Metal-Free three-component amino- and

carbotrideuteromethylthiolation of alkenes in water

Siyu Han,¹ Lin Zhao,¹ Xinyu Zhou,¹ Kemeng Zhang,¹ Yunfei Ma,¹ Ge Wu,^{*1,2}

^aState Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China

^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

*E-mail: wuge@wmu.edu.cn

Table of Contents

(1) General considerations, experimental data	S2-S22
(2) ¹ H, ¹³ C and ¹⁹ F NMR spectra of products	.823-853
(3) HRMS spectra of products	.\$54-\$67

General Information

CD₃SSO₃Na is a known compound, which is prepared from our previous literature (Org. Chem. Front., 2023, 10, 3213-3218). All other reagents were purchased from Energy Chemical Company in China and used without further purification. ¹H NMR (500 MHz), ¹³C NMR (125 MHz) and ¹⁹F NMR (470 MHz) spectra were recorded in CDCl₃ and DMSO-D6 solutions using a Burker AVANCE 500 spectrometer. High-resolution mass spectra were recorded on an ESI-Q-TOF mass spectrometer. Analysis of crude reaction mixture was done on the Varian 4000 GC/MS and 1200 LC. All reactions were conducted using standard Schlenk techniques. Column chromatography was performed using EM silica gel 60 (300–400 m).

General Experimental Procedures

General Procedure of Aminotrideuteromethylthiolation of Alkenes with Arylamines and CD₃SSO₃Na:

A 25 mL Schlenk tube equipped with a stir bar was charged with substituted alkene (0.2 mmol), arylamines (0.4 mmol), CD_3SSO_3Na (0.4 mmol), *m*-CPBA (0.3 mmol), TBAI (0.2 mmol) and 2.0 mL water. Then, the reaction tubes are plugged tightly with teflon stoppers. The reaction mixture was stirred at 80 °C for 24 h. After cooling down, the reaction mixture was diluted with 10 mL of ethyl ether and filtered by silica gel powder, and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel to provide the corresponding product.

General Procedure of Carbotrideuteromethylthiolation of Alkenes with Thiophene and CD₃SSO₃Na:

Ar +
$$CD_3SSO_3Na$$
 $\frac{m-CPBA (1.5 equiv)}{TBAI (1.0 equiv)}$
H₂O, 80 °C, air 6

A 25 mL Schlenk tube equipped with a stir bar was charged with substituted alkene (0.2 mmol), substituted thiophene (0.4 mmol), CD_3SSO_3Na (0.4 mmol), *m*-CPBA (0.3 mmol), TBAI (0.2 mmol) and 2.0 mL water. Then, the reaction tubes are plugged tightly with teflon stoppers. The reaction mixture was stirred at 80 °C for 24 h. After cooling down, the reaction mixture was diluted with 10 mL of ethyl ether and filtered by silica gel powder, and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel to provide the corresponding product.

Mechanistic Studies

$$\begin{array}{rcl} & & & m\text{-}CPBA (1.5 \ \text{equiv}) \\ & & & \text{TEMPO (2.0 \ equiv)} \\ Ph & + & PhNH_2 + & CD_3SSO_3Na & & & \hline & & \text{TBAI (1.0 \ equiv)} \\ & & & H_2O, \ 80 \ ^\circ\text{C}, \ air & & Ph \\ & & & \textbf{4a, none} \end{array} \begin{array}{r} PhHN & & & \text{SCD}_3 \\ & & & \text{Homoson} \end{array} (eq. 1) \\ \end{array}$$

A 25 mL Schlenk tube equipped with a stir bar was charged with styrene (0.2 mmol), aniline (0.4 mmol), CD_3SSO_3Na (0.4 mmol), *m*-CPBA (0.3 mmol), TBAI (0.2 mmol), TEMPO (0.4 mmol) and 2.0 mL water. Then, the reaction tubes are plugged tightly with teflon stoppers. The reaction

mixture was stirred at 80 °C for 24 h. After cooling down, the reaction mixture was diluted with 10 mL of ethyl ether and filtered by silica gel powder, none of **4a** was detected by GC-MS.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} & & & & \\ Ph \\ \end{array} \end{array} + & CD_3SSO_3Na \end{array} \xrightarrow[H_2O, 80 \ ^{\circ}C, air \end{array} \xrightarrow[Ph]{} \\ \begin{array}{c} H_2O, 80 \ ^{\circ}C, air \end{array} \xrightarrow[Ph]{} \\ \end{array} \begin{array}{c} \begin{array}{c} Ph \\ Ph \\ \end{array} \xrightarrow[Ph]{} \\ \end{array} \begin{array}{c} \begin{array}{c} Ph \\ Ph \\ \end{array} \xrightarrow[Ph]{} \\ \end{array} \begin{array}{c} \begin{array}{c} SCD_3 \\ Ph \\ \end{array} \begin{array}{c} \\ Ph \\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} (eq. 2) \\ \hline \end{array} \end{array}$$

