Supporting Information

Combination of the structural components of amino acids with fatty acids: Access to an unknown class of "fatty" α -amino acids by palladium-catalyzed amidocarbonylation

Mohammed Asadpour,^{[b] ‡} Edson Leonardo Scarpa de Souza,^{[b] ‡} Anke Spannenberg,^[b] Carlos Roque Duarte Correia,^[c] Helfried Neumann,^[b] and Matthias Beller^{*[a]}

[a]	Prof. Dr. M. Beller
	Leibniz-Institut für Katalyse e.V.
	Albert-Einstein-Str. 29a, 18059 Rostock (Germany)
	E-mail: matthias.beller@catalysis.de
[b]	MSc M. Asadpour, MSc E. L. S. de Souza, Dr. H. Neumann
	Leibniz-Institut für Katalyse e.V.
	Albert-Einstein-Str. 29a, 18059 Rostock (Germany)
[c]	Prof. Dr. C. R. D. Correia
	Department of Organic Chemistry
	Institute of Chemistry, University of Campinas
	Josué de Castro, 10384-612, Campinas, São Paulo, Brazil
‡	These authors contributed equally to the development of this paper.

Abstract: Applying the palladium-catalyzed amidocarbonylation a new class of amino acid derivatives, so-called fatty amino acids, are synthesized in one step in 100% atomefficient manner. Utilizing 0.5 mol% of Pd(OAc)₂ simple diverse new N-acyl fatty amino acids can be synthesized in good to high yields in up to multi-g-scale. The shown products represent a combination of two essential classes of natural products.

Summary

General Remarks	S3
General procedure for amidocarbonylation of aldehyde	.S4
Screening of the reaction conditions	S5
Kinetics studies	.S7
Characterization of the compounds	.S10
X-Ray Diffraction	S15
NMR Spectra	S16

General Remarks

All commercial reagents were obtained from the following chemical companies: Aldrich, Fisher Scientific, BLDpharm, TCI, ABCR and Strem. Unless otherwise noted, the commercial reagents were used without purification. The reactions with air- and moisture-sensitive reagents were carried out under argon atmosphere using standard Schlenk technique or in a M. Braun glovebox. Anhydrous and oxygen-free solvents (THF, DCM, diethyl ether, toluene, benzene, *n*-pentane, *n*-hexane and *n*-heptane) were received from an Innovative Technology PS-MD-6 solvent purification system or they were prepared by freeze-pump-thaw technique. All anhydrous solvent were stored over 3 Å molecular sieves under argon atmosphere.

Analytical thin-layer chromatography (TLC) was performed on Machery-Nagel pre-coated ALUGRAM Xtra SIL G/UV254 TLC sheets. Visualization was achieved by irradiation with UV-light, or by staining with potassium permanganate, *p*-anisaldehyde or phosphomolybdic acid solution. Flash Column chromatography was performed with a Combi Flash Rf + from Teledyne ISCO using HPLC grade solvents.

NMR spectra were recorded on Bruker Avance 300 (300 MHz) or 400 (400 MHz) NMR spectrometers. The chemical shifts (δ) are reported in parts per million (ppm) and coupling constants (J) in hertz (Hz). All chemical shifts (δ) are given relative to solvent: references for CDCl₃ 7.26 ppm (¹H) and 77.16 ppm (¹³C). MeOD refers to CD₃OD. Multiplets of NMR were assigned as s (singlet), br s (broad singlet) d (doublet), t (triplet), q (quartet), ps-qui (pseudo-quintet), ps-h (pseudo-hextet), hept (heptet), ps-n (pseudo-nonet), dd (doublet of doublet), dt (doublet of triplet), dq (doublet of quartet), and m (multiplet). All NMR measurements were carried out at room temperature.

GC measurements were performed on an Agilent HP 6890 with a HP5 column. GC-MS spectra were recorded on a GC-MS Agilent 5973 Network. HRMS measurements were performed using a Waters Xevo G2XS TOF MS. ATR-IR spectra were recorded on a Nicolet iS5 FT-IR equipped with a PIKE Technologies GladiATR (Thermo Fisher).

