Supporting Information

COAP/Pd-Catalyzed Asymmetric Linear Allylic Alkylation for

Chiral 3,3'-Disubstituted Oxindoles Bearing All-Carbon Quaternary

Stereocenters and Primary Allylic Alcohol Structures

Wen-Kai Liu,^{†a} Bai-Lin Wang,^{†a} Xing-Yun Sun,^a Jia-Yu Song,^a and Xing-Wang Wang^{a*} ^aKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China [†]These authors contributed equally to this work

E-mail: wangxw@suda.edu.cn

Contents

1. General methods and materials	S2
2. General procedure A for the synthesis of 3-substituted oxindoles	S3
3. Optimization of reaction conditions	S4
4. Scale-up synthesis and further transformations of the adducts	S20
5. Study of the non-linear effect	S26
6. X-Ray data of 7	S27
7. NMR spectra	S29
8. HPLC analysis	S65
9. References	S85

1. General methods and materials

Unless otherwise stated, all reactions were carried out under an atmosphere of nitrogen in ovendried Schlenk tube with magnetic stirring and all reagents were commercially achieved without further purification unless otherwise noted. Some commonly used solvents for asymmetric catalysis were dried with different drying agents through stardand methods reported, including of toluene, dichloro methane (DCM), tetrahdrofuran (THF). Flash Chromatography was performed with silica gel (300-400 mesh) from Yantai Chemical Industry Research Institute, P. R. China. Analytical thinlayer chromatography (TLC) was performed with 0.25 \pm 0.03 mm coated commercial silica gel plates (GF-254, particle size 0.04–0.05 mm). The ¹H and ¹³C NMR spectra were recorded in CDCl₃ on Varian Inova (400 MHz and 101 MHz, respectively) spectrometer. Chemical shifts (δ ppm) are relative to the resonance of the deuterated solvent as the internal standard (CDCl₃, δ 7.26 ppm for proton NMR, δ 77.10 ppm for carbon NMR). The ¹H NMR data were reported as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, td = triplet of doublets, tt =triplet of triplets, qd = quartet of doublets, ddd = doublet of doublet of doublets, dtt = doublet of triplet of triplets, tdd = triplet of doublet of doublets, dddd = doublet of doublet of doublets, ddt = doublet of doublet of triplets), coupling constants (J) and assignment. The data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). The IR spectra were recorded on a Varian 1000 FT-IR spectrometer. High-resolution mass spectra (HRMS) for all the compounds were determined on MicroQ-TOF mass spectrometer with ESI resource. High performance liquid chromatography (HPLC) was performed on an Agilent 1200 Series chromatographs using Chiralpak IC columns. The X-ray data were recorded on a Rigaku Mercury CCD/AFC diffractometer. Optical rotations were performed on Rudolph Aupol IV and reported as follows: $[\alpha]_{p}^{25}$ (c in g per 100 mL, solvent).

2. General procedure A for the synthesis of 3-substituted oxindoles

To a solution of **S1** (10 mmol) in dry THF (20 mL), NaH (11.0 mmol, 1.1 equiv.) was added at 0 °C and stirred for 30 min. ArMgBr (10.0 mmol) in ether was then added dropwise to the reaction mixture and allowed to warm to room temperature. Then the reaction mixture was quenched with saturated NH₄Cl (30 mL) and extracted with ethyl acetate (3×10 mL). The organic phase was washed with brine. The combined organic layers were dried over Na₂SO₄. Then the solvents were removed under reduced pressure to afford crude product **S2** as light orange solid.¹

To a solution of **S2** (10 mmol) in AcOH/HCl (45 mL/3 mL), SnCl₂ (20.0 mmol, 2.0 equiv.) was added at room temperature. Then the mixture was heated to 100 °C for 3 h. Then, the solution was cooled to room temperature, and then diluted with H₂O (100 mL) and extracted with ethyl acetate (3×20 mL). The organic phase was washed with aqueous sodium hydroxide solution and brine. The combined organic layers were dried over Na₂SO₄. Then the solvents were removed under reduced pressure to afford crude product **S3** as yellow solid.¹

To a solution of **S3** (7.0 mmol) in THF (20.0 mL), EtMgBr (7.7 mmol,1.1 equiv.) in ether was added dropwise at -40 °C followed by adding (Boc)₂O (7.7 mmol,1.1 equiv.) in one portion. The mixture was stirred at the same temperature for 30 min and warmed to room temperature. Then the mixture was diluted with ether and quenched with saturated NH₄Cl (30.0 mL) and extracted with ethyl acetate (3×10.0 mL). The combined organic layers were washed with brine and dried over Na₂SO₄. Purification by flash silica-gel column chromatography using PE/EA (40:1) was carried out to give **S4** as white or yellow solid.²

The NMR data of S4 was reported in the literature.^{1,2}

3. Optimization of reaction conditions

Table S1. Screening of the ligands^[a]

A1	Pd + O -	$\frac{I_2(dba)_3 \cdot CHCI_3 (1.25 \text{ mol}\%)}{\text{Ligand (2.5 mol}\%)}$ 30 °C, toluene	N Boc 1
entry	ligand	yield (%) ^[b]	<i>ee</i> (%) ^[c]
1	L1	81	19
2	L2	71	35
3	L3	58	49
4	L4	69	39
5	L5	61	6
6	L6	64	12
7	L7	56	31
8	L8	52	36
9	L9	77	47
10	L10	79	52
11	L11	81	63
12	L12	80	60

[a] Unless otherwise noted, reactions were carried out with A1 (0.10 mmol), B (0.10 mmol), Pd₂(dba)₃·CHCl₃(1.25 mol%) and Ligand (2.5 mol%) in the solvent of toluene (1.0 mL) at 30 °C for 12 hours. [b] Isolated yield. [c] Determined by chiral HPLC.

Scheme S1. Screening of the ligands

Table S2. Screening of the metal sources^[a]

	+ \bigcirc \bigcirc \bigcirc $\frac{L11}{30}$	Il (1.25 mol%) I (2.5 mol%) °C, toluene	OH N Boc
A1	В		1
entry	metal	yield (%) ^[b]	<i>ee</i> (%) ^[c]
1	$Pd_2(dba)_3$	75	60
2	Pd ₂ (dba) ₃ •CHCl ₃	81	63
3 ^d	Pd(dba) ₂	72	61
4^{d}	$Pd[(P(tBu)_3]_2$	60	55
5 ^d	Pd(PPh ₃) ₄	42	0
6^{d}	PdCl ₂	N.R.	

[a] Unless otherwise noted, reactions were carried out with A1 (0.10 mmol), B (0.10 mmol), metal source (1.25 mol%) and L11 (2.5 mol%) in the solvent of toluene (1.0 mL) at 30 °C for 12 hours.
[b] Isolated yield. [c] Determined by chiral HPLC. [d] 2.5 mol% metal source was used.

 Table S3. Screening of the solvents^[a]

A1	$+ \qquad \qquad$	HCl ₃ (1.25 mol%) 2.5 mol%) solvent	ОН
entry	solvent	yield (%) ^[b]	<i>ee</i> (%) ^[c]
1	THF	25	63
2	DCM	34	27
3	Acetone	22	33
4	MeCN	18	12
5 ^e	MeOH	29	15
6	Toluene	81	63
7	Mesitylene	80	59
8	<i>m</i> -Xylene	77	62
9	<i>p</i> -Xylene	78	61
10	Fluorobenzene	65	60
11	Pentafluorobenzene	69	34
12	Benzotrifluoride	71	58

[a] Unless otherwise noted, reactions were carried out with A1 (0.10 mmol), B (0.10 mmol), Pd2(dba)₃·CHCl₃ (1.25 mol%) and L11 (2.5 mol%) in the solvent (1.0 mL) at 30 °C for 12 hours.
[b] Isolated yield. [c] Determined by chiral HPLC.

Table S3. Screening of the mixed solvents^[a]

N Boc A1	Pd ₂ (dba) ₃ •CHCl ₃ (1.25 m + O L11 (2.5 mol%) 30 °C, solvent	nol%) NON Boc 1	ОН
entry	solvent	yield (%) ^[b]	<i>ee</i> (%) ^[c]
1	toluene/MeOH (v:v = 10:1)	90	84
2	toluene/EtOH (v:v = $10:1$)	84	80
3	toluene/ <i>i</i> PrOH (v:v = $10:1$)	77	79
4	toluene/ t BuOH (v:v = 10:1)	71	68
5 ^e	toluene/MeOH (v:v = 100:1)	85	84
6	toluene/MeOH (v:v = 20:1)	88	84
7	toluene/MeOH (v:v = 4:1)	80	83
8	toluene/MeOH (v:v = 2:1)	74	81
9	toluene/MeOH (v:v = 1.5:1)	61	77
10	toluene/MeOH (v:v = 1:1)	56	76

[a] Unless otherwise noted, reactions were carried out with A1 (0.10 mmol), B (0.10 mmol), Pd₂(dba)₃·CHCl₃ (1.25 mol%) and L11 (2.5 mol%) in the solvent (1.0 mL) at 30 °C for 12 hours. [b] Isolated yield. [c] Determined by ¹H NMR analysis. [d] Determined by chiral HPLC.

N Boc	+ O Holuene/N	•CHCl ₃ (1.25 mol%) 1 (2.5 mol%) 1eOH (v:v = 10:1) T °C	OH N Boc
A1	В		1
entry	T (°C)	yield (%) ^[b]	<i>ee</i> (%) ^[c]
1	30	90	84
2	0	91	93
3	-10	90	94
4	-20	88	94
5	-30	87	94
6	-40	85	95
7	-50	56	90

Table S4. Screening of the reaction temperature^[a]

[a] Unless otherwise noted, reactions were carried out with A1 (0.10 mmol), B (0.10 mmol), Pd₂(dba)₃·CHCl₃ (1.25 mol%) and L11 (2.5 mol%) in the mixed solvents of toluene/MeOH (v:v = 10:1, 1.0 mL) at T °C for 12 hours. [b] Isolated yield. [c] Determined by chiral HPLC.

