Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting Information

Dinuclear Zinc Catalysis of a Kinetic Resolution Strategy of Distinguishing One Pair of Diastereoisomers From Multiple

Stereoisomers

Ying-Hui Zhai,^[a] Jia-Qi Wen,^[a] Meng-Meng Liu,*^[a] Guang-Jian Mei,^{[a][b]} Shi-Kun Jia,*^{[a][b]} Min-Can Wang,^[a] Yuan-Zhao Hua*^{[a][b]}

[a] College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan Province 450000, P. R. China

[b] Pingyuan Laboratory, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan Province 450000,P. R. China

Table of Contents

General Information	S2
General Procedure for optimization of the reaction conditions	S2
General Procedure for enantioenriched 3 and 1a'	S3
General Procedure for 4	S19
Gram-Scale Reaction	S22
Derivatization of Product	S22
Control Experiment	S25
NMR Spectra of compounds 3, 4, 5, 6, 7 and 8	S27
HPLC spectra of compounds	S76
Single-crystal X-ray diffraction	S105

General Information

All the dry solvents were treated prior to use according to the standard methods. Unless otherwise noted, all reactions sensitive to air or moisture were carried out under nitrogen using standard Schlenk and vacuum line techniques. Diethylzinc (1.0 mol/L in hexane) was purchased from Aldrich and used as received. Cat1¹, Cat2², and substrates 1³ were synthesized according to the literature. Other reagents were obtained from commercial sources and used as received without further purification.

Melting points were determined using YRT-3 melting point apparatus and are uncorrected. Optical rotations were measured with Perkin Elmer, model 341 Polarimeter at 20 °C in THF. ¹H and ¹³C NMR spectra were measured on a Bruker DPX 400 NMR instrument (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR). Tetramethylsilane (TMS) served as the internal standard (0 ppm) for ¹H NMR and ¹³C NMR. NMR data are represented as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, comp = complex), coupling constant in Hertz (Hz), integration. FT-IR spectra were recorded on a Perkin Elmer Spectrum Two L600 and are reported in terms of frequency of absorption (cm⁻¹). High-resolution mass spectra (HRMS) were obtained using an Agilent LC-MSAD-Trap-XCT instrument using electrospray ionization time-of-flight (ESI-TOF). High performance liquid chromatography (HPLC) was performed on instrument consisted of JASCO model PU-1580 intelligent HPLC pump and JASCO model UV-1575 intelligent UV-vis detector (254 nm) using Daicel Chiralpak IA, IC, ID, IE or IF (4.6 mm × 250 mm) columns.

S1. Trost, B. M.; Ito, H. J. Am. Chem. Soc. 2000, 122, 12003–12004.

 S2. Hua, Y.-Z.; Han, X.-W.; Yang, X.-C.; Song, X.-X.; Wang, M.-C.; Chang, J.-B. J. Org. Chem. 2014, 79, 11690–11699.

S3. Xing, S.-N.; Hua, Y.-Z.; Yang, X.-C.; Du, S.-S.; Jia, S.-K.; Mei, G.-J.; Wang, M.-C. Org. Lett. 2022, 24, 3909.

General Procedure for optimization of the reaction conditions

Under the nitrogen atmosphere, a solution of diethylzinc (20 μ L, 1.0 M in hexane, 0.02 mmol) was added dropwise to a solution of **C** (0.01 mmol) and additives in solvent (2 mL). After the mixture was stirred for 30 min at room temperature. 1-tosylindoline-2,3-diol **1a** and (E)-(2-nitrovinyl)benzene **2a** (0.2 mmol, 29.83 mg) were added. The reaction mixture was stirred for corresponding time at the same temperature. The reaction was quenched with NH₄Cl solution (4 mL), and the organic layer was extracted with CH2Cl2 (3 × 5 mL). The combined organic layer was washed with brine and dried over Na2SO4.

The solvent was removed under reduced pressure by using a rotary evaporator. The residue was purified by flash chromatography (DCM/acetone = 50/1) to afford the desired product 3aa and 1a'.

General Procedure for enantioenriched 3 and 1a'

In a flame-dried Schlenk tube, a solution of diethylzinc (40 uL, 1.0 mol/L in hexane, 0.04 mmol) was added to a solution of the chiral ligand (*S*,*S*)-La (0.02 mmol 14.1 mg) in dry DCE (2.0 mL) under nitrogen. The mixture was stirred at room temperature for 30 min. Thus, the preparation of C1a was finished. Then, 1a (0.5 mmol, 152.6 mg) and 2a (0.2 mmol, 29.83 mg) were added. The reaction mixture was stirred for 8 h at 30 °C. The reaction was quenched with NH₄Cl solution (4 mL), and the aqueous layer was extracted with CH_2Cl_2 (3 × 5 mL). The combined organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure by using a rotary evaporator. The residue was purified by flash chromatography with petroleum DCM/acetone = 50/1 to afford the desired product 3 and 1'.

N-(2-(2-hydroxy-4-nitro-3-phenylbutanoyl)phenyl)-4-methylbenzenesulfonamide (3aa):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a white solid (80 mg, 88% yield, 3:1 dr); $[\alpha]_D{}^{20} = 50.8$ (c = 1.0, DCM, 92% ee); **m.p.** = 116.5–118.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.82 (s, 1H), 7.83–7.75 (m, 3H), 7.52–7.47 (m, 1H), 7.46–7.41 (m, 1H), 7.29–7.26 (m, 2H), 7.26–7.24 (m, 2H), 7.22–7.18 (m, 2H), 5.27 (d, *J* = 3.6 Hz, 1H), 4.66–4.54 (m, 2H), 3.89 (s, 1H), 3.77–3.71 (m, 1H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.5, 144.6, 140.9, 137.2, 136.3, 136.2, 130.6, 129.9, 129.2, 128.5, 127.9, 127.4, 122.6, 119.3, 118.6, 75.3, 74.8, 48.1, 21.6.; HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₃H₂₂N₂O₆S]⁺: 477.1091, found: 477.1089; HPLC: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 38.752 min and t_{minor} = 27.727 min.

N-(2-(2-hydroxy-4-nitro-3-phenylbutanoyl)-4-methylphenyl)-4-methylbenzenesulfonamide (3ba):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a pale yellow solid (75 mg, 80% yield, 5:1 dr); $[\alpha]_D^{20} = 27.4$ (c = 1.0, DCM, 85% ee); **m.p.** = 107.2–109.5 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 10.62 (s, 1H), 7.77 (d, J = 8.3 Hz, 2H), 7.70 (d, J = 8.6 Hz, 1H), 7.31–7.26 (m, 3H), 7.25 (t, J = 3.3 Hz, 4H), 7.14–7.10 (m, 3H), 5.21 (s, 1H), 4.60 (d, J = 7.4 Hz, 2H), 3.84 (d, J = 6.4 Hz, 1H), 3.66 (d, J = 4.5 Hz, 1H), 2.35 (s, 3H), 2.17 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.5, 144.4, 138.4, 137.2, 137.1, 136.4, 132.4, 130.9, 129.8, 129.2, 128.4, 127.9, 127.4, 119.8, 118.9, 75.3, 74.9, 48.4, 21.5, 20.5; **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₄H₂₄N₂O₆S]⁺: 491.1247, found: 491.1244; **HPLC**: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 36.05 min and t_{minor} = 24.68 min.

N-(2-(2-hydroxy-4-nitro-3-phenylbutanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3ca):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a yellow solid (87 mg, 90% yield, 10:1 dr); $[\alpha]_D^{20} = 48.3$ (c = 1.0, DCM, 99% ee); **m.p.** = 92.5–93.2 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.24 (s, 1H), 7.79–7.67 (m, 3H), 7.24 (t, J = 5.3 Hz, 5H), 7.19–7.13 (m, 2H), 7.11–7.06 (m, 1H), 6.83 (d, J = 2.8 Hz, 1H), 5.18 (s, 1H), 4.59 (dd, J = 13.8, 8.6 Hz, 1H), 4.47 (dd, J = 13.8, 6.2 Hz, 1H), 3.81 (s, 1H), 3.67 (s, 3H), 2.34 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 202.3, 155.0, 144.5, 137.1, 136.3, 133.7, 129.8, 129.3, 128.4, 127.9, 127.3, 122.4, 122.3, 120.6, 114.8, 75.2, 75.1, 55.9, 48.0, 21.5; **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₄H₂₄N₂O₇S]⁺: 507.1196, found: 507.1196; **HPLC**: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 25.07 min and t_{minor} = 23.21 min.

N-(4-fluoro-2-(2-hydroxy-4-nitro-3-phenylbutanoyl)phenyl)-4-methylbenzenesulfonamide (3da):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a yellow solid (78 mg, 83% yield, 10:1 dr); $[\alpha]_D^{20} = 10.9$ (c = 1.0, DCM, 99% ee); **m.p.** = 89.8–91.1 °C; ¹**H** NMR (400 MHz, CDCl₃) δ ppm: δ 10.47 (s, 1H), 7.81–7.73 (m, 3H), 7.28 (s, 1H), 7.26–7.22 (m, 3H), 7.22–7.18 (m, 1H), 7.14–7.09 (m, 2H), 7.03–6.98 (m, 1H), 5.12 (d, *J* = 4.7 Hz, 1H), 4.74–4.66 (m, 1H), 4.63–4.55 (m, 1H), 3.71–3.64 (m, 1H), 2.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 201.9, 157.3 (d, *J* = 245.7 Hz), 144.8, 136.9, 136.6, 136.1, 129.9, 129.4, 128.7, 127.8, 127.4, 123.6, 123.4, 121.8 (d, *J* = 7.4 Hz), 120.2, 120.1, 116.6 (d, *J* = 23.9 Hz), 75.2, 75.1, 48.2, 21.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -117.77; HRMS (ESI): m/z [M + H]⁺ calcd for [C₂₃H₂₁FN₂O₆S]⁺: 473.1177, found: 473.1171; HPLC: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, λ = 254 nm, t_{maior} = 26.59 min and t_{minor} = 21.20 min.

