Supporting Information

Rhodium-Catalyzed 1,4-Hydroxyl Migration of Alkenyl Alcohols

Xue Zhang, Jiang-Min Yan, Jia-Ning Zhang, Si-Qi Xiong, Cheng Liang, Qing-Hua Li,* and Tang-Lin Liu*

School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.

Table of contents

I General information	2
II General procedure	2
III Mechanism Studies	3
IV The analytical and spectral characterization data	5
V References	25
VI NMR spectra	26

I General information

¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance 600 MHz and 400 MHz instruments. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26), carbon (chloroform δ 77.0) or tetramethylsilane (TMS δ 0.00) was used as a reference. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), bs (broad singlet). Coupling constants were reported in Hertz (Hz). All high resolution mass spectra (**HRMS**) were obtained on a Bruker Apex-2. For thin layer chromatography (**TLC**), Qingdao Haiyang Chemical was used, and compounds were visualized with a UV light at 254 nm. Further visualization was achieved by staining with iodine, or potassium permanganate solution followed by heating using a heat gun. Flash chromatography separations were performed on Qingdao Haiyang Chemical 200-300 mesh silica gel. All reactions were used as received for the reactions without any purification. All solvents were dried on alumina columns using a solvent dispensing system.

II General procedure

General procedure for preparation of alkenyl alcohols 1

Allylic alcohols were prepared by vinyl-magnesium bromide added to **S1**. To a solution of ketones¹ **S1** (1 mmol) in dry THF was added vinyl-magnesium bromide (1 M in THF, 1.2 equiv.) under nitrogen by a syringe over 5 min at 0 °C. Then, the reaction mixture was allowed to warm to room temperature and stirred for 3 h. The reaction was quenched *via* the addition of saturated aqueous NH₄Cl at 0 °C, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel using EtOAc in hexanes to afford the alkenyl alcohols **1**.

General procedure for 1,4-migration of hydroxyl groups within the alkenyl alcohols *via* rhodium-catalyzed

To a vial equipped with a dried stir bar was added alkenyl alcohols **1** (0.1 mmol), [Rh(COD)Cl]₂ (5 mol%), AgSbF₆ (10 mol%), K₃PO₄ (1.2 equiv), toluene (0.5 mL) in the glovebox. The reaction mixture was taken outside the glovebox and allowed to stir at 100 °C (oil bath) for 12 h. After cooling to room temperature, the reaction mixture was added to water (10 mL), extracted with EtOAc (3×5 mL). The organic layer was washed with aqueous NaHCO₃ and brine and dried over Na₂SO₄, filtered, and concentrated in vacuo. And the residue was purified by column chromatography with silica gel to give pure products **2**.

III Mechanism Studies

General Procedure for Scheme 4

Radical experiments

HO	Standard conditions Additives	2a O
Entry	Additives	Yield
1	-	78%
2	TEMPO	70%
3	BHT	77%

Reaction conditions: **1a** (0.1 mmol), $[Rh(COD)Cl]_2$ (5 mol%), AgSbF₆ (10 mol%), K₃PO₄ (1.2 equiv.), additives (1.0 equiv.) Toluene (0.5 mL) at 100 °C for 12 h. The yields are isolated yields.

In a nitrogen glove box, an oven-dried 10 mL reaction tube equipped with a magnetic stirring bar was charged with **1a** (0.1 mmol), $[Rh(COD)Cl]_2$ (5 mol%), AgSbF₆ (10 mol%), K₃PO₄ (1.2 equiv.), additives (1.0 equiv.) and Toluene (0.5 mL). The reaction mixture was sealed with a screw cap, taken out of the glove box and placed in oil-bath at 100 °C and stirred for 12 h. After cooling to room temperature, the reaction mixture was exposed to air, concentrated and further purified by flash column chromatography

over silica (petroleum/ethyl acetate) to give desired product **2a**. The transformation was not suppressed in the presence of 1.0 equiv. of 2,2,6, 6-tetramyl-1-piperidoxy (TEMPO) or butylated hydroxytoluene (BHT) under the standard condition, and the target product was obtained with 70% and 77% yield respectively. These radical experiments indicated that the radical process might not involve in this reaction.

In a nitrogen glove box, an oven-dried 10 mL reaction tube equipped with a magnetic stirring bar was charged with **5** (7) (0.1 mmol), $[Rh(COD)Cl]_2$ (5 mol%), AgSbF₆ (10 mol%), K₃PO₄ (1.2 equiv.), additives (1.0 equiv.) and Toluene (0.5 mL). The reaction mixture was sealed with a screw cap, taken out of the glove box and placed in oil-bath at 100 °C and stirred for 12 h. After cooling to room temperature, the reaction mixture was exposed to air and no 1,4-hydroxyl migration product was detected.

IV The analytical and spectral characterization data

5-Phenylhept-5-en-2-one (2a)²

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in hexane:ethyl acetate = 15:1) resulting in 14.6 mg of yellow liquid in 78% yield, *E/Z* 60:40. ¹H NMR (400 MHz, CDCl₃) (*E*) δ 7.36-7.30 (m, 3H), 7.25-7.20 (m, 1H), 7.15-7.13 (m, 1H), 5.76 (q, *J* = 6.8 Hz, 1H), 2.78 (t, *J* = 7.6 Hz, 2H), 2.46-2.43 (m, 2H), 2.07 (s, 3H), 1.80 (d, *J* = 7.2 Hz, 3H). (*Z*) δ 7.36-7.30 (m, 3H), 7.25-7.20 (m, 1H), 7.15-7.13 (m, 1H), 5.58 (q, *J* = 6.8 Hz, 1H), 2.62 (t, *J* = 7.2 Hz, 2H), 2.42-2.39 (m, 2H), 2.06 (s, 3H), 1.80 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.7, 142.6, 139.5, 128.5, 126.9, 126.8, 122.2, 42.3,
30.1, 23.6, 14.2. (*Z*) δ 208.6, 140.3, 140.2, 128.7, 128.3, 126.4, 124.0, 42.7, 33.4, 30.1,
14.8.

5-(*o*-Tolyl)hept-5-en-2-one (2b)

The title compound was prepared according to the general procedure as $\stackrel{Me}{\underbrace{\ }}_{2b}$ $\stackrel{Me}{\underbrace{\ }}_{2c}$ $\stackrel{Me}{\underbrace{\ }}_$

1.35 (d, *J* = 7.2 Hz, 3H). (*Z*) δ 7.20-7.10 (m, 3H), 6.99 (d, *J* = 7.2 Hz, 1H), 5.36 (q, *J* = 6.6 Hz, 1H), 2.55-2.44 (m, 2H), 2.36 (t, *J* = 7.8 Hz, 2H), 2.24 (s, 3H), 2.04 (s, 3H), 1.78 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.6, 143.5, 139.7, 135.7, 130.1, 129.0, 126.9, 125.7, 122.3, 42.2, 30.0, 25.4, 19.3, 14.6. (*Z*) δ 208.5, 140.1, 139.7, 135.6, 130.2, 129.2, 126.8, 125.5, 124.7, 41.7, 33.0, 25.4, 20.0, 13.7.

HRMS(ESI): m/z Calcd. for C₁₄H₁₈NaO [M+Na]⁺:225.1250; Found:225.1247.

5-(*m*-Tolyl)hept-5-en-2-one (2c)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in hexane:ethyl

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.19 (t, *J* = 7.8 Hz, 1H), 7.09 (t, *J* = 7.8 Hz, 2H), 7.05 (t, J = 8.4 Hz, 1H), 5.74 (q, J = 6.6 Hz, 1H), 2.77 (t, J = 7.8 Hz, 2H), 2.45-2.40 (m, 2H), 2.34 (s, 3H), 2.08 (s, 3H), 1.79 (d, J = 6.6 Hz, 3H). (Z) δ 7.22 (t, J = 7.8 Hz, 1H), 7.05 (t, J = 8.4 Hz, 1H), 6.93 (t, J = 7.8 Hz, 2H), 5.55 (q, J = 6.6 Hz, 1H), 2.60 (t, J =7.8 Hz, 2H), 2.45-2.40 (m, 2H), 2.35 (s, 3H), 2.07 (s, 3H), 1.54 (d, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) (*E*) δ 208.7, 142.6, 139.6, 138.0, 128.4, 127.6, 127.2, 123.7, 123.5, 42.4, 30.1, 23.6, 21.6, 14.2. (*Z*) & 208.7, 140.3, 140.3, 137.9, 129.3, 128.2, 127.5, 125.8, 122.0, 42.7, 33.4, 30.1, 21.6, 14.8.

acetate = 15:1) resulting in 13.0 mg of yellow liquid in 64% yield, E/Z 60:40.