General procedure B for preparation of 1-25

To an oven-dried schlenk tube, $Pd_2(dba)_3 \cdot CHCl_3$ (2.6 mg, 0.0025 mmol) and L11 (4.2 mg, 0.005 mmol) in dry toluene/MeOH (v:v = 10:1, 2.0 mL) were added under a nitrogen atmosphere. The mixture was stirred for 0.5 hours at room temperature to produce an orange solution. Then 3-substituted oxindoles A1-A25 (0.20 mmol) and 2-vinyloxirane **B** (0.20 mmol) was added at -40 °C. The mixture was stirred for 4–12 hours at -40 °C. After the reaction was complete (monitored by TLC), it was subjected to silica gel column to afford the desired products 1-25.

Following the above method, the racemic samples 1-25 were obtained by the use of the Pd(PPh₃)₄ (11.56 mg, 0.005 mmol).

tert-Butyl (R, E)-3-(4-hydroxybut-2-en-1-yl)-2-oxo-3-phenylindoline-1-carboxylate (1)

Following *General Procedure B*, the product **1** was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 85% yield (64.6 mg); 95% *ee* [Daicel Chiralpak

IC, hexane/*i*-propanol = 85/15, flow rate = 1.0 mL/min, λ = 254.4 nm, OH t (major) = 20.642, t (minor) = 14.510]; [α]²⁵_p = +48.0 (c 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.1 Hz, 1H), 7.41 – 7.23 (m, 8H), 5.77 – 5.60 (m, 1H), 5.41 – 5.24 (m, 1H), 3.97 – 3.85 (m, 2H), 3.14 (dd, *J* = 13.8, 8.2 Hz, 1H), 3.08 – 2.95 (m, 1H), 1.63 (s, 9H); ¹³C

NMR (101 MHz, CDCl₃) δ 176.4, 149.3, 139.8, 139.1, 134.6, 130.4, 128.7, 128.6, 127.7, 127.2, 125.4, 125.2, 124.5, 115.2, 84.6, 63.0, 56.8, 41.1, 28.1; IR (KBr) ν_{max} : 2920, 2851, 1727, 1463, 1345, 1286, 1249, 1144, 752, 694 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₃H₂₅NNaO₄⁺ [M+Na⁺] 402.1676, found 402.1676.

tert-Butyl (*R*, *E*)-3-(4-hydroxybut-2-en-1-yl)-3-(3-methoxyphenyl)-2-oxoindoline-1carboxylate (2)

Following *General Procedure B*, the product **2** was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 61% yield (50.0 mg), 97% *ee* [Daicel Chiralpak

IC, hexane/*i*-propanol = 85/15, flow rate = 1.0 mL/min, λ = 254.4 nm, t (major) = 32.202, t (minor) =30.026]; $[\alpha]_{\rm D}^{25}$ = +70.1 (c 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.2 Hz, 1H), 7.27 (ddd, *J* = 8.4, 6.1, 2.8 Hz, 1H), 7.18 – 7.10 (m, 3H), 6.86 – 6.78 (m, 2H), 6.72 (dd, *J* = 8.2, 2.6 Hz, 1H), 5.58 (dt, *J* = 15.4, 5.8 Hz,

1H), 5.22 (ddd, J = 15.0, 8.2, 6.5 Hz, 1H), 3.82 (d, J = 5.7 Hz, 2H), 3.68 (s, 3H), 3.02 (dd, J = 13.6, 8.0 Hz, 1H), 2.95 – 2.86 (m, 1H), 1.53 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.2, 159.7, 149.3, 140.7, 139.8, 134.6, 130.3, 129.6, 128.6, 125.4, 125.2, 124.5, 119.6, 115.1, 113.8, 112.6, 84.5, 63.0, 56.8, 55.2, 41.0, 28.1; IR (KBr) ν_{max} : 2921, 2851, 1760, 1728, 1601, 1463, 1343, 1286, 1247, 1144, 1049, 753 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₄H₂₇NNaO₅⁺ [M+Na⁺] 432.1782, found 432.1780.

tert-Butyl (*R*, *E*)-3-(4-hydroxybut-2-en-1-yl)-2-oxo-3-(m-tolyl)indoline-1-carboxylate (3) Following *General Procedure B*, the product 3 was obtained after column chromatography

(petroleum ether/EtOAc v:v = 5:1); colorless oil; 69% yield (54.0 mg), 96% ee [Daicel Chiralpak

IC, hexane/*i*-propanol = 85/15, flow rate = 1.0 mL/min, λ = 254.4 nm, t (major) = 32.202, t (minor) = 30.026]; $[\alpha]_{\rm p}^{25}$ = +56.4 (c 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (dt, *J* = 8.2, 0.9 Hz, 1H), 7.38 (ddd, *J* = 8.2, 5.6, 3.3 Hz, 1H), 7.26 - 7.06 (m, 6H), 5.73 - 5.63 (m, 1H), 5.32 (dddd, *J* = 15.9, 7.9, 4.7, 1.5 Hz, 1H), 3.93 (d, *J* = 5.5 Hz, 2H),

3.19 – 3.09 (m, 1H), 3.05 – 2.96 (m, 1H), 2.33 (s, 3H), 1.64 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.4, 149.3, 139.8, 139.0, 138.3, 134.5, 130.6, 128.50, 128.48, 127.9, 125.6, 125.2, 124.4, 124.3, 115.1, 84.5, 63.1, 56.8, 41.0, 28.1, 21.6; IR (KBr) ν_{max} : 3421, 2979, 2920, 1760, 1727, 1463, 1286, 1248, 1144, 969, 752 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₄H₂₇NNaO₄⁺ [M+Na⁺] 416.1833, found 416.1836.

tert-Butyl (*R*, *E*)-3-(3-fluorophenyl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1-carboxylate (4)

Following *General Procedure B*, the product **4** was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 73% yield (58.1 mg); 97% *ee* [Daicel Chiralpak

IC, hexane/*i*-propanol = 85/15, flow rate = 1.0 mL/min, λ = 254.4 nm, t (major) = 15.824, t (minor) = 11.668]; $[\alpha]_{D}^{25}$ = +47.2 (c 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dt, *J* = 8.3, 0.9 Hz, 1H), 7.38 (ddd, *J* = 8.2, 6.6, 2.4 Hz, 1H), 7.32 - 7.27 (m, 1H), 7.26 - 7.19 (m, 2H), 7.12 (ddd, *J* = 7.9, 1.9, 1.0 Hz, 1H), 7.05 (dt, *J* = 10.6, 2.2 Hz, 1H),

6.97 (tdd, J = 8.3, 2.5, 0.9 Hz, 1H), 5.67 (dtt, J = 15.4, 5.7, 1.2 Hz, 1H), 5.35 – 5.24 (m, 1H), 3.92 (t, J = 5.2 Hz, 2H), 3.09 (ddd, J = 13.6, 8.1, 1.0 Hz, 1H), 3.02 – 2.93 (m, 1H), 1.62 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 175.8, 162.9 (d, $J_{C-F} = 247.5$ Hz), 149.1, 141.5 (d, $J_{C-F} = 7.1$ Hz), 139.8, 134.8, 130.1 (d, $J_{C-F} = 8.4$ Hz), 129.7, 128.8, 125.2, 125.0, 124.6, 123.0 (d, $J_{C-F} = 2.9$ Hz), 115.3, 114.8 (d, $J_{C-F} = 5.3$ Hz), 114.6 (d, $J_{C-F} = 7.3$ Hz), 84.7, 63.1, 56.6, 41.2, 28.1; ¹⁹F NMR (376 MHz, CDCl₃) δ –112.05; IR (KBr) ν_{max} : 3401, 2930, 1760, 1729, 1463, 1286, 1248, 1144, 970, 752 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₃H₂₄FNNaO₄⁺ [M+Na⁺] 420.1582, found 420.1599.

tert-Butyl (*R*, *E*)-3-(3-chlorophenyl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1-carboxylate (5)

Following *General Procedure B*, the product **5** was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 70% yield (58.0 mg); 96% *ee* [Daicel Chiralpak

IC, hexane/*i*-propanol = 85/15, flow rate = 1.0 mL/min, λ = 254.4 nm, t (major) = 15.411, t (minor) = 11.740]; $[\alpha]_{p}^{25}$ = +45.6 (c 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dt, *J* = 8.2, 0.8 Hz, 1H), 7.38 (ddd, *J* = 8.2, 7.0, 1.9 Hz, 1H), 7.30 (dt, *J* = 2.6, 1.3 Hz, 1H), 7.28 – 7.25 (m, 1H), 7.23 (ddd, *J* = 10.1, 2.0, 0.8 Hz, 4H), 5.75 – 5.53 (m,

1H), 5.28 (dddt, J = 15.8, 8.0, 6.4, 1.5 Hz, 1H), 3.91 (d, J = 5.6 Hz, 2H), 3.13 – 3.04 (m, 1H), 3.01 – 2.92 (m, 1H), 1.62 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 175.8, 149.1, 141.0, 139.8, 134.9, 134.6, 129.9, 129.6, 128.9, 128.0, 127.6, 125.6, 125.1, 124.8, 124.7, 115.3, 84.8, 63.0, 56.6, 41.2, 28.1; IR (KBr) v_{max} : 3419, 2920, 1764, 1728, 1469, 1332, 1290, 1257, 1146, 1011, 818, 694 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₃H₂₄ClNNaO₄⁺ [M+Na⁺] 436.1287, found 436.1308.

tert-Butyl (*R*, *E*)-3-(4-(dimethylamino)phenyl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1carboxylate (6)

Following *General Procedure B*, the product **6** was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 74% yield (62.9 mg); 92% *ee* [Daicel Chiralpak

(s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.8, 149.9, 149.5, 139.8, 134.2, 130.9, 128.3, 127.9, 126.6, 125.9, 125.2, 124.3, 115.0, 112.5, 84.3, 63.1, 56.0, 41.0, 40.4, 28.1; IR (KBr) ν_{max} : 3432, 2920, 1760, 1725, 1519, 1345, 1286, 1248, 1143, 749 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₅H₃₀N₂NaO₄⁺ [M+Na⁺] 445.2098, found 445.2120.

tert-Butyl (*R*, *E*)-3-(4-hydroxybut-2-en-1-yl)-3-(4-methoxyphenyl)-2-oxoindoline-1carboxylate (7)

Following *General Procedure B*, the product **7** was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 71% yield (58.5 mg); 94% *ee* [Daicel Chiralpak

