Supporting Information: Comment on "Polycyclic aromatic hydrocarbons containing antiaromatic chalcogenopyr b]-chalcogenopyrans" by W. Chen, H. Zong, Y. Xie, J. Xu, J.-W. Cai, S.-D. Wang and G. Zhou, Org. Chem. Front., 2024, 11, 390.[†]

Luis Soriano-Agueda, $^{\ast a}$

Contents

1	Computational Details	2
2	Singlet and triplet state energies	3
3	EDDB function: CAM-B3LYP and B3LYP	4
4	Aromatic stabilization energies	6
5	Electronic Indices5.1CAM-B3LYP5.2B3LYP	7 7 14
6	Current density maps	21
7	Cartesian coordinates of the optimized structures with CAM-B3LYP	29

1 Computational Details

All geometries were fully optimized using the CAM-B3LYP¹ and B3LYP² DFAs, in combination with the 6-311G(d,p) basis set,³ and Grimme's dispersion correction with Beck-Johnson damping D3(BJ).⁴ The frequency analysis was used to confirm that the minimum was obtained.

We evaluated the $\text{EDDB}_H(\mathbf{r})$ function,⁵ that is, by excluding hydrogen atoms, which is recommended for organic molecules.⁶ The EDDB_H function reflects the population of delocalized electrons across all conjugated bonds in a molecule. In addition, the EDDB_F function was estimated. Run EDDB program, requires the one-electron density matrix that was calculated at the CAM-B3LYP/6-311G(d,p) level in conjunction with the natural bond orbital (NBO) version 3 code.⁷ The geometry optimizations and the EDDB functions (EDDB_H(\mathbf{r}) and EDDB_F(\mathbf{r})) were carried out in Gaussian 16 software.⁸

The calculation of the electronic aromaticity indices (AV1245,⁹ AVmin,¹⁰ and BOA¹¹) employs the quantum theory of atoms in molecules¹² (QTAIM) atomic partition performed by the AIMAll software.¹³ The atomic overlap matrices resulting from this partition and the wavefunction files (obtained with Gaussian 16 package⁸) are the input of the in-house ESI-3D code,^{11,14,15} which provides AV1245, AVmin, BOA, Iring and MCI values. The numerical integrations of the atoms in the QTAIM have errors below 0.0004 (in all the molecules). The ESI-3D code is available upon request (ematito@gmail.com).

To quantify the electron current density (J) in the bonds, the perturbed wave function was calculated through the Gauge-Independent Atomic Orbital (GIAO) method,¹⁶ with the Gaussian 16 computational package. Then we use the gauge-including magnetically induced current method (GIMIC) method¹⁷ which calculates the current flow passing through a plane perpendicular to the molecule. The plane was created in AIMAll software with a mesh size of 0.05 a.u. The length of the plane was 5 a.u. up and down from the origin. In all cases, the origin is located at the central bond's midpoint. Finally, the surface was integrated using Paraview 4.2.0.¹⁸ The current density maps display the current flowing through the plane lying 1 a.u. above the molecular plane.

2 Singlet and triplet state energies

	CAM-	B3LYP	B3I	ХР
Molecule	S = 0	S = 1	S = 0	S = 1
SS	-1104.72971094	-1104.69509478	-1104.94938732	-1104.91371215
SSe	-3108.15542818	-3108.12065282	-3108.28130263	-3108.24576046
SeSe	-5111.58112866	-5111.54630768	-5111.61325463	-5111.57797051
SS1	-1334.48518877	-1334.43550758	-1334.84960067	-
SSe1	-3337.90962095	-3337.87202143	-3338.18011832	-3338.14293585
SeSe1	-5341.33400127	-5341.29691960	-5341.51064915	_
SS2	-1948.90125845	-1948.86070188	-1949.65406646	-1949.61710221
SSe2	-3952.32619463	-3952.28623344	-3952.98511958	-3952.94840715
SeSe2	-5955.75114957	-5955.71154522	-5956.31626918	-5956.27992353

Table S1: Energies for S = 0 (singlets) and S = 1 (triplets). The methodologies used were CAM-B3LYP/6-311G(d,p) and B3LYP/6-311G(d,p). For systems SS1 and SeSe1 it was not possible to obtain a minimum on the potential energy surface. All values in a.u.

3 EDDB function: CAM-B3LYP and B3LYP

The Figure S1 shows the names assigned to each of the rings of the molecules, allowing a better analysis of Table S2.

Figure S1: SS: Thiopyrano[3,2-b]thiopyran; SSe: Selenopyrano[3,2-b]thiopyran; SeSe: Selenopyrano[3,2-b]selenopyrano[3,2-b]cyclopenta[e]Thiopyran; SSe1: Cyclopenta[5,6]Selenopyrano[3,2-b]cyclopenta[e]Thiopyran; SeSe1: Cyclopenta[5,6]Selenopyrano[3,2-b]cyclopenta[e]Selenopyrano[3,2-b]cyclopenta[e]Thiopyran; SeSe1: Cyclopenta[6,6]Selenopyrano[3,2-b]cyclopenta[e]Selenopyrano