Data were collected on a Bruker Kappa APEX II Duo diffractometer. The structure was solved by intrinsic phasing (SHELXT: Sheldrick, G. M. *Acta Cryst.* **2015**, *A71*, 3.) and refined by full-matrix least-squares procedures on F^2 (SHELXL-2019: Sheldrick, G. M. *Acta Cryst.* **2015**, *C71*, 3.). XP (Bruker AXS) was used for graphical representation. CCDC 2332462 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.

General procedure for amidocarbonylation of aldehyde

A 8 mL vial equipped with a stir bar was charged with $Pd(OAc)_2$ (0.5 mol%), aldehyde (0.5 mmol, 1 equiv), amide (0.5 mmol, 1 equiv), LiBr (35 mol%) and H_2SO_4 (1 mol%) in NMP (1 mL). The reactional mixture was stirred under 60 bar CO at 100°C for 16 h. After this time, the crude was filtered through a small pad of Celite® with EtOAc and it was concentrated under reduced pressure. Then, NMP was removed from the crude with distillation (1 mbar, 68°C) and proceeded to one of the following extraction methods or column chromatography.

Extraction method A: After distillation of NMP, the crude was dissolved in EtOAc (50 mL) and washed with saturated aqueous NaHCO₃ solution (3 x 30 mL), resulting in organic phase A and aqueous phase A. The combined aqueous phase A were acidified with HCl until pH 2, and then, extracted with EtOAc (3 x 30 mL), resulting in organic phase B and aqueous phase B. Both organic phases (A and B) were combined and dried over Na₂SO₄ and concentrated under reduced pressure. The residue was washed with n-pentane and the desired product was precipitated as a white solid.

Extraction method B: After distillation of NMP, the crude was dissolved in EtOAc (50 mL) and washed with aqueous solution of NaOH 1,0 mol/L (1 x 50 mL). Aqueous phase was acidified with HCl until pH 2, and then, extracted with EtOAc (3 x 30 mL). Organic phases were combined and dried over Na₂SO₄ and concentrated under reduced pressure. The residue was washed with n-pentane and the desired product was precipitated as a white solid.

Screening of the reaction conditions

Table 1. Evaluation of palladium sources

Entry	[Pd]	Yield (%)
1	Pd(OAc) ₂	Quantitative
2	PdBr ₂	74
3	Pd/C	65
4	Pd(acac) ₂	Quantitative
5	Pd₂(dba)₃	61

 Table 2. Evaluation of solvents

Entry	Solvent	Yield (%)
1	NMP	98
2	DMA	78
3	MeCN	Traces
4	DMF	Traces
5	Ethyl acetate	34

Table 3. Evaluation of CO pressure

O C ₁₁ H ₂₃ H 1a , 1 equiv.	+	O Me NH ₂ 2a ,1 equiv.	+	CO X bar	1 mol% Pd(OAc)2 NMP (0.5 M) LiBr 35₁mol% H ₂ SO ₄ 100°C, 16h	O C ₁₁ H ₂₃ NH 3a O Me
--	---	--	---	-------------	---	--

Entry	CO pressure	Yield (%)	
1	60 bar	98	
2	40 bar	95	
3	20 bar	91	

Entry	Pd(OAc) ₂ (mol%)	100 °C Yield (%)	120 °C Yield (%)
1	1.0	>99	-
2	0.5	>99	-
3	0.1	80	72
4	0.05	62	49
5	0.01	23	-

Table 4. Evaluation of temperature

 \cap

Me

Table 7. Evaluation of LiBr amount

Entry	Time (h)	Aldehyde (%)	Amide (%)	Product (%)
1	0	100	100	0
2	1	40	40	60
3	2	40	40	60
4	4	30	30	70
5	6	0	0	75
6	8	0	0	85
7	16	0	0	100
8	16+24	40	60	140
9	16 / without CO	50	60	0

Entry 8: the same as entry 7, and after 16h, it was added all chemicals (NMP, LiBr, H_2SO_4 , aldehyde, amide, CO) to reaction but $Pd(OAc)_2$ to see if the catalyst was still "alive" after 16h. It was observed formation of additional 40% of product after 24h, indicating the catalyst was alive, but a little bit "weak".

