Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting Information for

Direct Synthesis of Gold(III)-Annulated Perylene Diimides via

Multiple C-H Auration

Wei Chen[†], Qing-Yu Yang[†], Kongchuan Wu, Jianbin Lin, Hui-Jun Zhang*

Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen

University, Xiamen 361005, Fujian, P. R. China.

Contents:

- 1) General Information
- 2) Reaction Optimization
- 3) Procedures and Characterization Data
- 4) Crystallographic Data
- 5) Optical Measurements
- 6) Electrochemical Measurements
- 7) Chemical Reduction and EPR Experiment
- 8) Theoretical Investigation
- 9) ¹H and ¹³C NMR Spectra
- 10) References

1. General Information

Unless otherwise specified, reactions were performed under argon atmosphere employing standard Schlenk and glovebox techniques. ¹H and ¹³C NMR spectra were recorded at a Bruker AV-400 or AV-500 spectrometer in CDCl₃ or CD₂Cl₂ at 298 K. Chemical shifts are given in ppm with reference to the residual solvent resonance of deuterated solvents. High-resolution mass spectrometry (HR-MS) analyses were recorded on a FT-MS instrument or a QTOF (Agilent 1290-G6545XT) instrument using ESI or APCI technique. UV-Vis absorption spectra and fluorescence spectra were obtained on a Hitachi U-3900 spectrophotometer and Hitachi F-7000, respectively. UV/vis/NIR absorption spectra were measured using an Agilent Cary 5000 UV/Vis/NIR spectrometer. The absolute quantum yields and fluorescence lifetimes were measured using an Edinburgh Instruments FLS1000 fluorescence spectrometer at room temperature. Transient PL measurements were performed using the HPL-TCSPC 510 nm laser as the excitation source. Cyclic voltammetry (CV) measurements were performed on a Bio-Logic-Science Instrument (EC-LAB SP-200). And the electrochemical measurements were carried out in dichloromethane with 0.1 M tetrabutylammonium hexafluorophosphate (ⁿBu₄NPF₆) as the supporting electrolyte at room temperature. Glassy carbon working electrode, platinum wire counter electrode and Ag/AgCl leakfree reference electrode. Single crystal X-ray diffraction data were collected on XtaLAB Synergy (Dualflex, HyPix) X-Ray single crystal diffractometer using Cu K α (λ = 1.54184 Å) micro-focus X-ray sources (PhotonJet (Cu) X-ray Source). The crystal was kept at 100 K during data collection. Using Olex2, the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimisation. The EPR measurements were conducted using a Bruker EMX-10/12 spectrometer. On the basis of crystal structures, the molecular orbitals were obtained by optimization and frequency analysis under gas phase conditions at B3LYP-D3(BJ)/def2-TZVP level,^[1] and the imide substituents were replaced by methyl groups, as they hardly affect the molecular properties.^[2]

Mechanochemical reactions were carried out using grinding vessels in a Retsch MM400 mill. Both jars (10 mL) and balls (1 mm) are made of stainless (SUS400B and SUS420J2, respectively). A heat gun QUICK 2020D+ with a temperature control function was used for high-temperature ball-milling reactions. After the ball-milling jar was closed, the jar was placed in the ball mill and a heat gun was placed directly above the ball-milling jar (distance between the heat gun and ball milling jar is ca. 1 cm) and fixed with clamps.^[3] The mechanochemical cross-coupling reactions were conducted while applying heated air to the outside of the milling jar (preset temperature: 160 °C).

2. Reaction Optimization

Entry	[Ag]	Solvent	Temp. (°C)	Yield of 4^{b} (%)
1	AgSbF ₆	DCM	60	26
2	AgSbF ₆	Et ₂ O	60	25
3	AgSbF ₆	DCE	60	25
4	AgSbF ₆	Toluene	60	N.D.
5	AgSbF ₆	CH ₃ CN	60	N.D.
6	AgSbF ₆	Acetone	60	N.D.
7	AgSbF ₆	DCE	100	26
8 ^c	AgSbF ₆	Et ₂ O	60	N.D.
9^d	AgSbF ₆	Et ₂ O	60	N.D.
10^{e}	AgSbF ₆	Et ₂ O	60	7
11	AgBF ₄	DCM	60	29
12	AgPF ₆	DCM	60	33

Table S1. Optimization of reaction conditions^a

13	AgOTs	DCM	60	N.D.
14	AgNTf ₂	DCM	60	57
15	AgNTf ₂	DCE	60	61

^{*a*}Reactions conditions: 0.03 mmol **3**, Ag salt (2.2 equiv), 24 h, argon. ^{*b*}Isolated yields of **4**. ^{*c*}Additive: KO^{*t*}Bu (2.0 eq). ^{*d*}Additive: Cy₂NH (2.0 eq). ^{*e*}Additive: Cy₂NH (20 mol%). N.D. = Not Detected.