HRMS(ESI): m/z Calcd. for C₁₄H₁₈NaO [M+Na]⁺:225.1250; Found:225.1249.

5-(3-Chlorophenyl)hept-5-en-2-one (2d)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in hexane:ethyl acetate = 15:1) resulting in 17.1 mg of yellow liquid in 71% yield, E/Z 60:40.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.29-7.27 (m, 1H), 7.24-7.23 (m, 1H), 7.21-7.19 (m, 1H), 7.17-7.15 (d, J = 7.2 Hz, 1H), 5.77 (q, J = 6.6 Hz, 1H), 2.75 (t, J = 7.8 Hz, 2H), 2.44-2.40 (m, 2H), 2.09 (s, 3H), 1.80 (d, J = 6.6 Hz, 3H). (Z) δ 7.29-7.27 (m, 1H), 7.24-7.23 (m, 1H), 7.13-7.12 (m, 1H), 7.02 (d, J = 7.2 Hz, 1H), 5.60 (q, J = 7.2 Hz, 1H), 2.59 (t, J = 7.8 Hz, 2H), 2.44-2.40 (m, 2H), 2.08 (s, 3H), 1.54 (d, J = 7.2 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.3, 144.5, 138.4, 134.4, 129.7, 128.7, 126.9, 125.3, 124.5, 42.2, 30.1, 23.4, 14.3. (Z) & 208.4, 142.3, 139.0, 134.2, 129.7, 127.0, 126.9, 126.6, 123.2, 42.5, 33.0, 30.1, 14.8.

HRMS(ESI): m/z Calcd. for C₁₃H₁₅ClNaO [M+Na]⁺:245.0704; Found:245.0704.

5-(*p*-Tolyl)hept-5-en-2-one (2e)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in

hexane:ethyl acetate = 15:1) resulting in 11.8 mg of yellow liquid in 54% yield, E/Z 60:40.

¹H NMR (400 MHz, CDCl₃) (*E*) δ 7.20-7.16 (m, 3H), 7.04-7.02 (m, 1H), 5.73 (q, *J* = 6.8 Hz, 1H), 2.78-2.74 (m, 2H), 2.45-2.42 (m, 2H), 2.33 (s, 3H), 2.07 (s, 3H), 1.79 (d, *J* = 6.8 Hz, 3H). (*Z*) δ 7.14-7.10 (m, 3H), 7.04-7.02 (m, 1H), 5.73 (q, *J* = 6.8 Hz, 1H), 2.62-2.58 (m, 2H), 2.41-2.38 (m, 2H), 2.35 (s, 3H), 2.06 (s, 3H), 1.55 (d, *J* = 6.8 Hz, 3H). (J) δ 3H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.7, 139.6, 139.2, 136.5, 129.2, 126.2, 123.2, 42.4,
30.1, 23.5, 21.2, 14.2. (*Z*) δ 208.8, 140.1, 137.2, 136.4, 129.0, 128.6, 121.9, 42.7, 33.4,
30.1, 21.3, 14.8.

HRMS(ESI): m/z Calcd. for C₁₄H₁₈NaO [M+Na]⁺:225.1250; Found:225.1249.

5-(4-(Methylthio)phenyl)hept-5-en-2-one (2f)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in

hexane:ethyl acetate = 10:1) resulting in 11.5 mg of yellow liquid in 49% yield, E/Z 60:40.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.24-7.19 (m, 3H), 7.07 (d, *J* = 8.4 Hz, 1H), 5.75 (q, *J* = 6.6 Hz, 1H), 2.76 (t, *J* = 7.8 Hz, 2H), 2.48 (s, 3H), 2.45-2.39 (m, 2H), 2.08 (s, 3H), 1.79 (d, *J* = 7.2 Hz, 3H). (*Z*) δ 7.24-7.19 (m, 4H), 5.57 (q, *J* = 7.2 Hz, 1H), 2.60 (t, *J* =7.2 Hz, 2H), 2.50 (s, 3H), 2.45-2.39 (m, 2H), 2.06 (s, 3H), 1.56 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.4, 139.3, 136.6, 129.0, 126.7, 126.4, 123.5, 42.2, 30.0, 23.2, 16.0, 14.1. (*Z*) δ 208.5, 139.4, 138.6, 136.6, 126.7, 126.5, 122.3, 42.5, 33.1, 29.9, 15.9, 14.7.

HRMS(ESI): m/z Calcd. for C₁₄H₁₈NaOS [M+Na]⁺:257.0971; Found:257.0971.

5-(4-(Tert-butyl)phenyl)hept-5-en-2-one (2g)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in

hexane:ethyl acetate = 15:1) resulting in 13.8 mg of yellow liquid in 58% yield, E/Z 70:30.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.32 (d, *J* = 8.4 Hz, 2H), 7.24-7.23 (m, 2H), 5.76 (q, *J* = 6.6 Hz, 1H), 2.77 (t, *J* = 7.8 Hz, 2H), 2.47-2.41 (m, 2H), 2.08 (s, 3H), 1.79 (d, *J* = 7.2 Hz, 3H), 1.32 (s, 9H). (*Z*) δ 7.34 (d, *J* = 7.8 Hz, 2H), 7.07-7.02 (m, 2H), 5.55 (q, *J* = 7.2 Hz, 1H), 2.61 (t, *J* = 7.8 Hz, 2H), 2.47-2.41 (m, 2H), 2.06 (s, 3H), 1.57 (d, *J* = 6.6 Hz, 3H), 1.33 (s, 9H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.8, 149.8, 139.4, 128.3, 125.9, 125.1, 123.2, 42.5,
34.6, 31.5, 30.1, 23.5, 14.2. (*Z*) δ 209.0, 149.5, 139.0, 127.9, 125.4, 125.2, 121.9, 42.8,
34.6, 33.4, 31.5, 30.1, 14.9.

HRMS(ESI): m/z Calcd. for C₁₇H₂₄NaO [M+Na]⁺:267.1719; Found:267.1720.

5-(4-Methoxyphenyl)hept-5-en-2-one (2h)³

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in

hexane:ethyl acetate = 15:1) resulting in 13.8 mg of yellow liquid in 58% yield, E/Z 70:30.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.24-7.22 (m, 2H), 6.85-6.83 (m, 2H), 5.69 (q, *J* = 7.2 Hz, 1H), 3.80 (s, 3H), 2.75 (t, *J* = 7.8 Hz, 2H), 2.45-2.42 (m, 2H), 2.07 (s, 3H), 1.78 (d, *J* = 6.6 Hz, 3H). (*Z*) δ 7.08-7.06 (m, 2H), 6.89-6.87 (m, 2H), 5.54 (q, J = 7.2 Hz, 1H), 3.82 (s, 3H), 2.59 (t, *J* = 7.8 Hz, 2H), 2.42-2.39 (m, 2H), 2.06 (s, 3H), 1.78 (d, *J* =

7.2 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.7, 158.7, 138.8, 132.4, 127.4, 113.8, 113.7, 55.4, 42.4, 30.1, 23.6, 14.2. (*Z*) δ 208.7, 158.4, 139.7, 135.0, 129.8, 122.5, 121.9, 55.4, 42.8, 33.5, 30.1, 14.8.

HRMS(ESI): m/z Calcd. for C₁₄H₁₉O₂ [M+H]⁺:219.1380; Found:219.1380.

5-(4-Fluorophenyl)hept-5-en-2-one (2i)

F 2i

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in hexane:ethyl

acetate = 15:1) resulting in 11.7 mg of yellow liquid in 57% yield, E/Z 60:40.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.26-7.23 (m, 2H), 7.00-6.96 (m, 2H), 5.70 (q, *J* = 7.2 Hz, 1H), 2.75 (t, *J* = 7.8 Hz, 2H), 2.43-2.42(m, 2H), 2.08 (s, 3H), 1.79 (d, *J* = 7.2 Hz, 3H). (*Z*) δ 7.11-7.09 (m, 2H), 7.04-7.01 (m, 2H), 5.58 (q, *J* = 6.6 Hz, 1H), 2.59 (t, *J* = 7.8 Hz, 2H), 2.41-2.39 (m, 2H), 2.07 (s, 3H), 1.53 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.4, 162.0 (d, *J* = 246.1 Hz), 138.6 (d, *J* = 4.5 Hz), 138.5, 127.9 (d, *J* = 7.6 Hz), 124.0, 115.3 (d, *J* = 21.1 Hz), 42.2, 30.1, 23.7, 14.2. (*Z*) δ 208.5, 161.8 (d, *J* = 246.1 Hz), 139.2, 138.6 (d, *J* = 4.5 Hz), 130.2 (d, *J* = 7.6 Hz), 122.6, 115.2 (d, *J* = 21.1 Hz), 42.5, 33.3, 30.1, 14.7.

