Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting Information

Nickel-Catalyzed Reductive Cross-Coupling of Monofluoroalkyl

Triflates with Aryl Halides for Monofluoroalkylated Arenes

Zhi-Heng Li,^a Hao Peng,^{*a} Panke Zhang,^b Yu-Ang Hu,^a Chao Pi,^{b,*} Cuiju Zhu,^{a,*} Hao Xu^a

^aEngineering Research Center of Photoenergy Utilization for Pollution Control and Carbon

Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal

University, Wuhan 430079, China

^bGreen Catalysis Center, and College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450001, China

penghao@ccnu.edu.cn

pichao@zzu.edu.cn

cuiju.zhu@ccnu.edu.cn

Supporting Information

contents

1.	General Information	2
2.	Optimization Studies	3
3.	Preparation of the Substrates.	9
4.	Experimental Procedure	11
5.	Control Experiments	12
6.	Gram-scale Experiment	16
7.	Characterization Date of Substrates 1 and Products	17
8.	References	41
9.	NMR Spectra (¹ H NMR, ¹³ C NMR, ¹⁹ F NMR)	42

1. General Information

All reactions dealing with air- or moisture-sensitive compounds were performed in the argon-filled glovebox. Commercial reagents were used without further purification. Flash column chromatography was performed using 200–300 or 300–400 mesh silica gel. Thin layer chromatography (TLC) was performed on glass plates coated with silica gel 60 with F254 indicator. Proton nuclear magnetic resonance (¹H NMR) and (¹⁹F NMR) spectra were recorded on a Bruker 400 MHz spectrometer. Chemical shifts (δ) are reported in ppm from the resonance of tetramethyl silane as the internal standard (CDCl₃: δ = 7.26 ppm for ¹H, TMS: δ = 0 ppm for ¹H, δ = 77.16 ppm for ¹³C). ¹³C NMR spectra were recorded on 100 MHz or 150 MHz with complete proton decoupling spectrophotometers. Data are represented as follows: chemical shift, multiplicity (*br* = broad, *s* = singlet, *d* = doublet, *t* = triplet, *q* = quartet, *m* = multiplet), coupling constants (*J*) are given in Hertz (Hz). High resolution mass spectra (HRMS) were measured with Bruker micr OTOF II ESI-TOF using a positive electrospray ionization (ESI⁺).

2. Optimization Studies

Table S1. The Effect of the Ligands on the Reaction^[a].

[a]Reaction condition: 1a (0.2 mmol), 2a (2.0 equiv.), NiCl₂(dme) (10 mol%), L (12 mol%), Cs₂CO₃ (2.0 equiv.), TBAI (2.0 equiv.), Zn (3.0 equiv.), DCM (0.1 M), operating in the glovebox, 25 °C, 48 h. Yield of isolated product.
[b] THF (0.1M), 40 °C, 48 h.

F OTf + 1a	[Ni] (10 mol%) L10 (12 mol%) Zn (3.0 equiv.), TBAI (2.0 equiv.) CS ₂ CO ₃ (2.0 equiv.), DCM (0.1 M), 25 °C	$ \begin{array}{c} $
Entry	[Ni]	Yield ^[b] (3aa) %
1	NiCl ₂ (dme)	44
2	NiBr ₂ (dme)	37
3	Ni(OTf) ₂	24
4	Ni(acac) ₂	trace
5	Ni(ClO ₄) ₂	8
6	Ni(OAc) ₂ •4H ₂ O	30
7	NiBr ₂	trace

 Table S2. The Effect of the Nickel Catalysts on the Reaction^[a].

[a] Reaction condition: 1a (0.2 mmol), 2a (2.0 equiv.), [Ni] (10 mol%), L10 (12 mol%), Cs₂CO₃ (2.0 equiv.), TBAI (2.0 equiv.), Zn (3.0 equiv.), DCM (0.1 M), operating in the glovebox, 25 °C, 48 h. [b] Yield of isolated product.

l 1a	F OTf + CO ₂ Me 2a	NiCl ₂ (dme) (10 mol%) L10 (12 mol%) Zn (3.0 equiv.), TBAI (2.0 equiv.) Cs ₂ CO ₃ (2.0 equiv.), solvent (0.1 M), T	Good Saa	CO_2Me	
-	Entry	Solvent	T/ºC	Yield ^[b] (3aa) %	
_	1	DCM	25	44	
	2	NMP	25	<5	
	3	MeCN	25	26	
	4	DCM	40	56	
	5	THF	40	96	
	6	1,4-dioxide	40	57	
	7	Et ₂ O	40	35	

Table S3. The Effects of the Solvents and Temperature on the Reaction^[a]

[a] Reaction condition: 1a (0.2 mmol), 2a (2.0 equiv.), NiCl₂(dme) (10 mol%), L10 (12 mol%), Cs₂CO₃ (2.0 equiv.), TBAI (2.0 equiv.), Zn (3.0 equiv.), solvent (0.1 M), operating in the glovebox, T °C, 48 h. [b] Yield of isolated product.

1:	F OTf +	NiCl ₂ (dme) (10 mol ⁴ L10 (12 mol ⁶) Zn (3.0 equiv.), TBAI (2.0 CS ₂ CO ₃ (2.0 equiv. THF (0.1 M), T	%) Pequiv.)	GogMe	
	Entry	Solvent	T/°C	Yield ^[b] (3aa	ı) %
	1	THF	25	68	
	2	THF	40	96	
	3	THF	60	90	
	4	THF	80	93	

Table S4. The Effect of the Temperature on the Reaction^[a].

[a] Reaction condition: 1a (0.2 mmol), 2a (2.0 equiv.), NiCl₂(dme) (10 mol%), L10 (12 mol%), Cs₂CO₃ (2.0 equiv.),

TBAI (2.0 equiv.), Zn (3.0 equiv.), THF (0.1 M), operating in the glovebox, T °C, 48 h. [b] Yield of isolated product.

la la	F OTf + CO_2Me CO_2Me	NiCl ₂ (dme) (10 mol%) <u>L10 (12 mol%)</u> Zn (3.0 equiv.), TBAI (2.0 equiv.) Cs ₂ CO ₃ (2.0 equiv.), THF (0.1 M), 40 °C	$ \begin{array}{c} F \\ CO_2Me \\ 3aa \end{array} $
	Entry	Conditions	Yield ^[b] (3aa) %
	1	none	96
	2	without [Ni]	N.D.
	3	without L10	23
	4	without TBAI	N.D.
	5	without Cs ₂ CO ₃	71
	6	without Zn	N.D.

Table S5. Control Experiments^[a].

[a] Reaction condition: **1a** (0.2 mmol), **2a** (2.0 equiv.), NiCl₂(dme) (10 mol%), **L10** (12 mol%), Cs₂CO₃ (2.0 equiv.), TBAI (2.0 equiv.), Zn (3.0 equiv.), THF (0.1 M), operating in the glovebox, 40 °C, 48 h. [b] Yield of isolated product.

Table S6. The Effect of the L16 and (\pm) -L10 on the Reaction^[a].

[a] Reaction condition: 1a (0.2 mmol), 2a (2.0 equiv.), NiCl2(dme) (10 mol%), L (12 mol%), Cs2CO3 (2.0 equiv.),

TBAI (2.0 equiv.), Zn (3.0 equiv.), THF (0.1 M), operating in the glovebox, 40 °C, 48 h. [b] Yield of isolated product.

3. Preparation of the Substrates.

Procedure A: General procedure for the preparation of monofluoroalkyl triflates

All of monofluoroalkyl triflates (1a-1n) were prepared through the reported procedures,^[1] and the characterization of the compounds 1a, 1c-1g, 1i, 1j, and 1l-1m were reported in the literature. 1b, 1h, 1k and 1n were synthesized according to the previous report.^[1]

Under nitrogen atmosphere, in a 250 mL Schlenck bottle equipped with a magnetic stirring. Triflic anhydride (21 mmol, 2.1 equiv.), corresponding aldehyde (20 mmol, 1.0 equiv.), 2.6-lutidine (17 mmol, 1.7 equiv.) and 50 mL DCM was added at -30 °C. The reaction mixture was stirred under N₂ for 2 days at -30 °C. Et₃N•3HF (10 mmol, 1.0 equiv.) in 10 mL of DCM was added dropwise to the mixture of bistriflate at -30 °C. The mixture was allowed to reach room temperature and stirred for overnight. The reaction was slowly quenched by the addition of saturated NaHCO₃ (50 mL) at 0 °C and the organic layer was washed with 1N HCl (50 mL) and saturated NaHCO₃ (50 mL). The organic phase was dried with Na₂SO₄, filtered, and concentrated for flash column chromatography to give the 1-fluoroalkyl triflates.

Procedure B: General procedure for the preparation of aryl halides.

Aryl halides **2t-2v** were prepared according to the reported procedures,^[2] other aryl halides were commercially available.

An oven round-bottom flask equipped with a magnetic stirring. 4-Iodobenzoic acid (1.2 equiv.), corresponding alcohol or alkylamine (1.0 equiv.), DMAP (0.1 equiv.), and 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI, 2.6 equiv.) and DCM (20 mL) were added. The reaction mixture was stirred at room temperature for 12 h. Then the reaction was filtrated with a short silica pad and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5:1 to 40:1) to afford the corresponding aryl halides.

4. Experimental Procedure.

Procedure C: General procedure for the preparation of benzyl monofluoroalkanes

Inside a nitrogen-filled glovebox, a dry 4 mL gram bottle containing a stirring bar was added sequentially substrates 1 (0.4 mmol, 1.0 equiv.), aryl halides 2 (0.8 mmol, 2.0 equiv.), NiCl₂(dme) (8.8 mg, 10 mol%), (\pm)-L10 (11.4 mg, 12 mol%), TBAI (295.4 mg, 0.8 mmol, 2.0 equiv.), and Cs₂CO₃ (260 mg, 0.8 mmol, 2.0 equiv.), Zn (78 mg, 1.2 mmol, 3.0 equiv.) in 2 mL of anhydrous THF. Then the reaction was taken out of the glovebox and stirred reaction at 40 °C for 48 hours. After the reaction was finished according to TLC, then the reaction was filtrated with a short silica pad and concentrated in vacuo. The mixture was purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate to afford the corresponding products.

