.9, 157.1, 143.2, 139.6, 137.1, 135.3, 131.0, 129.7, 129.6, 128.9, 128.1, 128.0, 127.2, 121.1, 111.1, 55.6, 44.2, 41.4, 34.6, 32.1, 21.6.
HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₅H₂₇ClNO₄S⁺ 472.1344; found 472.1343.

N-(5-(4-bromophenyl)-3-(2-methoxyphenyl)-5-oxopentyl)-4-methylbenzenesulfon amide (7h)

Yellow oil liquid.

Compound **7h** was purified by PTLC with PE/EA = 3:1, 47% yield (24.2 mg) following the procedure C.

¹**H NMR (400 MHz, CDCl**₃) δ 7.72 (d, *J* = 8.5 Hz, 2H), 7.65 (d, *J* = 8.2 Hz, 2H), 7.55 (d, *J* = 8.5 Hz, 2H), 7.23 (d, *J* = 8.2 Hz, 2H), 7.19 – 7.15 (m, 1H), 7.02 (dd, *J* = 7.5, 1.5 Hz, 1H), 6.89 – 6.79 (m, 2H), 4.93 (t, *J* = 5.8 Hz, 1H), 3.78 (s, 3H), 3.72 – 3.62 (m, 1H), 3.28 – 3.11 (m, 2H), 2.92 – 2.81 (m, 1H), 2.80 – 2.68 (m, 1H), 2.38 (s, 3H), 1.89 – 1.78 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 198.1, 157.1, 143.2, 137.1, 135.7, 131.9, 130.9, 129.7, 129.1, 128.3, 128.0, 127.9, 127.1, 121.1, 111.1, 55.5, 44.1, 41.4, 34.5, 32.1, 21.6.
HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₅H₂₇BrNO₄S⁺ 516.0839; found 516.0842.

N-(3-(2-methoxyphenyl)-5-oxo-5-(m-tolyl)pentyl)-4-methylbenzenesulfonamide (7i)

Yellow oil liquid.

Compound **7i** was purified by PTLC with PE/EA = 3:1, 51% yield (23.0 mg) following the procedure C.

¹**H NMR (400 MHz, CDCl**₃) δ 7.73 – 7.57 (m, 4H), 7.36 – 7.29 (m, 2H), 7.23 (d, J = 8.1 Hz, 2H), 7.17 (t, J = 7.1 Hz, 1H), 7.05 – 7.01 (m, 1H), 6.89 – 6.81 (m, 2H), 4.94 (t, J = 6.0 Hz, 1H), 3.80 (s, 3H), 3.74 – 3.67 (m, 1H), 3.30 – 3.15 (m, 2H), 2.91 – 2.82 (m, 1H), 2.79 – 2.70 (m, 1H), 2.38 (s, 6H), 1.89 – 1.77 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 199.3, 157.1, 143.2, 138.4, 137.2, 137.0, 133.9, 131.4, 129.7, 128.7, 128.5, 128.0, 127.8, 127.2, 125.4, 121.1, 111.1, 55.6, 44.3, 41.5, 34.6, 31.9, 21.6, 21.5.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₆H₃₀NO₄S⁺ 452.1890; found 452.1894.

N-(5-(2-(difluoromethoxy)phenyl)-3-(2-methoxyphenyl)-5-oxopentyl)-4-methylbe nzenesulfonamide (7j)

Yellow oil liquid.

Compound **7j** was purified by PTLC with PE/EA = 3:1, 40% yield (20.1 mg) following the procedure C.

¹**H NMR (400 MHz, CDCl**₃) δ 7.65 (d, J = 8.2 Hz, 2H), 7.48 – 7.41 (m, 2H), 7.24 (d, J = 8.2 Hz, 2H), 7.21 – 7.17 (m, 1H), 7.16 – 7.12 (m, 2H), 7.00 – 6.97 (m, 1H), 6.84 (t, J = 7.4 Hz, 1H), 6.78 (d, J = 8.2 Hz, 1H), 6.50 (t, J = 73.5 Hz, 1H), 4.85 (t, J = 5.7 Hz, 1H), 3.74 (s, 3H), 3.69 – 3.62 (m, 1H), 3.25 (d, J = 7.1 Hz, 2H), 2.92 – 2.82 (m, 1H), 2.74 – 2.64 (m, 1H), 2.39 (s, 3H), 1.85 – 1.73 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 200.7, 157.1, 149.0, 143.2, 137.2, 133.0, 132.0, 130.8, 130.2, 129.7, 128.1, 127.9, 127.2, 125.7, 121.1, 119.7, 116.2 (t, *J* = 260.7 Hz), 111.0, 55.5, 48.8, 41.4, 35.0, 31.9, 21.6.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -80.62 (d, J = 4.5 Hz), -80.82 (d, J = 4.4 Hz). **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₆H₂₈F₂NO₅S⁺ 504.1651; found 504.1649.

