Supporting Information

Photoelectrochemical Synthesis of 4-Halomethyl Benzoxazines with Halogen Anion Source

Xiang Chen^{*}, Xiao Li, Hui Dai, Yao-Hui Wang, Zhi-Lin Wu, Wei-Min He ^{§,*}

[§]School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China

*E-mail: https://www.ucashieu.com; weiminhe@usc.edu.cn; weiminhe@usc.edu.cn; <a href="https://weiminhe@usc.edu.cn"//weiminhe@usc.edu.cn"//weiminhe@usc.edu.cn; <a href="https://weiminhe@usc.edu.cn"//weiminhe@usc.edu.cn"//weiminhe@usc.edu.cn; <a href="https://weiminhe@usc.edu.cn"//weiminhe@usc.edu.cn"//weiminhe@usc.edu.cn"///weiminhe@usc.edu.cn; <a href="https://weiminhe@usc.edu.cn"//weiminhe@usc.edu.cn"///weiminhe@usc.edu.cn"///weiminhe@usc.edu.cn; <a href="https://weiminhe@usc.edu.cn"//weiminhe@usc.edu.cn"///weiminhe@usc.edu.cn"/////weiminhe@usc.edu.cn; <a href="https://weiminhe@usc.edu.cn"//weiminhe@usc.edu.cn"///weiminhe@usc.edu.cn"///weiminhe@usc.edu.cn; <a href="https://weiminhe@usc.edu.cn"///weiminhe@usc.edu.cn"///weiminhe@usc.edu.cn; <a href="https://weiminhe@usc.edu.cn"///weiminhe@usc.edu.cn"////////weiminhe@usc.edu.cn; <a href="https://weiminhe@usc.edu.cn"//weiminhe@usc.edu.cn"///weiminhe@usc.edu.cn"/////////////////////

Table of Contents

General Information	
General information for photoelectrochemical devices	
General procedure for the synthesis of compounds 1	S2
Typical procedure for the synthesis of compound 3	
Gram-scale synthesis of 3aa and 3rc	S3
Reference	
Characterization Data for Products	
NMR Spectra for Products	

General Information

Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel. ¹H NMR spectra were recorded at 400 MHz, ¹³C NMR spectra were recorded at 101 MHz and ¹⁹F NMR spectra were recorded at 500 MHz by using a Bruker Avance 500 spectrometer. Chemical shifts were calibrated using residual undeuterated solvent as an internal reference (¹H NMR: CDCl₃ 7.26 ppm, ¹³C {1H} NMR: CDCl₃ 77.16 ppm), the chemical shifts (δ) were expressed in ppm, and J values were given in Hz. The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, br = broad. HRMS were performed on a spectrometer operating on ESI-TOF. General information for photoelectrochemical devices

The photoelectrochemical reaction system was consist of RLH-18CU purchased from Beijing Rogertech Co. ltd and DC power supply purchased from A-BF, and the reactor was designed by Beijing Rogertech Co. ltd. The spectrum of light source is as following.

General procedure for the synthesis of compounds 1

N-acyl-(2-ene)-anilines in the reactions were prepared with revised protocol according to the reported methods^[1,2].

To a solution of methyltriphenylphosphonium bromide (5.36 g, 15.0 mmol) in dry THF (20.0 mL) under N₂ atmosphere was added t-BuOK (1.68 g, 15.0 mmol) at 0 °C. The reaction medium was allowed to RT and stir for 0.5 h. 2-aminoacetophenone (1.35 g, 10.0 mmol) was dropwise added. The reaction medium was stirred at room temperature for 12 h. Upon completion of ketone, monitored by TLC, the medium was poured into hexane, stirred for 1.0 h, plugged through a silica pad. The filtrate was concentrated under reduced pressure, the crude product was purified with column chromatography on silica gel (200~300 mesh) and PE to PE/EA (20/1, v/v) as eluent to afford corresponding styrene. To a solution of styrene (0.99 g, 7.4 mmol) and Et₃N (1.53 g, 11.1 mmol) in DCM (15.00 mL) was dropwise added the solution of acyl chloride (8.90 mmol) in dichloromethane (5.00 mL) at 0 °C. After completion, the reaction mixture was purified via column chromatography to give **1a**.