A 25 mL Schlenk tube equipped with a stir bar was charged with 1,1-diphenylethylene (0.2 mmol), CD₃SSO₃Na (0.4 mmol), m-CPBA (0.3 mmol), TBAI (0.2 mmol) and 2.0 mL water. The tube was fitted with a rubber septum, and then the reaction mixture was stirred at 80 $^{\circ}$ C for 24 h. After the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), **7a** was isolated.

The NMR data of the target product 7a is consistent with previously our reported publication (Org.

Chem. Front., 2023, 10, 3213-3218).

A 25 mL Schlenk tube equipped with a stir bar was charged with (1-cyclopropylvinyl)benzene (0.2 mmol), CD₃SSO₃Na (0.4 mmol), m-CPBA (0.3 mmol), TBAI (0.2 mmol) and 2.0 mL water. The tube was fitted with a rubber septum, and then the reaction mixture was stirred at 80 $^{\circ}$ C for 24 h. After the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), **7b** was isolated.

((3,4-dihydronaphthalen-1-yl)methyl)(methyl-d3)sulfane

¹**H NMR** (400 MHz, CDCl₃): δ 7.38 (d, *J* = 4.3 Hz, 4H), 7.33-7.28 (m, 1H), 6.19-6.17 (m, 1H), 3.55 (s, 2H), 2.82 (t, *J* = 5.9 Hz, 2H), 2.58 (dp, *J* = 5.9, 2.0 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 142.51, 134.96, 128.46, 127.18, 125.75, 125.50, 27.69, 26.85, 24.47.

HRMS (ESI): calcd for $C_{12} H_{12} D_3 S [M + H]^+ 194.1083$, found 194.1075.

Cyclic Voltammetry Studies

The cyclic voltammograms were recorded in an electrolyte of Bu_4NPF_6 (0.1 M) in CH₃CN using a glassy carbon disk working electrode (diameter, 3 mm), a Pt wire auxiliary electrode and a SCE reference electrode. The scan rate is 100 mV/s.

Figure S1:

Figure S1: Cyclic voltammogram of 10 mM PhCH=CH₂ obtained in CH₃CN containing 0.1 M Bu_4NPF_6 at a 3 mm diameter planar glassy carbon (GC) electrode and at a scan rate of 0.1 V s⁻¹ at room temperature. Starting point is 0 v and positive direction of scan.

Figure S2

Figure S2: Cyclic voltammogram of 10 mM PhNH₂ obtained in CH₃CN containing 0.1 M Bu_4NPF_6 at a 3 mm diameter planar glassy carbon (GC) electrode and at a scan rate of 0.1 V s⁻¹ at room temperature. Starting point is 0 v and positive direction of scan.

Figure S3

Figure S3: Cyclic voltammogram of 10 mM CD_3SSO_3Na obtained in CH_3CN containing 0.1 M Bu_4NPF_6 at a 3 mm diameter planar glassy carbon (GC) electrode and at a scan rate of 0.1 V s⁻¹ at room temperature. Starting point is 0 v and positive direction of scan.

Characterization of Products in Details :

N-(2-((methyl-d3)thio)-1-phenylethyl)aniline

4a

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (42.3 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.48 (d, *J* = 7.5 Hz, 2H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.33 (t, *J* = 7.2 Hz, 1H), 7.17 (t, *J* = 7.9 Hz, 2H), 6.75 (t, *J* = 7.3 Hz, 1H), 6.62 (d, *J* = 7.8 Hz, 2H), 4.72 (s, 1H), 4.50 (dd, *J* = 9.1, 4.5 Hz, 1H), 3.06 (dd, *J* = 13.6, 4.5 Hz, 1H), 2.86 (dd, *J* = 13.6, 9.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 147.55, 142.89, 129.20, 128.94, 127.58, 126.45, 117.95, 113.98, 56.43, 42.52. HRMS (ESI): calcd for C₁₅H₁₅DNS [M + H]⁺ 247.1343, found 247.1340.