Molecule	Ring	CAM-B3LYP	B3LYP
SS	6-MR-S(1)	1.54(0.26)	1.71 (0.28)
	6-MR-S(2)	1.54(0.26)	1.71(0.28)
SSe	6-MR-S	1.55(0.26)	1.72(0.29)
	6-MR-Se	1.44(0.24)	1.63(0.27)
SeSe	6-MR-Se(1)	1.45 (0.24)	1.64(0.27)
	6-MR-Se(2)	1.45(0.24)	1.64(0.27)
SS1	5-MR(1)	1.20 (0.24)	1.42(0.28)
	5-MR(2)	1.20(0.24)	1.42(0.28)
	6-MR-S(1)	1.82(0.30)	2.18(0.36)
	6-MR-S(2)	1.82(0.30)	2.18(0.36)
SSe1	5-MR(1)	1.24(0.25)	1.48 (0.30)
	5-MR(2)	1.10(0.22)	1.27 (0.25)
	6-MR-S	1.90(0.32)	2.29(0.38)
	6-MR-Se	1.64(0.27)	$2.01 \ (0.33)$
SeSe1	5-MR(1)	1.12(0.22)	1.31(0.26)
	$5\text{-}\mathrm{MR}(2)$	1.12(0.22)	$1.31 \ (0.26)$
	6-MR-Se(1)	$1.71 \ (0.29)$	2.10(0.35)
	6-MR-Se(2)	$1.71 \ (0.29)$	2.10(0.35)
SS2	$5\text{-}\mathrm{MR}(1)$	0.88(0.18)	1.09(0.22)
	5-MR(2)	0.88(0.18)	1.09(0.22)
	$6\text{-}\mathrm{MR}(1)$	$3.38\ (0.56)$	3.50 (0.58)
	$6\text{-}\mathrm{MR}(2)$	2.78(0.46)	2.95 (0.49)
	$6\text{-}\mathrm{MR}(3)$	$3.38\ (0.56)$	3.50 (0.58)
	$6\text{-}\mathrm{MR}(4)$	2.78(0.46)	2.95 (0.49)
	6-MR-S(1)	1.60(0.27)	1.94(0.32)
	6-MR-S(2)	1.60(0.27)	1.94(0.32)
SSe2	5-MR(1)	0.90(0.18)	$1.12 \ (0.22)$
	5-MR(2)	$0.81 \ (0.16)$	1.00(0.20)
	6-MR(1)	3.39(0.56)	3.51 (0.58)
	6-MR(2)	2.77(0.46)	2.94(0.49)
	6-MR(3)	3.34(0.56)	3.46(0.57)
	6-MR(4)	2.86(0.48)	3.03(0.50)
	6-MR-S	1.66(0.28)	2.00(0.33)
	6-MR-Se	1.50 (0.25)	1.83 (0.31)
SeSe2	5-MR(1)	0.82(0.16)	1.02(0.20)
	5-MR(2)	0.82(0.16)	1.02(0.20)
	6-MR(1)	3.35(0.56)	3.47 (0.58)
	6-MR(2)	2.85(0.47)	3.02(0.50)
	6-MR(3)	3.35(0.56)	3.47 (0.58)
	6-MR(4)	2.85(0.47)	3.02(0.50)
	6-MR-Se (1)	1.56(0.26)	1.90(0.32)
	6-MR-Se (2)	1.56(0.26)	1.90(0.32)

Table S2: EDDB_F values for the 5-MRs, 6-MRs, 6-MR-Se and for 6-MR-S. In parentheses the average values. The methodologies used were CAM-B3LYP/6-311G(d,p) and B3LYP/6-311G(d,p). All values in e

4 Aromatic stabilization energies

To calculate the aromatic stabilization energy (ASE) of SS, SSe and SeSe compounds we use a scheme similar to that reported for naphthalene.¹⁹ The scheme reported by Dixit, V. and Singh, Y. shows good performance in predicting ASE for naphthalene. Therefore we set up the following reaction scheme:

Figure S2: Chemical reactions of SS, SSe and SeSe compounds to calculate the aromatic stabilization energy.

Table S3: Aromatic stabilization energy were calculated using CAM-B3LYP/6-311G(d,p) and B3LYP/6-311G(d,p). All values in kcal/mol. The value of naphthalene is -63.96 kcal/mol taken from reference 19. Note that in the case of naphthalene the sign corresponds to an aromatic system.

	CA	B3LYP			
Molecule	ASE	ASE per ring	ASE	ASE per ring	
SS	15.28	7.64	25.09	12.54	
SSe	14.33	7.16	24.03	12.01	
SeSe	22.20	11.10	24.15	12.07	

5 Electronic Indices

5.1 CAM-B3LYP

Table S4: Electronic indices (BOA, AV1245, |AVmin|) for the 5-MRs, 6-MRs, 6-MR-Se and 6-MR-S. The methodology used was CAM-B3LYP/6-311G(d,p). By definition it is not possible to obtain AV1245 and |AVmin| for rings of 5 atoms.