N-(4-chloro-2-(2-hydroxy-4-nitro-3-phenylbutanoyl)phenyl)-4-methylbenzenesulfonamide (3ea):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a yellow solid (81 mg, 83% yield, 5:1 dr); $[\alpha]_D{}^{20} = 12.5$ (c = 1.0, DCM, 99% ee); **m.p.** = 94.2–95.5 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.63 (s, 1H), 7.79 (d, J = 8.3 Hz, 2H), 7.73 (d, J = 9.0 Hz, 1H), 7.42–7.38 (m, 1H), 7.29 (d, J = 8.2 Hz, 2H), 7.26–7.22 (m, 4H), 7.13–7.08 (m, 2H), 5.14 (s, 1H), 4.79 (dd, J = 14.0, 7.0 Hz, 1H), 3.74 (d, J = 5.4 Hz, 1H), 3.71–3.63 (m, 1H), 2.38 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 201.9, 144.8, 139.2, 136.6, 136.0, 135.8, 130.3, 130.0, 129.4, 128.7, 127.9, 127.7, 127.5, 120.6, 119.9, 75.2, 75.0, 48.4, 21.6. **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₃H₂₁ClN₂O₆S]⁺: 511.0701, found: 511.0701; **HPLC**: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 31.13 min and t_{minor} = 23.56 min.

N-(4-bromo-2-(2-hydroxy-4-nitro-3-phenylbutanoyl)phenyl)-4-methylbenzenesulfonamide (3fa):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a pale yellow solid (83 mg, 78% yield, 8:1 dr); $[\alpha]_D^{20} = 12.0$ (c = 1.0, DCM, 99% ee); **m.p.** = 88.7–89.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.66 (s, 1H), 7.79 (d, *J* = 8.3 Hz, 2H), 7.66 (d, *J* = 9.0 Hz, 1H), 7.54 – 7.50 (m, 1H), 7.40 (d, *J* = 2.2 Hz, 1H), 7.29 (d, *J* = 8.2 Hz, 2H), 7.26–7.22 (m, 3H), 7.13–7.08 (m, 2H), 5.14 (s, 1H), 4.82 (dd, *J* = 14.0, 7.0 Hz, 1H), 4.59 (dd, *J* = 14.0, 7.6 Hz, 1H), 3.77 (s, 1H), 3.67 (dd, *J* = 12.4, 7.3 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 201.9, 144.8, 139.6, 138.6, 136.6, 136.0, 133.3, 130.0, 129.4, 128.7, 127.7, 127.5, 120.7, 120.3, 115.0, 75.2, 75.0, 48.5, 21.6; HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₃H₂₁BrN₂O₆S]⁺: 555.0202, found: 555.0207; HPLC: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 36.06 min and t_{minor} = 29.94 min.

N-(2-((2\$,3\$)-2-hydroxy-4-nitro-3-phenylbutanoyl)-5-methoxyphenyl)-4methylbenzenesulfonamide (3ga):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a white solid (83 mg, 86% yield, 8:1 dr); $[\alpha]_D^{20} = 24.0$ (c = 1.0, DCM, 96% ee); **m.p.** = 108.5–109.9 °C; ¹H NMR (400 MHz,

DMSO) δ 11.63 (s, 1H), 8.00 (d, J = 9.1 Hz, 1H), 7.62 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.1 Hz, 2H), 7.30– 7.26 (m, 2H), 7.20 (d, J = 6.4 Hz, 3H), 6.86 (d, J = 2.4 Hz, 1H), 6.68–6.63 (m, 1H), 6.34 (d, J = 7.3 Hz, 1H), 5.27 (s, 1H), 5.10 (dd, J = 13.3, 5.2 Hz, 1H), 5.01–4.92 (m, 1H), 3.76 (s, 3H), 2.53–2.49 (m, 2H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 206.4, 169.4, 149.6, 147.5, 142.1, 140.5, 140.0, 135.3, 133.7, 133.6, 132.7, 132.2, 118.9, 113.6, 107.5, 82.9, 77.9, 61.0, 52.4, 26.2; **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₄H₂₄N₂O₇S]⁺: 507.1196, found: 507.1194; **HPLC**: Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 21.986 min and t_{minor} = 15.614 min.

N-(2-(3-(4-fluorophenyl)-2-hydroxy-4-nitrobutanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3cb):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a pale yellow solid (88 mg, 88% yield, 8:1 dr); $[\alpha]_D^{20} = 10.4$ (c = 1.0, DCM, 94% ee); **m.p.** = 83.2–84.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 7.79–7.69 (m, 3H), 7.24 (d, *J* = 8.1 Hz, 2H), 7.17–7.09 (m, 3H), 6.95 (t, *J* = 8.6 Hz, 2H), 6.83 (d, *J* = 2.8 Hz, 1H), 5.14 (t, *J* = 4.5 Hz, 1H), 4.55 (dd, *J* = 13.7, 9.1 Hz, 1H), 4.37 (dd, *J* = 13.8, 5.9 Hz, 1H), 3.72 (s, 3H), 3.68 (dd, *J* = 8.5, 4.7 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.0, 162.6 (d, *J* = 248.1 Hz), 155.1, 144.5, 136.4, 133.6, 132.9, 132.9, 129.8, 129.6 (d, *J* = 8.2 Hz), 127.3, 122.7, 121.9, 120.6, 116.2 (d, *J* = 21.6 Hz), 115.1, 75.2, 75.1, 55.6, 47.3, 21.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.06; HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₄H₂₃FN₂O₇S]⁺: 525.1102, found: 525.1111; HPLC: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 31.76 min and t_{minor} = 26.73 min.

N-(2-(3-(4-chlorophenyl)-2-hydroxy-4-nitrobutanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3cc):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a yellow solid (97 mg, 93% yield, 6:1 dr); $[\alpha]_D{}^{20} = 41.7$ (c = 1.0, DCM, 93% ee); **m.p.** = 90.2–92.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.13 (s, 1H), 7.78 (d, J = 9.2 Hz, 1H), 7.72 (d, J = 8.3 Hz, 2H), 7.26–7.20 (m, 4H), 7.14–7.10 (m, 1H), 7.08 (d, J = 8.5 Hz, 2H), 6.80 (d, J = 2.9 Hz, 1H), 5.14–5.10 (m, 1H), 4.56 (dd, J = 13.8, 9.1 Hz, 1H), 4.37 (dd, J = 13.8, 5.9 Hz, 1H), 3.78 (d, J = 6.1 Hz, 1H), 3.72 (s, 3H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 201.8, 155.1, 144.6, 136.4, 135.5, 134.5, 133.6, 129.8, 129.4, 129.2, 127.3, 122.7, 121.8, 120.6, 115.2, 75.0, 74.9, 55.7, 47.5, 21.5; HRMS (ESI): m/z [M + Na]⁺ calcd for

 $[C_{24}H_{23}CIN_2O_7S]^+$: 541.0806, found: 541.0801; **HPLC**: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 31.33 min and t_{minor} = 26.18 min.

N-(2-(3-(4-bromophenyl)-2-hydroxy-4-nitrobutanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3cd):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a pale yellow solid (105 mg, 93% yield, 10:1 dr); $[\alpha]_D{}^{20} = 72.7$ (c = 1.0, DCM, 99% ee); **m.p.** = 98.2–99.5 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.16 (s, 1H), 7.85–7.66 (m, 3H), 7.36 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.2 Hz, 2H), 7.13–7.08 (m, 1H), 7.00 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 2.9 Hz, 1H), 5.13 (s, 1H), 4.57 (dd, J = 13.8, 9.2 Hz, 1H), 4.41 (dd, J = 13.8, 5.8 Hz, 1H), 3.86 (s, 1H), 3.72 (s, 3H), 3.65–3.59 (m, 1H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 201.9, 155.1, 144.6, 136.3, 136.0, 133.4, 132.3, 129.8, 129.6, 127.3, 122.6, 122.6, 121.8, 120.8, 115.3, 75.0, 74.8, 55.7, 47.5, 21.5; HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₄H₂₃BrN₂O₇S]⁺: 585.0301, found: 585.0313; HPLC: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 33.21 min and t_{minor} = 27.32 min.

