Supporting Information for

Ferrocene-based Conjugated Macrocycles: Shotgun Synthesis, Size-

dependent Properties and Tunable Fluorescence Intensity

Lingyun Zhu⁺, Jingdong Xu⁺, Bin Lan, Hui Xu, Xinyu Chen, Hideya Kono, Jianfeng Yan, Wenjuan Li, Akiko Yagi, Yaofeng Yuan, Kenichiro Itami and Yuanming Li^{*}

[*] L. Zhu, J. Xu, B. Lan, H. Xu, X. Chen, Dr. J. Yan, Prof. Dr. Y. Yuan, Prof. Dr. Y. Li Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou 350108, China.
E-mail: yuanming.li@fzu.edu.cn
H. Kono, Prof. Dr. A. Yagi, Prof. Dr. K. Itami Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602 (Japan)
Dr. W. Li
Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
[+] These authors contributed equally to this work.

1. General	3
2. Synthesis	4
3. X-Ray Crystallography	9
4. Density Functional Theory (DFT) Computational Details	12
4.1 TD-DFT calculation	
4.2 Strain energy calculation	16
4.3 Relative energy in the rotation process of Fc-[8]CPP	20
4.4 Oxidation state optimization of Fc-CPPs	21
5. Variable temperature NMR (VT-NMR) of Fc-[8]CPP	23
6. Redox property of Fc-[8]CPP	23
7. Oxidation titration of Fc-[11]CPP	26
8. UV-Vis spectra titration of fullerenes to Fc-CPPs	
9. K _{sv} curve in titration process of Fc-CPPs with fullerenes	27
10. Cartesian coordinates of optimized structures	28
11. Reference	58
12. NMR spectra	59
13. High-resolution mass spectra (HRMS)	69
14. Maldi-tof mass spectra (HRMS)	71

Content

1. General

1,3-diiodoferrocene (1) was synthesized as reported ^[S1], and other materials were purchased from commercial without further purification. ¹H and ¹³C NMR spectra were recorded at 298 K on a JNM-ECZ500R and JNM-ECZ600R instrument. The residual deuterated solvent signal was used as the internal reference in NMR spectra (CDCl₃ δ [ppm] = 7.26 for ¹H NMR, δ [ppm] =77.16 for ¹³C NMR). High-resolution mass spectra (HRMS) were acquired on the Thermo Scientific Exactive Plus Mass spectrometer equipped with an electrospray ionization (ESI) source. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was acquired on Bruker autoflex maX MALDI-TOF MS spectrometer. Electron Paramagnetic Resonance (EPR) Spectroscopy was recorded at 298 K on a Bruker A300 instrument. Single-crystal X-ray data were collected at 100 K on a Synergy Custom (Liquid MetalJet D2+) diffractometer equipped with Ga-Ka ($\lambda = 1.34050$) and reduction was performed by using the program CrysAlisPro.^[S2] The structures were solved by the direct method and refined by full-matrix least-squares on F² using SHELXTL and OLEX2.^[S3] The UV-Vis spectra were recorded on a UV 2700 spectrometer and steady-state emission spectra were acquired using Hitachi Instruments, F-7000 spectrometer. Transient emission spectra were acquired using Edinburgh Instruments, FLS980 spectrometer equipped with a 340 nm laser. The UV-Vis-NIR spectra were recorded on Perkins Elmer Lambda 900 spectrometer. The fluorescence quantum yields were determined using a Hamamatsu absolute PL quantum yield spectrometer C11347 Quantaurus-QY (Hamamatsu, Japan). The CV and DPV were recorded on Matrohm Autolab and CHI 760E potentiostat (Chinstruments), working electrode: glassy carbon; counter electrode: Pt; reference electrode: Ag/AgCl, scan ratio: 100 mV/s, concentration: 0.1 mM unless otherwise specified. The measurements were carried out in Bu_4NPF_6 (0.1 M) as a supporting electrolyte. Oxidation titrations were measured 30 minutes after the addition of the oxidizing reagent (AgSbF₆).

2. Synthesis

Scheme S1. The synthetic route of Fc-[8]CPP and Fc-[11]CPP.

2.1 Synthesis of 1,3-bis(4-chlorophenyl)ferrocene (2)

A mixture solution of 1,3-diiodoferrocene (3.50 g, 8.0 mmol, 1.0 equiv), 2-(4-chlorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (7.63 g, 32.0 mmol, 4.0 equiv), K₂CO₃ (11.06 g, 80.0 mmol, 10.0 equiv) in THF (180 mL) and H₂O (60 mL) was degassed with Ar for 30 min. Then Pd(PPh₃)₄ (0.93 g, 0.8 mmol, 0.1 equiv) was added and degassed with Ar for 5 min. After stirring at 80 °C for 36 h, the resulting mixture was cooled to room temperature, and concentrated under a vacuum. Then water (100 mL) was added and extracted with DCM (3 × 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under a vacuum. The crude residue was purified via column chromatography on silica gel (100% PE) to afford red solid (1.31 g, 40%).¹H NMR (500 MHz, Chloroform-*d*) δ 7.47 – 7.43 (m, 4H), 7.30 – 7.26 (m, 4H), 5.08 (t, *J* = 1.5 Hz, 1H), 4.78 (d, *J* = 1.4 Hz, 2H), 3.92 (s, 5H). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 137.5, 131.9, 128.7, 127.3, 85.4, 71.5, 67.6, 65.0. HRMS (ESI) *m/z* calculated for C₂₂H₁₆Cl₂Fe [M]⁺ 405.9973, Found: 405.9966.

2.2 Synthesis of 1,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ferrocene (3)

To 90 mL of dry 1,4-dioxane were added 1,3-bis(4-chlorophenyl)ferrocene **2** (1.83 g, 4.5 mmol, 1.0 equiv), bis(pinacolato)diboron (6.85 g, 27.0 mmol, 6.0 equiv), potassium acetate (2.65 g, 27.0 mmol, 6.0 equiv) and Pd₂(dba)₃ (0.08 g, 0.09 mmol, 0.02 equiv), Xphos (0.13 g, 0.27 mmol, 0.06 equiv). The mixture was degassed with Ar for 30 min and heated to 110 °C for 48 h under the protection of nitrogen. After cooling to room temperature, 100 mL DCM was added, and then filtered with Celite. The filtrate was washed with water and brine. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under a vacuum. The residue was dissolved with 30 mL DCM and 100 mL methanol, then concentrated under a vacuum until most of the solid precipitated. The precipitate was filtered and washed with methanol, then dried under vacuum to afford red solid (2.52 g, 95%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.76 (d, *J* = 7.7 Hz, 4H), 7.55 (d, *J* = 7.7 Hz, 4H), 5.24 (s, 1H), 4.87 (s, 2H), 3.89 (s, 5H), 1.37 (s, 24H). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 142.3, 135.0, 125.4, 86.0, 83.9, 71.5, 67.9, 65.4, 25.0. HRMS (ESI) *m/z* calculated for C₃₄H₄₁B₂FeO₄ [M+H]⁺ 591.2535, Found: 591.2526.

2.3 Synthesis of 4b

4,4'-Dibromoterphenyl (3.88 g, 10.0 mmol, 1.0 equiv.), bis(pinacolato)diboron (5.59 g, 22.0 mmol, 2.2 equiv.), KOAc (3.92 g, 40.0 mmol, 4.0 equiv.) and 80 mL of 1,4-dioxane were placed in a 250 mL Schlenk flask under an argon atmosphere and then Pd(dppf)Cl₂ (439.0 mg, 0.6 mmol, 0.06 equiv.) was added to the flask. The flask was evacuated and backfilled with argon three times and then refluxed for 36 h. The mixture was filtered through Celite (washed with chloroform) and the solvent was removed under vacuum affording the crude product as a brown solid. The crude product was washed with a small amount of DCM to give a pure product **4b** as a white solid (3.48 g, 80%). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 8.3 Hz, 4H), 7.71 (s, 4H), 7.66 (d, *J* = 8.3 Hz, 4H), 1.37 (s, 24H). ¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 143.4, 140.4, 135.5, 127.8, 126.5, 84.0, 25.0. HRMS (ESI) *m*/*z* calculated for C₃₀H₃₆B₂O₄ [M]⁺ 482.2794, Found: 482.2779.

2.4 Synthesis of Fc-[8]CPP

1,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ferrocene (3) (59.0 mg, 0.1 mmol, 1.0 equiv), 4,4'-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,1'-biphenyl (4a) (162.5 mg, 0.4 mmol, 4.0 equiv), Pt(cod)Cl₂ (187.1 mg, 0.5 mmol, 5.0 equiv) and CsF (455.7 mg, 3.0 mmol, 30.0 equiv) and DCE (80 mL) were placed in a 250 mL Schlenk flask then heated at 85 °C for 48 h. The most of solvent was removed under reduced pressure after the reaction was completed. After the addition of methanol (75 mL) to the residue, the precipitates were collected and washed further with methanol (50 mL). The crude material was dried under vacuum and then placed in a 100 mL Schlenk flask. Triphenylphosphine (1.31 g, 5.0 mmol, 50.0 equiv) and toluene (32 mL) were added to the flask. The inhomogeneous mixture was stirred at ambient temperature for 30 min, and then at 110 °C stirred for 48 h. The mixture was passed through column chromatography on silica gel (PE/DCM = 20%-50%) and the solvent was removed under reduced pressure. The crude product was purified by GPC to afford the product as a red solid (17.5 mg, 22%).¹H NMR (600 MHz, Chloroform-d) δ 7.58 – 7.54 (m, 20H), 7.49 (d, J = 8.7 Hz, 4H), 7.41 (d, J = 8.6 Hz, 4H), 7.37 (d, J = 8.6 Hz, 4H), 4.51 (d, J = 1.5 Hz, 2H), 4.33 (s, 5H), 3.63 (t, J = 1.6 Hz, 1H). ¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 138.8, 138.7, 138.3, 138.1, 138.0, 138.0, 128.7, 127.6, 127.6, 127.5, 127.5, 127.4, 127.0, 89.2, 80.3, 70.1, 63.9. HRMS (ESI) m/z calculated for C₅₈H₄₀Fe [M]⁺ 792.2474, Found: 792.2471.

[8]CPP was also obtained as a yellow solid (5.8 mg, 1%), ¹H NMR (600 MHz, Chloroform-*d*) 7.48 (s, 32 H), this is in accordance with the results reported in the existing literature ^[S4]; **di-Fc-CPPs** and **tri-Fc-CPPs** could also be monitored by MALDI-TOF MS (See Figure S28), but can not be effective separated due to low conversion rate.

Fc-[11]CPP was prepared according to **Fc-[8]CPP** with **4b** (144.5 mg, 0.3 mmol, 3.0 equiv), Pt(cod) Cl₂ (149.7 mg, 0.4 mmol, 4.0 equiv) and CsF (364.5 mg, 2.4 mmol, 24.0 equiv). Purified by silica gel chromatography (PE/DCM=20%-50%) gave **Fc-[11]CPP** as an orange-red solid (19.5 mg, 19%). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.64 (q, *J* = 1.9 Hz, 4H), 7.63 – 7.60 (m, 28H), 7.58 – 7.56 (m, 4H), 7.47 (s, 8H), 4.62 (d, *J* = 1.5 Hz, 2H), 4.22 (s, 5H), 4.21 (t, *J* = 1.5 Hz, 1H). ¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 139.5, 138.8, 138.7, 138.7, 138.7, 138.6, 138.6, 138.1, 128.2, 127.5, 127.5, 127.5, 127.4, 127.4, 127.1, 88.8, 76.5, 70.8, 64.8. HRMS (ESI) *m*/*z* calculated for C₇₆H₅₂Fe [M]⁺ 1020.3413, Found: 1020.3465.

[12]CPP was also obtained as a yellowish-white solid (8.9 mg, 1%), ¹H NMR (600 MHz, Chloroform-*d*) 7.61 (s, 48 H), which is consistent with the results reported in the existing literature ^[S4].

2.6 Synthesis of Fc-[5]CPP

Fc-[5]CPP was prepared according to **Fc-[8]CPP** with 1,4-Benzenediboronic acid bis(pinacol) ester (99.0 mg, 0.3 mmol, 3.0 equiv), Pt(cod)Cl₂ (149.7 mg, 0.4 mmol, 4.0 equiv) and CsF (364.5 mg, 2.4 mmol, 24 equiv), but it failed.

2.7 The optimization of the synthesis of Fc-[8]CPP

Table S1. The optimization of the synthesis of Fc-[8]CPP

Sample	Fc-[8]CPP
CCDC number	2313391
Empirical formula	$C_{58}H_{40}Fe$
Formula weight	792.75
Temperature/K	121(30)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	20.2138(7)
b/Å	12.8399(6)
c/Å	20.5547(11)
a/°	90
β/°	93.970(4)
$\gamma/^{\circ}$	90
Volume/Å ³	5322.0(4)
Z	4
<i>F</i> (000)	1656.0
Reflections collected	30687
Independent reflections	9539 [$R_{\text{int}} = 0.0640, R_{\text{sigma}} = 0.0593$]
Data/restraints/parameters	9539/0/532
Goodness-of-fit on F^2	1.078
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0685, wR_2 = 0.1872$
Final <i>R</i> indexes [all data]	$R_1 = 0.0938, wR_2 = 0.2039$

Table S2. Crystal data and structure refinement for Fc-[8]CPP

The weak intermolecular interaction

Figure S1. The C-H··· π interactions in **Fc-[8]CPP**.

Table S3 Four kinds of C-H··· π interactions in the packing model of **Fc-[8]CPP**

$d_{C-H\cdots\pi}$ ($\angle C-H\cdots\pi$)	π (Cp)	π (Ph)
С-Н (Ср)	-	2.93 Å (167.4°)
C-H (Ph)	2 02 % (141 7%)	3.26 Å (151.9°)
	5.05 A (141.7°)	3.39 Å (152.9°)

Figure S2. The angle between the plane of Cp and the plane of CPP in Fc-[8]CPP.

4. Density Functional Theory (DFT) Computational Details

The geometry optimizations and frontier molecular orbital were performed by the Gaussian 16 package^[S5] at the B3LYP-D3(BJ)/6-31G(d) (C, H) and SDD (Fe) level of theory.^[S6] The geometry optimizations, frontier molecular orbital and strain energies of **Fc-**[*n*]**CPP** (n = 5-12) were calculated at B3LYP/6-31G(d) (C, H, Fe) level of theory for comparison with [n]CPP and m[n]CPP. In the calculations of the rotation process, geometry optimizations were performed by the Gaussian 16 package at the PBE0-D3(BJ)/6-31G(d,p) level of theory. Specifically, iron atoms in the system were treated with the SDD basis set and pseudopotential. Intrinsic reaction coordinate (IRC) calculations were used to ensure that each transition state connected the correct two minima. Highly accurate electronic energies were computed by ORCA 5.0.4 package^[S7] at the RI-ωB97M-V/Def2-TZVP level of theory.^[S8] Def2/J auxiliary basis sets were used for the RI-J approximation.^[S9] Solvation effects were included using the solvation model based on density (SMD) with a standard state of 1 M.^[S10] Grimme' s quasiharmonic correction and harmonic vibrational frequency scale factors for the PBE0/6-31G(d,p) level of theory were applied by using the Shermo 2.4 package.^[S11] Optimized structures were illustrated using CYLview.^[S12] Vibrational frequency calculations were carried out at the same level to confirm whether the structure is a minimum no imaginary frequency) or a transition state (only one imaginary frequency). Spin densities were drawn by combining Multiwfn 3.8^[S13] and VMD^[S14]. The strain energies were calculated based on the homodesmotic reaction schemes.^[S15]

12

4.1 TD-DFT calculation

The measured and calculated UV-Vis absorption spectra at different functional theory, basis set was 6-31G(d) for C, H; SDD for Fe.

Figure S3. The measured and calculated UV-Vis absorption spectra.

Excited states	Energy (eV)	Excitation [nm]	Oscillator strength (f)	Contribution
C 1	2 /100	512 50	0.00050	$\text{H-1} \rightarrow \text{L+12 12.7\%, H-2} \rightarrow \text{L+13 10.6\%, H-3} \rightarrow \text{L+13}$
51	2.4188	512.59	0.00030	9.5%, H-2 \rightarrow L+3 8.7%, H-2 \rightarrow L+12 5.6%
52	2 4240	511.20	0.00500	$\text{H-2} \rightarrow \text{L+12 12.6\%, H-1} \rightarrow \text{L+13 11.1\%, H-3} \rightarrow \text{L+12}$
32	2.4249	511.50	0.00500	10.8%, H-1 \rightarrow L+3 7.4%, H-2 \rightarrow L+13 5.3%
\$2	2 8002	111 25	0.00060	$\text{H-6} \rightarrow \text{L+13 13.5\%}, \text{H-1} \rightarrow \text{L+12 10.4\%}, \text{H-6} \rightarrow \text{L+3 8.4\%},$
33	2.0072	441.55	0.00000	H-2 → L+13 5.5%
<u> </u>	2 8608	122 20	0.00160	$\text{H-6} \rightarrow \text{L+12 20.8\%}, \text{H-2} \rightarrow \text{L+12 10.3\%},$
54	2.8008	433.39	0.00100	H-3 → L+12 8.0%
S5	3.0600	405.18	0.21020	$H \rightarrow L 93.4\%$
S 6	3.5004	354.20	1.26680	$\text{H-1} \rightarrow \text{L} 61.0\%, \text{H} \rightarrow \text{L+1} 31.3\%$
S7	3.5198	352.25	0.71600	$H \rightarrow L+1 41.1\%, H-1 \rightarrow L 28.9\%, H-2 \rightarrow L 22.9\%$
S 8	3.5380	350.44	0.02940	$H-2 \rightarrow L 69.3\%, H \rightarrow L+1 20.9\%$
S9	3.6356	341.03	0.11630	$\text{H-3} \rightarrow \text{L} \text{ 59.0\%, H-2} \rightarrow \text{L+1 9.1\%}$
\$10	3 6577	338.07	0.03500	$\text{H-3} \rightarrow \text{L 28.0\%, H-2} \rightarrow \text{L+1 7.6\%, H-1} \rightarrow \text{L+1 6.3\%,}$
510	5.0577	550.97	0.05500	H-1 → L+12 5.4%

Table S4. Major electronic transitions for **Fc-[8]CPP** by TD-DFT calculated at the B3LYP/6-31G(d) (C, H) and SDD (Fe) level of theory.