IC, hexane/*i*-propanol = 85/15, flow rate = 1.0 mL/min, λ = 254.4 nm, t (major) = 40.474, t (minor) = 23.913]; $[\alpha]_{D}^{25}$ = +57.2 (c 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, *J* = 13.3, 8.2 Hz, 1H), 7.28 (dq, *J* = 8.5, 4.5, 3.9 Hz, 1H), 7.18 – 7.13 (m, 4H), 6.78 – 6.73 (m, 2H), 5.57 (dt, *J* = 15.4, 5.8 Hz, 1H), 5.31 – 5.12 (m, 1H), 3.82 (d, *J* = 5.8 Hz, 2H), 3.69 (s, 3H), 3.00 (dd, *J* = 13.6, 8.0 Hz, 1H), 2.88 (ddd, *J* =

13.7, 6.4, 1.4 Hz, 1H), 1.53 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.6, 159.1, 149.3, 139.8, 134.5, 131.1, 130.5, 128.5, 128.4, 125.6, 125.2, 124.4, 115.1, 114.0, 84.5, 63.1, 56.2, 55.3, 41.2, 28.1; IR (KBr) ν_{max} : 3420, 2921, 1728, 1463, 1343, 1286, 1247, 1144, 1049, 753 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₄H₂₇NNaO₅⁺ [M+Na⁺] 432.1782, found 432.1786.

tert-Butyl (R, E)-3-(4-hydroxybut-2-en-1-yl)-2-oxo-3-(p-tolyl)indoline-1-carboxylate (8) Following *General Procedure B*, the product 8 was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 80% yield (63.3 mg); 91% *ee* [Daicel Chiralpak

IC, hexane/*i*-propanol = 85/15, flow rate = 1.0 mL/min, λ = 254.4 nm, t (major) = 27.106, t (minor) = 16.435]; [α]²⁵_D = +41.1 (c 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.2 Hz, 1H), 7.27 (dt, *J* = 8.6, 4.5 Hz, 1H), 7.16 – 7.08 (m, 4H), 7.03 (d, *J* = 8.1 Hz, 2H), 5.57 (dt, *J* = 15.3, 5.7 Hz, 1H), 5.27 – 5.16 (m, 1H), 3.81 (d, *J* = 5.7 Hz, 2H), 3.02 (dd, *J* = 13.6, 8.0 Hz, 1H), 2.89 (ddd, *J* = 13.7, 6.4, 1.4 Hz,

1H), 2.22 (s, 3H), 1.53 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.5, 149.3, 139.8, 137.5, 136.2, 134.5, 130.6, 129.4, 128.5, 127.1, 125.5, 125.2, 124.4, 115.1, 84.5, 63.1, 56.6, 41.0, 28.1, 21.0; IR (KBr) ν_{max} : 3420, 2920, 1762, 1727, 1463, 1344, 1286, 1249, 1144, 1097, 751 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₄H₂₇NNaO₄⁺ [M+Na⁺] 416.1833, found 416.1833.

tert-Butyl (R, E)-3-(4-ethylphenyl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1-carboxylate (9) Following *General Procedure B*, the product 9 was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 83% yield (67.8 mg), 95% *ee* [Daicel Chiralpak

IC, hexane/*i*-propanol = 85/15, flow rate = 1.0 mL/min, λ = 254.4 nm, t (major) = 25.667, t (minor) = 15.659]; [α]_D²⁵ = +54.2 (c 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.2 Hz, 1H), 7.38 (ddd, *J* = 8.5, 5.6, 3.4 Hz, 1H), 7.29 - 7.23 (m, 4H), 7.16 (d, *J* = 8.0 Hz, 2H), 5.67 (dt, *J* = 15.4, 5.8 Hz, 1H), 5.40 - 5.24 (m, 1H), 3.91 (d, *J* = 5.7 Hz, 2H), 3.14 (dd, *J* = 13.6, 8.1 Hz, 1H), 3.06 - 2.94 (m, 1H), 2.63 (q,

J = 7.6 Hz, 2H), 1.63 (s, 9H), 1.22 (t, J = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.5, 149.3, 143.7, 139.8, 136.4, 134.5, 130.6, 128.5, 128.2, 127.2, 125.5, 125.2, 124.4, 115.1, 84.5, 63.0, 56.6, 41.1, 28.4, 28.1, 15.4; IR (KBr) v_{max} : 3462, 2966, 1728, 1463, 1344, 1286, 1248, 1144, 1098, 750 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₅H₂₉NNaO₄⁺ [M+Na⁺] 430.1989, found 430.2017.

tert-Butyl (*R*, *E*)-3-(4-(*tert*-butyl)phenyl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1carboxylate (10)

Following *General Procedure B*, the product **10** was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 60% yield (51.9 mg); 93% *ee* [Daicel Chiralpak

(s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.5, 150.5, 149.3, 139.8, 136.1, 134.5, 130.5, 128.5, 126.9, 125.6, 125.5, 125.2, 124.4, 115.1, 84.5, 63.1, 56.6, 41.1, 34.4, 31.3, 28.1; IR (KBr) ν_{max} : 3367, 2961, 1732, 1457, 1344, 1287, 1250, 1147, 1098, 753 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₇H₃₃NNaO₄⁺ [M+Na⁺] 458.2302, found 458.2303.

tert-Butyl (*R*, *E*)-3-([1,1'-biphenyl]-4-yl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1carboxylate (11)

Following *General Procedure B*, the product **3cf** was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 69% yield (109.1 mg); 91% *ee* [Daicel Chiralpak

1.65 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.3, 149.3, 140.6, 140.5, 139.9, 138.1, 134.6, 130.3, 128.8, 128.6, 127.7, 127.5, 127.4, 127.1, 125.4, 125.2, 124.5, 115.2, 84.6, 63.1, 56.7, 41.1, 28.1; IR (KBr) ν_{max} : 3434, 2919, 1727, 1463, 1345, 1286, 1249, 1144, 1002, 752 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₉H₂₉NNaO₄⁺ [M+Na⁺] 478.1989, found 478.2002.

tert-Butyl (*R*, *E*)-3-(4-fluorophenyl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1-carboxylate (12)

Following General Procedure B, the product 12 was obtained after column chromatography

(petroleum ether/EtOAc v:v = 5:1); colorless oil; 61% yield (48.8 mg); 93% *ee* [Daicel Chiralpak IC, hexane/*i*-propanol = 85/15, flow rate = 1.0 mL/min, λ = 254.4 nm, t (major) = 19.183, t (minor) = 12.412]; [α]²⁵_p = +71.4 (c 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.3 Hz, 1H), 7.39 (ddd, *J* = 8.5, 6.6, 2.4 Hz, 1H), 7.35 - 7.29 (m, 2H), 7.28 - 7.21 (m, 2H), 7.06 - 6.95 (m, 2H), 5.78 - 5.57 (m, 1H),

5.30 (dddt, J = 15.8, 8.0, 6.5, 1.5 Hz, 1H), 3.92 (dd, J = 5.8, 1.5 Hz, 2H), 3.10 (dd, J = 13.8, 8.2 Hz, 1H), 3.03 – 2.93 (m, 1H), 1.63 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.3, 162.2 (d, $J_{C-F} = 248.2p$ Hz), 149.2, 139.8, 134.8, 130.0, 129.0 (d, $J_{C-F} = 8.2$ Hz), 128.7, 125.1 (d, $J_{C-F} = 12.8$ Hz), 124.6, 115.6, 115.3 (d, $J_{C-F} = 13.0$ Hz), 84.7, 63.0, 56.2, 41.4, 28.1; ¹⁹F NMR (376 MHz, CDCl₃) δ –114.72; IR (KBr) ν_{max} : 3420, 2923, 1727, 1478, 1294, 1248, 1141, 818, 719, 694 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₃H₂₄FNNaO₄⁺ [M+Na⁺] 420.1582, found 420.1587.

tert-Butyl (*R*, *E*)-3-(4-chlorophenyl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1-carboxylate (13)

Following *General Procedure B*, the product **13** was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 75% yield (62.0 mg); 87% *ee* [Daicel Chiralpak

IC, hexane/*i*-propanol = 85/15, flow rate = 1.0 mL/min, λ = 254.4 nm, t (major) = 18.380, t (minor) = 11.410]; $[\alpha]_{D}^{25}$ = +64.0 (c 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (dt, *J* = 8.2, 0.8 Hz, 1H), 7.40 (ddd, *J* = 8.2, 7.1, 1.9 Hz, 1H), 7.31 – 7.20 (m, 6H), 5.73 – 5.62 (m, 1H), 5.36 – 5.25 (m, 1H), 3.93 (s, 2H), 3.14 – 3.05 (m, 1H), 3.02 – 2.94 (m, 1H), 1.63 (s, 9H); ¹³C NMR (101 MHz, CDCl₃)

δ 176.0, 149.2, 139.8, 137.5, 134.8, 133.8, 129.8, 128.8, 128.8, 128.7, 125.1, 125.0, 124.6, 115.3, 84.7, 63.0, 56.4, 41.2, 28.1; IR (KBr) ν_{max} : 3435, 2921, 1728, 1468, 1332, 1290, 1257, 1146, 1011, 818, 694 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₃H₂₄ClNNaO₄⁺ [M+Na⁺] 436.1287, found 436.1287.

tert-Butyl (*R*, *E*)-3-(4-bromophenyl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1-carboxylate (14)

Following General Procedure B, the product 14 was obtained after column chromatography

13.6, 8.0 Hz, 1H), 2.98 (ddd, J = 13.6, 6.5, 1.4 Hz, 1H), 1.63 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 175.9, 149.2, 139.8, 138.1, 134.9, 131.8, 129.7, 129.1, 128.8, 125.1, 124.9, 124.6, 122.0, 115.3, 84.8, 63.0, 56.4, 41.1, 28.1; IR (KBr) v_{max} : 3400, 2919, 1728, 1466, 1331, 1291, 1259, 1148, 1015, 816, 694 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₃H₂₄BrNNaO₄⁺ [M+Na⁺] 480.0781, found 480.0771.

tert-Butyl (*R*, *E*)-3-(3,5-dimethylphenyl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1carboxylate (15)

Following *General Procedure B*, the product **15** was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 92% yield (75.1 mg), 97% *ee* [Daicel Chiralpak