Molecule	Ring	BOA	MCI	$MCI^{1/n}$	Iring	$\operatorname{Iring}^{1/n}$	AV1245	AVmin
SS	6 - MR - S(1)	0.341	0.007	0.437	0.005	0.414	0.993	0.274
	6-MR-S(2)	0.341	0.007	0.437	0.005	0.414	0.993	0.273
SSe	6-MR-S	0.337	0.007	0.437	0.005	0.414	1.069	0.253
	6-MR-Se	0.343	0.007	0.437	0.005	0.414	0.931	0.270
SeSe	6-MR-Se(1)	0.340	0.007	0.437	0.005	0.414	1.003	0.253
	6-MR-Se(2)	0.340	0.007	0.437	0.005	0.414	1.003	0.252
SS1	5-MR(1)	1.310	0.017	0.443	0.020	0.457	_	_
	5-MR(2)	1.400	0.017	0.443	0.020	0.457	_	_
	6-MR-S (1)	0.245	0.006	0.426	0.006	0.426	0.833	-0.903
	6-MR-S(2)	0.245	0.006	0.426	0.006	0.426	0.833	-0.903
SSe1	5-MR(1)	1.300	0.017	0.443	0.020	0.457	_	-
	5-MR(2)	0.997	0.017	0.443	0.020	0.457	_	_
	6-MR-S	0.244	0.007	0.437	0.006	0.426	0.878	-0.988
	6-MR-Se	0.258	0.006	0.426	0.005	0.414	0.808	-0.646
SeSe1	5-MR(1)	1.348	0.017	0.443	0.020	0.457	_	_
	5-MR(1)	1.415	0.017	0.443	0.020	0.457	_	_
	6-MR-Se(1)	0.259	0.006	0.426	0.005	0.414	0.860	-0.707
	6-MR-Se(2)	0.259	0.006	0.426	0.005	0.414	0.860	-0.708
SS2	$5\text{-}\mathrm{MR}(1)$	1.231	0.012	0.413	0.015	0.432	_	_
	5-MR(2)	1.268	0.012	0.413	0.015	0.432	_	_
	$6\text{-}\mathrm{MR}(1)$	0.149	0.041	0.587	0.029	0.554	6.366	4.367
	6-MR(2)	0.132	0.027	0.548	0.020	0.521	4.252	3.007
	$6\text{-}\mathrm{MR}(3)$	0.149	0.041	0.587	0.029	0.554	6.366	4.367
	$6\text{-}\mathrm{MR}(4)$	0.132	0.027	0.548	0.020	0.521	4.252	3.007
	6-MR-S (1)	0.269	0.006	0.426	0.005	0.414	0.896	-0.430
	6-MR-S(2)	0.269	0.006	0.426	0.005	0.414	0.896	-0.430
SSe2	$5\text{-}\mathrm{MR}(1)$	1.227	0.012	0.413	0.015	0.432	_	_
	5-MR(2)	0.860	0.012	0.413	0.015	0.432	_	_
	$6\text{-}\mathrm{MR}(1)$	0.148	0.041	0.587	0.029	0.554	6.380	4.386
	6-MR(2)	0.133	0.027	0.548	0.020	0.521	4.221	2.987
	$6\text{-}\mathrm{MR}(3)$	0.152	0.040	0.585	0.028	0.551	6.305	4.286
	$6\text{-}\mathrm{MR}(4)$	0.129	0.028	0.551	0.021	0.525	4.392	3.097
	6-MR-S	0.270	0.007	0.437	0.006	0.426	0.939	-0.461
	6-MR-Se	0.279	0.006	0.426	0.005	0.414	0.854	-0.284
SeSe2	5-MR(1)	1.256	0.012	0.413	0.015	0.432	_	_
	5-MR(2)	0.860	0.012	0.413	0.015	0.432	_	_
	6-MR(1)	0.152	0.040	0.585	0.028	0.551	6.315	4.301
	6-MR(2)	0.129	0.028	0.551	0.021	0.525	4.366	3.079
	$6\text{-}\mathrm{MR}(3)$	0.152	0.040	0.585	0.028	0.551	6.315	4.301
	6-MR(4)	0.129	0.028	0.551	0.021	0.525	4.366	3.079
	6-MR-Se(1)	0.281	0.006	0.426	0.005	0.414	0.899	-0.304
	6-MR-Se(2)	0.281	0.006	0.426	0.005	0.414	0.899	-0.304

AVmin colored

Figure S3: AVmin colored representation across of 6-MRs and global circuits in SS molecule. Green, orange, and red colors indicate bond contributions to conjugation that are, respectively, 75-100%, 5-75%, and 0-25%.

Figure S4: AVmin colored representation across of 6-MRs and global circuits in SSe molecule. Green, orange, and red colors indicate bond contributions to conjugation that are, respectively, 75-100%, 5-75%, and 0-25%.

Figure S5: AVmin colored representation across of 6-MRs and global circuits in SeSe molecule. Green, orange, and red colors indicate bond contributions to conjugation that are, respectively, 75-100%, 5-75%, and 0-25%.

Figure S6: AVmin colored representation across of 6-MRs and global circuits in SS1 molecule. By definition it is not possible to obtain AVmin for rings of 5 atoms. Green, orange, and red colors indicate bond contributions to conjugation that are, respectively, 75-100%, 5-75%, and 0-25%.

Figure S7: AVmin colored representation across a 6-MR and global circuits in SSe1 molecule. By definition it is not possible to obtain AVmin for rings of 5 atoms. Green, orange, and red colors indicate bond contributions to conjugation that are, respectively, 75-100%, 5-75%, and 0-25%.

Figure S8: AVmin colored representation across a 6-MR and global circuits in SeSe1 molecule. By definition it is not possible to obtain AVmin for rings of 5 atoms. Green, orange, and red colors indicate bond contributions to conjugation that are, respectively, 75-100%, 5-75%, and 0-25%.

Figure S9: AVmin colored representation across a 6-MR and global circuits in SS2 molecule. By definition it is not possible to obtain AVmin for rings of 5 atoms. Green, orange, and red colors indicate bond contributions to conjugation that are, respectively, 75-100%, 5-75%, and 0-25%.