Excited states	Energy (eV)	Excitation [nm]	Oscillator strength (f)	Contribution
C 1	2 0578	602 51	0.00120	$\text{H-1} \rightarrow \text{L+5 15.3\%}, \text{H} \rightarrow \text{L+14 12.8\%}, \text{H-1} \rightarrow \text{L+20 11.6\%},$
51	2.0378	002.51	0.00120	H-2 → L+14 11.3%
\$2	2 0637	600 79	0.00510	$\text{H-1} \rightarrow \text{L+14 23.9\%, H-3} \rightarrow \text{L+14 8.3\%, H} \rightarrow \text{L+5 7.9\%, H-}$
52	2.0057	000.79	0.00510	$2 \rightarrow L+5$ 7.2%, $H \rightarrow L+20$ 6.0%
\$3	2 5126	193 15	0.00450	$\text{H-7} \rightarrow \text{L+5 15.0\%}, \text{H-7} \rightarrow \text{L+20 12.7\%}, \text{H} \rightarrow \text{L+14 11.8\%},$
55	2.5120	475.45	0.00450	$\text{H-2} \rightarrow \text{L+14 10.2\%}$
\$4	2 5735	481 77	0.00120	$\text{H-7} \rightarrow \text{L+14 33.5\%, H-1} \rightarrow \text{L+14 22.3\%, H-3} \rightarrow \text{L+14}$
57	2.3735	-01.77	0.00120	9.9%
S5	3.1396	394.90	0.01670	$\mathrm{H} \rightarrow \mathrm{L}\ 71.8\%, \mathrm{H}\text{-}2 \rightarrow \mathrm{L}\ 10.8\%$
\$6	3 3491	370.20	0 35280	$\text{H-2} \rightarrow \text{L} 26.8\%, \text{H-7} \rightarrow \text{L+5} 9.6\%, \text{H-7} \rightarrow \text{L+20} 6.8\%, \text{H-1}$
50	5.5471	570.20	0.35200	\rightarrow L+1 6.8%, H \rightarrow L+2 6.0%, H-7 \rightarrow L+3 5.8%
S 7	3.3602	368.98	2.12310	$H \rightarrow L+1$ 66.0%, $H-1 \rightarrow L$ 11.0%, $H-3 \rightarrow L$ 10.7%
\$8	3 3952	365 17	0.49410	$H-2 \rightarrow L 44.2\%, H \rightarrow L 9.5\%, H-1 \rightarrow L+1 8.8\%, H \rightarrow L+2$
50	5.5752	505.17	0.47410	6.4%
59	3 3005	364 71	0 26630	$H-1 \rightarrow L 53.3\%, H-7 \rightarrow L+14 14.6\%, H-1 \rightarrow L+2 8.9\%, H-2$
57	5.5775	504.71	0.20030	\rightarrow L+1 5.1%
\$10	3 5238	351.85	0 19510	$H-1 \rightarrow L 23.2\%, H-7 \rightarrow L+14 19.5\%, H-2 \rightarrow L+1 16.1\%, H-$
510	5.5250	331.03	0.19510	$1 \rightarrow$ L+14 10.9%, H-3 \rightarrow L 5.9%

Table S5. Major electronic transitions for **Fc-[11]CPP** by TD-DFT calculated at the B3LYP/6-31G(d) for C, H, SDD for Fe.

4.2 Strain energy calculation

The strain energy of **Fc-**[*n*]**CPP** calculated at the B3LYP/6-31G(d) level of theory

∆H = 55.9 kcal/mol

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$

∆H = 50.0 kcal/mol

O

∆H = 44.9 kcal/mol

Fc-[11]CPP

Fc-[10]CPP

∆H = 42.4 kcal/mol

Fc-[12]CPP

Strain energy of m[n]CPP calculated at the B3LYP/6-31G(d) level of theory

∆H = 44.9 kcal/mol

∆H = 43.0 kcal/mol

∆H = 37.7 kcal/mol

m[13]CPP

Compound	HOMO (eV)	LUMO (eV)	Energy gap (eV)	Strain energy (kcal/mol)
[6]CPP	-4.92	-1.78	3.14	96.0
[7]CPP	-4.97	-1.80	3.17	84.0
[8]CPP	-5.11	-1.70	3.41	72.2
[9]CPP	-5.13	-1.72	3.41	65.6
[10]CPP	-5.20	-1.67	3.53	57.7
[11]CPP	-5.21	-1.68	3.53	53.7
[12]CPP	-5.26	-1.63	3.63	48.1
[13]CPP	-5.26	-1.65	3.61	45.5
<i>m</i> [6]CPP	-5.09	-1.58	3.51	80.7
m[7]CPP	-5.07	-1.67	3.40	70.3
<i>m</i> [8]CPP	-5.14	-1.65	3.49	62.3
<i>m</i> [9]CPP	-5.15	-1.67	3.48	56.1
<i>m</i> [10]CPP	-5.18	-1.66	3.50	50.2
<i>m</i> [11]CPP	-5.24	-1.62	3.62	44.9
<i>m</i> [12]CPP	-5.23	-1.65	3.58	43.0
<i>m</i> [13]CPP	-5.27	-1.62	3.65	37.7
Fc-[5]CPP	-4.93	-1.60	3.33	90.2
Fc-[6]CPP	-4.90	-1.66	3.30	77.0
Fc-[7]CPP	-5.00	-1.69	3.11	68.7
Fc-[8]CPP	-5.09	-1.63	3.46	59.8
Fc-[9]CPP	-5.08	-1.65	3.43	55.9
Fc-[10]CPP	-5.14	-1.59	3.55	50.0
Fc-[11]CPP	-5.12	-1.62	3.50	44.9
Fc-[12]CPP	-5.15	-1.62	3.54	42.4
The HOMO and LUMC) data of $[n]$ CPP were t	taken from ref S4; the s	train energy data of [n]C	CPP were taken from re

Table S6. HOMO, LUMO energy and strain energy of **Fc-**[n]**CPP**, [n]**CPP**, $[s_{16}, s_{17}]$ and m[n]**CPP** calculated at the B3LYP/6-31G(d) level of theory.

4.3 Relative energy in the rotation process of Fc-[8]CPP

140	Table 57. Relative energy in the rotation process of FC-[6]CI I							
Conformation	Energy (Hartree)	Relative energy (Hartree)	Relative energy (kal/mol)					
Α	-3497.2494931	0.0000000	0					
В	-3497.242339	0.0071545	4.4895167					
TS-1	-3497.246698	0.0027949	1.7538263					
TS-2	-3497.197146	0.0523467	32.848052					

 Table S7. Relative energy in the rotation process of Fc-[8]CPP

4.4 Oxidation state optimization of Fc-CPPs

Comparison between the ground station and oxidation state of Fc-[8]CPP

Figure S4. The geometry optimizations of ground station and oxidation state of Fc-[8]CPP

As shown in Figure S4, the oxidation of Fc-[8]CPP (named $Fc-[8]CPP^+$) has smaller torsion angel between Fc and adjacent benzene units, which means the conformation of Fc-[8]CPP could be adjusted by oxidation.

Figure S5. The frontier molecular orbit of the ground station and oxidation state of Fc-[8]CPP

As shown in Figure S5, after oxidation, the electron density had obvious separation, the electron was mainly delocalized at the CPP part at HOMO, and the electron was mainly delocalized at the Fc^+ part at LUMO. The oxidation state of **Fc-[11]CPP** (named **Fc-[11]CPP**⁺) was similar, see below.

Comparison between the ground station and oxidation state of Fc-[11]CPP

Figure S6. The geometry optimizations of the ground station and oxidation state of Fc-[11]CPP

Figure S7. The frontier molecular orbit of the ground station and oxidation state of Fc-[11]CPP

5. Variable temperature NMR (VT-NMR) of Fc-[8]CPP

Figure S8 VT-NMR of Fc-[8]CPP in 1,1,2,2-tetrachloroethane-d2 (600 MHz)

6. Redox property of Fc-[8]CPP

Figure S9. The CV curves of **Fc-[8]CPP** in CH₂Cl₂ solution (0.1 mM) containing 0.1 M n-Bu₄NPF₆ at room temperature, scan rate: 100 mV/s.

Figure S10. The CV curves of **Fc-[8]CPP** in CH₂Cl₂ solution (0.1 mM) containing 0.1 M *n*-Bu₄NPF₆ at room temperature at different scan rates.

Figure S11. The CV (solid) and DPV (dashed) curves of **Fc-[8]CPP** in CH_2Cl_2 solution containing 0.1 M *n*-Bu₄NPF₆ at room temperature at different concentrations.

Figure S12. The UV-Vis-NIR absorption of Fc-[8]CPP $(1.0 \times 10^{-5} \text{ M})$ in the presence of AgSbF₆ in CH₂Cl₂ solution.

Figure S13. The EPR spectra of Fc-[8]CPP⁺ (1.0×10^{-3} M) in the presence of AgSbF₆ in CH₂Cl₂ solution.

Figure S14. UV-Vis (left) and fluorescence (right) spectra curves of **Fc-[8]CPP** (1.0×10^{-5} M) in the presence of oxidation (O, 1.0 eq AgSbF₆) and reductant (R, excess Et₃N) in CH₂Cl₂ solution, $\lambda_{ex} = 340$ nm. (Inset) images of **Fc-[8]CPP** (left) in the presence of oxidation (middle) and excess reductant (right) under red laser irradiation.

Figure S15. UV-Vis (left) and fluorescence (right) spectra curves of **Fc-[8]CPP** (1.0×10^{-5} M) in the presence of oxidation (O, 1.0 eq NOSbF₆) in THF solution, $\lambda_{ex} = 340$ nm.

Figure S16. UV-Vis (left) and fluorescence (right) spectra curves of **Fc-[11]CPP** (1.0×10^{-5} M) in the presence of AgSbF₆, $\lambda_{ex} = 340$ nm.

8. UV-Vis spectra titration of fullerenes to Fc-CPPs

Figure S17. UV-Vis spectra of **Fc-[8]CPP** (a, b) and **Fc-[11]CPP** (c, d) in the presence of C_{60} (a, c) and C_{70} (b, d) in toluene solution, concentration: 1.0×10^{-5} M. Inset: the plot of absorption of **Fc-CPPs** with the addition of C_{60} (at 335 nm) and C_{70} (at 470 nm).

9. K_{sv} curve in titration process of Fc-CPPs with fullerenes

The Stern-Volmer equation: $F_0/F = 1 + K_{SV}[Q]$

Figure S18. Correlation of concentration of C₆₀ (left) and C₇₀ (right) on the fluorescent intensity of **Fc-[8]CPP** in toluene $(1.0 \times 10^{-5} \text{ M})$ for obtaining the K_{sv} . R^2 is the standard deviation.

Figure S19. Correlation of concentration of C₆₀ (left) and C₇₀ (right) on the fluorescent intensity of **Fc-[11]CPP** in toluene $(1.0 \times 10^{-5} \text{ M})$ for obtaining the K_{sv} . R^2 is the standard deviation.

10. Cartesian coordinates of optimized structures

The geometry optimizations were calculated at the B3LYP/6-31G(d) level of theory unless otherwise specified.

			Fc-[5]CPP			
С	-3.67969	0.716224	1.763264	С	-2.01193	2.446871	0.587099
С	-2.2185	0.000125	0.14893	С	-1.24887	2.921419	1.667501
С	-2.75179	-1.17282	0.771683	С	-0.06061	3.613482	1.450333
С	-3.67961	-0.71591	1.763369	С	1.878983	3.937033	-0.10388
С	-4.657	-0.0006	-2.09615	С	-2.75195	1.173106	0.771528
С	-5.21719	1.154517	-1.47097	Н	-4.28719	1.347385	2.40024
С	-6.12262	0.713958	-0.45896	Н	-1.43332	0.000157	-0.59512
С	-6.12294	-0.7134	-0.45846	Н	-4.28708	-1.34709	2.400346
С	-5.2177	-1.15507	-1.47018	Н	-3.92829	-0.00098	-2.89631
С	1.878844	-3.93707	-0.10389	Н	-4.98692	2.184475	-1.7106
С	2.381766	-3.44533	-1.32373	Н	-6.69789	1.351111	0.200047
С	3.624718	-2.82921	-1.39668	Н	-6.69845	-1.34989	0.200969
С	4.428502	-2.67097	-0.25166	Н	-4.98774	-2.18526	-1.7091
С	4.067567	-3.44991	0.866999	Н	1.732122	-3.36898	-2.18905
С	2.822677	-4.07124	0.936994	Н	3.87703	-2.29651	-2.30818
С	-0.51182	-3.65847	-0.89813	Н	4.711181	-3.47198	1.742906
С	-1.68765	-2.94172	-0.68664	Н	2.544048	-4.56347	1.864663
С	-2.01191	-2.44664	0.587301	Н	-0.25794	-3.94295	-1.91511
С	-1.24881	-2.92123	1.667657	Н	-2.3006	-2.66305	-1.53988
С	-0.06061	-3.61338	1.450424	Н	-1.49499	-2.5982	2.675804
С	4.428615	2.670865	-0.25156	Н	0.581626	-3.80032	2.305164
С	3.624998	2.829318	-1.39662	Н	3.877349	2.296747	-2.30818
С	2.382031	3.44549	-1.32371	Н	1.73253	3.369261	-2.18915
С	2.822733	4.071016	0.937149	Н	2.543999	4.563168	1.864826
С	4.067579	3.449663	0.867206	Н	4.711136	3.471617	1.743157
С	5.230744	-1.42063	-0.14633	Н	5.87345	-1.21889	-2.20767
С	5.662268	-0.69627	-1.27805	Н	5.87348	1.218834	-2.2076
С	5.66229	0.696165	-1.278	Н	4.871402	1.20524	1.974859
С	5.230789	1.420478	-0.14624	Н	4.871369	-1.20551	1.974789
С	5.148575	0.695077	1.057573	Н	-0.25762	3.94291	-1.91522
С	5.148555	-0.6953	1.057532	Н	-2.30043	2.663198	-1.54011
С	0.409368	-3.87426	0.147697	Н	-1.49516	2.598449	2.675638
С	0.409497	3.874277	0.147641	Η	0.581568	3.800414	2.305118
С	-0.51163	3.658505	-0.89826	Fe	-4.23358	-4E-06	-0.08596
С	-1.68754	2.94186	-0.68683				

	Fc-[6]CPP									
С	4.604679	0.67891	-1.63153	С	2.476216	3.188111	-1.7287			
С	2.966199	-0.00924	-0.18345	С	2.896695	2.460717	-0.60206			
С	3.567864	-1.19296	-0.71603	С	2.336856	2.814932	0.637049			
С	4.60118	-0.75316	-1.60752	С	1.246199	3.673527	0.709954			
С	5.754426	-1.1364	1.790267	С	-0.76589	4.603079	-0.41906			
С	5.13909	0.037442	2.322005	С	3.574188	1.152919	-0.75485			
С	5.778091	1.173165	1.737795	Н	5.284817	1.297293	-2.20424			
С	6.787977	0.70109	0.846313	Н	2.102944	0.004473	0.467498			
С	6.773328	-0.72602	0.878679	Н	5.278174	-1.39352	-2.15945			
С	-4.79036	-3.25664	0.137551	Н	5.484333	-2.15853	2.022044			
С	-5.0287	-2.74125	1.42681	Н	4.325869	0.06191	3.035869			
С	-5.66305	-1.5182	1.612301	Н	5.529366	2.210082	1.92312			
С	-6.0601	-0.72679	0.515273	Н	7.440045	1.317778	0.24159			
С	-6.09731	-1.38896	-0.72895	Н	7.412294	-1.38274	0.302804			
С	-5.4929	-2.62793	-0.91001	Н	-4.58526	-3.2212	2.293763			
С	-2.86567	-4.73294	0.912025	Н	-5.7194	-1.12303	2.621627			
С	-1.49898	-4.97399	0.790542	Н	-6.47735	-0.87753	-1.60763			
С	-0.79338	-4.60559	-0.37187	Н	-5.46174	-3.04256	-1.91325			
С	-1.57199	-4.2301	-1.48132	Н	-3.34765	-4.95306	1.860643			
С	-2.93314	-3.98449	-1.35769	Н	-0.95914	-5.371	1.646572			
С	-3.5926	-4.10196	-0.11899	Н	-1.0843	-3.96242	-2.41346			
С	1.402509	-4.12888	-1.55545	Н	-3.44405	-3.53719	-2.20337			
С	2.49409	-3.26494	-1.63564	Н	1.070184	-4.63823	-2.45626			
С	2.882997	-2.49191	-0.52822	Н	2.967656	-3.09512	-2.59923			
С	2.286927	-2.79513	0.707893	Н	2.607066	-2.25907	1.597368			
С	1.190541	-3.64641	0.783812	Н	0.663542	-3.73463	1.729265			
С	-3.55115	4.132901	-0.04614	Н	-3.23407	5.031332	1.898785			
С	-2.7845	4.785908	0.939951	Н	-0.84693	5.435504	1.578048			
С	-1.42292	5.015248	0.757506	Н	-1.1351	3.89655	-2.427			
С	-1.58709	4.200461	-1.4879	Н	-3.50003	3.496468	-2.10993			
С	-2.94608	3.971724	-1.30627	Н	-5.22365	0.855574	2.591595			
С	-6.0263	0.7616	0.580199	Н	-4.12179	2.974363	2.326474			
С	-5.38413	1.393029	1.66358	Н	-5.73342	3.337299	-1.64215			
С	-4.75139	2.620671	1.515763	Н	-6.84387	1.194248	-1.38356			
С	-4.7301	3.286244	0.276562	Н	1.032437	4.532366	-2.56316			
С	-5.61804	2.800692	-0.70384	Н	2.9207	2.976846	-2.69796			
С	-6.25344	1.571043	-0.55348	Н	2.680858	2.31306	1.537441			
С	0.649131	-4.24219	-0.37132	Н	0.748037	3.80203	1.666226			
С	0.673305	4.225805	-0.45168	Fe	4.945825	-0.00699	0.277457			
С	1.389687	4.059227	-1.65218							

