Supporting Imformation

Table of contents	Page
1.General information	S 1
2. Experimental Section	S 1
3. Spectroscopic data for the products	S 6
4. X-ray Single Crystal Diffraction Data of 5d	S19
5. H-NMR determination of reaction processes	S20
6. General applicability	S22
7. Mechanism Exploration	S27
8. Proposed mechanism conclusions	S36
9. NMR spectra	S37
10. References	S79

1. General information

Unless otherwise noted, all reactions were carried out in quartz tubes. ¹H NMR spectra were recorded on a Bruker AVANCE III 400 and AVANCE III 500 spectrometer at room temperature. Chemical shifts (ppm) were referenced to tetramethylsilane (TMS, $\delta = 0$ ppm) in CDCl₃ as an internal standard. ¹³C NMR spectra and ¹⁹F NMR spectra were obtained by the same NMR spectrometer and were calibrated with CDCl₃ (δ = 77.00 ppm). Data for ¹H NMR were reported as follows: chemical shifts (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or unresolved), coupling constant (Hz) and integration. Data for ${}^{13}C$ NMR were reported in terms of chemical shift and multiplicity where appropriate. High-Resolution Mass Spectrometry (HRMS) were performed on a Thermo Fisher LTQ Orbit rap XL. Melting points were measured on SGW X-4 melting point apparatus and uncorrected. Anhydrous solvents were from J&K Scientific Ltd or Adamas and dried by standard procedures. The water comes from the Wahaha Company. All other commercially available reagents were from Innochem Chemicals or Bidepharm and used as received. Flash chromatography was carried out with silica gel (200-300 mesh). Analytical TLC was performed with silica gel GF254 plates, and the products were visualized by UV detection. The crude product was purifed by reverse phase flash with the following conditions (lineal gradient of 0-100% MeCN in H2O in 30 min. flux of 40 mL/min, in a symmetry column C18 (30g), detection at 254 nm and 220 nm) to afford Products. The starting Materials 1 were obtained by previous reports.¹⁻⁷

2. Experimental Section

1) Materials preparation

Method A: Substrate 1a-1n, 1s-1u, 1ac, 1ae, 4a-4c and 4e were prepared according to literatures.¹⁻³

1a-1n, 1s-1u, 1ac, 1ae, 4a-4c and 4e

Method B: Substrate 1r were prepared according to literatures.¹⁻³

Method C: Substrate 10 and 1q were prepared according to literatures.⁴

Method D: Substrate 1x-1z and 1aa were prepared according to literatures.⁴⁻⁶

Method E: Substrate 4d were prepared according to literatures.⁷

All other substrates can be purchased.

2) Optimization of reaction conditions.

Entry	Variation from standard conditions	Yield ^c (%)
1 ^a	None	94
2 ^a	Lil, Kl, Csl, NaBr instead of Nal	76/87/83/trace
3ª	Aryl-substituted phosphorus (p -OCH $_3$, p -F, p -Me), TBP instead of PPh $_3$	88/64/81/trace
4 ^a	Nal (1.0 equiv., 1.2 equiv., 1.3 equiv.) instead of Nal 1.1 equiv.	80/86/77
5ª	PPh ₃ (5%, 10%, 30%) instead of PPh ₃ 20%	49/75/93
6ª	Toluene, THF, DMF, Acetone, MeCN, MeOH, MeCN:MeOH:H ₂ O = 1:1:1	trace/trace/trace/trace/
	instead of H ₂ O	81/89/94
7ª	Dark, White LED (6000-6500 K) instead of Blue LED (455 nm)	trace/75
8ª	30% of (PPh ₃ , NaI); 50% of (PPh ₃ , NaI) instead of NaI 1.1 equiv, PPh ₃ 20%	56 ^d /67 ^e /85 ^f
9ª	Air	59
10 ^b	None	94
11 ^b	Lil, Kl, Csl, NaBr instead of Nal	89/94/81/trace
12 ^b	TMPA, TEA instead of NPh ₃	91/trace
13 ^b	Nal (20%, 1.0 equiv., 1.1 equiv.) instead of Nal 30%	85/91/88
14 ^b	NPh ₃ (10%, 30%, 40%) instead of NPh ₃ 20%	79/94/93
15 ^b	Acetone, MeCN, MeOH, H ₂ O, MeCN:MeOH:H ₂ O = 1:1:1, EtOH:H ₂ O = 3:1	
	instead of $EtOH:H_2O = 1:2$	47/75/82/65/91/94
16 ^b	Dark, LED (455 nm, 510 nm, 565 nm) instead of White LED (6000-6500K)	Trace/83/78/73
17 ^b	(30, 40) hours instead of 36 hours	88/94

Reaction conditions: ^a **1a** (0.1 mmol, 1.0 equiv.), PPh₃ (20 mmol %), Nal (0.11 mmol, 1.1 equiv.) in H₂O (2 mL) were stirred under argon for 36 hours at room temperature under the irradiation of a 10 W blue LED (455 nm); ^b **1a** (0.1 mmol, 1.0 equiv.), NPh₃ (20 mmol %), Nal (30 mmol %) in EtOH:H2O = 1:2 (2 mL) were stirred under air for 36 hours at room temperature under the irradiation of a 10 W white LED (6000-6500 K); ^c Isolated yields; ^d NPh₃ (30 mmol %), Nal (30 mmol %), 36 h; ^e NPh₃ (30 mmol %), Nal (30 mmol %), 60 h; ^f NPh₃ (50 mmol %), Nal (50 mmol %), 36 h; TBP: Tributyl phosphate, PPh₃: Triphenylphosphine, THF: Tetrahydrofuran, DMF: *N*,*N*-dimethylformamide, MeCN: Acetonitrile, MeOH: Methanol, TMPA: tris(4-methoxyphenyl)amine, TEA: Triethylamine, NPh₃: Triphenylamine, EtOH: Ethanol.