3. Procedures and Characterization Data

Synthesis of 1.^[4] In a 15 mL Schlenk tube, a mixture of $[Cp*RhCl_2]_2$ (0.0025 mmol, 1.6 mg) and AgSbF₆ (0.0175 mmol, 6.0 mg) was stirred at room temperature in 0.2 mL of DCE for 5 minutes under argon. Subsequently, the parent PDI (0.05 mmol, 32.1 mg), NIS (0.06 mmol, 13.5 mg), Cu(OAc)_2·H_2O (0.025 mmol, 5.0 mg), and 1.3 mL of DCE were added sequentially. The tube was then sealed, and the mixture was stirred at 80 °C for 12 hours. After cooling to room temperature, the reaction mixture was diluted with CH₂Cl₂, washed with saturated Na₂S₂O₃ solution and brine. The organic layer was collected, dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography using a DCM/PE eluent. After recrystallization from DCM/MeOH, compound **1** was obtained in 51% yield (19.6 mg).

1: red solid; ¹H NMR (500 MHz, CDCl₃) δ 8.89 (s, 1H), 8.60 (d, J = 6.9 Hz, 1H), 8.55 (d, J = 7.9 Hz, 2H), 8.43 (d, J = 8.1 Hz, 1H), 8.40 (d, J = 8.1 Hz, 1H), 8.34 (d, J = 8.1 Hz, 1H), 5.26 – 5.07 (m, 2H), 2.32 – 2.14 (m, 4H), 1.99 – 1.83 (m, 4H), 1.43 – 1.18 (m, 16H), 0.87 (m, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 164.5, 163.4, 162.8, 161.9, 137.7, 134.5, 133.9, 133.5, 132.7, 132.0, 131.9, 131.6, 131.3, 131.0, 130.7, 129.4, 126.1, 126.0,

123.3, 123.1, 122.9, 55.5, 54.9, 32.2, 32.1, 29.4, 29.3, 22.8, 14.2. HR-MS (ESI) m/z $[M+Na]^+$ calcd for $C_{42}H_{45}N_2O_4INa^+$ 791.2316; Found 791.2307.

Synthesis of 2. Compound 1 (0.06 mmol, 46.2 mg), 2-pyridineboronic acid (0.18 mmol, 22.2 mg), Pd(dppf)Cl₂ (0.006 mmol, 4.4 mg), CsF (0.36 mmol, 55.0 mg), Ag₂O (0.12 mmol, 28.0 mg), and dry NEt₃ (31 μ L, 0.2 μ L/mg) were placed in a milling jar (10 mL) with 70 balls (1 mm diameter) under an argon atmosphere. The jar was then sealed and placed in a ball mill (Retsch MM 400) set to run for 60 minutes at 30 Hz, with a heat gun (the preset temperature at 160 °C). After milling, the jar was cooled and opened, and the mixture was passed through a pad of Celite eluting with CH₂Cl₂. The crude material was then purified by flash column chromatography (using SiO₂ and an eluent of EtOAc/CH₂Cl₂/PE) to yield product **2** (63%, 27.2 mg).

2: red solid; ¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, J = 4.5 Hz, 1H), 8.66 – 8.44 (m, 7H), 7.84 (t, J = 7.3 Hz, 1H), 7.48 (d, J = 7.8 Hz, 1H), 7.43 (dd, J = 7.0, 5.2 Hz, 1H), 5.15 (m, 2H), 2.31 – 2.05 (m, 4H), 1.94 – 1.74 (m, 4H), 1.29 (m, 16H), 0.96 – 0.75 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 164.6, 163.5, 159.4, 149.4, 145.7, 136.2, 134.4, 134.2, 134.0, 133.5, 131.9, 131.7, 131.2, 130.9, 130.2, 129.5, 126.8, 126.3, 126.2, 124.0, 123.4, 123.2, 122.9, 54.8, 32.2, 32.0, 29.3, 29.2, 22.75, 22.7, 14.2. HR-MS (ESI) m/z [M+Na]⁺ calcd for C₄₇H₄₉N₃O₄Na⁺ 742.3615; Found 742.3609.