N-(5-(2,4-dimethylphenyl)-3-(2-methoxyphenyl)-5-oxopentyl)-4-methylbenzenesu lfonamide (7k)

Yellow oil liquid.

Compound **7k** was purified by PTLC with PE/EA = 3:1, 40% yield (18.6 mg) following the procedure C.

¹**H NMR (400 MHz, CDCl**₃) δ 7.66 (d, J = 8.1 Hz, 2H), 7.45 (d, J = 7.8 Hz, 1H), 7.23 (d, J = 8.1 Hz, 2H), 7.18 – 7.12 (m, 1H), 7.04 – 6.97 (m, 3H), 6.85 (t, J = 7.4 Hz, 1H), 6.79 (d, J = 8.2 Hz, 1H), 4.94 (t, J = 6.1 Hz, 1H), 3.73 (s, 3H), 3.70 – 3.62 (m, 1H), 3.21 – 3.07 (m, 2H), 2.92 – 2.82 (m, 1H), 2.76 – 2.66 (m, 1H), 2.38 (s, 3H), 2.33 (s, 3H), 2.25 (s, 3H), 1.86 – 1.75 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 202.8, 157.1, 143.2, 141.8, 138.5, 137.2, 135.1, 132.8, 131.0, 129.7, 128.9, 128.1, 127.8, 127.1, 126.3, 121.1, 111.0, 55.5, 46.9, 41.4, 34.9, 32.2, 21.6, 21.4, 21.2.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₇H₃₂NO₄S⁺ 466.2047; found 466.2050.

N-(**3**-(**2**-methoxyphenyl)-**5**-oxo-**7**-phenylheptyl)-**4**-methylbenzenesulfonamide (**7**l) Yellow oil liquid.

Compound **71** was purified by PTLC with PE/EA = 3:1, 23% yield (10.7 mg) following the procedure C.

¹**H NMR (400 MHz, CDCl**₃) δ 7.66 (d, J = 8.2 Hz, 2H), 7.25 – 7.22 (m, 4H), 7.18 – 7.14 (m, 2H), 7.08 (d, J = 7.1 Hz, 2H), 6.95 (dd, J = 7.5, 1.6 Hz, 1H), 6.88 – 6.80 (m, 2H), 4.88 (t, J = 6.2 Hz, 1H), 3.78 (s, 3H), 3.59 – 3.50 (m, 1H), 2.83 – 2.74 (m, 3H), 2.70 – 2.57 (m, 5H), 2.39 (s, 3H), 1.75 – 1.66 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 209.0, 157.0, 143.2, 141.0, 137.1, 130.8, 129.7, 128.5, 128.3, 127.9, 127.9, 127.1, 126.1, 121.1, 111.0, 55.5, 48.5, 44.5, 41.3, 34.8, 31.6, 29.6, 21.6.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₇H₃₂NO₄S⁺ 466.2047; found 466.2045.

4-(3-(2-methoxyphenyl)-5-((4-methylphenyl)sulfonamido)pentanoyl)phenyl 2-(4isobutylphenyl)propanoate (7m)

Yellow oil liquid.

Compound **7m** was purified by PTLC with PE/EA = 3:1, 43% yield (27.6 mg) following the procedure C.