			Fc-[7]]CPP			
С	5.476504	0.715462	-1.48219	С	2.442811	4.226706	-1.66512
С	3.741172	0.000011	-0.16257	С	3.454952	3.26814	-1.68176
С	4.385935	-1.17204	-0.67145	С	3.732432	2.493108	-0.54302
С	5.476425	-0.71545	-1.48228	С	3.095189	2.853913	0.655998
С	7.474778	0.713306	1.148128	С	2.082572	3.806599	0.670668
С	7.474454	-0.71427	1.148257	С	0.298508	5.023706	-0.56654
С	6.398124	-1.15534	1.975537	С	4.386078	1.17207	-0.67128
С	5.732967	0.000021	2.487531	Н	6.192525	1.346326	-1.99423
С	6.398627	1.155019	1.975321	Н	2.837896	0.000076	0.432358
С	-6.54664	-1.42933	0.646406	Н	6.192354	-1.34636	-1.9944
С	-6.07084	-0.69344	1.747645	Н	8.161145	1.349992	0.605214
С	-6.07082	0.693626	1.747628	Н	8.160581	-1.35129	0.605438
С	-6.54658	1.429506	0.64637	Н	6.123566	-2.18509	2.164293
С	-7.24403	0.696784	-0.3355	Н	4.870771	0.00029	3.141859
С	-7.24406	-0.6966	-0.33548	Н	6.124543	2.184915	2.163969
С	-5.74728	-3.24337	-0.89204	Н	-5.54582	-1.19981	2.550308
С	-4.75673	-4.18333	-1.15525	Н	-5.54578	1.199997	2.550278
С	-3.94291	-4.69598	-0.12592	Н	-7.72366	1.216238	-1.16084
С	-4.38152	-4.44435	1.189	Н	-7.72371	-1.21605	-1.16082
С	-5.39586	-3.53128	1.453415	Н	-6.23181	-2.75826	-1.73406
С	-6.00182	-2.79344	0.417721	Н	-4.5436	-4.42812	-2.19129
С	-1.724	-5.69088	0.624466	Н	-3.84263	-4.86669	2.031353
С	-0.33531	-5.62016	0.539435	Н	-5.6347	-3.30988	2.489502
С	0.298277	-5.02366	-0.5666	Н	-2.16644	-6.10097	1.527885
С	-0.5204	-4.69871	-1.66214	Н	0.262189	-5.96991	1.377648
С	-1.90491	-4.75805	-1.5712	Н	-0.07712	-4.2508	-2.54643
С	-2.54986	-5.15234	-0.38341	Н	-2.48339	-4.35155	-2.39351
С	2.082335	-3.80649	0.670531	Н	1.522766	-3.9653	1.587927
С	3.094959	-2.85381	0.655832	Н	3.324728	-2.30472	1.565016
С	3.732214	-2.49304	-0.54319	Н	3.958783	-3.0411	-2.61778
С	3.454707	-3.2681	-1.68191	Н	2.196112	-4.75006	-2.58549
С	2.442548	-4.22664	-1.66525	Н	-2.48309	4.351288	-2.39346
С	-2.54964	5.152354	-0.38348	Н	-0.0768	4.250589	-2.54629
С	-1.90463	4.757906	-1.57119	Н	0.262322	5.970165	1.377607
С	-0.52013	4.698599	-1.66207	Н	-2.16631	6.101192	1.527727
С	-0.33512	5.620301	0.539403	Н	-6.23169	2.758392	-1.73411
С	-1.72383	5.691011	0.624367	Н	-4.54343	4.428191	-2.19137
С	-6.00169	2.793594	0.417667	Н	-3.84236	4.866745	2.031258
С	-5.74714	3.243492	-0.8921	Н	-5.63452	3.310014	2.489446
С	-4.75655	4.18342	-1.15533	Н	2.196376	4.750112	-2.58537
С	-3.9427	4.69603	-0.12601	Н	3.959025	3.0411	-2.61762
С	-4.3813	4.444427	1.188925	Н	3.324965	2.304832	1.565181
С	-5.39568	3.531409	1.453354	Н	1.522985	3.965453	1.588046
С	1.665938	-4.44452	-0.51262	Fe	5.685496	-0.00012	0.434213
С	1.666196	4.444611	-0.51251				

	Fc-[8]CPP									
С	-6.18667	-0.64949	-1.59611	С	3.859324	5.874668	-1.00718			
С	-5.14284	-1.13236	-0.74021	С	5.096235	5.237285	-0.97139			
С	-4.51301	0.022638	-0.17631	С	-4.50329	2.535913	-0.4859			
С	-5.12404	1.210381	-0.69042	С	-3.88083	2.84271	0.736024			
С	-6.17567	0.780406	-1.56528	С	-2.93858	3.859877	0.826061			
С	-8.29602	0.756831	0.966612	С	-2.58204	4.626214	-0.29901			
С	-7.25475	1.151509	1.859489	С	-3.3366	4.433175	-1.47025			
С	-6.63831	-0.03169	2.368783	С	-4.27534	3.406655	-1.56424			
С	-7.29874	-1.15747	1.789129	Н	-6.88136	-1.26324	-2.15599			
С	-8.32324	-0.66987	0.92321	Н	-3.64215	0.001127	0.464661			
С	-3.96218	-2.84736	0.63899	Н	-6.86046	1.428109	-2.09847			
С	-3.0348	-3.87935	0.708039	Н	-8.94141	1.423377	0.409473			
С	-2.65096	-4.59492	-0.44143	Н	-6.96958	2.169425	2.091794			
С	-3.36383	-4.33408	-1.62546	Н	-5.8107	-0.06849	3.065413			
С	-4.28854	-3.2927	-1.69773	Н	-7.05274	-2.1977	1.958908			
С	-4.54271	-2.47429	-0.58478	Н	-8.99289	-1.27627	0.327322			
С	5.067265	-5.2954	-0.78011	Н	-4.17566	-2.26055	1.528243			
С	3.825393	-5.91491	-0.89943	Н	-2.52013	-4.05993	1.647072			
С	2.84578	-5.78336	0.102152	Н	-3.1422	-4.90528	-2.5232			
С	3.245258	-5.16835	1.301246	Н	-4.74653	-3.05154	-2.65352			
С	4.478347	-4.53984	1.413856	Н	5.769543	-5.37757	-1.60489			
С	5.385324	-4.49856	0.338158	Н	3.590897	-6.45519	-1.81316			
С	6.787106	-2.71344	1.455954	Н	2.527271	-5.05374	2.107786			
С	7.293563	-1.42142	1.372369	Н	4.671598	-3.95696	2.307873			
С	7.496658	-0.7893	0.130548	Н	6.580248	-3.12293	2.440062			
С	7.389217	-1.61257	-1.00698	Н	7.417099	-0.85997	2.293173			
С	6.849693	-2.8913	-0.92554	Н	7.631752	-1.21813	-1.98904			
С	6.421524	-3.43255	0.301771	Н	6.651652	-3.42308	-1.85098			
С	-0.49541	-5.25839	-1.51099	Н	-0.8409	-4.81001	-2.43776			
С	0.856146	-5.55914	-1.37831	Н	1.525209	-5.33622	-2.20439			
С	1.393374	-5.96896	-0.14535	Н	0.842953	-6.65117	1.830959			
С	0.479771	-6.25289	0.887	Н	-1.53892	-6.13207	1.593473			
С	-0.87342	-5.95553	0.752503	Н	-0.84566	4.895847	-2.34487			
С	-1.37518	-5.35655	-0.41857	Н	1.528361	5.392241	-2.18765			
С	-1.29519	5.368856	-0.28709	Н	1.021501	6.562415	1.918741			
С	-0.45974	5.304955	-1.41599	Н	-1.36888	6.060461	1.760422			
С	0.897748	5.58988	-1.32616	Н	5.999465	2.968952	-2.02462			
С	1.489442	5.953653	-0.10325	Н	6.848606	0.708531	-2.04			
С	0.619907	6.200206	0.975885	Н	8.130862	1.156203	2.045298			
С	-0.74004	5.914043	0.886032	Н	7.245238	3.427953	2.063127			
С	6.47525	3.363957	0.043108	Н	4.94233	3.977771	2.171632			
С	6.503177	2.599659	-1.13642	Н	2.778285	5.087259	2.107505			
С	6.992015	1.299991	-1.14231	Н	3.563496	6.402213	-1.91021			
С	7.487954	0.694439	0.027624	Н	5.737476	5.27758	-1.84819			
С	7.664027	1.539339	1.142287	Н	-4.0737	2.215918	1.602464			
С	7.162719	2.838803	1.153218	Н	-2.39225	3.988668	1.755819			
С	5,485704	4.467154	0.140956	Н	-3.13686	5.046357	-2.34509			

С	4.673614	4.546296	1.286114	Н	-4.76607	3.21846	-2.51564
С	3.436325	5.180262	1.248696	Fe	-6.48703	0.027716	0.321518
С	2.953747	5.768035	0.065874				

Fc-[8]CPP (B3LYP-D3(BJ)/6-31G(d) for C, H, SDD for Fe)

С	0.428177	6.255531	0.896673	С	-5.11003	1.117434	-0.82529
С	0.606141	-6.19578	0.985998	С	-6.19345	-0.79486	-1.57711
С	0.81384	5.595233	-1.37918	С	-6.20874	0.635265	-1.60815
С	0.886924	-5.61472	-1.32517	С	-6.35481	0.010966	2.406886
С	1.342624	5.989122	-0.13838	С	-7.01791	-1.16855	1.948635
С	1.473987	-5.96298	-0.09641	С	-7.05863	1.142252	1.891202
С	2.789623	5.795782	0.114117	С	-8.13242	-0.76584	1.15265
С	2.93367	-5.76941	0.073971	С	-8.15753	0.661591	1.117122
С	3.173723	5.156795	1.304749	Н	0.791244	6.637437	1.846814
С	3.406862	-5.16757	1.252592	Н	1.010151	-6.54198	1.933199
С	3.773362	5.93909	-0.88035	Н	1.489377	5.383064	-2.20221
С	3.83818	-5.87841	-0.99856	Н	1.521571	-5.4239	-2.18458
С	4.403121	4.522841	1.416085	Н	2.445235	5.028461	2.099008
С	4.639873	-4.52676	1.287085	Н	2.74293	-5.06912	2.105575
С	5.011831	5.314149	-0.76203	Н	3.542983	6.492539	-1.78664
С	5.069983	-5.23282	-0.96642	Н	3.543019	-6.41273	-1.89717
С	5.3178	4.502223	0.347437	Н	4.588547	3.918937	2.297095
С	5.451771	-4.45579	0.142398	Н	4.905405	-3.94509	2.164446
С	6.351067	3.438651	0.304896	Н	5.712775	-5.26963	-1.84163
С	6.429989	-3.34786	0.037922	Н	5.721648	5.403306	-1.57897
С	6.433295	-2.58147	-1.13951	Н	5.916649	-2.95369	-2.01847
С	6.717463	2.718246	1.456867	Н	6.509943	3.126856	2.440671
С	6.770318	2.902117	-0.92643	Н	6.561899	3.436359	-1.8476
С	6.912096	-1.27887	-1.1474	Н	6.749948	-0.68183	-2.03754
С	7.122124	-2.82228	1.143482	Н	7.213572	-3.41428	2.050102
С	7.223645	1.427348	1.368157	Н	7.347218	0.859638	2.284466
С	7.311672	1.625287	-1.0129	Н	7.549363	1.229931	-1.99521
С	7.421659	-0.67735	0.017804	Н	8.087853	-1.13291	2.027102
С	7.425981	0.80278	0.123419	Н	-0.85866	-4.93415	-2.35239
С	7.614732	-1.52037	1.129864	Н	-0.8808	4.853484	-2.45107
С	-0.47034	-5.33399	-1.42096	Н	-1.38489	-6.04162	1.765131
С	-0.53602	5.293161	-1.52034	Н	-1.59304	6.111877	1.594822
С	-0.75309	-5.91205	0.890808	Н	-2.35928	-3.94515	1.715784
С	-0.92269	5.955799	0.754273	Н	-2.50646	4.008347	1.605587
С	-1.30447	-5.38637	-0.29162	Н	-3.15471	-5.11758	-2.34118
С	-1.41605	5.374443	-0.42792	Н	-3.19142	4.966322	-2.52733
С	-2.58504	-4.6401	-0.31437	Н	-3.53466	-0.01002	0.28596
С	-2.68046	4.601155	-0.46177	Н	-4.03056	-2.1538	1.522769
С	-2.91878	-3.83776	0.791642	Н	-4.13951	2.179745	1.450336
С	-3.03495	3.846602	0.671317	Н	-4.77465	-3.27602	-2.55091
С	-3.34602	-4.47723	-1.48467	Н	-4.77529	3.08876	-2.69389
С	-3.39965	4.366168	-1.64596	Н	-5.45578	0.041604	3.008315
С	-3.85085	-2.81478	0.679987	Н	-6.7031	-2.1875	2.130786
С	-3.94562	2.802816	0.582323	Н	-6.78023	2.179452	2.022352

С	-4.27614	-3.4454	-1.60039	Н	-6.92317	-1.44593	-2.04058
С	-4.30955	3.313583	-1.73824	Н	-6.95189	1.250174	-2.09886
С	-4.43573	-0.03329	-0.31041	Н	-8.81402	-1.42737	0.634907
C	-4 48308	-2.54436	-0 54498	Н	-8 86159	1 272248	0 567891
C	-4 53633	2.462837	-0 64574	Fe	-6 37356	-0.0408	0.344006
C	-5 0847	-1 21949	-0 77489	10	0107000	0.0100	0.511000
C	-5.0047	-1.21747	-0.77407				
			Fc-[9	ICPP			
С	7.079595	0.715414	-1.30474	C	-5.82214	-5.03271	-0.0299
С	5.256384	0.00013	-0.10817	С	-6.11969	-4.68938	1.301915
С	5.937386	-1.17183	-0.56733	С	-6.96142	-3.62311	1.601594
С	7.079664	-0.71511	-1.30466	С	-1.8358	-6.51859	-0.64519
С	8.894169	-0.71379	1.456877	С	-2.62943	-7.05147	0.388666
С	7.762555	-1.15519	2.206355	С	-3.96849	-6.69247	0.533247
С	7.063476	0.000201	2.670902	С	-4.58133	-5.78349	-0.34997
С	7.762832	1.155435	2.206473	С	-3.8306	-5.38724	-1.47154
С	8.894307	0.713899	1.456946	С	-2.49732	-5.74373	-1.61462
С	-7.52781	2.832614	0.583819	Н	7.830053	1.34554	-1.76551
C	-6.96165	3.622747	1.601706	Н	4.31692	0.000155	0.42711
C	-6.11998	4.689081	1.302074	Н	7.830276	-1.34518	-1.76526
C	-5.82247	5.032504	-0.02973	Н	9.616344	-1.35063	0.962751
C	-6.5775	4.39374	-1.03079	Н	7.472724	-2.18469	2.372359
C	-7.40072	3.313166	-0.73285	Н	6.158165	0.000273	3.264248
C	-8.76052	0.696569	-0.06264	Н	7.473186	2.184993	2.372523
C	-8 76047	-0 69699	-0.06265	Н	9 616671	1 350615	0.962933
C	-7.94696	-1.42828	0.824267	Н	-7.10232	3.34401	2.642244
C	-7.28781	-0.69406	1.826661	Н	-5.59562	5.183831	2.114594
C	-7 28786	0 6937	1 826681	Н	-6 44861	4 682876	-2.07001
C	-7 94706	1 427897	0.824301	н	-7 85498	2.763474	-1 55203
C	0 405985	-6 27891	-1 78434	н	-9 35656	1 220945	-0.80502
C	1 718959	-5 82661	-1 71218	н	-9 35647	-1 22139	-0.80505
C	2 352606	-5 61084	-0 47445	н	-6 64877	-1 2083	2 537056
C	1 664443	-6.05021	0.671677	н	-6 64887	1 207962	2.537090
C	0 343013	-6 47948	0.60155	н	-0.062	-6 37097	-2 76029
C	-0 35086	-6 51518	-0.6218	н	2 220461	-5 53806	-2 63118
C	4 437044	-0.51510	-0.0210	н	2.220401	-5.08117	1 6/6003
C	5 308697	-4.52802	-1.47716	н	-0.18691	-6 68822	1.040003
C	5 337922	-2.51/0/	-0.42137	н	4 408464	-5.10386	-2 31312
C	J.557722	-2.31404	0.715707	и Ц	5 0133	-3 26028	-2.51512
C	3 688106	-2.0075	0.713707	и П	4 601907	-3.20020	1 570106
C	0.35120	-5.88508	0.750475	и П	3 031501	-2.13923	1.570100
C C	-0.33129	6 278027	-0.02162	п u	0.06254	-4.00465	1.303900
C C	0.403307	0.270937 5.826658	-1.7044	п u	-0.00234	5 528106	-2.70032
C	1./10493	5.020030	-1./123	п	2.219921	5 091220	-2.03133 1 615061
C	1.0040//	0.030244	0.0/133/	п	2.13934/ 0.19735	J.701238	1.043804
C	0.342033	0.4/9409	0.001494	п	-0.18/23	0.000191	1.320393
C	-4.38108	5.785544	-0.349/9	п	-4.33028	1.000/10	1.3/0481
U	-3.90884	0.09231	0.333432	п	-2.10320	1.11/880	1.122002

С	-2.6298	7.051383	0.388792	Н	-1.93149	5.303899	-2.42902
С	-1.83622	6.518578	-0.64514	Н	-4.25487	4.681798	-2.17874
С	-2.49775	5.743728	-1.61456	Н	4.407925	5.193876	-2.3134
С	-3.83101	5.387187	-1.47143	Н	5.912844	3.260407	-2.36279
С	3.547497	-4.73243	-0.38353	Н	4.601844	2.139551	1.570019
С	3.54715	4.732553	-0.38369	Н	3.031472	4.005055	1.585908
С	4.436614	4.528703	-1.45458	Н	-7.8548	-2.76374	-1.55211
С	5.308334	3.439605	-1.47738	Н	-6.44833	-4.68305	-2.07017
С	5.337716	2.514258	-0.42154	Н	-5.59531	-5.18415	2.114407
С	4.566532	2.809545	0.715578	Н	-7.10212	-3.34443	2.642145
С	3.688009	3.883288	0.730347	Н	-2.18293	-7.71798	1.121953
С	2.352221	5.610911	-0.47459	Н	-4.52998	-7.08692	1.376247
С	5.93726	1.172071	-0.5675	Н	-4.25443	-4.68183	-2.17884
С	-7.52761	-2.83296	0.583734	Н	-1.93103	-5.30382	-2.42901
С	-7.4005	-3.31345	-0.73295	Fe	7.158837	0.000218	0.619652
С	-6.57721	-4.39396	-1.03094				