S5

Synthesis of 3. In a Schlenk tube, a mixture of **2** (0.030 mmol, 22.0 mg), sodium tetrachloroaurate dihydrate (0.036 mmol, 14.3 mg), and sodium bicarbonate (0.036 mmol, 3.0 mg) was dissolved in Et₂O. The reaction mixture was stirred at 25 °C for 5 hours. Then the reaction mixture was diluted with distilled water and the organic compound was extracted with CH₂Cl₂. The organic phases were combined and dried over anhydrous magnesium sulfate. After evaporation of the solvent, the product **3** was obtained in a quantitative yield (30.7 mg).

3: red solid; ¹H NMR (500 MHz, CD₂Cl₂) δ 8.88 (d, J = 5.9 Hz, 1H), 8.81 – 8.60 (m, 7H), 8.24 (t, J = 7.5 Hz, 1H), 7.92 (d, J = 7.5 Hz, 1H), 7.89 – 7.84 (m, 1H), 5.21 – 4.80 (m, 2H), 2.30 – 1.99 (m, 4H), 1.90 – 1.69 (m, 4H), 1.37 – 1.14 (m, 16H), 0.86 (m, 12H). ¹³C NMR (126 MHz, CD₂Cl₂) δ 164.8, 164.3, 163.8, 163.7, 163.0, 162.7, 160.9, 149.5, 141.1, 139.7, 139.3, 135.4, 135.0, 134.3, 133.6, 132.8, 132.1, 131.6, 130.9, 130.5, 129.8, 127.8, 127.2, 126.8, 126.3, 124.8, 124.6, 124.2, 122.4, 121.9, 55.2, 54.9, 54.3, 54.1, 53.8, 53.6, 53.4, 32.4, 32.4, 32.3, 29.6, 29.5, 23.0, 14.2. HR-MS (ESI) m/z [M+Na]⁺ calcd for C₄₇H₄₉AuCl₃N₃O₄Na⁺ 1044.2346; Found 1044.2353.

Synthesis of 4. In a glove box, a mixture of 3 (0.05 mmol, 51.0 mg) and silver bis(trifluoromethanesulfonyl)imide (0.11 mmol, 43.0 mg) was dissolved in dry DCE in a Schlenk tube. The reaction mixture was stirred for 24 hours at 60 °C. The resulting solution was filtered through a pad of Celite and washed with CH_2Cl_2 . After concentration under reduced pressure, the solid was washed successively with MeOH and PE until the eluate was colorless. The resulting solid was then vacuum-dried to obtain blue solid 4 (61%, 29.0 mg).

4: blue solid; ¹H NMR (400 MHz, CDCl₃) *δ* 8.77 (br, 1H), 8.19 (br, 1H), 7.88 (br, 1H), 7.78 (br, 1H), 7.57 (br, 1H), 7.43 (br, 1H), 7.37 (br, 1H), 7.17 (br, 1H), 6.89 (br, 1H),

4.91 (br, 2H), 2.04 (br, 4H), 1.96 (br, 4H), 1.42 (br, 16H), 0.97 (br, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 167.9, 163.4, 162.6, 161.1, 151.8, 151.5, 148.2, 146.1, 141.4, 140.5, 134.1, 133.7, 131.3, 130.4, 129.0, 128.7, 127.4, 126.4, 124.6, 124.4, 122.5, 122.1, 120.0, 55.4, 54.5, 32.3, 29.6, 29.6, 22.9, 14.4, 14.3. HR-MS (ESI) m/z [M+Na]⁺ calcd for C₄₇H₄₇AuClN₃O₄Na⁺ 972.2813; Found 972.2800.

Synthesis of 5. A mixture of 4 (0.063 mmol, 60.0 mg), potassium tert-butoxide (0.070 mmol, 8.0 mg) and 1,3-dimethyl-1H-imidazol-3-ium iodide (0.070 mmol, 16.0 mg) in Et₂O was heated to 60 °C for 24 h. The solvent was then removed under vacuum, and the residue was dissolved in CH₂Cl₂. The mixture was filtered through a pad of Celite. After concentration under reduced pressure, it was purified by column chromatography on silica gel with EtOAc/CH₂Cl₂ as eluent, and purple solid **5** was obtained (91%, 65.4 mg).