¹⁹F NMR (565 MHz, CDCl₃) (*E*) δ -116.30. (*Z*) δ -115.94.

HRMS(ESI): m/z Calcd. for C₁₃H₁₅FNaO [M+Na]⁺:229.0999; Found:229.1000.

5-(4-(Trifluoromethyl)phenyl)hept-5-en-2-one (2j)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in

hexane:ethyl acetate = 15:1) resulting in 16.1 mg of yellow liquid in 63% yield, E/Z 60:40.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.55 (d, *J* = 7.8 Hz, 2H), 7.39 (d, *J* = 7.8 Hz, 2H),

5.84 (q, J = 7.2 Hz, 1H), 2.80 (t, J = 7.8 Hz, 2H), 2.44-2.43 (m, 2H), 2.08 (s, 3H), 1.83 (d, J = 7.2 Hz, 3H). (Z) δ 7.60 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 7.8 Hz, 2H), 5.64 (q, J = 7.2 Hz, 1H), 2.63 (t, J = 7.8 Hz, 2H), 2.42-2.40 (m, 2H), 2.08 (s, 3H), 1.54 (d, J = 7.2 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.1, 146.2, 138.5, 128.9 (q, *J* = 31.9 Hz), 126.6, 126.1, 125.5 (q, *J* = 3.6 Hz), 124.4 (q, *J* = 275.4 Hz), 42.1, 30.1, 23.3, 14.3. (*Z*) δ 208.2, 144.3, 139.1, 129.1 (q, *J* = 32.5 Hz), 126.6, 126.1, 125.3 (q, *J* = 3.8 Hz), 124.4 (q, *J* = 275.4 Hz), 42.4, 32.9, 30.1, 14.8.

¹⁹F NMR (565 MHz, CDCl₃) (*E*) δ -62.39. (*Z*) δ -62.44.

HRMS(ESI): m/z Calcd. for C₁₄H₁₅F₃NaO [M+Na]⁺:279.0967; Found:279.0968.

5-(4-Chlorophenyl)hept-5-en-2-one (2k)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in hexane:ethyl

acetate = 15:1) resulting in 14.4 mg of yellow liquid in 65%, yield, *E/Z* 60:40. ¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.32-7.30 (m, 1H), 7.22-7.21 (m, 2H), 7.08-7.07 (m, 1H), 5.75 (q, *J* = 7.2 Hz, 1H), 2.75 (t, *J* = 7.8 Hz, 2H), 2.43-2.41 (m, 2H), 2.08 (s, 3H), 1.80 (d, *J* = 7.2 Hz, 3H). (*Z*) δ 7.27-7.26 (m, 1H), 7.22-7.21 (m, 2H), 7.08-7.07 (m, 1H), 5.59 (q, *J* = 6.6 Hz, 1H), 2.59 (t, *J* = 7.8 Hz, 2H), 2.41-2.39 (m, 2H), 2.07 (s, 3H), 1.53 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.3, 141.0, 138.4, 130.1, 128.6, 127.7, 124.6, 42.2,
30.1, 23.4, 14.2. (*Z*) δ 208.4, 139.1, 138.7, 132.6, 128.6, 127.7, 122.9, 42.5, 33.1, 30.1,
14.8.

HRMS(ESI): m/z Calcd. for C₁₃H₁₅ClNaO [M+Na]⁺:245.0704; Found:245.0703.

5-(4-Bromophenyl)hept-5-en-2-one (2l)³

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in hexane:ethyl acetate = 15:1) resulting in 11.4 mg of yellow liquid in 43% yield, *E/Z* 70:30.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.43-7.41 (m, 2H), 7.17-7.15 (m, 2H), 5.75 (q, *J* = 7.2 Hz, 1H), 2.75 (t, *J* = 7.8 Hz, 2H), 2.43-2.39 (m, 2H), 2.08 (s, 3H), 1.79 (d, *J* = 7.2 Hz, 3H). (*Z*) δ 7.47-7.46 (m, 2H), 7.02-7.01 (m, 2H), 5,59 (q, *J* = 6.6 Hz, 1H), 2.59 (t, *J* = 7.8 Hz, 2H), 2.43-2.39 (m, 2H), 2.07 (s, 3H), 1.53 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.3, 141.5, 138.5, 131.5, 128.1, 124.7, 120.7, 42.2, 30.1, 23.4, 14.3. (*Z*) δ 208.3, 139.2, 139.1, 131.6, 130.4, 122.9, 120.7, 42.5, 33.1, 29.8, 14.8.

5-([1,1'-Biphenyl]-4-yl)hept-5-en-2-one (2m)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in hexane:ethyl acetate = 15:1) resulting in 20.3 mg of yellow liquid in 77% yield, E/Z 60:40.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.62-7.57 (m, 5H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.35-7.34 (m, 1H), 7.22 (d, *J* = 7.2 Hz, 1H), 5.84 (q, *J* = 6.6 Hz, 1H), 2.82 (t, *J* = 7.8 Hz, 2H), 2.50-2.47 (m, 2H), 2.09 (s, 3H), 1.83 (d, *J* = 6.6 Hz, 3H). (*Z*) δ 7.45-7.42 (m, 5H), 7.38 (d, *J* = 7.8 Hz, 2H), 7.34-7.33 (m, 1H), 7.22 (d, *J* = 7.2 Hz, 1H), 5.61 (q, *J* = 7.2 Hz, 1H), 2.66 (t, *J* = 7.8 Hz, 2H), 2.47-2.44 (m, 2H), 2.08 (s, 3H), 1.61 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.6, 141.4, 140.9, 139.8, 139.0, 128.9, 127.3, 127.2, 127.1, 126.7, 124.0, 42.4, 30.2, 23.4, 14.9. (*Z*) δ 208.7, 141.0, 139.7, 139.6, 139.3, 129.1, 127.4, 127.1, 127.0, 126.7, 122.5, 42.7, 33.3, 30.1, 14.3.

HRMS(ESI): m/z Calcd. for C₁₉H₂₀NaO [M+Na]⁺:287.1406; Found:287.1402.

5-(3,5-dimethoxyphenyl)hept-5-en-2-one (2n)

hexane:ethyl acetate = 15:1) resulting in 16.1 mg of yellow liquid in 65% yield, E/Z 60:40.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 6.45-6.44 (m, 2H), 6.37-6.36 (m, 1H), 5.77 (q, J = 7.2 Hz, 1H), 3.79 (s, 6H), 2.74 (t, J = 7.8 Hz, 2H), 2.46-2.42 (m, 2H), 2.08 (s, 3H), 1.79 (d, J = 6.6 Hz, 3H). (*Z*) δ 6.37-6.36 (m, 1H), 6.29-6.28 (m, 2H), 5.54 (q, J = 7.2 Hz, 1H), 3.79 (s, 6H), 2.58 (t, J = 7.8 Hz, 2H), 2.46-2.42 (m, 2H), 2.07 (s, 3H), 1.56 (d, J = 6.6 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) (E) δ 208.6, 160.8, 145.0, 139.5, 124.1, 104.8, 98.8, 55.4, 42.3, 30.1, 23.6, 14.1. (*Z*) δ 208.7, 160.7, 142.5, 140.2, 122.3, 106.8, 98.7, 55.4, 42.6, 33.2, 30.1, 14.8.

HRMS(ESI): m/z Calcd. for C₁₅H₂₀NaO₃ [M+Na]⁺:271.1305; Found:271.1304.

5-(Naphthalen-2-yl)hept-5-en-2-one (20)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in

hexane:ethyl acetate = 15:1) resulting in 16.5 mg of yellow liquid in 69% yield, E/Z 60:40.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.85-7.80 (m, 3H), 7.71 (s, 1H), 7.49-7.46 (m, 2H), 7.29-7.28 (m, 1H), 5.92 (q, *J* = 6.6 Hz, 1H), 2.89 (t, *J* = 7.8 Hz, 2H), 2.12 (t, *J* = 7.8 Hz, 2H), 2.06 (s, 3H), 1.86 (d, *J* = 6.6 Hz, 3H). (*Z*) δ 7.79-7.77 (m, 3H), 7.59 (s, 1H), 7.45-7.43 (m, 2H), 7.29-7.28 (m, 1H), 5.67 (q, *J* = 7.2 Hz, 1H), 2.71 (t, *J* = 7.8 Hz, 2H), 2.43 (t, *J* = 7.8 Hz, 2H), 2.04 (s, 3H), 1.60 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.6, 139.8, 139.4, 133.6, 132.6, 128.1, 127.9, 127.6, 127.1, 126.3, 125.7, 125.1, 124.6, 42.4, 30.1, 23.5, 14.4. (*Z*) δ 208.6, 140.1, 137.8, 133.5, 132.4, 128.0, 127.9, 127.8, 127.3, 126.2, 125.8, 124.6, 122.7, 42.7, 33.3, 30.1, 14.9.