5. Control Experiments.

5.1 Procedure D: Synthesis of Ar-Ni(L)Br (Ni^{II} complex A).

The Ni^{II} complex **A** was prepared according to the literature procedure.^[3] Inside a nitrogen-filled glovebox, a flame-dried round-bottomed flask was charged with Ni(COD)₂ (138 mg, 0.5 mmol, 1.0 equiv.), dry THF (4 mL) and 4,4'-di-tert-butyl-2,2'-bipyridine (134 mg, 0.5 mmol, 1.0 equiv.). After stirring at room temperature overnight, methyl 4-bromobenzoate (1.07 g, 5 mmol, 10.0 equiv.) was added and stirred for additional 4 h. Dry hexane (30 mL) was added slowly to the deep red colored mixture and filtered. The resulting precipitate was washed with hexane (4 x 10 mL) and dried under vacuum to afford Ni^{II} complex **A** as an orange solid (250 mg, 92% yield). The Ni^{II} complex **A** was used without further purification. The Ni^{II} complex **A** was stored in a nitrogen-filled glovebox at -20 °C.

5.2 Procedure E: Synthesis of NiCl₂(4,4'-ditBu-bpy).

The NiCl₂(4,4'-ditBu-bpy) was prepared according to the literature procedure.^[4] An oven round-bottom flask equipped with a magnetic stirring. A solution of NiCl₂ (0.5 g, 3.85 mmol) in anhydrous ethanol (50 mL) was added to a stirred solution of 4,4'-ditBu-bpy (1.03 g, 3.85 mmol) in anhydrous ethanol (25 mL). The reaction mixture was refluxed with stirring at 85 °C. Overnight the yellow solution slowly became green. The solution was filtrated and the filtrate was evaporated in vacuo to give a crude product (1.27 g, 83% yield). The product was recrystallized from anhydrous methanol.

\bigcirc	FOTF + 1a 0.2 mmol	Ni(dtbb Zn (3.0 equ Co ₂ Me 2a 2.0 equiv.	py)Cl ₂ (10 mol%) iiv.), TBAI (2.0 equiv.) CO ₃ (2.0 equiv.), (0.1 M), 40 °C	3aa 28 mg, 52	CO ₂ Me	dtbbpy	
¹ Bu ¹ Bu Ni ¹ Complex A 0.1 mmol	+ 1a Me 1.0 equi	DTf <u>Conditio</u> THF (0.1 M), v.	ns 40 °C ►	General CO ₂ Me	,+ 5a	F I + 1 1a	F OTf
Entry	Zn	TBAI	Cs_2CO_3	3aa /%	5a/%	1a	
1	3.0 equiv.	2.0 equiv.	2.0 equiv.	59	12	0	
2	0	2.0 equiv.	2.0 equiv.	66	trace	0	
3	3.0 equiv.	0	2.0 equiv.	26	0	trace	
4	0	0	2.0 equiv.	7	0	trace	
5	3.0 equiv.	2.0 equiv.	0	51	34	0	

5.3 Stoichiometric reaction of Ni^{II} complex A with 1a.

Inside a nitrogen-filled glovebox, a dry 4 mL gram bottle containing a stirring bar was charged with Ni^{II} complex **A** (54.2 mg, 0.1 mmol), TBAI (2.0 equiv.), and Cs₂CO₃ (2.0 equiv.), Zn (3.0 equiv.). Dissolved the substrate **1a** (28.6 mg, 0.1 mmol, 1.0 equiv.) in anhydrous THF (1 mL), and then added to the system through a dropper. Then the reaction was taken out of the glovebox and stirred at 40 °C for 48 hours. After the reaction was finished according to TLC, then the reaction was filtrated with a short silica pad and concentrated in vacuo. The mixture was purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate to afford the product **3aa** and by-product **5a**.

5.4 Reaction in presence of radical scavengers.

In a nitrogen-filled glovebox, a dry 4 mL gram bottle containing a stirring bar was charged with substrate **1a** (0.4 mmol, 1.0 equiv.), aryl halide **2a** (0.8 mmol, 2.0 equiv.), NiCl₂(dme) (8.8 mg, 10 mol%), (\pm)-**L10** (11.4 mg, 12 mol%), TBAI (295.4 mg, 0.8 mmol, 2.0 equiv.), and Cs₂CO₃ (260 mg, 0.8 mmol, 2.0 equiv.), Zn (78 mg, 1.2 mmol, 3.0 equiv.) in 2 mL of anhydrous THF. Then, the indicated amount of radical scavengers TEMPO (x equiv.) was added. Then the reaction was taken out of the glovebox and stirred at 40 °C for 48 hours. After the reaction was finished according to TLC, then the reaction was filtrated with a short silica pad and concentrated in vacuo. The mixture was purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate to afford the corresponding products **3aa**, **4aa**, and **4aa** was detected by HRMS.

6. Gram-scale experiment

In a nitrogen-filled glovebox, a dry 50 mL sealed tube containing a stirring bar was charged with substrate **1a** (1.71g, 6.0 mmol, 1.0 equiv.), aryl halide **2a** (3.14 g, 12 mmol, 2.0 equiv.), NiCl₂(dme) (131 mg, 10 mol%), (\pm)-**L10** (170 mg, 12 mol%), TBAI (4.43 g, 12 mmol, 2.0 equiv.), and Cs₂CO₃ (3.9 g, 12 mmol, 2.0 equiv.), Zn (1.17 g, 18 mmol, 3.0 equiv.) in 30 mL of anhydrous THF. Then the reaction was taken out of the glovebox and stirred at 40 °C for 48 hours. After the reaction was finished according to TLC, then the reaction was filtrated with a short silica pad and concentrated in vacuo. The mixture was purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate to afford the corresponding products **3aa** (1.08 g, 66% yield).

7. Characterization Date of Substrates 1 and Products.

1-fluoro-3-(p-tolyl) propyl trifluoromethanesulfonate

The general **procedure A** was followed using 3-(*p*-tolyl) propanal (1.90 g, 12.8 mmol) purification by column chromatography on silica gel, yielding **1b** (0.95 g, 25%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, J = 7.8 Hz, 2H), 7.09 (d, J = 7.8 Hz, 2H), 6.12 (dt, J = 54.4, 5.1 Hz, 1H), 2.78 (t, J = 7.9 Hz, 2H), 2.35 (s, 3H), 2.32–2.24 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 136.5, 135.6, 129.7, 128.2, 118.4 (q, J = 319.4 Hz), 112.0 (d, J = 245.9 Hz), 35.4 (d, J = 20.0 Hz), 28.3 (d, J = 5.4 Hz), 21.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -74.94, -120.24; HRMS (ESI) m/z: [M+K]⁺ calcd. for C₁₁H₁₂F₄O₃SK = 339.0075, found: 339.0082.

1-fluoro-3-(3-(trifluoromethyl)phenyl) propyl trifluoromethanesulfonate

The general **procedure A** was followed using 3-(3-(trifluoromethyl) phenyl) propanal (3.20 g, 15.8 mmol) purification by column chromatography on silica gel, yielding **1h** (0.95 g, 37%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.54–7.39 (m, 4H), 6.17 (dt, J = 54.2, 4.9 Hz, 1H), 2.90 (t, J = 8.0 Hz, 2H), 2.39–2.29 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 139.8, 131.8, 131.8(4)–130.9 (q, J = 32 Hz), 129.5, 128.2–120.1 (q, J = 270.0 Hz), 125.1 (q, J = 3.9 Hz), 123.9 (q, J = 3.9 Hz), 118.4 (q, J = 319.6 Hz), 111.5 (d, J = 245.7 Hz), 35.1 (d, J = 20.4 Hz), 28.4 (d, J = 5.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.77, -74.98, -120.43; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₁H₁₀F₇O₃S = 355.0233, found: 355.0243.

1-fluoro-3,5,5-trimethylhexyl trifluoromethanesulfonate

The general **procedure A** was followed using 3,5,5trimethylhexanal (1.40 g, 10.0 mmol) purification by column chromatography on silica gel, yielding **1k** (1.56 g,

53%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 6.25–6.08 (m, 1H) (major + minor), 2.09–1.92 (m, 1H), 1.88–1.68 (m, 2H), 1.27 (dd, J = 4.1, 1.8 Hz, 1H) (minor); 1.23 (dd, J = 4.1, 1.8 Hz, 1H) (major), 1.19 (d, J = 6.0 Hz, 1H) (major); 1.16 (d, J = 6.0 Hz, 1H) (minor), 1.03 (dd, J = 6.6, 3.6 Hz, 3H) (major + minor), 0.92 (s, 9H) (major); 0.91 (s, 9H) (minor); ¹³C NMR (101 MHz, CDCl₃) δ 123.2-113.6 (q, J = 319.4 Hz) , 112.3 (dd, J = 245.7, 16.4 Hz) (major + minor), 51.0 (d, J = 10.7 Hz) (major + minor), 42.7 (dd, J = 18.8, 9.7 Hz) (major + minor), 31.2 (d, J = 2.6 Hz) (major + minor), 29.9 (d, J = 6.4 Hz) (major + minor), 24.7 (d, J = 4.2 Hz) (major + minor), 22.4 (d, J = 13.9 Hz) (major + minor); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.12, -75.18, -117.95, -119.46; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₀H₁₉F₄O₃S =295.0986, found: 295.0992.