Entry 9: the reaction was performed without CO, and after 16h there was 50% of aldehyde, 60% of amide and 0% of product. The main byproduct observed by GC-MS was from aldol reaction:

0 Me Η Me⁻ 350.6 g/mol

Characterization of the compounds

2-Acetamidotridecanoic acid (3a)

84% (109.3 mg, 0.423 mmol), white solid, MP = 104-105 °C.

Multi-gram scale: 72% (7.4611 g, 36.38 mmol).

¹³C NMR (75 MHz, MeOD) δ 175.8, 173.3, 53.8, 33.1, 32.7, 30.7, 30.7, 30.5, 30.5, 30.2, 26.9, 23.7, 22.3, 14.4.

HRMS (ESI+) calculated for [C₁₅H₂₉NO₃H]⁺: 272.2226, found: 272.2228.

2-Butyramidotridecanoic acid (3b)

90% (134.7 mg, 0.45 mmol), white solid, MP = 82-83 °C.

¹H NMR (300 MHz, MeOD) δ 4.36 (dd, J = 9.0, 4.9 Hz, 1H), 2.22 (dd, J = 7.8, 6.9 Hz, 2H), 1.83 (ddd, J = 15.3, 7.5, 4.9 Hz, 1H), 1.76 – 1.57 (m, 3H), 1.30 (d, J = 4.3 Hz, 18H), 1.00 – 0.85 (m, 6H).

¹³C NMR (75 MHz, MeOD) δ 176.2, 175.8, 53.5, 38.7, 33.1, 32.6, 30.7, 30.6, 30.5, 30.5, 30.2, 26.9, 23.7, 20.4, 14.4, 14.0.

HRMS (ESI+) calculated for [C₁₇H₃₃NO₃Na]⁺: 322.2352, found: 322.2351.

2-Stearamidotridecanoic acid (3c)

78% (193.9 mg, 0.39 mmol), white solid, MP = 84-85 °C.

¹H NMR (300 MHz, MeOD) δ 4.37 (dd, J = 9.2, 4.7 Hz, 1H), 2.30 – 2.19 (m, 2H), 1.93 - 1.74 (m, 1H), 1.74 - 1.55 (m, 3H), 1.29 (d, J = 1.3 Hz, 47H), 0.95 - 0.85 (m, 6H).

 ^{13}C NMR (75 MHz, MeOD) δ 176.4, 175.7, 53.5, 36.8, 33.1, 32.6, 30.8, 30.8, 30.5, 30.2, 26.9, 23.7, 14.5.

HRMS (ESI+) calculated for [C₃₁H₆₁NO₃H]⁺: 496.4724, found: 496.4720.

2-Oleamidotridecanoic acid (3d)

68% (167.9 mg, 0.34 mmol), colorless oil.

¹H NMR (300 MHz, CDCl₃) δ 6.02 (s, 1H), 5.44 – 5.27 (m, 2H), 4.59 (s, 1H), 2.23 (d, J = 7.8 Hz, 2H), 2.07 – 1.95 (m, 3H), 1.64 (s, 3H), 1.39 – 1.19 (m, 40H), 0.91 – 0.84 (m, 6H).

¹³C NMR (75 MHz, CDCl₃) δ 176.0, 130.2, 129.9, 52.5, 36.7, 32.1, 29.9, 29.8, 29.7, 29.6, 29.5, 29.4, 27.4, 25.8, 25.4, 22.8, 14.3.

HRMS (ESI+) calculated for [C₃₁H₅₉NO₃H]⁺: 494.4568, found: 494.4565.

(Z)-2-(Docos-12-enamido)tridecanoic acid (3e)

71% (196.1 mg, 0.36 mmol), white solid, MP = 63-64 $^{\circ}$ C.