Figure S10: AVmin colored representation across a 6-MR and global circuits in SSe2 molecule. By definition it is not possible to obtain AVmin for rings of 5 atoms. Green, orange, and red colors indicate bond contributions to conjugation that are, respectively, 75-100%, 5-75%, and 0-25%.

Figure S11: AVmin colored representation across a 6-MR and global circuits in SeSe2 molecule. By definition it is not possible to obtain AVmin for rings of 5 atoms. Green, orange, and red colors indicate bond contributions to conjugation that are, respectively, 75-100%, 5-75%, and 0-25%.

5.2 B3LYP

Table S5: Electronic indices (BOA, AV1245, |AVmin|) for the 5-MRs, 6-MRs, 6-MR-Se and 6-MR-S. The methodology used was B3LYP/6-311G(d,p). By definition it is not possible to obtain AV1245 and |AVmin| for rings of 5 atoms.

Molecule	Ring	BOA	MCI	$MCI^{1/n}$	Iring	$\operatorname{Iring}^{1/n}$	AV1245	AVmin
SS	6 - MR - S(1)	0.296	0.009	0.456	0.006	0.006	1.272	0.447
	6-MR-S(2)	0.296	0.009	0.456	0.006	0.006	1.272	0.447
SSe	6-MR-S	0.290	0.009	0.456	0.007	0.007	1.362	0.433
	6-MR-Se	0.290	0.008	0.447	0.006	0.006	1.230	0.455
SeSe	6-MR-Se(1)	0.289	0.009	0.456	0.006	0.006	1.318	0.442
	6-MR-Se(2)	0.289	0.009	0.456	0.006	0.006	1.318	0.442
SS1	5-MR(1)	1.254	0.019	0.453	0.022	0.022	_	_
	5-MR(2)	1.372	0.019	0.453	0.022	0.022	_	—
	6 - MR - S(1)	0.201	0.007	0.437	0.006	0.006	0.782	0.885
	6-MR-S(2)	0.201	0.007	0.437	0.006	0.006	0.782	0.885
SSe1	5 - MR(1)	1.242	0.019	0.453	0.023	0.023	_	_
	5-MR(2)	0.982	0.019	0.453	0.022	0.022	_	—
	6-MR-S	0.201	0.007	0.437	0.006	0.006	0.810	0.949
	6-MR-Se	0.212	0.006	0.426	0.006	0.006	0.797	-0.714
SeSe1	5 - MR(1)	1.293	0.019	0.453	0.023	0.023	_	_
	5 - MR(1)	1.386	0.019	0.453	0.023	0.023	_	_
	6-MR-Se(1)	0.213	0.007	0.437	0.006	0.006	0.835	-0.789
	6-MR-Se(2)	0.213	0.007	0.437	0.006	0.006	0.835	-0.789
SS2	5 - MR(1)	1.184	0.014	0.426	0.017	0.017	_	-
	5-MR(2)	1.236	0.014	0.426	0.017	0.017	_	_
	6 - MR(1)	0.119	0.040	0.585	0.028	0.028	6.153	4.065
	6-MR(2)	0.095	0.026	0.544	0.019	0.019	3.860	2.655
	6-MR(3)	0.119	0.040	0.585	0.028	0.028	6.153	4.065
	$6\text{-}\mathrm{MR}(4)$	0.095	0.026	0.544	0.019	0.019	3.860	2.655
	6-MR-S(1)	0.222	0.007	0.437	0.006	0.006	0.914	-0.404
	6-MR-S(2)	0.222	0.007	0.437	0.006	0.006	0.914	-0.404
SSe2	5 - MR(1)	1.180	0.014	0.426	0.017	0.017	-	-
	5-MR(2)	0.856	0.014	0.426	0.017	0.017	_	—
	$6\text{-}\mathrm{MR}(1)$	0.118	0.040	0.585	0.028	0.028	6.165	4.084
	6-MR(2)	0.096	0.025	0.541	0.019	0.019	3.825	2.634
	$6\text{-}\mathrm{MR}(3)$	0.122	0.040	0.585	0.028	0.028	6.096	3.985
	$6\text{-}\mathrm{MR}(4)$	0.091	0.026	0.544	0.020	0.020	3.998	2.735
	6-MR-S	0.223	0.007	0.437	0.006	0.006	0.948	-0.438
	6-MR-Se	0.229	0.006	0.426	0.006	0.006	0.910	-0.238
SeSe2	5 - MR(1)	1.211	0.014	0.426	0.017	0.017	_	_
	5-MR(2)	0.856	0.014	0.426	0.017	0.017	_	—
	$6\text{-}\mathrm{MR}(1)$	0.122	0.040	0.585	0.028	0.028	6.105	4.000
	6-MR(2)	0.092	0.026	0.544	0.020	0.020	3.969	2.716
	6-MR(3)	0.122	0.040	0.585	0.028	0.028	6.105	4.000
	6-MR(4)	0.092	0.026	0.544	0.020	0.020	3.969	2.716
	6-MR-Se(1)	0.232	0.007	0.437	0.006	0.006	0.947	-0.261
	6-MR-Se(2)	0.232	0.007	0.437	0.006	0.006	0.947	-0.261

AVmin colored

Figure S12: AVmin colored representation across of 6-MRs and global circuits in SS molecule. Green, orange, and red colors indicate bond contributions to conjugation that are, respectively, 75-100%, 5-75%, and 0-25%.

Figure S13: AVmin colored representation across of 6-MRs and global circuits in SSe molecule. Green, orange, and red colors indicate bond contributions to conjugation that are, respectively, 75-100%, 5-75%, and 0-25%.