IC, hexane/*i*-propanol = 85/15, flow rate = 1.0 mL/min, λ = 254.4 nm, H t (major) = 22.816, t (minor) = 12.712]; [α]_D²⁵ = +58.4 (c 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.2 Hz, 1H), 7.38 (ddd, *J* = 8.5, 6.0, 3.0 Hz, 1H), 7.27 - 7.19 (m, 2H), 6.93 (s, 3H), 5.73 - 5.61 (m, 1H), 5.31 (dddd, *J* = 15.2, 8.1, 6.4, 1.4 Hz, 1H), 3.92 (d, *J* = 5.7

Hz, 2H), 3.13 (dd, J = 13.6, 8.1 Hz, 1H), 3.00 (ddd, J = 13.6, 6.4, 1.4 Hz, 1H), 2.29 (s, 6H), 1.64 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.5, 149.4, 139.8, 139.0, 138.1, 134.4, 130.7, 129.4, 128.4, 125.6, 125.2, 125.0, 124.5, 115.1, 84.5, 63.1, 56.8, 41.0, 28.1, 21.5; IR (KBr) ν_{max} : 3481, 2918, 1727, 1463, 1342, 1286, 1247, 1144, 1001, 750 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₅H₂₉NNaO₄⁺ [M+Na⁺] 430.1989, found 430.2008.

tert-Butyl (*R*, *E*)-3-(4-hydroxybut-2-en-1-yl)-3-(naphthalen-2-yl)-2-oxoindoline-1-carboxylate (16)

Following *General Procedure B*, the product **16** was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 81% yield (81.3 mg), 95% *ee* [Daicel Chiralpak

IC, hexane/*i*-propanol = 85/15, flow rate = 1.0 mL/min, λ = 210.8 nm, t (major) = 31.560, t (minor) = 19.543]; $[\alpha]_{\rm D}^{25}$ = +41.6 (c 0.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.2 Hz, 1H), 7.72 – 7.61 (m, 4H), 7.43 – 7.30 (m, 4H), 7.17 (dd, *J* = 6.1, 4.4 Hz, 2H), 5.68 – 5.52 (m, 1H), 5.35 – 5.17 (m, 1H), 3.81 (d, *J* = 5.7 Hz, 2H), 3.13 (dd, *J* = 13.6, 8.1 Hz, 1H), 3.02 (ddd, *J* = 13.7, 6.3, 1.4 Hz, 1H), 1.52 (s,

9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.3, 149.3, 139.9, 136.5, 134.7, 133.1, 132.7, 130.5, 128.7, 128.6, 128.2, 127.5, 126.4, 126.3, 125.3, 125.3, 125.1, 124.6, 115.2, 84.6, 63.1, 57.0, 41.0, 28.1; IR (KBr) ν_{max} : 3412, 2922, 1727, 1463, 1344, 1286, 1248, 1144, 1002, 752, 694 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₇H₂₇NNaO₄⁺ [M+Na⁺] 452.1833, found 452.1870.

tert-Butyl (*R*, *E*)-3-(4-hydroxybut-2-en-1-yl)-5-methoxy-2-oxo-3-phenylindoline-1carboxylate (17)

Following *General Procedure B*, the product **17** was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 81% yield (66.7 mg); 98% *ee* [Daicel Chiralpak

1H), 3.92 (d, J = 5.7 Hz, 2H), 3.81 (s, 3H), 3.12 (dd, J = 13.7, 8.2 Hz, 1H), 3.01 (ddd, J = 13.6, 6.1, 1.5 Hz, 1H), 1.62 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.4, 156.8, 149.3, 139.0, 134.7, 133.2, 131.8, 128.7, 127.7, 127.3, 125.3, 116.1, 113.3, 111.4, 84.4, 63.0, 57.2, 55.7, 40.9, 28.1; IR (KBr) v_{max} : 3446, 2931, 1726, 1614, 1496, 1342, 1294, 1253, 1142, 1018, 841, 695 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₄H₂₇NNaO₅⁺ [M+Na⁺] 432.1782, found 432.1782.

tert-Butyl (*R*, *E*)-3-(4-hydroxybut-2-en-1-yl)-5-methyl-2-oxo-3-phenylindoline-1-carboxylate (18)

Following *General Procedure B*, the product **18** was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 69% yield (54.0 mg); 98% *ee* [Daicel Chiralpak

IC, hexane/*i*-propanol = 85/15, flow rate = 1.0 mL/min, λ = 254.4 nm, t (major) = 24.520, t (minor) = 16.569]; $[\alpha]_{p}^{25}$ = +64.6 (c 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.3 Hz, 1H), 7.27 - 7.17 (m, 5H), 7.08 (ddd, *J* = 8.3, 1.9, 0.8 Hz, 1H), 6.94 (d, *J* = 1.9 Hz, 1H), 5.60 (dtt, *J* = 15.4, 5.8, 1.3 Hz, 1H), 5.22 (dddt, *J* =

15.8, 7.9, 6.3, 1.5 Hz, 1H), 3.83 (dd, J = 5.7, 1.4 Hz, 2H), 3.11 – 2.99 (m, 1H), 2.95 – 2.81 (m, 1H), 2.28 (s, 3H), 1.53 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.5, 149.3, 139.3, 137.4, 134.5, 134.1, 130.4, 129.1, 128.7, 127.6, 127.3, 125.6, 114.9, 84.4, 63.1, 57.0, 40.9, 28.1, 21.2; IR (KBr) ν_{max} : 3461, 2918, 1727, 1342, 1286, 1247, 1144, 1001, 838, 750 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₄H₂₇NNaO₄+ [M+Na⁺] 416.1833, found 416.1832.

tert-Butyl (*R*, *E*)-5-fluoro-3-(4-hydroxybut-2-en-1-yl)-2-oxo-3-phenylindoline-1-carboxylate (19)

Following *General Procedure B*, the product **19** was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 76% yield (60.7 mg); 96% *ee* [Daicel Chiralpak

IC, hexane/*i*-propanol = 85/15, flow rate = 1.0 mL/min, λ = 254.4 nm, t (major) = 16.382, t (minor) = 12.591]; $[\alpha]_{\rm D}^{25}$ = +51.2 (c 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, *J* = 9.0, 4.6 Hz, 1H), 7.33 (qd, *J* = 6.1, 5.2, 2.6 Hz, 5H), 7.08 (td, *J* = 8.9, 2.8 Hz, 1H), 6.96 (dd, *J* = 7.8, 2.8 Hz, 1H), 5.70 (dt, *J* = 15.4, 5.6 Hz, 1H),

5.41 – 5.25 (m, 1H), 3.94 (d, J = 5.5 Hz, 2H), 3.13 (dd, J = 13.7, 8.1 Hz, 1H), 3.05 – 2.96 (m, 1H), 1.63 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 175.9, 159.9 (d, $J_{C-F} = 239.9$ Hz), 149.2, 138.5, 135.7 (d, $J_{C-F} = 2.2$ Hz), 135.0, 132.3 (d, $J_{C-F} = 8.1$ Hz), 128.8, 127.9, 127.1, 124.7, 116.5 (d, $J_{C-F} = 7.9$ Hz), 115.2 (d, $J_{C-F} = 22.9$ Hz), 112.5 (d, $J_{C-F} = 24.4$ Hz), 84.8, 62.9, 57.07, 57.05, 40.9, 28.1; ¹⁹F NMR (376 MHz, CDCl₃) δ –117.28; IR (KBr) ν_{max} : 3444, 2922, 1727, 1478, 1294, 1248, 1141, 1001, 818, 718, 694 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₃H₂₄FNNaO₄⁺ [M+Na⁺] 420.1582, found 420.1592.

tert-Butyl (*R*, *E*)-5-chloro-3-(4-hydroxybut-2-en-1-yl)-2-oxo-3-phenylindoline-1-carboxylate (20)

Following *General Procedure B*, the product **20** was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 59% yield (48.5 mg); 96% *ee* [Daicel Chiralpak

8.2 Hz, 1H), 2.99 (ddd, J = 13.6, 6.3, 1.4 Hz, 1H), 1.60 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 175.6, 149.1, 138.4, 138.4, 135.1, 132.3, 130.0, 128.9, 128.7, 128.0, 127.1, 125.2, 124.7, 116.5, 84.9, 63.0, 57.0, 40.9, 28.1; IR (KBr) v_{max} : 3419, 2920, 1728, 1468, 1332, 1290, 1258, 1145, 1011, 818, 694 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₃H₂₄ClNNaO₄⁺ [M+Na⁺] 436.1287, found 436.1282.

tert-Butyl (*R*, *E*)-5-bromo-3-(4-hydroxybut-2-en-1-yl)-2-oxo-3-phenylindoline-1-carboxylate (21)

Following *General Procedure B*, the product **21** was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 67% yield (61.4 mg); 97% *ee* [Daicel Chiralpak

 $J = 13.6, 6.3, 1.3 \text{ Hz}, 1\text{H}, 1.53 (s, 9\text{H}); {}^{13}\text{C NMR} (101 \text{ MHz}, \text{CDCl}_3) \delta 175.5, 149.1, 138.9, 138.4, 135.1, 132.7, 131.6, 128.9, 128.1, 128.0, 127.1, 124.6, 117.5, 116.9, 85.0, 62.9, 56.9, 40.9, 28.1; IR (KBr) <math>\nu_{\text{max}}$: 3412, 2929, 1728, 1466, 1332, 1291, 1258, 1148, 1014, 815, 695 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₃H₂₄BrNNaO₄⁺ [M+Na⁺] 480.0781, found 480.0778.

tert-Butyl (*R*, *E*)-3-(4-hydroxybut-2-en-1-yl)-6-methoxy-2-oxo-3-phenylindoline-1carboxylate (22)

Following *General Procedure B*, the product **22** was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 69% yield (56.5 mg); 98% *ee* [Daicel Chiralpak

3.94 (d, J = 5.7 Hz, 2H), 3.88 (s, 3H), 3.10 (dd, J = 13.6, 8.1 Hz, 1H), 3.04 – 2.94 (m, 1H), 1.63 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.8, 159.9, 149.2, 140.8, 139.5, 134.4, 128.6, 127.6, 127.2, 125.8, 125.6, 122.0, 110.2, 101.7, 84.5, 63.1, 56.3, 55.6, 41.2, 28.1; IR (KBr) v_{max} : 3460, 2931, 1726, 1614, 1496, 1446, 1342, 1294, 1253, 1142, 1018, 841, 803, 720, 695 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₄H₂₇NNaO₅⁺ [M+Na⁺] 432.1782, found 432.1797.