3) General procedure for synthesis of compound 3 or 5:

^a To a 25 mL quartz tube was charged with β-dicarbonyl **1** (0.2 mmol, 1.0 equiv.), PPh₃ (20 mmol %), Nal (0.22 mmol, 1.1 equiv.) and H₂O (2 mL). The mixture was evacuated and backfilled with argon three times. Then the mixture was stirred for 36 h under 10 W blue LED irradiation at room temperature. After completion, the mixture was quenched with water (5 mL), and extracted with ethyl acetate (10 mL × 4). The combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether to give products **3** or **5**. The crude product was purified by reverse phase flash with the following conditions (lineal gradient of 0-100% MeCN in H₂O in 30 min. flux of 40 mL/min, in a symmetry column C18 (30g), detection at 254nm and 220 nm) to afford Products.

^{**b**} To a 25 mL quartz tube was charged with β-dicarbonyl **1** (0.2 mmol, 1.0 equiv.), NPh₃ (20 mmol %), Nal (30 mmol %) and EtOH:H₂O = 1:2 (2 mL). Then the mixture was stirred for 36 h under 10 W white LED irradiation at room temperature. After completion, the mixture was quenched with water (5 mL), and extracted with ethyl acetate (10 mL × 4). The combined organic layers

were dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether to give products **3** or **5**. The crude product was purifed by reverse phase flash with the following conditions (lineal gradient of 0-100% MeCN in H₂O in 30 min. flux of 40 mL/min, in a symmetry column C18 (30g), detection at 254nm and 220 nm) to afford Products.

3. Spectroscopic data

ethyl 2-hydroxy-2-methyl-3-oxo-3-phenylpropanoate (3a)

Colorless oil; $R_f = 0.45$ (petroleum ether : EtOAc = 10 : 1); 94% (41.7 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 – 7.99 (m, 2H), 7.62 – 7.58 (m, 1H), 7.47 (t, *J* = 7.8 Hz, 2H), 4.51 (s, 1H), 4.24 (q, *J* = 7.2 Hz, 2H), 1.76 (s, 3H), 1.17 (t, *J* = 7.2 Hz, 3H).; ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.86, 172.22, 133.66, 133.01, 129.40, 128.57, 79.37, 62.45, 23.46, 13.76. HRMS (ESI): m/z calcd for C₁₂H₁₄O₄ [M + H⁺]: 223.0965, found: 223.0964.

ethyl 2-hydroxy-2-methyl-3-oxo-3-(p-tolyl)propanoate (3b)

Colorless oil; $R_f = 0.55$ (petroleum ether : EtOAc = 10 : 1); 79% (37.4 mg), 78% (36.9 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 (d, *J* = 7.2 Hz, 2H), 6.93 (d, *J* = 7.2 Hz, 2H), 4.64 (s, 1H), 4.21 (q, *J* = 7.2 Hz, 2H), 3.88 (s, 3H), 1.74 (s, 3H), 1.16 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.32, 172.32, 163.96, 131.99, 125.49, 113.84, 79.10, 62.29, 55.48, 23.72; HRMS (ESI): m/z calcd for C_{13H₁₆O₄ [M + H⁺]: 237.1121, found: 237.1118.}

ethyl 2-hydroxy-3-(4-methoxyphenyl)-2-methyl-3-oxopropanoate (3c)

Colorless oil; $R_f = 0.50$ (petroleum ether : EtOAc = 10 : 1); 83% (42.1 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.88 (d, J = 8.5 Hz, 2H), 7.25 (d, J = 8.5 Hz, 2H), 4.53 (s, 1H), 4.21 (q, J = 7.0 Hz, 2H), 2.41 (s, 3H), 1.73 (s, 3H), 1.16 (t, J = 7.0 Hz, 3H).¹³C NMR (126 MHz, Chloroform-*d*) δ 195.60, 172.24, 144.79, 130.39, 129.63, 129.32, 79.33, 62.36, 23.58, 21.67, 13.81. HRMS (ESI): m/z calcd for C₁₃H₁₆O₅ [M + H⁺]: 253.1070, found: 253.1067.

ethyl 3-(4-cyanophenyl)-2-hydroxy-2-methyl-3-oxopropanoate (3d)

Colorless oil; $R_f = 0.50$ (petroleum ether : EtOAc = 5 : 1); 87% (43.1 mg), 86% (42.7 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.10 – 8.07 (m, 2H), 7.75 – 7.73 (m, 2H), 4.25 (q, *J* = 7.0 Hz, 2H), 4.09 (s, 1H), 1.72 (s, 3H), 1.18 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 194.34, 172.51, 137.14, 132.25, 129.85, 117.72, 116.61, 79.94, 63.07, 23.38, 13.85; HRMS (ESI): m/z calcd for C₁₃H₁₃NO₄ [M + H⁺]: 247.0845, found: 247.0846.

ethyl 3-(4-bromophenyl)-2-hydroxy-2-methyl-3-oxopropanoate (3e)