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.85 (d, J = 8.6 Hz, 2H), 7.66 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.1 Hz, 2H), 7.15 (d, J = 8.0 Hz, 3H), 7.05 (d, J = 8.6 Hz, 2H), 7.01 (d, J = 6.5 Hz, 1H), 6.88 – 6.80 (m, 2H), 4.84 (t, J = 6.1 Hz, 1H), 3.96 – 3.91 (m, 1H), 3.78 (s, 3H), 3.68 (p, J = 7.9 Hz, 1H), 3.19 (qd, J = 17.0, 6.8 Hz, 2H), 2.91 - 2.82 (m, 1H), 2.79 - 2.70 (m, 1H), 2.47 (d, J = 7.2 Hz, 2H), 2.38 (s, 3H), 1.89 – 1.80 (m, 3H), 1.60 (d, J = 7.1 Hz, 3H), 0.91 (d, J = 6.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 197.9, 172.8, 157.1, 154.7, 143.2, 141.2, 137.2, 137.0, 134.5, 131.1, 129.7, 129.7, 128.0, 127.9, 127.3, 127.2, 121.7, 121.2, 111.1, 55.6, 45.4, 45.2, 44.2, 41.5, 34.6, 32.1, 30.3, 22.5, 21.6, 18.6.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₈H₄₄NO₆S⁺ 642.2884; found 642.2880.

4-(3-(2-methoxyphenyl)-5-((4-methylphenyl)sulfonamido)pentanoyl)phenyl5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate (7n)

Yellow oil liquid.

Compound **7n** was purified by PTLC with PE/EA = 3:1, 41% yield (28.1 mg) following the procedure C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.6 Hz, 2H), 7.66 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.1 Hz, 2H), 7.20 -7.15 (m, 1H), 7.09 (d, J = 8.6 Hz, 2H), 7.01 (dd, J = 10.4, 7.1 Hz, 2H), 6.90 - 6.81 (m, 2H), 6.66 (d, J = 7.4 Hz, 1H), 6.62 (s, 1H), 4.85 (t, J = 5.8 Hz, 1H), 3.98 (t, J = 5.2 Hz, 2H), 3.79 (s, 3H), 3.74 - 3.66 (m, 1H), 3.22 (qd, J = 17.0, 6.8 Hz, 2H), 2.93 -2.84 (m, 1H), 2.80 - 2.70 (m, 1H), 2.38 (s, 3H), 2.30 (s, 3H), 2.16 (s, 3H), 1.90 - 1.81 (m, 6H), 1.37 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 197.9, 176.0, 157.2, 156.9, 154.9, 143.2, 137.2, 136.7, 134.5, 131.2, 130.5, 129.8, 129.7, 128.1, 128.0, 127.2, 123.7, 121.9, 121.2, 121.0, 112.1, 111.2, 67.8, 55.6, 44.3, 42.7, 41.5, 37.2, 34.7, 32.1, 25.4, 25.2, 21.6, 21.6, 15.9.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₄₀H₄₈NO₇S⁺ 686.3146; found 686.3150.

5. Mechanistic Study

5.1 Radical trapping experiments

When 2.0 equivalents of TEMPO (2,2,6,6-Tetramethylpiperidoxyl) or BHT (Butylated Hydroxytoluene) were added to the 1,2-fluoroalkylarylation reaction of unactivated olefins under the standard conditions, the formation of product **5i** was completely inhibited. Meanwhile, the TEMPO-CF₂H adduct **2a'** was detected by HRMS. HRMS (ESI) calcd for $C_{10}H_{20}F_2NO^+$ m/z [M + H]⁺ 208.1507, found 208.1504, as Figure **S4** shown. This result indicated that radical intermediate was probably involved in this transformation.

Figure S4. Detected HR-MS for compound 2a'

When 2.0 equivalents of TEMPO were added to the 1,2-acylarylation reaction of unactivated olefins under the standard conditions, the formation of product **7a** was completely inhibited. Meanwhile, the TEMPO-adduct **6a'** was detected by HRMS. HRMS (ESI) calcd for $C_{16}H_{24}NO_2^+$ m/z [M + H]⁺ 262.1802, found 262.1805, as Figure **S5** shown. This result indicated that radical intermediate was probably involved in this transformation.

Figure S5. Detected HR-MS for compound 6a'

5.2 Verification of deuteration mechanism

When 1,2-fluoroalkylacylation of **1a** was carried out in DMSO- d_6 (0.1 M) instead of the mixed solvent of anhydrous DMSO and deuterium oxide (0.1 M, 4:1), the product **3a** was obtained in 65% yield without deuterium incorporation, indicating that DMSO does not act as a hydrogen atom donor.