N-(2-(2-hydroxy-4-nitro-3-(p-tolyl)butanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3ce):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a pale yellow solid (89 mg, 90% yield, 10:1 dr); $[\alpha]_D{}^{20} = 56.4$ (c = 1.0, DCM, 99% ee); **m.p.** = 94.6–95.2 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.25 (s, 1H), 7.77–7.67 (m, 3H), 7.23 (d, J = 8.2 Hz, 2H), 7.10–6.98 (m, 5H), 6.81 (d, J = 2.9 Hz, 1H), 5.15 (s, 1H), 4.57 (dd, J = 13.7, 8.7 Hz, 1H), 4.46 (dd, J = 13.7, 6.2 Hz, 1H), 3.81 (s, 1H), 3.66 (s, 3H), 2.33 (s, 3H), 2.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.4, 155.0, 144.5, 138.3, 136.3, 134.0, 133.6, 129.9, 129.8, 127.7, 127.3, 122.4, 122.2, 120.7, 114.8, 75.4, 75.3, 55.6, 47.7, 21.5, 21.0; **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₅H₂₆N₂O₇S]⁺: 521.1353, found: 521.1349; **HPLC**: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 49.59 min and t_{minor} = 37.89 min.

N-(2-(2-hydroxy-3-(4-methoxyphenyl)-4-nitrobutanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3cf):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a yellow solid (98 mg, 95% yield, 6:1 dr); $[\alpha]_D{}^{20} = 54.0$ (c = 1.0, DCM, 95% ee); **m.p.** = 113.6–115.3 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.23 (s, 1H), 7.78–7.69 (m, 3H), 7.24 (d, J = 8.1 Hz, 2H), 7.11–7.03 (m, 3H), 6.82 (d, J = 2.8 Hz, 1H), 6.76 (d, J = 8.6 Hz, 2H), 5.13 (s, 1H), 4.55 (dd, J = 13.6, 8.9 Hz, 1H), 4.42 (dd, J = 13.6, 6.1 Hz, 1H), 3.75 (s, 3H), 3.69 (s, 3H), 3.62 (s, 1H), 2.34 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 202.4, 159.6, 155.0, 144.5, 136.4, 133.6, 129.8, 129.0, 128.9, 127.3, 122.4, 122.1, 120.6, 115.0, 114.6, 75.5, 75.3, 55.6, 55.3, 47.4, 21.5; **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₅H₂₆N₂O₈S]⁺: 537.1302, found: 537.1302; **HPLC**: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 46.05 min and t_{minor} = 39.01 min.

N-(2-(3-(4-(benzyloxy)phenyl)-2-hydroxy-4-nitrobutanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3cg):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a pale yellow solid (106 mg, 90% yield, 8:1 dr); $[\alpha]_D^{20} = 36.0$ (c = 1.0, DCM, 93% ee); **m.p.** = 108.5–110.2 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.25 (s, 1H), 7.77–7.68 (m, 3H), 7.42–7.32 (m, 5H), 7.22 (d, *J* = 8.1 Hz, 2H), 7.10–7.01 (m, 3H), 6.82 (d, *J* = 8.7 Hz, 3H), 5.14 (s, 1H), 4.99 (s, 2H), 4.55 (dd, *J* = 13.7, 8.9 Hz, 1H), 4.42 (dd, *J* = 13.7, 6.1 Hz, 1H), 3.79 (d, *J* = 6.3 Hz, 1H), 3.66 (s, 3H), 3.62 (dd, *J* = 4.3, 3.1 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.4, 158.8, 155.0, 144.5, 136.7, 136.3, 133.6, 129.8, 129.1, 129.0, 128.7, 128.1, 127.5, 127.3, 122.4, 122.2, 120.7, 115.5, 114.9, 75.5, 75.3, 70.0, 55.6, 47.4, 21.5; HRMS (ESI): m/z [M + Na]⁺ calcd for [C₃₁H₃₀N₂O₈S]⁺: 613.1615, found: 613.1615; **HPLC**: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 55.210 min and t_{minor} = 43.414 min.

N-(2-(2-hydroxy-4-nitro-3-(4-(trifluoromethyl)phenyl)butanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3ch):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a pale yellow solid (92 mg, 83% yield, 6:1 dr); $[\alpha]_D^{20} = 83.7$ (c = 1.0, DCM, 90% ee); **m.p.** = 68.2–69.5 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 10.10 (s, 1H), 7.80–7.70 (m, 3H), 7.50 (d, J = 8.1 Hz, 2H), 7.29 (s, 2H), 7.24 (s, 1H), 7.13–7.08 (m, 1H), 6.79 (d, J = 2.8 Hz, 1H), 5.15 (s, 1H), 4.62 (dd, J = 14.0, 9.2 Hz, 1H), 4.42 (dd, J = 14.0, 5.7 Hz, 1H), 3.84 (d, J = 5.9 Hz, 1H), 3.71 (s, 3H), 2.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 201.6, 155.1, 144.6, 141.0, 136.4, 133.5, 129.8, 128.4, 127.3, 126.2, 126.1, 122.8, 121.7, 120.7, 115.3, 74.8, 74.6, 55.6, 47.8, 21.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.87; HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₅H₂₃F₃N₂O₇S]⁺: 575.1070, found: 575.1074; HPLC: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 24.15 min and t_{minor} = 21.58 min.

N-(2-(3-(3-chlorophenyl)-2-hydroxy-4-nitrobutanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamid*e* (3ci):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a yellow solid (88 mg, 85% yield, 4:1 dr); $[\alpha]_D{}^{20} = 36.4$ (c = 1.0, DCM, 96% ee); **m.p.** = 79.5–81.3 °C; ¹**H NMR** (400 MHz, DMSO) δ 10.23 (s, 1H), 7.50 (d, *J* = 7.9 Hz, 2H), 7.44 (s, 1H), 7.34–7.22 (m, 5H), 7.18 (s, 1H), 7.07–6.96 (m, 2H), 6.20 (s, 1H), 5.34 (s, 1H), 5.08–4.89 (m, 2H), 3.85 (s, 1H), 3.73 (s, 3H), 2.51 (s, 3H), 2.34 (s, 3H); ¹³**C NMR** (101 MHz, DMSO) δ 202.6, 156.4, 144.1, 140.6, 136.2, 133.5, 130.7, 130.2, 129.5, 128.6, 128., 127.8, 127.4, 124.3, 120.3, 115.8, 77.1, 74.6, 56.0, 46.7, 21.5; **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₄H₂₃CIN₂O₇S]⁺: 541.0806, found: 541.0817; **HPLC**: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 21.26 min and t_{minor} = 19.47 min.

N-(2-(3-(3-bromophenyl)-2-hydroxy-4-nitrobutanoyl)-4-methoxyphenyl)-4methylbenzenesulfonamide (3cj):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a yellow solid (99 mg, 88% yield, 4:1 dr); $[\alpha]_D{}^{20} = 37.6$ (c = 1.0, DCM, 85% ee); **m.p.** = 113.7–115.1 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 10.13 (s, 1H), 7.77 (d, J = 9.2 Hz, 1H), 7.72 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 7.3 Hz, 1H), 7.32 (s, 1H), 7.24 (d, J = 8.2 Hz, 2H), 7.17–7.10 (m, 3H), 6.82 (d, J = 2.8 Hz, 1H), 5.15 (s, 1H), 4.55 (dd, J = 14.0, 8.8 Hz, 1H), 4.40 (dd, J = 14.0, 6.0 Hz, 1H), 3.83 (s, 1H), 3.72 (s, 3H), 3.63 (dd, J = 9.0, 3.8 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 201.7, 155.1, 144.5, 139.5, 136.3, 133.6, 131.7, 131.0, 130.8, 129.8, 127.3, 126.6, 123.2, 122.8, 122.4, 120.6, 114.6, 74.9, 55.6, 47.5, 21.5; HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₄H₂₃BrN₂O₇S]⁺:585.0301, found: 585.0300; HPLC: Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{maior} = 15.07 min and t_{minor} = 12.87 min.

N-(2-(2-hydroxy-4-nitro-3-(m-tolyl)butanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3ck):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a yellow solid (95 mg, 95% yield, 7:1 dr); $[\alpha]_D{}^{20} = 49.0$ (c = 1.0, DCM, 90% ee); **m.p.** = 128.8–129.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.24 (s, 1H), 7.79–7.70 (m, 3H), 7.24 (d, J = 8.1 Hz, 2H), 7.14 (t, J = 7.9 Hz, 1H), 7.11–7.03 (m, 2H), 6.95 (s, 2H), 6.81 (d, J = 2.8 Hz, 1H), 5.16 (s, 1H), 4.57 (dd, J = 13.8, 8.5 Hz, 1H), 4.48 (dd, J = 13.8, 6.4 Hz, 1H), 3.79 (d, J = 6.1 Hz, 1H), 3.66 (s, 3H), 2.34 (s, 3H), 2.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.3, 154.9, 144.4, 139.0, 137.1, 136.3, 133.7, 129.8, 129.2, 129.1, 128.6, 127.3, 124.8, 122.3, 120.5, 114.7, 75.2, 75.2, 55.5, 47.9, 21.5, 21.4; HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₅H₂₆N₂O₇S]⁺: 521.1353, found: 521.1348; HPLC: Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 12.51 min and t_{minor} = 11.03 min.