Colorless oil; $R_f = 0.43$ (petroleum ether : EtOAc = 10 : 1); 85% (51.1 mg), 84% (50.6 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.87 (d, *J* = 8.5 Hz, 2H), 7.59 (d, *J* = 8.5 Hz, 2H), 4.24 (m, 3H), 1.72 (s, 3H), 1.18 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 194.80, 172.43, 132.13, 131.92, 130.99, 128.93, 79.64, 62.72, 23.48, 13.84; HRMS (ESI): m/z calcd for C₂₄H₂₆F₂INO₄S [M + H⁺]: 301.0069, found: 301.0062.

ethyl 3-(4-chlorophenyl)-2-hydroxy-2-methyl-3-oxopropanoate (3f)

Colorless oil; $R_f = 0.43$ (petroleum ether : EtOAc = 10 : 1); 88% (45.4 mg,); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.95 (d, J = 8.5 Hz, 2H), 7.42 (d, J = 8.5 Hz, 2H), 4.30 (s, 1H), 4.23 (q, J = 7.0 Hz, 2H), 1.72 (s, 3H), 1.17 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 194.57, 172.44, 140.14, 131.69, 130.93, 128.90, 79.63, 62.68, 23.48, 13.82; HRMS (ESI): m/z calcd for C₁₂H₁₃ClO₄ [M + H⁺]: 257.0575, found: 257.0572.

ethyl 3-(4-fluorophenyl)-2-hydroxy-2-methyl-3-oxopropanoate (3g)

Colorless oil; $R_f = 0.45$ (petroleum ether : EtOAc = 10 : 1); 89% (43.1 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.07 – 8.03 (m, 2H), 7.15-7.11 (m, 2H), 4.34 (s, 1H), 4.23 (q, *J* = 7.2 Hz, 2H), 1.73 (s, 3H), 1.17 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.18, 172.46, 167.18, 164.63, 132.34 (d, *J* = 9.5 Hz), 129.54 (d, *J* = 3.1 Hz), 115.82 (d, *J* = 22.0 Hz), 79.52, 62.67, 23.57, 13.84; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -103.49. HRMS (ESI): m/z calcd for C₁₂H₁₃FO₄ [M + H⁺]: 241.0871, found: 241.0863.

ethyl 3-(3-fluorophenyl)-2-hydroxy-2-methyl-3-oxopropanoate (3h)

Colorless oil; $R_f = 0.43$ (petroleum ether : EtOAc = 10 : 1); 92% (44.0 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (d, J = 8.0 Hz, 1H), 7.73 – 7.70 (m, 1H), 7.46-7.40 (m, 1H), 7.30 – 7.26 (m, 1H), 4.29 (s, 1H), 4.24 (q, J = 7.2 Hz, 2H), 1.73 (s, 3H), 1.18 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.56, 194.54, 172.36, 163.76, 161.29, 135.34 (d, J = 6.6 Hz), 130.22 (d, J = 7.7 Hz), 125.16 (d, J = 3.0 Hz), 120.63 (d, J = 21.4 Hz), 116.30 (d, J = 23.0 Hz), 79.66, 62.76, 23.43, 13.81; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.22. HRMS (ESI): m/z calcd for C₁₂H₁₃FO₄ [M + H⁺]: 241.0871, found: 241.0868.

ethyl 3-(3-chlorophenyl)-2-hydroxy-2-methyl-3-oxopropanoate (3i)

Colorless oil; $R_f = 0.44$ (petroleum ether : EtOAc = 10 : 1); 90% (46.2 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.99 (s, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.55–7.53 (m, 1H), 7.38 (t, J = 8.0 Hz, 1H), 4.27-4.23 (m, 3H), 1.72 (s, 3H), 1.19 (t, J = 7.0 Hz, 3H).¹³C NMR (126 MHz, Chloroform-*d*) δ 194.60, 172.37, 135.09, 134.91, 133.43, 129.81, 129.50, 127.46, 79.75, 62.79, 23.43, 13.82. HRMS (ESI): m/z calcd for C₁₂H₁₃ClO₄ [M + H⁺]: 257.0575, found: 257.0579.

ethyl 3-(2-fluorophenyl)-2-hydroxy-2-methyl-3-oxopropanoate (3j)

Colorless oil; $R_f = 0.45$ (petroleum ether : EtOAc = 10 : 1); 84% (40.8 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (t, J = 7.4 Hz, 1H), 7.55 (q, J = 7.2 Hz, 1H), 7.28 – 7.24 (m, 1H), 7.14-7.09 (m, 1H), 4.32 (s, 1H), 4.27 (q, J = 7.2 Hz, 2H), 1.68 (s, 3H), 1.25 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.36 (d, J = 3.0 Hz), 170.97 (d, J = 1.3 Hz), 161.62, 159.11, 134.70 (d, J = 9.1 Hz), 131.24 (d, J = 2.9 Hz), 124.65 (d, J = 3.3 Hz), 123.20 (d, J = 14.3 Hz), 116.23 (d, J = 23.3 Hz), 80.62, 62.55, 22.70 (d, J = 1.9 Hz), 13.89; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -107.76. HRMS (ESI): m/z calcd for C₁₂H₁₃FO₄ [M + H⁺]: 241.0871, found: 241.0866.

ethyl 3-(furan-2-yl)-2-hydroxy-2-methyl-3-oxopropanoate (3k)