1H NMR (300 MHz, CDCI₃) δ 7.54 (s, 1H), 6.13 (d, J = 7.7 Hz, 1H), 5.36 – 5.32 (m, 2H), 4.59 (td, J = 7.5, 5.1 Hz, 1H), 2.24 (dd, J = 8.4, 6.7 Hz, 2H), 2.01 (q, J = 6.3 Hz, 3H), 1.87 (dd, J = 9.6, 0.11)

5.0 Hz, 1H), 1.65 (dt, J = 15.1, 7.7 Hz, 3H), 1.38 – 1.21 (m, 47H), 0.92 – 0.84 (m, 6H).

¹³C NMR (75 MHz, CDCl₃) δ 176.3, 174.1, 130.0, 130.0, 52.4, 36.7, 32.2, 32.1, 29.9, 29.9, 29.8, 29.7, 29.7, 29.7, 29.6, 29.5, 29.5, 29.4, 27.4, 25.8, 25.4, 22.8, 14.2.

HRMS (ESI+) calculated for [C₃₅H₆₇NO₃H]⁺: 550.5194, found: 550.5204.

2-Methacrylamidotridecanoic acid (3f)

55% (81.5 mg, 0.27 mmol), white solid, MP = 81-82 °C.

¹H NMR (300 MHz, CDCI₃) δ 6.30 (d, J = 7.6 Hz, 1H), 5.81 – 5.73 (m, 1H), 5.45 – 5.37 (m, 1H), 4.64 (td, J = 7.4, 5.3 Hz, 1H), 1.99 (d, J = 1.3 Hz, 3H), 1.95 – 1.86 (m, 1H), 1.80 – 1.69 (m, 1H), 1.25 (s, 18H), 0.90 – 0.85 (m, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 176.2, 168.7, 139.3, 121.0, 52.6, 32.2, 32.0, 29.7, 29.7, 29.5, 29.5, 29.4, 25.4, 22.8, 18.6, 14.3.

HRMS (ESI+) calculated for [C₁₇H₃₁NO₃Na]⁺: 320.2196, found: 320.2202.

2-(Cyclohexanecarboxamido)tridecanoic acid (3g)

75% (150,5 mg, 0.38 mmol), white solid, MP = 118-119 °C.

¹H NMR (300 MHz, MeOD) δ 4.32 (dd, J = 8.7, 4.9 Hz, 1H), 2.33 – 2.20 (m, 1H), 1.88 - 1.74 (m, 5H), 1.73 - 1.62 (m, 2H), 1.47-1-19 (m, 24H), 0.95 - 0.86 (m, 3H).

¹³C NMR (75 MHz, MeOD) δ 178.9, 53.9, 46.2, 33.1, 33.0, 30.9, 30.8, 30.7, 30.6, 30.6, 30.5, 30.4, 30.2, 26.9, 26.8, 26.8, 26.7, 23.7, 14.4.

HRMS (ESI+) calculated for [C₂₀H₃₇NO₃H]⁺: 340.2852, found: 340.2852.

2-Benzamidotridecanoic acid (3h)

75% (125.0 mg, 0.37 mmol), white solid, MP = 69-70 °C.

¹H NMR (300 MHz, MeOD) δ 7.91 – 7.82 (m, 2H), 7.57 – 7.41 (m, 3H), 4.47 (dd, J = 7.4, 4.9 Hz, 1H), 2.03 – 1.91 (m, 1H), 1.86 – 1.72 (m, 1H), 1.47 – 1.18 (m, 20H), 0.92 – 0.85 (m, 3H).

¹³C NMR (75 MHz, MeOD) δ 179.3, 169.1, 136.0, 132.5, 129.5, 128.2, 56.9, 34.1, 33.1, 30.7, 30.7, 30.6, 30.4, 26.8, 24.2, 23.7,

14.4.

HRMS (ESI+) calculated for [C₂₀H₃₁NO₃H]⁺: 334.2377, found: 334.2382.

2-(4-Methoxybenzamido)tridecanoic acid (3i)

63% (115.1 mg, 0.32 mmol), white solid, MP = 85-86 °C.

¹H NMR (300 MHz, MeOD) δ 7.88 – 7.78 (m, 2H), 7.03 – 6.93 (m, 2H), 4.56 (dd, J = 9.2, 5.1 Hz, 1H), 3.85 (s, 3H), 2.03 – 1.89 (m, 1H), 1.81 (ddd, J = 14.1, 9.2, 5.9 Hz, 1H), 1.54 – 0.96 (m, 19H), 0.92 – 0.84 (m, 3H).