Typical procedure for the synthesis of compound 3

Condition A: In an undivided flask (10 mL) equipped with a stir bar, **1** (0.2 mmol), ⁿBu₄NX (0.4 mmol), 4CzPN (0.01 mmol) and MeCN (7 mL) were added. The flask was equipped with platinum anode (10 mm × 50 mm × 0.3 mm) and platinum cathode (10 mm × 50 mm × 0.3 mm). The reaction mixture was stirred and electrolyzed at a constant current of 3 mA under radiation of 455 nm LEDs at r.t. for 12 h. After completion, the reaction medium was extracted with 5 mL ethyl acetate three times, organic phase was dried and concentrated under reduced pressure and the pure products **3** were obtained by flash chromatography on silica gel.

Condition B: In an undivided flask (10 mL) equipped with a stir bar, **1** (0.2 mmol), ⁿBu₄NX (0.4 mmol), MeCN (7 mL) were added. The flask was equipped with platinum anode (10 mm \times 50 mm \times 0.3 mm) and platinum cathode (10 mm \times 50 mm \times 0.3 mm). The reaction mixture was stirred and electrolyzed at a constant current of 6 mA and room temperature for 12 h. After completion, the reaction medium was extracted with 5 mL ethyl acetate three times, organic phase was dried and concentrated under reduced pressure and the pure products **3** were obtained by flash chromatography on silica gel.

Gram-scale synthesis of 3aa and 3rc

In an oven-dried 100-mL three-necked flask equipped with a stir bar, the platinum plate (10 mm \times 50 mm \times 0.3 mm) as the anode and platinum plate (10 mm \times 50 mm \times 0.3 mm) as cathode, **1r** (3 mmol, 1.551 g), *n*Bu₄NI (6 mmol, 1.11 g), 4CzPN (0.15 mmol, 118.2 mg), and MeCN (30 mL) were added. The reaction mixture was stirred at a constant current of 3 mA and under radiation of 455 nm LEDs for 12 h. The resulting mixture was purified by HPLC to afford the desired product **3rc** (61%, 1.18 g).

In an oven-dried 100-mL three-necked flask equipped with a stir bar, the platinum plate (10 mm \times 50 mm \times 0.3 mm) as the anode and platinum plate (10 mm \times 50 mm \times 0.3 mm) as cathode, **1a** (8 mmol, 1.896 g), *n*Bu₄NCl (16 mmol, 4.48 g), 4CzPN (0.4 mmol, 315.2 mg), and MeCN (50 mL) were added. The reaction mixture was stirred at a constant current of 3 mA and under radiation of 455 nm LEDs for 12 h. The resulting mixture was purified by HPLC to afford the desired product **3aa** (71%, 1.54 g). **Reference**

S3

- [1] Q.-H. Deng, J.-R. Chen, Q. Wei, Q.-Q. Zhao, L.-Q. Lua and W.-J. Xiao, *Chem. Commun.*, 2015, **51**, 3537.
- [2] F. Lu, J. Xu, H. Li, K. Wang, D. Ouyang, L. Sun, M. Huang, J. Jiang, J. Hu, H. Alhumade, L. Lu and A. Lei, *Green Chem.*, 2021, 23, 7982.
- [3] Q. Xie, H. J. Long, Q. Y. Zhang, P. Tang, J. Deng, J. Org. Chem. 2020, 85, 1882.

Characterization Data for Products

4-(chloromethyl)-4-methyl-2-phenyl-4H-benzo[d][1,3]oxazine (**3aa**)^[3] colorless oil, 46.1 mg, 85% yield. petroleum ether/ethyl acetate (20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, *J* = 7.5 Hz, 2H), 7.42 (t, *J* = 7.2 Hz, 1H), 7.36 (t, *J* = 7.4 Hz, 2H), 7.29 – 7.24 (m, 2H), 7.14 (td, *J* = 6.9, 6.5, 2.2 Hz, 1H), 7.08 (d, *J* = 7.7 Hz, 1H), 3.66 (dd, *J* = 108.2, 11.9 Hz, 2H), 1.81 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 156.4, 139.3, 132.5, 131.7, 129.7, 128.4, 128.4, 127.0, 126.9, 125.6, 123.4, 79.0, 50.7, 24.1.

4-(chloromethyl)-2-(4-methoxyphenyl)-4-methyl-4H-benzo[d][1,3]oxazine (**3ba**) colorless oil, 47.6 mg, 79% yield. petroleum ether/ethyl acetate (10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.15 (d, *J* = 8.9 Hz, 2H), 7.34 (dt, *J* = 15.0, 7.7 Hz, 2H), 7.21 (t, *J* = 7.3 Hz, 1H), 7.16 (d, *J* = 7.3 Hz, 1H), 6.96 (d, *J* = 8.9 Hz, 2H), 3.89 – 3.83 (m, 4H), 3.62 (d, *J* = 11.9 Hz, 1H), 1.89 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 162.6, 156.4, 139.6, 130.2, 129.7, 127.0, 126.5, 125.3, 124.9, 123.4, 113.8, 78.8, 55.5, 50.6, 23.8. HRMS: calcd for C₁₇H₁₇ClNO₂⁺ [M+H]⁺, 302.0942, found 302.0948.