Colorless oil; $R_f = 0.65$ (petroleum ether : EtOAc = 5 : 1); 85% (36.6 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.634 – 7.631 (m, 1H), 7.41 (d, J = 3.5 Hz, 1H), 6.582-6.572 (m, 1H), 4.38 (s, 1H), 4.24 – 4.19 (m, 2H), 1.72 (s, 3H), 1.18 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 184.58, 171.30, 149.43, 147.26, 120.51, 112.52, 78.75, 62.33, 22.45, 13.83; HRMS (ESI): m/z calcd for C₁₀H₁₂O₅ [M + H⁺]: 213.0757, found: 213.0752.

ethyl 2-hydroxy-2-methyl-3-oxo-3-(1H-pyrrol-2-yl)propanoate (3l)

Colorless oil; $R_f = 0.6$ (petroleum ether : EtOAc = 5 : 1); 85% (35.8 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 9.54 (s, 1H), 7.14 – 7.10 (m, 2H), 6.34-6.32 (m, 1H), 4.58 (s, 1H), 4.23 (q, *J* = 7.0 Hz, 2H), 1.79 (s, 3H), 1.23 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 185.75, 172.28, 127.27, 125.61, 118.99, 111.58, 79.02, 62.42, 24.29, 13.89; HRMS (ESI): m/z calcd for C₁₀H₁₃NO₄ [M + H⁺]: 212.0917, found: 212.0915.

ethyl 2-hydroxy-2-methyl-3-oxo-3-(thiophen-2-yl)propanoate (3m)

Colorless oil; $R_f = 0.6$ (petroleum ether : EtOAc = 5 : 1); 84% (38.4 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.92 (d, J = 3.5 Hz, 1H), 7.71 (d, J = 5.0 Hz, 1H), 7.13 (t,

J = 4.5 Hz, 1H), 4.44 (s, 1H), 4.23 (q, J = 7.0 Hz, 2H), 1.77 (s, 3H), 1.20 (t, J = 7.0 Hz, 3H).; ¹³C NMR (126 MHz, Chloroform-*d*) δ 189.03, 172.18, 138.85, 135.05, 134.52, 128.19, 80.02, 62.66, 23.67, 13.82.; HRMS (ESI): m/z calcd for C₁₀H₁₂O₄S [M + H⁺]: 229.0529, found: 229.0524.

1-ethyl 3-phenyl 2-hydroxy-2-methylmalonate (30)

Colorless oil; $R_f = 0.73$ (petroleum ether : EtOAc = 10: 1); 83% (39.2 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.414 – 7.373 (m, 2H), 7.278 – 7.244 (m, 1H), 7.100 – 7.075 (m, 2H), 4.397 – 4.302 (m, 2H), 4.224 (s, 1H), 1.774 (s, 3H), 1.349 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 170.82, 169.41, 150.43, 129.58, 126.39, 120.95, 76.32, 62.83, 21.63, 14.09; HRMS (ESI): m/z calcd for C₁₂H₁₄O₅ [M + H⁺]: 239.0914, found: 239.0910.

diethyl 2-hydroxy-2-methylmalonate (3p)

Colorless oil; $R_f = 0.71$ (petroleum ether : EtOAc = 10: 1); 70% (26.7 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 4.26 (q, J = 7.0 Hz, 4H), 3.74 (s, 1H), 1.63 (s, 3H), 1.29 (t, J = 7.0 Hz, 6H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 170.95, 76.05, 62.44, 21.55, 13.98; HRMS (ESI): m/z calcd for C₈H₁₄O₅ [M + H⁺]: 191.0914, found: 239.0915.

1-(benzo[d][1,3]dioxol-5-yl) 3-ethyl 2-hydroxy-2-methylmalonate (3q)

Colorless oil; $R_f = 0.48$ (petroleum ether : EtOAc = 10 : 1); 80% (45.2 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 6.77 (d, J = 8.0 Hz, 1H), 6.59 (d, J = 2.0 Hz, 1H), 6.53 (dd, J = 8.5, 2.5 Hz, 1H), 5.99 (s, 2H), 4.37-4.31 (m, 2H), 3.86 (s, 1H), 1.75 (s, 3H), 1.34 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 170.77, 169.65, 148.12, 145.78, 144.63, 113.39, 107.99, 103.08, 101.84, 76.25, 62.83, 21.60, 14.08; HRMS (ESI): m/z calcd for C₁₃H₁₄O₇ [M + H⁺]: 283.0812, found: 283.0808.

ethyl 2-hydroxy-2-methyl-3-oxo-3-(phenylamino)propanoate (3r)

Colorless oil; $R_f = 0.30$ (petroleum ether : EtOAc = 5 : 1); 87% (39 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.74 (s, 1H), 7.57 – 7.55 (m, 2H), 7.35 – 7.31 (m, 2H), 7.15 – 7.12 (m, 1H), 4.32 (s, 1H), 3.89 (s, 3H), 1.76 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.33, 167.46, 136.98, 129.06, 124.80, 119.67, 76.97, 54.11, 24.41; HRMS (ESI): m/z calcd for C₁₁H₁₃NO₄ [M + H⁺]: 224.0917, found: 224.0912.