N-(2-(2-hydroxy-3-(3-methoxyphenyl)-4-nitrobutanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3cl):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a pale yellow solid (88 mg, 86% yield, 3:1 dr); $[\alpha]_D^{20} = 44.4$ (c = 1.0, DCM, 98% ee); **m.p.** = 119.1–120.3 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.26 (s, 1H), 7.75–7.68 (m, 3H), 7.23 (d, *J* = 7.9 Hz, 2H), 7.15 (t, *J* = 8.2 Hz, 1H), 7.11–7.05 (m, 1H), 6.86 (d, *J* = 2.0 Hz, 1H), 6.78 (s, 2H), 6.71 (d, *J* = 7.5 Hz, 1H), 5.19 (s, 1H), 4.58 (dd, *J* = 13.8, 8.4 Hz, 1H), 4.49 (dd, *J* = 13.8, 6.3 Hz, 1H), 3.85 (s, 1H), 3.75 (s, 3H), 3.68 (s, 3H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.3, 160.1, 155.0, 144.5, 138.7, 136.2, 133.6, 130.3, 129.8, 127.3, 122.4, 122.3, 120.6, 120.1, 114.7, 113.8, 113.6, 75.2, 75.1, 55.6, 55.3, 47.9, 21.5; **HRMS** (ESI): m/z [M + Na]⁺ calcd for $[C_{25}H_{26}N_2O_8S]^+$: 537.1302, found: 537.1302; **HPLC**: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, $\lambda = 254$ nm, $t_{major} = 56.56$ min and $t_{minor} = 47.95$ min.

N-(2-(3-(2-chlorophenyl)-2-hydroxy-4-nitrobutanoyl)-4-methoxyphenyl)-4methylbenzenesulfonamide (3cm):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a yellow solid (93 mg, 90% yield, 5:1 dr); $[\alpha]_D{}^{20} = 49.3$ (c = 1.0, DCM, 98% ee); **m.p.** = 98.2–99.6 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.16 (s, 1H), 7.71 (d, J = 9.0 Hz, 1H), 7.62 (t, J = 16.3 Hz, 2H), 7.35 (s, 1H), 7.29 (d, J = 9.2 Hz, 1H), 7.19 (s, 1H), 7.16 (s, 2H), 7.14 (s, 1H), 7.11–7.04 (m, 2H), 5.17 (s, 1H), 4.50 (dd, J = 13.8, 8.4 Hz, 1H), 4.34 (s, 1H), 4.14 (dd, J = 13.5, 5.6 Hz, 1H), 3.81 (s, 1H), 3.67 (s, 3H), 2.26 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 201.9, 155.1, 144.5, 136.3, 134.4, 133.7, 133.5, 130.1, 129.8, 129.6, 127.7, 127.3, 122.7, 122.3, 120.4, 115.0, 73.4, 55.7, 43.6, 21.5; **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₄H₂₃ClN₂O₇S]⁺: 541.0806, found:541.0809; **HPLC**: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 49.03 min and t_{minor} = 41.04 min.

N-(2-(3-(2-bromophenyl)-2-hydroxy-4-nitrobutanoyl)-4-methoxyphenyl)-4methylbenzenesulfonamide (3cn):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a pale yellow solid (98 mg, 87% yield, 3:1 dr); $[\alpha]_D^{20} = 48.3$ (c = 1.0, DCM, 94% ee); **m.p.** = 95.2–93.0 °C; ¹**H NMR** (400 MHz, DMSO) δ 10.11 (s, 1H), 7.55 (t, J = 8.4 Hz, 2H), 7.49 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 8.0 Hz, 3H), 7.22 (s, 1H), 7.14 (t, J = 7.3 Hz, 1H), 7.00 (d, J = 8.9 Hz, 1H), 6.93 (d, J = 8.9 Hz, 1H), 6.11 (s, 1H), 5.34 (s, 1H), 5.03–4.92 (m, 2H), 4.38 (dd, J = 14.2, 6.5 Hz, 1H), 3.73 (s, 3H), 2.34 (s, 3H); ¹³C **NMR** (101 MHz, DMSO) δ 202.9, 156.4, 144.1, 137.1, 136.2, 133.3, 130.1, 130.0, 129.8, 128.3, 127.4, 124.9, 124.6, 120.1, 115.6, 76.6, 74.6, 56.0, 45.3, 21.4; **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₄H₂₃BrN₂O₇S]⁺: 585.0301, found: 585.0304; **HPLC**: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 30.96 min and t_{minor} = 23.51 min.

N-(2-(2-hydroxy-4-nitro-3-(o-tolyl)butanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3co):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a yellow solid (83 mg, 83% yield, 10:1 dr); $[\alpha]_D^{20} = 22.7$ (c = 1.0, DCM, 99% ee); **m.p.** = 89.9–91.3 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 10.25 (s, 1H), 7.71 (t, J = 9.1 Hz, 3H), 7.46 (d, J = 7.7 Hz, 1H), 7.22 (d, J = 8.0 Hz, 3H), 7.13 (t, J = 7.4 Hz, 1H), 7.08–7.03 (m, 2H), 6.77 (d, J = 2.9 Hz, 1H), 5.17 (s, 1H), 4.62 (dd, J = 13.9, 7.1 Hz, 1H), 4.48 (dd, J = 13.9, 7.7 Hz, 1H), 4.05 (dd, J = 12.3, 7.4 Hz, 1H), 3.79 (s, 1H), 3.59 (s, 3H), 2.35 (s, 3H), 2.08 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.5, 154.7, 144.3, 136.3, 136.1, 135.4, 133.8, 131.1, 129.8, 128.2, 127.3, 127.2, 127.1, 122.1, 121.8, 120.4, 115.1, 75.4, 74.7, 55.5, 42.7, 21.5, 19.4; HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₅H₂₆N₂O₇S]⁺: 521.1353, found: 521.1350; HPLC: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 33.82 min and t_{minor} = 27.24 min.

N-(2-(2-hydroxy-3-(2-methoxyphenyl)-4-nitrobutanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3cp):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a yellow solid (90 mg, 88% yield, 10:1 dr); $[\alpha]_D{}^{20} = 29.6$ (c = 1.0, DCM, 94% ee); **m.p.** = 95.3–96.8 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.31 (s, 1H), 7.71 (t, J = 8.9 Hz, 3H), 7.28 (d, J = 2.8 Hz, 1H), 7.24–7.18 (m, 3H), 7.08–7.04 (m, 1H), 6.94 (d, J = 7.5 Hz, 1H), 6.84–6.77 (m, 2H), 5.24 (s, 1H), 4.73 (dd, J = 13.8, 8.7 Hz, 1H), 4.38 (d, J = 6.1 Hz, 1H), 4.16 (s, 1H), 3.89 (s, 3H), 3.73 (s, 3H), 3.66 (d, J = 6.4 Hz, 1H), 2.33 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 203.1, 156.5, 154.8, 144.4, 136.5 133.3, 129.8, 129.3, 128.6, 127.3, 124.4, 121.8, 121.1, 121.0, 120.6, 117.4, 110.9, 73.7, 73.3, 55.7, 55.4, 42.9, 21.5; **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₅H₂₆N₂O₈S]⁺:537.1302, found: 537.1306; **HPLC**: Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 14.19 min and t_{minor} = 13.02 min.

N-(2-(3-(3,4-dichlorophenyl)-2-hydroxy-4-nitrobutanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3cq):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a orange solid (92 mg, 83% yield, 5:1 dr); $[\alpha]_D{}^{20} = 49.7$ (c = 1.0, DCM, 93% ee); **m.p.** = 84.9–86.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.05 (s, 1H), 7.77 (d, J = 9.2 Hz, 1H), 7.72 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.3 Hz, 1H), 7.26–7.19 (m, 3H), 7.16–7.10 (m, 1H), 7.03–6.99 (m, 1H), 6.79 (d, J = 2.8 Hz, 1H), 5.12 (s, 1H), 4.55 (dd, J = 13.9, 9.3 Hz, 1H), 4.36 (dd, J = 13.9, 5.7 Hz, 1H), 3.86 (s, 1H), 3.74 (s, 3H), 3.63–3.55 (m, 1H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 201.5, 155.2, 144.6, 137.3, 136.3, 133.4, 133.3, 132.9, 131.2, 130.0, 129.9, 127.3, 127.2, 123.0, 121.8, 120.8, 115.1, 74.8, 74.7, 55.7, 47.1, 21.5; **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₄H₂₂Cl₂N₂O₇S]⁺: 575.0417, found: 575.0420; **HPLC**: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 28.162 min and t_{minor} = 25.732 min.

N-(2-(3-(3-bromo-4-chlorophenyl)-2-hydroxy-4-nitrobutanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3cr):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a yellow solid (99 mg, 83% yield, 7:1 dr); $[\alpha]_D^{20} = 5.8$ (c = 1.0, DCM, 80% ee); **m.p.** = 78.4–80.0 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 10.04 (s, 1H), 7.78 (d, J = 9.2 Hz, 1H), 7.72 (d, J = 8.3 Hz, 2H), 7.38 (d, J = 2.0 Hz, 1H), 7.33 (d, J = 8.3 Hz, 1H), 7.23 (s, 2H), 7.15–7.10 (m, 1H), 7.08–7.04 (m, 1H), 6.77 (d, J = 2.8 Hz, 1H), 5.11 (s, 1H), 4.54 (dd, J = 13.9, 9.2 Hz, 1H), 4.36 (dd, J = 14.0, 5.7 Hz, 1H), 3.83 (d, J = 5.9 Hz, 1H), 3.74 (s, 3H), 3.60 – 3.54 (m, 1H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 201.4, 155.2, 144.6, 137.4, 136.3, 133.4, 133.2, 131.0, 129.8, 127.9, 127.3, 123.0, 121.9, 120.7, 115.0, 74.8, 74.7, 55.7, 47.0, 21.5; HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₄H₂₂BrClN₂O₇S]⁺: 618.9912, found: 618.9909; HPLC: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 24.404 min and t_{minor} = 23.146 min.