4-(chloromethyl)-4-methyl-2-(4-(trifluoromethoxy)phenyl)-4H-benzo[d][1,3]oxazine (**3ca**) colorless oil, 57.6 mg, 81% yield. petroleum ether/ethyl acetate (10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.23 (d, *J* = 7.1 Hz, 2H), 7.36 (dt, *J* = 14.6, 7.6 Hz, 2H), 7.29 (d, *J* = 8.3 Hz, 2H), 7.25 (t, *J* = 7.4 Hz, 1H), 7.17 (d, *J* = 7.6 Hz, 1H), 3.75 (dd, *J* = 107.5, 12.0 Hz, 2H), 1.90 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 155.1, 151.8, 139.0, 131.0, 130.1, 129.8, 127.2, 126.9, 125.7, 123.4, 120.5 (q, *J* = 258.8 Hz), 120.5, 79.3, 50.8, 24.1. HRMS: calcd for C₁₇H₁₄ClF₃NO₂⁺ [M+H]⁺, 356.0660, found 356.0657.

1-(4-(4-(chloromethyl)-4-methyl-4H-benzo[d][1,3]oxazin-2-yl)phenyl)ethan-1-one (**3da**) colorless oil, 46.4 mg, 74% yield. petroleum ether/ethyl acetate (10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, *J* = 8.2 Hz, 2H), 7.92 (d, *J* = 8.2 Hz, 2H), 7.27 (t, *J* = 4.4 Hz, 2H), 7.18 – 7.14 (m, 1H), 7.08 (d, *J* = 7.6 Hz, 1H), 3.76 (d, *J* = 12.0 Hz, 1H), 3.55 (d, *J* = 12.0 Hz, 1H), 2.55 (s, 3H), 1.81 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 197.9, 155.3, 139.2, 138.9, 136.6, 129.8, 128.4, 128.3, 127.5, 127.0, 125.9, 123.5, 79.3, 50.8, 27.0, 24.2. HRMS: calcd for C₁₈H₁₇ClNO₂⁺ [M+H]⁺, 314.0942, found 314.0947.

4-(chloromethyl)-4-methyl-2-(p-tolyl)-4H-benzo[d][1,3]oxazine (**3ea**) colorless oil, 45.2 mg, 79% yield. petroleum ether/ethyl acetate (20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, *J* = 8.0 Hz, 2H), 7.38 – 7.32 (m, 2H), 7.28 – 7.25 (m, 2H), 7.21 (dd, *J* = 6.8, 1.8 Hz, 1H), 7.17 (dd, *J* = 7.7, 1.4 Hz, 1H), 3.75 (dd, *J* = 111.0, 11.9 Hz, 2H), 2.42 (s, 3H), 1.90 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 156.6, 142.2, 139.5, 129.7, 129.2, 128.4, 127.1, 126.7, 125.5, 123.4, 78.8, 50.6, 23.9, 21.8. HRMS: calcd for C₁₇H₁₇ClNO⁺ [M+H]⁺, 286.0993, found 286.0999.

4-(chloromethyl)-4-methyl-2-(m-tolyl)-4H-benzo[d][1,3]oxazine (**3fa**) colorless oil, 38.9 mg, 68% yield. petroleum ether/ethyl acetate (20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.02 (s, 1H), 8.00 (d, *J* = 7.1 Hz, 1H), 7.39 – 7.31 (m, 4H), 7.26 – 7.21 (m, 1H), 7.17 (d, *J* = 7.0 Hz, 1H), 3.89 – 3.64 (m, 2H), 2.44 (s, 3H), 1.91 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 156.6, 139.3, 138.1, 132.6, 132.4, 129.7, 128.8, 128.3, 127.0, 126.8, 125.6, 125.5, 123.4, 79.0, 50.7, 24.1, 21.5. HRMS: calcd for C₁₇H₁₇CINO⁺ [M+H]⁺, 286.0993, found 286.0987.