5: purple solid; ¹H NMR (500 MHz, CDCl₃) δ 10.10 (d, J = 15.1 Hz, 1H), 8.58 – 8.35 (m, 5H), 7.55 (t, J = 6.4 Hz, 1H), 7.13 (d, J = 7.6 Hz, 1H), 7.06 – 7.02 (m, 1H), 6.72 (s, 1H), 6.67 (s, 1H), 4.98 (m, 2H), 3.59 (s, 3H), 3.45 (s, 3H), 2.14 (m, 4H), 1.90 – 1.66 (m, 4H), 1.29 (m, 16H), 0.87 – 0.76 (m, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 172.4, 165.1, 164.1, 161.3, 160.8, 155.3, 153.8, 153.4, 149.1, 143.4, 142.7, 136.5, 135.3, 135.1, 132.1, 131.6, 130.8, 129.5, 127.9, 126.6, 126.4, 123.9, 123.3, 122.6, 122.6, 122.3, 122.2, 54.6, 38.2, 32.4, 32.1, 32.0, 29.8, 29.3, 29.1, 22.8, 22.7, 14.2, 14.2. HR-MS (ESI) m/z [M+Na]⁺ calcd for C₅₂H₅₅AuIN₅O₄Na⁺ 1160.2856; Found 1160.2841.

Synthesis of 7. In a glove box, a mixture of 5 (0.046 mmol, 52.0 mg) and silver hexafluoroantimonate (0.069 mmol, 24.0 mg) was dissolved in dry toluene in a Schlenk tube. The reaction mixture was stirred for 24 hours at 80 °C. The solvent was then removed under vacuum, the residue was dissolved in CH_2Cl_2 , and the mixture was filtered through a pad of Celite. After concentration under reduced pressure, slow diffusion of *n*-hexane into the residue solution resulted in the formation of purple crystals of 7 (95%, 54.5 mg).

7: purple solid; ¹H NMR (400 MHz, CD₂Cl₂) δ 9.35 (d, J = 8.3 Hz, 1H), 8.61 – 8.54 (m, 2H), 8.48 (s, 1H), 8.43 (d, J = 7.9 Hz, 2H), 8.37 – 8.29 (m, 1H), 7.80 (t, J = 6.0 Hz, 2H), 7.52 (s, 2H), 5.17 (m, 2H), 4.03 (s, 6H), 2.31 – 2.09 (m, 4H), 1.97 – 1.87 (m, 2H), 1.85 – 1.75 (m, 2H), 1.38 – 1.21 (m, 16H), 0.89 – 0.81 (m, 12H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 177.8, 175.4, 165.2, 164.7, 163.4, 156.3, 153.5, 149.4, 147.8, 145.5, 142.8, 136.3, 135.8, 135.0, 133.3, 132.6, 130.9, 130.0, 129.5, 128.9, 126.9, 126.3, 125.6, 124.6, 124.4, 123.7, 123.0, 121.0, 55.7, 54.9, 38.4, 32.5, 29.6, 29.5, 23.0, 14.2, 14.2. HR-MS (ESI) m/z [M]⁺ calcd for C₅₂H₅₅AuN₅O₄⁺ 1010.3914; Found 1010.3906.

Synthesis of 6. A mixture of **4** (0.032 mmol, 30.4 mg), potassium tert-butoxide (0.080 mmol, 9.0 mg) and 1,3-dimethyl-1H-imidazol-3-ium iodide (0.080 mmol, 18.0 mg) in

Et₂O was heated to 60 °C for 24 h. The solvent was then removed under vacuum, the residue was dissolved in CH₂Cl₂, and the mixture was filtered through a pad of Celite. The reaction mixture was concentrated and subjected to a metathesis reaction with sodium hexafluorophosphate (0.080 mmol, 14.0 mg) in methanol. After extracting the crude product into dichloromethane layer, it was purified by column chromatography on silica gel with MeOH/CH₂Cl₂ as eluent, and purple solid **6** was obtained (68%, 27.4 mg).

6: purple solid; ¹H NMR (400 MHz, CD₂Cl₂) δ 8.49 (m, 4H), 8.38 (d, J = 4.0 Hz, 1H), 7.66 (br, 1H), 7.39 (s, 3H), 7.20 (d, J = 6.3 Hz, 1H), 7.10 (br, 1H), 6.86 (s, 2H), 5.18 – 4.63 (m, 2H), 3.70 (s, 6H), 3.46 (s, 6H), 2.13 (m, 4H), 1.72 (m, 4H), 1.26 (m, 16H), 0.86 – 0.80 (m, 12H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 175.4, 170.0, 168.1, 164.9, 164.3, 163.7, 162.4, 160.3, 157.8, 155.9, 155.2, 149.6, 136.1, 135.8, 135.4, 132.5, 132.1, 131.8, 130.3, 130.1, 129.8, 129.1, 128.1, 126.9, 126.7, 125.6, 124.6, 124.0, 123.5, 123.3, 122.8, 122.5, 114.2, 54.8, 38.2, 38.0, 36.1, 32.5, 32.3, 30.2, 30.1, 29.9, 29.7, 29.6, 29.5, 29.4, 27.6, 25.9, 23.0, 23.0, 14.2. HR-MS (ESI) m/z [M]⁺ calcd for C₅₇H₆₃AuN₇O4⁺ 1106.4602; Found 1106.4600.