2-hydroxy-2-methyl-3-oxo-N-(p-tolyl)butanamide (3s)

Colorless oil; $R_f = 0.38$ (petroleum ether : EtOAc = 5 : 1); 75% (33.2 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.75 (s, 1H), 7.41 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 5.01 (s, 1H), 2.52 (s, 3H), 2.31 (s, 3H), 1.71 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 207.61, 167.74, 134.45, 134.29, 129.68, 129.31, 119.82, 119.53, 82.06, 24.41, 20.93, 20.72. HRMS (ESI): m/z calcd for C₁₂H₁₅NO₃ [M + H⁺]: 222.1120, found: 222.1125.

N-(2,4-dimethylphenyl)-2-hydroxy-2-methyl-3-oxobutanamide (3t)

Colorless oil; $R_f = 0.45$ (petroleum ether : EtOAc = 5 : 1); 79% (37.3 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.70 (s, 1H), 7.75 (d, *J* = 8.4 Hz, 1H), 7.03-7.00 (m, 2H), 5.01 (s, 1H), 2.53 (s, 3H), 2.29 (s, 3H), 2.21 (s, 3H), 1.73 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 208.08, 167.86, 135.01, 132.27, 131.19, 128.63, 127.29, 121.79, 82.27, 24.66, 24.54, 20.85, 17.42. HRMS (ESI): m/z calcd for C₁₃H₁₇NO₃ [M + H⁺]: 236.1281, found: 236.1279.

2-hydroxy-2-methyl-3-oxo-N,3-diphenylpropanamide (3u)

white solid; m. p.: 132–135 °C; 30% (16.1 mg), 81% (43.6 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.72 (s, 1H), 8.38 (d, *J* = 7.5 Hz, 2H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.48 (t, *J* = 8.0 Hz, 2H), 7.32 (t, *J* = 8.0 Hz, 2H), 7.12 (t, *J* = 7.5 Hz, 1H), 5.48 (s, 1H), 1.91 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 198.62, 169.28, 137.11, 133.63, 133.30, 132.03, 131.95, 130.80, 128.94, 128.53, 128.44, 128.30, 124.64, 119.82, 81.58, 25.69; HRMS (ESI): m/z calcd for C₁₆H₁₅NO₃ [M + H⁺]: 270.1125, found: 270.1122.

2-hydroxy-2,4-dimethyl-3-oxo-N-phenylpentanamide (3v)

Colorless oil; $R_f = 0.5$ (petroleum ether : EtOAc = 5 : 1); 71% (32.9 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.74 (s, 1H), 7.54 – 7.51 (m, 2H), 7.35 – 7.32 (m, 2H), 7.15-7.12 (m, 1H), 5.02 (s, 1H), 3.74-3.66 (m,, 1H), 1.71 (s, 3H), 1.16 (d, *J* = 7.0 Hz, 3H), 1.08 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 214.83, 168.08, 136.96, 129.09, 124.82, 119.76, 81.65, 34.42, 24.39, 19.61, 19.46. HRMS (ESI): m/z calcd for C₁₃H₁₇NO₃ [M + H⁺]: 236.1281, found: 236.1278.

2-(2-(4-fluorophenyl)-2-oxo-1-phenylethyl)-2-hydroxy-4-methyl-3-oxo-N-phenylp entanamide (3w)

Yellow solid; m. p.: 109–112 °C; 20% (17.2 mg), 15% (13.4 mg), 69% (59.2 mg), 71% (61.0 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.24 (s, 1H), 7.99-7.96 (m, 2H), 7.29 – 7.20 (m, 10H), 7.04 (t, *J* = 8.5 Hz, 2H), 6.16 (s, 1H), 5.69 (s, 1H), 3.36-3.27 (m, 1H), 1.17 (d, *J* = 6.5 Hz, 3H), 1.07 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 211.10, 200.99, 167.13, 165.45, 165.09, 136.40, 132.20, 131.96 (d, *J* = 9.7 Hz), 129.61, 128.92 (d, *J* = 3.7 Hz), 128.27, 124.93, 120.13, 115.88 (d, *J* = 22.1 Hz), 87.59, 55.0, 35.85, 19.65 (d, *J* = 24.4 Hz).; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -103.29. HRMS (ESI): m/z calcd for C₂₆H₂₄FNO₄ [M + H⁺]: 434.1762, found: 434.1757.

methyl 2-hydroxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3x)

Colorless oil; $R_f = 0.62$ (petroleum ether : EtOAc = 10 : 1); 79% (32.4 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.80 (d, J = 8.0 Hz, 1H), 7.69-7.66 (m, 1H), 7.49 (d, J = 7.5 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 4.00 (s, 1H), 3.75-3.72 (m, 4H), 3.26 (d, J = 17.0 Hz, 1H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 200.75, 171.89, 152.17, 136.15, 133.54, 128.14, 126.46, 125.31, 80.37, 53.42, 39.25. HRMS (ESI): m/z calcd for C₁₁H₁₀O₄ [M + H⁺]: 207.0652, found: 207.0651.

methyl 5-chloro-2-hydroxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3y) Colorless oil; $R_f = 0.61$ (petroleum ether : EtOAc = 10 : 1); 79% (38.1 mg), 77% (37.3 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.73 (d, J = 8.5 Hz, 1H), 7.49 (s, 1H), 7.41 (d, J = 8.5 Hz, 1H), 3.99 (s, 1H), 3.75 (s, 3H), 3.70 (d, J = 17.5 Hz, 1H), 3.23 (d, J = 17.5 Hz, 1H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 199.33, 171.50, 153.50, 142.85, 131.97, 129.06, 126.74, 126.37, 80.41, 53.59, 38.92. HRMS (ESI): m/z calcd for C₁₁H₉ClO₄ [M + H⁺]: 241.0262, found: 241.0264.

methyl 2-hydroxy-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (3z)

Colorless oil; $R_f = 0.49$ (petroleum ether : EtOAc = 10 : 1); 84% (36.8 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.05 (d, J = 8.0 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 7.26 (d, J = 8.0 Hz, 1H), 4.34 (s, 1H), 3.75 (s, 3H), 3.16-3.10 (m, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 194.48, 171.01, 143.99, 134.38, 130.14, 128.90, 128.20, 126.95, 77.69, 52.92, 32.69, 25.53. HRMS (ESI): m/z calcd for $C_{12}H_{12}O_4$ [M + H⁺]: 221.0808, found: 221.0806.