Moreover, the control experiment showed that the deuteration reaction could not proceed smoothly without the participation of 2,4,6-triisopropylbenzenethiol (TRIP thiol).

Based on the experimental results and literature investigation, it can be inferred that the deuterated TRIP thiol obtained by hydrogen-deuterium exchange between TRIP thiol and deuterium oxide is the key intermediate in this deuteration reaction.

OMe Ts	+ Ph H -	Fe catalyst (8.0 mol%) "CI" source H ₂ O (0.1 M) 90 nm LEDs, N ₂ , rt, 16 h	MeO TsHN Ph
4a	6a		7a
Entry	Fe catalyst	"Cl" source	Yield b (%)
1	$Fe_2(SO_4)_3$	/	trace
2	Fe(NO ₃) ₃ ·9H ₂ O	/	trace
3 ^c	$Fe_2(SO_4)_3$	HCl	27
4 ^c	Fe(NO ₃) ₃ ·9H ₂ O	HCl	19

5.3 Verification of the necessity of chlorine source

^{*a*} Reaction condition: **4a** (0.10 mmol, 1.0 equiv.), **6a** (0.30 mmol, 3.0 equiv.), **Fe Catalyst** (0.008 mmol, 8.0 mol%), H₂O (0.1 M, 1.0 mL), 10 W 390 nm LEDs under N₂ atmosphere at room temperature for 16 h. ^{*b*} Isolated yield. ^{*c*} HCl (5.0 equiv.).

As shown in the above table, ferric salts such as $Fe_2(SO_4)_3$ and $Fe(NO_3)_3 \cdot 9H_2O$ have little catalytic effect on the acyl-arylation reaction (entries 1, 2). To further verify the necessity of chlorine source, HCl (5.0 equiv.) was added into the system with $Fe_2(SO_4)_3$ or $Fe(NO_3)_3 \cdot 9H_2O$ as the catalyst, affording the product **7a** in 27% or 19% yield respectively under the above conditions (entries 3, 4).

The above results suggested that the Fe(III)-chlorine complexes formed by the coordination of chloride-containing ferric salts or non-chloride ferric salts with chloride ion can be excited by visible light. Subsequently, high-activity chlorine radical and Fe(II) species can be generated through Fe-LMCT process. The hydrogen-atom-transfer (HAT) process between the chlorine radical and the aldehyde substrate produces the acyl radical intermediate.

5.4 Verification of reaction intermediates

In order to determine the rearrangement processes of 1,2-acyl migration and 1,4-aryl migration, unactivated olefins with different carbon chains were used as substrates to explore the range of cyclic transition states. When the carbon chain of β , γ -unsaturated ketone was extended, neither 1,3- nor 1,4-acyl migration products were obtained under the optimal reaction conditions. Moreover, when the carbon chain of the distal olefinic aromatic amine was shortened or extended, the 1,3- or 1,5-aryl migration reactions could not proceed.

The above results showed that the 1,2-acyl migration reaction was rearranged through the three-membered ring transition state and the 1,4-aryl migration reaction was carried out through the five-membered ring transition state with lower energy.

6. References

(1) Fleury, L.; Kosal, A.; Masters, J.; Ashfeld, B. Cooperative Titanocene and Phosphine Catalysis: Accelerated C–X Activation for the Generation of Reactive Organometallics. *J. Org. Chem.* **2013**, *78*, 253-269.

(2) Liu, R.; Tian, Y.; Wang, J.; Wang, Z.; Li, X.; Zhao, C.; Yao, R.; Li, S.; Yuan, L.; Yang, J.; Shi, D. Visible Light–Initiated Radical 1,3-Difunctionalization of β , γ -Unsaturated Ketones. *Sci. Adv.* **2022**, *8*, 1-13.

(3) Cao, Y.; Shi, X.; Wang, X.; Zhang, M.; Song, H.; Liu, Y.; Wang, Q. Visible-Light-Induced Sulfonylarylation of Unactivated Alkenes via 1,4-(Hetero)aryl Migration from Oxygen or Nitrogen to Carbon. *Green Chem.* **2022**, *24*, 7869-7873.