Figure S14: AVmin colored representation across of 6-MRs and global circuits in SeSe molecule. Green, orange, and red colors indicate bond contributions to conjugation that are, respectively, 75-100%, 5-75%, and 0-25%.

Figure S15: AVmin colored representation across of 6-MRs and global circuits in SS1 molecule. By definition it is not possible to obtain AVmin for rings of 5 atoms. Green, orange, and red colors indicate bond contributions to conjugation that are, respectively, 75-100%, 5-75%, and 0-25%.

Figure S16: AVmin colored representation across a 6-MR and global circuits in SSe1 molecule. By definition it is not possible to obtain AVmin for rings of 5 atoms. Green, orange, and red colors indicate bond contributions to conjugation that are, respectively, 75-100%, 5-75%, and 0-25%.

Figure S17: AVmin colored representation across a 6-MR and global circuits in SeSe1 molecule. By definition it is not possible to obtain AVmin for rings of 5 atoms. Green, orange, and red colors indicate bond contributions to conjugation that are, respectively, 75-100%, 5-75%, and 0-25%.

Figure S18: AVmin colored representation across a 6-MR and global circuits in SS2 molecule. By definition it is not possible to obtain AVmin for rings of 5 atoms. Green, orange, and red colors indicate bond contributions to conjugation that are, respectively, 75-100%, 5-75%, and 0-25%.

Figure S19: AVmin colored representation across a 6-MR and global circuits in SSe2 molecule. By definition it is not possible to obtain AVmin for rings of 5 atoms. Green, orange, and red colors indicate bond contributions to conjugation that are, respectively, 75-100%, 5-75%, and 0-25%.

Figure S20: AVmin colored representation across a 6-MR and global circuits in SeSe2 molecule. By definition it is not possible to obtain AVmin for rings of 5 atoms. Green, orange, and red colors indicate bond contributions to conjugation that are, respectively, 75-100%, 5-75%, and 0-25%.

6 Current density maps

CAM-B3LYP

Figure S21: The map shows that J is diatropic. The methodolopgy used was CAM-B3LYP/6-311G(d,p). White bonds: hydrogen atoms; gray bonds: carbon atoms.

Figure S22: The map shows that J is paratropic. The methodolopgy used was CAM-B3LYP/6-311G(d,p). White bonds: hydrogen atoms; gray bonds: carbon atoms.

Figure S23: The map shows that J is diatropic. We use the benzene scale as a reference. The methodolopgy used was CAM-B3LYP/6-311G(d,p). White bonds: hydrogen atoms; gray bonds: carbon atoms; yellow bonds: sulfur atoms.

SSe1

Figure S24: The map shows that J is diatropic. We use the benzene scale as a reference. The methodolopgy used was CAM-B3LYP/6-311G(d,p). White bonds: hydrogen atoms; gray bonds: carbon atoms; yellow bonds: sulfur atoms; orange bonds: selenium atoms.

22

Figure S25: The map shows that J is diatropic. We use the benzene scale as a reference. The methodolopy used was CAM-B3LYP/6-311G(d,p). White bonds: hydrogen atoms; gray bonds: carbon atoms; orange bonds: selenium atoms.

Figure S26: The map shows that J is diatropic. We use the benzene scale as a reference. The methodolopgy used was CAM-B3LYP/6-311G(d,p). White bonds: hydrogen atoms; gray bonds: carbon atoms; yellow bonds: sulfur atoms.

Figure S27: The map shows that J is diatropic. We use the benzene scale as a reference. The methodolopy used was CAM-B3LYP/6-311G(d,p). White bonds: hydrogen atoms; gray bonds: carbon atoms; yellow bonds: sulfur atoms; orange bonds: selenium atoms.

Figure S28: The map shows that J is diatropic. We use the benzene scale as a reference. The methodolopgy used was CAM-B3LYP/6-311G(d,p). White bonds: hydrogen atoms; gray bonds: carbon atoms; orange bonds: selenium atoms.

Figure S29: The map shows that J is diatropic. The methodolopgy used was B3LYP/6-311G(d,p). White bonds: hydrogen atoms; gray bonds: carbon atoms.

Figure S30: The map shows that J is paratropic. The methodolopyy used was B3LYP/6-311G(d,p). White bonds: hydrogen atoms; gray bonds: carbon atoms.

Figure S31: The map shows that J is diatropic. We use the benzene scale as a reference. The methodolopgy used was B3LYP/6-311G(d,p). White bonds: hydrogen atoms; gray bonds: carbon atoms; yellow bonds: sulfur atoms.

Figure S32: The map shows that J is diatropic. We use the benzene scale as a reference. The methodolopgy used was B3LYP/6-311G(d,p). White bonds: hydrogen atoms; gray bonds: carbon atoms; yellow bonds: sulfur atoms; orange bonds: selenium atoms.

Figure S33: The map shows that J is diatropic. We use the benzene scale as a reference. The methodolopy used was B3LYP/6-311G(d,p). White bonds: hydrogen atoms; gray bonds: carbon atoms; orange bonds: selenium atoms.

Figure S34: The map shows that J is diatropic. We use the benzene scale as a reference. The methodolopgy used was B3LYP/6-311G(d,p). White bonds: hydrogen atoms; gray bonds: carbon atoms; yellow bonds: sulfur atoms.

Figure S35: The map shows that J is diatropic. We use the benzene scale as a reference. The methodolopy used was B3LYP/6-311G(d,p). White bonds: hydrogen atoms; gray bonds: carbon atoms; yellow bonds: sulfur atoms; orange bonds: selenium atoms.