HRMS(ESI): m/z Calcd. for C₁₇H₁₈NaO [M+Na]⁺:261.1250; Found:261.1250.

5-(Naphthalen-1-yl)hept-5-en-2-one (2p)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in hexane:ethyl

acetate = 15:1) resulting in 13.3 mg of yellow liquid in 56% yield, E/Z 45:55.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.93-7.92 (m, 1H), 7.87-7.85 (m, 1H), 7.78-7.74 (m, 1H), 7.48-7.45 (m, 2H), 7.41 (t, *J* = 7.8 Hz, 1H), 7.21-7.19 (m, 1H), 5.84 (q, *J* = 6.6 Hz, 1H), 2.74-2.65 (m, 2H), 2.50-2.42 (m, 2H), 2.02 (s, 3H), 1.33 (d, *J* = 6.6 Hz, 3H). (*Z*) δ 7.85-7.82 (m, 2H), 7.78-7.74 (m, 1H), 7.48-7.45 (m, 2H), 7.41 (t, *J* = 7.8 Hz, 1H), 7.21-7.19 (m, 1H), 5.58 (q, *J* = 6.6 Hz, 1H), 2.82 (t, *J* = 7.8 Hz, 2H), 2.37 (t, J = 7.8 Hz, 2H), 1.98 (s, 3H), 1.90 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.5, 141.9, 138.5, 133.9, 132.0, 128.4, 127.2, 126.3, 125.9, 125.9, 125.8, 125.6, 125.4, 42.4, 30.0, 26.3, 14.9. (*Z*) δ 208.5, 141.9, 138.6, 133.8, 131.5, 128.5, 127.2, 126.1, 126.0, 125.9, 125.9, 125.7, 124.2, 42.0, 33.8, 30.0, 13.9.

HRMS(ESI): m/z Calcd. for C₁₇H₁₈NaO [M+Na]⁺:261.1250; Found:261.1250.

5-(Thiophen-2-yl)hept-5-en-2-one (2q)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in hexane:ethyl acetate = 15:1) resulting in 8.1 mg of yellow liquid in 42% yield, E/Z 55:45.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.10-7.09 (m, 1H), 6.96-6.94 (m, 1H), 6.91-6.90 (m, 1H), 5.98 (q, *J* = 7.2 Hz, 1H), 2.75 (t, *J* = 7.8 Hz, 2H), 2.59 (t, *J* = 7.8 Hz, 2H), 2.13 (s, 3H), 1.80-1.78 (m, 3H). (*Z*) δ 7.28-7.27 (m, 1H), 7.04-7.02 (m, 1H), 6.93-6.92 (m, 1H), 5.67 (q, *J* = 7.2 Hz, 1H), 2.67 (t, *J* = 7.2 Hz, 2H), 2.55 (t, *J* = 7.2 Hz, 2H), 2.10 (s, 3H), 1.80-1.78 (m, 3H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.4, 146.5, 133.3, 127.4, 124.5, 123.3, 122.1, 42.6, 30.2, 24.1, 14.0. (*Z*) δ 208.5, 141.8, 132.8, 126.9, 125.9, 124.6, 123.1, 43.1, 33.9, 30.2,

15.4.

HRMS(ESI): m/z Calcd. for C₁₁H₁₄NaOS [M+Na]⁺:217.0658; Found:217.0657.

5-(furan-2-yl)hept-5-en-2-one (2r)

The title compound was prepared according to the general procedure as f_{2r} described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (R*f* = 0.40 in hexane:ethyl acetate = 15:1) resulting in 8.2 mg of yellow liquid in 46% yield, *E/Z* 60:40. ¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.31 (s, 1H), 6.36-6.35 (m, 1H), 6.17-6.16 (m, 1H), 6.13 (q, *J* = 7.2 Hz, 1H), 2.66-2.58 (m, 4H), 2.14 (s, 3H), 1.79 (d, *J* = 7.2 Hz, 3H). (*Z*) δ 7.40 (s, 1H), 6.42-6.41 (m, 1H), 6.29-6.28 (m, 1H), 5.59 (q, *J* = 7.2 Hz, 1H), 2.66-2.58 (m, 4H), 2.12 (s, 3H), 1.89 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.5, 155.2, 141.4, 129.3, 121.2, 111.1, 104.3, 43.0,

30.2, 21.9, 15.4. (Z) δ 208.7, 153.6, 141.2, 129.1, 123.8, 110.9, 108.7, 43.7, 30.1, 21.9, 13.4.

HRMS(ESI): m/z Calcd. for C₁₁H₁₄NaO₂ [M+Na]⁺:201.0886; Found:201.0887.

acetate = 15:1) resulting in 17.2 mg of yellow liquid in 85% yield, E/Z 50:50.

5-Benzylhept-5-en-2-one (2s)

2s

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in hexane:ethyl

¹H NMR (400 MHz, CDCl₃) (*E*) δ 7.29-7.14 (m, 5H), 5.42 (q, *J* = 6.8 Hz, 1H), 3.40 (s, 2H), 2.48-2.44 (m, 2H), 2.27-2.19 (m, 2H), 2.05 (s, 3H), 1.72 (d, *J* = 6.8 Hz, 3H). (*Z*) δ 7.29-7.14 (m, 5H), 5.32 (q, *J* = 6.8 Hz, 1H), 3.29 (s, 2H), 2.41-2.37 (m, 2H), 2.27-2.19 (m, 2H), 2.07 (s, 3H), 1.63 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.8, 140.0, 137.2, 128.6, 128.5, 126.1, 121.0, 43.9,
42.4, 30.9, 24.0, 13.8. (*Z*) δ 208.7, 140.2, 138.0, 129.1, 128.4, 126.2, 122.4, 43.9, 42.2,
36.1, 29.9, 13.5.

HRMS(ESI): m/z Calcd. for C₁₄H₁₈NaO [M+Na]⁺:225.1250; Found:225.1249.

10-Chloro-5-ethylidenedecan-2-one (2t)

Cl 2t The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40

in hexane:ethyl acetate = 15:1) resulting in 15.6 mg of yellow liquid in 72% yield, E/Z 50:50.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 5.24 (q, *J* = 6.6 Hz, 1H), 3.56-3.53 (m, 2H), 2.52 (t, *J* = 7.8 Hz, 2H), 2.30-2.27 (m, 2H), 2.15 (s, 3H), 2.03 (t, *J* = 7.8 Hz, 2H), 1.81-1.74 (m, 5H), 1.60-1.57 (m, 2H), 1.46-1.43 (m, 2H). (*Z*) δ 5.20 (q, *J* = 6.6 Hz, 1H), 3.53-3.52 (m, 2H), 2.47 (t, *J* = 7.8 Hz, 2H), 2.26-2.23 (m, 2H), 2.14 (s, 3H), 1.97 (t, *J* = 7.2 Hz, 2H), 11.81-1.74 (m, 5H), 1.60-1.57 (m, 2H), 1.39-1.36 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.9, 138.5, 120.0, 45.2, 42.4, 36.7, 32.7, 30.0, 29.9, 27.5, 24.0, 13.3. (*Z*) δ 209.0, 138.3, 119.4, 45.2, 42.6, 36.7, 32.7, 30.8, 30.0, 27.0, 26.7, 13.4.

HRMS(ESI): m/z Calcd. for C₁₂H₂₁ClNaO [M+Na]⁺:239.1173; Found:239.1172.