2,4-dimethyl-N-(2-((methyl-d3)thio)-1-phenylethyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (49.8 mg, 91% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 7.48 (d, *J* = 7.3 Hz, 2H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.33 (t, *J* = 7.3 Hz, 1H), 6.99 (s, 1H), 6.81 (d, *J* = 8.1 Hz, 1H), 6.29 (d, *J* = 8.1 Hz, 1H), 4.60 (s, 1H), 4.49 (dd, *J* = 9.3, 4.2 Hz, 1H), 3.10 (dd, *J* = 13.6, 4.3 Hz, 1H), 2.89 (dd, *J* = 13.6, 9.4 Hz, 1H), 2.37 (s, 3H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.27, 143.24, 131.01, 128.94, 127.49, 127.20, 126.66, 126.40, 123.15, 111.75, 56.45, 42.81, 20.45, 17.75. **HRMS** (ESI): calcd for C₁₇H₁₈DNaS [M + Na]⁺ 297.1481, found 297.1479.

4-isopropyl-N-(2-((methyl-d3)thio)-1-phenylethyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (51.8 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, *J* = 7.4 Hz, 2H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.34 (t, *J* = 7.3 Hz, 1H), 7.05 (d, *J* = 8.4 Hz, 2H), 6.59 (d, *J* = 8.4 Hz, 2H), 4.64 (s, 1H), 4.46 (dd, *J* = 9.2, 4.4 Hz, 1H), 3.04 (dd, *J* = 13.6, 4.4 Hz, 1H), 2.85 (dd, *J* = 13.7, 8.7 Hz, 2H), 1.25 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 145.64, 143.24, 138.39, 128.93, 127.53, 127.06, 126.50, 114.01, 56.73, 42.65, 33.23, 24.32. HRMS (ESI): calcd for C₁₈H₂₁D₃NS [M + H]⁺ 289.1818, found 289.1813.

4-fluoro-N-(2-((methyl-d3)thio)-1-phenylethyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (38.0 mg, 72% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 7.49-7.40 (m, 4H), 7.35 (t, *J* = 7.1 Hz, 1H), 6.88 (t, *J* = 8.7 Hz, 2H), 6.56 (dd, *J* = 7.8, 5.5 Hz, 2H), 4.62 (brs, 1H), 4.43 (dd, *J* = 9.3, 4.4 Hz, 1H), 3.06 (dd, *J* = 13.7, 4.4 Hz, 1H), 2.85 (dd, *J* = 13.6, 9.2 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃): δ 156.14 (d, *J* = 235.4 Hz), 143.94 (d, *J* = 1.9 Hz), 142.74, 129.02, 127.70, 126.47, 115.63 (d, *J* = 22.2 Hz), 114.85 (d, *J* = 7.3 Hz), 56.97, 42.59. ¹⁹**F NMR** (375 MHz, CDCl₃) δ - 127.32 (1F); **HRMS** (ESI): calcd for C₁₅H₁₂D₃NFS [M - H]⁺ 263.1098, found 263.1099.

4-chloro-N-(2-((methyl-d3)thio)-1-phenylethyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (36.4 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.39 (m, 4H), 7.36-7.32 (m, 1H), 7.10 (d, *J* = 8.8 Hz, 2H), 6.53 (d, *J* = 8.8 Hz, 2H), 4.76 (s, 1H), 4.45 (dt, *J* = 8.2, 3.8 Hz, 1H), 3.05 (dd, *J* = 13.7, 4.4 Hz, 1H), 2.84 (dd, *J* = 13.7, 9.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 146.08, 142.37, 129.04, 127.76, 126.39, 122.57, 115.10, 56.47, 42.44. HRMS (ESI): calcd for C₁₅H₁₂D₃NSCl [M - H]⁺ 279.0802, found 279.0807.

4-bromo-N-(2-((methyl-d3)thio)-1-phenylethyl)aniline

4f

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (47.9 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.39 (m, 4H), 7.35-7.32 (m, 1H), 7.23 (d, *J* = 8.8 Hz, 2H), 6.48 (d, *J* = 8.8 Hz, 2H), 4.77 (s, 1H), 4.44 (d, *J* = 6.1 Hz, 1H), 3.05 (dd, *J* = 13.7, 4.5 Hz, 1H), 2.84 (dd, *J* = 13.7, 9.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 146.48, 142.28, 131.91, 129.05, 127.77, 126.38, 115.60, 109.69, 56.37, 42.42. HRMS (ESI): calcd for C₁₅H₁₂D₃NBrS [M - H]⁺ 323.0302, found 323.0307.