¹³C NMR (75 MHz, MeOD) δ 176.0, 169.9, 164.0, 130.4, 127.4, 114.7, 55.9, 54.2, 33.1, 32.5, 30.7, 30.7, 30.6, 30.5, 30.5, 30.2, 27.1, 23.7, 14.4.

HRMS (ESI+) calculated for [C₂₁H₃₃NO₄Na]⁺: 386.2302, found: 386.2298.

2-(3-Carboxypropanamido)tridecanoic acid (3j)

34% (56.8 mg, 0.17 mmol), white solid, MP = 103-104 °C.

¹H NMR (300 MHz, MeOD) δ 4.36 (dd, J = 8.7, 5.0 Hz, 1H), 2.65 - 2.51 (m, 4H), 1.82 (qd, J = 7.5, 5.1 Hz, 1H), 1.66 (ddd, J = 14.2, 8.7, 5.7 Hz, 1H), 1.30 (d, J = 4.6 Hz, 21H), 0.92 – 0.87 (m, 3H). ^{13}C NMR (75 MHz, MeOD) δ 176.2, 174.5, 53.7, 33.1, 32.7, 31.4, 30.7, 30.7, 30.5, 30.5, 30.3, 26.8, 23.7, 14.4.

HRMS (ESI+) calculated for [C₁₇H₃₁NO₅H]⁺: 330.2275, found: 330.2280.

2-(2-(2-Oxopyrrolidin-1-yl)acetamido)tridecanoic acid (3k)

77% (135.8 mg, 0.38 mmol), white solid, MP = 90-91 °C.

¹H NMR (300 MHz, CDCI₃) δ 6.85 (d, J = 7.8 Hz, 1H), 4.53 (td, J = 7.6, 5.3 Hz, 1H), 4.05 (dd, J = 66.2, 15.1 Hz, 2H), 3.61 - 3.48 (m, 2H), 2.46 (dd, J = 8.8, 6.6 Hz, 2H), 2.14 - 2.06 (m, 2H), 1.85 (dq, J = 10.6, 5.4 Hz, 1H), 1.67 (dt, J = 14.6, 7.5 Hz, 1H), 1.25

(s, 18H), 0.89 (d, J = 6.5 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 177.0, 174.6, 168.1, 52.4, 48.9, 32.1, 32.1, 30.7, 29.8, 29.7, 29.6, 29.5, 29.4, 25.5, 22.8, 18.1, 14.3.

HRMS (ESI+) calculated for [C₁₉H₃₄N₂O₄Na]⁺: 377.2411, found: 377.2415.

2-(N-Methylacetamido)tridecanoic acid (3I)

9% (12.7 mg, 0.044 mmol), white solid.

¹H NMR (400 MHz, CDCI₃) δ 5.02 (dd, J = 10.2, 5.5 Hz, 1H), 2.96 (s, 3H), 2.16 (s, 3H), 2.04 – 1.96 (m, 1H), 1.73 (dt, J = 13.7, 9.4 Hz, 1H), 1.25 (d, J = 2.5 Hz, 19H), 0.89 (d, J = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCI₃) δ 174.5, 172.9, 57.5, 33.1, 32.1, 29.9, 29.8, 29.7, 29.5, 29.5, 29.3, 28.4, 26.3, 22.8, 22.1, 14.3.

HRMS (ESI+) calculated for [C₁₆H₃₁NO₃Na]⁺: 308.2196, found: 308.2199.

2-Acetamido-2-phenylacetic acid (3m)

83% (80.0 mg, 0.41 mmol), pale yellow solid, MP = 199-200 °C.

¹H NMR (300 MHz, MeOD) δ 7.43 – 7.33 (m, 5H), 5.44 (s, 1H), 2.01 (s, 3H).

¹³C NMR (75 MHz, MeOD) δ 173.7, 172.9, 138.0, 129.8, 129.4, 128.8, 58.2, 22.3.