N-(2-(3-(3,4-dimethylphenyl)-2-hydroxy-4-nitrobutanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3cs):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a pale yellow solid (82 mg, 80% yield, 7:1 dr); $[\alpha]_D^{20} = 25.9$ (c = 1.0, DCM, 90% ee); **m.p.** = 105.5–106.2 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.24 (s, 1H), 7.78–7.70 (m, 3H), 7.23 (d, J = 8.0 Hz, 2H), 7.10–7.06 (m, 1H), 7.00 (d, J = 7.7 Hz, 1H), 6.90–6.84 (m, 2H), 6.79 (d, J = 2.9 Hz, 1H), 5.16–5.10 (m, 1H), 4.56 (dd, J = 13.8, 8.6 Hz, 1H), 4.45 (dd, J = 13.8, 6.4 Hz, 1H), 3.75 (d, J = 6.2 Hz, 1H), 3.66 (s, 3H), 2.34 (s, 3H), 2.19 (s, 3H), 2.17 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 202.4, 154.9, 144.4, 137.6, 137.0, 136.4, 134.5, 133.7, 130.4, 129.8, 129.0, 127.3, 125.1, 122.3, 122.27, 120.5, 114.7, 75.4, 75.3, 55.5, 47.7, 21.5, 19.7, 19.4; **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₆H₂₈N₂O₇S]⁺: 535.1509, found: 535.1516; **HPLC**: Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 12.65 min and t_{minor} = 11.63 min.

N-(2-(3-(2,4-dimethoxyphenyl)-2-hydroxy-4-nitrobutanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3ct):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a deep yellow solid (93 mg, 85% yield, 5:1 dr); $[\alpha]_D^{20} = 46.8$ (c = 1.0, DCM, 99% ee); **m.p.** = 76.9–78.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.28 (s, 1H), 7.75–7.68 (m, 3H), 7.22 (d, *J* = 7.6 Hz, 3H), 7.08–7.03 (m, 1H), 6.81 (d, *J* = 8.4 Hz, 1H), 6.37 (d, *J* = 2.3 Hz, 1H), 6.29 (d, *J* = 8.4 Hz, 1H), 5.20 (s, 1H), 4.71 (dd, *J* = 13.6, 8.9 Hz, 1H), 4.35 (dd, *J* = 13.6, 6.0 Hz, 1H), 4.04 (s, 1H), 3.85 (s, 3H), 3.74 (d, *J* = 0.7 Hz, 6H), 3.60 (d, *J* = 6.5 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.3, 160.7, 157.6, 154.8, 144.3, 136.5, 133.2, 129.7, 129.3, 127.3, 121.7, 121.1, 120.4, 117.5, 116.5, 104.6, 99.0, 74.0, 73.5, 55.7, 55.4, 42.9, 21.5; HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₆H₂₈N₂O₉S]⁺: 567.1408, found: 567.1419; HPLC: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 59.23 min.

N-(2-(3-(benzo[d][1,3]dioxol-5-yl)-2-hydroxy-4-nitrobutanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3cu):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a yellow solid (95 mg, 90% yield, 6:1 dr); $[\alpha]_D{}^{20} = 33.6$ (c = 1.0, DCM, 91% ee); **m.p.** = 95.4–96.5 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.21 (s, 1H), 7.76 (d, J = 9.2 Hz, 1H), 7.71 (d, J = 8.3 Hz, 2H), 7.23 (d, J = 8.1 Hz, 2H), 7.13–7.08 (m, 1H), 6.85 (d, J = 2.8 Hz, 1H), 6.70 (d, J = 1.5 Hz, 1H), 6.61 (d, J = 8.0 Hz, 1H), 6.52–6.48 (m, 1H), 5.92 (s, 2H), 5.13 (d, J = 1.3 Hz, 1H), 4.53 (dd, J = 13.6, 9.0 Hz, 1H), 4.39 (dd, J = 13.7, 6.0 Hz, 1H), 3.79 (s, 1H), 3.71 (s, 3H), 3.60–3.54 (m, 1H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.2, 155.0, 148.3, 147.7, 144.5, 136.3, 133.6, 130.6, 129.8, 127.3, 122.5, 122.2, 121.5, 120.7, 114.9, 108.7, 107.9, 101.4, 75.5, 75.3, 55.6, 47.8, 21.5; HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₅H₂₄N₂O₉S]⁺: 551.1095, found: 551.1092; **HPLC**: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 51.47 min and t_{minor} = 43.07 min.

N-(2-(2-hydroxy-3-(naphthalen-2-yl)-4-nitrobutanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3cv):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a pale orange solid (99 mg, 93% yield, 8:1 dr); $[\alpha]_D^{20} = 74.5$ (c = 1.0, DCM, 92% ee); **m.p.** = 110.2–111.9 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.22 (s, 1H), 7.78–7.68 (m, 6H), 7.54 (s, 1H), 7.50–7.45 (m, 2H), 7.32–7.27 (m, 1H), 7.24 (d, *J* = 8.2 Hz, 2H), 7.01–6.95 (m, 1H), 6.78 (d, *J* = 2.7 Hz, 1H), 5.25 (s, 1H), 4.70 (dd, *J* = 13.8, 8.7 Hz, 1H), 4.58 (dd, *J* = 13.9, 6.2 Hz, 1H), 3.89 (s, 1H), 3.85–3.79 (m, 1H), 3.50 (s, 3H), 2.33 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 202.2, 154.9, 144.5, 136.3, 134.5, 133.5, 133.3, 133.0, 129.8, 129.3, 127.8, 127.7, 127.4, 127.3, 126.7, 126.6, 125.1, 122.4, 122.1, 120.7, 114.9, 75., 75.2, 55.4, 48.1, 21.5; **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₈H₂₆N₂O₇S]⁺: 557.1353, found: 557.1356; **HPLC**: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 47.440 min and t_{minor} = 39.195 min.

N-(2-(2-hydroxy-3-(naphthalen-1-yl)-4-nitrobutanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3cw):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a pale yellow solid (102 mg, 96% yield, 10:1 dr); $[\alpha]_D{}^{20} = 8.0$ (c = 1.0, DCM, 89% ee); **m.p.** = 102.7–103.4 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.24 (s, 1H), 7.92–7.74 (m, 6H), 7.68 (d, J = 9.2 Hz, 1H), 7.51 (s, 3H), 7.29–7.24 (m, 2H), 7.04 (d, J = 8.1 Hz, 1H), 6.83 (s, 1H), 5.34 (s, 1H), 4.80 (s, 1H), 4.65 (s, 2H), 4.01 (s, 1H), 3.39 (s, 3H), 2.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.2, 154.8, 144.3, 136.3, 130.8, 129.8, 129.4, 127.4, 127.2, 126.2, 125.6, 122.8, 121.8, 114.1, 77.3, 74.8, 55.2, 21.5; **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₈H₂₆N₂O₇S]⁺: 557.1353, found: 557.1351; **HPLC**: Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 34.87 min and t_{minor} = 16.90 min.

N-(2-(3-(furan-2-yl)-2-hydroxy-4-nitrobutanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3cx):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a yellow solid (79 mg, 83% yield, 2:1 dr); $[\alpha]_D{}^{20} = 22.3$ (c = 1.0, DCM, 92% ee); **m.p.** = 86.9–87.5 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 10.22 (s, 1H), 7.76–7.68 (m, 3H), 7.26–7.17 (m, 3H), 7.09–7.05 (m, 1H), 6.95 (d, *J* = 2.9 Hz, 1H), 6.10 (d, *J* = 3.2 Hz, 1H), 5.85 (d, *J* = 3.3 Hz, 1H), 5.28 (s, 1H), 4.70 (dd, *J* = 13.8, 8.8 Hz, 1H), 4.58 (dd, *J* = 13.8, 5.5 Hz, 1H), 3.83–3.77 (m, 1H), 3.75 (s, 3H), 2.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.2, 155.1, 148.7, 144.4, 142.7, 136.4, 133.3, 129.8, 127.3, 122.3, 121.0, 114.7, 110.7, 108.6, 73.6, 72.5, 55.6, 42.7, 21.5; HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₂H₂₂N₂O₈S]⁺: 497.0989, found: 495.0987; **HPLC**: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 35.56 min and t_{minor} = 26.75 min.

N-(2-(2-hydroxy-4-nitro-3-(thiophen-2-yl)butanoyl)-4-methoxyphenyl)-4methylbenzenesulfonamide (3cy):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a yellow solid (78 mg, 80% yield, 6:1 dr); $[\alpha]_D{}^{20} = 15.9$ (c = 1.0, DCM, 93% ee); **m.p.** = 92.9–93.7 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.23 (s, 1H), 7.77 (d, J = 9.2 Hz, 1H), 7.69 (d, J = 8.4 Hz, 2H), 7.23–7.17 (m, 3H), 7.16–7.10 (m, 1H), 6.98 (d, J = 2.9 Hz, 1H), 6.89–6.82 (m, 2H), 5.23 (s, 1H), 4.56 (dd, J = 13.8, 8.7 Hz, 1H), 4.35 (dd, J = 13.8, 5.7 Hz, 1H), 4.07 (dd, J = 8.1, 4.5 Hz, 1H), 3.75 (s, 3H), 2.33 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 201.7, 155.2, 144.5, 138.5, 136.3, 133.7, 129.8, 127.3, 126.7, 125.9, 122.7, 120.6, 114.4, 75.5, 75.0, 55.7, 43.5, 21.5; **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₂H₂₂N₂O₇S₂]⁺: 513.0760, found: 513.0757; **HPLC**: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{maior} = 42.390 min and t_{minor} = 32.131 min.