Synthesis of 9. In a Schlenk tube, a mixture of $[Cp*RhCl_2]_2$ (0.05 mmol, 31.0 mg) and AgSbF₆ (0.35 mmol, 121.0 mg) was stirred at room temperature in DCE (5.0 mL) for 5 minutes under argon. And then, followed by adding the parent PDI (1.00 mmol, 755.0 mg), NIS (3.00 mmol, 675.0 mg), Cu(OAc)_2·H₂O (0.50 mmol, 100.0 mg), and DCE (15.0 mL) in succession, the mixture was stirred at 80 °C for 12 hours. After cooling down to room temperature, the reaction mixture was purified by silica gel column chromatography using DCM/hexane (2:5) as eluent to afford a mixture of PDI-I₂ (**8**) and PDI-I₃ (197.3 mg) as a red solid. The mixture (113.3 mg), 2-pyridineboronic acid

(1.00 mmol, 123.0 mg), Pd(dppf)Cl₂ (0.01 mmol, 7.3 mg), CsF (1.20 mmol, 182.3 mg), Ag₂O (0.40 mmol, 92.7 mg) and dry NEt₃ (105.0 μ L, 0.2 μ L/mg) were placed in a milling jar (10 mL) with 70 balls (1 mm, diameter) under argon atmosphere. After the jar was closed, the jar was placed in the ball mill (Retsch MM 400, 70 min, 30 Hz) with a heat gun (the preset temperature at 160 °C). After ball milling, the jar was then cooled down and opened. The mixture was passed through a pad of Celite eluting with CH₂Cl₂. The crude material was purified by flash column chromatography (SiO₂, EtOAc/CH₂Cl₂/PE) to give the product **9** (25%, 24.7 mg).

9: red solid; ¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, J = 4.6 Hz, 2H), 8.60 (m, 6H), 7.84 (t, J = 7.2 Hz, 2H), 7.49 (d, J = 7.8 Hz, 2H), 7.45 – 7.40 (m, 2H), 5.02 (m, 2H), 2.16 (br, 4H), 1.77 (br, 4H), 1.28 – 1.21 (m, 32H), 0.83 (t, J = 6.7 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 163.3, 159.5, 149.3, 145.7, 136.3, 133.9, 133.7, 132.2, 132.1, 131.5, 130.2, 128.6, 127.1, 126.3, 124.1, 123.7, 122.9, 54.8, 32.3, 31.9, 29.8, 29.3, 27.0, 22.7, 14.2. HR-MS (ESI) m/z [M+Na] ⁺ calcd for C₆₀H₆₈N₄O₄Na⁺ 931.5133; Found 931.5117.

Synthesis of 10. In a Schlenk tube, a mixture of 9 (0.027 mmol, 24.5 mg), sodium tetrachloroaurate dihydrate (0.060 mmol, 24.0 mg) and sodium bicarbonate (0.060 mmol, 5.0 mg) were dissolved in Et₂O. The reaction mixture was stirred at 25 °C overnight. Then the reaction mixture was diluted with distilled water and organic compound was extracted with CH₂Cl₂. The organic phases were combined and dried over anhydrous magnesium sulfate. After evaporation of the solvent, the product 10 was obtained in a quantitative yield (40.5 mg).

10: red solid; ¹H NMR (500 MHz, CD₂Cl₂) δ 8.95 – 8.76 (m, 8H), 8.25 (m, 2H), 7.96 – 7.83 (m, 4H), 5.19 – 4.76 (m, 2H), 2.09 (m, 4H), 1.77 (m, 4H), 1.23 (m, 32H), 0.87 – 0.81 (m, 12H). ¹³C NMR (126 MHz, CD₂Cl₂) δ 164.1, 163.8, 162.9, 162.5, 160.7, 149.6, 149.5, 141.3, 141.1, 139.8, 139.4, 134.5, 134.2, 133.9, 133.1, 130.9, 130.8, 130.4, 127.9, 127.3, 127.0, 126.0, 125.9, 125.7, 124.8, 122.9, 122.4, 55.4, 32.6, 32.3, 32.2, 32.1, 30.1, 29.8, 29.6, 27.3, 23.0, 23.0, 14.2. HR-MS (ESI) m/z [M+Na]⁺ calcd for C₆₀H₆₈Au₂Cl₆N₄O₄Na⁺ 1535.2595; Found 1535.2582.