			Fc-[1()]CPP			
С	-7.86524	-0.82299	-1.2732	С	8.945338	-1.47925	1.629278
С	-6.69887	-1.25001	-0.55588	С	8.892582	-0.61277	0.522181
С	-6.0423	-0.06127	-0.1041	С	8.608825	-1.1884	-0.72824
С	-6.76409	1.092419	-0.54745	С	8.216598	-2.51785	-0.83638
С	-7.90486	0.606485	-1.26835	С	8.836298	0.864125	0.660952
С	-8.48155	-1.29409	2.244275	С	8.088314	1.412585	1.716866
С	-7.80307	-0.12444	2.703585	С	7.635422	2.725386	1.67343
С	-8.53814	1.01583	2.257624	С	7.91544	3.562424	0.57798
С	-9.67106	0.550689	1.524742	С	8.817028	3.067107	-0.38406
С	-9.63617	-0.87659	1.516568	С	9.26041	1.747476	-0.34829
С	-5.27771	-2.85849	0.708642	Н	-8.60577	-1.47235	-1.72309
С	-4.42229	-3.95013	0.730621	Н	-5.0956	-0.03637	0.41771
С	-4.33731	-4.83939	-0.35746	Н	-8.67996	1.217064	-1.71432
С	-5.24167	-4.63897	-1.41591	Н	-8.16314	-2.31697	2.398585
С	-6.09068	-3.53217	-1.44628	Н	-6.88793	-0.10541	3.281363
С	-6.08084	-2.58331	-0.41131	Н	-8.27057	2.051285	2.424069
С	3.019736	-6.48025	-1.51074	Н	-10.4169	1.172215	1.046432
С	1.641153	-6.61581	-1.61758	Н	-10.3508	-1.52825	1.030909
С	0.875401	-7.17584	-0.57887	Н	-5.27853	-2.16683	1.546327
С	1.584385	-7.72872	0.50509	Н	-3.74709	-4.06467	1.572552
Ċ	2.964298	-7.57962	0.620224	Н	-5.25061	-5.32947	-2.25497
С	3.705327	-6.88583	-0.35293	Н	-6.71611	-3.36487	-2.31937
С	5.999011	-6.14478	-1.14067	Н	3.555582	-5.9388	-2.28492
С	7.07858	-5.28158	-0.97662	Н	1.144351	-6.17122	-2.47382
С	7.268729	-4.57067	0.223647	Н	1.045824	-8.24268	1.296415
С	6.434629	-4.91023	1.30394	Н	3.468343	-7.97011	1.500698
С	5.362964	-5.78188	1.144287	Н	5.846754	-6.62775	-2.10252
С	5.067134	-6.34908	-0.10694	Н	7.750914	-5.11457	-1.81378
С	-2.54118	-6.24087	0.730963	Н	6.544428	-4.3901	2.250597
С	-1.2694	-6.79915	0.671558	Н	4.670419	-5.9205	1.969635
С	-0.59427	-6.9608	-0.55233	Н	-3.00154	-6.0933	1.703584
С	-1.32913	-6.68143	-1.71936	Н	-0.75907	-7.02602	1.602664
С	-2.59112	-6.09909	-1.65902	Н	-0.88277	-6.85667	-2.69388
С	-3.19753	-5.78869	-0.4282	Н	-3.07011	-5.79723	-2.58587
С	-3.45119	5.756206	-0.44371	Н	-3.32969	5.708739	-2.60111
С	-2.85243	6.04198	-1.68428	Н	-1.14757	6.783925	-2.73987
С	-1.5963	6.633148	-1.76214	Н	-1.02161	7.08073	1.547683
С	-0.86423	6.94969	-0.60329	Н	-3.25794	6.118046	1.679365
С	-1.53493	6.820968	0.626242	Н	4.694964	6.580985	1.979733
С	-2.8007	6.248425	0.702643	Н	6.652317	5.201685	2.426567
С	4.82935	6.445861	-0.17288	Н	7.269946	4.721246	-1.8035
С	5.277432	6.212635	1.139996	Н	5.393257	6.204354	-2.24577
Ċ	6.381126	5.404114	1.394405	Н	3.221891	8.220282	1.276188
С	7.077716	4.768175	0.349918	Н	0.791967	8.432948	1.091798
С	6.740975	5.155375	-0.96059	Н	0.847581	5.921565	-2.39888
C	5.652955	5.982096	-1.21469	Н	3.25426	5.710778	-2.21646
C	3.443192	6.910352	-0.4306	Н	-5.40157	2.082543	1.562738

С	2.709488	7.71262	0.463076	Н	-3.9498	4.044075	1.581499
С	1.324734	7.833514	0.358182	Н	-5.50136	5.226449	-2.25284
С	0.604946	7.158043	-0.64515	Н	-6.88541	3.203245	-2.30862
С	1.357497	6.470467	-1.61371	Н	8.570161	-3.43841	2.407078
С	2.735725	6.350174	-1.50941	Н	9.236072	-1.08999	2.601685
С	-6.21605	2.45559	-0.3986	Н	8.563103	-0.55451	-1.60909
С	-5.42944	2.770706	0.722599	Н	7.874115	-2.88097	-1.8005
С	-4.61984	3.897313	0.740264	Н	7.74319	0.76571	2.518107
С	-4.56748	4.780576	-0.35451	Н	6.947424	3.058554	2.443706
С	-5.46563	4.541164	-1.41022	Н	9.132871	3.703402	-1.20622
С	-6.26827	3.400498	-1.43589	Н	9.90306	1.382698	-1.14558
С	8.097176	-3.33987	0.298444	Fe	-7.93296	-0.11598	0.654332
С	8.562611	-2.8131	1.518391				

Fc-[11]CPP

С	8.616034	0.7173	-1.28112	С	-9.02868	2.845324	0.326631
С	7.45601	1.173461	-0.57124	С	-8.91341	3.712058	1.428763
С	6.762304	0.001591	-0.13057	С	-8.1898	4.898501	1.340802
С	7.456958	-1.16959	-0.5716	С	-7.54252	5.272209	0.148264
С	8.616607	-0.71227	-1.28138	С	-7.78963	4.480834	-0.98729
С	8.497737	-0.00062	2.691351	С	-8.51553	3.299043	-0.90088
С	9.210564	-1.15454	2.24457	С	-8.51107	-3.30164	-0.90093
С	10.36152	-0.71084	1.526754	С	-7.78453	-4.48299	-0.98728
С	10.35992	0.716866	1.528669	С	-7.53859	-5.2751	0.148047
С	9.207956	1.156055	2.247606	С	-8.1873	-4.90252	1.340099
С	6.075419	2.818213	0.692273	С	-8.91168	-3.71648	1.428003
С	5.291855	3.961959	0.730239	Н	9.377851	1.347744	-1.72218
С	5.29566	4.890771	-0.32746	Н	5.811969	0.001024	0.385102
С	6.205454	4.660968	-1.37493	Н	9.378884	-1.34207	-1.72256
С	6.981924	3.50278	-1.42177	Н	7.576327	-0.00234	3.259362
С	6.891125	2.528398	-0.41495	Н	8.916244	-2.18451	2.399458
С	-1.86155	7.396556	-1.49315	Н	11.09757	-1.34618	1.051494
С	-0.47629	7.330831	-1.57575	Н	11.09456	1.355223	1.055302
С	0.343725	7.769291	-0.52041	Н	8.911242	2.1849	2.405385
С	-0.29668	8.400169	0.563247	Н	6.013131	2.104433	1.508743
С	-1.68545	8.452943	0.653655	Н	4.605852	4.095972	1.560553
С	-2.50168	7.892667	-0.34466	Н	6.279514	5.375522	-2.19029
С	-4.37699	7.085149	1.090761	Н	7.617412	3.322512	-2.28493
С	-5.60459	6.442091	1.211261	Н	-2.45719	6.949484	-2.28372
С	-6.45903	6.286283	0.105522	Н	-0.03246	6.829112	-2.42964
С	-6.09363	6.944218	-1.08392	Н	0.297306	8.821801	1.36937
С	-4.8615	7.578827	-1.20784	Н	-2.14361	8.904536	1.52993
С	-3.94175	7.595906	-0.1439	Н	-3.69533	7.082362	1.936635
С	3.618357	6.41091	0.788415	Н	-5.84695	5.950682	2.148845
С	2.412275	7.100268	0.736415	Н	-6.762	6.917123	-1.94025
С	1.774464	7.372574	-0.48756	Н	-4.58874	8.029408	-2.15863
С	2.485383	7.047175	-1.65729	Н	4.051095	6.187251	1.75919

С	3.680079	6.336335	-1.60517	Н	1.91751	7.352483	1.669465
С	4.240506	5.933847	-0.37946	Н	2.069313	7.297394	-2.62887
С	4.244446	-5.9319	-0.38024	Н	4.136892	6.014656	-2.53658
С	3.623241	-6.41002	0.787688	Н	4.056405	-6.18672	1.758358
С	2.417499	-7.10002	0.73598	Н	1.92356	-7.35304	1.669236
С	1.779028	-7.37191	-0.48776	Н	2.072794	-7.29526	-2.62921
С	2.489162	-7.04541	-1.65768	Н	4.139562	-6.01148	-2.53734
С	3.683492	-6.33396	-1.60584	Н	-4.58382	-8.03182	-2.15806
С	-3.9371	-7.5977	-0.14337	Н	-6.75735	-6.91998	-1.94018
С	-4.85675	-7.5811	-1.20739	Н	-5.84332	-5.95293	2.148965
С	-6.08912	-6.94685	-1.08373	Н	-3.69115	-7.08377	1.937167
С	-6.45486	-6.28895	0.105579	Н	-2.45296	-6.95379	-2.28448
С	-5.60053	-6.44433	1.211475	Н	-0.02854	-6.83255	-2.43085
С	-4.37271	-7.08698	1.09122	Н	0.302563	-8.81938	1.371159
С	-2.49696	-7.89406	-0.34398	Н	-2.13811	-8.90317	1.531963
С	-1.85712	-7.39945	-1.49327	Н	7.618652	-3.31767	-2.28645
С	-0.4719	-7.33316	-1.57608	Н	6.281992	-5.37152	-2.19203
С	0.3485	-7.76948	-0.52015	Н	4.610061	-4.09496	1.560606
С	-0.29159	-8.39913	0.564455	Н	6.016156	-2.10255	1.508913
С	-1.6803	-8.45248	0.655039	Н	-8.59414	1.217652	2.438349
С	6.893078	-2.52498	-0.41558	Н	-8.59311	-1.2215	2.438177
С	6.983816	-3.49877	-1.42298	Н	-10.3761	-1.22803	-1.47347
С	6.208065	-4.65744	-1.37624	Н	-10.3772	1.223138	-1.47328
С	5.299068	-4.88831	-0.32831	Н	-9.35873	3.432957	2.38018
С	5.295433	-3.96009	0.729903	Н	-8.08852	5.521486	2.225496
С	6.078324	-2.81587	0.692034	Н	-7.30739	4.728343	-1.92801
С	-9.42868	1.422046	0.458537	Н	-8.57973	2.659211	-1.77594
С	-9.02819	0.693393	1.591959	Н	-8.57461	-2.66112	-1.77554
С	-9.02756	-0.69744	1.59186	Н	-7.30097	-4.72976	-1.92753
С	-9.42745	-1.42627	0.458361	Н	-8.08656	-5.52602	2.224501
С	-9.98378	-0.69813	-0.60945	Н	-9.35819	-3.43811	2.379085
С	-9.98438	0.693512	-0.60936	Fe	8.64824	0.002139	0.643844
С	-9.02613	-2.84919	0.326285				

Fc-[11]CPP (B3LYP-D3/6-31G(d) for C, H, SDD for Fe)

С	-7.38748	-1.1689	-0.66322	С	8.122974	-4.89481	1.326303
С	-8.59621	-0.71477	-1.28666	С	7.472775	-5.2716	0.137492
С	-8.59621	0.714803	-1.28666	С	7.702066	-4.47993	-1.00061
С	-7.38748	1.168925	-0.66321	С	8.421675	-3.29469	-0.92028
С	-6.6579	0.000011	-0.28054	С	8.94351	-2.84208	0.303073
С	-8.91713	-1.15617	2.305325	С	9.339827	1.42096	0.430833
С	-8.17204	-9.2E-05	2.691935	С	8.943119	0.695054	1.566329
С	-8.917	1.156102	2.30542	С	8.943117	-0.69507	1.56633
С	-10.1235	0.714219	1.683421	С	9.339823	-1.42098	0.430834
С	-10.1235	-0.71411	1.683362	С	9.886157	-0.69542	-0.64267
С	-6.97796	3.532685	-1.44079	С	9.886159	0.695396	-0.64267
С	-6.21963	4.701243	-1.36554	Fe	-8.48131	0.000008	0.65191

С	-5.29	4.901174	-0.33103	Н	-7.63253	3.372289	-2.29314
С	-5.24024	3.931775	0.687781	Н	-6.32135	5.448362	-2.14747
С	-6.00406	-2.77744	0.621674	Н	-4.5331	4.047195	1.502476
С	-5.24025	-3.93176	0.687775	Н	-5.91395	-2.02792	1.401955
С	-5.29001	-4.90116	-0.33104	Н	-4.53312	-4.04719	1.502472
С	-6.21964	-4.70122	-1.36555	Н	-6.32136	-5.44834	-2.14749
С	-6.97796	-3.53266	-1.4408	Н	-7.63253	-3.37226	-2.29316
С	-6.00405	2.777455	0.621681	Н	-5.91393	2.027936	1.401959
С	-6.84363	2.523642	-0.47609	Н	4.534786	8.056698	-2.14646
С	-6.84364	-2.52362	-0.4761	Н	6.703891	6.923616	-1.94005
С	4.810497	7.600063	-1.19998	Н	5.793058	5.941532	2.143363
С	6.0372	6.955413	-1.08318	Н	3.644732	7.092585	1.942766
С	6.399112	6.291432	0.102858	Н	2.117997	8.909341	1.563012
С	5.550208	6.443864	1.212249	Н	-0.32872	8.83405	1.409323
С	4.327836	7.096467	1.098687	Н	-0.01647	6.891941	-2.41412
С	3.896955	7.61859	-0.13186	Н	2.414409	7.003738	-2.27394
С	2.461731	7.92508	-0.32662	Н	8.474748	2.65089	-1.79263
С	1.652879	8.473688	0.682959	Н	7.209764	4.731906	-1.93439
С	0.264548	8.425397	0.596641	Н	8.027663	5.518712	2.210396
С	-0.3778	7.811627	-0.49447	Н	9.290323	3.418903	2.354691
C	0.434733	7.383578	-1.55877	Н	-4.17604	6.089583	-2.51871
C	1.819754	7.444328	-1.47965	Н	-2.11289	7.392268	-2.59838
С	8.421683	3.294666	-0.92029	Н	-1.9173	7.334399	1.695557
C	7.702077	4.479912	-1.00062	Н	-4.04677	6.148795	1.776244
С	7.47279	5.271583	0.137486	Н	2.414393	-7.00374	-2.27394
С	8.12299	4.894789	1.326298	Н	-0.01648	-6.89194	-2.41412
С	8.840377	3.705066	1.408129	Н	-0.32875	-8.83404	1.409321
С	8.943518	2.842056	0.30307	Н	2.117969	-8.90934	1.563015
С	-3.7106	6.394556	-1.58642	Н	3.644708	-7.09259	1.942769
С	-2.52188	7.114658	-1.63172	Н	5.793038	-5.94154	2.143367
С	-1.80434	7.412891	-0.45982	Н	6.703875	-6.92364	-1.94005
С	-2.42447	7.104953	0.763833	Н	4.534766	-8.05671	-2.14646
С	-3.62445	6.406155	0.809706	Н	-4.04679	-6.14879	1.776234
С	-4.2527	5.957904	-0.36522	Н	-1.91733	-7.33439	1.695552
С	1.819735	-7.44433	-1.47965	Н	-2.11291	-7.39226	-2.59838
С	0.434714	-7.38358	-1.55878	Н	-4.17605	-6.08957	-2.51871
С	-0.37782	-7.81162	-0.49447	Н	9.290311	-3.41892	2.354696
С	0.264523	-8.42539	0.59664	Н	8.027644	-5.51873	2.210402
С	1.652853	-8.47369	0.68296	Н	7.209755	-4.73193	-1.93439
С	2.461709	-7.92508	-0.32662	Н	8.474744	-2.65091	-1.79263
С	3.896933	-7.6186	-0.13186	Н	8.512188	1.222345	2.411835
С	4.327814	-7.09647	1.098691	Н	8.512185	-1.22236	2.411836
С	5.550188	-6.44387	1.212253	Н	10.26981	-1.22804	-1.50826
С	6.399094	-6.29145	0.102863	Н	10.26982	1.228009	-1.50826
С	6.037181	-6.95543	-1.08317	Н	-5.68041	0.00001	0.179953
С	4.810478	-7.60007	-1.19998	Н	-9.39775	1.347546	-1.64463
С	-3.62447	-6.40614	0.809698	Н	-9.39775	-1.34751	-1.64463
С	-2.42449	-7.10495	0.763826	Н	-8.59775	2.184062	2.414737
С	-1.80436	-7.41288	-0.45983	Н	-7.19728	-0.00017	3.16181

С	-2.5219	-7.11465	-1.63173	Н	-8.59799	-2.18418	2.414555
С	-3.71062	-6.39454	-1.58643	Н	-10.8834	-1.35056	1.249921
С	-4.25272	-5.95789	-0.36523	Н	-10.8833	1.350796	1.250032
С	8.840365	-3.70509	1.408134				