7. ¹H, ¹³C and ¹⁹F NMR Spectra for Substrates and Products

¹H NMR of Substrates **1a** (400 MHz, CDCl₃)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

S66

¹H NMR of Substrates **4f** (400 MHz, CDCl₃)

¹H NMR of Substrates **4n** (400 MHz, CDCl₃)

¹H NMR of Substrates **40** (400 MHz, CDCl₃)

¹H NMR of Substrates **4p** (400 MHz, CDCl₃)

¹H NMR of Substrates **4q** (400 MHz, CDCl₃)

¹H NMR of Substrates **4s** (400 MHz, CDCl₃)

¹H NMR of Substrates **4t** (400 MHz, CDCl₃)

¹³C NMR of Substrates 4t (101 MHz, CDCl₃)

¹H NMR of Compound **3a** (400 MHz, CDCl₃)

¹H NMR of Compound **3b** (400 MHz, CDCl₃)

¹³C NMR of Compound **3b** (101 MHz, CDCl₃)

¹⁹F NMR of Compound **3b** (400 MHz, CDCl₃)

-117.35 -117.37 -117.42

¹H NMR of Compound **3**c (400 MHz, CDCl₃)

¹H NMR of Compound **3d** (400 MHz, CDCl₃)

S84

¹H NMR of Compound **3e** (400 MHz, CDCl₃)

113.41 113.45 113.45 113.45 113.45 113.45 113.45 114.35 11

¹H NMR of Compound **3f** (400 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

¹H NMR of Compound **3g** (400 MHz, CDCl₃)

¹³C NMR of Compound **3g** (101 MHz, CDCl₃)

S88

¹⁹F NMR of Compound **3g** (400 MHz, CDCl₃)

¹H NMR of Compound **3i** (400 MHz, CDCl₃)

¹⁹F NMR of Compound **3i** (400 MHz, CDCl₃)

-113.42 -113.45 -113.45 -113.60 -113.60 -114.12 -114.12 -114.35 -114.35 -114.35 -114.35 -114.35 -114.35 -114.35 -116.33 -116.33 -116.33 -117.09 -117.09 -117.09 -117.09 -117.18

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

¹H NMR of Compound **3j** (400 MHz, CDCl₃)

¹H NMR of Compound **3k** (400 MHz, CDCl₃)

¹³C NMR of Compound **3k** (101 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm) ¹H NMR of Compound **3l** (400 MHz, CDCl₃)

¹³C NMR of Compound **3l** (101 MHz, CDCl₃)

¹H NMR of Compound **3m** (400 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

¹H NMR of Compound **3n** (400 MHz, CDCl₃)

¹H NMR of Compound **3o** (400 MHz, CDCl₃)

¹H NMR of Compound **3p** (400 MHz, CDCl₃)

¹³C NMR of Compound **3p** (101 MHz, CDCl₃)

¹H NMR of Compound **3a-D** (400 MHz, CDCl₃)

¹⁹F NMR of Compound **3a-D** (400 MHz, CDCl₃)

¹H NMR of Compound **3b-D** (400 MHz, CDCl₃)

¹H NMR of Compound **3d-D** (400 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

¹H NMR of Compound **3e-D** (400 MHz, CDCl₃)

¹H NMR of Compound **3f-D** (400 MHz, CDCl₃)

¹H NMR of Compound **3i-D** (400 MHz, CDCl₃)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

¹⁹F NMR of Compound **3i-D** (400 MHz, CDCl₃) $\begin{array}{c} -44.24\\ -44.23\\ -44.32\\ -44.33\\ -44.33\\ -46.33\\ -46.33\\ -46.33\\ -46.33\\ -46.33\\ -46.53\\ -46.53\\ -46.53\\ -46.53\\ -46.54\\ -46.54\\ -46.54\\ -46.55\\ -47.03\\$ 113.42 0 OMe CF₂H -114.36 -114.39 -116.30 -116.34 -116.34 -116.45 -116.45 -116.50 -116.56 -117.12 113.46 114.32 6 14.21 14.24 13.6 81% D -113.5 -114.5 -115.5 f1 (ppm) -116.5 -117.5 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm) 20 10 0 -10 -20 -30 -40 -50

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

¹H NMR of Compound **3m-D** (400 MHz, CDCl₃)

¹H NMR of Compound **5a** (400 MHz, CDCl₃)

¹H NMR of Compound **5b** (400 MHz, CDCl₃)