N-(2-(3-cyclohexyl-2-hydroxy-4-nitrobutanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3cz):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a yellow solid (68 mg, 70% yield, 5:1 dr); $[\alpha]_D{}^{20} = 18.9$ (c = 1.0, DCM, 94% ee); **m.p.** = 81.5–82.7 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.30 (s, 1H), 7.78 (d, J = 9.1 Hz, 1H), 7.69 (d, J = 8.3 Hz, 2H), 7.19 (d, J = 8.1 Hz, 2H), 7.16–7.11 (m, 1H), 7.09 (d, J = 2.8 Hz, 1H), 5.22 (s, 1H), 4.24 (dd, J = 14.3, 6.5 Hz, 1H), 4.01 (dd, J = 14.3, 5.5 Hz, 1H), 3.80 (s, 3H), 3.63 (d, J = 5.0 Hz, 1H), 2.52 (d, J = 5.9 Hz, 1H), 2.34 (s, 3H), 1.93 (d, J = 9.5 Hz, 1H), 1.80 (d, J = 9.4 Hz, 3H), 1.71 (d, J = 11.6 Hz, 1H), 1.28–1.13 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 203.6, 154.8, 144.3, 136.2, 134.1, 129.7, 127.3, 122.1, 119.7, 114.7, 72.7, 72.0, 55.7, 46.6, 40.2, 30.9, 30.1, 26.4, 26.1, 21.5; **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₄H₃₀N₂O₇S]⁺: 513.1666, found: 513.1670; **HPLC**: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 35.34 min and t_{minor} = 33.23 min.

N-(2-(3-cyclopropyl-2-hydroxy-4-nitrobutanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3cza):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a yellow solid (65 mg, 73% yield, 6:1 dr); $[\alpha]_D{}^{20} = 8.2$ (c = 1.0, DCM, 98% ee); **m.p.** = 76.4–77.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.32 (s, 1H), 7.81 (d, J = 9.1 Hz, 1H), 7.69 (d, J = 8.3 Hz, 2H), 7.20 (d, J = 8.1 Hz, 2H), 7.17–7.10 (m, 2H), 5.26 (s, 1H), 4.37 (dd, J = 12.9, 7.3 Hz, 1H), 3.98 (dd, J = 12.9, 5.5 Hz, 1H), 3.80 (s, 3H), 3.53 (d, J = 6.2 Hz, 1H), 2.33 (s, 3H), 1.06–0.97 (m, 1H), 0.64–0.55 (m, 1H), 0.50–0.41 (m, 1H), 0.19

(dd, J = 9.7, 4.8 Hz, 1H), 0.15–0.08 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.0, 155.0, 144.4, 136.4, 133.8, 129.7, 127.2, 122.3, 122.0, 120.6, 114.9, 74.9, 74.0, 55.7, 48.2, 21.5, 12.6, 5.0, 4.1; HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₁H₂₄N₂O₇S]⁺: 471.1196, found: 471.1198; HPLC: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 49.943 min and t_{minor} = 37.109 min.

N-(2-((2S,3S)-2-hydroxy-4-nitro-3-phenylpentanoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3czb):

Obtained after purification by column chromatography (DCM/acetone = 60/1) as a yellow solid (87 mg, 88% yield, 6:1 dr); $[\alpha]_D{}^{20} = 6.2$ (c = 1.0, DCM, 52% ee); **m.p.** = 96.3–97.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.19 (s, 1H), 7.80 (d, J = 8.3 Hz, 2H), 7.73 (d, J = 9.2 Hz, 1H), 7.34 (d, J = 7.4 Hz, 3H), 7.26–7.20 (m, 4H), 7.08–7.04 (m, 1H), 6.76 (d, J = 2.9 Hz, 1H), 5.16 (dd, J = 5.7, 3.3 Hz, 1H), 5.08 (dd, J = 10.0, 6.9 Hz, 1H), 3.91 (d, J = 5.7 Hz, 1H), 3.62 (s, 3H), 3.55 (dd, J = 10.0, 3.2 Hz, 1H), 2.35 (s, 3H), 1.19 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 201.7, 154.5, 144.0, 138.1, 136.3, 134.0, 129.7, 129.5, 128.5, 128.4, 127.7, 122.1, 121.2, 119.7, 114.5, 82.2, 76.1, 55.5, 52.9, 21.6, 19.4; **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₅H₂₆N₂O₇S]⁺: 521.1353, found: 521.1350; **HPLC**: Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 35.064 min and t_{minor} = 27.734 min.

General Procedure for 4

In a flame-dried Schlenk tube, a solution of diethylzinc (40 uL, 1.0 mol/L in hexane, 0.04 mmol) was added to a solution of the chiral ligand (*S*,*S*)-La (0.02 mmol 14.1 mg) in dry toluene (2.0 mL) under nitrogen. The mixture was stirred at room temperature for 30 min. Thus, the preparation of C2a was finished. Then, 1a (0.2 mmol, 61.2 mg) were added. The reaction mixture was stirred for 24 h at room temperature. The reaction was quenched with NH₄Cl solution (4 mL), and the aqueous layer was extracted with CH₂Cl₂ (3 × 5 mL). The combined organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure by using a rotary evaporator. The residue was purified by flash chromatography with petroleum DCM/acetone = 50/1 to afford the desired product 4 and 1'.

N-(2-(2-hydroxyacetyl)phenyl)-4-methylbenzenesulfonamide (4a):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a white solid (29 mg, 48% yield); **m.p.** = 112.4–113.9 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 11.02 (s, 1H), 7.75 (d, *J* = 8.2 Hz, 3H), 7.60 (d, *J* = 7.9 Hz, 1H), 7.52 (t, *J* = 7.5 Hz, 1H), 7.24 (d, *J* = 8.1 Hz, 2H), 7.09 (t, *J* = 7.5 Hz, 1H), 4.78 (s, 2H), 3.38 (s, 1H), 2.37 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 201.2, 144.2, 140.3, 136.3, 135.9, 129.8, 129.4, 127.3, 122.9, 119.3, 119.0, 65.4, 21.6; **HRMS** (ESI): m/z [M - H]⁻ calcd for [C₁₅H₁₅NO₄S]⁻: 304.0649, found: 304.0647.

N-(2-(2-hydroxyacetyl)-4-methylphenyl)-4-methylbenzenesulfonamide (4b):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a white solid (29 mg, 45% yield); **m.p.** = 98.3–99.6 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.73 (s, 1H), 7.62 (d, *J* = 8.2 Hz, 2H), 7.57 (d, *J* = 8.5 Hz, 1H), 7.28 (s, 1H), 7.22 (d, *J* = 20.3 Hz, 1H), 7.14 (d, *J* = 8.1 Hz, 2H), 4.66 (s, 2H), 3.32 (s, 1H), 2.29 (s, 3H), 2.23 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 201.2, 144.1, 137.7, 136.8, 136.3, 132.9, 130.2, 129.7, 129.5, 127.3, 119.8, 119.3, 65.4, 21.6, 20.7; **HRMS** (ESI): m/z [M - H]⁻ calcd for [C₁₆H₁₇NO₄S]⁻: 318.0805, found: 318.0810;

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a white solid (31 mg, 46% yield); **m.p.** = 103.4–105.9 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.20 (s, 1H), 7.66 (d, *J* = 9.1 Hz, 1H), 7.54 (d, *J* = 7.8 Hz, 2H), 7.19 (s, 1H), 7.12 (d, *J* = 7.8 Hz, 2H), 7.04 (d, *J* = 9.1 Hz, 1H), 6.93 (s, 1H), 4.54 (s, 2H), 3.72 (s, 3H), 3.20 (s, 1H), 2.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 201.0, 155.6, 144.0, 136.0, 132.7, 130.2, 129.6, 127.4, 127.2, 123.2, 121.6, 121.1, 114.0, 65.4, 55.8, 21.6; **HRMS** (ESI): m/z [M - H]⁻ calcd for [C₁₆H₁₇NO₅S]⁻: 334.0754, found: 334.0756;

N-(4-fluoro-2-(2-hydroxyacetyl)phenyl)-4-methylbenzenesulfonamide (4d):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a white solid (30 mg, 47% yield); **m.p.** = 112.5–113.9 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.62 (s, 1H), 7.81– 7.76 (m, 1H), 7.67 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 4.7 Hz, 1H), 7.23 (d, *J* = 8.2 Hz, 3H), 4.68 (s, 2H), 3.25 (s, 1H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 200.5, 157.7 (d, *J* = 245.7 Hz), 144.4, 136.3, 135.9, 129.8, 127.25, 123.4, 123.1, 122.4 (d, *J* = 8.1 Hz), 115.3 (d, *J* = 23.3 Hz), 65.5, 21.6; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -117.31; **HRMS** (ESI): m/z [M - H]⁻ calcd for [C₁₅H₁₄FNO₄S]⁻: 322.0555, found: 322.0546;