HRMS (ESI+) calculated for $[C_{10}H_{11}NO_3Na]^+$: 216.0631, found: 216.0634.

2-Oleamido-2-phenylacetic acid (3n)

31% (66.1 mg, 0.16 mmol), colorless oil.

¹H NMR (300 MHz, MeOD) δ 7.50 – 7.19 (m, 5H), 5.45 (s, 1H), 5.34 (td, J = 4.5, 2.2 Hz, 2H), 2.27 (td, J = 7.3, 1.0 Hz, 2H), 2.09 – 1.92 (m, 3H), 1.61 (t, J = 7.2 Hz, 2H), 1.47 – 1.17 (m, 21H), 0.95 – 0.85 (m, 3H).

¹³C NMR (75 MHz, MeOD) δ 175.9, 173.8, 138.3, 130.8, 130.8, 129.8, 129.3, 128.8, 58.2, 36.6, 33.1, 30.8, 30.8, 30.7, 30.6, 30.5, 30.4, 30.3, 30.2, 30.2, 28.1, 28.1, 26.9, 23.7, 14.4.

HRMS (ESI+) calculated for [C₂₆H₄₁NO₃Na]⁺: 438.2979, found: 438.2984.

(Z)-2-(Docos-12-enamido)-2-phenylacetic acid (3o)

65% (153.9 mg, 0.33 mmol), pale yellow oil.

¹H NMR (300 MHz, MeOD) δ 7.46 – 7.28 (m, 5H), 5.46 (s, 1H), 5.42 – 5.27 (m, 2H), 2.27 (td, J = 7.3, 1.0 Hz, 2H), 2.09 – 1.98 (m, 3H), 1.61 (dd, J = 10.3, 4.7 Hz, 3H), 1.44 – 1.22 (m, 30H), 0.92 – 0.88 (m, 3H).

¹³C NMR (75 MHz, MeOD) δ 180.4, 175.8, 173.7, 138.2, 130.8, 129.7, 129.3, 128.8, 58.0, 47.0, 36.6, 33.6, 33.1, 33.0, 30.9, 30.8, 30.7, 30.6, 30.5, 30.4, 30.3, 30.2, 28.5, 28.2, 26.9, 23.7, 23.7, 14.5, 14.5.

HRMS (ESI+) calculated for [C₃₀H₄₉NO₃H]⁺: 472.3785, found: 472.3789.

2-(4-Methoxybenzamido)-2-phenylacetic acid (3p)

38% (54.3 mg, 0.19 mmol), white solid, MP = 186-188 °C.

¹H NMR (300 MHz, MeOD) δ 7.89 – 7.81 (m, 2H), 7.54 – 7.46 (m, 2H), 7.42 – 7.28 (m, 3H), 7.01 – 6.94 (m, 2H), 5.64 (s, 1H), 3.84 (s, 3H), 2.15 (s, 1H).

¹³C NMR (75 MHz, MeOD) δ 174.2, 169.3, 164.1, 138.6, 130.5, 129.7, 129.2, 128.9, 127.2, 114.7, 58.8, 55.9.

HRMS (ESI+) calculated for [C₁₆H₁₅NO₄Na]⁺: 308.0893, found: 308.0894.

2-(4-Methoxybenzamido)-3,7-dimethyloct-6-enoic acid (3q)

35% (55.1 mg, 0.17 mmol), white solid. MP: 146-147°C

¹H NMR (300 MHz, CDCI₃) δ 7.68 – 7.63 (m, 2H), 6.86 – 6.82 (m, 2H), 5.86 (d, J = 7.8 Hz, 1H), 4.48 (s, 1H), 3.77 (s, 3H), 2.32 – 2.20 (m, 2H), 2.06 – 1.97 (m, 1H), 1.84 – 1.74 (m, 1H), 1.60 (d, J = 1.3

Hz, 6H), 1.36 – 1.23 (m, 1H), 0.98 (d, J = 6.9 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 166.2, 162.1, 135.6, 129.1, 128.7, 127.3, 124.5, 113.8, 58.9, 55.5, 43.0, 31.3, 29.0, 21.9, 20.9, 18.1.