Fc-[12]CPP

С	9.402897	0.642988	-1.14545	С	1.292493	-8.18044	-0.68841
С	7.499773	-0.06776	-0.07394	С	0.725514	-8.92299	0.364518
С	8.191725	-1.23963	-0.51814	С	-0.6491	-9.12811	0.447743
С	9.381529	-0.78547	-1.17817	С	-1.52196	-8.61487	-0.52751
С	9.862082	-1.31541	2.349973	С	-0.94236	-7.99447	-1.64714
С	9.143447	-0.16766	2.803405	С	0.428341	-7.77736	-1.72224
С	9.875416	0.99439	2.412158	С	-5.67346	-7.60987	-0.00401
С	11.0466	0.564676	1.718889	С	-4.78898	-7.67126	1.08758
С	11.0384	-0.86259	1.680567	С	-3.48028	-8.11546	0.934957
С	-5.48289	7.714068	-0.18721	С	-2.98735	-8.50962	-0.32034
С	-4.68578	7.807211	0.966563	С	-3.90781	-8.57876	-1.38102
С	-3.36315	8.235145	0.895625	С	-5.22163	-8.14666	-1.22413
С	-2.77792	8.58909	-0.3322	Н	10.1888	1.270721	-1.54617
С	-3.62176	8.643582	-1.45642	Н	6.533497	-0.06535	0.411257
С	-4.94341	8.216367	-1.3855	Н	10.14856	-1.4177	-1.60739
С	-6.97004	6.017095	-1.23161	Н	9.555726	-2.34662	2.469249
С	-7.92241	5.012078	-1.13016	Н	8.204418	-0.17654	3.34169
С	-8.69018	4.842045	0.036094	Н	9.580808	2.021189	2.586429
С	-8.5379	5.811313	1.045522	Н	11.80027	1.209046	1.285235
С	-7.57487	6.813562	0.948743	Н	11.7848	-1.49138	1.21279
С	-6.72523	6.902819	-0.16827	Н	-5.06752	7.430007	1.911135
С	3.368491	-7.25271	-1.7989	Н	-2.74395	8.182475	1.786711
С	4.5156	-6.46871	-1.72386	Н	-3.22401	8.984604	-2.40855
С	5.047512	-6.06601	-0.48583	Н	-5.55509	8.230831	-2.28364
С	4.447878	-6.60081	0.668361	Н	-6.32871	6.044828	-2.10743
С	3.290525	-7.36708	0.593785	Н	-7.99164	4.282936	-1.93083
С	2.681584	-7.65843	-0.64033	Н	-9.15648	5.762435	1.937547
С	6.995608	-4.72396	-1.41857	Н	-7.45998	7.518691	1.768017
С	7.754099	-3.55316	-1.42497	Н	2.97136	-7.50644	-2.77759
С	7.615768	-2.59421	-0.40876	Н	4.956954	-6.09692	-2.64414
С	6.759691	-2.90501	0.661602	Н	4.86167	-6.3697	1.645715
С	5.995662	-4.06274	0.660317	Н	2.808521	-7.6739	1.517145
С	2.892708	7.651416	-0.42859	Н	7.11025	-5.42953	-2.23712
С	3.618497	7.29449	-1.57947	Н	8.41845	-3.35353	-2.26169
С	4.748484	6.48712	-1.50143	Н	6.65611	-2.20087	1.482238
С	4.590165	6.499016	0.890259	Н	5.283155	-4.21987	1.464047
С	3.448934	7.289532	0.811445	Н	3.263273	7.60509	-2.55787
С	-1.30132	8.665413	-0.45721	Н	5.218459	6.154458	-2.42242
С	-0.46398	9.136534	0.569419	Н	4.961582	6.210988	1.869524
С	0.910147	8.909678	0.541269	Н	2.935693	7.558909	1.729863
С	1.512308	8.191288	-0.50867	Н	-0.89723	9.663034	1.415983

С	0.687402	7.826616	-1.58756	Н	1.519602	9.270526	1.365341
С	-0.68131	8.060987	-1.5644	Н	1.103116	7.25752	-2.41306
С	6.059126	-4.98321	-0.40251	Н	-1.29413	7.671536	-2.3719
С	6.207709	4.901015	-0.2055	Н	7.319652	5.405972	-1.98863
С	7.16296	4.664532	-1.20978	Н	8.56338	3.294519	-2.08907
С	7.885274	3.472313	-1.2585	Н	6.676333	2.012683	1.55113
С	7.691973	2.467587	-0.29694	Н	5.36502	4.070125	1.60258
С	6.821394	2.752517	0.769097	Н	-9.27553	3.571978	2.387935
С	6.092286	3.931984	0.808651	Н	-9.973	1.260583	2.678467
С	5.224068	6.010853	-0.26653	Н	-10.4266	0.868018	-1.58134
С	8.226461	1.102218	-0.46479	Н	-9.86496	3.216029	-1.85714
С	-9.44187	3.577021	0.232653	Н	-11.3147	-1.07345	-1.10713
С	-9.56433	3.001249	1.510276	Н	-10.7247	-3.44641	-1.19515
С	-9.93787	1.671462	1.673793	Н	-8.47943	-3.02155	2.443351
С	-10.1824	0.837578	0.56716	Н	-9.02394	-0.65293	2.511496
С	-10.2152	1.45844	-0.69509	Н	-8.95177	-5.3937	2.452767
С	-9.86798	2.794761	-0.85612	Н	-7.31746	-7.20019	2.189543
С	-10.1733	-0.64335	0.680609	Н	-6.88731	-6.19139	-1.96941
С	-10.6842	-1.48654	-0.32478	Н	-8.54205	-4.41855	-1.71187
С	-10.3544	-2.8386	-0.37346	Н	1.363936	-9.31752	1.150122
С	-9.514	-3.41797	0.593261	Н	-1.05531	-9.66866	1.298865
С	-9.132	-2.61106	1.678191	Н	-1.58512	-7.57832	-2.41761
С	-9.44701	-1.25847	1.716587	Н	0.816717	-7.19233	-2.55
С	-8.84104	-4.72642	0.401712	Н	-5.09149	-7.26271	2.046922
С	-8.50597	-5.56835	1.476912	Н	-2.7982	-8.04704	1.777697
С	-7.57363	-6.59082	1.327245	Н	-3.57981	-8.94212	-2.35152
С	-6.91988	-6.80947	0.100024	Н	-5.89511	-8.18918	-2.07569
С	-7.36504	-6.0599	-1.00334	Fe	9.359396	-0.11394	0.762163
С	-8.30687	-5.04722	-0.85769				

Fc-[8]CPP+

С	-1.35951	5.98347	0.070336	С	-6.81659	2.961945	0.994586
С	4.371091	-2.6038	0.370589	С	-6.82175	2.784145	-1.39034
С	2.66056	4.565548	0.322165	С	-5.0195	5.350341	0.798566
С	2.791338	-3.89044	-0.95692	С	-7.01599	-1.22933	1.214926
С	4.536195	-0.09065	-0.02191	С	-7.3427	1.499085	-1.29266
С	3.03097	3.835767	-0.82774	С	-7.74307	-1.45355	-1.05654
С	4.508121	2.411847	0.475615	С	-7.3683	1.689424	1.090919
С	5.050595	1.059905	0.666647	С	-7.26076	-2.75947	-1.08217
С	-0.46457	6.228259	-0.99129	Fe	6.648954	-0.06434	-0.18627
С	4.956717	-1.29059	0.63241	Н	2.233708	-4.00142	-1.88099
С	1.40574	5.351928	0.302575	Н	3.799499	-0.04798	-0.81164
С	0.884848	5.912356	-0.88081	Н	2.522826	4.026143	-1.76732
С	3.924899	2.779097	-0.75236	Н	-0.84302	6.609418	-1.93546
С	-2.81754	5.814733	-0.14133	Н	1.532188	6.058768	-1.74148
С	-3.95512	-5.8497	0.992617	Н	4.113746	2.183591	-1.64226
С	4.180663	-3.51957	1.425587	Н	-3.64835	-6.38817	1.88525

С	3.714446	-2.86413	-0.85037	Н	4.694943	-3.37202	2.371353
С	7.276384	0.030051	-2.22403	Н	3.878389	-2.21188	-1.7041
С	-0.79841	5.614498	1.306902	Н	6.596452	0.036844	-3.06619
С	5.89965	-0.882	1.633039	Н	-1.44978	5.433773	2.1563
С	1.176445	-5.43361	0.148714	Н	6.467433	-1.54492	2.273836
С	-1.61783	-5.97037	0.016721	Н	3.184641	4.897401	2.394652
С	3.383026	4.308194	1.504581	Н	-2.5573	5.079261	-2.15604
С	-3.08048	-5.76127	-0.10889	Н	7.708066	-2.14999	-1.95206
С	-3.25084	5.199571	-1.32928	Н	7.454365	2.205487	-1.69501
С	7.878058	-1.12504	-1.64711	Н	6.539018	1.138716	2.355484
С	7.727384	1.17695	-1.4985	Н	-4.71551	4.00177	-2.29741
С	5.945662	0.547274	1.669678	Н	4.73974	3.014923	2.542411
С	-4.49162	4.581503	-1.40883	Н	9.246442	-1.35254	0.103694
С	-5.37068	4.55076	-0.30924	Н	1.181027	-6.01734	-1.93815
С	2.453479	-4.68914	0.158109	Н	-1.58532	-5.5365	2.13326
С	4.28325	3.249169	1.584367	Н	0.794922	-5.08251	2.249715
С	8.68376	-0.70467	-0.55627	Н	0.911257	4.888992	2.357398
С	0.580719	-5.90449	-1.03918	Н	3.069155	-5.18802	2.172007
С	-0.98468	-5.68829	1.242478	Н	-1.21138	-6.49951	-2.04345
С	0.378162	-5.42796	1.308475	Н	-3.51069	6.50218	1.790379
С	0.551806	5.303734	1.420437	Н	-5.80095	-5.22686	1.882568
С	3.242679	-4.54031	1.318253	Н	-2.95609	-5.0858	-2.1597
С	-0.78034	-6.17934	-1.09947	Н	9.098681	1.33745	0.271213
С	-3.76936	5.956818	0.886412	Н	-5.0984	-3.93902	-2.15945
С	-5.18106	-5.19235	0.990889	Н	-6.03497	-2.91758	2.073792
С	-3.58572	-5.16398	-1.2787	Н	-6.59038	3.492903	1.913898
С	-5.58658	-4.41212	-0.11045	Н	-6.64163	3.193698	-2.37956
С	8.595582	0.718076	-0.4599	Н	-5.70302	5.445758	1.637031
С	-6.41753	3.497831	-0.24529	Н	-6.84884	-0.64349	2.111984
С	-6.55793	-3.29702	0.012999	Н	-7.50462	0.941634	-2.20966
С	-4.81117	-4.50757	-1.28023	Н	-8.22882	-1.06288	-1.94584
С	-6.54771	-2.53664	1.195771	Н	-7.59169	1.298686	2.07873
С	-7.51772	0.869286	-0.04467	Н	-7.3765	-3.34645	-1.98965
С	-7.52754	-0.61414	0.056365				

Fc-[11]CPP+

С	0.218682	8.390047	0.660342	С	-6.86867	2.449423	-0.36611
С	0.385571	7.379765	-1.51082	С	-6.96206	3.41792	-1.38082
С	0.446868	-8.40247	0.683845	С	-7.29366	-1.2685	-0.57973
С	0.57683	-7.42194	-1.50469	С	-7.37933	1.084318	-0.55738
С	1.606893	8.456811	0.735388	С	-8.36949	-0.83694	-1.41998
С	1.770444	7.455258	-1.44007	С	-8.41136	0.591744	-1.42394
С	1.835895	-8.43787	0.749818	С	-9.06393	-0.36516	2.522042
С	1.96332	-7.46379	-1.44133	С	-9.39845	0.986711	2.192553
С	2.417884	7.926459	-0.28466	С	-9.95496	-1.22162	1.805143
С	2.628575	-7.90115	-0.28217	С	-10.4886	0.95741	1.279657
С	3.862543	7.643086	-0.10545	С	-10.8264	-0.40215	1.036855

С	4.065311	-7.57956	-0.11083	Fe	-8.77959	-0.06842	0.494623
С	4.318075	7.128461	1.120344	Н	0.113455	-6.96478	-2.37315
С	4.513632	-7.05766	1.114941	Н	2.070217	8.895201	1.6151
С	4.766977	7.641178	-1.18274	Н	2.314516	-8.85493	1.631554
С	4.964084	-7.54912	-1.19283	Н	2.361789	7.036749	-2.24881
С	5.55291	6.496329	1.219928	Н	2.5395	-7.04338	-2.25985
С	5.7315	-6.39367	1.210984	Н	3.649653	7.115303	1.976624
С	6.006775	7.019048	-1.07879	Н	3.849992	-7.06493	1.9749
С	6.187409	-6.89516	-1.09227	Н	4.479574	8.09824	-2.12604
С	6.393348	6.355662	0.101355	Н	4.68519	-8.0108	-2.1364
С	6.562437	-6.22611	0.088797	Н	5.814322	6.003741	2.151563
С	7.488759	5.354409	0.123603	Н	5.984374	-5.89823	2.143367
С	7.631708	-5.1976	0.110863	Н	6.665474	7.006993	-1.94261
С	7.728144	4.572443	-1.02009	Н	6.841485	-6.86299	-1.95901
С	7.849196	-4.40704	-1.03142	Н	7.232134	4.820768	-1.95342
С	8.156501	4.982515	1.305393	Н	7.359183	-4.66614	-1.965
С	8.290871	-4.81103	1.292924	Н	8.063013	5.600925	2.194068
С	8.468273	3.398581	-0.95022	Н	8.215398	-5.43399	2.180116
С	8.557626	-3.21394	-0.95928	Н	8.529492	2.765347	-1.83016
C	8.895662	3.804956	1.376218	Н	8.601098	-2.5771	-1.83763
C	8.998581	-3.61465	1.365762	Н	8.640794	1.30858	2.386793
C	9.003994	2.94491	0.267756	Н	8.674613	-1.12987	2.383221
С	9.06003	0.791531	1.528676	Н	9.360824	3.528042	2.318531
С	9.07932	-0.5989	1.526606	Н	9.457659	-3.32783	2.308046
С	9.081897	-2.74882	0.259468	Н	-0.06109	6.898678	-2.37505
С	9.424324	1.526793	0.387238	Н	-0.12701	-8.80277	1.514923
С	9.463649	-1.32031	0.382872	Н	-0.36939	8.788663	1.482297
С	9.966066	0.807754	-0.69449	Н	-1.7487	-7.34922	1.79028
С	9.984896	-0.58344	-0.69684	Н	-1.98145	7.324495	1.762396
С	-0.21817	-7.82505	-0.41568	Н	-1.99149	-7.44875	-2.50475
С	-0.42594	7.782881	-0.43463	Н	10.33465	1.343706	-1.56499
С	-1.6463	-7.43461	-0.36877	Н	10.36778	-1.10632	-1.56915
С	-1.84898	7.367275	-0.3958	Н	-2.16391	7.328613	-2.53575
С	-2.262	-7.1257	0.86074	Н	-3.87653	-6.1824	1.886911
С	-2.38715	-7.16154	-1.53567	Н	-4.06483	-6.18199	-2.41833
С	-2.47713	7.073661	0.830126	Н	-4.09378	6.129857	1.853668
С	-2.56769	7.055556	-1.5659	Н	-4.21165	6.02341	-2.45127
С	-3.46404	-6.43517	0.914542	Н	-4.46941	-4.13336	1.645575
С	-3.58519	-6.4596	-1.4844	Н	-4.67932	4.076589	1.663705
С	-3.67103	6.366601	0.881576	Н	-5.83603	-2.13262	1.543127
С	-3.7531	6.331479	-1.51631	Н	-5.91265	-0.05495	0.682004
С	-4.11675	-6.01117	-0.25962	Н	-6.01261	2.050675	1.584163
С	-4.29762	5.903916	-0.29095	Н	-6.168	-5.50264	-2.06766
С	-5.15454	-4.01384	0.813799	Н	-6.28902	5.301419	-2.13597
С	-5.16213	-4.96865	-0.22672	Н	-7.50237	-3.46216	-2.20859
С	-5.32972	4.843593	-0.25144	Н	-7.56921	3.225025	-2.26129
С	-5.33731	3.921377	0.815892	Н	-8.29117	-0.68137	3.210221
С	-5.92023	-2.86474	0.745069	Н	-8.90521	1.876766	2.561054
С	-6.08516	2.757179	0.761337	Н	-9.03635	-1.48449	-1.97515

С	-6.08551	-4.76627	-1.27447	Н	-9.10533	1.195019	-1.99541
С	-6.21595	4.591695	-1.3179	Н	-9.95521	-2.30385	1.826926
С	-6.75006	-2.608	-0.36495	Н	-10.954	1.819062	0.818346
С	-6.76143	-0.08014	0.014221	Н	-11.5956	-0.7525	0.360357
С	-6.85972	-3.61374	-1.34561				

m[6]CPP

С	-0.05182	-4.19649	1.420428	С	-0.05463	-0.8213	3.895904
С	1.152168	-4.11561	0.694961	С	-1.27168	-1.35341	3.43222
С	1.152168	-4.11561	-0.69496	С	-1.32437	-2.60556	2.830636
С	-0.05182	-4.19649	-1.42043	С	-0.16226	-3.38294	2.663569
С	-1.18067	-4.63608	-0.69622	С	0.962992	-2.98639	3.416784
С	-1.18067	-4.63608	0.696223	С	1.016654	-1.73047	4.016356
С	-0.16226	-3.38294	-2.66357	Н	2.07006	-3.8381	1.20357
С	0.962992	-2.98639	-3.41678	Н	2.07006	-3.8381	-1.20357
С	1.016654	-1.73047	-4.01636	Н	-2.10986	-4.85129	-1.21782
С	-0.05463	-0.8213	-3.8959	Н	-2.10986	-4.85129	1.217819
С	-1.27168	-1.35341	-3.43222	Н	1.85314	-3.6102	-3.43127
С	-1.32437	-2.60556	-2.83064	Н	1.945617	-1.41255	-4.48308
С	0.143358	0.65232	-3.80451	Н	-2.14567	-0.71348	-3.35963
С	-0.91936	1.573665	-3.87537	Н	-2.23638	-2.88374	-2.31208
С	-0.86717	2.787064	-3.18741	Н	-1.84424	1.293704	-4.37308
С	0.25454	3.128873	-2.41281	Н	-1.75729	3.409976	-3.14451
С	1.39893	2.326621	-2.55515	Н	2.306458	2.595198	-2.02071
С	1.346149	1.116832	-3.23771	Н	2.207291	0.457272	-3.19216
С	-0.39263	5.336261	-1.22089	Н	-0.62444	5.842532	-2.15448
С	-0.62935	5.977421	0	Н	-1.02664	6.989314	0
С	-0.39263	5.336261	1.220887	Н	-0.62444	5.842532	2.154476
С	0.134392	4.037127	1.234333	Н	0.756897	2.403375	0
С	0.416886	3.432983	0	Н	2.306458	2.595198	2.020713
С	0.134392	4.037127	-1.23433	Н	2.207291	0.457272	3.192155
С	0.25454	3.128873	2.412811	Н	-1.84424	1.293704	4.373081
С	1.39893	2.326621	2.555151	Н	-1.75729	3.409976	3.14451
С	1.346149	1.116832	3.237707	Н	-2.14567	-0.71348	3.359632
С	0.143358	0.65232	3.80451	Н	-2.23638	-2.88374	2.312078
С	-0.91936	1.573665	3.875368	Н	1.85314	-3.6102	3.431273
С	-0.86717	2.787064	3.18741	Н	1.945617	-1.41255	4.483078