(2,3-dihydro-1*H*-inden-2-yl) fluoromethyl trifluoromethanesulfonate

The general **procedure A** was followed using 2,3-dihydro-1*H*indene-2-carbaldehyde (1.90 g, 13.0 mmol) purification by column chromatography on silica gel, yielding 1n (0.85 g, 22%) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.24–7.17 (m, 4H), 6.12 (dd, J = 54.6, 5.6 Hz, 1H), 3.22– 3.13 (m, 2H), 3.10–2.91 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 140.5 (d, J = 14.0 Hz), 127.2, 124.7, 118.4 (q, J = 319.4 Hz), 113.8 (d, J = 247.3 Hz), 42.5 (d, J = 19.5 Hz), 33.4 (d, J = 5.6 Hz), 33.2 (d, J = 3.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -74.73, -122.16 ; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₁H₁₁F₄O₃S = 299.0360, found: 299.0360.

Methyl 4-(1-fluoro-3-phenylpropyl) benzoate

The general **procedure** C was followed using monofluoroalkyl triflate (1a) (114.4 mg, 0.4 mmol) and methyl 4-iodobenzoate (2a) (209.6 mg, 0.8 mmol) purification by column chromatography on

silica gel, yielding 3aa (92.0 mg, 85%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 8.2 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.25–7.14 (m, 3H), 5.50 (ddd, J = 47.8, 8.7, 4.1 Hz, 1H), 3.93 (s, 3H), 2.88–2.69 (m, 2H), 2.38–2.01 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -180.27. The analytical data are in accordance to those reported in the literature^[5].

1-(1-fluoro-3-phenylpropyl)-4-(trifluoromethoxy)benzene

The general **procedure C** was followed using monofluoroalkyl triflate (1a) (114.4 mg, 0.4 mmol) and 1-iodo-4-(trifluoromethoxy)benzene (2b) (230.4 mg, 0.8 mmol) purification by column

chromatography on silica gel, yielding **3ab** (56.0 mg, 47%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.28 (m, 4H), 7.23–7.18 (m, 5H), 5.43 (ddd, J = 47.6, 8.7, 4.3 Hz, 1H), 2.86–2.71 (m, 2H), 2.34–2.01 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 149.2, 140.9, 139.1, 138.9, 128.6 (d, J = 9.1 Hz), 127.2 (d, J = 6.8 Hz), 120.7 (q, J = 257.4 Hz) 124.4 , 121.1 , 92.9 (d, J = 171.9 Hz) , 39.0 (d, J = 23.6 Hz) , 31.4 (d, J = 4.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -57.64 , -176.33; HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₁₆H₁₄F₄ONa =321.0873, found: 321.0885.

4-(1-fluoro-3-phenylpropyl) benzaldehyde

The general **procedure C** was followed using monofluoroalkyl triflate (**1a**) (114.4 mg, 0.4 mmol) and 4-iodobenzaldehyde (**2c**) (185.6 mg, 0.8 mmol) purification by column chromatography on silica gel,

yielding **3ac** (58.0 mg, 60%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 10.02 (s, 1H), 7.90 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 7.34–7.30 (m, 2H), 7.28–7.18 (m, 3H), 5.53 (ddd, J = 47.8, 8.6, 4.0 Hz, 1H), 2.88–2.75 (m, 2H), 2.35–2.06 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 191.8, 147.0 (d, J = 19.7 Hz), 140.8, 136.2, 130.02 , 128.60 (d, J = 11.8 Hz), 126.31 , 125.90 (d, J = 7.5 Hz), 92.85 (d, J = 173.5 Hz), 39.0 (d, J = 23.1 Hz), 31.20 (d, J = 3.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -181.07; HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₁₆H₁₅FONa = 265.0999, found: 365.1004.

4-(1-fluoro-3-phenylpropyl) benzonitrile

The general **procedure C** was followed using monofluoroalkyl triflate (**1a**) (114.4 mg, 0.4 mmol) and 4-bromobenzonitrile (**2d**) (145.6 mg, 0.8 mmol) purification by column chromatography on silica gel,

yielding **3ad** (68.0 mg, 71%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.1 Hz, 2H), 7.43 (d, J = 8.1 Hz, 2H), 7.32 (t, J = 7.4 Hz, 2H), 7.26–7.19 (m, 3H), 5.50 (ddd, J = 47.7, 8.7, 4.0 Hz, 1H), 2.87–2.75 (m, 2H), 2.33–2.04 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 145.6, 145.4, 140.6, 132.4, 128.6 (d, J = 16.3 Hz), 126.4, 126.0 (d, J = 7.7 Hz), 118.6, 112.0, 92.4 (d, J = 174.3 Hz), 38.9 (d, J = 23.1 Hz), 31.1 (d, J = 3.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -181.79; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₆H₁₅FN = 240.1183, found: 240.1186.

1-(1-fluoro-3-phenylpropyl)-4-(trifluoromethyl)benzene

The general **procedure C** was followed using monofluoroalkyl triflate (**1a**) (114.4 mg, 0.4 mmol) and 1-iodo-4-(trifluoromethyl)benzene (**2e**) (217.6 mg, 0.8 mmol) purification by column chromatography on silica

gel, yielding 3ae (57.0 mg, 51%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.32– 7.28 (m, 2H), 7.22–7.18 (m, 3H), 5.48 (ddd, J = 47.8, 8.7, 4.1 Hz, 1H), 2.85–2.72 (m, 2H), 2.33–2.03 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 144.4, 144.2, 140.8, 130.5 (q, J = 33.2 Hz), 128.6 (d, J = 11.1 Hz), 126.4, 125.8 (d, J = 7.5 Hz), 125.6 (q, J = 3.6 Hz), 122.8, 92.8 (d, J = 173.2 Hz), 39.1 (d, J = 23.3 Hz), 31.2 (d, J = 4.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.54 , -180.22; HRMS (ESI) m/z: [M+K]⁺ calcd. for C₁₆H₁₄F₄K = 321.0663, found: 321.0659.

1-fluoro-4-(1-fluoro-3-phenylpropyl) benzene

The general **procedure C** was followed using monofluoroalkyl triflate (**1a**) (114.4 mg, 0.4 mmol) and 1-fluoro-4-iodobenzene (**2f**) (177.6 mg, 0.8 mmol) purification by column chromatography on silica gel,

yielding **3af** (40.0 mg, 43%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.31–7.27 (m, 4H), 7.23–7.18 (m, 3H), 7.07–7.03 (m, 2H), 5.40 (ddd, J = 47.8, 8.5, 4.3 Hz, 1H), 2.83–2.69 (m, 2H), 2.35–2.00 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 161.5, 141.1, 136.1 (d, J = 20.0 Hz), 128.6 (d, J = 7.0 Hz), 127.6 (t, J = 7.4 Hz), 126.3, 115.6 (d, J = 21.5 Hz), 93.2 (d, J = 170.9 Hz), 38.9 (d, J = 24.0 Hz), 31.4 (d, J = 4.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -113.62 , -173.74; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₅H₁₅F₂= 233.1136, found: 233.1138.

1-chloro-4-(1-fluoro-3-phenylpropyl) benzene

The general **procedure** C was followed using monofluoroalkyl triflate (1a) (114.4 mg, 0.4 mmol) and 1-chloro-4-iodobenzene (2g) (190.7 mg, 0.8 mmol) purification by column chromatography on silica gel,

yielding **3ag** (65.0 mg, 66%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.34–7.18 (m, 9H), 5.39 (ddd, J = 47.6, 8.4, 4.1 Hz, 1H), 2.83–2.68 (m, 2H), 2.33–1.99 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 141.0, 138.9, 138.7, 134.2 (d, J = 2.5 Hz), 128.8, 128.6 (d, J = 8.3 Hz), 127.1 (d, J = 6.8 Hz), 126.3 , 93.0 (d, J = 171.9 Hz), 38.9 (d, J = 23.7 Hz), 31.3 (d, J = 4.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -176.43; HRMS (ESI) m/z: [M+K]⁺ calcd. for C₁₅H₁₄ClFK = 287.0400, found: 287.0396.

1-bromo-4-(1-fluoro-3-phenylpropyl) benzene

The general **procedure C** was followed using monofluoroalkyl triflate (1a) (114.4 mg, 0.4 mmol) and 1-bromo-4-iodobenzene (2h) (226.3 mg, 0.8 mmol) purification by column chromatography on silica gel,

yielding **3ah** (83.0 mg, 71%) as a yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.3 Hz, 2H), 7.31–7.27 (m, 2H), 7.22–7.17 (m, 5H), 5.37 (ddd, J = 47.7, 8.6, 4.4 Hz, 1H), 2.82–2.68 (m, 2H), 2.32–1.98 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 140.9, 139.3 (d, J = 20.2 Hz), 137.7, 131.7, 128.6 (d, J = 8.4 Hz), 127.4 (d, J = 6.8 Hz), 126.3, 122.3 (d, J = 2.5 Hz), 93.0 (d, J = 171.8 Hz), 38.9 (d, J = 23.4 Hz), 31.3 (d, J = 4.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -176.93; HRMS (ESI) m/z: [M+K]⁺ calcd. for C₁₅H₁₄BrFK = 330.9894, found: 330.9883.

1-(4-(1-fluoro-3-phenylpropyl) phenyl) ethan-1-one

The general **procedure C** was followed using monofluoroalkyl triflate (1a) (57.2 mg, 0.2 mmol) and 1-(4-iodophenyl)ethan-1-one (2i) (98.4 mg, 0.4 mmol) purification by column chromatography on silica gel,

yielding **3ai** (23.0 mg, 45%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 7.7 Hz, 2H), 7.42 (d, J = 8.1 Hz, 2H), 7.33– 7.29 (m, 2H), 7.23–7.19 (m, 3H), 5.50 (ddd, J = 47.8, 8.6, 4.1 Hz, 1H), 2.86–2.73 (m, 2H), 2.62 (s, 3H), 2.34–2.05 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 145.6 , 145.4, 140.8, 137.0, 128.7 (d, J = 2.0 Hz), 128.6, 126.3, 125.6 (d, J = 7.4 Hz), 93.0 (d, J = 173.0 Hz), 39.0 (d, J = 23.2 Hz), 31.2 (d, J = 4.1 Hz), 26.8; ⁹F NMR (376 MHz, CDCl₃) δ -180.45; HRMS (ESI) *m/z*: [M+K]⁺ calcd. for C₁₇H₁₇FOK = 295.0895, found: 295.0876.