2-acetyl-2-hydroxy-3,4-dihydronaphthalen-1(2H)-one (3aa)

Colorless oil; $R_f = 0.43$ (petroleum ether : EtOAc = 10 : 1); 81% (33.3 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.01 (d, J = 8.0 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.25 (d, J = 8.0 Hz, 1H), 4.60 (s, 1H), 3.13-3.09 (m, 2H), 2.62-2.57

(m, 1H), 2.27 (s, 3H), 2.22-2.16 (m, 1H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 206.82, 196.61, 144.22, 134.51, 130.45, 128.97, 127.83, 126.93, 81.80, 32.35, 25.53, 25.01. HRMS (ESI): m/z calcd for C₁₂H₁₂O₃ [M + H⁺]: 205.0859, found: 205.0857.

diethyl 2-benzyl-2-hydroxymalonate (3ab)

Colorless oil; $R_f = 0.56$ (petroleum ether : EtOAc = 10 : 1); 83% (44.1 mg); ¹H NMR (400 MHz, Chloroform-d) δ 7.20-7.16 (m, 5H), 4.18 (q, *J* = 7.2 Hz, 4H), 3.67 (s, 1H), 3.28 (s, 2H), 1.21 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.91, 134.58, 130.34, 128.10, 127.13, 79.18, 62.57, 40.44, 14.00. HRMS (ESI): m/z calcd for C₁₄H₁₈O₅ [M + H⁺]: 267.1227, found: 267.1222.

methyl 2-hydroxy-2-methyl-3-oxo-3-phenylpropanoate (3ac)

Colorless oil; $R_f = 0.45$ (petroleum ether : EtOAc = 10 : 1); 92% (38.5 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.98 (d, J = 7.5 Hz, 2H), 7.59 (t, J = 7.5 Hz, 1H), 7.46 (t, J = 8.0 Hz, 2H), 4.50 (s, 1H), 3.76 (s, 3H), 1.75 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 195.97, 172.65, 133.76, 132.98, 129.47, 128.67, 79.50, 53.26, 23.58. HRMS (ESI): m/z calcd for C₁₁H₁₂O₄ [M + H⁺]: 209.0808, found: 221.0804.

methyl 2-hydroxy-2-methyl-3-oxo-3-phenylpropanoate (3ad)

Colorless oil; $R_f = 0.41$ (petroleum ether : EtOAc = 10 : 1); 78% (30 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.95 (d, J = 8.0 Hz, 2H), 7.57 (t, J = 7.5 Hz, 1H), 7.44 (t, J = 7.5 Hz, 2H), 4.95 (s, 1H), 2.21 (s, 3H), 1.69 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 206.53, 197.97, 133.85, 133.68, 129.82, 128.66, 85.85, 24.73, 23.46. HRMS (ESI): m/z calcd for C₁₁H₁₂O₃ [M + H⁺]: 193.0859, found: 193.0857.

2-hydroxy-2-methyl-1,3-diphenylpropane-1,3-dione (3ae)

White solid; m. p.: 103–106 °C; 29% (15.0 mg), 26% (13.4 mg), 74% (37.4 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.94 (d, J = 7.2 Hz, 4H), 7.47 (t, J = 7.2 Hz, 2H), 7.34 (t, J = 7.6 Hz, 4H), 5.25 (s, 1H), 1.83 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 197.75, 133.86, 133.81, 133.59, 129.65, 128.74, 128.42, 84.17, 25.52. HRMS (ESI): m/z calcd for C₁₆H₁₄O₃ [M + H⁺]: 255.1016, found: 255.1013.

2,2-dihydroxy-1H-indene-1,3(2H)-dione (3af)

Red solid; m. p.: 241–247 °C (capillary tube measurement, easy sublimation of slides); 86% (30.7 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.07-8.02 (m, 4H), 7.52 (s, 2H).

3af ¹³C NMR (126 MHz, DMSO-*d*₆) δ 197.02, 138.49, 137.22, 123.87, 87.61. **3ag** ¹³C NMR (126 MHz, DMSO-*d*₆) δ 1186.81, 183.47, 140.01, 136.53, 123.75. HRMS (ESI): m/z calcd for C₉H₆O₄ [M + H⁺]: 179.0336, found: 179.0339.