Synthesis of 11. In a glove box, a mixture of 10 (0.16 mmol, 242.6 mg) and silver bis(trifluoromethanesulfonyl)imide (0.67 mmol, 260.7 mg) was dissolved in dry DCE in a Schlenk tube. The reaction mixture was stirred for 48 hours at 80 °C. The solvent was removed under vacuum, CH_2Cl_2 was added to the residue, and the mixture was filtered until the filtrate became colorless. Finally, the filter cake was washed successively with water and methanol to obtain dark green solid 11 (29%, 63.6 mg). 11: dark green solid; due to its low solubility in common deuterated solvents, 11 did not yield a sufficient signal-to-noise ratio for ¹H NMR spectroscopy.

Synthesis of 12. A mixture of 11 (0.046 mmol, 63.0 mg), potassium tert-butoxide (0.207 mmol, 23.2 mg) and 1-butyl-3-methylimidazolium chloride (0.207 mmol, 36.2 mg) in Et₂O was heated to 60 °C for 24 h. The solvent was then removed under vacuum,

the residue was dissolved in CH_2Cl_2 , and the mixture was filtered through a pad of Celite. The reaction mixture was concentrated and subjected to a metathesis reaction with sodium hexafluorophosphate (0.207 mmol, 35.0 mg) in methanol. After extracting the crude product into dichloromethane layer, it was purified by column chromatography on silica gel with MeOH/CH₂Cl₂ as eluent, and blue solid **12** was obtained (35%, 34.2 mg).

12: blue solid; ¹H NMR (500 MHz, CD₂Cl₂) δ 8.33 (s, 2H), 7.65 (s, 2H), 7.45 (d, J = 14.6 Hz, 2H), 7.35 (s, 2H), 7.17 (m, 6H), 6.99 – 6.80 (m, 4H), 4.74 (m, 2H), 3.98 – 3.47 (m, 20H), 2.01 – 1.71 (m, 8H), 1.28 – 1.10 (m, 48H), 0.90 – 0.75 (m, 24H). Due to the weak ¹³C NMR signal of **12**, a clear carbon peak spectrum could not be obtained. HR-MS (ESI) m/z [M]²⁺ calcd for C₉₂H₁₂₀Au₂N₁₂O₄²⁺ 925.9455; Found 925.9442.

4. Crystallographic Data

Single crystal X-ray diffraction data were collected at room temperature on XtaLAB Synergy (Dualflex, HyPix). X-Ray single crystal diffractometer using Cu K α (λ = 1.54184 Å) micro-focus X-ray sources (PhotonJet (Cu) X-ray Source). The raw data were collected and reduced by CrysAlisPro software. The structures were solved by the SHELXT with Intrinsic Phasing and refined on *F*2 by full-matrix least-squares methods with the SHELXL and OLEX2 was used as GUI.

Refinement details: All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed at calculated positions using the riding model and refined isotropically. The instructions AFIX 23 and AFIX 43 were used for the hydrogen atoms on the secondary -CH₂- and the aromatic C-H, respectively, with the parameter of Uiso = 1.2 Ueq. The instruction AFIX 33 was used for the hydrogen atoms on the highly disordered terminal -CH₃ groups with the parameter of Uiso=1.5 Ueq.

For **5** (exp_14612, CCDC 2349582), the flexible alkyl chains, solvent molecules and pyridine ring are expected to be highly disordered. Therefore, necessary Shelx restraints (i.e., DELU, DANG, SIMU, ISOR and DFIX) were applied to the alkyl chains, solvent molecules and pyridine ring to result in a reasonable model.

Fig. S1. X-ray crystal structure of **5** (50% probability thermal ellipsoids). Hydrogen atoms, alkyl chains on nitrogen atoms are omitted for clarity.

Selected bond lengths	s (Å)		
Au1-C1	2.102(6)	Au1-C3	2.093(5)
Au1-C2	2.081(5)	Au1-I1	2.654(4)
Selected bond angles	(°)	•	
C1-Au1-C2	82.4(2)	C3-Au1-I1	82.6(2)
C1-Au1-C3	101.6(2)	C2-Au1-I1	93.4(2)

 Table S2. Selected bond lengths and angles of 5.