4-(tert-butyl)-N-(2-((methyl-d3)thio)-1-phenylethyl)aniline

4g

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (54.9 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, *J* = 7.4 Hz, 2H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.36 (t, *J* = 7.2 Hz, 1H), 7.23 (d, *J* = 8.6 Hz, 2H), 6.62 (d, *J* = 8.6 Hz, 2H), 4.68 (s, 1H), 4.49 (dd, *J* = 9.3, 4.4 Hz, 1H), 3.06 (dd, *J* = 13.6, 4.4 Hz, 1H), 2.87 (dd, *J* = 13.6, 9.3 Hz, 1H), 1.34 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 145.31, 143.31, 140.64, 128.96, 127.56, 126.53, 125.99, 113.73, 56.75, 42.70, 33.96, 31.66. HRMS (ESI): calcd for C₁₉H₂₃D₃NS [M + H]⁺

303.1974, found 303.1971.

N-(2-((methyl-d3)thio)-1-phenylethyl)-4-(trifluoromethyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (43.9 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.35 (m, 7H), 6.62 (d, *J* = 8.4 Hz, 2H), 5.05 (s, 1H), 4.55-4.53 (m, 1H), 3.08 (dd, *J* = 13.7, 4.5 Hz, 1H), 2.87 (dd, *J* = 13.7, 9.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 149.95, 141.91, 129.11, 127.89, 126.55 (q, *J* = 3.8 Hz), 126.30, 123.69 (q, *J* = 270.5 Hz), 119.43 (q, *J* = 32.6 Hz), 113.16, 56.05, 42.29. ¹⁹F NMR (375 MHz, CDCl₃) δ -60.93 (3F); HRMS (ESI): calcd for C₁₆H₁₂D₃NF₃S [M - H]⁺ 313.1066, found 313.1063.

trifluoro(4-((2-((methyl-d3)thio)-1-phenylethyl)amino)phenyl)-l6-methanone

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (56.1 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.52 – 7.38 (m, 4H), 7.34 (t, *J* = 7.0 Hz, 1H), 7.01 (d, *J* = 8.6 Hz, 2H), 6.56 (d, *J* = 8.9 Hz, 2H), 4.80 (s, 1H), 4.44 (dd, *J* = 9.3, 4.4 Hz, 1H), 3.05 (dd, *J* = 13.7, 4.2 Hz, 1H), 2.84 (dd, *J* = 13.7, 9.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 146.32, 142.37, 140.89, 129.05, 127.78, 126.35, 122.30, 119.50 (d, *J* = 255.3 Hz), 114.25, 56.58, 42.48. ¹⁹F NMR (375 MHz, CDCl₃) δ -58.35 (3F); HRMS (ESI): calcd for C₁₆H₁₄D₃NOF₃S [M + H]⁺ 331.1171, found 331.1162.

N-(2-((methyl-d3)thio)-1-phenylethyl)-4-((trifluoromethyl)thio)aniline

4j

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (56.7 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.34 (m, 7H), 6.61 (d, *J* = 8.7 Hz, 2H), 5.05 (d, *J* = 4.0 Hz, 1H), 4.53 (dt, *J* = 8.8, 4.3 Hz, 1H), 3.08 (dd, *J* = 13.7, 4.5 Hz, 1H), 2.88 (dd, *J* = 13.7, 9.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 149.67, 141.91, 138.16, 131.42 (d, *J* = 308.4 Hz), 129.13, 127.92, 126.31, 114.36, 110.49, 56.11, 42.32. ¹⁹F NMR (375 MHz, CDCl₃) δ -44.28 (3F); HRMS (ESI): calcd for C₁₆H₁₂D₃NF₃S₂ [M - H]⁺ 345.0786, found 345.0784.

4-((2-((methyl-d3)thio)-1-phenylethyl)amino)benzonitrile

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (41.7 mg, 77% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.30 (m, 7H), 6.55 (d, *J* = 8.8 Hz, 2H), 5.24 (d, *J* = 4.4 Hz, 1H), 4.53 (dt, *J* = 8.9, 4.5 Hz, 1H), 3.05 (dd, *J* = 13.7, 4.5 Hz, 1H), 2.87 (dd, *J* = 13.7, 8.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 150.56, 141.28, 133.61, 129.15, 128.02, 126.21, 120.41, 113.53, 99.49, 55.89, 42.11. HRMS (ESI): calcd for C₁₆H₁₄D₃N₂S [M + H]⁺ 272.1301, found 272.1299.