2-hydroxyisoindoline-1,3-dione (3ah <5% (by HRMS))

HRMS (ESI): m/z calcd for $C_8H_5NO_3$ [M + H⁺]: 164.03420, found: 164.03422.

methyl 2-hydroxy-2-(pyridin-4-yl)propanoate (5a)

Colorless oil; $R_f = 0.47$ (petroleum ether : EtOAc = 5 : 1); 80% (29.0 mg), 76% (27.4 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.61 – 8.60 (m, 2H), 7.52 – 7.50 (m, 2H), 4.09 (s, 1H), 3.82 (s, 3H), 1.79 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 174.91, 151.49, 149.85, 120.34, 75.14, 53.58, 26.78. HRMS (ESI): m/z calcd for C₉H₁₁NO₃ [M + H⁺]: 182.0812, found: 182.0809.

methyl 2-hydroxy-2-methyl-3-oxo-3-(pyridin-2-yl)propanoate (5b)

Colorless oil; $R_f = 0.41$ (petroleum ether : EtOAc = 5 : 1); 83% (34.8 mg), 82% (34.3 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.60 (d, *J* = 4.5 Hz, 1H), 8.12 (d, *J* = 8.0 Hz, 1H), 7.92 (t, *J* = 7.5 Hz, 1H), 7.53-7.50 (m, 1H), 5.39 (s, 1H), 3.68 (s, 3H), 1.69 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 193.92, 172.93, 151.00, 148.20, 137.82, 127.58, 123.63, 79.10, 52.58, 21.21. HRMS (ESI): m/z calcd for C₁₀H₁₁NO₄ [M + H⁺]: 210.0761, found: 210.0759.

methyl 2-hydroxy-2-methyl-3-oxo-3-(pyridin-2-yl)propanoate (5c)

Colorless oil; $R_f = 0.41$ (petroleum ether : EtOAc = 5 : 1); 82% (34.2 mg), 79% (33.3 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 9.20 (d, J = 1.5 Hz, 1H), 8.76-8.74 (m, 1H), 8.33-8.31 (m,1H), 7.42-7.39 (m, 1H), 4.96 (s, 1H), 3.79 (s, 3H), 1.75 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 194.83, 172.75, 153.31, 150.57, 136.99, 129.48, 123.43, 80.12, 53.48, 23.40. HRMS (ESI): m/z calcd for C₁₀H₁₁NO₄ [M + H⁺]: 210.0761, found: 210.0758.

ethyl 2-hydroxy-2-(pyridin-4-yl)propanoate (5d)

white solid; m. p.: 121-123 °C; 86% (33.5 mg), 81% (31.7 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.58 (d, J = 5.6 Hz, 2H), 7.52 (d, J = 6.0 Hz, 2H), 4.30 – 4.21 (m, 2H), 4.09 (s, 1H), 1.77 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz,

Chloroform-*d*) δ 174.38, 151.75, 149.67, 120.37, 74.97, 62.85, 26.76, 13.95. HRMS (ESI): m/z calcd for C₁₀H₁₃NO₃ [M + H⁺]: 196.0968, found: 196.0964.

ethyl 2-hydroxy-2-methyl-3-oxo-3-(pyrimidin-4-yl)propanoate (5e)

Colorless oil; $R_f = 0.31$ (petroleum ether : EtOAc = 5 : 1); 89% (39.8 mg); 86% (37.9 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 9.29 (s, 1H), 9.06 (d, J = 5.0 Hz, 1H), 7.98 – 7.97 (m, 1H), 4.66 (s, 1H), 4.21 (q, J = 7.0 Hz, 2H), 1.69 (s, 3H), 1.14 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 193.54, 171.99, 159.88, 157.88, 156.73, 118.97, 78.50, 62.14, 21.05, 13.83. HRMS (ESI): m/z calcd for C₁₀H₁₂N₂O₄ [M + H⁺]: 225.0870, found: 225.0868.

ethyl 2-acetoxy-2-methyl-3-oxo-3-phenylpropanoate (6)

Colorless oil; $R_f = 0.36$ (petroleum ether : EtOAc = 10 : 1); 89% (117.6 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.50 – 7.47 (m, 1H), 7.45 – 7.42 (m, 2H), 7.23 – 7.21 (m, 2H), 4.28 (q, *J* =7.0 Hz, 2H), 2.45 (s, 3H), 1.71 (s, 3H), 1.27 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 194.35, 168.80, 168.60, 166.90, 130.90, 129.28, 128.86, 127.60, 127.47, 86.74, 63.17, 30.40, 20.31, 13.89. HRMS (ESI): m/z calcd for C₁₄H₁₆O₅ [M + H⁺]: 265.1071, found: 265.1063.

ethyl 2,3-dihydroxy-2-methyl-3-phenylpropanoate (7)

Colorless oil; $R_f = 0.36$ (petroleum ether : EtOAc = 10 : 1); 85% (95.2 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.32-7.27 (m, 5H), 4.73 (s, 1H), 4.13 – 3.99 (m, 2H), 3.44 (s, 1H), 3.12 (s, 1H), 1.54 (s, 3H), 1.17 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 174.57, 139.19, 128.19, 128.00, 127.02, 78.04, 77.56, 61.96, 22.57, 13.89. HRMS (ESI): m/z calcd for C₁₂H₁₆O₄ [M+H⁺]: 225.1121, found: 225.1116.

ethyl 2,3-dihydroxy-2-methyl-3-phenylpropanoate (9)

Colorless oil; $R_f = 0.36$ (petroleum ether : EtOAc = 10 : 1); 93% (1.72 g); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.41 (s, 1H), 4.23 (q, *J* = 7.0 Hz, 2H), 3.48 (q, *J* = 7.5 Hz, 1H), 1.46 (d, *J* = 7.5 Hz, 3H), 1.29 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 175.75, 169.89, 61.73, 45.90, 13.96, 13.53. HRMS (ESI): m/z calcd for C₆H₁₀O₄ [M + H⁺]: 499.0652, found: 147.0648.

ethyl 3-(3,5-dichlorophenyl)-5-methyl-2,4-dioxooxazolidine-5-carboxylate (10) white solid; m. p.: 127.0–131.0°C; 70% (58.2 mg); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.46-7.44 (m, 3H), 4.34 (q, *J* = 7.0 Hz, 2H), 1.90 (s, 3H), 1.34 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 168.39, 164.05, 151.91, 135.72, 132.37, 129.33, 123.71, 83.89, 63.94, 18.80, 13.93. HRMS (ESI): m/z calcd for C₁₃H₁₁Cl₂NO₅ [M + H⁺]: 332.0087, found: 332.0081.