1-(1-fluoro-3-phenylpropyl)-3-(trifluoromethyl)benzene

The general **procedure C** was followed using monofluoroalkyl triflate (1a) (114.4 mg, 0.4 mmol) and 1-iodo-3-(trifluoromethyl)benzene (2j) (218.0 mg, 0.8 mmol) purification by column

chromatography on silica gel, yielding **3aj** (55.0 mg, 49%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.55 (m, 2H), 7.51–7.45 (m, 2H), 7.32–7.28 (m, 2H), 7.22–7.19 (m, 3H), 5.47 (ddd, J = 47.7, 8.8, 4.1 Hz, 1H), 2.86–2.73 (m, 2H), 2.35 –2.03 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 141.4 (d, J = 20.4 Hz), 140.8, 131.0 (q, J = 32.4 Hz), 129.2, 128.8 (d, J = 6.9 Hz), 128.6 (d, J = 10.6 Hz), 126.4, 125.4, 125.2, 122.8, 122.4 (dd, J = 7.5, 3.8 Hz), 92.8 (d, J = 172.9 Hz), 39.0 (d, J = 23.4 Hz), 31.3 (d, J = 4.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.63, -178.86; HRMS (ESI) m/z: [M+K]⁺ calcd. for C₁₆H₁₄F₄K = 321.0663, found: 321.0687.

3-(1-fluoro-3-phenylpropyl) benzonitrile

The general **procedure C** was followed using monofluoroalkyl triflate (1a) (57.2 mg, 0.2 mmol) and 3-iodobenzonitrile (2k) (91.6 mg, 0.4 mmol) purification by column chromatography on silica gel,

yielding **3ak** (40.0 mg, 84%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 5.4 Hz, 2H), 7.54 (d, J = 7.9 Hz, 1H), 7.49– 7.45 (m, 1H), 7.32–7.28 (m, 2H), 7.24–7.18 (m, 3H), 5.45 (ddd, J = 47.5, 8.7, 4.0 Hz, 1H), 2.85–2.72 (m, 2H), 2.32–2.02 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 142.0, 141.8, 140.6, 131.9, 129.8 (d, J = 7.0 Hz), 129.5, 129.0 (d, J = 7.9 Hz), 128.6 (d, J =16.9 Hz), 126.4, 118.6, 112.8 , 92.3 (d, J = 173.9 Hz), 38.9 (d, J = 23.2 Hz), 31.2 (d, J =4.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -180.22; HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₁₆H₁₅FN = 240.1183, found: 240.1186.

3-(1-fluoro-3-phenylpropyl) benzaldehyde

The general **procedure C** was followed using monofluoroalkyl triflate (**1a**) (114.4 mg, 0.4 mmol) and 3-iodobenzaldehyde (**2l**) (185.6 mg, 0.8 mmol) purification by column chromatography on silica gel,

yielding **3al** (63.0 mg, 65%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 10.04 (s, 1H), 7.85 (d, J = 5.6 Hz, 2H), 7.63–7.54 (m, 2H), 7.34–7.30 (m, 2H), 7.22–7.19 (m, 3H), 5.53 (ddd, J = 47.7, 8.7, 4.1 Hz, 1H), 2.89–2.75 (m, 2H), 2.39–2.08 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 192.0, 141.7, 141.5, 140.8, 136.6, 131.4 (d, J = 7.0 Hz), 129.8, 129.4, 128.6 (d, J = 10.4 Hz), 126.5 (d, J = 7.2 Hz), 126.3, 92.8 (d, J = 172.7 Hz), 39.0 (d, J = 23.3 Hz), 31.2 (d, J = 4.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -178.67; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₆H₁₆FO =243.1185, found: 243.1173.

Dimethyl 5-(1-fluoro-3-phenylpropyl) isophthalate

on silica gel, yielding **3am** (61.0 mg, 46%) as a colorless oil.

The general **procedure C** was followed using monofluoroalkyl triflate (1a) (114.4 mg, 0.4 mmol) and dimethyl 5-iodoisophthalate (2m) (256.0 mg, 0.8 mmol) purification by column chromatography

¹H NMR (400 MHz, CDCl₃) δ 8.64 (s, 1H), 8.19 (s, 2H), 7.32–7.28 (m, 2H), 7.21 (dd, J = 7.5, 5.5 Hz, 3H), 5.53 (ddd, J = 47.6, 8.8, 4.0 Hz, 1H), 3.95 (s, 6H), 2.87–2.74 (m, 2H), 2.37–2.06 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 141.4 (d, J = 20.7 Hz), 140.6, 133.8, 131.0, 130.8 (d, J = 7.1 Hz), 130.5, 128.6 (d, J = 9.7 Hz), 126.3, 92.5 (d, J = 173.5 Hz), 52.6, 38.9 (d, J = 23.3 Hz), 31.2 (d, J = 3.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -179.21; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₉H₂₀FO₄ = 331.1340, found: 331.1343.

1,2-difluoro-3-(1-fluoro-3-phenylpropyl) benzene

The general **procedure** C was followed using monofluoroalkyl triflate (1a) (114.4 mg, 0.4 mmol) and 1,2-difluoro-3-iodobenzene (2n) (192.0 mg, 0.8 mmol) purification by column chromatography on silica gel,

yielding **3an** (56.0 mg, 56%) as a yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.33–7.27 (m, 2H), 7.24–7.20 (m, 4H), 7.18–7.10 (m, 2H), 5.77 (ddd, J = 47.0, 8.5, 4.2 Hz, 1H), 2.92–2.73 (m, 2H), 2.39–2.09 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 151.6 (d, J = 12.8 Hz), 149.2 (d, J = 12.3 Hz), 140.8, 130.1 (dd, J = 21.9, 10.1 Hz), 128.6 (d, J = 11.4 Hz), 126.3, 124.5 (d, J = 4.4 Hz), 124.5 (d, J = 4.7 Hz), 121.7, 117.1 (d, J = 17.0 Hz), 88.8–87.0 (dt, J = 173.0 Hz, J = 3.0 Hz), 37.9 (d, J = 23.3 Hz), 31.2 (d, J = 3.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -138.33, -144.00, -183.18; HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₁₅H₁₃F₃Na = 273.0862, found: 273.0836.

Methyl 4-(1-fluoro-3-phenylpropyl)-3-methylbenzoate

The general **procedure** C was followed using monofluoroalkyl triflate (1a) (114.4 mg, 0.4 mmol) and methyl 4-iodo-3-methylbenzoate (2o) (220.8 mg, 0.8 mmol) purification by column

chromatography on silica gel, yielding **3ao** (50.0 mg, 44%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.2 Hz, 1H), 7.82 (s, 1H), 7.50 (d, *J* = 8.2 Hz, 1H), 7.33–7.29 (m, 2H), 7.23–7.20 (m, 3H), 5.64 (ddd, *J* = 47.5, 9.0, 3.2 Hz, 1H), 3.91 (s, 3H), 2.93–2.77 (m, 2H), 2.30–1.97 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 143.6 (d, *J* = 18.8 Hz), 140.9, 134.3 (d, *J* = 5.2 Hz), 131.7, 129.7, 128.6 (d, *J* = 4.6 Hz), 127.5, 126.3, 125.3, 125.2, 90.6 (d, *J* = 171.3 Hz), 52.3, 37.9 (d, *J* = 23.9 Hz), 31.6 (d, *J* = 3.2 Hz), 18.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -182.51; HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₁₈H₂₀FO₂= 287.1442, found: 287.1434.

5-(1-fluoro-3-phenylpropyl)-2,3-dihydro-1H-inden-1-one

The general **procedure C** was followed using monofluoroalkyl triflate (1a) (114.4 mg, 0.4 mmol) and 5-bromo-2,3-dihydro-1*H*-inden-1-one (2p) (168.8 mg, 0.8 mmol) purification by column

chromatography on silica gel, yielding **3ap** (80.0 mg, 75%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.9 Hz, 1H), 7.45 (s, 1H), 7.32–7.28 (m, 3H), 7.23–7.19 (m, 3H), 5.51 (ddd, *J* = 47.9, 8.8, 3.8 Hz, 1H), 3.15 (t, *J* = 5.8 Hz, 2H), 2.87–2.76 (m, 2H), 2.73–2.70 (m, 2H), 2.35–2.05 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 206.6, 155.6, 147.5, 147.3, 140.8, 137.0, 128.6 (d, *J* = 10.7 Hz), 126.3, 124.6 (d, *J* = 7.0 Hz), 124.0, 123.4 (d, *J* = 7.9 Hz), 93.2 (d, *J* = 173.5 Hz), 39.2 (d, *J* = 23.2 Hz), 36.5, 31.2 (d, *J* = 3.9 Hz), 25.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -180.27; HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₁₈H₁₇FONa = 291.1156, found: 291.1152.