4-(chloromethyl)-4-methyl-2-(o-tolyl)-4H-benzo[d][1,3]oxazine (**3ga**) colorless oil, 40.6 mg, 71% yield. petroleum ether/ethyl acetate (20:1); ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, *J* = 7.7 Hz, 1H), 7.38 – 7.30 (m, 3H), 7.29 – 7.23 (m, 3H), 7.16 (d, *J* = 7.6 Hz, 1H), 3.93 – 3.71 (m, 2H), 2.66 (s, 3H), 1.88 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 157.8, 139.1, 138.6, 132.3, 131.5, 130.6, 130.1, 129.6, 127.1, 126.3, 125.9, 125.6, 123.4, 79.5, 51.1, 24.8, 21.8. HRMS: calcd for C₁₇H₁₇ClNO⁺ [M+H]⁺, 286.0993, found 286.0990.

2-([1,1'-biphenyl]-4-yl)-4-(chloromethyl)-4-methyl-4H-benzo[d][1,3]oxazine (**3ha**) colorless oil, 55.6 mg, 80% yield. petroleum ether/ethyl acetate (20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, *J* = 8.0 Hz, 2H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.53 (d, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 7.5 Hz, 2H), 7.29 – 7.22 (m, 3H), 7.12 (dd, *J* = 7.8, 3.3 Hz, 1H), 7.06 (d, *J* = 7.6 Hz, 1H), 3.80 – 3.50 (m, 2H), 1.80 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 156.3, 144.4, 140.5, 139.4, 131.3, 129.7, 129.0, 128.8, 128.0, 127.4, 127.1, 127.0, 126.9, 125.6, 123.5, 79.0, 50.7, 24.0. HRMS: calcd for C₂₂H₁₉CINO⁺ [M+H]⁺, 348.1150, found 348.1157.

4-(chloromethyl)-4-methyl-2-(pyridin-4-yl)-4H-benzo[d][1,3]oxazine (**3ia**) colorless oil, 36.4 mg, 67% yield. petroleum ether/ethyl acetate (5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.74 (d, *J* = 5.2 Hz, 2H), 8.01 (d, *J* = 4.9 Hz, 2H), 7.41 – 7.33 (m, 2H), 7.31 – 7.26 (m, 1H), 7.17 (d, *J* = 7.7 Hz, 1H), 3.91 – 3.62 (m, 2H), 1.90 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 154.3, 150.3, 140.0, 138.5, 129.9, 128.0, 127.0, 126.1, 123.5, 121.8, 79.6, 51.0, 24.4. HRMS: calcd for C₁₅H₁₄ClNO⁺ [M+H]⁺, 273.0789, found 273.0791.

4-(chloromethyl)-2-(4-fluorophenyl)-4-methyl-4H-benzo[d][1,3]oxazine (**3ja**) colorless oil, 34.2 mg, 59% yield. petroleum ether/ethyl acetate (20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.24 – 8.16 (m, 2H), 7.39 – 7.31 (m, 2H), 7.27 – 7.21 (m, 1H), 7.17 – 7.11 (m, 2H), 3.92 – 3.60 (m, 2H), 1.90 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 165.2 (d, *J* = 252.0 Hz), 155.5, 139.2, 130.6 (d, *J* = 8.9 Hz), 129.8, 128.6 (d, *J* = 3.2 Hz), 127.0, 126.9, 125.6, 123.4, 115.5 (d, *J* = 21.9 Hz), 79.1, 50.7, 24.0. ¹⁹F NMR (471 MHz, CDCl₃) δ -108.0 – -108.1 (m, 1F). HRMS: calcd for C₁₆H₁₄FCINO⁺ [M+H]⁺, 290.0742, found 290.0749.

4-(chloromethyl)-4-methyl-2-(naphthalen-2-yl)-4H-benzo[d][1,3]oxazine (**3ka**) colorless oil, 46.9 mg, 73% yield. petroleum ether/ethyl acetate (20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.54 (s, 1H), 8.15 (dd, *J* = 8.7, 1.8 Hz, 1H), 7.83 (d, *J* = 7.7 Hz, 1H), 7.74 (dd, *J* = 13.8, 8.1 Hz, 2H), 7.43 – 7.35 (m, 2H), 7.28 – 7.21 (m, 2H), 7.13 – 7.07 (m, 1H), 7.04 (d, *J* = 7.6 Hz, 1H), 3.77 – 3.53 (m, 2H), 1.80 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 156.5, 139.4, 135.1, 132.9, 129.8, 129.7, 129.3, 129.0, 128.1, 127.9, 127.7, 127.1, 127.0, 126.5, 125.7, 124.8, 123.5, 79.1, 50.7, 24.1. HRMS: calcd for C₂₀H₁₇ClNO⁺ [M+H]⁺, 322.0993, found 322.0989.