tert-Butyl (*R*, *E*)-6-fluoro-3-(4-hydroxybut-2-en-1-yl)-2-oxo-3-phenylindoline-1-carboxylate (23)

Following *General Procedure B*, the product **23** was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 72% yield (57.5 mg); 97% *ee* [Daicel Chiralpak

IC, hexane/*i*-propanol = 85/15, flow rate = 1.0 mL/min, λ = 254.4 nm, t (major) = 15.922, t (minor) = 11.917]; $[\alpha]_{D}^{25}$ = +77.1 (c 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, *J* = 10.2, 2.4 Hz, 1H), 7.28 - 7.19 (m, 5H), 7.09 (dd, *J* = 8.4, 5.6 Hz, 1H), 6.85 (td, *J* = 8.6, 2.5 Hz, 1H), 5.58 (dt, *J* = 15.4, 5.7 Hz, 1H), 5.28 - 5.16

(m, 1H), 3.84 (d, J = 5.7 Hz, 2H), 3.01 (dd, J = 13.7, 8.1 Hz, 1H), 2.96 – 2.86 (m, 1H), 1.53 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.1, 162.6 (d, $J_{C-F} = 245.8$ Hz), 149.0, 140.8 (d, $J_{C-F} = 12.4$ Hz), 138.8, 134.8, 128.8, 127.9, 127.2, 126.2 (d, $J_{C-F} = 9.6$ Hz), 125.7 (d, $J_{C-F} = 3.0$ Hz), 125.0, 111.2 (d, $J_{C-F} = 22.7$ Hz), 103.9 (d, $J_{C-F} = 29.6$ Hz), 85.0, 63.0, 56.5, 41.1, 28.0; ¹⁹F NMR (376 MHz, CDCl₃) δ –110.80; IR (KBr) ν_{max} : 3482, 2924, 1728, 1478, 1344, 1294, 1248, 1141, 818, 719, 695 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₃H₂₄FNNaO₄⁺ [M+Na⁺] 420.1582, found 420.1582.

tert-Butyl (*R*, *E*)-6-chloro-3-(4-hydroxybut-2-en-1-yl)-2-oxo-3-phenylindoline-1-carboxylate (24)

Following *General Procedure B*, the product **24** was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 83% yield (68.9 mg); 97% *ee* [Daicel Chiralpak

IC, hexane/*i*-propanol = 85/15, flow rate = 1.0 mL/min, λ = 254.4 nm, t (major) = 13.964, t (minor) = 11.498]; $[\alpha]_{\rm D}^{25}$ = +62.5 (c 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 1.9 Hz, 1H), 7.38 - 7.29 (m, 5H), 7.24 (dd, *J* = 8.0, 1.9 Hz, 1H), 7.17 (d, *J* = 8.1 Hz, 1H), 5.75 - 5.63 (m, 1H), 5.33 (dddt, *J* = 15.8, 7.9, 6.4, 1.5 Hz, 1H), 3.96 (dd, *J* = 5.6, 1.4 Hz, 2H), 3.16

- 3.07 (m, 1H), 3.06 - 2.97 (m, 1H), 1.63 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 175.8, 149.0, 140.7, 138.6, 134.9, 134.3, 128.8, 128.7, 127.9, 127.1, 126.1, 124.9, 124.6, 116.0, 85.1, 63.0, 56.6, 41.0, 28.0; IR (KBr) ν_{max} : 3421, 2920, 1728, 1468, 1332, 1290, 1257, 1145, 1011, 818, 694 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₃H₂₄ClNNaO₄⁺ [M+Na⁺] 436.1287, found 436.1304.

tert-Butyl (*R*, *E*)-6-bromo-3-(4-hydroxybut-2-en-1-yl)-2-oxo-3-phenylindoline-1-carboxylate (25)

Following *General Procedure B*, the product **25** was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 55% yield (50.7 mg); 97% *ee* [Daicel Chiralpak

IC, hexane/*i*-propanol = 85/15, flow rate = 1.0 mL/min, λ = 254.4 nm, t (major) = 13.888, t (minor) = 11.700]; [α]_D²⁵ = +52.2 (c 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 1.8 Hz, 1H), 7.39 (dd, *J* = 8.0, 1.8 Hz, 1H), 7.36 - 7.29 (m, 5H), 7.11 (d, *J* = 8.0 Hz, 1H), 5.75 - 5.63 (m, 1H), 5.39 - 5.26 (m, 1H), 3.96 (d, *J*

= 5.6 Hz, 2H), 3.11 (dd, J = 13.7, 8.1 Hz, 1H), 3.02 (ddd, J = 13.7, 6.4, 1.4 Hz, 1H), 1.63 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 175.7, 149.0, 140.8, 138.5, 134.9, 129.3, 128.8, 127.9, 127.5, 127.1, 126.4, 124.8, 122.2, 118.7, 85.1, 63.0, 56.6, 40.9, 28.0; IR (KBr) ν_{max} : 3388, 2918, 1728, 1466, 1332, 1290, 1258, 1148, 1016, 816, 694 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₃H₂₄BrNNaO₄⁺ [M+Na⁺] 480.0781, found 480.0780.

4. Scale-up synthesis and further transformations of the adducts

4.1 Gram scale synthesis of 3af

To an oven-dried 50 mL schlenk flask, $Pd_2(dba)_3 \cdot CHCl_3$ (64 mg, 0.0625 mmol, 1.25 mol%) and **L11** (101.5 mg, 0.125 mmol, 2.5 mol%) in dry toluene/MeOH (v:v = 10:1, 20 mL) were added under a nitrogen atmosphere. The mixture was stirred for 1.0 hour at room temperature to produce an orange solution. Then 3-substituted oxindoles **A1** (1.90 g, 5 mmol) and 2-vinyloxirane **B** (0.35 g, 5 mmol) was added at -40 °C. Afterwards, the solution was stirred at -40 °C for 12.0 hours. At last, it was subjected to silica gel column (PE/EA v:v = 5:1) to afford **1** as colorless oil in 82% yield (1.55 g) with 95% *ee*.

4.2 Further transformation of the adduct 1

26

To an oven-dried schlenk tube, **1** (0.2 mmol, 1.0 equiv.) and the solvent of THF (1.0 mL) were added. Then LiAlH₄ (1.0 mmol, 5.0 equiv.) was added under 0 °C. The reaction mixture was stirred at 60 °C under N₂ atmosphere for 12 hours. After the reaction completed, NaOH (1M, 2.0 mL) was added to quench the reaction and the water layer was extracted with EtOAc (2.0 mL×3). The combined organic layer was washed with brine (2.0 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel using PE/EA (2/1) as the eluent to give the product **26** in 84 % yield. (*R*, *E*)-4-(1-Methyl-3-phenylindolin-3-yl)but-2-en-1-ol (26)

The product **26** was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1);

colorless oil; 84% yield (46.8 mg), 93% *ee* [Daicel Chiralpak AD, hexane/*i*-propanol = 85/15, flow rate = 1.0 mL/min, λ = 254.4 nm, t (major) = 9.644, t (minor) = 10.649]; [α] = +93.4 (c 0.03, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.26 (m, 4H), 7.22 – 7.12 (m, 2H),

7.03 (dd, *J* = 7.4, 1.3 Hz, 1H), 6.72 (td, *J* = 7.4, 1.0 Hz, 1H), 6.54 (d, *J*

= 7.9 Hz, 1H), 5.68 – 5.47 (m, 2H), 4.01 – 3.90 (m, 2H), 3.49 (d, J = 9.0 Hz, 1H), 3.40 (d, J = 9.0

Hz, 1H), 2.92 – 2.79 (m, 2H), 2.76 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.9, 145.7, 134.9, 132.3, 129.0, 128.3, 128.1, 126.9, 126.4, 124.8, 117.8, 107.8, 69.2, 63.5, 52.0, 41.7, 36.0; IR (KBr) ν_{max} : 3360, 2921, 1735, 1603, 1488, 1466, 1242, 967, 741, 697 cm⁻¹; HRMS (ESI) m/z: calcd for C₁₉H₂₂NO⁺ [M+H⁺] 280.1696, found 280.1701.

To an oven-dried schlenk tube, **1** (0.2 mmol) and Pd/C (0.20 mmol, wt 10%) were added. Then the solvent of MeOH (1.0 mL) was added. The reaction mixture was stirred at room temperature under H₂ atmosphere for 12 hours. It was filtered. The filtrate was concentrated and purified by column chromatography on silica gel using PE/EA (2/1) as the eluent to give the product **27** in 82 % yield.

tert-Butyl (*R*)-3-(4-hydroxybutyl)-2-oxo-3-phenylindoline-1-carboxylate (27)

The product 27 was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1);

colorless oil; 82% yield (62.4 mg), 92% *ee* [Daicel Chiralpak IC, hexane/*i*-propanol = 95/5, flow rate = 1.0 mL/min, λ = 254.4 nm, t (major) = 9.070, t (minor) = 8.101]; [α] = +96.7 (c 0.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.2 Hz, 1H), 7.42 – 7.27 (m, 5H), 7.26 – 7.16 (m, 3H), 2.47 (td, J = 12.7, 4.3 Hz, 1H), 2.16 (td, J =

12.8, 4.1 Hz, 1H), 1.62 (s, 9H), 1.33 – 1.24 (m, 2H), 1.19 – 1.06 (m, 1H), 0.90 (tdd, J = 12.4, 6.1, 3.3 Hz, 1H), 0.82 (d, J = 7.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 177.0, 149.4, 140.2, 140.1, 131.1, 128.6, 128.3, 127.5, 127.1, 124.8, 124.5, 115.2, 84.3, 57.0, 38.4, 28.1, 26.7, 22.9, 13.8; IR (KBr) ν_{max} : 2957, 1763, 1727, 1463, 1346, 1286, 1246, 1146, 752, 719, 694 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₃H₂₇NNaO₄⁺ [M+Na⁺] 404.1833, found 404.1833.