5-(1-fluoro-3-phenylpropyl) isobenzofuran-1(3H)-one

The general **procedure C** was followed using monofluoroalkyl triflate (1a) (114.4 mg, 0.4 mmol) and 5-bromoisobenzofuran-1(3*H*)-one (2q) (170.4 mg, 0.8 mmol) purification by column chromatography on

silica gel, yielding **3aq** (92.0 mg, 77%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 7.8 Hz, 1H), 7.55–7.43 (m, 2H), 7.32–7.28 (m, 2H), 7.23–7.19 (m, 3H), 5.56 (ddd, J = 47.7, 8.7, 4.0 Hz, 1H), 5.31 (s, 2H), 2.87–2.75 (m, 2H), 2.34–2.06 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 147.2, 147.0 (d, J = 3.1 Hz), 140.5, 134.0, 128.6 (d, J = 15.2 Hz), 126.2 (d, J = 9.2 Hz), 125.8, 125.6 (d, J = 15.4 Hz), 122.2, 118.9 (d, J = 8.4 Hz), 92.8 (d, J = 174.3 Hz), 69.6, 39.2 (d, J = 23.1 Hz), 31.1 (d, J = 3.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -180.70; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₇H₁₆FO₂ = 271.1129, found: 271.1128.

(3*S*,8*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-10,13-dimethyl-17-((*R*)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-

cyclopenta[a]phenanthren-3-yl 4-(1-fluoro-3-phenylpropyl) benzoate

The general **procedure C** was followed using monofluoroalkyl triflate (**1a**) (57.2 mg, 0.2 mmol) and (3*S*,8*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-10,13-dimethyl-17-((*R*)-6-methylheptan-2-yl)-

2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[a]phenanthren-3yl 4-iodobenzoate (**2r**) (253.0 mg, 0.4 mmol) purification by column chromatography on silica gel, yielding **3ar** (66.0 mg, 52%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.1 Hz, 2H), 7.38 (d, *J* = 8.1 Hz, 2H), 7.32–7.28 (m, 2H), 7.23–7.19 (m, 3H), 5.57–5.42 (m, 2H), 4.91–4.83 (m, 1H), 2.84–2.72 (m, 2H), 2.47 (d, *J* = 7.6 Hz, 2H), 2.34–2.08 (m, 2H), 2.05–1.98 (m, 3H), 1.92 (dt, *J* = 13.5, 3.5 Hz, 1H), 1.87–1.69 (m, 2H), 1.63–1.45 (m, 6H), 1.39–1.25 (m, 6H), 1.22–1.09 (m, 5H), 1.07 (s, 3H), 1.06–0.96 (m, 3H), 0.93 (d, *J* = 6.5 Hz, 3H), 0.87 (dd, *J* = 6.6, 1.9

Hz, 6H), 0.69 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 145.1 (d, *J* = 19.5 Hz), 141.0, 139.7, 130.8, 129.9, 128.6 (d, *J* = 8.0 Hz), 126.3, 125.3 (d, *J* = 7.3 Hz), 123.0, 93.1 (d, *J* = 172.8 Hz), 74.8, 56.8, 56.3, 50.2, 42.5, 39.9, 39.7, 39.2, 38.9, 38.3, 37.2, 36.8, 36.3, 36.0, 32.1 (d, *J* = 6.6 Hz), 31.3 (d, *J* = 3.7 Hz), 28.4, 28.2, 28.0, 24.4, 24.0, 23.0, 22.7, 21.2, 19.5, 18.9, 12.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -180.02; HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₄₃H₅₉FO₂Na = 649.4391, found: 649.4397.

(2*R*,3*R*,4*S*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl) tetrahydro-2*H*pyran-2-yl 4-(1-fluoro-3-phenylpropyl) benzoate

The general **procedure** C was followed using monofluoroalkyl triflate (1a) (57.2 mg, 0.2 mmol) and (2R,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2*H*-pyran-2-yl 4-

iodobenzoate (2s) (308.2 mg, 0.4 mmol) purification by column chromatography on silica gel, yielding 3as (39.0 mg, 25%) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.36– 7.27 (m, 15H), 7.24–7.21 (m, 8H), 7.17 (dd, *J* = 7.2, 2.5 Hz, 2H), 5.93–5.88 (m, 1H), 5.52 (ddd, *J* = 47.8, 8.6, 4.1 Hz, 1H), 4.95–4.76 (m, 5H), 4.65–4.48 (m, 3H), 3.87–3.74 (m, 5H), 3.68 (dt, *J* = 9.8, 2.7 Hz, 1H), 2.86–2.75 (m, 2H), 2.37–2.06 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.6, 146.1 (d, *J* = 2.4 Hz), 145.9 (d, *J* = 2.5 Hz), 140.9, 138.5, 138.1, 138.0, 137.9, 130.4, 129.2, 128.7, 128.6, 128.6, 128.5, 128.1(4), 128.1, 128.0(3), 128.0, 127.9, 127.8, 126.3, 125.4(5), 125.4, 94.8, 93.0 (d, *J* = 173.3 Hz), 85.0, 81.0, 77.3, 75.8, 75.7, 75.2, 73.7, 68.2, 39.0 (d, *J* = 25.1 Hz), 31.2 (d, *J*= 3.2 Hz), 29.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -180.75; HRMS (ESI) *m*/*z*: [M+Na]⁺ calcd. for C₅₀H₄₉FO₇Na = 803.3355, found: 803.3347.

Tert-butyl 2-((4*S*,6*S*)-6-(2-(4-(1-fluoro-3-phenylpropyl) benzamido) ethyl)-2,2dimethyl-1,3-dioxan-4-yl) acetate

The general **procedure C** was followed using monofluoroalkyl triflate (**1a**) (57.2 mg, 0.2 mmol) and *tert*-butyl 2-((4*S*,6*S*)-6-(2-(4iodobenzamido)ethyl)-2,2-dimethyl-1,3-

dioxan-4-yl)acetate (2t) (220.8 mg, 0.4 mmol) purification by column chromatography on silica gel, yielding 3at (43.0 mg, 42%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.32–7.27 (m, 2H), 7.22–7.19 (m, 3H), 5.47 (ddd, *J* = 47.8, 8.7, 4.1 Hz, 1H), 4.32–4.26 (m, 1H), 4.11 (t, *J* = 10.0 Hz, 1H), 3.79–3.71 (m, 1H), 3.46–3.39 (m, 1H), 2.84–2.71 (m, 2H), 2.44 (dd, *J* = 15.2, 7.0 Hz, 1H), 2.32 (dd, *J* = 15.4, 6.2 Hz, 1H), 2.26–2.08 (m, 2H), 1.85–1.83 (m, 1H), 1.79–1.66 (m, 1H), 1.58 (d, *J* = 13.0 Hz, 1H), 1.48 (s, 3H), 1.45 (s, 9H), 1.42 (s, 3H), 1.38–1.26 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 166.6, 143.6 (d, *J* = 19.8 Hz), 140.9, 134.7, 128.6 (d, *J* = 7.4 Hz), 127.1, 126.2, 125.6 (d, *J* = 7.2 Hz), 99.0, 93.1 (d, *J* = 172.3 Hz), 80.8, 69.9, 66.3, 42.6, 39.0 (d, *J* = 23.3 Hz), 38.1, 36.1, 34.8, 31.3 (d, *J* = 4.1 Hz), 30.4, 28.2, 20.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -179.09; HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₃₀H₄₁FNO₅ = 514.2963, found: 514.2964.

Methyl 4-(1-fluoro-3-(p-tolyl) propyl) benzoate

The general **procedure** C was followed using monofluoroalkyl triflate (1b) (120.0 mg, 0.4 mmol) and methyl 4-iodobenzoate (2a) (209.6 mg, 0.8 mmol) purification by column

chromatography on silica gel, yielding **3ba** (77.0 mg, 68%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.1 Hz, 2H), 7.41 (d, *J* = 8.1 Hz, 2H), 7.15– 7.11 (m, 4H), 5.51 (ddd, *J* = 47.8, 8.6, 4.1 Hz, 1H), 3.94 (s, 3H), 2.84–2.71 (m, 2H), 2.35 (s, 3H), 2.35– 2.04 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 145.4 (d, *J* = 19.8 Hz), 137.8, 135.7, 130.0, 129.8, 129.3, 128.4, 125.3 (d, *J* = 7.3 Hz), 93.0 (d, *J* = 172.7 Hz), 52.2, 39.1 (d, J = 23.2 Hz), 30.7 (d, J = 4.1 Hz), 21.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -180.12; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₈H₂₀FO₂ = 287.1442, found: 287.1442.

Methyl 4-(1-fluoro-3-(4-methoxyphenyl) propyl) benzoate

The general **procedure C** was followed using monooroalkyl triflate (1c) (126.5 mg, 0.4 mmol) and methyl 4-iodobenzoate (2a) (209.6 mg, 0.8 mmol) purification by column

chromatography on silica gel, yielding 3ca (72.0 mg, 60%) as a yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.7 Hz, 2H), 7.39 (d, J = 8.1 Hz, 2H), 7.12 (d, J = 8.6 Hz, 2H), 6.87–6.83 (m, 2H), 5.48 (ddd, J = 47.8, 8.6, 4.1 Hz, 1H), 3.92 (s, 3H), 3.79 (s, 3H), 2.79–2.67 (m, 2H), 2.31–2.00 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 158.1, 145.4 (d, J = 19.9 Hz), 132.9, 130.0, 129.9, 129.5, 125.3 (d, J = 7.2 Hz), 114.0, 93.0 (d, J = 172.7 Hz), 55.3, 52.3 39.2 (d, J = 23.1 Hz), 30.3 (d, J = 4.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -180.25; HRMS (ESI) *m*/*z*: [M+H]⁺ calcd. for C₁₈H₂₀FO₃ = 303.1391, found: 303.1399.