Figure S36: The map shows that J is diatropic. We use the benzene scale as a reference. The methodolopgy used was B3LYP/6-311G(d,p). White bonds: hydrogen atoms; gray bonds: carbon atoms; orange bonds: selenium atoms.

7 Cartesian coordinates of the optimized structures with CAM-B3LYP

- **SS** E=-1104.72971094 a.u. ν =73.3866 cm⁻¹ H 3.493818 -0.751571 0.521956 H -3.415528 -1.634314 0.023985 H -3.493818 0.751571 0.521956 C 0.174536 -0.709647 -0.217253 C -2.538281 -1.006413 -0.057291 C 1.415556 -1.167613 0.030224 C -1.415556 1.167613 0.030224 H 3.415528 1.634314 0.023985 C -2.562259 0.303205 0.198871 S -1.112422 -1.867646 -0.603786 H -1.573564 2.236933 0.098795 C 2.538281 1.006413 -0.057291 C 2.562259 -0.303205 0.198871 S 1.112422 1.867646 -0.603786 C -0.174536 0.709647 -0.217253 H 1.573564 -2.236933 0.098795
- **SSe** E=-3108.15542818 a.u. ν =62.0898 cm⁻¹ H 3.487693 -0.809723 0.520205 H -3.412659 -1.670844 0.015379 H -3.534536 0.711389 0.531200 C 0.165104 -0.676755 -0.221434 C -2.546742 -1.026479 -0.059873 C 1.407195 -1.138815 0.017841 C -1.464121 1.164993 0.034737 H 3.547272 1.573047 0.061710 C -2.595615 0.280926 0.205224 S -1.106676 -1.855871 -0.610206 H -1.646652 2.230471 0.107440 C 2.636650 0.999211 -0.044807 C 2.581114 -0.311542 0.194645 Se 1.148532 2.008825 -0.625820 C -0.215075 0.732395 -0.215584 H 1.548517 -2.211227 0.080343

SeSe E=-5111.58112866 a.u. ν =51.8660 cm⁻¹ H 3.529669 -0.770812 0.529566 H -3.547071 -1.611448 0.054910 H -3.529669 0.770812 0.529566 C 0.205499 -0.699062 -0.219942 C -2.646620 -1.020747 -0.046857 C 1.455459 -1.136497 0.021736 C -1.455459 1.136497 0.021736 H 3.547071 1.611448 0.054910 C -2.615257 0.289466 0.200770 Se -1.141585 -1.997501 -0.632751 H -1.621298 2.205506 0.088068 C 2.646620 1.020747 -0.046857 C 2.615257 -0.289466 0.200770 Se 1.141585 1.997501 -0.632751 C -0.205499 0.699062 -0.219942 H 1.621298 -2.205506 0.088068

SS1 E=-1334.48518877 a.u. ν =49.0205 cm⁻¹ H 4.127005 -2.581048 -0.000232 H -1.613331 -2.258733 -0.000244 H -4.127005 2.581048 -0.000232 H 5.782993 -0.474057 -0.000256 H 1.613331 2.258733 -0.000244 H 4.371324 1.764617 -0.000230 C -4.704102 0.401604 -0.000251 C -3.988827 -0.755634 -0.000235 H -5.782993 0.474057 -0.000256 C 3.818334 -1.546891 -0.000236 C -3.818334 1.546891 -0.000236 C -2.546447 1.072587 -0.000241 C -2.594410 -0.400637 -0.000245 S -1.054487 1.935242 -0.000241 C 0.155284 0.671081 -0.000244 C -0.155284 -0.671081 -0.000244 C -1.492145 -1.180190 -0.000245 C 1.492145 1.180190 -0.000245 C 2.594410 0.400637 -0.000245

C 2.546447 -1.072587 -0.000241 S 1.054487 -1.935242 -0.000241 C 3.988827 0.755634 -0.000235 C 4.704102 -0.401604 -0.000251 H -4.371324 -1.764617 -0.000230

SSe1 E=-3337.90962095 a.u. ν =45.0063 cm⁻¹ H 4.178961 2.716240 -0.000213 H -4.227186 1.927102 -0.000113 C 3.893979 1.675327 -0.000206 H -4.227568 -2.422795 -0.000092 H 1.776453 -2.177528 -0.000172 H 4.520187 -1.622936 -0.000194 C -4.685293 -0.212926 -0.000104 C -3.905575 0.896832 -0.000118 H -5.766422 -0.226281 -0.000087 H -1.517173 2.293258 -0.000179 C -3.858355 -1.408285 -0.000105 C -2.564308 -1.009024 -0.000124 C -2.526455 0.462697 -0.000152 Se -0.998398 -2.016399 -0.000150 C 0.281244 -0.622553 -0.000168 C -0.062189 0.708524 -0.000175 C -1.405857 1.213327 -0.000172 C 1.626163 -1.102348 -0.000177 C 2.713988 -0.299994 -0.000190 C 2.632452 1.171740 -0.000195 S 1.121926 1.997935 -0.000189 C 4.114246 -0.623123 -0.000197 C 4.803848 0.551071 -0.000209 H 5.880933 0.647137 -0.000217

SeSe1 E=-5341.33400127 a.u. ν =40.9642 cm⁻¹ H 1.680168 -2.211905 -0.000302 H -4.378059 1.787806 -0.000327 H 4.283856 2.561053 -0.000285 H -5.869630 -0.398786 -0.000305