For **6**, BASF/TWIN refinement was performed on the data. Moreover, the PDI structure expected to be highly disordered. Therefore, necessary Shelx restraints (i.e., DELU, DANG, SIMU, ISOR, FLAT and DFIX) were applied to PDI to result in a reasonable model. A satisfactory disorder model for the solvent molecules was not found, therefore the OLEX2 Solvent Mask routine (similar to PLATON/SQUEEZE) was used to mask out the disordered density.

Fig. S2. X-ray crystal structure of 6 (50% probability thermal ellipsoids). Hydrogen atoms, alkyl chains on nitrogen atoms and PF_6^- counterion are omitted for clarity.

Selected bond lengths (Å)			
Au1-C1	2.140(20)	Au1-C3	2.047(18)
Au1-C2	2.070(20)	Au1-C4	2.057(12)
Selected bond angles	(°)		
C1-Au1-C2	82.7(10)	C2-Au1-C4	95.4(8)
C1-Au1-C3	95.7(10)	C3-Au1-C4	86.2(7)

Table S3. Selected bond lengths and angles of 6.

The crystal of **12** is anistropically diffracted, at some orientation, crystal can only diffracted to 1.1 Å, while other sides, the resolution can reach 0.86 Å. This leads to so many reflections in the high-resolution range, their intensity is negative. Also the structure model can be observed with disordered at same orientation. Therefore, necessary Shelx restraints (i.e., DELU, SADI, RIGU, SIMU, ISOR and DFIX) were applied to the structure model. A satisfactory disorder model for the solvent molecules was not found, therefore the OLEX2 Solvent Mask routine (similar to PLATON/SQUEEZE) was used to mask out the disordered density.

Fig. S3. X-ray crystal structure of 12 (50% probability thermal ellipsoids). Hydrogen atoms, alkyl chains on nitrogen atoms and PF_6^- counterion are omitted for clarity.

Selected bond lengths (Å)			
Au1-C1	2.151(12)	Au1-C3	2.019(15)
Au1-C2	2.021(15)	Au1-C4	2.031(15)
Selected bond angles (°)			
C1-Au1-C2	83.7(5)	C4-Au1-C3	86.7(6)
C2-Au1-C4	90.2(6)	C3-Au1-C1	99.6(6)

 Table S4. Selected bond lengths and angles of 12.

Fig. S4. X-ray crystal structure of **7** (50% probability thermal ellipsoids). Hydrogen atoms, alkyl chains on nitrogen atoms and SbF_{6} counterion are omitted for clarity. The crystal quality is insufficient to obtain reliable data; only the primary structure is discernible.

-	
Identification code	5 (CCDC 2349582)
Empirical formula	C53.5H58.5AuIN5O4
Formula weight	1159.42
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	7.87150(10)
b/Å	20.7417(3)
c/Å	29.2003(3)
$\alpha/^{\circ}$	98.8440(10)
β/°	90.2900(10)
γ/°	95.7940(10)
Volume/Å ³	4685.71(10)
Z	4

Table S5. Crystal data and structure refinement for 5.

$\rho_{calc}g/cm^3$	1.644
μ/mm ⁻¹	11.484
F(000)	2314.0
Crystal size/mm ³	$0.25\times0.15\times0.1$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	4.334 to 150.328
Index ranges	$-9 \le h \le 8, -25 \le k \le 26, -36 \le l \le 36$
Reflections collected	56949
Reflections collected Independent reflections	56949 18349 [R _{int} = 0.0362, R _{sigma} = 0.0373]
Reflections collected Independent reflections Data/restraints/parameters	56949 18349 [R _{int} = 0.0362, R _{sigma} = 0.0373] 18349/1889/1698
Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F ²	56949 18349 [R _{int} = 0.0362, R _{sigma} = 0.0373] 18349/1889/1698 1.043
Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F ² Final R indexes [I>=2σ (I)]	56949 18349 [$R_{int} = 0.0362, R_{sigma} = 0.0373$] 18349/1889/1698 1.043 $R_1 = 0.0445, wR_2 = 0.1234$
Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F^2 Final R indexes [I>= 2σ (I)] Final R indexes [all data]	56949 18349 [$R_{int} = 0.0362, R_{sigma} = 0.0373$] 18349/1889/1698 1.043 $R_1 = 0.0445, wR_2 = 0.1234$ $R_1 = 0.0524, wR_2 = 0.1295$

5. Optical Measurements

Fig. S5. Normalized fluorescence spectra of compounds 3, 5, 6, 7, and 12 in DCM (c=10 μ M, λ_{ex} =490 nm; λ_{ex} =580 nm for 12).