4-(4-(chloromethyl)-4-methyl-4H-benzo[d][1,3]oxazin-2-yl)benzaldehyde (**3la**) colorless oil, 36.6 mg, 61% yield. petroleum ether/ethyl acetate (10:1); ¹H NMR (500 MHz, CDCl₃) δ 9.93 (s, 1H), 8.23 – 8.12 (m, 2H), 7.84 – 7.76 (m, 2H), 7.27 – 7.16 (m, 2H), 7.14 – 7.08 (m, 1H), 7.02 (d, *J* = 7.6 Hz, 1H), 3.73 – 3.45 (m, 2H), 1.75 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 192.0, 155.1, 138.9, 138.3, 137.9, 129.9, 129.7, 128.8, 127.7, 127.0, 126.0, 123.5, 79.5, 50.9, 24.3. HRMS: calcd for C₁₇H₁₅CINO₂⁺ [M+H]⁺, 300.0786, found 300.0785.

2-(adamantan-2-yl)-4-(chloromethyl)-4-methyl-4H-benzo[d][1,3]oxazine (3ma) colorless oil, 52.8 mg, 80% yield. petroleum ether/ethyl acetate (10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.21 (d, *J* = 7.6 Hz, 1H), 7.14 – 7.07 (m, 2H), 7.00 (d, *J* = 7.6 Hz, 1H), 3.66 – 3.47 (m, 2H), 1.98 (s, 3H), 1.91 (s, 6H), 1.67 (s, 9H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 167.0, 139.2, 129.4, 126.6, 126.4, 125.2, 123.3, 78.0, 50.7, 39.3, 39.3, 36.8, 28.3, 24.2. HRMS: calcd for C₂₀H₂₅ClNO⁺ [M+H]⁺, 330.1619, found 330.1625.

4-(bromomethyl)-2-(4-methoxyphenyl)-4-methyl-4H-benzo[d][1,3]oxazine (3bb) colorless oil, 57.5 mg, 83% yield. petroleum ether/ethyl acetate (10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.21 – 8.15 (m, 2H), 7.38 – 7.30 (m, 2H), 7.23 – 7.14 (m, 2H), 7.01 – 6.92 (m, 2H), 3.87 (s, 3H), 3.65 (dd, *J* = 117.5, 11.1 Hz, 2H), ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 1.92 (s, 3H); 162.6, 156.3, 139.5, 130.3, 129.7, 127.1, 126.5, 125.3, 124.8, 123.3, 113.8, 77.9, 55.5, 39.8, 24.7. HRMS: calcd for C₁₇H₁₇BrNO₂⁺ [M+H]⁺, 346.0437, found 346.0440.

methyl 4-(4-(bromomethyl)-4-methyl-4H-benzo[d][1,3]oxazin-2-yl)benzoate (3nb) colorless oil, 57.5 mg, 79% yield. petroleum ether/ethyl acetate (10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.29 (d, *J* = 8.2 Hz, 2H), 8.13 (d, *J* = 8.2 Hz, 2H), 7.42 – 7.35 (m, 2H), 7.28 (td, *J* = 7.0, 6.4, 2.2 Hz, 1H), 7.19 (d, *J* = 7.6 Hz, 1H), 3.96 (s, 3H), 3.82 – 3.54 (m, 2H), 1.96 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 166.8, 155.4, 138.8, 136.5, 132.7, 129.8, 129.6, 128.3, 127.5, 127.1, 125.9, 123.4, 78.6, 52.5, 39.9, 25.1. HRMS: calcd for C₁₈H₁₇BrNO₃⁺ [M+H]⁺, 374.0386, found 374.0379.

4-(bromomethyl)-4-methyl-2-(p-tolyl)-4H-benzo[d][1,3]oxazine (**3eb**) colorless oil, 54.8 mg, 83% yield. petroleum ether/ethyl acetate (20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, *J* = 7.8 Hz, 2H), 7.35 (d, *J* = 7.0 Hz, 2H), 7.26 (d, *J* = 7.8 Hz, 2H), 7.21 (t, *J* = 7.1 Hz, 1H), 7.16 (d, *J* = 7.6 Hz, 1H), 3.80 – 3.49 (m, 2H), 2.41 (s, 3H), 1.92 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 156.5, 142.2, 139.4, 129.7, 129.6, 129.2, 128.4, 127.2, 126.7, 125.5, 123.4, 78.0, 39.8, 24.9, 21.8. HRMS: calcd for C₁₇H₁₇BrNO⁺ [M+H]⁺, 330.0488, found 330.0492.