HRMS (ESI+) calculated for [C₁₈H₂₅NO₄Na]⁺: 342.1676 found: 342.1689.

(Z)-2-Acetamidoundec-5-enoic acid (3r)

85% (102.7 mg, 0.426 mmol), colorless oil.

¹H NMR (300 MHz, MeOD) δ 5.51 - 5.28 (m, 2H), 4.35 (dd, J = 9.0, 4.8 Hz, 1H), 2.23 - 1.99 (m, 4H), 1.99 (s, 3H), 1.91 - 1.80 (m, 1H), 1.78 - 1.66 (m, 1H), 1.39 - 1.25 (m, 8H), 0.92 - 0.88 (m, 3H).

¹³C NMR (75 MHz, MeOD) δ 175.6, 173.3, 132.5, 128.8, 53.3, 32.7, 32.6, 30.5, 28.1, 24.5, 23.6, 22.3, 14.4.

HRMS (ESI+) calculated for [C₁₃H₂₃NO₃H]⁺: 242.1751, found: 242.1753.

(Z)-2-Oleamidoundec-5-enoic acid (3s)

57% (133.0 mg, 0.29 mmol), colorless oil.

¹H NMR (300 MHz, MeOD) δ 5.42 – 5.31 (m, 4H), 4.26 (dd, J = 7.9, 4.4 Hz, 1H), 2.24 (dt, J = 7.2, 3.4 Hz, 2H), 2.03 (q, J = 6.3 Hz, 6H), 1.72 – 1.56 (m, 4H), 1.36 – 1.28 (m, 30H), 0.90 (q, J = 2.5 Hz, 6H).

¹³C NMR (75 MHz, MeOD) δ 179.3, 175.3, 131.3, 130.8, 130.8, 130.0, 56.0, 37.4, 34.1, 33.1, 32.7, 30.9, 30.8, 30.8, 30.8, 30.6, 30.6, 30.5, 30.4, 30.4, 30.3, 30.3, 28.2, 28.1, 27.1, 24.7, 23.7, 23.7, 14.5.

HRMS (ESI+) calculated for [C₂₉H₅₃NO₃Na]⁺: 486.3918, found: 486.3924.

(Z)-2-(Cyclohexanecarboxamido)undec-5-enoic acid (3t)

69% (106.6 mg, 0.343 mmol), colorless oil.

¹H NMR (300 MHz, MeOD) δ 5.50 – 5.28 (m, 2H), 4.34 (dd, J = 9.3, 4.6 Hz, 1H), 2.32 – 2.01 (m, 5H), 1.93 – 1.55 (m, 10H), 1.36 – 1.29 (m, 10H), 0.90 (d, J = 2.0 Hz, 3H).

¹³C NMR (75 MHz, MeOD) δ 179.3, 175.8, 132.4, 128.9, 52.9, 46.1, 32.7, 32.6, 30.9, 30.5, 30.4, 28.2, 26.9, 26.8, 26.7, 24.6, 23.6, 14.4.

HRMS (ESI+) calculated for [C₁₈H₃₁NO₃H]⁺: 310.2377, found: 310.2383.

(Z)-2-(4-Methoxybenzamido)undec-5-enoic acid (3u)

85% (142.4 mg, 0.427 mmol), colorless oil.

¹H NMR (300 MHz, MeOD) δ 7.90 – 7.79 (m, 2H), 7.03 – 6.94 (m, 2H), 5.51 – 5.31 (m, 2H), 4.55 (dd, J = 9.4, 4.9 Hz, 1H), 3.85 (d, J = 0.7 Hz, 3H), 2.42 – 2.15 (m, 2H), 2.07 – 1.84 (m, 2H), 1.63 – 1.43 (m, 3H), 1.32 – 1.22 (m, 7H), 0.90 – 0.81 (m, 3H).

¹³C NMR (75 MHz, MeOD) δ 176.0, 169.9, 164.0, 132.6, 130.4, 128.9, 127.4, 114.7, 55.9, 32.8, 32.7, 32.4, 30.5, 28.2, 24.7, 23.5, 14.4.