To an oven-dried schlenk tube, **1** (0.2 mmol, 1.0 equiv.) and the solvent of MeOH (1.0 mL) were added. Then NaOMe (0.06 mmol, 0.3 equiv.) were added. The reaction mixture was stirred at room temperature under N₂ atmosphere for 1 hour. After the reaction completed, NH₄Cl (1M, 2.0 mL) was added to quench the reaction and the water layer was extracted with EtOAc (2.0 mL×3). The combined organic layer was washed with brine (2.0 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel using PE/EA (2/1) as the eluent to give the product **28** in 82 % yield.

(R, E)-3-(4-Hydroxybut-2-en-1-yl)-3-phenylindolin-2-one (28)

The product 28 was obtained after column chromatography (petroleum ether/EtOAc v:v = 2:1);

5.40 – 5.21 (m, 1H), 3.89 (d, J = 5.6 Hz, 2H), 3.14 (dd, J = 13.5, 8.2 Hz, 1H), 3.05 – 2.92 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 180.7, 141.0, 139.4, 134.2, 132.5, 128.7, 128.3, 127.5, 126.9, 125.6, 125.2, 122.6, 110.2, 63.0, 57.2, 40.0; IR (KBr) ν_{max} : 3217, 2921, 1698, 1617, 1470, 1326, 1215, 968, 747, 694, 659 cm⁻¹; HRMS (ESI) m/z: calcd for C₁₈H₁₇NNaO₂⁺ [M+Na⁺] 302.1152, found 302.1153.

To an oven-dried schlenk tube, **1** (0.2 mmol, 1.0 equiv.) and HBr (48% w.t.) were added. The reaction mixture was stirred at room temperature for 3 hours. After the reaction completed, saturated NaHCO₃ solution (2.0 mL) was added to quench the reaction and the water layer was extracted with EtOAc (2.0 mL×3). The combined organic layer was washed with brine (2.0 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel using PE/EA (5/1) as the eluent to give the product **29** in 71 % yield.

(R, E)-3-(4-Bromobut-2-en-1-yl)-3-phenylindolin-2-one (29)

The product **29** was obtained after column chromatography (petroleum ether/EtOAc v:v = 5:1); colorless oil; 71% yield (48.5mg), 94% *ee* [Daicel Chiralpak IC, hexane/*i*-propanol = 85/15, flow

rate = 1.0 mL/min, λ = 254.4 nm, t (major) = 19.061, t (minor) = 8.952]; [α] = +51.2 (c 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.04 (s, 1H), 7.46 - 7.27 (m, 6H), 7.22 (d, J = 7.4 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 6.98 (d, J = 7.7 Hz, 1H), 5.76 (dt, J = 15.2, 7.7 Hz, 1H), 5.48 (dt, J = 14.8, 7.3 Hz, 1H), 3.92 - 3.65 (m, 2H), 3.07 (m, 2H); ¹³C NMR (101

MHz, CDCl₃) δ 180.5, 141.0, 139.0, 132.0, 131.0, 129.6, 128.7, 128.4, 127.6, 127.0, 125.4, 122.6,

110.4, 56.9, 39.7, 32.4; IR (KBr) ν_{max} : 3205, 1702, 1616, 1469, 1202, 963, 747, 694, 659, 591 cm⁻¹; HRMS (ESI) m/z: calcd for C₁₈H₁₆BrNNaO⁺ [M+Na⁺] 364.0308, found 364.0303.

General procedure C for preparation of 30-34

To a schlenk tube, **29** (0.2 mmol, 1.0 equiv.), amino compound (0.8 mmol, 4.0 equiv) and the solvent of MeCN (1.0 mL) were added. Then K_2CO_3 (0.24 mmol, 1.2 equiv.) were added. The reaction mixture was stirred at 60 °C. After the reaction was complete (monitored by TLC), water was added to quench the reaction and the water layer was extracted with EtOAc (2.0 mL×3). The combined organic layer was washed with brine (2.0 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. it was subjected to silica gel column to afford the desired products **30-34**.

tert-Butyl 2-((S)-2-oxo-3-(((E)-4-((R)-2-oxo-3-phenylindolin-3-yl)but-2-en-1-yl)amino)-

2,3,4,5-tetrahydro-1H-benzo[b]azepin-1-yl)acetate (30)

Following General Procedure C, the product 30 was obtained after column chromatography

(DCM/MeOH v:v = 20:1); colorless oil; 71% yield (78.5 mg); $[\alpha] = -50.7$ (c 0.08, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 7.37 – 7.19 (m, 11H), 7.10 (dd, J = 7.5, 1.3 Hz, 1H), 7.03 (td, J = 7.5, 1.0 Hz, 1H), 6.92 (d, J = 7.8 Hz, 1H), 5.44 (dt, J = 14.0, 6.6 Hz, 1H), 5.25 (dt, J = 14.9, 7.1 Hz, 1H), 4.44 (s, 2H), 3.16

(ddd, J = 29.3, 12.4, 7.7 Hz, 2H), 3.05 (dd, J = 13.3, 6.2 Hz, 1H), 2.97 (dd, J = 13.6, 6.4 Hz, 1H), 2.82 (ddd, J = 29.0, 13.5, 7.4 Hz, 2H), 2.60 (dd, J = 13.7, 6.7 Hz, 1H), 2.27 (tt, J = 13.5, 7.4 Hz, 1H), 1.89 (td, J = 12.0, 7.4 Hz, 1H), 1.42 (s, 9H); ¹³C NMR (101 MHz, CD₃OD) δ 180.8, 172.6, 168.2, 141.5, 140.8, 139.7, 135.5, 132.7, 130.2, 129.2, 128.4, 128.2, 128.0, 127.9, 127.0, 126.9, 126.6, 124.9, 122.3, 122.1, 109.8, 81.8, 57.0, 56.7, 50.9, 39.3, 35.9, 27.7, 26.9; IR (KBr) ν_{max} : 2976, 1715, 1667, 1455, 1365, 1219, 1150, 753, 695 cm⁻¹; HRMS (ESI) m/z: calcd for C₃₄H₃₈N₃O₄⁺ [M+H⁺] 552.2857, found 552.2858.

(2*S*, 3*R*, 4*R*, 5*S*, 6*R*)-6-(Acetoxymethyl)-3-(bis((*E*)-4-((*R*)-2-oxo-3-phenylindolin-3-yl)but-2-en-1-yl)amino)tetrahydro-2H-pyran-2,4,5-triyl triacetate (31)

Following General Procedure C, the product 30 was obtained after column chromatography

(petroleum ether/EtOAc v:v = 2:1); colorless oil; 49% yield (85.4 mg); $[\alpha] = +44.0$ (c 0.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 2H), 7.37 – 7.20 (m, 10H), 7.15 (td, J = 7.7, 1.3 Hz, 2H), 7.08 (d, J =7.3 Hz, 2H), 6.98 (td, J = 7.5, 1.1 Hz, 2H), 6.91 (d, J == 7.7 Hz, 2H), 5.38 (d, J = 8.8 Hz, 1H), 5.10 – 4.99

(m, 2H), 4.99 - 4.92 (m, 1H), 4.91 - 4.77 (m, 3H), 4.17 (dd, J = 12.4, 4.6 Hz, 1H), 3.92 (dd, J = 12.3, 2.2 Hz, 1H), 3.53 (dd, J = 10.0, 2.4 Hz, 1H), 3.14 (dd, J = 13.0, 7.7 Hz, 2H), 2.83 (dd, J = 13.0, 6.7 Hz, 2H), 2.72 (dd, J = 10.5, 8.8 Hz, 1H), 2.52 (ddd, J = 46.7, 15.3, 5.6 Hz, 4H), 1.99 - 1.89 (m, 9H), 1.66 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.8, 169.6, 168.7, 168.6, 167.8, 140.2, 138.8, 132.0, 131.3, 127.7, 127.2, 126.5, 125.6, 124.9, 123.7, 121.8, 109.4, 91.5, 71.3, 69.0, 67.8, 62.3, 60.8, 56.8, 49.0, 39.5, 20.2, 19.7, 19.6; IR (KBr) ν_{max} : 2920, 1710, 1471, 1364, 1213, 1031, 799, 660, 485 cm⁻¹; HRMS (ESI) m/z: calcd for C₅₀H₅₂N₃O₁₁⁺ [M+H⁺] 870.3597, found 870.3600. **2-(Diethylamino)ethyl (***R*, *E***)-4-((4-(2-0x0-3-phenylindolin-3-yl)but-2-en-1-yl)amino)benzoate (32)**

Following General Procedure C, the product 32 was obtained after column chromatography

(DCM/MeOH v:v = 20:1); colorless oil; 50% yield (50.0 mg); [α] = +16.0 (c 0.10, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 7.75 – 7.71 (m, 2H), 7.35 – 7.26 (m, 6H), 7.13 – 7.05 (m, 1H), 7.02 (d, *J* = 7.9 Hz, 1H), 6.65 (ddt, *J* = 12.9, 6.5, 2.3 Hz, 3H), 5.86 – 5.74 (m, 1H), 5.64 (ddt, *J* = 15.0, 11.8, 7.3 Hz, 1H), 4.52 (t, *J* = 5.1 Hz, 1H), 3.80

 $(dq, J = 7.1, 3.6, 2.5 Hz, 2H), 3.75 (d, J = 7.4 Hz, 1H), 3.35 (s, 1H), 3.24 (dd, J = 13.3, 6.5 Hz, 1H), 3.16 - 2.91 (m, 7H), 1.17 (dt, J = 14.1, 5.6 Hz, 6H); ¹³C NMR (101 MHz, CD₃OD) <math>\delta$ 180.6, 166.1, 154.1, 141.8, 132.8, 131.4, 131.1, 130.7, 128.4, 127.3, 126.4, 125.0, 122.5, 113.4, 113.0, 57.0, 56.9, 56.5, 55.0, 53.5, 53.3, 39.5, 10.3, 6.5; IR (KBr) ν_{max} : 3204, 1695, 1599, 1469, 1367, 1267, 1170, 1085, 754, 697 cm⁻¹; HRMS (ESI) m/z: calcd for C₃₁H₃₆N₃O₃+ [M+H⁺] 498.2752, found 498.2752.