4-(bromomethyl)-4-methyl-2-(m-tolyl)-4H-benzo[d][1,3]oxazine (**3fb**) colorless oil, 49.5 mg, 75% yield. petroleum ether/ethyl acetate (20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 16.5 Hz, 2H), 7.39 – 7.30 (m,

4H), 7.23 (td, J = 6.6, 2.2 Hz, 1H), 7.17 (d, J = 7.6 Hz, 1H), 3.78 – 3.54 (m, 2H), 2.43 (s, 3H), 1.93 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 156.6, 139.2, 138.1, 132.6, 132.3, 129.7, 128.9, 128.3, 127.2, 126.9, 125.6, 125.6, 123.4, 78.2, 39.9, 25.0, 21.6. HRMS: calcd for C₁₇H₁₇BrNO⁺ [M+H]⁺, 330.0488, found 330.0481.

4-(bromomethyl)-4-methyl-2-(o-tolyl)-4H-benzo[d][1,3]oxazine (**3gb**) colorless oil, 46.9 mg, 71% yield. petroleum ether/ethyl acetate (10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.94 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.38 – 7.30 (m, 3H), 7.29 – 7.21 (m, 3H), 7.15 (dd, *J* = 7.6, 1.4 Hz, 1H), 3.82 – 3.61 (m, 2H), 2.66 (s, 3H), 1.90 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 157.7, 139.0, 138.6, 132.3, 131.6, 130.6, 130.1, 129.6, 127.1, 126.5, 125.8, 125.6, 123.3, 78.8, 40.1, 25.7, 21.9. HRMS: calcd for C₁₇H₁₇BrNO⁺ [M+H]⁺, 330.0488, found 330.0494.

4-(bromomethyl)-2-(4-chlorophenyl)-4-methyl-4H-benzo[d][1,3]oxazine (**3ob**) colorless oil, 54.0 mg, 77% yield. petroleum ether/ethyl acetate (10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.15 (d, *J* = 8.2 Hz, 2H), 7.42 (d, *J* = 8.2 Hz, 2H), 7.34 (dt, *J* = 14.8, 7.6 Hz, 2H), 7.23 (t, *J* = 7.4 Hz, 1H), 7.16 (d, *J* = 7.6 Hz, 1H), 3.82 – 3.46 (m, 2H), 1.92 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 155.4, 139.0, 137.9, 130.9, 129.8, 129.7, 128.7, 127.2, 127.1, 125.7, 123.4, 78.4, 39.9, 24.9. HRMS: calcd for C₁₆H₁₄BrClNO⁺ [M+H]⁺, 349.9942, found 349.9948.

4-(bromomethyl)-2-(4-bromophenyl)-4-methyl-4H-benzo[d][1,3]oxazine (**3pb**) colorless oil, 53.7 mg, 68% yield. petroleum ether/ethyl acetate (20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, *J* = 8.5 Hz, 2H), 7.59 (d, *J* = 8.4 Hz, 2H), 7.35 (dt, *J* = 14.9, 7.9 Hz, 2H), 7.24 (t, *J* = 7.4 Hz, 1H), 7.17 (d, *J* = 7.6 Hz, 1H), 3.77 – 3.50 (m, 2H), 1.92 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 155.5, 138.9, 131.7, 131.3, 129.9, 129.8, 127.2, 127.1, 126.5, 125.7, 123.4, 78.4, 39.9, 24.9. HRMS: calcd for C₁₆H₁₄BrNO⁺ [M+H]⁺, 393.9437, found 393.9439.

4-(bromomethyl)-2-cyclohexyl-4-methyl-4H-benzo[d][1,3]oxazine (**3qb**) colorless oil, 46.3 mg, 72% yield. petroleum ether/ethyl acetate (20:1); ¹H NMR (500 MHz, CDCl₃) δ 7.30 (t, *J* = 7.6 Hz, 1H), 7.18 (t, *J* = 7.1 Hz, 2H), 7.10 - 7.06 (m, 1H), 3.67 - 3.47 (m, 2H), 2.39 - 2.31 (m, 1H), 2.05 - 1.95 (m, 2H), 1.79 (s, 5H),

1.71 (d, J = 12.1 Hz, 1H), 1.64 – 1.49 (m, 2H), 1.37 – 1.23 (m, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 165.3, 138.8, 129.5, 126.6, 126.5, 125.0, 123.3, 77.6, 44.1, 40.1, 29.8, 29.7, 26.0, 26.0, 25.9, 25.4. HRMS: calcd for C₁₆H₂₁BrNO⁺ [M+H]⁺, 322.0801, found 322.0800.