H -4.283856 -2.561053 -0.000277 C -3.937296 -1.538619 -0.000291 C 4.788977 0.362392 -0.000262 C 4.033227 -0.765086 -0.000292 H 5.869630 0.398786 -0.000243 H -1.680168 2.211905 -0.000328 C 3.937296 1.538619 -0.000287 C 2.651754 1.110437 -0.000294 C 2.646543 -0.361625 -0.000297 Se 1.063789 2.079990 -0.000315 C -0.188152 0.659174 -0.000313 C 0.188152 -0.659174 -0.000309 C 1.539700 -1.135063 -0.000303 C -1.539700 1.135063 -0.000319 C -2.646543 0.361625 -0.000317 C -2.651754 -1.110437 -0.000303 Se -1.063789 -2.079990 -0.000307 C -4.033227 0.765086 -0.000319 C -4.788977 -0.362392 -0.000308 H 4.378059 -1.787806 -0.000296

SS2 E=-1948.90125845 a.u. ν =15.0474 cm⁻¹ C -8.321698 1.434529 0.000297 C -6.957867 1.529043 0.000235 C -6.151267 0.368423 0.000154 C -6.776610 -0.908874 0.000137 C -8.189124 -0.969364 0.000201 C -8.944247 0.170426 0.000279 C -4.732750 0.408713 0.000088 C -3.994428 -0.773427 0.000011 C -4.623118 -2.032572 -0.000002 C -5.985877 -2.092330 0.000058 C -3.823309 1.544009 0.000092 C -2.558400 1.060022 0.000031 C -2.589441 -0.410330 -0.000030 S -1.065007 1.934253 -0.000045 C 0.151341 0.668114 -0.000045 C -0.151341 -0.668113 -0.000041

C -1.489554 -1.185817 -0.000053 C 1.489554 1.185817 -0.000066 C 2.589441 0.410330 -0.000039 C 2.558400 -1.060021 0.000036 S 1.065007 -1.934253 -0.000047 C 3.994428 0.773427 -0.000000 C 4.732750 -0.408713 0.000090 C 3.823310 -1.544009 0.000103 C 4.623118 2.032572 -0.000021 C 5.985877 2.092330 0.000043 C 6.776610 0.908874 0.000135 C 6.151267 -0.368423 0.000161 C 8.189124 0.969364 0.000203 C 8.944247 -0.170425 0.000294 C 8.321698 -1.434528 0.000321 C 6.957867 -1.529043 0.000256 H -8.928524 2.331748 0.000358 H -6.482445 2.502159 0.000248 H -8.667155 -1.942459 0.000188 H -10.025573 0.105329 0.000328 H -4.035064 -2.943125 -0.000064 H -6.492610 -3.050047 0.000045 H -4.110020 2.584283 0.000144 H -1.604361 -2.264703 -0.000076 H 1.604361 2.264703 -0.000098 H 4.110021 -2.584283 0.000165 H 4.035064 2.943125 -0.000094 H 6.492611 3.050048 0.000023 H 8.667155 1.942459 0.000183 H 10.025573 -0.105328 0.000346 H 8.928524 -2.331748 0.000393 H 6.482445 -2.502159 0.000276

SSe2 E=-3952.32619463 a.u. ν =14.3482 cm⁻¹ C -8.352475 -1.048049 0.000266 C -6.996289 -1.217551 0.000223 C -6.126922 -0.102516 0.000133 C -6.681818 1.207301 0.000088

C -8.089338 1.345159 0.000134 C -8.905328 0.248614 0.000221 C -4.713830 -0.218589 0.000084 C -3.911104 0.918270 -0.000003 C -4.468906 2.209422 -0.000045 C -5.827195 2.344125 -0.000001 C -3.863497 -1.402493 0.000113 C -2.575488 -0.991140 0.000049 C -2.522867 0.477627 -0.000025 Se -1.009592 -2.009915 0.000006 C 0.277372 -0.616945 -0.000028 C -0.058693 0.708565 -0.000049 C -1.402255 1.222245 -0.000063 C 1.624545 -1.105518 -0.000041 C 2.709342 -0.307394 -0.000034 C 2.645708 1.161603 0.000004 S 1.133239 2.000859 -0.000087 C 4.121188 -0.639352 0.000001 C 4.833472 0.559162 0.000060 C 3.899840 1.673909 0.000058 C 4.777899 -1.884403 0.000001 C 6.141467 -1.914187 0.000057 C 6.906055 -0.713392 0.000119 C 6.252808 0.549767 0.000122 C 8.319453 -0.742830 0.000178 C 9.049474 0.413319 0.000239 C 8.399352 1.663334 0.000242 C 7.033669 1.727737 0.000185 H -9.007718 -1.910557 0.000335 H -6.575194 -2.215391 0.000257 H -8.513266 2.343008 0.000100 H -9.981493 0.372418 0.000255 H -3.832502 3.086814 -0.000114 H -6.279796 3.328624 -0.000035 H -4.209558 -2.424912 0.000177 H -1.505285 2.302648 -0.000101 H 1.768200 -2.181242 -0.000055 H 4.163415 2.720268 0.000096

H 4.210152 -2.807795 -0.000046 H 6.669270 -2.860466 0.000055 H 8.818764 -1.705191 0.000175 H 10.131975 0.371919 0.000284 H 8.986249 2.573721 0.000290 H 6.536889 2.690125 0.000188