2,4,6-trimethoxy-N-(2-((methyl-d3)thio)-1-phenylethyl)aniline

41

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a

yellow solid (46.4 mg, 69% yield), Mp = 90-91 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.44-7.36 (m, 4H), 7.30 (t, *J* = 7.1 Hz, 1H), 6.17 (s, 1H), 5.74 (s, 1H), 4.47-4.44 (m, 1H), 3.98 (s, 3H), 3.77 (s, 3H), 3.55 (s, 3H), 3.04 (dd, *J* = 13.6, 4.7 Hz, 1H), 2.95 (dd, *J* = 13.6, 9.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 155.84, 154.73, 145.78, 143.04, 133.89, 128.98, 127.66, 126.35, 104.64, 92.31, 61.60, 61.16, 57.82, 55.47, 42.65. HRMS (ESI): calcd for C₁₈H₁₉D₃NO₃S [M - H]⁺ 335.1509, found 335.1500.

4-((2-((methyl-d3)thio)-1-phenylethyl)amino)benzenesulfonamide

4m

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (42.2 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, *J* = 8.8 Hz, 2H), 7.39-7.28 (m, 5H), 6.54 (d, *J* = 8.8 Hz, 2H), 5.27 (d, *J* = 4.7 Hz, 1H), 5.06 (s, 2H), 4.54 (dt, *J* = 9.1, 4.7 Hz, 1H), 3.02 (dd, *J* = 13.7, 4.7 Hz, 1H), 2.87 (dd, *J* = 13.7, 8.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 150.74, 141.46, 129.47, 129.09, 128.29, 127.93, 126.34, 112.98, 56.02, 42.04. HRMS (ESI): calcd for C₁₅H₁₅D₃N₂O₂NaS₂ [M + Na]⁺ 348.0896, found 348.0896.

N-(2-((methyl-d3)thio)-1-phenylethyl)-6-(trifluoromethoxy)benzo[d]thiazol-2-amine

4n

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (68.1 mg, 88% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, *J* = 8.8 Hz, 1H), 7.47-7.17 (m, 6H), 7.18 (d, *J* = 8.8 Hz, 1H), 6.77 (s, 1H), 4.92 (dd, *J* = 7.6, 5.5 Hz, 1H), 3.10-3.00 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 167.65, 150.77, 143.74, 140.18, 131.48, 129.02, 128.32,

126.72, 124.49 (d, J = 256.5 Hz), 119.78, 119.39, 114.09, 58.41, 41.32. ¹⁹F NMR (375 MHz, CDCl₃) δ -58.21 (3F); **HRMS** (ESI): calcd for C₁₇H₁₃D₃N₂OF₃S₂ [M + H]⁺ 388.0844, found 388.0850.

ethyl -4-((2-((methyl-d3)thio)-1-phenylethyl)amino)benzoate

40

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (50.2 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, *J* = 8.5 Hz, 2H), 7.43-7.30 (m, 5H), 6.57 (d, *J* = 8.6 Hz, 2H), 5.16 (d, *J* = 4.5 Hz, 1H), 4.58 (dt, *J* = 8.9, 4.6 Hz, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 3.05 (dd, *J* = 13.7, 4.6 Hz, 1H), 2.88 (dd, *J* = 13.7, 8.7 Hz, 1H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.85, 151.07, 141.83, 131.38, 129.02, 127.81, 126.33, 119.38, 112.77, 60.27, 55.96, 42.15, 14.52. HRMS (ESI): calcd for C₁₈H₁₈D₃NO₂NaS [M + Na]⁺ 341.1379, found 341.1378.

N-(1-(4-chlorophenyl)-2-((methyl-d3)thio)ethyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (47.0 mg, 84% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.39 (q, *J* = 8.6 Hz, 4H), 7.17 (t, *J* = 7.9 Hz, 2H), 6.77 (t, *J* = 7.3 Hz, 1H), 6.59 (d, *J* = 7.8 Hz, 2H), 4.71 (s, 1H), 4.46 (dd, *J* = 8.9, 4.4 Hz, 1H), 3.02 (dd, *J* = 13.6, 4.5 Hz, 1H), 2.82 (dd, *J* = 13.6, 9.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 147.23, 141.48, 133.17, 129.25, 129.12, 127.86, 118.23, 114.01, 55.84, 42.42. HRMS (ESI): calcd for C₁₅H₁₂D₃NSCl [M - H]⁺ 279.0802, found 279.0793.