5-Ethylidene-10-phenoxydecan-2-one (2u)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf =

0.40 in hexane:ethyl acetate = 15:1) resulting in 17.7 mg of yellow liquid in 65% yield, E/Z 50:50.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.28 (d, *J* = 7.8 Hz, 2H), 6.93 (t, *J* = 7.2 Hz, 1H), 6.90-6.88 (m, 2H), 5.24 (q, *J* = 7.2 Hz, 1H), 3.96-3.94 (m, 2H), 2.51 (t, *J* = 7.2 Hz, 2H), 2.30-2.24 (m, 2H), 2.15 (s, 3H), 2.06-2.03 (m, 2H), 1.82-1.76 (m, 5H), 1.59-1.57 (m, 2H), 1.49-1.46 (m, 2H). (*Z*) δ 7.28 (d, *J* = 7.8 Hz, 2H), 6.93 (t, *J* = 7.2 Hz, 1H), 6.90-6.88 (m, 2H), 5.20 (q, *J* = 6.6 Hz, 1H), 3.96-3.94 (m, 2H), 2.47 (t, *J* = 7.8 Hz, 2H), 2.30-

2.24 (m, 2H), 2.14 (s, 3H), 1.99-1.97 (m, 2H), 1.82-1.76 (m, 5H), 1.59-1.57 (m, 2H), 1.45-1.42 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 209.0, 159.2, 138.7, 129.5, 120.6, 119.3, 114.6, 67.9,
42.7, 36.8, 30.9, 30.0, 29.4, 28.0, 24.0, 13.3. (*Z*) δ 208.9, 159.2, 138.5, 129.5, 120.6,
119.9, 114.6, 67.9, 42.4, 36.8, 30.0, 29.8, 29.3, 26.3, 26.0, 13.4.

HRMS(ESI): m/z Calcd. for C₁₈H₂₆NaO₂ [M+Na]⁺:297.1825; Found:197.1823.

4-(6-Oxohept-2-en-3-yl)-N,N-dipropylbenzenesulfonamide (2v)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in hexane:ethyl acetate = 15:1)

resulting in 16.5 mg of yellow liquid in 47% yield, *E/Z* 70:30.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.73 (d, *J* = 8.4 Hz, 2H), 7.40 (d, *J* = 8.4 Hz, 2H), 5.88 (q, *J* = 7.2 Hz, 1H), 3.12-3.07 (m, 4H), 2.80 (t, *J* = 7.8 Hz, 2H), 2.44-2.40 (m, 2H), 2.09 (s, 3H), 1.84 (d, *J* = 7.2 Hz, 3H), 1.60-1.53 (m, 4H), 0.88 (t, *J* = 7.2 Hz, 6H). (*Z*) δ 7.73 (d, *J* = 8.4 Hz, 2H), 7.27-7.25 (m, 2H), 5.65 (q, *J* = 6.6 Hz, 1H), 3.12-3.07 (m, 4H), 2.62 (t, *J* = 7.8 Hz, 2H), 2.44-2.40 (m, 2H), 2.08 (s, 3H), 1.60-1.53 (m, 7H), 0.88 (t, *J* = 7.2 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 207.8, 146.4, 138.8, 138.2, 129.1, 127.2, 126.6, 50.1, 41.9, 30.0, 23.1, 22.1, 14.3, 11.2. (*Z*) δ 207.9, 144.7, 138.5, 138.2, 127.1, 126.5, 123.6, 50.0, 42.2, 32.7, 29.9, 22.1, 14.7, 11.2.

HRMS(ESI): m/z Calcd. for C₁₉H₂₉NNaO₃S [M+Na]⁺:374.1760; Found:374.1753.

5-(1-(2-Fluoro-[1,1'-biphenyl]-4-yl)ethyl)hept-5-en-2-one (2w)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40

in hexane:ethyl acetate = 15:1) resulting in 9.5 mg of yellow liquid in 31% yield, E/Z

70:30.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.55-7.53 (m, 2H), 7.43 (t, *J* = 7.8 Hz, 2H), 7.36-7.34 (m, 2H), 7.08-7.03 (m, 2H), 5.49 (q, *J* = 6.6 Hz, 1H), 3.43 (q, *J* = 7.2 Hz, 1H), 2.37-2.32 (m, 2H), 2.24-2.16 (m, 2H), 2.06 (s, 3H), 1.68 (d, *J* = 6.6 Hz, 3H), 1.36 (d, *J* = 7.2 Hz, 3H). (*Z*) δ 7.55-7.53 (m, 2H), 7.43 (t, *J* = 7.8 Hz, 2H), 7.36-7.34 (m, 2H), 7.01-6.96 (m, 2H), 5.30 (q, *J* = 7.2 Hz, 1H), 4.13 (q, *J* = 7.2 Hz, 1H), 2.37-2.32 (m, 2H), 2.13-2.09 (m, 2H), 2.05 (s, 3H), 1.76 (d, *J* = 6.6 Hz, 3H), 1.42 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.6, 159.9 (d, *J* = 247.9 Hz), 147.6, 141.8, 136.0, 130.6 (d, *J* = 3.9 Hz), 129.1 (d, *J* = 3.0 Hz), 128.5, 127.6, 123.8, 120.4, 119.3, 115.2 (d, *J* = 23.1 Hz), 45.5, 42.8, 29.9, 24.0, 20.5, 13.5. (*Z*) δ 208.7, 159.9 (d, *J* = 247.9 Hz), 147.6, 141.7, 136.0, 130.4 (d, *J* = 4.4 Hz), 129.1 (d, *J* = 3.0 Hz), 128.5, 127.6, 123.4, 120.4, 119.3, 115.1 (d, *J* = 23.2 Hz), 45.5, 42.9, 29.9, 25.6, 20.5, 17.2. ¹⁹F NMR (565 MHz, CDCl₃) (*E*) δ -118.4. (*Z*) δ -118.5.

HRMS(ESI): m/z Calcd. for C₂₁H₂₃FNaO [M+Na]⁺:333.1625; Found:333.1628.

5-(1-(4-Isobutylphenyl)ethyl)hept-5-en-2-one (2x)

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.13-7.03 (m, 4H), 5.44 (q, *J* = 7.2 Hz, 1H), 3.36 (q, *J* = 7.2 Hz, 1H), 2.44-2.42 (m, 2H), 2.36-2.24 (m, 2H), 2.21-2.16 (m, 2H), 1.98 (s, 3H), 1.85-1.81 (m, 1H), 1.64 (d, *J* = 6.6 Hz, 3H), 1.32 (d, *J* = 6.6 Hz, 3H), 0.89 (d, *J* = 6.6 Hz, 6H). (*Z*) δ 7.13-7.03 (m, 4H), 5.24 (q, *J* = 6.6 Hz, 1H), 4.10 (q, *J* = 7.2 Hz, 1H), 2.44-2.42 (m, 2H), 2.21-2.16 (m, 2H), 2.14-2.07 (m, 2H), 1.96 (s, 3H), 1.85-1.81 (m, 1H), 1.75 (d, *J* = 6.6 Hz, 3H), 1.37 (d, *J* = 7.2 Hz, 3H), 0.89 (d, *J* = 6.6 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.7, 142.8, 139.6, 139.4, 129.1, 127.5, 119.4, 45.9,
45.2, 42.9, 30.4, 29.7, 24.0, 22.5, 20.5, 13.5. (*Z*) δ 208.8, 141.7, 139.6, 139.4, 129.1,
127.2, 118.7, 45.9, 45.2, 43.4, 38.2, 29.7, 26.0, 22.5, 17.3, 13.4.
HRMS(ESI): m/z Calcd. for C₁₉H₂₈NaO [M+Na]⁺:295.2032; Found:295.2031.

2,5,7,8-Tetramethyl-2-(4,8,12-trimethyltridecyl)chroman-6-yl-4-(6-oxohept-2-en-3-yl)benzoate (2y)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in hexane:ethyl acetate = 15:1) resulting in 35.5 mg of yellow liquid in 55%yield, E/Z 60:40.