			<i>m</i> [7]CPI	þ			
С	5.121097	0.777026	0.06504000	С	0.62564	-4.78219	1.07987
С	5.162271	1.613937	-1.07058500	С	5.15556	-0.70811	-0.03363
С	4.483248	2.829227	-1.09620000	С	5.007873	-1.52796	1.103695
С	3.73881	3.270551	0.01613200	С	4.337997	-2.74399	1.031081
С	3.96039	2.582935	1.22327000	С	3.810538	-3.22154	-0.18602
С	4.634302	1.369002	1.24681000	С	4.277481	-2.56999	-1.34554
С	2.502222	4.087096	-0.10672200	С	4.917516	-1.33842	-1.27136
С	1.723599	3.944007	-1.27020100	Н	5.63372	1.267475	-1.98598
С	0.3473	4.1411	-1.24540100	Н	4.445981	3.387924	-2.02793
С	-0.31576	4.488942	-0.05531600	Н	3.448733	2.902389	2.125807
С	0.493678	4.877143	1.02992600	Н	4.618502	0.803267	2.171875
С	1.872573	4.685601	1.00319700	Н	2.165998	3.508622	-2.16089
С	-1.74101	4.093733	0.10391500	Н	-0.23307	3.857592	-2.1184
С	-2.65226	4.054189	-0.96711400	Н	0.030767	5.251215	1.939657
С	-3.77703	3.229201	-0.92581400	Н	2.451816	4.91521	1.893836
С	-4.03259	2.412481	0.18834600	Н	-2.43463	4.604266	-1.87907
С	-3.23164	2.603228	1.32607900	Н	-4.39966	3.134388	-1.81199
С	-2.1136	3.428141	1.28672000	Н	-3.43502	2.023566	2.222635
С	-6.20166	1.162641	-0.41993300	Н	-1.4487	3.451499	2.14497
С	-6.83499	-0.06758	-0.62193300	Η	-6.72188	2.08764	-0.65508
С	-6.17629	-1.27414	-0.36742900	Η	-7.8542	-0.08637	-0.99947
С	-4.8666	-1.26385	0.13447300	Η	-6.67763	-2.21885	-0.56184
С	-4.26546	-0.01956	0.37565200	Η	-3.23001	-0.00086	0.698464
С	-4.89343	1.20007	0.08321100	Η	-4.41002	-3.29902	-1.65974
С	-3.98148	-2.45351	0.27926500	Η	-2.42774	-4.74345	-1.71356
С	-3.75403	-3.33212	-0.79343300	Η	-1.3107	-3.33865	2.194917
С	-2.61891	-4.14235	-0.82831000	Η	-3.31713	-1.9407	2.265235
С	-1.66647	-4.10435	0.20684500	Η	-0.26236	-4.02265	-2.09682
С	-2.00658	-3.37582	1.36215500	Н	2.109438	-3.65745	-2.28754
С	-3.1365	-2.56707	1.39565600	Н	2.612052	-4.73185	1.852791
С	-0.24336	-4.48759	0.01199100	Н	0.216276	-5.09324	2.037683
С	0.360115	-4.22331	-1.22992600	Н	5.294385	-1.15952	2.084076
С	1.728789	-4.00959	-1.33529000	Н	4.105505	-3.24986	1.962773
С	2.569927	-4.04623	-0.20574400	Н	4.021785	-2.95119	-2.32905
С	1.997996	-4.57441	0.97102400	Н	5.092021	-0.80087	-2.19804

			<i>m</i> [8]CPI	2			
С	-0.14848	-5.06063	2.76022300	С	1.172083	-5.46741	-0.69543
С	-1.32631	-4.34004	3.02783300	С	1.172083	-5.46741	0.695429
С	-1.33857	-3.28792	3.93394200	С	-0.17653	-2.90203	-4.62787
С	-0.17653	-2.90203	4.62787300	С	-1.33857	-3.28792	-3.93394
С	0.921457	-3.7828	4.54154500	С	-1.32631	-4.34004	-3.02783
С	0.938347	-4.83228	3.62589400	С	-0.14848	-5.06063	-2.76022
С	-0.04994	-1.50003	5.10983900	С	0.938347	-4.83228	-3.62589
С	-1.16871	-0.65412	5.23972000	С	0.921457	-3.7828	-4.54155
С	-1.04727	0.727618	5.13498300	Н	-2.20112	-4.49385	2.403633
С	0.20294	1.340965	4.93132900	Н	-2.22827	-2.66926	3.978833
С	1.332426	0.512343	5.06934600	Н	1.812594	-3.59918	5.135188
С	1.209487	-0.87051	5.14086900	Н	1.84206	-5.42829	3.525985
С	0.295118	2.689212	4.31134500	Н	-2.16499	-1.07827	5.319846
С	-0.74827	3.633589	4.35047100	Н	-1.95438	1.323132	5.092703
С	-0.80975	4.685847	3.43562800	Н	2.328606	0.942463	5.023457
С	0.175788	4.845485	2.44743300	Н	2.114941	-1.46777	5.09997
С	1.301198	4.008135	2.52386100	Н	-1.56419	3.508501	5.057111
С	1.357692	2.956405	3.42717800	Н	-1.68272	5.333792	3.431308
С	-0.56524	6.976951	1.21860600	Н	2.111607	4.140099	1.812405
С	-0.81706	7.61386	0.00000000	Н	2.196039	2.270476	3.367775
С	-0.56524	6.976951	-1.21860600	Н	-0.77767	7.489243	2.15346
С	-0.03117	5.679746	-1.23295700	Н	-1.21904	8.623824	0
С	0.233462	5.066103	0.00000000	Н	-0.77767	7.489243	-2.15346
С	-0.03117	5.679746	1.23295700	Н	0.573838	4.036599	0
С	0.175788	4.845485	-2.44743300	Н	-1.68272	5.333792	-3.43131
С	-0.80975	4.685847	-3.43562800	Н	-1.56419	3.508501	-5.05711
С	-0.74827	3.633589	-4.35047100	Н	2.196039	2.270476	-3.36778
С	0.295118	2.689212	-4.31134500	Н	2.111607	4.140099	-1.81241
С	1.357692	2.956405	-3.42717800	Н	-1.95438	1.323132	-5.0927
С	1.301198	4.008135	-2.52386100	Н	-2.16499	-1.07827	-5.31985
С	0.20294	1.340965	-4.93132900	Н	2.114941	-1.46777	-5.09997
С	-1.04727	0.727618	-5.13498300	Н	2.328606	0.942463	-5.02346
С	-1.16871	-0.65412	-5.23972000	Н	-2.02327	-6.46504	1.223184
С	-0.04994	-1.50003	-5.10983900	Н	-2.02327	-6.46504	-1.22318
С	1.209487	-0.87051	-5.14086900	Н	2.060074	-5.11815	-1.21389
С	1.332426	0.512343	-5.06935	Н	2.060074	-5.11815	1.213891
С	-0.01138	-5.69188	1.421778	Н	-2.22827	-2.66926	-3.97883
С	-1.11758	-6.17631	0.695923	Н	-2.20112	-4.49385	-2.40363
С	-1.11758	-6.17631	-0.69592	Н	1.84206	-5.42829	-3.52599
С	-0.01138	-5.69188	-1.42178	Н	1.812594	-3.59918	-5.13519

			<i>m</i> [9]	CPP			
С	4.629061	-4.30687	-0.10012	С	4.280408	4.516046	-0.30125
С	4.188601	-5.14498	0.940728	С	3.878376	5.389121	0.728364
С	2.949631	-5.77781	0.87982	С	2.602322	5.949459	0.745519
С	2.082851	-5.58824	-0.21519	С	6.564122	0.943089	0.122375
С	2.6174	-4.917	-1.33036	С	6.457319	1.569506	-1.13492
С	3.860175	-4.29807	-1.27713	С	5.893149	2.832248	-1.27126
С	0.613694	-5.79768	-0.1218	С	5.377106	3.524306	-0.15945
С	-0.02927	-5.75061	1.129694	С	5.711657	3.00739	1.10608
С	-1.39166	-5.49758	1.237383	С	6.305814	1.756986	1.242759
С	-2.1819	-5.25062	0.100002	Н	4.791925	-5.24888	1.839134
С	-1.57924	-5.48925	-1.14856	Н	2.625464	-6.37057	1.73059
С	-0.22047	-5.77016	-1.25556	Н	2.001763	-4.752	-2.20839
С	-3.47839	-4.53164	0.197127	Н	4.168877	-3.67406	-2.11066
С	-3.6657	-3.61273	1.246476	Н	0.557673	-5.80595	2.041142
С	-4.69606	-2.68371	1.219883	Н	-1.82962	-5.41176	2.227606
С	-5.59059	-2.61586	0.138946	Н	-2.15474	-5.35086	-2.05931
С	-5.48925	-3.6146	-0.84372	Н	0.208176	-5.88448	-2.24681
С	-4.457	-4.55327	-0.81362	Н	-2.94101	-3.56167	2.052492
С	-7.78549	-1.44682	-0.47554	Н	-4.77698	-1.95771	2.023966
С	-8.48349	-0.25117	-0.66492	Н	-6.17763	-3.60949	-1.6851
С	-7.88161	0.985582	-0.41892	Н	-4.38345	-5.27852	-1.61961
С	-6.55668	1.042159	0.039875	Н	-8.27268	-2.39786	-0.67447
С	-5.87806	-0.16909	0.237466	Н	-9.51433	-0.28383	-1.00825
С	-6.4601	-1.41949	-0.016	Н	-8.44288	1.903259	-0.57465
С	-5.78101	2.29482	0.240163	Н	-4.83161	-0.13495	0.520225
С	-5.77719	3.34134	-0.69693	Н	-6.48335	3.322952	-1.52322
С	-4.81345	4.349047	-0.64755	Н	-4.81168	5.110904	-1.42245
С	-3.80695	4.35096	0.335862	Н	-3.16007	3.347132	2.137715
С	-3.90644	3.381078	1.350745	Н	-4.88056	1.621097	2.080002
С	-4.87032	2.383576	1.30626	Н	-2.63087	5.33266	-1.92945
С	-2.55591	5.144987	0.223168	Н	-0.29937	5.975371	-2.195
С	-2.02184	5.46155	-1.03952	Н	0.245369	5.749619	2.065024
С	-0.68293	5.805292	-1.19306	Н	-2.1179	5.237897	2.339373
С	0.197325	5.82385	-0.09497	Н	6.521943	-3.24235	-1.87059
С	-0.38384	5.704048	1.18095	Н	7.3848	-0.96588	-1.75495
С	-1.72873	5.384898	1.335979	Н	5.836925	-0.60299	2.246653
С	5.620762	-3.219	0.094754	Н	5.017598	-2.87358	2.137475
С	6.377881	-2.67077	-0.9571	Н	1.45855	4.70671	-2.19122
С	6.86467	-1.36811	-0.89044	Н	3.66545	3.733942	-2.2198
С	6.598491	-0.54172	0.220755	Н	4.54753	5.586157	1.561876
С	6.04332	-1.1753	1.348795	Н	2.313621	6.568455	1.590988
С	5.571521	-2.48083	1.2898	Н	6.702471	1.020158	-2.0382
C	1.664393	5.666581	-0.26643	Н	5.758785	3.236689	-2.27036
С	2.137535	4.951402	-1.38105	Н	5.388883	3.527273	2.003407
С	3.407267	4.392969	-1.39775	H	6,465221	1.371067	2.244926
-	2						

			m[10]	CPP			
С	0.393403	-3.58028	5.695284	С	-1.50288	-6.61248	-0.69376
С	-0.56283	-3.02865	6.569129	С	-0.42763	-7.14473	-1.42797
С	-0.5563	-1.67148	6.885941	С	0.546289	-7.8522	-0.69676
С	0.409191	-0.79969	6.348302	С	0.546289	-7.8522	0.696764
С	1.453689	-1.38589	5.612047	С	0.205367	-4.86902	-4.98123
С	1.445284	-2.7367	5.293931	С	1.279021	-5.53171	-4.35787
С	0.248307	0.67572	6.305946	С	1.067483	-6.40725	-3.29831
С	-1.03192	1.244162	6.176768	С	-0.22929	-6.68325	-2.82599
С	-1.20013	2.552388	5.734941	С	-1.29909	-6.21231	-3.6102
С	-0.09734	3.352316	5.38541	С	-1.08784	-5.31689	-4.65338
С	1.179496	2.840017	5.677915	Н	-1.3551	-3.65677	6.967946
С	1.347499	1.536873	6.135134	Н	-1.34278	-1.27618	7.523612
С	-0.24901	4.561942	4.537152	Н	2.219482	-0.7549	5.172134
С	-1.26764	4.589273	3.567208	Н	2.203854	-3.11053	4.614109
С	-1.28125	5.544907	2.560232	Н	-1.91137	0.624263	6.325692
С	-0.27449	6.520024	2.465906	Н	-2.20745	2.933639	5.592722
С	0.675732	6.568817	3.499406	Н	2.060657	3.433648	5.451794
С	0.687539	5.610856	4.513305	Н	2.354732	1.160714	6.291108
С	0.208253	8.694735	1.21632	Н	-2.01338	3.800641	3.550617
С	0.378429	9.360006	0	Н	-2.05923	5.507759	1.802876
С	0.208253	8.694735	-1.21632	Н	1.459816	7.321144	3.470119
С	-0.15244	7.338625	-1.23111	Н	1.465457	5.654595	5.270981
С	-0.33135	6.691238	0	Н	0.344309	9.230309	2.152228
С	-0.15244	7.338625	1.231108	Н	0.644725	10.41386	0
С	-0.27449	6.520024	-2.46591	Н	0.344309	9.230309	-2.15223
С	0.675732	6.568817	-3.49941	Н	-0.5397	5.626639	0
С	0.687539	5.610856	-4.51331	Н	1.459816	7.321144	-3.47012
С	-0.24901	4.561942	-4.53715	Н	1.465457	5.654595	-5.27098
С	-1.26764	4.589273	-3.56721	Н	-2.01338	3.800641	-3.55062
С	-1.28125	5.544907	-2.56023	Н	-2.05923	5.507759	-1.80288
С	-0.09734	3.352316	-5.38541	Н	2.060657	3.433648	-5.45179
С	1.179496	2.840017	-5.67792	Н	2.354732	1.160714	-6.29111
С	1.347499	1.536873	-6.13513	Н	-1.91137	0.624263	-6.32569
С	0.248307	0.67572	-6.30595	Н	-2.20745	2.933639	-5.59272
С	-1.03192	1.244162	-6.17677	Н	2.29969	-5.28824	4.638911
С	-1.20013	2.552388	-5.73494	Н	1.929338	-6.78424	2.755559
С	0.205367	-4.86902	4.981232	Н	-2.3197	-6.47002	3.341816
С	1.279021	-5.53171	4.357869	Н	-1.951	-4.87084	5.138844
С	1.067483	-6.40725	3.298311	Н	2.219482	-0.7549	-5.17213
С	-0.22929	-6.68325	2.825993	Н	2.203854	-3.11053	-4.61411
С	-1.29909	-6.21231	3.610201	Н	-1.3551	-3.65677	-6.96795
С	-1.08784	-5.31689	4.653376	Н	-1.34278	-1.27618	-7.52361
С	0.409191	-0.79969	-6.3483	Н	-2.28389	-6.06113	1.206893
С	1.453689	-1.38589	-5.61205	Н	-2.28389	-6.06113	-1.20689
С	1.445284	-2.7367	-5.29393	Н	1.354024	-8.35664	-1.22063
С	0.393403	-3.58028	-5.69528	Н	1.354024	-8.35664	1.220629