N-(2-((methyl-d3)thio)-1-(p-tolyl)ethyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (46.8 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.37 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 7.8 Hz, 2H), 7.18 (t, *J* = 7.9 Hz, 2H), 6.76 (t, *J* = 7.3 Hz, 1H), 6.64 (d, *J* = 8.5 Hz, 2H), 4.71 (s, 1H), 4.48 (dd, *J* = 8.9, 4.5 Hz, 1H), 3.05 (dd, *J* = 13.6, 4.6 Hz, 1H), 2.87 (dd, *J* = 13.6, 9.0 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 147.65, 139.87, 137.18, 129.65, 129.20, 126.37, 117.89, 113.99, 56.18, 42.55, 21.26. HRMS (ESI): calcd for C₁₆H₁₇D₃NS [M + H]⁺ 261.1505, found 261.1507.

N-(1-(4-(tert-butyl)phenyl)-2-((methyl-d3)thio)ethyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (53.1 mg, 88% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.41 (m, 4H), 7.21 (t, *J* = 7.9 Hz, 2H), 6.78 (t, *J* = 7.6 Hz, 1H), 6.67 (d, *J* = 7.9 Hz, 2H), 4.72 (s, 1H), 4.52 (dd, *J* = 9.0, 4.6 Hz, 1H), 3.08 (dd, *J* = 13.6, 4.5 Hz, 1H), 2.90 (dd, *J* = 13.6, 9.0 Hz, 1H), 1.42 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 150.40, 147.73, 139.78, 129.22, 126.12, 125.84, 117.87, 113.98, 56.15, 42.48, 34.63, 31.56. HRMS (ESI): calcd for C₁₉H₂₃D₃NS [M + H]⁺ 303.1974, found 303.1972.

N-2-((methyl-d3)thio)cyclohexyl)aniline

5d

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (34.9 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.25-7.21 (m, 2H), 6.77-6.69 (m, 3H), 4.12 (s, 1H), 3.21 (td, *J* = 9.5, 3.8 Hz, 1H), 2.64 (td, *J* = 10.1, 3.8 Hz, 1H), 2.43-2.36 (m, 1H), 2.21 (dp, *J* = 13.0, 3.6 Hz, 1H), 1.88-1.76 (m, 1H), 1.65 (dtd, *J* = 14.3, 10.9, 3.7 Hz, 1H), 1.53-1.36 (m, 1H), 1.32-1.23 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 147.76, 129.35, 117.47, 113.43, 55.33, 49.73, 33.17, 32.24, 25.75, 24.33. HRMS (ESI): calcd for C₁₃H₁₇D₃NS [M + H]⁺ 225.1505, found 225.1496.

2-((methyl-d3)thio)-N-phenyl-1,2,3,4-tetrahydronaphthalen-1-amine

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (48.9 mg, 90% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 7.39 (d, *J* = 7.2 Hz, 1H), 7.29-7.18 (m, 5H), 6.79 (t, *J* = 7.3 Hz, 1H), 6.72 (d, *J* = 7.8 Hz, 2H), 4.59 (s, 1H), 4.11 (s, 1H), 3.38 (dt, *J* = 5.4, 3.4 Hz, 1H), 3.11 (ddd, *J* = 16.8, 10.8, 5.7 Hz, 1H), 2.83 (dt, *J* = 17.0, 4.8 Hz, 1H), 2.31 (dddd, *J* = 13.9, 10.7, 5.5, 3.1 Hz, 1H), 2.04 (ddd, *J* = 13.9, 7.4, 3.2 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃): δ 146.96, 136.43, 135.78, 130.52, 129.58, 128.95, 127.62, 126.51, 117.68, 112.84, 55.72, 44.93, 25.32, 23.42. **HRMS** (ESI): calcd for C₁₇H₁₅D₃NS [M - H]⁺ 271.1348, found 271.1344.

2-((methyl-d3)thio)-N-phenyl-2,3-dihydro-1H-inden-1-amine

5f

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (45.9 mg, 89% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.27 (m, 6H), 6.85-6.82 (m, 3H), 4.97 (d, *J* = 5.2 Hz, 1H), 4.01 (s, 1H), 3.55-3.42 (m, 2H), 3.05 (dd, *J* = 15.8, 5.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 147.51, 143.43, 141.42, 129.57, 128.54, 127.32, 124.95, 124.71, 117.95, 113.43, 65.44, 51.39, 37.89. HRMS (ESI): calcd for C₁₆H₁₅D₃NS [M + H]⁺ 259.1348, found 259.1348.