Me

¹⁹F NMR of Compound **5b** (400 MHz, CDCl₃)

-115.44 -116.04 -116.08 -116.11 -116.11

.75

¹H NMR of Compound **5**c (400 MHz, CDCl₃)

¹H NMR of Compound **5d** (400 MHz, CDCl₃)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

¹H NMR of Compound **5**e (400 MHz, CDCl₃)

¹⁹F NMR of Compound **5e** (400 MHz, CDCl₃)

-114.33 -114.51 -114.51 -114.56 -114.66 -114.71 -114.75

¹H NMR of Compound **5f** (400 MHz, CDCl₃)

¹H NMR of Compound **5**g (400 MHz, CDCl₃)

S122

¹H NMR of Compound **5h** (400 MHz, CDCl₃)

¹H NMR of Compound **5i** (400 MHz, CDCl₃)

¹H NMR of Compound **5j** (400 MHz, CDCl₃)

¹H NMR of Compound **5k** (400 MHz, CDCl₃)

¹H NMR of Compound **5**l (400 MHz, CDCl₃)

¹³C NMR of Compound **51** (101 MHz, CDCl₃)

¹⁹F NMR of Compound **51** (400 MHz, CDCl₃)

¹H NMR of Compound **5m** (400 MHz, CDCl₃)

114.25 114.25 114.38 114.38 114.40 114.44 114.45 114.55 11

¹H NMR of Compound **5n** (400 MHz, CDCl₃)

¹⁹F NMR of Compound **5n** (400 MHz, CDCl₃)

¹H NMR of Compound **50** (400 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

¹H NMR of Compound **5p** (400 MHz, CDCl₃)

 $^{19}\mathrm{F}$ NMR of Compound $\mathbf{5p}$ (400 MHz, CDCl_3) 116.95 116.99 117.02 -114.20 CF₂H -115.02 -115.10 -115.13 -115.17 -116.05 -116.08 -116.12 -116.16 114.20 114.23 н 116.01 -116.27 -116.24 uuu -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 f1 (ppm) -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm) 20 10 -10 0 -20 -30 -40 -50

¹H NMR of Compound **5q** (400 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

¹H NMR of Compound **5r** (400 MHz, CDCl₃)

¹H NMR of Compound **5**s (400 MHz, CDCl₃)

¹⁹F NMR of Compound **5r** (400 MHz, CDCl₃)

¹H NMR of Compound **5**t (400 MHz, CDCl₃)

¹H NMR of Compound **5u** (400 MHz, CDCl₃)

¹H NMR of Compound **5v** (400 MHz, CDCl₃)

¹H NMR of Compound **7a** (400 MHz, CDCl₃)

¹H NMR of Compound **7b** (400 MHz, CDCl₃)

¹H NMR of Compound **7**c (400 MHz, CDCl₃)

^{13}C NMR of Compound 7c (101 MHz, CDCl_3) 134.44 131.41 129.67 128.02 128.02 127.81 127.81 127.81 127.81 127.09 111.08 157.14 156.92 143.15 77.48 77.16 76.84 -55.59 44.15 41.48 35.21 35.21 35.21 35.21 31.93 31.19 21.59 ď Н Βu 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 f1 (ppm) 40 30 20 10 0 -10 -20 -30

¹H NMR of Compound **7d** (400 MHz, CDCl₃)

¹H NMR of Compound **7e** (400 MHz, CDCl₃)

¹H NMR of Compound **7f** (400 MHz, CDCl₃)

¹⁹F NMR of Compound **7f** (376 MHz, CDCl₃) នុនុនុន្ន

-105.20 -105.22 -105.24 -105.25 -105.26

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

¹H NMR of Compound **7g** (400 MHz, CDCl₃)

¹H NMR of Compound **7h** (400 MHz, CDCl₃)

¹H NMR of Compound **7i** (400 MHz, CDCl₃)

¹H NMR of Compound **7**j (400 MHz, CDCl₃)

¹⁹F NMR of Compound **7j** (376 MHz, CDCl₃)

¹H NMR of Compound **7k** (400 MHz, CDCl₃)

¹H NMR of Compound **7**l (400 MHz, CDCl₃)

¹H NMR of Compound **7m** (400 MHz, CDCl₃)

¹H NMR of Compound **7n** (400 MHz, CDCl₃)

S161