Methyl 4-(1-fluoro-3-(4-fluorophenyl) propyl) benzoate

The general **procedure** C was followed using monofluoroalkyl triflate (1d) (120.0 mg, 0.4 mmol) and methyl 4-iodobenzoate (2a) (209.6 mg, 0.8 mmol) purification by column

chromatography on silica gel, yielding **3da** (64.0 mg, 55%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.1 Hz, 2H), 7.39 (d, J = 8.1 Hz, 2H), 7.17– 7.12 (m, 2H), 7.01–6.95 (m, 2H), 5.48 (ddd, J = 47.8, 8.6, 4.1 Hz, 1H), 3.92 (s, 3H), 2.82–2.70 (m, 2H), 2.31–2.01 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 162.7, 160.3, 145.2 (d, J = 19.7 Hz), 136.5 (d, J = 3.2 Hz), 130.1, 129.9 (t, J = 3.9 Hz), 125.3 (d, J = 7.3 Hz), 115.4 (d, J = 21.2 Hz), 92.9 (d, J = 173.0 Hz), 52.3, 39.1 (d, J = 23.3Hz), 30.4 (d, J = 4.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -117.11, -180.50; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₇H₁₇F₂O₂ = 291.1191, found: 291.1199.

Methyl 4-(3-(4-chlorophenyl)-1-fluoropropyl) benzoate

The general **procedure C** was followed using monofluoroalkyl triflate (1e) (128.0 mg, 0.4 mmol) and methyl 4-iodobenzoate (2a) (209.6 mg, 0.8 mmol) purification by column

¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.1 Hz, 2H), 7.37 (d, J = 8.1 Hz, 2H), 7.27 -7.23 (m, 2H), 7.11 (d, J = 8.4 Hz, 2H), 5.46 (ddd, J = 47.8, 8.6, 4.0 Hz, 1H), 3.91 (s, 3H), 2.80–2.68 (m, 2H), 2.29–1.99 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 145.1 (d, J = 19.8 Hz), 139.3, 132.0, 130.1, 129.9, 129.8, 128.7, 125.3 (d, J = 7.4 Hz), 92.8 (d, J = 173.2 Hz), 52.3, 38.8 (d, J = 23.3 Hz), 30.6 (d, J = 4.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -180.51; HRMS (ESI) m/z: [M+H]⁺ calcd. C₁₇H₁₇ClFO₂ = 307.0896, found: 307.0867.

chromatography on silica gel, yielding 3ea (71.0 mg, 58%) as a colorless oil.

Methyl 4-(3-(4-bromophenyl)-1-fluoropropyl) benzoate

The general **procedure C** was followed using monofluoroalkyl triflate (**1f**) (146.0 mg, 0.4 mmol) and methyl 4-iodobenzoate (**2a**) (209.6 mg, 0.8 mmol) purification by column

¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.0 Hz, 2H), 7.43–7.37 (m, 4H), 7.07 (d, J = 8.4 Hz, 2H), 5.47 (ddd, J = 47.8, 8.6, 4.0 Hz, 1H), 3.92 (s, 3H), 2.80–2.68 (m, 2H), 2.30–2.00 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 145.1 (d, J = 19.7 Hz), 139.8, 131.7, 130.3, 130.2 (d, J = 1.6 Hz), 129.9, 125.3 (d, J = 7.3 Hz), 120.0, 92.8 (d, J = 173.2 Hz), 52.3, 38.8 (d, J = 23.3 Hz), 30.6 (d, J = 4.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -180.52; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₇H₁₇BrFO₂ = 373.0210, found: 373.0240.

chromatography on silica gel, yielding **3fa** (70.0 mg, 50%) as a colorless oil.

Methyl 4-(1-fluoro-3-(3-methoxyphenyl) propyl) benzoate

The general **procedure** C was followed using monofluoroalkyl triflate (**1g**) (126.5 mg, 0.4 mmol) and methyl 4-iodobenzoate (**2a**) (209.6 mg, 0.8 mmol) purification by column

chromatography on silica gel, yielding **3ga** (87.0 mg, 73%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.1 Hz, 2H), 7.38 (d, J = 8.1 Hz, 2H), 7.24– 7.19 (m, 1H), 6.80–6.74 (m, 3H), 5.48 (ddd, J = 47.8, 8.6, 4.1 Hz, 1H), 3.91 (s, 3H), 3.78 (s, 3H), 2.81–2.69 (m, 2H), 2.32–2.03 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 159.8, 145.3 (d, J = 19.9 Hz), 142.5, 130.0, 129.9, 129.6, 125.3 (d, J = 7.3 Hz), 120.9, 114.3, 111.5, 93.0 (d, J = 172.9 Hz), 55.2, 52.2, 38.8 (d, J = 23.3 Hz), 31.2 (d, J= 3.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -180.20; HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₁₈H₁₉FO₃Na = 325.1210, found: 325.1240.

Methyl 4-(1-fluoro-3-(3-(trifluoromethyl)phenyl) propyl) benzoate

The general **procedure C** was followed using monofluoroalkyl triflate (**1h**) (141.7 mg, 0.4 mmol) and methyl 4-iodobenzoate (**2a**) (209.6 mg, 0.8 mmol) purification by column

chromatography on silica gel, yielding **3ha** (80.0 mg, 60%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.0 Hz, 2H), 7.51–7.35 (m, 6H), 5.51 (ddd, *J* = 47.8, 8.5, 4.1 Hz, 1H), 3.92 (s, 3H), 2.92–2.79 (m, 2H), 2.35–2.07 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 144.9 (d, *J* = 19.7 Hz), 141.8, 132.0, 131.0 (q, *J* = 31.8 Hz), 130.2, 130.0, 129.1, 125.6, 125.3 (dd, *J* = 8.5, 5.6 Hz), 123.2 (q, *J* = 3.8 Hz), 122.9, 92.9 (d, *J* = 173.5 Hz), 52.3, 38.7 (d, *J* = 23.5 Hz), 31.1 (d, *J* = 4.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.56, -180.53; HRMS (ESI) *m*/*z*: [M+K]⁺ calcd. for C₁₈H₁₆F₄O₂K = 309.0718, found: 309.0723.

Methyl 4-(1-fluoro-3-(naphthalen-1-yl) propyl) benzoate

The general **procedure** C was followed using monofluoroalkyl triflate (1i) (134.5 mg, 0.4 mmol) and methyl 4-iodobenzoate (2a) (209.6 mg, 0.8 mmol) purification by column

¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.1 Hz, 2H), 7.99 (d, J = 7.7 Hz, 1H), 7.88 (dd, J = 7.4, 2.0 Hz, 1H), 7.75 (d, J = 8.7 Hz, 1H), 7.55–7.47 (m, 2H), 7.43–7.35 (m, 4H), 5.61 (ddd, J = 47.9, 8.5, 3.9 Hz, 1H), 3.93 (s, 3H), 3.36–3.17 (m, 2H), 2.47–2.19 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 145.2 (d, J = 19.9 Hz), 137.8, 137.0, 134.1, 131.8, 131.1, 130.1, 129.9, 129.0, 127.2, 126.2 (d, J = 20.8 Hz), 125.7 (d, J = 3.0 Hz), 125.4 (d, J = 7.4 Hz), 123.6, 93.3 (d, J = 173.1 Hz), 52.3, 38.3 (d, J = 23.2 Hz), 28.3 (d, J = 3.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -180.37; HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₁H₁₉FO₂Na = 345.1261, found: 345.1245.

chromatography on silica gel, yielding **3ia** (51.0 mg, 40%) as a colorless oil.

Methyl 4-(1-fluorononyl) benzoate

The general **procedure** C was followed using monofluoroalkyl triflate (**1j**) (117.7 mg, 0.4 mmol) and methyl 4-iodobenzoate (**2a**) (209.6 mg, 0.8 mmol) purification by

column chromatography on silica gel, yielding **3ja** (52.0 mg, 46%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 5.48 (ddd, *J* = 47.8, 8.0, 4.7 Hz, 1H), 3.92 (s, 3H), 1.99–1.72 (m, 2H), 1.49–1.25 (m, 12H), 0.87 (t, *J* = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 145.8 (d, *J* = 19.9 Hz), 129.9, 129.8, 125.4 (d, *J* = 7.3 Hz), 94.1 (d, *J* = 172.1 Hz), 52.3, 37.4 (d, *J* = 23.1 Hz), 32.0, 29.5, 29.4, 29.3, 25.0 (d, *J* = 4.1 Hz), 22.8, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -178.35; HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₁₇H₂₆FO₂ = 281.1911, found: 281.1907.

Methyl 4-(1-fluoro-3,5,5-trimethylhexyl) benzoate

The general **procedure** C was followed using monofluoroalkyl triflate (1k) (117.7 mg, 0.4 mmol) and methyl 4-iodobenzoate (2a) (209.6 mg, 0.8 mmol) purification by column chromatography on

silica gel, yielding **3ka** (59.0 mg, 53%, dr = 1.5:1) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 5.53 (dddd, J = 48.3, 16.7, 9.5, 3.5 Hz, 1H) (major + minor), 3.92 (s, 3H), 2.04–1.79 (m, 1H), 1.74–1.59 (m, 1H), 1.57–1.32 (m, 1H), 1.17 (dtd, J = 29.8, 15.6, 14.8, 5.3 Hz, 2H), 1.03 (dd, J = 16.0, 6.5 Hz, 3H), 0.89 (d, J = 10.8 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 146.3 (d, J = 19.7 Hz) (major), 146.0 (d, J = 19.7 Hz) (minor), 129.9, 125.4 (d, J = 7.1 Hz) (minor), 125.2 (d, J = 7.3 Hz) (major), 92.8 (d, J = 171.6 Hz) (minor), 92.4 (d, J = 171.9 Hz) (major), 52.3 (major), 51.8 (minor), 50.8, 47.5 (d, J = 22.7 Hz) (major), 47.2 (d, J = 22.4 Hz) (minor), 31.4 (major), 31.2 (minor), 30.1 (d, J = 6.2 Hz), 26.1 (d, J = 3.3 Hz) (minor), 25.8 (d, J = 2.1 Hz) (major), 23.6 (minor), 22.1 (major); ¹⁹F NMR (376 MHz, CDCl₃) δ -177.04, -180.48; HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₁₇H₂₅FO₂Na = 303.1731, found: 303.1718.