С	-0.56283	-3.02865	-6.56913	Н	2.29969	-5.28824	-4.63891
С	-0.5563	-1.67148	-6.88594	Н	1.929338	-6.78424	-2.75556
С	-0.42763	-7.14473	1.427969	Н	-2.3197	-6.47002	-3.34182
С	-1.50288	-6.61248	0.693764	Н	-1.951	-4.87084	-5.13884

m[11]CPP

С	2.35275	6.772621	-0.33977	С	5.008406	-6.02968	-1.24594
С	1.58332	6.204667	-1.37132	С	6.115745	-5.18835	-1.18566
С	0.197247	6.271843	-1.36401	С	6.424273	-4.47162	-0.01388
С	-0.50006	6.907903	-0.32228	С	5.68092	-4.78408	1.138422
С	0.269776	7.587787	0.639405	С	4.580806	-5.63239	1.081329
С	1.662019	7.523842	0.62947	С	8.091918	-0.52888	0.122371
С	-1.95473	6.652395	-0.17575	С	8.250819	-1.39523	1.2196
С	-2.7757	6.399461	-1.28933	С	7.856236	-2.72814	1.146798
С	-4.02283	5.800307	-1.14568	С	7.274284	-3.25354	-0.02272
С	-4.51625	5.436886	0.120027	С	7.29334	-2.43508	-1.1661
С	-3.76663	5.841116	1.239091	С	7.696038	-1.10615	-1.09652
С	-2.51392	6.428935	1.095056	Н	2.067761	5.602051	-2.13269
С	-5.65209	4.488611	0.24273	Н	-0.35459	5.722717	-2.12051
С	-6.69879	4.416692	-0.69353	Н	-0.22698	8.147432	1.427746
С	-7.58952	3.343635	-0.70193	Н	2.217398	8.036303	1.410594
С	-7.47224	2.295854	0.226307	Н	-2.40724	6.615931	-2.2882
С	-6.49597	2.425961	1.227994	Н	-4.58091	5.528377	-2.0371
С	-5.60723	3.49274	1.234904	Н	-4.14102	5.637327	2.238415
С	-9.58868	0.957701	-0.25883	Н	-1.92277	6.631513	1.983673
С	-10.206	-0.28321	-0.42995	Н	-6.7955	5.189214	-1.45181
С	-9.49176	-1.47188	-0.26543	Н	-8.34376	3.284908	-1.48247
С	-8.13352	-1.43402	0.086364	Н	-6.40726	1.655411	1.988618
С	-7.53334	-0.17875	0.26177	Н	-4.81577	3.511826	1.977779
С	-8.23189	1.025497	0.093521	Н	-10.1624	1.872026	-0.38542
С	-7.27824	-2.64226	0.215842	Н	-11.2607	-0.32465	-0.68933
С	-7.32912	-3.70545	-0.70101	Н	-9.99151	-2.42805	-0.39637
С	-6.36983	-4.71782	-0.68575	Н	-6.46832	-0.13611	0.463784
С	-5.3164	-4.71121	0.2457	Н	-8.09105	-3.70738	-1.47624
С	-5.32782	-3.69755	1.220901	Н	-6.42242	-5.50585	-1.43229
С	-6.28546	-2.69277	1.208446	Н	-4.53219	-3.65373	1.958026
С	-4.13425	-5.60358	0.145376	Н	-6.24302	-1.90971	1.960115
С	-3.62911	-5.99993	-1.10577	Н	-4.19986	-5.78973	-2.00588
С	-2.36101	-6.55983	-1.22973	Н	-1.99307	-6.80891	-2.22104
С	-1.52607	-6.7349	-0.11122	Н	-1.49132	-6.60873	2.045879
С	-2.08978	-6.4709	1.150369	Н	-3.74194	-5.70004	2.267991
С	-3.36347	-5.92835	1.275714	Н	3.823	6.50025	1.953001
С	3.774645	6.368279	-0.20389	Н	5.86989	5.212091	2.225095
С	4.345326	6.157266	1.064485	Н	6.139165	4.752158	-2.04377
С	5.501919	5.399695	1.220534	Н	4.170463	6.151814	-2.31845
С	6.132067	4.791943	0.118572	Н	0.060915	-6.0199	-2.18353

С	5.666968	5.163347	-1.15684	Н	2.486032	-5.81936	-2.19473
С	4.526065	5.941462	-1.3139	Н	2.674151	-7.74038	1.645055
С	-0.06451	-6.96182	-0.24328	Н	0.236559	-7.97031	1.646471
С	0.621455	-6.44501	-1.35683	Н	6.266734	3.097499	2.225028
С	2.006269	-6.329	-1.36426	Н	7.126426	0.828772	2.224762
С	2.776917	-6.71494	-0.25399	Н	8.903202	1.487598	-1.63255
С	2.106382	-7.36539	0.797327	Н	8.06878	3.785916	-1.62144
С	0.719603	-7.49113	0.799287	Н	4.763845	-6.51834	-2.18558
С	7.031409	3.619108	0.271415	Н	6.715422	-5.0422	-2.08004
С	6.885371	2.780759	1.391685	Н	5.883687	-4.25797	2.066228
С	7.375631	1.480973	1.392923	Н	3.959985	-5.7475	1.965184
С	8.028687	0.947013	0.268716	Н	8.631392	-1.00555	2.160315
С	8.332018	1.838189	-0.77662	Н	7.944182	-3.35251	2.031862
С	7.85164	3.145329	-0.77112	Н	6.861388	-2.7987	-2.09345
С	4.165101	-6.2037	-0.13344	Н	7.568147	-0.47318	-1.96989

m[12]CPP

С	1.689806	-7.51429	0.055316	С	8.808247	-1.25288	-0.10717
С	0.909418	-7.56065	1.225309	С	8.867901	-0.6358	1.156611
С	-0.47693	-7.46687	1.17854	С	8.825953	0.746492	1.291794
С	-1.16793	-7.35468	-0.04193	С	8.693652	1.586215	0.170946
С	-0.39744	-7.48197	-1.21214	С	8.829358	0.979858	-1.0911
С	0.990539	-7.54373	-1.16537	С	8.899168	-0.40331	-1.22567
С	-2.59326	-6.93795	-0.08333	С	6.51891	5.300833	0.261342
С	-3.09212	-6.23484	-1.19553	С	6.477704	4.389763	1.33134
С	-4.33599	-5.6157	-1.16736	С	7.277279	3.256203	1.347888
С	-5.13929	-5.6482	-0.01609	С	8.166542	2.968099	0.296872
С	-4.68875	-6.42657	1.063129	С	8.314399	3.952761	-0.69806
С	-3.45264	-7.06679	1.02435	С	7.5094	5.090445	-0.71611
С	-6.31484	-4.74625	0.078597	Н	1.391524	-7.61117	2.196818
С	-7.20923	-4.56619	-0.98956	Н	-1.02068	-7.40146	2.115838
С	-8.15622	-3.54366	-0.97018	Н	-0.88265	-7.4762	-2.18337
С	-8.23105	-2.64929	0.109594	Н	1.538159	-7.53318	-2.10254
С	-7.39379	-2.88189	1.212442	Н	-2.46457	-6.08986	-2.06868
С	-6.46195	-3.91501	1.201881	Н	-4.64898	-5.01618	-2.01767
С	-10.4054	-1.40954	-0.34899	Н	-5.30785	-6.51717	1.952053
С	-11.0916	-0.20031	-0.47744	Н	-3.1427	-7.65383	1.883967
С	-10.4461	1.016709	-0.25405	Н	-7.13958	-5.21446	-1.85927
С	-9.09301	1.042264	0.119881	Н	-8.80089	-3.39348	-1.83235
С	-8.42777	-0.18356	0.273676	Н	-7.45262	-2.22097	2.073178
С	-9.05596	-1.4136	0.033853	Н	-5.78598	-4.0343	2.04421
С	-8.3134	2.298785	0.262833	Н	-10.9171	-2.35018	-0.53469
С	-8.45591	3.362888	-0.64361	Н	-12.142	-0.20643	-0.75668
С	-7.57255	4.440602	-0.63575	Н	-10.9945	1.948701	-0.36224
С	-6.50671	4.502328	0.278624	Н	-7.36734	-0.18064	0.505529
С	-6.42636	3.483577	1.244829	Н	-9.22869	3.315471	-1.40631

С	-7.30864	2.410215	1.238144	Н	-7.69327	5.229281	-1.37361
С	-5.40241	5.486812	0.159252	Н	-5.61711	3.49555	1.968829
С	-4.9374	5.886676	-1.10615	Н	-7.19555	1.624929	1.980324
С	-3.73579	6.572324	-1.25025	Н	-5.48246	5.586041	-1.99641
С	-2.93625	6.884556	-0.13679	Н	-3.38718	6.824022	-2.24809
С	-3.4646	6.598355	1.134463	Н	-2.88384	6.836879	2.021088
С	-4.67022	5.918821	1.278889	Н	-5.02406	5.676782	2.27727
С	3.147757	-7.23051	0.092674	Н	3.629325	-7.97176	-1.8838
С	3.983228	-7.40426	-1.02798	Н	5.832494	-6.91934	-2.00023
С	5.242142	-6.81285	-1.0936	Н	5.322944	-5.41323	1.990808
С	5.738226	-6.03865	-0.03042	Н	3.110334	-6.40977	2.093689
С	4.973473	-6.00237	1.147756	Н	-1.40667	8.592376	1.439793
С	3.708905	-6.57505	1.204028	Н	1.031615	8.816728	1.398988
С	-1.51924	7.298272	-0.28707	Н	1.191617	6.315364	-2.09621
С	-0.84258	8.089902	0.658289	Н	-1.23057	6.106737	-2.06306
С	0.544736	8.216644	0.634834	Н	6.257627	-4.4932	-2.16628
С	1.323406	7.552151	-0.33076	Н	7.548359	-2.43521	-2.20192
С	0.632881	6.858829	-1.34088	Н	9.117464	-3.34979	1.700411
С	-0.75008	6.737237	-1.32109	Н	7.773454	-5.39163	1.751767
С	6.859322	-5.07802	-0.17987	Н	2.823883	7.518589	1.946916
С	6.90996	-4.26884	-1.32708	Н	5.075577	6.617596	2.208814
С	7.652124	-3.09389	-1.34597	Н	5.404256	6.201975	-2.05815
С	8.39493	-2.67557	-0.2264	Н	3.19874	7.211941	-2.3258
С	8.488162	-3.58366	0.846438	Н	8.840616	-1.24247	2.056288
С	7.729014	-4.75022	0.875182	Н	8.812882	1.173829	2.29029
С	2.792142	7.375103	-0.20902	Н	8.772443	1.58836	-1.9891
С	3.39559	7.270812	1.057263	Н	8.940803	-0.82601	-2.22517
С	4.670262	6.73558	1.207815	Н	5.723639	4.503454	2.103578
С	5.397392	6.2598	0.10153	Н	7.117843	2.523848	2.132442
С	4.864246	6.524985	-1.1727	Н	9.039017	3.809062	-1.49527
С	3.596614	7.077451	-1.32395	Н	7.625813	5.80493	-1.5269

			<i>m</i> [13]]CPP			
С	-0.64743	-8.32145	-0.25392	C	-9.56171	-2.70944	-0.73232
С	0.000962	-7.74284	-1.35832	С	-5.70118	6.868039	-0.27387
С	1.373707	-7.52329	-1.35531	С	-5.92438	6.004333	-1.35967
С	2.169224	-7.87904	-0.25191	С	-6.93169	5.049482	-1.32752
С	1.53758	-8.57284	0.796828	С	-7.77887	4.911771	-0.21299
С	0.161711	-8.78424	0.798656	С	-7.64359	5.868416	0.810974
С	3.559284	-7.37003	-0.14482	С	-6.62529	6.818857	0.784914
С	4.34441	-7.09063	-1.27756	С	-8.59473	3.679772	-0.06861
С	5.52097	-6.35353	-1.17873	С	-8.96945	2.906843	-1.18278
С	5.977945	-5.86977	0.059739	С	-9.3655	1.581686	-1.04372
С	5.259354	-6.25788	1.204	С	-9.4367	0.964609	0.218878
С	4.077571	-6.98274	1.103909	С	-9.25272	1.797597	1.337966
С	7.068194	-4.86623	0.138983	С	-8.82919	3.11488	1.19829
С	6.981203	-3.82613	1.08143	Н	-0.59185	-7.36405	-2.18596
C	7.879305	-2.76739	1.074437	Н	1.816764	-6.97587	-2.18172
C	8.907593	-2.68808	0.120597	Н	2.126613	-8.92753	1.638154
C	9.0419	-3.76103	-0.77623	Н	-0.29676	-9.29217	1.643185
C	8 142222	-4 82623	-0.76719	Н	4 008655	-7 41631	-2.25812
C	11 11192	-1 48279	-0.26918	Н	6 054317	-6.08863	-2.08742
C	11 82361	-0.28727	-0 38194	Н	5 607992	-5 95136	2.007.12
C	11 19027	0.20727	-0 20873	Н	3 509738	-7 18618	2.100005
C	9 818739	0.997136	0.086285	Н	6 16219	-3 81627	1 794071
C	9.120756	-0 21432	0.196334	н	7 769528	-1 97341	1.794071
C	9 739736	-1 46119	0.026209	Н	9 82948	-3 73706	-1 5249
C	9.065838	2 268948	0.235044	н	8 264741	-5 62821	-1 49031
C	8.030695	2.200740	1 179689	Н	11 6744	-2 43315	-0 39201
C	7 196275	3 477175	1.179009	Н	12 88874	-0.31626	-0 59668
C	7 358024	4 550208	0.328423	н	11 76342	1 864585	-0 28507
C	8 445062	4 488344	-0 56109	н	8 047954	-0 18403	0.355475
C	9 279676	3 372656	-0.60739	н	7 862108	1 550295	1 874337
C	6 322251	5 6111	0.00737	н	6 366163	3 483361	1.074557
C C	5 92921	6 168306	-0.96325	H	8 627156	5 313148	-1 24483
C	4 790011	6 960416	-1.06662	н	10.076	3 335504	-1 34618
C	3 979016	7 224315	0.051534	н	6 479666	5 918038	-1 86574
C	4 439151	6 765134	1 298471	н	4 50104	7 341768	-2 04196
C	5 584905	5 984329	1.270471	н	3 850519	6 956541	2 190954
C	-2 12467	-8 23481	-0 14819	н	5 886824	5 62127	2.170754
C	-2.12+07	-0.23+01	1 0630/1	н Ц	-2 08625	-7 72000	1 0/8/00
C	-4.03548	-7.03002	1.005741	н	-2.00023	-7.00256	2 051893
C	-4.84751	-7.40037	-0.0255	н	-4.91677	-8.01511	-2 09735
C C	-4.30224	-7.40037	-0.0233	н П	-4.91077	-8.71672	-2.07755
C C	-4.30224	-8 3/300	-1.20410	н П	2 301817	6 9/1297	-2.20558
C	2.97085	7 788676	-0.08524	н П	-0.08/09	7 125065	-2.0407
C	1 848507	7 488815	-1.22605	н	0 133105	9.262542	1 743873
C	0/187026	7.76/562	-1.22005	и П	2 525625	9.202342 8.78867 <i>1</i>	1 870567
C	_0 1915	8 350657	-1.27730	и П	-6 65527	-7 025/2	2 0/21002
C	0.1013	8 757/60	0.10727	и П	-8.3/30/	-7.05545	2.042100
C	0.002304	0.152409	0.700007	11	-0.54574	-5.20515	2.100410

С	1.967567	8.48054	0.955926	Н	-7.65838	-4.2785	-1.93937
С	-6.11919	-6.6342	-0.01391	Н	-5.95443	-6.01835	-2.07741
С	-6.86384	-6.43158	1.16318	Н	-1.95774	8.790108	-2.25276
С	-7.82639	-5.42982	1.24486	Н	-4.32769	8.158428	-2.28925
С	-8.09942	-4.5926	0.148449	Н	-4.15045	7.264455	1.911132
С	-7.47254	-4.90316	-1.07024	Н	-1.78701	7.890168	1.947011
С	-6.50227	-5.89642	-1.14789	Н	-7.9138	-2.90082	2.222378
С	-1.66493	8.336324	-0.16092	Η	-8.45832	-0.53333	2.253301
С	-2.43166	8.453547	-1.33457	Η	-10.4572	-0.94091	-1.53606
С	-3.77581	8.096672	-1.35507	Η	-9.86692	-3.3144	-1.58237
С	-4.41659	7.607075	-0.20247	Н	-5.22789	6.003904	-2.19281
С	-3.68973	7.635739	1.000046	Н	-6.9861	4.329234	-2.13723
С	-2.34438	7.991501	1.020107	Η	-8.31955	5.847598	1.661436
С	-8.79766	-3.29156	0.294426	Η	-6.52616	7.512233	1.616196
С	-8.50432	-2.48845	1.409399	Н	-8.8833	3.322827	-2.18226
С	-8.81929	-1.13564	1.426093	Н	-9.52958	0.993978	-1.9417
С	-9.45705	-0.51598	0.335898	Н	-9.37159	1.393093	2.338756
С	-9.89188	-1.35679	-0.70676	Н	-8.58711	3.680037	2.093426

Cartesian coordinates for the rotation process of Fc-[8]CPP

Fc-[8]CPP-A (PBE0-D3(BJ)/6-31G(d,p) for C, H, SDD for Fe)

С	-0.63799	6.271578	-1.06812	С	-4.94519	5.184919	1.136919
С	0.719451	5.979657	-1.11935	С	-5.42577	4.469365	0.029381
С	1.347453	5.257486	-0.09252	С	-2.90682	-5.71126	0.086255
С	0.592932	5.006304	1.061915	С	-3.3785	-5.11575	1.263511
С	-0.75639	5.312266	1.121773	С	-3.81146	-5.832	-0.97974
С	-1.42163	5.871375	0.023	С	-4.61737	-4.49513	1.304495
С	-6.41469	2.618011	1.334337	С	-5.05124	-5.20848	-0.93987
С	-6.92556	1.33009	1.351148	С	-5.43743	-4.44133	0.169376
С	-7.46478	0.75053	0.194876	Н	-1.10847	6.770042	-1.91157
С	-7.66029	1.590897	-0.91188	Н	1.286488	6.26814	-1.99988
С	-7.14895	2.88184	-0.92834	Н	1.032036	4.444915	1.879984
С	-6.42094	3.384402	0.161042	Н	-1.33397	4.984985	1.981103
С	-7.10275	-2.84906	1.210507	Н	-5.86539	2.973109	2.200777
С	-7.61082	-1.55717	1.214674	Н	-6.76129	0.713719	2.229676
С	-7.47396	-0.72396	0.093601	Н	-8.1536	1.203924	-1.79948
С	-7.00719	-1.31268	-1.08927	Н	-7.25246	3.482181	-1.82822
С	-6.50235	-2.60381	-1.09436	Н	-7.15267	-3.44366	2.118795
С	-6.44114	-3.36011	0.083652	Н	-8.05114	-1.16242	2.126374
С	-0.86711	-5.51984	-1.30261	Н	-6.89169	-0.70187	-1.97948
С	0.485897	-5.23268	-1.39252	Н	-6.00635	-2.96958	-1.98837
С	1.316793	-5.3014	-0.26648	Н	-1.50434	-5.31738	-2.15807
С	0.769449	-5.84399	0.905436	Н	0.874546	-4.81486	-2.31632
С	-0.58554	-6.13418	0.99467	Н	1.402795	-5.98524	1.777153
С	-1.4498	-5.89038	-0.08324	Н	-0.99031	-6.49796	1.935249
С	5.153655	1.168466	-0.80017	Н	3.640401	0.074732	0.416725
С	4.499002	0.032078	-0.2396	Н	6.853078	-1.41321	-2.1162
С	5.100173	-1.15987	-0.74412	Н	6.905417	1.280772	-2.18952
С	6.159915	-0.75186	-1.6127	Н	4.768625	2.580492	1.506949
С	6.189836	0.6741	-1.65017	Н	3.14171	4.395653	1.813062
С	4.291239	3.028568	0.640514	Н	2.496122	4.502664	-2.43155
С	3.357308	4.041021	0.809446	Н	4.189376	2.76219	-2.73039
С	2.632378	4.548041	-0.27974	Н	4.783009	-3.20013	-2.51342
С	3.027428	4.1334	-1.55978	Н	3.160604	-5.03731	-2.30857
С	3.982825	3.140796	-1.73317	Н	2.368852	-3.8748	1.745262
С	4.565022	2.508562	-0.62941	Н	4.047607	-2.09008	1.559502
С	4.284323	-3.37181	-1.56341	Н	8.76462	-1.576	0.394891
С	3.354098	-4.3985	-1.45111	Н	9.031022	1.103033	0.219159
С	2.595262	-4.56036	-0.2841	Н	7.168452	2.231169	1.797121
С	2.930379	-3.76564	0.821996	Н	5.745055	0.249818	2.957143
С	3.864743	-2.74807	0.71421	Н	6.729332	-2.10246	2.075601
С	4.493707	-2.47696	-0.50778	Н	-2.86616	5.133551	-2.1067
С	8.187675	-0.84171	0.940559	Н	-3.31627	6.274261	2.003073
С	8.32772	0.572888	0.846945	Н	-5.0467	4.04175	-2.04711
С	7.340971	1.169448	1.682575	Н	-5.52065	5.198252	2.058551
С	6.589952	0.122897	2.293373	Н	-2.70896	-5.00609	2.111231