SeSe2 E=-5955.75114957 ν =13.3622 cm⁻¹ C 8.438421 1.276676 0.000676 C 7.078811 1.416828 0.000556 C 6.233676 0.283404 0.000373 C 6.816659 -1.014086 0.000316 C 8.226741 -1.121584 0.000442 C 9.019032 -0.007695 0.000618 C 4.818208 0.369311 0.000241 C 4.040009 -0.784929 0.000068 C 4.625935 -2.063795 0.000018 C 5.986665 -2.169244 0.000137 C 3.943008 1.534394 0.000268 C 2.664010 1.094831 0.000124 C 2.643282 -0.374436 -0.000002 Se 1.075876 2.077340 -0.000043 C -0.184752 0.656721 -0.000041 C 0.184752 -0.656721 -0.000038 C 1.536946 -1.141840 -0.000061 C -1.536946 1.141840 -0.000070 C -2.643281 0.374436 -0.000006 C -2.664010 -1.094831 0.000129 Se -1.075876 -2.077340 -0.000041 C -4.040009 0.784929 0.000061 C -4.818208 -0.369311 0.000244 C -3.943008 -1.534394 0.000277 C -4.625935 2.063796 0.000006 C -5.986665 2.169244 0.000127 C -6.816659 1.014086 0.000315 C -6.233676 -0.283404 0.000379 C -8.226741 1.121584 0.000444 C -9.019032 0.007695 0.000628

C -8.438421 -1.276676 0.000693 C -7.078811 -1.416828 0.000570 H 9.074881 2.153143 0.000815 H 6.636250 2.405334 0.000600 H 8.672089 -2.110071 0.000398 H 10.097616 -0.108361 0.000713 H 4.008747 -2.954846 -0.000120 H 6.460467 -3.143723 0.000094 H 4.266767 2.564075 0.000388 H 1.668733 -2.219414 -0.000120 H -1.668733 2.219414 -0.000137 H -4.266767 -2.564075 0.000404 H -4.008747 2.954846 -0.000139 H -6.460467 3.143723 0.000080 H -8.672089 2.110071 0.000395 H -10.097616 0.108361 0.000726 H -9.074881 -2.153143 0.000839 H -6.636250 -2.405334 0.000620

References

- T. Yanai, D. P. Tew, and N. C. Handy, A new hybrid exchange-correlation functional using the coulomb-attenuating method (cam-b3lyp), *Chemical Physics Letters*, 2004, 393, 51–57.
- [2] A. D. Becke, Density-functional thermochemistry. iii. the role of exact exchange, The Journal of Chemical Physics, 1993, 98, 5648–5652.
- [3] R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, *The Journal of Chemical Physics*, 1980, **72**, 650–654.
- [4] S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, Journal of Computational Chemistry, 2011, 32, 1456–1465.
- [5] D. W. Szczepanik, M. Andrzejak, J. Dominikowska, B. Pawełek, T. M. Krygowski, H. Szatylowicz, and M. Solà, The electron density of delocalized bonds (eddb) applied for quantifying aromaticity, *Physical Chemistry Chemical Physics*, 2017, 19, 28970–28981.
- [6] D. W. Szczepanik and M. Solà in Aromaticity, ed. I. Fernandez; Elsevier, 2021; pp. 259–284.
- [7] C. L. F. Weinhold and E. Glendening, What is nbo analysis and how is it useful?, International Reviews in Physical Chemistry, 2016, 35, 399-440.
- [8] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian^{*}16 Revision C.01, 2016.
- [9] E. Matito, An electronic aromaticity index for large rings, Physical Chemistry Chemical Physics, 2016, 18, 11839–11846.
- [10] C. García-Fernández, E. Sierda, M. Abadía, B. Bugenhagen, M. H. Prosenc, R. Wiesendanger, M. Bazarnik, J. E. Ortega, J. Brede, E. Matito, and A. Arnau, Exploring the relation between intramolecular conjugation and band dispersion in one-dimensional polymers, *The Journal of Physical Chemistry C*, 2017, **121**, 27118–27125.
- [11] E. Matito, M. Solà, P. Salvador, and M. Duran, Electron sharing indexes at the correlated level. application to aromaticity calculations, *Faraday Discussions Journal*, 2007, **135**, 325–345.
- [12] Bader, Atoms in molecules: A Quantum Theory, Oxford University, New York, 1990.
- [13] T. A. Keith, Aimall (version 14.11.23), 2014.
- [14] E. Matito, ESI-3D: Electron sharing indices program for 3D molecular space partitioning, 2015.
- [15] E. Matito, M. Duran, and M. Solà, The aromatic fluctuation index (flu): a new aromaticity index based on electron delocalization, The Journal of Chemical Physics, 2005, 122, 014109.
- [16] K. Ruud, T. Helgaker, K. L. Bak, P. J/orgensen, and H. J. A. Jensen, Hartree-fock limit magnetizabilities from london orbitals, *The Journal of Chemical Physics*, 1993, 99, 3847–3859.
- [17] H. Fliegl, S. Taubert, O. Lehtonen, and D. Sundholm, The gauge including magnetically induced current method, *Physical Chemistry Chemical Physics*, 2011, 13, 20500–20518.
- [18] A. Hendesron, Paraview guide, a parallel visualization application Kitware Inc, 2007.
- [19] V. A. Dixit and Y. Y. Singh, How much aromatic are naphthalene and graphene?, Computational and Theoretical Chemistry, 2019, 1162, 112504.