4-(3-oxobutyl)phenyl -4-(2-((methyl-d3)thio)-1-(phenylamino)ethyl)benzoate

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (72.4 mg, 83% yield), Mp = 40-41 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.18 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 7.9 Hz, 2H), 7.18 (d, *J* = 8.5 Hz, 2H), 6.83 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.95 (d, *J* = 17.6 Hz, 1H), 5.47 (d, *J* = 10.9 Hz, 1H), 3.52 (dd, *J* = 8.4, 6.5 Hz, 1H), 3.28 (dd, *J* = 14.1, 8.4 Hz, 1H), 2.94 (dd, *J* = 14.1, 6.6 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 203.09, 165.04, 149.70, 142.68, 136.15, 135.99, 130.56, 130.14, 128.63, 126.36, 121.81, 117.06, 54.33, 34.65, 27.58. HRMS (ESI): calcd for C₂₆H₂₅D₃NO₃S [M + H]⁺ 437.1978, found 437.1981.

2,5,6,8-tetramethyl-2-(4,8,12-trimethyltridecyl)chroman-7-yl 4-(-2-((methyl-d3)thio)-1-(phenylamino)ethyl)benzoate

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (113.7 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.33 (d, *J* = 8.2 Hz, 2H), 7.66 (d, *J* = 8.2 Hz, 2H), 7.21 (t, *J* = 7.9 Hz, 2H), 6.81 (t, *J* = 7.3 Hz, 1H), 6.65 (d, *J* = 8.0 Hz, 2H), 4.84 (s, 1H), 4.61 (dd, *J* = 9.1, 4.4 Hz, 1H), 3.11 (dd, *J* = 13.6, 4.4 Hz, 1H), 2.89 (dd, *J* = 13.6, 9.1 Hz, 1H), 2.72 (t, *J* = 6.8 Hz, 2H), 2.24-2.12 (m, 9H), 1.90 (dp, *J* = 20.0, 6.8 Hz, 2H), 1.69-1.15 (m, 26H), 0.99-0.95 (m, 10H). ¹³C NMR (100 MHz, CDCl₃): δ 165.03, 149.61, 149.04, 147.21, 140.77, 130.93, 129.31, 129.07, 127.05, 126.76, 125.28, 123.25, 118.34, 117.60, 115.19, 114.03, 75.19, 56.32, 42.26, 40.56, 39.75, 39.53, 37.60, 37.44, 32.95, 31.41, 31.19, 28.13, 24.96, 24.60, 24.35, 23.84, 22.90, 22.81, 21.18, 20.79, 19.93, 19.84, 13.25, 12.40, 12.02. HRMS (ESI): calcd for C₄₅H₆₂D₃NO₃SNa [M + Na]⁺ 725.4771, found 725.4778.

2-methyl-5-(2-((methyl-d3)thio)-1-phenylethyl)thiophene

6a

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (36.1 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.27 (m, 5H), 6.70 (d, *J* = 3.4 Hz, 1H), 6.61 (dt, *J* = 3.3, 1.3 Hz, 1H), 4.36 (t, *J* = 7.7 Hz, 1H), 3.25 (dd, *J* = 13.0, 7.4 Hz, 1H), 3.16 (dd, *J* = 12.9, 8.0 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 145.17, 143.25, 138.57, 128.64, 127.80, 127.07, 124.67, 124.25, 47.21, 41.57, 15.35. HRMS (ESI): calcd for C₁₄H₁₂D₃S₂ [M - H]⁺ 250.0803, found 250.0794.

4-methyl-2-(2-((methyl-d3)thio)-1-phenylethyl)thiophene

6b

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (35.6 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.37 (d, *J* = 4.3 Hz, 4H), 7.30-7.27 (m, 1H), 7.16 (d, *J* = 5.0 Hz, 1H), 6.85 (d, *J* = 5.1 Hz, 1H), 4.51 (t, *J* = 7.7 Hz, 1H), 3.23 (dd, *J* = 7.7, 2.4 Hz, 2H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 142.93, 140.52, 133.63, 130.18, 128.67, 127.86, 126.92, 122.12, 45.15, 41.85, 14.13. HRMS (ESI): calcd for C₁₄H₁₃D₃NaS₂ [M + Na]⁺ 274.0779, found 274.0775.

5-(1-(4-(tert-butyl)phenyl)-2-((methyl-d3)thio)ethyl)-2,2'-bithiophene

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (56.2 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.41 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.20 (d, *J* = 5.1 Hz, 1H), 7.14 (d, *J* = 4.4 Hz, 1H), 7.05-7.01 (m, 2H), 6.84 (d, *J* = 3.6 Hz, 1H), 4.39 (t, *J* = 7.6 Hz, 1H), 3.30-3.17 (m, 2H), 1.37 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 150.08, 147.01, 139.78, 136.12, 127.78, 127.52, 127.36, 125.68, 125.28, 124.14, 123.43, 123.30, 46.84, 41.59, 34.56, 31.46. HRMS (ESI): calcd for C₂₁H₂₁D₃NaS₃ [M + Na]⁺ 398.1126, found 398.1124.