¹H NMR (400 MHz, CDCl₃) (*E*) δ 8.18 (d, *J* = 8.4 Hz, 2H), 7.44 (d, *J* = 7.8 Hz, 2H), 5.92 (q, *J* = 7.2 Hz, 1H), 2.84 (t, *J* = 7.8 Hz, 2H), 2.63-2.61 (m, 2H), 2.49-2.43 (m, 2H), 2.13-2.02 (m, 14H), 1.86 (d, *J* = 7.2 Hz, 3H), 1.60-1.37 (m, 12H), 1.16-1.03 (m, 8H), 0.89-0.83 (m, 16H). (*Z*) δ 8.22 (d, *J* = 7.8 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 5.67 (q, *J* = 7.2 Hz, 1H), 2.67 (t, *J* = 7.8 Hz, 2H), 2.63-2.61 (m, 2H), 2.49-2.43 (m, 2H), 2.13-2.02 (m, 14H), 1.86 (d, *J* = 7.2 Hz, 3H), 1.60-1.37 (m, 12H), 1.16-1.03 (m, 8H), 0.89-0.83 (m, 16H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.0, 165.0, 147.6, 140.7, 138.7, 130.3, 128.8, 127.9, 126.9, 126.3, 125.1, 123.1, 117.5, 75.1, 42.1, 39.8, 39.4, 37.6, 37.5, 37.4, 37.3, 32.9, 32.8, 31.2, 30.0, 29.7, 28.0, 24.8, 24.5, 23.7, 23.1, 22.6, 20.7, 19.7, 19.7, 19.6, 14.3, 13.1, 12.2, 11.9. (*Z*) δ 208.0, 165.0, 149.5, 145.8, 139.3, 130.1, 128.8, 128.1, 126.9, 126.2, 123.4, 123.1, 117.5, 75.1, 42.4, 40.5, 39.4, 37.6, 37.5, 37.4, 37.3, 32.8, 32.7, 31.1, 30.0, 29.7, 28.0, 24.8, 24.5, 23.1, 22.7, 21.1, 19.8, 19.7, 19.6, 14.7, 13.1, 12.2, 11.9.

5,7-Diphenylhept-5-en-2-one (4a)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in hexane:ethyl acetate = 15:1) resulting in 14.5 mg of yellow liquid in 55% yield, E/Z 40:60.

¹H NMR (400 MHz, CDCl₃) (*E*) δ 7.30-7.37 (m, 5H), 7.24-7.22 (m, 3H), 7.11 (d, *J* = 7.6 Hz, 2H), 5.87 (t, *J* = 7.6 Hz, 1H), 3.58 (d, *J* = 7.2 Hz, 2H), 2.88 (t, *J* = 7.6 Hz, 2H), 2.48-2.44 (m, 2H), 2.06 (s, 3H). (*Z*) δ 7.37-7.32 (m, 5H), 7.20-7.17 (m, 3H), 7.11 (d, *J* = 7.6 Hz, 2H), 5.67 (t, *J* = 7.2 Hz, 1H), 3.27 (d, *J* = 7.6 Hz, 2H), 2.67 (t, *J* = 7.6 Hz, 2H), 2.48-2.44 (m, 2H), 2.06 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.4, 142.3, 140.7, 140.2, 128.6, 128.5, 128.4, 127.1, 126.6, 126.2, 126.0, 42.5, 35.2, 33.4, 30.1. (*Z*) δ 208.3, 142.2, 141.0, 139.6, 128.7, 128.5, 128.2, 127.2, 126.7, 126.2, 125.6, 42.5, 34.8, 30.1, 23.9.

HRMS(ESI): m/z Calcd. for C₁₉H₂₀NaO [M+Na]⁺:287.1406 Found:287.1406.

5-Phenyl-7-(*o*-tolyl)hept-5-en-2-one (4b)

4b

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) ($\mathbf{R}f = 0.40$ in

hexane:ethyl acetate = 15:1) resulting in 17.3 mg of yellow liquid in 62% yield, E/Z 50:50.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.36-7.28 (m, 4H), 7.18 (d, *J* = 7.8 Hz, 3H), 7.15-7.12 (m, 2H), 5.79 (t, J = 7.2 Hz, 1H), 3.53 (d, *J* = 7.2 Hz, 2H), 2.89 (t, J = 7.8 Hz, 2H), 2.46 (t, *J* = 7.8 Hz, 2H), 2.33 (s, 3H), 2.06 (s, 3H). (*Z*) δ 7.36-7.28 (m, 4H), 7.15-7.12 (m, 2H), 7.10-7.07 (m, 3H), 5.61 (t, *J* = 7.2 Hz, 1H), 3.24 (d, *J* = 7.2 Hz, 2H), 2.67 (t, *J* = 7.8 Hz, 2H), 2.46 (t, *J* = 7.8 Hz, 2H), 2.13 (s, 3H), 2.06 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.4, 142.2, 140.2, 139.2, 136.4, 130.3, 128.7, 128.5, 127.7, 127.2, 126.4, 126.2, 125.7, 42.4, 32.6, 30.2, 23.9, 19.8. (*Z*) δ 208.5, 140.7, 139.6, 139.5, 136.3, 130.2, 128.5, 128.4, 127.7, 127.1, 126.5, 126.2, 126.1, 42.5, 33.4, 32.9, 30.1, 19.5.

HRMS(ESI): m/z Calcd. for C₂₀H₂₂NaO [M+Na]⁺:301.1563; Found:301.1562.

5-Phenyl-7-(m-tolyl)hept-5-en-2-one (4c)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf=0.40

in hexane:ethyl acetate = 15:1) resulting in 8.4 mg of yellow liquid in 30% yield, E/Z 40:60.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.37-7.31 (m, 3H), 7.20-7.18 (m, 3H), 7.04-7.02 (m, 1H), 6.92-6.91 (m, 2H), 5.87 (t, *J* = 7.8 Hz, 1H), 3.54 (d, *J* = 7.2 Hz, 2H), 2.88 (t, *J* = 7.8 Hz, 2H), 2.46 (t, *J* = 7.8 Hz, 2H), 2.34-2.32 (m, 3H), 2.07 (s, 3H). (*Z*) δ 7.37-7.31 (m, 3H), 7.20-7.18 (m, 3H), 7.04-7.02 (m, 1H), 6.92-6.91 (m, 2H), 5.66 (t, *J* = 7.8 Hz, 1H), 3.24 (d, *J* = 7.2 Hz, 2H), 2.67 (t, *J* = 7.8 Hz, 2H), 2.46 (t, *J* = 7.8 Hz, 2H), 2.34-2.32 (m, 3H), 2.07 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.2, 142.3, 140.9, 139.5, 138.3, 129.4, 128.6, 128.5, 127.4, 126.9, 126.4, 125.6, 125.5, 46.2, 34.8, 30.1, 23.2, 22.8. (*Z*) δ 208.3, 141.3, 140.6, 140.3, 138.1, 129.2, 128.6, 128.5, 127.1, 126.8, 126.6, 125.7, 125.4, 42.5, 35.2, 33.5, 24.0, 21.5.

HRMS(ESI): m/z Calcd. for C₂₀H₂₂NaO [M+Na]+:301.1563; Found:301.1560.

7-(4-Methoxyphenyl)-5-phenylhept-5-en-2-one (4d)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf =

0.40 in hexane:ethyl acetate = 10:1) resulting in 18.8 mg of yellow liquid in 65% yield, E/Z 40:60.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.32-7.27 (m, 3H), 7.15-7.12 (m, 2H), 6.84 (d, *J* = 8.4 Hz, 2H), 6.81 (d, *J* = 8.4 Hz, 2H), 5.85 (t, *J* = 7.2 Hz, 1H), 3.79 (s, 3H), 3.51 (d, *J* = 7.2 Hz, 2H), 2.88 (t, *J* = 7.8 Hz, 2H), 2.47-2.44 (m, 2H), 2.06 (s, 3H). (*Z*) δ 7.36-7.32 (m, 3H), 7.19-7.17 (m, 2H), 7.03 (d, *J* = 8.4 Hz, 2H), 6.81 (d, *J* = 8.4 Hz, 2H), 5.64 (t, *J* = 7.2 Hz, 1H), 3.78 (s, 3H), 3.21 (d, *J* = 7.2 Hz, 2H), 2.66 (t, *J* = 7.8 Hz, 2H), 2.47-2.44 (m, 2H), 2.06 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.4, 158.1, 142.2, 139.2, 133.0, 129.4, 128.6, 128.5, 127.1, 126.6, 114.1, 55.4, 42.5, 34.3, 30.2, 23.8. (*Z*) δ 208.5, 157.9, 140.3, 140.2, 133.4, 129.3, 128.6, 128.4, 127.1, 126.6, 114.0, 55.4, 42.5, 33.9, 33.4, 30.1.
HRMS(ESI): m/z Calcd. for C₂₀H₂₂NaO₂ [M+Na]⁺:317.1512; Found:317.1511.