(R)-1-((E)-4-((R)-2-oxo-3-Phenylindolin-3-yl)but-2-en-1-yl)pyrrolidine-2-carboxamide (33)

Following General Procedure C, the product 33 was obtained after column chromatography

(qd, J = 12.3, 11.2, 6.7 Hz, 4H), 2.84 (dd, J = 13.4, 7.3 Hz, 1H), 2.21 – 1.99 (m, 2H), 1.71 (dddd, J = 23.1, 11.7, 7.8, 4.2 Hz, 3H); ¹³C NMR (101 MHz, CD₃OD) δ 182.3, 179.5, 143.0, 141.3, 134.3, 131.6, 129.6, 129.4, 128.4, 127.9, 126.0, 123.6, 111.1, 67.2, 58.6, 57.2, 54.0, 40.7, 31.4, 24.6; IR (KBr) ν_{max} : 3157, 2803, 1702, 1617, 1470, 1195, 969, 752, 95, 659, 602 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₃H₂₆N₃O₂⁺ [M+H⁺] 376.2020, found 376.2024.

(1*R*,5*S*)-3-((*E*)-4-((*R*)-2-oxo-3-Phenylindolin-3-yl)but-2-en-1-yl)-1,2,3,4,5,6-hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one (34)

Following General Procedure C, the product 34 was obtained after column chromatography

(petroleum ether/EtOAc v:v = 2:1); colorless oil; 98% yield (88.5 mg); $[\alpha] = -60.4$ (c 0.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.62 (s, 1H), 7.40 – 7.32 (m, 2H), 7.29 (t, *J* = 1.6 Hz, 1H), 7.27 – 7.16 (m, 4H), 7.13 (d, *J* = 6.7 Hz, 1H), 7.09 – 7.02 (m, 1H), 6.94 (d, *J* = 7.7 Hz,

1H), 6.48 (dd, J = 9.0, 1.4 Hz, 1H), 5.97 (dd, J = 6.9, 1.4 Hz, 1H), 5.36 (dt, J = 14.0, 6.7 Hz, 1H), 5.13 (dt, J = 14.8, 7.1 Hz, 1H), 3.95 (d, J = 15.4 Hz, 1H), 3.82 (dd, J = 15.4, 6.7 Hz, 1H), 3.12 – 3.03 (m, 1H), 2.94 – 2.81 (m, 2H), 2.69 (dt, J = 13.8, 7.5 Hz, 2H), 2.57 – 2.39 (m, 2H), 2.19 (ddd, J = 39.8, 8.8, 2.8 Hz, 2H), 1.91 – 1.71 (m, 2H), 1.63 (dt, J = 12.8, 3.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 180.2, 163.9, 151.8, 141.9, 139.9, 139.1, 132.7, 131.3, 128.5, 128.2, 128.0, 127.3, 126.9, 125.0, 122.3, 116.4, 110.2, 105.3, 60.8, 59.2, 58.1, 57.2, 50.0, 40.5, 35.5, 27.7, 25.8; IR (KBr) ν_{max} : 2934, 1712, 1642, 1542, 1470, 1135, 973, 798, 752, 695 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₉H₃₀N₃O₂+ [M+H⁺] 452.2333, found 452.2361.

5. Study of the non-linear effect

To an oven-dried schlenk tube, $Pd_2(dba)_3$ ·CHCl₃ (2.6 mg, 0.0025 mmol), L11 (x mg) and *ent*-L11 (y mg) in the mixed solvents of toluene/MeOH (v:v = 10:1, 1.0 mL) were added under a nitrogen atmosphere. The mixture was stirred for 1.0 hour at 25 °C to produce an orange solution. After that, the solution was cooled to -40 °C and stirred for additional 15 minutes, followed by the addition of 3-substituted oxindole A1 (61.8 mg, 0.20 mmol). Then, the mixture was stirred for additional 10 minutes, and a solution of 2-vinyloxirane B (44.7 mg, 0.20 mmol) in the mixed solvents of toluene/MeOH (v:v = 10:1, 1.0 mL) was added dropwise. Subsequently, the mixture was stirred at -40 °C for 12 hours and then it was subjected to silica gel column (petroleum ether/EtOAc v:v = 5:1) to afford the desired product 1.

	+	$\bigvee_{O} \frac{Pd_{2}(dba)_{3} \cdot CHCl_{3} (1.25)}{L11 \text{ and } ent-L11 (2.5)}$ toluene/MeOH (v:v = = -40 °C	mol%) =10:1)	ОН
A1		В	1	
entry	x/y (mg)	ee (%) (L11+ent-L11)	yield (%) ^[b]	<i>ee</i> (%) ^[c]
1	2.1/2.1	0	84	0
2	2.5/1.7	20	82	25
3	2.9/1.3	40	84	55
4	3.4/0.8	60	81	83
5	3.8/0.4	80	80	94
6	4.2/0	100	85	95

Table S9. Study of the non-linear effect

[a] Unless otherwise noted, reactions were carried out with A1 (0.20 mmol), B (0.20 mmol), Pd₂(dba)₃·CHCl₃ (1.25 mol%) and L11 and *ent*-L11 (2.5 mol%) in the mixed solvents of toluene/MeOH (v:v = 10:1, 2.0 mL) at -40 °C for 12 hours. [b] Isolated yield. [c] Determined by chiral HPLC.

Fig. S1 Study of the non-linear effect

6. X-Ray data of 7

Table S10. Crystal data and structure refinement for 7

Identification code	ga20230228bb_0m_a
Empirical formula	C24H27NO5
Formula weight	409.46
Temperature/K	120.00
Crystal system	monoclinic
Space group	C ₂
a/Å	22.512(5)
b/Å	19.096(4)
c/Å	10.544(2)
α /°	90
$\beta^{\prime \circ}$	95.883(7)
$\gamma/^{\circ}$	90
Volume/Å ³	4508.9(17)
Z	8
pcalcg/cm ³	1.206
µ/mm ⁻¹	0.437
F(000)	1744.0
Crystal size/mm ³	$0.2\times0.15\times0.13$
Radiation	$GaK\alpha$ ($\lambda = 1.34138$)
2θ range for data collection/°	5.592 to 106.64
Index ranges	$-26 \le h \le 26, -21 \le k \le 21, -12 \le l \le 12$

Reflections collected	39458
Independent reflections	7684 [$R_{int} = 0.0604$, $R_{sigma} = 0.0469$]
Data/restraints/parameters	7684/359/606
Goodness-of-fit on F ²	1.087
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0731, wR_2 = 0.2027$
Final R indexes [all data]	$R_1{=}0.0771,wR_2{=}0.2077$
Largest diff. peak/hole / e Å ⁻³	0.52/-0.28
Flack parameter	0.04(15)

Fig. S2 ORTEP drawing of 7 (50% thermal ellipsoids)

Figure S3. Packing of moleculars in a unit cell of 7

The product **7** (30 mg) was dissolved in methanol until the solution was supersaturated. Then diethyl ether was added until the solution was turbid. Methanol was further added until the solution became clear. The solution was sealed up and several holes were made on the cap. As the solvents evaporating, the crystals **7** were obtained. CCDC **2245300** contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

7. NMR spectra

tert-Butyl (R, E)-3-(4-hydroxybut-2-en-1-yl)-2-oxo-3-phenylindoline-1-carboxylate (1)

tert-Butyl (R, E)-3-(4-hydroxybut-2-en-1-yl)-2-oxo-3-(m-tolyl)indoline-1-carboxylate (3)

tert-Butyl (R, E)-3-(3-fluorophenyl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1-carboxylate

(4)

 $tert \hbox{-} Butyl \ (R, E) \hbox{-} 3 \hbox{-} (3 \hbox{-} chlorophenyl) \hbox{-} 3 \hbox{-} (4 \hbox{-} hydroxybut \hbox{-} 2 \hbox{-} en \hbox{-} 1 \hbox{-} yl) \hbox{-} 2 \hbox{-} oxoindoline \hbox{-} 1 \hbox{-} carboxylate$

tert-Butyl (*R*, *E*)-3-(4-(dimethylamino)phenyl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1-c arboxylate (6)

tert-Butyl (*R*, *E*)-3-(4-hydroxybut-2-en-1-yl)-3-(4-methoxyphenyl)-2-oxoindoline-1-carboxyl ate (7)

tert-Butyl (R, E)-3-(4-hydroxybut-2-en-1-yl)-2-oxo-3-(p-tolyl)indoline-1-carboxylate (8)

tert-Butyl (R, E)-3-(4-ethylphenyl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1-carboxylate

tert-Butyl (*R*, *E*)-3-(4-(*tert*-butyl)phenyl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1-carbox ylate (10)

tert-Butyl (*R*, *E*)-3-([1,1'-biphenyl]-4-yl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1-carbox ylate (11)

 $tert \hbox{-} Butyl \ (R, E) \hbox{-} 3 \hbox{-} (4 \hbox{-} fluorophenyl) \hbox{-} 3 \hbox{-} (4 \hbox{-} hydroxybut \hbox{-} 2 \hbox{-} en \hbox{-} 1 \hbox{-} yl) \hbox{-} 2 \hbox{-} oxoindoline \hbox{-} 1 \hbox{-} carboxylate$

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

 $tert \hbox{-} Butyl \ (R, E) \hbox{-} 3 \hbox{-} (4 \hbox{-} chlorophenyl) \hbox{-} 3 \hbox{-} (4 \hbox{-} hydroxybut \hbox{-} 2 \hbox{-} en \hbox{-} 1 \hbox{-} yl) \hbox{-} 2 \hbox{-} oxoindoline \hbox{-} 1 \hbox{-} carboxylate$

(13)

tert-Butyl (R, E)-3-(4-bromophenyl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1-carboxylate

(14)

 f1 (ppm)

 $\frac{1}{70}$ -10

tert-Butyl (R, E)-3-(3,5-dimethylphenyl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1-carbox

ylate (15)

 $\textit{tert-Butyl}\ (R,E) - 3 - (4 - hydroxybut - 2 - en - 1 - yl) - 3 - (naphthalen - 2 - yl) - 2 - oxoindoline - 1 - carboxylate$

(16)

 $tert \hbox{-} Butyl \ (R, E) \hbox{-} 3 \hbox{-} (4 \hbox{-} hydroxybut \hbox{-} 2 \hbox{-} en \hbox{-} 1 \hbox{-} yl) \hbox{-} 5 \hbox{-} methyl \hbox{-} 2 \hbox{-} oxo \hbox{-} 3 \hbox{-} phenylindoline \hbox{-} 1 \hbox{-} carboxylate$

tert-Butyl (*R*, *E*)-5-fluoro-3-(4-hydroxybut-2-en-1-yl)-2-oxo-3-phenylindoline-1-carboxylate

tert-Butyl (*R*, *E*)-5-chloro-3-(4-hydroxybut-2-en-1-yl)-2-oxo-3-phenylindoline-1-carboxylate