Fig. S6. Time-resolved fluorescence decay curve of 3. (c = 5 μ M, DCM).

Fig. S7. The image of quantum yield of 3. ($c = 5 \mu M$, DCM).

Fig. S8. Time-resolved fluorescence decay curve of 7. (c = 5μ M, DCM).

Fig. S9. The image of quantum yield of 7. ($c = 5 \mu M$, DCM).

Fig. S10. Time-resolved fluorescence decay curve of 5. ($c = 5 \mu M$, DCM).

Fig. S11. The image of quantum yield of 5. ($c = 5 \mu M$, DCM).

Fig. S12. Time-resolved fluorescence decay curve of 6. (c = 5 μ M, DCM).

Fig. S13. The image of quantum yield of 6. ($c = 5 \mu M$, DCM).

Fig. S14. Time-resolved fluorescence decay curve of 12. (c = 5 μ M, DCM).

Fig. S15. The image of quantum yield of 12. ($c = 5 \mu M$, DCM).

Compounds	Φ (%)	τ (ns)
3	98.21	4.15
7	31.54	2.90
5	95.86	7.17
6	88.47	7.05
12	83.58	9.70

Table S6. Summary of quantum yield and fluorescence lifetime.

6. Electrochemical Measurements

Fig. S16. Cyclic voltammograms and square wave voltammograms of 5, 6, 7, and 12. ($c = 2 \times 10^{-3}$ M, 0.1 M TBAHFP, DCM)

7. Chemical Reduction and EPR Experiment

Fig. S17. Normalized UV/Vis-NIR absorption spectra of $[7]^{-}$ in DCM, insert: EPR spectra of $[7]^{-}$ (c = 5 × 10⁻⁵ M)

Fig. S18. Normalized UV/Vis-NIR absorption spectra of $[12]^{-1}$ in DCM, insert: EPR spectra of $[12]^{-1}$ (c = 5 × 10⁻⁵ M)

8. Theoretical Investigation

Fig. S19. Molecular orbitals of 3, 5, 6, 7 and 12.

Table S7. Summary of optical and theoretically calculated energy gaps.

Compounds	ΔE_{g}^{Opt} (eV)	$\Delta E_{g}^{DFT}(eV)$
3	2.29	2.479
7	2.06	2.334
5	2.07	2.379
6	2.07	2.376
12	1.91	2.259

9. ¹H and ¹³C NMR Spectra

Fig. S20. ¹H NMR and ¹³C NMR spectrum of 1 in CDCl₃.

Fig. S21. ¹H NMR and ¹³C NMR spectrum of 2 in CDCl₃.

Fig. S22. ¹H NMR and ¹³C NMR spectrum of 3 in CD₂Cl₂.

Fig. S23. ¹H NMR and ¹³C NMR spectrum of 4 in CDCl₃.

Fig. S24. ¹H NMR and ¹³C NMR spectrum of 5 in CDCl₃.

Fig. S25. ¹H NMR and ¹³C NMR spectrum of 7 in CD₂Cl₂.

Fig. S26. ¹H NMR and ¹³C NMR spectrum of 6 in CD₂Cl₂.

Fig. S27. ¹H NMR and ¹³C NMR spectrum of 9 in CDCl₃.

Fig. S28. ¹H NMR and ¹³C NMR spectrum of 10 in CD₂Cl₂.

Fig. S29. ¹H NMR and ¹³C NMR spectrum of 12 in CD₂Cl₂.

10. References

[1] (a) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, (Gaussian 16, Revision A.03), Gaussian, Inc., Wallingford CT, 2016; (b) P. J. Stephens and F. J. Devlin, *J. Phys. Chem.*, 1994, **98**, 11623; (c) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J. Chem. Phys.*, 2010, **132**,

15404; (d) S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456;

- (e) F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057.
- [2] F. Würthner, Chem. Commun., 2004, 14, 1564.
- [3] T. Seo, N. Toyoshima, K. Kubota and H. Ito, J. Am. Chem. Soc., 2021, 143, 6165.
- [4] J. Wu, D. He, L. Zhang, Y. Liu, X. Mo, J. Lin and H.-J. Zhang, *Org. Lett.*, 2017, 19, 5438.