7-(4-Chlorophenyl)-5-phenylhept-5-en-2-one (4e)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40

in hexane:ethyl acetate = 15:1) resulting in 17.9 mg of yellow liquid in 60% yield, E/Z 30:70.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.35 (t, *J* = 7.2 Hz, 1H), 7.32-7.28 (m, 2H), 7.22 (d, *J* = 7.8 Hz, 2H), 7.16-7.15 (m, 2H), 7.03 (d, *J* = 8.4 Hz, 2H), 5.81 (t, *J* = 7.2 Hz, 1H), 3.54 (d, *J* = 7.8 Hz, 2H), 2.86 (t, *J* = 7.8 Hz, 2H), 2.47-2.44 (m, 2H), 2.06 (s, 3H). (*Z*) δ 7.35 (t, *J* = 7.2 Hz, 1H), 7.32-7.28 (m, 2H), 7.22 (d, *J* = 7.8 Hz, 2H), 7.16-7.15 (m, 2H), 7.03 (d, *J* = 8.4 Hz, 2H), 5.62 (t, *J* = 7.2 Hz, 1H), 3.23 (d, *J* = 7.2 Hz, 2H), 2.66 (t, *J* = 7.8 Hz, 2H), 2.47-2.44 (m, 2H), 2.66 (t, *J* = 7.8 Hz, 2H), 2.47-2.44 (m, 2H), 2.66 (t, *J* = 7.8 Hz, 2H), 2.47-2.44 (m, 2H), 2.06 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.2, 145.5, 135.6, 133.2, 129.9, 129.4, 128.8, 128.6, 127.1, 126.7, 125.1, 42.4, 34.5, 34.1, 13.3. (*Z*) δ 208.3, 145.5, 136.3, 131.9, 129.8, 129.7, 128.5, 128.5, 127.9, 126.6, 125.6, 46.1, 40.0, 33.4, 18.3.

HRMS(ESI): m/z Calcd. for C₁₉H₁₉ClNaO [M+Na]⁺:321.1017; Found:321.1019.

7-Cyclopropyl-5-phenylhept-5-en-2-one (4f)

Ph Ph 0 4f The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in hexane:ethyl

acetate = 15:1) resulting in 17.1 mg of yellow liquid in 75% yield, E/Z 70:30.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.38-7.34 (m, 2H), 7.33-7.32 (m, 1H), 7.27-7.25 (m, 1H), 7.14 (d, *J* = 7.8 Hz, 1H), 5.80 (t, *J* = 7.2 Hz, 1H), 2.79 (t, *J* = 7.8 Hz, 2H), 2.47-2.44 (m, 2H), 2.15 (t, *J* = 7.2 Hz, 2H), 2.09 (s, 3H), 0.84-0.81 (m, 1H), 0.48 (d, *J* = 7.8 Hz, 2H), 0.15-0.14 (m, 2H). (*Z*) δ 7.38-7.34 (m, 2H), 7.33-7.32 (m, 1H), 7.27-7.25 (m, 1H), 7.14 (d, *J* = 7.8 Hz, 1H), 5.60 (t, *J* = 7.2 Hz, 1H), 2.65 (t, *J* = 7.8 Hz, 2H), 2.47-2.44 (m, 2H), 2.09 (s, 3H), 1.85 (t, *J* = 7.2 Hz, 2H), 0.69-0.67 (m, 1H), 0.40 (d, *J* = 7.8 Hz, 2H), 0.025-0.007 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.5, 142.5, 138.6, 128.6, 128.5, 127.0, 126.5, 42.7,
33.5, 33.3, 23.9, 11.1, 4.4. (*Z*) δ 208.7, 140.6, 139.6, 129.1, 128.3, 127.3, 126.8, 42.7,
33.7, 30.1, 30.1, 11.2, 4.2.

HRMS(ESI): m/z Calcd. for C₁₆H₂₀NaO [M+Na]⁺:251.1406; Found:251.1407.

5-Phenylundec-5-en-2-one (4g)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40)

in hexane:ethyl acetate = 15:1) resulting in 20.0 mg of yellow liquid in 82% yield, E/Z 70:30.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.31-7.30 (m, 4H), 7.26-7.21 (m, 1H), 5.68 (t, *J* = 7.2 Hz, 1H), 2.77 (t, *J* = 7.8 Hz, 2H), 2.44-2.40 (m, 2H), 2.18 (q, *J* = 7.2 Hz, 2H), 2.07 (s, 3H), 1.46-1.41 (m, 2H), 1.34-1.29 (m, 2H), 1.23-1.17 (m, 2H), 0.91-0.89 (m, 3H). (*Z*) δ 7.31-7.30 (m, 4H), 7.13-7.11 (m, 1H), 5.47 (t, *J* = 7.8 Hz, 1H), 2.61 (t, J = 7.8 Hz, 1H), 3.8 Hz, 1H),

2H), 2.44-2.40 (m, 2H), 2.07 (s, 3H), 1.90 (q, J = 7.8 Hz, 2H), 1.34-1.29 (m, 6H), 0.84 (t, J = 7.8 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 208.7, 142.6, 138.4, 130.4, 128.5, 126.9, 126.5, 42.7, 31.7, 30.1, 29.8, 28.6, 23.8, 22.7, 14.2. (Z) & 208.7, 140.7, 139.2, 128.6, 128.5, 128.3, 126.7, 42.7, 33.5, 31.5, 30.1, 29.8, 28.9, 22.6, 14.2.

HRMS(ESI): m/z Calcd. for C₁₇H₂₄NaO [M+Na]⁺:267.1719; Found:267.1721.

5-Phenyl-7-(trimethylsilyl)hept-5-en-2-one (4h)

The title compound was prepared according to the general procedure Ph TMS as described, silica gel flash column chromatography was performed 4h using hexanes and ethyl acetate (30:1) (Rf = 0.40 in hexane:ethyl

acetate = 15:1) resulting in 19.0 mg of yellow liquid in 73% yield, E/Z 70:30.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.40-7.35 (m, 2H), 7.33-7.26 (m, 2H), 7.17 (d, *J* = 7.2 Hz, 1H), 5.80 (t, J = 8.4 Hz, 1H), 2.80 (t, J = 7.8 Hz, 2H), 2.50-2.45 (m, 2H), 2.13 (s, 3H), 1.72 (d, J = 9.0 Hz, 2H), 0.11 (s, 9H). (Z) δ 7.40-7.35 (m, 2H), 7.33-7.26 (m, 2H), 7.17 (d, J = 7.2 Hz, 1H), 5.57 (t, J = 8.4 Hz, 1H), 2.67 (t, J = 7.8 Hz, 2H), 2.50-2.45 (m, 2H), 2.13 (s, 3H), 1.43 (d, *J* = 8.4 Hz, 2H), 0.11 (s, 9H).

¹³C NMR (151 MHz, CDCl₃) (*E*) δ 211.3, 145.7, 138.8, 131.1, 131.0, 129.2, 129.0, 45.2, 32.7, 26.0, 22.9, 1.2. (Z) & 211.3, 143.6, 140.1, 131.6, 129.2, 129.0, 126.7, 45.6, 36.6, 32.6, 22.1, 1.1.

HRMS(ESI): m/z Calcd. for C₁₆H₂₄NaOSi [M+Na]⁺:283.1489; Found:283.1489.

5-(Thiophen-2-yl)-7-(trimethylsilyl)hept-5-en-2-one (4i)

TMS

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in hexane:ethyl acetate = 15:1) resulting in 12.0 mg of yellow liquid in 45% yield, E/Z 60:40.

¹H NMR (600 MHz, CDCl₃) (*E*) δ 7.06 (dd, *J* = 4.8 Hz, 0.6 Hz, 1H), 6.95-6.93 (m, 1H), 6.84 (dd, J = 3.6 Hz, 1.2 Hz, 1H), 5.96 (t, J = 8.4 Hz, 1H), 2.69-2.65 (m, 2H), 2.58 (t, *J* = 8.4 Hz, 2H), 2.13 (s, 3H), 1.62 (d, *J* = 9.0 Hz, 2H), 0.04 (s, 9H). (*Z*) δ 7.23 (dd, *J* = 5.4 Hz, 1.2 Hz, 1H), 7.01-7.00 (m, 1H), 6.87 (dd, *J* = 3.6 Hz, 1.2 Hz, 1H), 5.62 (t, *J* = 9.0 Hz, 1H), 2.69-2.65 (m, 2H), 2.52 (t, *J* = 7.8 Hz, 2H), 2.09 (s, 3H), 1.70 (d, *J* = 9.0 Hz, 2H), 0.04 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) (*E*) δ 211.0, 149.6, 132.4, 129.8, 128.2, 127.9, 125.0, 45.2, 32.6, 26.4, 22.5, 1.0. (*Z*) δ 211.0, 144.6, 131.9, 129.7, 129.2, 126.6, 123.9, 45.8, 36.9, 32.3, 22.9, 1.0.

HRMS(ESI): m/z Calcd. for C14H23OSSi [M+Na]⁺:267.1233; Found:267.1234.