 $\textit{tert-Butyl}\ (R, E) \text{-}5\text{-}bromo\text{-}3\text{-}(4\text{-}hydroxybut\text{-}2\text{-}en\text{-}1\text{-}yl)\text{-}2\text{-}oxo\text{-}3\text{-}phenylindoline\text{-}1\text{-}carboxylate$

tert-Butyl (*R*, *E*)-3-(4-hydroxybut-2-en-1-yl)-6-methoxy-2-oxo-3-phenylindoline-1-carboxyla te (22)

 $tert \hbox{-} Butyl \ (R, E) \hbox{-} 6-fluoro \hbox{-} 3-(4-hydroxybut \hbox{-} 2-en \hbox{-} 1-yl) \hbox{-} 2-oxo \hbox{-} 3-phenylindoline \hbox{-} 1-carboxylate$

 $tert \hbox{-} Butyl \ (R, E) \hbox{-} 6 \hbox{-} chloro \hbox{-} 3 \hbox{-} (4 \hbox{-} hydroxybut \hbox{-} 2 \hbox{-} en \hbox{-} 1 \hbox{-} yl) \hbox{-} 2 \hbox{-} oxo \hbox{-} 3 \hbox{-} phenylindoline \hbox{-} 1 \hbox{-} carboxylate$

(24)

 $tert \hbox{-} Butyl \ (R, E) \hbox{-} 6 \hbox{-} bromo \hbox{-} 3 \hbox{-} (4 \hbox{-} hydroxybut \hbox{-} 2 \hbox{-} en \hbox{-} 1 \hbox{-} yl) \hbox{-} 2 \hbox{-} oxo \hbox{-} 3 \hbox{-} phenylindoline \hbox{-} 1 \hbox{-} carboxylate$

(25)

(R, E)-4-(1-Methyl-3-phenylindolin-3-yl)but-2-en-1-ol (26)

tert-Butyl (R)-3-(4-hydroxybutyl)-2-oxo-3-phenylindoline-1-carboxylate (27)

210 200 150 140 130 120 110 100 f1 (ppm) -10 170 160

(R, E)-3-(4-Hydroxybut-2-en-1-yl)-3-phenylindolin-2-one (28)

(*R*, *E*)-3-(4-Bromobut-2-en-1-yl)-3-phenylindolin-2-one (29)

tert-Butyl 2-((S)-2-oxo-3-(((E)-4-((R)-2-oxo-3-phenylindolin-3-yl)but-2-en-1-yl)amino)-

2,3,4,5-tetrahydro-1H-benzo[b]azepin-1-yl)acetate (30)

(2S, 3R, 4R, 5S, 6R) - 6 - (Acetoxymethyl) - 3 - (bis((E) - 4 - ((R) - 2 - 0xo - 3 - phenylindolin - 3 - yl)but - 2 - en - 2 - ((R) - 2 - 0xo - 3 - phenylindolin - 3 - yl)but - 2 - ((R) - 2 - 0xo - 3 - phenylindolin - 3 - yl)but - 2 - ((R) - 2 - 0xo - 3 - phenylindolin - 3 - yl)but - 2 - ((R) - 2 - 0xo - 3 - phenylindolin - 3 - yl)but - 2 - ((R) - 2 - 0xo - 3 - phenylindolin - 3 - yl)but - 2 - ((R) - 2 - ((R) - 3 - 0xo - 3 - phenylindolin - 3 - yl)but - 2 - ((R) - 3 - ((R) - ((R) - 3 - ((R) - ((R) - 3 - ((R) - ((

1-yl)amino)tetrahydro-2H-pyran-2,4,5-triyl triacetate (31)

2-(Diethylamino)ethyl (*R*, *E*)-4-((4-(2-oxo-3-phenylindolin-3-yl)but-2-en-1-yl)amino)benzoate (32)

(R)-1-((E)-4-((R)-2-oxo-3-Phenylindolin-3-yl)but-2-en-1-yl)pyrrolidine-2-carboxamide (33)

(1*R*,5*S*)-3-((*E*)-4-((*R*)-2-oxo-3-Phenylindolin-3-yl)but-2-en-1-yl)-1,2,3,4,5,6-hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one (34)

8. HPLC analysis *tert*-Butyl (*R*, *E*)-3-(4-hydroxybut-2-en-1-yl)-2-oxo-3-phenylindoline-1-carboxylate (1)

tert-Butyl (R, E)-3-(4-hydroxybut-2-en-1-yl)-3-(3-methoxyphenyl)-2-oxoindoline-1-carboxyl

ate (2)

Peak	RetTime Type		Width Area		Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	29.602	BB	0.7814	3013.53955	55.33070	50.0347
2	32.244	BB	0.8873	3009.35913	52.14118	49.9653

tert-Butyl (R, E)-3-(4-hydroxybut-2-en-1-yl)-2-oxo-3-(m-tolyl)indoline-1-carboxylate (3)

min

0 -

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	13.613	BB	0.3798	167.36639	6.69130	1.8940
2	20.842	BB	0.5787	8669.28613	230.53284	98.1060

tert-Butyl (R, E)-3-(3-fluorophenyl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1-carboxylate

tert-Butyl (R, E)-3-(3-chlorophenyl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1-carboxylate

arboxylate (6)

S68

<i>tert</i> -Butyl	(R ,	E)-3-(4	4-hydrox	xybut-2-e	n-1-yl)-	3-(4-m	ethoxyph	nenyl)-2	-oxoindoline-	1-carboxyl
--------------------	--------------	-----------------	----------	-----------	----------	--------	----------	----------	---------------	------------

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	23.913	MM R	0.9764	655.69263	11.19182	2.9290
2	40.474	BB	1.1346	2.17308e4	286.58707	97.0710

tert-Butyl (R, E)-3-(4-hydroxybut-2-en-1-yl)-2-oxo-3-(p-tolyl)indoline-1-carboxylate (8)

tert-Butyl (R, E)-3-(4-ethylphenyl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1-carboxylate

min

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	12.594	MM R	0.3977	234.43657	9.82387	3.1935
2	19.400	VB	0.5763	7106.68164	190.03984	96.8065

tert-Butyl (R, E)-3-([1,1'-biphenyl]-4-yl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1-carbox

tert-Butyl (R, E)-3-(4-fluorophenyl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1-carboxylate

tert-Butyl (R, E)-3-(4-bromophenyl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1-carboxylate

tert-Butyl (*R*, *E*)-3-(3,5-dimethylphenyl)-3-(4-hydroxybut-2-en-1-yl)-2-oxoindoline-1-carbox

tert-Butyl (R, E)-3-(4-hydroxybut-2-en-1-yl)-3-(naphthalen-2-yl)-2-oxoindoline-1-carboxylate

(16)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	20.489	MM R	0.5530	70.14021	2.11398	0.8956
2	30.377	BB	0.8242	7761.71973	142.33061	99.1044

tert-Butyl (R, E)-3-(4-hydroxybut-2-en-1-yl)-5-methyl-2-oxo-3-phenylindoline-1-carboxylate

tert-Butyl (R, E)-5-fluoro-3-(4-hydroxybut-2-en-1-yl)-2-oxo-3-phenylindoline-1-carboxylate

(19)

(20)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	11.886	BB	0.4357	2120.04663	75.47655	50.2953
2	16.168	BB	0.5196	2095.15356	61.16976	49.7047

tert-Butyl (R, E)-5-bromo-3-(4-hydroxybut-2-en-1-yl)-2-oxo-3-phenylindoline-1-carboxylate

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	12.516	MM R	0.3741	145.03342	6.46160	1.4346
2	17.553	BB	0.4841	9964.30176	319.30762	98.5654

tert-Butyl (R, E)-3-(4-hydroxybut-2-en-1-yl)-6-methoxy-2-oxo-3-phenylindoline-1-carboxyla

te (22)

$tert \hbox{-} Butyl \ (R, E) \hbox{-} 6 \hbox{-} fluoro \hbox{-} 3 \hbox{-} (4 \hbox{-} hydroxybut \hbox{-} 2 \hbox{-} en \hbox{-} 1 \hbox{-} yl) \hbox{-} 2 \hbox{-} oxo \hbox{-} 3 \hbox{-} phenylindoline \hbox{-} 1 \hbox{-} carboxylate$

(23)

(24)

tert-Butyl (R, E)-6-bromo-3-(4-hydroxybut-2-en-1-yl)-2-oxo-3-phenylindoline-1-carboxylate

(25)

10

11

13

12

14

15

min

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	11.700	MM R	0.3826	23.07956	1.00526	1.3820
2	13.888	BB	0.4791	1646.87781	53.20132	98.6180

(R, E)-4-(1-Methyl-3-phenylindolin-3-yl)but-2-en-1-ol (26)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	8.157	BB	0.2854	602.98523	32.06502	50.4985
2	9.172	BB	0.2527	591.07928	36.17029	49.5015

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	8.101	MM R	0.3039	202.93930	11.13076	3.9806
2	9.070	MM R	0.2836	4895.25830	287.72177	96.0194

(R, E)-3-(4-Hydroxybut-2-en-1-yl)-3-phenylindolin-2-one (28)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	12.247	BB	0.3764	1.63843e4	667.46289	97.2138
2	17.416	MM R	0.5666	469.58798	13.81413	2.7862

(*R*, *E*)-3-(4-Bromobut-2-en-1-yl)-3-phenylindolin-2-one (29)

[1] J.-T. Xia and X.-P. Hu, Copper-Catalyzed Asymmetric Propargylic Alkylation with Oxindoles: Diastereo- and Enantioselective Construction of Vicinal Tertiary and All-Carbon Quaternary Stereocenters, *Org. Lett.* 2020, **22**, 1102.

[2] S.-W. Duan, J. An, J.-R. Chen and W.-J. Xiao, Facile Synthesis of Enantioenriched C^{γ}-Tetrasubstituted α -Amino Acid Derivatives via an Asymmetric Nucleophilic Addition/Protonation Cascade, *Org. Lett.* 2011, **13**, 2290.