N-(4-chloro-2-(2-hydroxyacetyl)phenyl)-4-methylbenzenesulfonamide (4e):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a yellow solid (33 mg, 48% yield); **m.p.** = 105.4–106.9 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.86 (s, 1H), 7.75–7.70 (m, 3H), 7.53 (d, *J* = 2.3 Hz, 1H), 7.50–7.45 (m, 1H), 7.24 (s, 1H), 4.75 (s, 2H), 3.28 (s, 1H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 200.6, 144.5, 138.7, 136.0, 135.8, 129.9, 129.0, 128.4, 127.3, 121.0, 120.1, 65.5, 21.6; **HRMS** (ESI): m/z [M - H]⁻ calcd for [C₁₅H₁₄ClNO₄S]⁻: 338.0259, found: 338.0257;

N-(4-bromo-2-(2-hydroxyacetyl)phenyl)-4-methylbenzenesulfonamide (4f):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a yellow solid (33 mg, 43% yield); **m.p.** = 75.4–76.9 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.79 (s, 1H), 7.67–7.63 (m, 3H), 7.46 (d, J = 2.4 Hz, 1H), 7.42–7.38 (m, 1H), 7.18 (d, J = 8.9 Hz, 2H), 4.67 (s, 2H), 3.24 (s, 1H), 2.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 200.6, 144.6, 138.7, 135.8, 130.3, 129.9, 129.0, 127.3, 121.0, 120.1, 65.5, 21.6; **HRMS** (ESI): m/z [M - H]⁻ calcd for [C₁₅H₁₄BrNO₄S]⁻: 381.9754, found: 381.9752;

N-(2-(2-hydroxyacetyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (4g):

Obtained after purification by column chromatography (DCM/acetone = 50/1) as a white solid (33 mg, 43% yield); **m.p.** = 95.6–96.3 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 11.41 (s, 1H), 7.77 (d, *J* = 8.3 Hz, 2H), 7.51 (d, *J* = 9.0 Hz, 1H), 7.27 (s, 1H), 7.25 (s, 1H), 7.22 (d, *J* = 2.4 Hz, 1H), 6.58–6.54 (m, 1H), 4.73 (d, *J* = 4.5 Hz, 2H), 3.84 (s, 3H), 3.48 (t, *J* = 4.6 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 199.1, 165.3, 144.3, 143.1, 136.3, 131.5, 129.8, 127.3, 112.1, 109.7, 102.8, 64.8, 55.7, 21.6; **HRMS** (ESI): m/z [M - H]⁻ calcd for [C₁₆H₁₇NO₅S]⁻: 334.0754, found: 334.0753;

Gram-Scale Reaction

In a flame-dried Schlenk tube, a solution of diethylzinc (0.2 mL, 1.0 mol/L in hexane, 0.2 mmol) was added to a solution of the chiral ligand (*S*,*S*)-La (0.1 mmol 64 mg) in dry DCE (10 mL) under nitrogen. The mixture was stirred at room temperature for 30 min. Thus, the preparation of C1a was finished. Then, 1a (2.5 mmol, 762 mg) and 2a (1.0 mmol, 149 mg) were added. The reaction mixture was stirred for 20 h at 30 °C. The reaction was quenched with NH₄Cl solution (4 mL), and the aqueous layer was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure by using a rotary evaporator. The residue was purified by flash chromatography with petroleum DCM/acetone = 50/1 to afford the desired product 3 in 75 yield (341mg, 92% ee).

Derivatization of Product

The mixture of **3aa** (45.4 mg, 0.1 mmol, 1.0 eq) and NaBH₄ (4.3 mg, 0.12 mmol, 1.2 eq) were add to the CH₃OH (3 mL) at 0 °C. Then, the resulting reaction mixture was stirred at room temperature for 24 h. Upon completion as shown by TLC, saturated aqueous NH₄Cl (3 mL) was then added to quench the reaction. The organic layer was extracted with DCM (3 x 5 mL), then washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The crude reaction mixture was purified via column chromatography (petroleum ether/ethyl acetate = 1/1) on silica gel to afford pure product **5** as a white solid in 82% yield.

N-(2-((2\$,3\$)-1,2-dihydroxy-4-nitro-3-phenylbutyl)phenyl)-4-methylbenzenesulfonamide (5):

White solid in 82% isolated yield (37.4 mg); $[\alpha]_D^{20} = -21.3$ (c = 1.0, DCM, 89% ee); **m.p.** = 50.2–51.4 °C; ¹**H NMR** (400 MHz, DMSO) δ 9.48 (s, 1H), 7.65 (d, J = 8.3 Hz, 2H), 7.35–7.29 (m, 4H), 7.27 (d, J = 7.0 Hz, 1H), 7.24–7.20 (m, 2H), 7.17 (d, J = 7.6 Hz, 1H), 7.15–7.08 (m, 2H), 7.04 (t, J = 7.2 Hz, 1H), 6.03 (s, 1H), 5.93 (s, 1H), 5.06 (dd, J = 13.3, 4.5 Hz, 1H), 4.88 (dd, J = 13.3, 10.9 Hz, 1H), 4.55 (d, J = 6.3 Hz, 1H), 3.90–3.82 (m, 1H), 3.60 (dd, J = 10.6, 4.7 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 143.8, 139.4, 137.5, 135.9, 134.4, 130.2, 129.3, 128.9, 128.8, 128.2, 127.6, 127.4, 124.6, 121.4,

77.6, 76.8, 72.2, 46.3, 21.5; **HRMS** (ESI): m/z [M - H]⁻ calcd for $[C_{23}H_{24}N_2O_6S]^+$: 455.1282 found: 455.1283; **HPLC**: Daicel Chiralpak IF, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 14.93 min and t_{minor} = 12.03 min.

The mixture of **3aa** (45.4 mg, 0.1 mmol, 1.0 eq), (HCHO)n (25.2 mg, 0.25 mmol, 2.5 eq) and TFA (25.5 mg, 0.25mmol, 2.5 eq) were add to the DCM (2 mL). Then, the resulting reaction mixture was stirred at room temperature for 24 h. Upon completion as shown by TLC, the solvent was evaporated and the mixture was directly purified by column chromatography on silica gel eluting with petroleum PE/EA = 4/1 to afford product 6 as a white solid in 76% yield.

(3'R,4'S)-5'-nitro-4'-phenyl-1-tosyl-1,2,3',4',5',6'-hexahydrospiro[benzo[d][1,3]oxazine-4,2'pyran]-3'-ol (6):

yellow solid in 76% isolated yield (36.5 mg,); $[α]_D^{20} = -42.7$ (c = 1.0, DCM, 90% ee); **m.p.** = 45.2–46.4 °C; ¹**H NMR** (400 MHz, DMSO) δ 7.79 (d, J = 8.3 Hz, 2H), 7.43 (d, J = 8.5 Hz, 3H), 7.24 – 7.17 (m, 2H), 7.06 – 7.01 (m, 3H), 6.99 (t, J = 7.6 Hz, 1H), 6.90 – 6.85 (m, 2H), 5.81 (d, J = 10.8 Hz, 1H), 5.22 (d, J = 14.3 Hz, 2H), 5.11 (dd, J = 13.4, 5.2 Hz, 1H), 4.99 – 4.88 (m, 2H), 4.44 (d, J = 6.3 Hz, 1H), 2.36 (s, 3H); ¹³**C NMR** (101 MHz, DMSO) δ 145.0, 137.2, 136.9, 135.8, 130.7, 129.9, 128.8, 128.1, 128.0, 127.8, 127.6, 125.1, 123.7, 121.0, 101.7, 95.1, 85.5, 77.6, 72.3, 42.7, 21.5; **HRMS** (ESI): m/z [M + H]⁺ calcd for [C₂₅H₂₄N₂O₇S]⁺: 497.1382, found: 497.1390; **HPLC**: Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 12.13 min and t_{minor} = 13.90 min.

The mixture of **3aa** (45.4mg, 0.1 mmol, 1.0 eq) and NEt₃ (0.5 mL) were add to the DCM (2 mL) under nitrogen. The mixture was stirred at room temperature for 30 min. Then, **TsCl** (42 mg, 0.11 mmol, 1.1 eq) were added. The reaction mixture was stirred for 0.5 h at room temperature. Upon completion as shown by TLC, saturated aqueous NH₄Cl (3 mL) was then added to quench the reaction. The organic layer was extracted with DCM (3 x 5 mL), then washed with brine, dried over Na₂SO₄ and concentrated

under reduced pressure. The crude reaction mixture was purified via column chromatography (petroleum ether/ethyl acetate = 1/1) on silica gel to afford pure product 7 as a yellow solid in 89% yield.

(R)-2-((S)-2-nitro-1-phenylethyl)-1-tosylindolin-3-one (7):

yellow solid in 91% isolated yield (39.7mg); $[α]_D^{20} = -38.9$ (c = 1.0, DCM, 89% ee); **m.p.** = 67.9–69.3°C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (d, *J* = 6.5 Hz, 1H), 7.80 (d, *J* = 8.3 Hz, 2H), 7.55 (t, *J* = 6.8 Hz, 1H), 7.47 (d, *J* = 7.2 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.25 (d, *J* = 8.1 Hz, 2H), 7.19 (s, 1H), 7.16–7.09 (m, 3H), 6.85–6.78 (m, 2H), 5.40–5.33 (m, 1H), 4.92 (d, *J* = 7.3 Hz, 1H), 3.48 (d, *J* = 6.0 Hz, 1H), 2.38 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 196.7, 147.3, 145.0, 139.3, 136.8, 135.3, 135.2, 131.0, 130.1, 129.8, 129.6, 128.4, 128.3, 128.6, 127.8, 127.6, 76.6, 53.7, 29.7, 21.7; **HRMS** (ESI): m/z [M + H]⁺ calcd for [C₂₃H₂₀N₂O₅S]⁺: 437.1166, found: 437.1170; **HPLC**: Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 26.49 min and t_{minor} = 34.79 min.