Methyl 4-(5-chloro-1-fluoropentyl) benzoate

The general **procedure** C was followed using monofluoroalkyl triflate (11) (111.3 mg, 0.4 mmol) and methyl 4-iodobenzoate (2a) (209.6 mg, 0.8 mmol) purification by column chromatography on

silica gel, yielding **3la** (54.0 mg, 53%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 5.49 (ddd, J = 47.8, 8.1, 4.6 Hz, 1H), 3.92 (s, 3H), 3.53 (t, J = 6.6 Hz, 2H), 2.03–1.86 (m, 2H), 1.85–1.78 (m, 2H), 1.69–1.49 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 145.3 (d, J = 20.1 Hz), 130.1, 129.9, 125.3 (d, J = 7.4 Hz), 93.7 (d, J = 173.0 Hz), 52.3, 44.7, 36.6 (d, J = 23.2 Hz), 32.3, 22.5 (d, J = 4.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -

178.98; HRMS (ESI) m/z: $[M+H]^+$ calcd. for $C_{13}H_{17}ClFO_2 = 259.0896$, found: 259.0890.

Methyl 4-(2-cyclohexyl-1-fluoroethyl) benzoate

The general **procedure C** was followed using monofluoroalkyl triflate (**1m**) (111.3 mg, 0.4 mmol) and methyl 4-iodobenzoate (**2a**) (209.6 mg, 0.8 mmol) purification by column chromatography on silica gel,

yielding **3ma** (77.0 mg, 69%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.1 Hz, 2H), 7.38 (d, J = 8.1 Hz, 2H), 5.58 (ddd, J = 48.2, 9.5, 3.7 Hz, 1H), 3.91 (s, 3H), 1.93–1.81 (m, 2H), 1.74–1.62 (m, 4H), 1.60–1.46 (m, 2H), 1.31–1.10 (m, 3H), 1.04–0.91 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 146.2 (d, J = 19.7 Hz), 129.8, 125.3 (d, J = 7.1 Hz), 92.2 (d, J = 171.7 Hz), 52.2, 45.3 (d, J = 22.7 Hz), 34.1 (d, J = 2.9 Hz), 34.0, 32.8, 26.5, 26.2 (d, J = 16.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -177.89; HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₁₆H₂₁FO₂Na = 287.1481, found: 287.1415.

Methyl 4-((2,3-dihydro-1*H*-inden-2-yl) fluoromethyl) benzoate

The general **procedure C** was followed using monofluoroalkyl triflate (**1n**) (111.3 mg, 0.4 mmol) and methyl 4-iodobenzoate (**2a**) (209.6 mg, 0.8 mmol) purification by column chromatography on silica gel,

yielding **3na** (60.0 mg, 56%) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 7.6 Hz, 2H), 7.46 (d, *J* = 7.6 Hz, 2H), 7.24 -7.22(m, 1H), 7.19–7.14 (m, 3H), 5.45 (dd, *J* = 47.4, 7.4 Hz, 1H), 3.95 (s, 3H), 3.09 (d, *J* = 6.7 Hz, 2H), 2.99 (td, *J* = 15.7, 7.3 Hz, 1H), 2.85–2.73 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 144.4 (d, *J* = 20.1 Hz), 142.1 (d, *J* = 44.1 Hz), 130.3, 129.9, 126.6 (d, *J* = 12.1 Hz), 126.1 (d, *J* = 6.7 Hz), 124.6 (d, *J* = 26.0 Hz), 96.3 (d, *J* = 174.4 Hz), 52.3, 45.8 (d, *J* = 22.8 Hz), 35.2 (d, *J* = 2.9 Hz), 35.1 (d, *J* = 7.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -177.49; HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₁₈H₁₇FO₂Na = 307.1105, found: 307.1124.

Ethyl 2-(4-(1-fluoro-3-phenylpropyl) phenoxy)-2-methylpropanoate

The general **procedure C** was followed using monofluoroalkyl triflate (1a) (57.2 mg, 0.2 mmol) and ethyl 2-(4-iodophenoxy)-2-methylpropanoate (2u) (133.6 mg, 0.4 mmol)

purification by column chromatography on silica gel, yielding **4a** (27.5 mg, 40%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.31–7.26 (m, 2H), 7.22–7.18 (m, 5H), 6.83 (d, J = 8.5 Hz, 2H), 5.36 (ddd, J = 47.8, 8.5, 4.5 Hz, 1H), 4.23 (q, J = 7.1 Hz, 2H), 2.83–2.67 (m, 2H), 2.37–2.23 (m, 1H), 2.16–2.00 (m, 1H), 1.60 (s, 6H), 1.24 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.3, 155.7, 141.3, 133.7, 133.5, 128.6, 127.0 (d, J = 6.1 Hz), 126.2, 118.9, 93.6 (d, J = 169.6 Hz), 79.2, 61.6, 38.8, 38.6, 31.6 (d, J = 4.4 Hz), 25.5, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -171.50; HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₂₁H₂₅FO₃Na = 367.1680, found: 367.1673.

2-(diethylamino) ethyl 4-(1-fluoro-3-phenylpropyl) benzoate

The general **procedure C** was followed using monofluoroalkyl triflate (1a) (57.2 mg, 0.2 mmol) and 2-(diethylamino)ethyl 4iodobenzoate (2v) (138.8 mg, 0.4 mmol)

purification by column chromatography on silica gel, yielding **4b** (32.8 mg, 46%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.32–7.28 (m, 2H), 7.22–7.19 (m, 3H), 5.49 (ddd, *J* = 47.9, 8.6, 4.2 Hz, 1H), 4.40 (t, *J* = 6.2 Hz, 2H), 2.86 (t, *J* = 6.2 Hz, 2H), 2.81–2.72 (m, 2H), 2.64 (q, *J* = 7.1 Hz, 4H), 2.32–2.06 (m, 2H), 1.07 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 145.4, 145.2, 140.9, 130.2, 129.9, 128.6 (d, *J* = 8.5 Hz), 126.3, 125.4 (d, *J* = 7.3 Hz), 93.0 (d,
J = 172.9 Hz), 63.6, 51.1, 48.0, 39.0 (d, J = 23.3 Hz), 31.2 (d, J = 3.9 Hz), 12.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -180.20; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₂H₂₉FNO₂ = 358.2117, found: 358.2113.

4-allyl-2-methoxyphenyl 4-(1-fluoro-3-phenylpropyl) benzoate

The general **procedure C** was followed using monofluoroalkyl triflate (**1a**) (57.2 mg, 0.2 mmol) and 4-allyl-2-methoxyphenyl 4iodobenzoate (**2w**) (157.7 mg, 0.4 mmol)

purification by column chromatography on silica gel, yielding 4c (51.0 mg, 64%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.32– 7.28 (m, 2H), 7.21 (dd, J = 7.3, 4.1 Hz, 3H), 7.06 (d, J = 7.9 Hz, 1H), 6.83–6.80 (m, 2H), 5.98 (ddt, J = 16.8, 10.0, 6.7 Hz, 1H), 5.52 (ddd, J = 47.8, 8.5, 4.1 Hz, 1H), 5.14– 5.08 (m, 2H), 3.79 (s, 3H), 3.40 (d, J = 6.7 Hz, 2H), 2.86–2.73 (m, 2H), 2.35–2.06 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.6, 151.1, 145.9 (d, J = 19.9 Hz), 140.9, 139.2, 138.2, 137.2, 130.6, 129.4, 128.6 (d, J = 9.1 Hz), 126.3, 125.4 (d, J = 7.3 Hz), 122.7, 120.8, 116.3, 112.9, 93.0 (d, J = 173.0 Hz), 56.0, 40.2, 39.0 (d, J = 23.2 Hz), 31.2 (d, J = 4.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -180.44; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₆H₂₆FO₃ = 405.1860, found: 405.1855.

(3S)-3-(3-(2-chloro-5-(1-fluoro-3-phenylpropyl)benzyl)phenoxy)tetrahydrofuran

The general **procedure C** was followed using monofluoroalkyl triflate (1a) (57.2 mg, 0.2 mmol) and (*S*)-3-(3-(2-chloro-5iodobenzyl)phenoxy)tetrahydrofuran (2x)

(165.8 mg, 0.4 mmol) purification by column chromatography on silica gel, yielding **4d** (64.0 mg, 76%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.1 Hz, 1H), 7.29–7.26 (m, 2H), 7.22–7.19 (m, 1H), 7.17–7.13 (m, 3H), 7.11–7.06 (m, 3H), 6.78 (d, *J* = 8.6 Hz, 2H) 5.34 (ddd, *J*

= 47.7, 8.5, 4.4 Hz, 1H), 4.87 (dq, J = 8.2, 2.7 Hz, 1H), 4.03 (s, 2H), 3.99–3.93 (m, 3H), 3.87 (td, J = 8.0, 4.7 Hz, 1H), 2.79–2.65 (m, 2H), 2.32–1.96 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 141.0, 139.6, 139.2, 139.0 (d, J = 20.0 Hz), 136.7, 134.1, 131.6, 130.1, 130.0, 129.8, 128.6 (d, J = 7.0 Hz), 128.3 (d, J = 6.7 Hz), 126.2, 124.9 (d, J = 6.8 Hz), 115.5, 93.0 (d, J = 171.7 Hz), 77.3, 73.2, 67.3, 38.8 (d, J = 23.8 Hz), 38.4, 33.1, 31.3 (d, J = 4.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -175.88; HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₂₆H₂₆ClFO₂Na = 447.1498, found: 447.1490.