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-(-6-methylheptan-2-yl)-

2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 4-((R)-2-((methyl-d3)thio)-1-(5-methylthiophen-2-yl)ethyl)benzoate

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (98.1 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.04 (d, *J* = 8.1 Hz, 2H), 7.40 (d, *J* = 8.2 Hz, 2H), 6.67 (d, *J* = 3.4 Hz, 1H), 6.60 (d, *J* = 3.3 Hz, 1H), 5.46-5.44 (m, 1H), 4.88 (dq, *J* = 11.9, 3.9 Hz, 1H), 4.40 (t, *J* = 7.7 Hz, 1H), 3.25 (dd, *J* = 13.0, 7.0 Hz, 1H), 3.15 (dd, *J* = 13.0, 8.4 Hz, 1H), 2.49-2.45 (m, 4H), 2.09-.089 (m, 39H), 0.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 165.80, 148.12, 144.20, 139.72, 138.93, 129.99, 129.66, 127.82, 124.75, 124.45, 122.85, 74.56, 56.77, 56.20, 50.11, 47.06, 42.39, 41.13, 39.81, 39.59, 38.29, 37.10, 36.72, 36.26, 35.87, 32.00, 31.95, 28.31, 28.09, 27.96, 24.37, 23.90, 22.90, 22.64, 21.12, 19.45, 18.79, 15.36, 11.94. HRMS (ESI): calcd for C₄₂H₅₇D₃O₂NaS₂ [M + Na]⁺ 686.4121, found 686.4122.

4-(3-oxobutyl)phenyl -4-(2-((methyl-d3)thio)-1-(5-methylthiophen-2-yl)ethyl)benzoate

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (59.1 mg, 67% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.19 (d, *J* = 8.2 Hz, 2H), 7.47 (d, *J* = 8.3 Hz, 2H), 7.27 (d, *J* = 8.3 Hz, 2H), 7.13 (d, *J* = 8.4 Hz, 2H), 6.70 (d, *J* = 3.3 Hz, 1H), 6.62 (d, *J* = 3.3 Hz, 1H), 4.44 (t, *J* = 7.7 Hz, 1H), 3.28 (dd, *J* = 13.0, 7.0 Hz, 1H), 3.18 (dd, *J* = 13.1, 8.4 Hz, 1H), 2.97-2.94 (m, 2H), 2.83-2.80 (m, 2H), 2.46 (s, 3H), 2.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 207.84, 149.28, 149.11, 143.97, 139.08, 138.71, 130.62, 129.42, 128.48, 128.36, 128.13, 124.81, 124.53, 121.73, 47.08, 45.20, 41.07, 30.19, 29.15, 15.36. HRMS (ESI):

calcd for $C_{25}H_{23}D_3O_3NaS_2\;[M+Na]^+\;464.1409,$ found 464.1409.

pdata/1

pdata/1

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

1 <th1</th> <th1</th> <th1</th> <th1</th>

5.05 5.04 5.04 5.04 5.04 5.05 5.05 5.04 5.05

kalan (kalan) kalan

 √147.23 √141.48 √133.17 √129.25 √129.12 √127.86 	- 118.23 - 114.01	-55.84	-42.42
--	----------------------	--------	--------

pdata/1

pdata/1

1.25

pdata/1

4.06 8.82 6.88 6.88 7.7.7.3 7

147.51 143.43 143.43 1129.57 129.57 128.54 128.54 112.435 1117.95 113.43	-65.44	-51.39	-37.89
---	--------	--------	--------

pdata/1

pdata/1

pdata/1

8.28 8.18 8.18 7.7.46 7.7.30 7.7.28 7.12 7.12 6.671 6.670 6.670

HRMS of Products

1485 #11 RT: 0.13 AV: 1 NL: 2.13E5 T: FTMS {1,1} + p APCI corona Full ms [100.00-1000.00]

1468 #16 RT: 0.19 AV: 1 NL: 1.11E5 T: FTMS {1,2} - p APCI corona Full ms [100.00-1000.00]

1: TOF MGES+ 4.264

1509

100₁

vy/20240108-18-2 73 (1.449) Alv/2 (Ar, 20000,0.00,0.00); Cm(73-4x1.500) 100-303 1972

PhHN

S63