4-(iodomethyl)-4-methyl-2-phenyl-4H-benzo[d][1,3]oxazine (**3ac**) colorless oil, 66.8 mg, 92% yield. petroleum ether/ethyl acetate (10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, *J* = 7.4 Hz, 2H), 7.43 (t, *J* = 7.2 Hz, 1H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.27 (d, *J* = 4.3 Hz, 2H), 7.14 (dt, *J* = 8.5, 4.1 Hz, 1H), 7.08 (d, *J* = 7.6 Hz, 1H), 3.49 (dd, *J* = 94.5, 11.1 Hz, 2H), 1.84 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 156.2, 138.9, 132.3, 131.7, 129.6, 128.5, 128.4, 127.1, 126.9, 125.7, 123.2, 77.6, 26.7, 15.9. HRMS: calcd for C₁₆H₁₅INO⁺ [M+H]⁺, 364.0193, found 364.0199.

4-(iodomethyl)-2-(4-methoxyphenyl)-4-methyl-4H-benzo[d][1,3]oxazine (**3bc**) colorless oil, 68.4 mg, 87% yield, petroleum ether/ethyl acetate (8:1), ¹H NMR (500 MHz, CDCl₃) δ 8.27 – 8.17 (m, 2H), 7.37 – 7.30 (m, 2H), 7.22 – 7.14 (m, 2H), 7.00 – 6.94 (m, 2H), 3.87 (s, 3H), 3.73 – 3.39 (m, 2H), 1.92 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.6, 156.1, 139.2, 130.3, 129.6, 127.0, 126.5, 125.4, 124.7, 123.1, 113.7, 77.3, 55.5, 26.5, 16.0. HRMS: calcd for C₁₇H₁₇INO₂⁺ [M+H]⁺, 394.0298, found 394.0304.

4-(iodomethyl)-4-methyl-2-(p-tolyl)-4H-benzo[d][1,3]oxazine (**3ec**) colorless oil, 68.6 mg, 91% yield, petroleum ether/ethyl acetate (20:1), ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, *J* = 8.0 Hz, 2H), 7.28 – 7.21 (m, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.11 (ddd, *J* = 8.4, 5.3, 3.1 Hz, 1H), 7.06 (d, *J* = 7.7 Hz, 1H), 3.46 (dd, *J* = 98.7, 11.0 Hz, 2H), 2.32 (s, 3H), 1.82 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.4, 141.2, 138.1, 128.6, 128.5, 128.1, 127.5, 126.1, 125.7, 124.5, 122.1, 25.6, 20.7, 14.9. HRMS: calcd for C₁₇H₁₇INO ⁺ [M+H]⁺, 378.0349, found 378.0344.

4-(iodomethyl)-4-methyl-2-(pyridin-4-yl)-4H-benzo[d][1,3]oxazine (**3ic**) colorless oil, 53.6 mg, 74% yield, petroleum ether/ethyl acetate (4:1). ¹H NMR (500 MHz, CDCl₃) δ 8.76 (d, *J* = 4.5 Hz, 2H), 8.07 (d, *J* = 4.7 Hz, 2H), 7.38 (d, *J* = 7.0 Hz, 2H), 7.28 (td, *J* = 6.9, 5.8, 1.6 Hz, 1H), 7.18 (d, *J* = 7.6 Hz, 1H), 3.72 – 3.45 (m, 2H), 1.94 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 154.1, 150.3, 139.9, 138.1, 129.8, 128.0, 127.2, 126.1, 123.2, 121.8, 78.2, 26.8, 15.8. HRMS: calcd for C₁₅H₁₄IN₂O⁺ [M+H]⁺, 365.0145, found 365.0147.

4-(4-(iodomethyl)-4-methyl-4H-benzo[d][1,3]oxazin-2-yl)benzonitrile (**3oc**) colorless oil, 62.1 mg, 80% yield, petroleum ether/ethyl acetate (10:1). ¹H NMR (500 MHz, CDCl₃) δ 8.35 (d, *J* = 8.2 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.41 – 7.33 (m, 2H), 7.30 – 7.24 (m, 1H), 7.18 (d, *J* = 7.6 Hz, 1H), 3.56 (dd, *J* = 84.9, 11.2 Hz, 2H), 1.94 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 154.2, 138.2, 136.5, 132.1, 129.8, 128.8, 127.9, 127.1, 126.1, 123.2, 118.6, 114.8, 78.2, 26.8, 15.8. HRMS: calcd for C₁₇H₁₄IN₂O⁺ [M+H]⁺, 389.0145, found 389.0139.