1-(4-(1-fluoro-3-phenylpropyl)benzoyl)pyrrolidin-2-one

The general **procedure C** was followed using monofluoroalkyl triflate (1a) (57.2 mg, 0.2 mmol) and 1-(4-iodobenzoyl)pyrrolidin-2-one (2y) (126.0 mg, 0.4 mmol) purification by

column chromatography on silica gel, yielding **4e** (33.2 mg, 51%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.32– 7.28 (m, 2H), 7.21–7.19 (m, 3H), 5.48 (ddd, *J* = 47.8, 8.7, 4.0 Hz, 1H), 3.95 (t, *J* = 7.1 Hz, 2H), 2.86–2.73 (m, 2H), 2.61 (t, *J* = 8.0 Hz, 2H), 2.34–2.06 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 174.7, 170.4, 144.3, 144.1, 141.0, 134.2, 129.4, 128.6 (d, *J* = 4.1 Hz), 126.2, 124.8 (d, *J* = 7.3 Hz), 93.1 (d, *J* = 172.8 Hz), 46.7, 38.9 (d, *J* = 23.1 Hz), 33.4, 31.3 (d, *J* = 4.0 Hz), 17.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -180.10; HRMS (ESI) *m/z*: [M+K]⁺ calcd. for C₂₀H₂₀FNO₂K = 364.1110, found: 364.1108.

Isopropyl-2-(4-(4-(1-fluoro-3-phenylpropyl)benzoyl)phenoxy)-2-

methylpropanoate

The general **procedure C** was followed using monofluoroalkyl triflate (1a) (57.2 mg, 0.2 mmol) and isopropyl 2-(4-(4iodobenzoyl)phenoxy)-2-methylpropanoate

(2z) (181.0 mg, 0.4 mmol) purification by column chromatography on silica gel, yielding 4f (76.3 mg, 83%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.8 Hz, 4H), 7.42 (d, J = 8.0 Hz, 2H), 7.32– 7.25 (m, 2H), 7.22–7.19 (m, 3H), 6.89–6.85 (m, 2H), 5.51 (ddd, J = 47.8, 8.5, 4.1 Hz, 1H), 5.14–5.04 (m, 1H), 2.87–2.74 (m, 2H), 2.37–2.09 (m, 2H), 1.66 (s, 6H), 1.20 (d, J = 6.3 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 195.1, 173.2, 159.7, 144.4, 144.2, 140.9, 138.0, 132.1, 130.5, 130.0, 128.6 (d, J = 7.7 Hz), 126.2, 125.2 (d, J = 7.3 Hz), 117.2, 93.1 (d, J = 172.7 Hz), 79.4, 69.4, 39.0 (d, J = 23.2 Hz), 31.2 (d, J = 4.1 Hz), 25.4, 21.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -179.45; HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₂₉H₃₁FO₄Na = 485.2009, found: 485.2003.

4'-cyano-[1,1'-biphenyl]-4-yl 4-(1-fluorohexyl)benzoate

The general **procedure** C was followed using monofluoroalkyl triflate (**1a**) (57.2 mg, 0.2 mmol) and 4'-cyano-[1,1'-biphenyl]-4-yl 4iodobenzoate (**2aa**) (170.0 mg, 0.4 mmol)

purification by column chromatography on silica gel, yielding 4g (57.2 mg, 72%) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8.0 Hz, 2H), 7.74 (d, *J* = 6.8 Hz, 2H), 7.69 (d, *J* = 6.8 Hz, 2H), 7.65 (d, *J* = 7.0 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 6.8 Hz, 2H), 5.54 (ddd, *J* = 47.9, 8.2, 4.9 Hz, 1H), 2.04–1.77 (m, 2H), 1.53–1.30 (m, 6H), 0.90 (t, *J* = 6.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.9, 151.5, 146.9 (d, *J* = 19.9 Hz), 144.9, 137.1, 132.8, 130.5, 129.0, 128.6, 127.8, 125.6 (d, *J* = 7.5 Hz), 122.6, 119.0,

111.2, 94.0 (d, J = 172.8 Hz), 37.4 (d, J = 23.0 Hz), 31.6, 24.7 (d, J = 4.1 Hz), 22.6, 14.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -178.97; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₆H₂₅FNO₂ = 402.1864, found: 402.1863.

Ar-Ni(L)Br (Ni^{II} complex A)

The general **procedure D** was followed using Ni(COD)₂ (138 mg, 0.5 mmol, 1.0 equiv.), 4,4'-di-tert-butyl-2,2'bipyridine (134 mg, 0.5 mmol, 1.0 equiv.) and methyl 4bromobenzoate (1.07 g, 5 mmol, 10 equiv.) The product was used without further purification, yielding Ni^{II}

complex A (250mg, 92%) as an orange solid. ¹H NMR (400 MHz, CD₂Cl₂) δ 9.25 (s, 1H), 7.89 (d, *J* = 12.3 Hz, 2H), 7.78 (br, 2H), 7.61–7.55 (m, 3H), 7.13 (m, 2H), 3.89 (s, 3H), 1.45 (s, 9H), 1.38 (s, 9H). The analytical data are in accordance to those reported in the literature^[6].

8. References

[1] Wu, B.-B.; Xu, J.; Gao, Q.; Bian, K.-J.; Liu, G.-K.; Wang, X.-S. *Angew. Chem. Int. Ed.* **2022**, *61*, e202208938.

[2] Lv, P.; Wang, A.; Xie, X.; Chen, Y.; Liu, Y. Org. Lett. 2023, 25, 3319-3324.

[3] a) Biswas, S.; Weix, D. J. J. Am. Chem. Soc. 2013, 135, 16192–16197. b) Sun, D.;

Ma, G.; Zhao, X.; Lei, C.; Gong, H. Chem. Sci. 2021, 12, 5253–5258. c)Wang, K.; Ding,

Z.; Zhou, Z.; Kong, W. J. Am. Chem. Soc. 2018, 140, 12364–12368.

[4] Xiao, Y.-L.; Min, Q.-Q.; Xu, C.; Wang, R.-W.; Zhang, X. Angew. Chem. Int. Ed.
2016, 55, 5837–5841.

[5] Wang, H.; Liu, C.-F.; Song, Z.; Yuan, M.; Ho, Y. A.; Gutierrez, O.; Koh, M. J. ACS Catal. 2020, 10, 4451–4459.

[6] Yang, T.; Wei, Y.; Koh, M. J. ACS Catal. 2021, 11, 6519–6525.

9. NMR Spectra (¹H NMR, ¹³C NMR, ¹⁹F NMR)

¹³C NMR spectrum (101 MHz, CDCl₃) of **1b**

40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 f1 (ppm)

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl_3) of 1b

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of 1h

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 1n

¹H NMR spectrum (400 MHz, CDCl₃) of **3aa**

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **3aa**

¹H NMR spectrum (400 MHz, CDCl₃) of **3ab**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3ab**

 ^1H NMR spectrum (400 MHz, CDCl₃) of 3ac

 ^{19}F NMR spectrum (376 MHz, CDCl_3) of 3ac

¹³C NMR spectrum (101 MHz, CDCl₃) of **3ad**

10 0 -10 -20 -30 -40 -50 -50 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **3ad**

¹H NMR spectrum (400 MHz, CDCl₃) of **3ae**

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 3ae

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 3af

 ^{19}F NMR spectrum (376 MHz, CDCl_3) of 3ag

¹³C NMR spectrum (101 MHz, CDCl₃) of **3ah**

¹H NMR spectrum (400 MHz, CDCl₃) of **3ai**

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **3ai**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3aj**

¹H NMR spectrum (400 MHz, CDCl₃) of **3ak**

-100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

-90

-70 -80

10 0 -10 -20

-30

-40 -50 -60

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **3ak**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3al**

io

¹H NMR spectrum (400 MHz, CDCl₃) of **3am**

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 3am

¹³C NMR spectrum (101 MHz, CDCl₃) of **3an**

¹H NMR spectrum (400 MHz, CDCl₃) of **3ao**

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **3ao**

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 3ap

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **3aq**

20 10 0 -10 -20 -30

-40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 fl (ppm)

¹H NMR spectrum (400 MHz, CDCl₃) of **3ar**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3ar**

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of **3ar**

¹H NMR spectrum (400 MHz, CDCl₃) of **3as**

-110 -120 f1 (ppm)

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **3as**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3at**

¹H NMR spectrum (400 MHz, CDCl₃) of **3ba**

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **3ba**

¹³C NMR spectrum (101 MHz, CDCl₃) of 3ca

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **3da**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3ea**

F12-7 4.5 4.0 f1 (ppm) 2.05<u>-</u> 2.14 2.13 5.5 7.0 6.5 6.0 5.0 3.5 3.0 2.5 2.0 1.0 1.5

0.5 0.0 -0.5 -1.0

9.5

9.0 8.5

¹H NMR spectrum (400 MHz, CDCl₃) of **3fa**

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **3fa**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3ga**

 ^1H NMR spectrum (400 MHz, CDCl₃) of **3ha**

 ^{19}F NMR spectrum (376 MHz, CDCl_3) of **3ha**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3ia**

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of **3ia**

¹H NMR spectrum (400 MHz, CDCl₃) of **3ja**

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **3ja**

¹³C NMR spectrum (101 MHz, CDCl₃) of 3ka

¹H NMR spectrum (400 MHz, CDCl₃) of **3la**

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **3la**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3ma**

 ^1H NMR spectrum (400 MHz, CDCl₃) of **3na**

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of **3na**

¹³C NMR spectrum (101 MHz, CDCl₃) of 4a

 ^1H NMR spectrum (400 MHz, CDCl₃) of 4b

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl_3) of $\mathbf{4b}$

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 4c

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 4d

¹³C NMR spectrum (101 MHz, CDCl₃) of 4e

 ^1H NMR spectrum (400 MHz, CDCl₃) of 4f

¹⁹C NMR spectrum (376 MHz, CDCl₃) of 4f

¹³C NMR spectrum (101 MHz, CDCl₃) of 4g

 ^1H NMR spectrum (400 MHz, CD₂Cl₂) of Ni^II complex A