HRMS (ESI+) calculated for [C₁₉H₂₇NO₄H]⁺: 334.2013 found: 334.2020.

(Z)-2-(N-Methylacetamido)undec-5-enoic acid (3v)

23% (29.5 mg, 0.11 mmol), colorless oil.

¹H NMR (300 MHz, MeOD) δ 5.46 – 5.37 (m, 2H), 5.06 – 5.00 (m, 1H), 3.00 (s, 3H), 2.81 (s, 1H), 2.14 (s, 3H), 2.06 – 2.01 (m, 4H), 1.35 – 1.29 (m, 8H), 0.90 (d, J = 0.7 Hz, 3H).

¹³C NMR (75 MHz, MeOD) δ 174.5, 174.4, 132.3, 129.0, 61.2, 57.4, 35.3, 33.1, 32.7, 30.5, 29.7, 23.6, 23.4, 14.4.

HRMS (ESI+) calculated for [C₁₄H₂₅NO₃Na]⁺: 278.1726 found: 278.1733.

Deuteration reaction

X-Ray Diffraction

X-ray crystal structure analysis of 3f

Data were collected on a Bruker Kappa APEX II Duo diffractometer. The structure was solved by intrinsic phasing (SHELXT: Sheldrick, G. M. *Acta Cryst.* **2015**, *A71*, 3.) and refined by full-matrix least-squares procedures on F^2 (SHELXL-2019: Sheldrick, G. M. *Acta Cryst.* **2015**, *C71*, 3.). XP (Bruker AXS) was used for graphical representation. CCDC 2332462 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.

Crystal data of **3f**: C₁₇H₃₁NO₃, *M* = 297.43, triclinic, space group *P* $\overline{1}$, *a* = 5.0699(3), *b* = 9.3359(5), *c* = 19.6712(11) Å, α = 92.250(3), β = 96.251(3), γ = 103.900(3)°, *V* = 896.37(9) Å³, *T* = 150(2) K, *Z* = 2, 13069 reflections measured, 3133 independent reflections (*R*_{int} = 0.0242), final *R* values (*I* > 2 σ (*I*)): *R*₁ = 0.0508, *wR*₂ = 0.1414, final *R* values (all data): *R*₁ = 0.0567, *wR*₂ = 0.1477, 199 parameters.

Figure S1. Molecular structure of **3f**. Displacement ellipsoids correspond to 50% probability. The distances C13-O1 (1.2582(19) Å) and C13-O2 (1.2655(19) Å) are between a single and a double bond due to unresolved disorder.

NMR Spectra

Figure S3: ¹³C NMR of compound (3a).

Figure S5: ¹³C NMR of compound (3b).

Figure S6: ¹H NMR of compound (3c).

Figure S7: ¹³C NMR of compound (3c).

Figure S8: ¹H NMR of compound (3d).

Figure S9: ¹³C NMR of compound (3d).

Figure S11: ¹³C NMR of compound (3e).

140 130 110 100 δ (ppm) -1 ò Figure S13: ¹³C NMR of compound (3f).

S24

Figure S14: ¹H NMR of compound (3g).

Figure S15: ¹³C NMR of compound (3g).

Figure S17: ¹³C NMR of compound (3h).

Figure S19: ¹³C NMR of compound (3i).

Figure S20: ¹H NMR of compound (3j).

Figure S21: ¹³C NMR of compound (3j).

Figure S23: ¹³C NMR of compound (3k).

Figure S25: ¹³C NMR of compound (3I).

Figure S27: ¹³C NMR of compound (3m).

Figure S28: ¹H NMR of compound (3n).

Figure S29: ¹H NMR of compound (3n).

Figure S31: ¹³C NMR of compound (30).

Figure S33: ¹³C NMR of compound (3p).

Figure S35: ¹³C NMR of compound (3q)

Figure S37: ¹³C NMR of compound (3r).

Figure S39: ¹³C NMR of compound (3s).

Figure S41: ¹³C NMR of compound (3t).

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 δ (ppm) Figure S43: ¹³C NMR of compound (3u).

-1(

S40