(5R,8R,9S,10S,13R,14S,17R)-17-((2R)-4-(4-(iodomethyl)-4-methyl-4H-benzo[d][1,3]oxazin-2-yl)butan-2-yl)-10,13-dimethyldodecahydro-3H-cyclopenta[a]phenanthrene-3,7,12(2H,4H)-trione (**3rc** $) colorless oil, 88.8 mg, 69% yield. petroleum ether/ethyl acetate (2:1); ¹H NMR (500 MHz, CDCl₃) <math>\delta$ 7.26 – 7.19 (m, 1H), 7.15 – 7.08 (m, 2H), 7.00 (d, *J* = 7.6 Hz, 1H), 3.49 (d, *J* = 11.0 Hz, 1H), 3.34 (dd, *J* = 11.0, 4.6 Hz, 1H), 2.89 – 2.75 (m, 3H), 2.43 (tt, *J* = 10.2, 5.2 Hz, 1H), 2.35 – 2.20 (m, 5H), 2.19 – 2.12 (m, 2H), 2.11 – 2.05 (m, 2H), 2.05 – 1.99 (m, 2H), 1.98 – 1.85 (m, 3H), 1.73 (s, 5H), 1.59 – 1.51 (m, 1H), 1.33 (s, 5H), 1.22 – 1.17 (m, 1H), 1.02 (s, 3H), 0.85 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 212.1, 212.1(C'), 209.2, 208.9, 162.7, 162.7(C'), 138.4, 129.5, 129.5(C'), 126.7, 126.6(C'), 124.9, 124.8(C'), 123.1, 123.1(C'), 77.3, 77.3(C'), 57.0, 51.9, 49.1, 47.0, 45.9, 45.9(C'), 45.7, 45.6(C'), 45.1, 42.9, 38.8, 36.6, 36.1, 36.0, 35.9(C'), 35.4, 32.9, 32.8(C'), 31.8, 27.9, 27.8(C'), 26.9, 26.9(C'), 25.3, 22.0, 18.9, 18.9(C'), 16.3, 16.2(C'), 12.0 HRMS: calcd for C₃₃H₄₃INO⁺ [M+H]⁺, 644.2231, found 644.2237.

NMR Spectra for Products

¹H NMR of compound **3aa**

1 H NMR of compound **3ba**

S12

1 H NMR of compound **3ca**

S13

 1 H NMR of compound **3da**

¹H NMR of compound **3ea**

¹H NMR of compound **3fa**

¹³C NMR of compound **3fa**

¹H NMR of compound **3ga**

 $^1\mathrm{H}\,\mathrm{NMR}$ of compound **3ha**

fl (ppm) S18

$^1\mathrm{H}$ NMR of compound **3ia**

¹H NMR of compound **3ja**

¹⁹F NMR of compound **3ja**

¹³C NMR of compound **3ka**

¹³C NMR of compound **3ka**

¹H NMR of compound **3ma**

¹³C NMR of compound **3ma**

¹³C NMR of compound **3bb**

¹³C NMR of compound **3nb**

...

11.0 10.5

S26

6.0 fl (ppm)

0.5

5.0 4.5

...

3.5

3.0

0.5

1.5 1.0

8.5 8.0 7.5

10.0 9.5 9.0

¹³C NMR of compound **3eb**

$^{13}\mathrm{C}$ NMR of compound **3fb**

¹³C NMR of compound **3gb**

 $^{13}\mathrm{C}\ \mathrm{NMR}$ of compound $\mathbf{3ob}$

¹³C NMR of compound **3pb**

¹³C NMR of compound **3qb**

¹³C NMR of compound **3ac**

6.3 6.0 10 11.5 11.0 T.5 T.0 6.0 5.5 f1 (pps) 10.5 10.0 9.3 9.0 3.9 2.0 0.3 3.0 43 40 3.0 2.5 1.5 1.0 0.5

¹³C NMR of compound **3bc**

 $^{13}\mathrm{C}$ NMR of compound 3ec

$^{13}\mathrm{C}$ NMR of compound **3ic**

¹³C NMR of compound **3oc**