С	7.113578	-1.12036	1.833719	Н	-3.51226	-6.36276	-1.8795
С	-2.8905	5.725393	-0.03805	Н	-4.8851	-3.91471	2.182255
С	-3.46349	5.197064	-1.20177	Н	-5.70062	-5.25862	-1.80981
С	-3.69955	5.796019	1.105605	Fe	6.459333	-0.00176	0.262774
С	-4.70454	4.578443	-1.16743				
	Fc-[8]	CPP-B (PBF	50-D3(BD/6-?	31G(d n) f(d n)	or C H SDD	for Fe)	
С	0.049216	6 315462	-1 46016	С.	-4 14066	5 395375	1 01347
C	1 396904	5 998222	-1 56043	C	-4 66892	4 643338	-0.04679
C	2 083956	5 418229	-0.48375	C C	-2 58621	-5 72961	0.04072
C	1 415903	5 353308	0.4622	C	-2 92665	-5.03544	1 195536
C	0.068413	5 666150	0.844868	C	-2.92005	5 857	0.05116
C C	0.66607	6.061664	0.844808	C	-3.38703	-3.037	1 202086
C C	-0.00097	0.001004	-0.28000	C	-4.12304	-4.34720	0.85172
C	-3.02393	2.829419	1.334423	C C	-4.78193	-3.13303	-0.83172
C	-6.1/2/9	1.55/445	1.397021	C	-5.03442	-4.31005	0.238244
C	-6./9514	0.980633	0.281552	H	-0.4/20/	6.703202	-2.33123
C	-7.02188	1.810522	-0.82701	H	1.908982	6.139407	-2.50849
С	-6.47263	3.08421	-0.89046	H	1.919144	4.915005	1.603338
С	-5.67609	3.580501	0.1527	Н	-0.45101	5.461304	1.776156
С	-6.54437	-2.61496	1.343846	Н	-5.02129	3.181591	2.16466
С	-6.9838	-1.29847	1.352995	Н	-5.98022	0.948082	2.274663
С	-6.87518	-0.49349	0.208504	Η	-7.57544	1.42772	-1.6802
С	-6.51509	-1.12644	-0.98895	Н	-6.60533	3.676015	-1.79218
С	-6.08155	-2.44376	-0.99985	Н	-6.56459	-3.1904	2.265528
С	-5.98555	-3.18051	0.18786	Η	-7.34534	-0.86534	2.28169
С	-0.66702	-5.93842	-1.55548	Н	-6.42537	-0.53811	-1.89715
С	0.677233	-5.71262	-1.80799	Н	-5.66487	-2.85391	-1.91509
С	1.587579	-5.5149	-0.75935	Н	-1.35936	-5.9392	-2.3917
С	1.131333	-5.80074	0.535809	Н	1.004568	-5.59118	-2.83638
С	-0.20819	-6.06051	0.785501	Н	1.809978	-5.70351	1.378142
С	-1.16004	-6.01268	-0.24417	Н	-0.52938	-6.20558	1.812646
С	5.526885	0.987179	-0.58359	Н	3.914036	-0.03418	-1.72837
С	4.817638	-0.11902	-1.1423	Н	7.106891	-1.67443	0.731411
С	5.387106	-1.34456	-0.67698	Н	7.264586	1.001588	0.838741
С	6.470874	-0.9869	0.190053	Н	5.718058	3.084553	1.197107
C	6.5553	0.43743	0.247911	Н	4.244609	5.049016	1.23044
C	5 08765	3 293709	0.337241	Н	2,712498	3 954532	-2.62489
C	4 240615	4 394088	0.363099	н	4 241242	2 041663	-2 68892
C	3 309562	4 612706	-0 66464	Н	3 766614	-1 99234	-2 71391
C	3 402598	3 79934	-1 80083	н	2 092209	-3 75637	-2 71499
C	4 251025	2.7773 4 2.702272	1 82707	и П	2.072207	5 52805	0.724536
C C	4.231923	2.105512	-1.62797	п	5.553564	-3.32093	0.724330
C C	3.027410	2.300770	-0.71303	п	1.04955	-3.00/07	0.709000
C C	3.812203	-2.70210	-1.95019	п	4.949074	1.440202	1 40777
C	2.870283	-3.78231	-1.96334	п	2.9309	1.80043	1.40///
C C	2.83832/	-4./3323	-0.93526	H	1.904804	-0.53394	0.054921
C	3.896088	-4./498	-0.030//	H	5.404258	-2.45/36	1.88294
C	4.823928	-3./1569	-0.00457	H	5.244759	-1.22446	3.441755
C	4.734851	-2.64394	-0.90472	Н	-2.19387	5.20403	-2.30354

С	4.333614	0.67804	2.688618	Н	-2.48632	6.526056	1.76817
С	3.259296	0.903694	1.78124	Н	-4.37161	4.130518	-2.11654
С	2.752601	-0.36321	1.376097	Н	-4.67829	5.444093	1.956591
С	3.510609	-1.37175	2.034455	Н	-2.18827	-4.9081	1.980097
С	4.489777	-0.73061	2.844769	Н	-3.40327	-6.45817	-1.83718
С	-2.13499	5.892521	-0.26418	Н	-4.28582	-3.7062	2.163303
С	-2.75309	5.310253	-1.37894	Н	-5.50229	-5.21398	-1.66345
С	-2.89903	6.007543	0.906958	Fe	4.729831	-0.19616	0.886035
С	-3.99285	4.699446	-1.27283				

Fc-[8]CPP-TS-1 (PBE0-D3(BJ)/6-31G(d,p) for C, H, SDD for Fe)

С	0.426865	-6.0839	-1.69598	С	4.389686	-5.28459	1.156865
С	-0.90741	-5.7536	-1.88757	С	5.011649	-4.52697	0.153504
С	-1.69064	-5.27765	-0.82708	С	2.701141	5.730577	-0.2214
С	-1.13599	-5.32218	0.457901	С	3.04761	5.23045	1.040279
С	0.202963	-5.63412	0.645274	С	3.694592	5.72985	-1.21131
С	1.037408	-5.92924	-0.44164	С	4.252115	4.572657	1.240358
С	5.826668	-2.68906	1.593546	С	4.904669	5.081623	-1.00663
С	6.346407	-1.406	1.675854	С	5.163508	4.39577	0.190372
С	7.059264	-0.84572	0.607384	Н	1.022069	-6.39862	-2.54861
С	7.411193	-1.7	-0.44891	Н	-1.33383	-5.8025	-2.88601
С	6.889471	-2.98348	-0.53228	Н	-1.72221	-4.96756	1.301133
С	5.997446	-3.46368	0.438614	Н	0.635549	-5.50854	1.633143
С	6.62742	2.788704	1.486054	Н	5.148694	-3.03222	2.369354
С	7.098769	1.486747	1.592009	Н	6.060991	-0.77727	2.513908
С	7.098668	0.626487	0.483622	Н	8.038398	-1.32722	-1.25426
С	6.801783	1.19009	-0.76454	Н	7.115609	-3.59501	-1.40171
С	6.327706	2.487805	-0.86919	Н	6.575477	3.407549	2.377746
С	6.132209	3.281889	0.268894	Н	7.403775	1.109435	2.564447
С	0.770924	5.33154	-1.70194	Н	6.793384	0.556883	-1.64643
С	-0.58057	5.063526	-1.84765	Н	5.96162	2.833095	-1.83104
С	-1.499	5.384456	-0.83877	Н	1.467735	4.949909	-2.44228
С	-1.02116	6.141033	0.24266	Н	-0.90364	4.476142	-2.70104
С	0.335476	6.395726	0.398145	Н	-1.71256	6.483745	1.007317
С	1.269572	5.921058	-0.53307	Н	0.681891	6.921064	1.284276
С	-5.38151	-0.99735	-0.84642	Н	-3.52328	0.225213	-1.04253
С	-4.59398	0.189886	-0.89084	Н	-7.59965	1.437026	-0.1509
С	-5.41002	1.325676	-0.62225	Н	-7.56678	-1.2466	-0.40009
С	-6.73562	0.836011	-0.40137	Н	-5.70817	-3.37888	0.55996
С	-6.71778	-0.58915	-0.53394	Н	-4.10278	-5.24669	0.570109
С	-4.90939	-3.40233	-0.1737	Н	-2.01994	-3.461	-2.72609
С	-4.00023	-4.45474	-0.16727	Н	-3.62886	-1.60232	-2.73323
С	-2.90688	-4.46601	-1.04415	Н	-4.69919	2.688432	-2.81596
С	-2.84939	-3.46813	-2.02489	Н	-3.03478	4.484212	-2.95473
С	-3.74664	-2.41154	-2.01835	Н	-2.96991	4.722487	1.33229
С	-4.74033	-2.31299	-1.03721	Н	-4.69835	3.000942	1.447262
С	-4.34363	3.160073	-1.90378	Н	-7.39361	-0.09512	2.997463

С	-3.38914	4.165724	-1.97867	Н	-6.00679	-2.32977	2.435644
С	-2.81087	4.700319	-0.81736	Н	-3.44718	-1.6343	1.966331
С	-3.37984	4.328187	0.407434	Н	-3.24109	1.036434	2.291088
С	-4.35296	3.339711	0.479573	Н	-5.69371	1.976611	2.95064
С	-4.78479	2.670528	-0.66733	Н	2.740733	-5.04701	-2.31397
С	-6.33012	-0.15332	2.809214	Н	2.677382	-6.42132	1.752217
С	-5.59559	-1.33283	2.507411	Н	4.897206	-3.99441	-1.92883
С	-4.23943	-0.96563	2.275558	Н	4.841436	-5.34194	2.143643
С	-4.1336	0.444183	2.441999	Н	2.303055	5.221914	1.83102
С	-5.42641	0.943602	2.774678	Н	3.487657	6.182945	-2.17723
С	2.499142	-5.76167	-0.29559	Н	4.418308	4.061374	2.18363
С	3.214633	-5.16951	-1.3452	Н	5.629376	5.043475	-1.8153
С	3.161089	-5.89315	0.935102	Fe	-5.46463	-0.00725	0.95317
С	4.443902	-4.56906	-1.12684				

Fc-[8]CPP-TS-2 (PBE0-D3(BJ)/6-31G(d,p) for C, H, SDD for Fe)

С	-7.06965	-0.16789	0.456462	С	-5.41178	4.24452	-1.07593
С	-6.82752	-1.53039	0.337687	С	-4.66476	4.433742	0.097167
С	-6.12579	-2.04583	-0.76465	С	6.259499	2.1592	-0.20971
С	-5.92396	-1.17749	-1.84724	С	5.639473	2.77058	-1.30861
С	-6.17573	0.18066	-1.7339	С	6.21127	2.845182	1.013955
С	-6.63533	0.730929	-0.53018	С	4.845153	3.89541	-1.15094
С	-2.66109	5.389525	-1.00481	С	5.411632	3.969527	1.172968
С	-1.3397	5.801697	-0.92636	С	4.632153	4.459334	0.113846
С	-0.75456	6.129182	0.303978	Н	-7.52304	0.213066	1.367854
С	-1.59944	6.19025	1.422069	Н	-7.09866	-2.18706	1.159926
С	-2.92418	5.781346	1.342484	Н	-5.39946	-1.5331	-2.72826
С	-3.45957	5.288606	0.142693	Н	-5.84627	0.840794	-2.53063
С	2.883818	6.097157	-0.68972	Н	-3.03776	5.012756	-1.95089
С	1.556641	6.502239	-0.64528	Н	-0.71551	5.7399	-1.81281
С	0.719167	6.122616	0.414234	Н	-1.1984	6.512451	2.379303
С	1.314785	5.472782	1.503391	Н	-3.53762	5.791639	2.239333
С	2.640025	5.066252	1.458015	Н	3.491328	6.359665	-1.5516
С	3.429192	5.292603	0.322146	Н	1.146856	7.075466	-1.47253
С	6.254064	-0.12117	0.750062	Н	0.696827	5.162064	2.340635
С	5.985531	-1.46477	0.535692	Н	3.027338	4.444883	2.259965
С	6.047103	-2.01564	-0.75204	Н	6.02081	0.307434	1.720021
С	6.645161	-1.2337	-1.75256	Н	5.547339	-2.04581	1.341834
С	6.917862	0.110488	-1.53619	Н	6.800706	-1.65479	-2.74242
С	6.600338	0.723588	-0.31331	Н	7.291854	0.713843	-2.35902
С	-1.23731	-4.2392	-0.52663	Н	-0.01583	-6.1022	-0.81905
С	-0.0575	-5.02353	-0.74631	Н	1.181603	-1.91427	-0.62098
С	1.062391	-4.12908	-0.82847	Н	-1.51009	-2.0418	-0.2812
С	0.560646	-2.79956	-0.65178	Н	-2.89811	-4.69731	-2.64408
С	-0.83287	-2.86563	-0.46239	Н	-5.13755	-3.7182	-2.779
С	-3.40765	-4.40865	-1.72852	Н	-5.12339	-3.14512	1.476746
С	-4.67087	-3.83351	-1.80452	Н	-2.93086	-4.20639	1.605131

С	-5.26108	-3.24575	-0.67296	Н	3.146927	-5.29676	0.679377
С	-4.68168	-3.54268	0.568004	Н	5.409896	-4.33735	0.709039
С	-3.42824	-4.13474	0.645802	Н	4.542587	-2.22462	-2.92516
С	-2.70868	-4.43925	-0.51331	Н	2.299309	-3.19407	-2.94922
С	3.461617	-4.64766	-0.13138	Н	0.768729	-1.75035	2.60761
С	4.742608	-4.10043	-0.11588	Н	-1.63955	-2.90024	2.913143
С	5.116634	-3.12747	-1.05515	Н	-1.31047	-5.58239	2.749952
С	4.272501	-2.9458	-2.15968	Н	1.304557	-6.07118	2.360404
С	2.996251	-3.48613	-2.16853	Н	2.589434	-3.69189	2.267143
С	2.522076	-4.23023	-1.08095	Н	-5.76336	1.705108	1.796375
С	0.573041	-2.81376	2.635008	Н	-6.71706	2.965397	-2.19216
С	-0.70174	-3.42519	2.792556	Н	-4.36162	3.674892	2.089969
С	-0.52789	-4.83675	2.704443	Н	-5.31217	4.951638	-1.89499
С	0.857413	-5.09546	2.496514	Н	5.653374	2.272937	-2.27333
С	1.536459	-3.84395	2.45757	Н	6.748098	2.451356	1.872807
С	-6.29697	2.141279	-0.24281	Н	4.264425	4.249457	-1.99737
С	-5.71525	2.438918	0.997368	Н	5.339111	4.435435	2.152078
С	-6.21072	3.121367	-1.24328	Fe	0.115406	-3.9334	0.984469
С	-4.91548	3.559477	1.163144				

11. Reference

- [S1] A. Zirakzadeh, A. Herlein, M. A. Gross, K. Mereiter, Y. Wang, W. Weissensteiner, Organometallics 2015, 34, 3820-3832.
- [S2] CrysAlisPro 2012; Version 1.171.36.31: Agilent Technologies.
- [S3] a) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341; b) G. Sheldrick, Acta Crystallogr. 2015, 71, 3-8.
- [S4] T. Iwamoto, Y. Watanabe, Y. Sakamoto, T. Suzuki, S. Yamago, J. Am. Chem. Soc. 2011, 133, 8354-8361.
- [S5] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.
- [S6] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 2002, 98, 11623-11627.
- [S7] a) F. Neese, WIREs Comput. Mol. Sci. 2011, 2, 73-78; b) F. Neese, WIREs Comput. Mol. Sci. 2018, 8, e1327.
- [S8]a) N. Mardirossian, M. Head-Gordon, J. Chem. Phys. 2016, 144; b) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- [S9] F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.
- [S10] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
- [S11] T. Lu, Q. Chen, Comput. Theor. Chem. 2021, 1200, 113249.
- [S12] C. Y. CYLview20; Legault, Université de Sherbrooke, 2020 (http://www.cylview.org).
- [S13] T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580-592.
- [S14] W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14, 33-38.
- [S15] Y. Segawa, H. Omachi, K. Itami, Org. Lett. 2010, 12, 2262-2265.

Figure S20. ¹H NMR (500 M) of 1,3-bis(4-chlorophenyl)ferrocene (2)

Figure S21. ¹³C NMR (126 M) of 1,3-bis(4-chlorophenyl)ferrocene (2)

Figure S22. ¹H NMR (500 M) of 1,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ferrocene (3)

Figure S23. ¹³C NMR (126 M) of 1,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ferrocene (3)

Figure S24. ¹H NMR (500 M) of **4b**

Figure S25. ¹³C NMR (126 M) of **4b**

Figure S26. ¹H NMR (600 M) of Fc-[8]CPP

Figure S27. ¹³C NMR (151 M) of **Fc-[8]CPP**

Figure S28. ¹H NMR (600 M) of Fc-[11]CPP

Figure S29. ¹³C NMR (151 M) of Fc-[11]CPP

13. High-resolution mass spectra (HRMS)

Figure S30. HRMS of Fc-[8]CPP (top, the measured; down, Simulated with C₅₈H₄₀Fe)

Figure S31. HRMS of Fc-[11]CPP (top, the measured; down, Simulated with C₇₆H₅₂Fe)

14. Maldi-tof mass spectra (HRMS)