The mixture of **3aa** (45.4 mg, 0.1 mmol, 1.0 eq) and NEt₃ (0.5 mL) were add to the DCM (2 mL) under nitrogen. The mixture was stirred at room temperature for 30 min. Then, **AcCl** (9 mg, 0.11 mmol, 1.1eq) were added. The reaction mixture was stirred for 4 h at room temperature. Upon completion as shown by TLC, saturated aqueous NH₄Cl (3 mL) was then added to quench the reaction. The organic layer was extracted with DCM (3 x 5 mL), then washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The crude reaction mixture was purified via column chromatography (petroleum ether/ethyl acetate = 1/1) on silica gel to afford pure product 7 as a white solid in 91% yield.

(E)-4-methyl-N-(2-(4-nitro-3-phenylbut-2-enoyl)phenyl)benzenesulfonamide (8):

White solid in 91% isolated yield (39.7 mg,); **m.p.** = 32.2-33.4 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (d, J = 7.9 Hz, 1H), 7.79–7.74 (m, 1H), 7.70 (d, J = 7.2 Hz, 3H), 7.54–7.48 (m, 2H), 7.46 (d, J = 7.8 Hz, 2H), 7.38 (t, J = 7.4 Hz, 1H), 7.24 (d, J = 8.3 Hz, 2H), 7.05 (d, J = 8.1 Hz, 2H), 6.90 (s, 1H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.6, 145.5, 144.0, 139.1, 136.3, 135.6, 134.5, 134.3, 131.7, 130.3, 129.5, 129.2, 128.8, 128.7, 128.6, 127.3, 125.4, 53.0, 21.5; **HRMS** (ESI): m/z [M + H]⁺ calcd for [C₂₃H₂₀N₂O₅S]⁺: 437.1166, found: 437.1168.

Control Experiment

In a flame-dried Schlenk tube, a solution of diethylzinc (40 uL, 1.0 mol/L in hexane, 0.04 mmol) was added to a solution of the chiral ligand (R,R)-La (0.02 mmol 14.1 mg) in dry DCE (2.0 mL) under nitrogen. The mixture was stirred at room temperature for 30 min. Thus, the preparation of C1a was finished. Then, 1a (0.5 mmol, 152.6 mg) and 2a (0.2 mmol, 29.83 mg) were added. The reaction mixture was stirred for 4 h at 30 °C. The reaction was quenched with NH₄Cl solution (4 mL), and the aqueous layer was extracted with CH₂Cl₂ (3 × 5 mL). The combined organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure by using a rotary evaporator. The residue was purified by flash chromatography with petroleum DCM/acetone = 50/1 to afford the desired product *enti-3aa* and 3*S*-1a'.

In a flame-dried Schlenk tube, a solution of diethylzinc (40 uL, 1.0 mol/L in hexane, 0.04 mmol) was added to a solution of the chiral ligand (R,R)-La (0.02 mmol 14.1 mg) in dry DCE (2.0 mL) under nitrogen. The mixture was stirred at room temperature for 30 min. Thus, the preparation of C1a was finished. Then, 3R-1a' (0.2 mmol, 61.5 mg) and 2a (0.2 mmol, 29.83 mg) were added. The reaction mixture was stirred for 8 h at 30 °C. The reaction was quenched with NH₄Cl solution (4 mL), and the aqueous layer was extracted with CH₂Cl₂ (3×5 mL). The combined organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure by using a rotary evaporator. The residue was purified by flash chromatography with petroleum DCM/acetone = 50/1 to afford the desired product *enti-*3aa.

In a flame-dried Schlenk tube, a solution of diethylzinc (40 uL, 1.0 mol/L in hexane, 0.04 mmol) was added to a solution of the chiral ligand (R,R)-La (0.02 mmol 14.1 mg) in dry DCE (2.0 mL) under nitrogen. The mixture was stirred at room temperature for 30 min. Thus, the preparation of

C1a was finished. Then, **3***R***-1a'** (0.2 mmol, 61.5 mg) and **H₂O** (0.2 mmol, 3.6 mg) were added. The reaction mixture was stirred for 4 h at 30 °C. The reaction was quenched with NH₄Cl solution (4 mL), and the aqueous layer was extracted with CH₂Cl₂ (3×5 mL). The combined organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure by using a rotary evaporator. The residue was purified by flash chromatography with petroleum DCM/acetone = 50/1 to afford the desired product **4a**.

NMR Spectra of compounds 3, 4, 5, 6, 7 and 8

¹H NMR spectrum of compound **3ba** (CDCl₃, 400 MHz)

S29

 $^{13}\mathrm{C}$ NMR spectrum of compound **3da** (CDCl_3, 400 MHz)

 ^{19}F NMR spectrum of compound 3da (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **3fa** (CDCl₃, 400 MHz)

Br Ph NO₂ ''OH NHTsO **3fa**

 $^{13}\mathrm{C}$ NMR spectrum of compound **3fa** (CDCl₃, 400 MHz)

S35

 ^{19}F NMR spectrum of compound 3cb (CDCl₃, 400 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

S45

¹H NMR spectrum of compound **3cm** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **3co** (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound **3co** (CDCl₃, 400 MHz)

 	-144.30 -144.30 -136.33 -136.35 -136.35 -135.39 -135.73 -135.73 -135.73 -125.73 -127.19 -127.19 -127.19 -127.10 -12	<7539 74.70	-55.53	-42.73	~21.52

¹H NMR spectrum of compound **3cp** (CDCl₃, 400 MHz)

-10.22

¹³C NMR spectrum of compound **3cv** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **3cx** (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound **3cy** (CDCl₃, 400 MHz)

S67

¹⁹F NMR spectrum of compound **4d** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound 7 (CDCl₃, 400 MHz)

S75

HPLC spectra of compounds

Single-crystal X-ray diffraction

Single-crystal X-ray diffraction of 1c' (CCDC: 2348055)

X-ray analysis was carried out using the single crystal which was grown in DCM/Hexane.

Table 1 Crystal data and structure refinement for

The instrumentation used for the crystal measurement is Oxford Gemini E X-ray single-crystal diffractometer (ellipsoid contour at 30% probability level).

CCDC: 2348055

20230363_auto.	
Identification code	20230363_auto
Empirical formula	C ₁₆ H ₁₇ NO ₅ S
Formula weight	335.36
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	P212121
a/Å	8.1853(4)
b/Å	10.3385(4)
c/Å	18.6161(10)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	1575.37(13)
Z	4
ρ _{calc} g/cm ³	1.414
µ/mm ⁻¹	2.060
F(000)	704.0
Crystal size/mm ³	0.14 × 0.11 × 0.1
Radiation	CuKα (λ = 1.54184)
20 range for data collection/° 9.502 to 140.558	
Index ranges	$-9 \leq h \leq 6, -12 \leq k \leq 10, -22 \leq I \leq 21$
Reflections collected	5663
Independent reflections	2937 [R _{int} = 0.0258, R _{sigma} = 0.0388]
Data/restraints/parameters	2937/2/215
Goodness-of-fit on F ²	1.035
Final R indexes [I>=2σ (I)]	$R_1 = 0.0401, wR_2 = 0.1068$
Final R indexes [all data]	$R_1 = 0.0464, wR_2 = 0.1125$
Largest diff. peak/hole / e Å ⁻³ 0.17/-0.20	
Flack parameter	-0.008(17)

Single-crystal X-ray diffraction of 3ci (CCDC: 2348058)

X-ray analysis was carried out using the single crystal which was grown in DCM/Hexane.

The instrumentation used for the crystal measurement is Oxford Gemini E X-ray single-crystal diffractometer (ellipsoid contour at 30% probability level).

Table 1 Crystal data and structure refinement for 20230472 auto.	
Identification code	20230472_auto
Empirical formula	C ₂₄ H ₂₃ ClN ₂ O ₇ S
Formula weight	518.95
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	P212121
a/Å	7.80415(14)
b/Å	13.7157(2)
c/Å	22.4935(3)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	2407.68(7)
Z	4
$\rho_{calc}g/cm^3$	1.432
µ/mm ⁻¹	2.634
F(000)	1080.0
Crystal size/mm ³	0.16 × 0.1 × 0.08
Radiation	CuKα (λ = 1.54184)
20 range for data collection/	°7.55 to 140.722
Index ranges	-9 ≤ h ≤ 5, -14 ≤ k ≤ 16, -24 ≤ l ≤ 27
Reflections collected	8864
Independent reflections	4519 [R _{int} = 0.0316, R _{sigma} = 0.0489]
Data/restraints/parameters	4519/26/321
Goodness-of-fit on F ²	1.037
Final R indexes $[I > = 2\sigma (I)]$	$R_1 = 0.0482, wR_2 = 0.1184$
Final R indexes [all data]	$R_1 = 0.0587, wR_2 = 0.1272$
Largest diff. peak/hole / e Å ⁻³ 0.23/-0.29	
Flack parameter	-0.063(17)
	S106