6-methyl-5-phenylhept-5-en-2-one (4j)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) ($\mathbf{R}f = 0.40$ in hexane:ethyl acetate =

15:1) resulting in 6.8 mg of yellow liquid in 34% yield.

¹H NMR (600 MHz, CDCl₃) δ 7.31 (t, *J* = 7.2 Hz, 2H), 7.21 (t, *J* = 7.2 Hz, 1H), 7.07 (d, *J* = 7.8 Hz, 2H), 2.63 (t, *J* = 8.4 Hz, 2H), 2.35 (t, *J* = 8.4 Hz, 2H), 2.04 (s, 3H), 1.82 (s, 3H), 1.53 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 209.0, 143.2, 133.5, 129.2, 128.6, 128.2, 126.2, 42.3, 30.0, 28.5, 22.4, 20.3.

HRMS(ESI): m/z Calcd. for C₁₄H₁₈NaO [M+Na]⁺:225.1250; Found:225.1250.

V References

S. Scaringi and C. Mazet, Kinetically Controlled Stereoselective Access to Branched
 1,3-Dienes by Ru-Catalyzed Remote Conjugative Isomerization. *ACS Catal.* 2021, 11,
 7970-7977.

2. H. Faustino, I. Alonso, J. L. Mascareñas and F. López, Gold(I)-Catalyzed Cascade Cycloadditions between Allenamides and Carbonyl-Tethered Alkenes: An Enantioselective Approach to Oxa-Bridged Medium-Sized Carbocycles. *Angew. Chem. Int. Ed.* 2013, **52**, 6526-6530.

3. H. Chen, L. Huang, W. Fu, X. Liu and H. Jiang, Carbon–Carbon Bond Formation: Palladium-Catalyzed Oxidative Cross-Coupling of N-Tosylhydrazones with Allylic Alcohols. *Chem. Eur. J.* 2012, **18**, 10497-10500.

VI NMR spectra

The products 2:

¹H NMR (400 MHz, CDCl₃) for 2a

 7.2240
 7.2340

 7.2340
 7.2340

 7.2340
 7.2340

 7.2340
 7.2340

 7.2340
 7.2340

 7.2340
 7.2340

 7.2340
 7.2340

 7.2340
 7.2340

 7.2340
 7.2340

 7.2340
 7.2340

 7.2340
 7.2340

 7.2340
 7.2340

 7.2340
 7.2340

 7.2340
 7.2340

 7.2340
 7.2340

 7.2340
 7.2340

 7.2340
 7.2340

 7.2340
 7.2340

 7.2340
 7.2340

 7.23510
 7.7147

 7.23510
 7.7147

 7.713510
 7.7147

 7.7147
 7.7147

 7.7147
 7.7147

 7.7147
 7.7147

 7.7147
 7.7147

 7.7147
 7.7147

 7.7147
 7.7147

 7.7147
 7.7147

 7.7147
 7.7147

 7.7147</t

The Z/E configuration of **2a** was determined by 2D (¹H-¹H) NMR measurement as shown below.

^1H NMR (600 MHz, CDCl₃) for $\mathbf{2b}$

^{13}C NMR (151 MHz, CDCl₃) for 2b

^1H NMR (600 MHz, CDCl₃) for 2c

 ^{13}C NMR (101 MHz, CDCl₃) for 2c

 ^1H NMR (600 MHz, CDCl₃) for 2d

¹H NMR (400 MHz, CDCl₃) for 2e

1 H NMR (600 MHz, CDCl₃) for **2f**

¹³C NMR (151 MHz, CDCl₃) for 2f

 ^1H NMR (600 MHz, CDCl₃) for 2g

110 100 f1 (ppm)

90 80 70 60

50 40 30 20

-10

10 0

130 120

210 200 190 180 170 160 150 140

 ^1H NMR (600 MHz, CDCl₃) for 2h

¹H NMR (600 MHz, CDCl₃) for 2i

^{19}F NMR (565 MHz, CDCl₃) for 2i

1 H NMR (600 MHz, CDCl₃) for **2j**

ZX-1H. 5. 1. 1r	95 95	59	96	86	34	33	5	30	1 9	37	25	\equiv	98	85	39	26	13	4	5	15	12	8	8	80	6	28	6 2
ZX-273C	.v.	ý, v	ų ų	ų x	တိ	ò	òò	ૅ	ě.	9	6	×.	Ē.	6	6	ં	9.	4	4	4	4	4	õ	õ	ŏ.	χįν	ý ý
				2 2	ς Ν	Ś	ŝ	5	S	5	5	5	5	2	5	5	2	2	6	2	2	2	2	5	Ξ	Ξ.	55

^{19}F NMR (565 MHz, CDCl₃) for 2i

 ^1H NMR (600 MHz, CDCl₃) for 2k

 ^1H NMR (600 MHz, CDCl₃) for 2l

¹³C NMR (151 MHz, CDCl₃) for **2l**

 1 H NMR (600 MHz, CDCl₃) for **2m**

¹H NMR (600 MHz, CDCl₃) for **2n**

ZX-1H. 1. 1. 1r ZX-271C	6.2455 6.445 6.445 6.442 6.368 6.368 6.368 6.368 6.368 6.358 6.281 6.281 5.776 5.7776 5.7776 5.7776 5.7776 5.7776 5.7776 5.7776 5.7776 5.7776 5.7776 5.7776 5.7776 5.7776 5.77576 5.7776 5.7776 5.7776 5.77576 5.77776 5.77776 5.7776 5.7777777777	2.748 2.735 2.735 2.722 2.722 2.749 2.567 2.2449 2.449 2.449 2.449 2.449 2.449 2.449 2.4416 2.449 2.449 2.449 2.449 2.449 2.449 2.744 2.749 1.7796 1.77855 1.77855 1.778555 1.77855555555555555555555555555555555555
	MeO OMe 2n	
	Civie	

¹H NMR (600 MHz, CDCl₃) for 20

¹³C NMR (151 MHz, CDCl₃) for 20

¹H NMR (600 MHz, CDCl₃) for 2p

 ^{13}C NMR (151 MHz, CDCl₃) for 2p

¹H NMR (600 MHz, CDCl₃) for 2q

¹³C NMR (151 MHz, CDCl₃) for **2q**

¹H NMR (600 MHz, CDCl₃) for **2r**

¹³C NMR (151 MHz, CDCl₃) for **2r**

¹H NMR (400 MHz, CDCl₃) for 2s

¹H NMR (600 MHz, CDCl₃) for 2t

¹³C NMR (151 MHz, CDCl₃) for **2t**

¹H NMR (600 MHz, CDCl₃) for 2u

¹³C NMR (151 MHz, CDCl₃) for **2u**

¹H NMR (600 MHz, CDCl₃) for 2v

 ^1H NMR (600 MHz, CDCl₃) for 2w

51

^{19}F NMR (565 MHz, CDCl₃) for 2w

¹H NMR (600 MHz, CDCl₃) for 2x

¹³C NMR (151 MHz, CDCl₃) for 2x

 1 H NMR (600 MHz, CDCl₃) for **2**y

 ^{13}C NMR (151 MHz, CDCl₃) for 2y

¹H NMR (400 MHz, CDCl₃) for 4a

¹³C NMR (151 MHz, CDCl₃) for 4a

The Z/E configuration of 4a was determined by 2D ($^{1}H^{-1}H$) NMR measurement as

¹H NMR (600 MHz, CDCl₃) for 4b

¹³C NMR (151 MHz, CDCl₃) for **4b**

¹H NMR (600 MHz, CDCl₃) for 4c

¹³C NMR (151 MHz, CDCl₃) for 4c

¹H NMR (600 MHz, CDCl₃) for 4d

¹³C NMR (151 MHz, CDCl₃) for 4d

¹H NMR (600 MHz, CDCl₃) for 4e

¹³C NMR (151 MHz, CDCl₃) for 4e

¹H NMR (600 MHz, CDCl₃) for 4f

¹³C NMR (151 MHz, CDCl₃) for 4f

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

 ^1H NMR (600 MHz, CDCl₃) for 4g

 ^{13}C NMR (151 MHz, CDCl₃) for 4g

¹H NMR (600 MHz, CDCl₃) for **4h**

¹³C NMR (151 MHz, CDCl₃) for **4h**

¹H NMR (600 MHz, CDCl₃) for 4i

¹³C NMR (101 MHz, CDCl₃) for 4i

¹H NMR (600 MHz, CDCl₃) for 4j

 ^{13}C NMR (151 MHz, CDCl₃) for 4j