4. X-ray Single Crystal Diffraction Data of 5d (CCDC 2305770)

5. H-NMR determination of reaction processes

From the H-NMR spectra, it can be seen that when the reaction reaches 6 h, the position of feedstock ④ shows a conversion of 87.9%, the position of product ④ shows a conversion of 88.0%, the position of product ② shows a conversion of 89.0%, the position of feedstock ③ shows a conversion of 77.0%, and the position of product ③ shows a conversion of only 45%, so we speculate that, when the mixture is reacted for 6 h, there is approximately 30% of intermediate **G** was not converted to product **3a**, and this step of conversion was relatively slow. When the

mixture was reacted for 12 hours, only the position of product ③ showed an increase of 30% conversion compared to 6 hours, which corresponds to the amount of NaI we added.

After six hours of reaction, the mixture was concentrated under reduced pressure. The free radical **G** was captured by HRMS detection.

HRMS (ESI): m/z calcd for $C_{12}H_{13}IO_3$ [M + H⁺]: 332.9982, found: 332.9967.

6. General applicability

A

To a 50 mL round-bottom flask was charged with ethyl 2-hydroxy-2-methyl-3oxo-3-phenylpropanoate (0.5 mmol, 1.0 equiv.), TEA (1.0 mmol, 2.0 equiv.), DCM (5 mL) add acetyl chloride (0.55 mmol, 1.1 equiv.) in a slow trickle and finish the trickle in 5 min at 0 °C. The resulting mixtur was stirred for additional 3 h at 30 °C. The reaction progress was monitored by TLC. After completion, the mixture was quenched with water and sat.Na₂CO₃ (20 mL), and extracted with dichloromethane (10 mL × 3). The combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether to afford ethyl 2-acetoxy-2-methyl-3-oxo-3phenylpropanoate (117.6 mg, 89%) as a Colorless oily liquid.

Add NaBH₄ (7.5 mmol) to a solution of ethyl 2-hydroxy-2-methyl-3oxo-3-phenylpropanoate (0.5 mmol) in MeOH (5 mL) in a 25 mL flask under air atmosphere. Stir the reaction mixture at room temperature for 4 hours. Monitor the reaction by TLC. Upon completion, add HCI (1M, 5 mL) into the reaction mixture, extract the forming alcohol with ethyl acetate $(3 \times 10 \text{ mL})$ from the reaction mixture. The combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether afford ethyl 2,3-dihydroxy-2-methyl-3to phenylpropanoate (78.4 mg, 70%) as a Colorless oily liquid.

B

Equipment: Pumps from the brand sanota, tubular reactor from SHENZHEN E-ZHENG TECH CO., LTD, light source for 60W white light (6000-6500 K) from Taobao APP Shenzhen Yu Xiang Technology Development Co.

Solution A consisting ethyl 2-methyl-3-oxo-3-phenylpropanoate **1a** (4.85 mmol, 0.1 M), NPh₃ (20 mmol %) in EtOH (48.5 mL) and solution B consisting Nal (30 mmol %, 0.03 M) in EtOH:H₂O = 4:1 (48.5 mL) were prepared separately. Each channel, containing a flowing stream, was pumped at 0.015 mL/min (a total of 0.03 mL/min). Both streams were mixed in a Y-mixer and flowing into tubular reactor (*The tubular reactor is made up of coiled FEP tubing (1/8" OD, 1.6mm ID)* with a total volume of 40 mL), which was kept under 60 W white LED irradiation at 25 °C. The reaction retention time is 22 hours. After leaving the flow system, the crude reaction mixture was collected into a 250 mL glass vial. The resulting mixture was concentrated under vacuum. After completion, the mixture was quenched with water (20 mL), and extracted with ethyl acetate (20 mL × 3). The combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether to give ethyl

2-hydroxy-2-methyl-3-oxo-3- phenylpropanoate **3a** (0.94 g, 87%). The same method is used to obtain **3o** (0.85 g, 79%).

3-ethoxy-2-methyl-3-oxopropanoic acid

To a degassed solution of 2,2,5-trimethyl-1,3-dioxane-4,6-dione (12.66 mmol, 1.0 equiv.) in EtOH:Toluene=1:2 (0.1 M) . The resulting mixture was stirred for 18 h at 95 °C under argon atmosphere. Afer completion of was concentrated add H₂O and sat.NaHCO₃ (20 mL) to the mixture upon completion of the reaction. Extract the mixture with EtOAc (5 mL x 3). Discard the organic layer. Acidify the aqueous layer with conc. HCl (until pH = 2). Extract the mixture with EtOAc (20 mL x 3). Wash the combined organic layer with brine (5 mL x 1). The combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure to obtain the product 3-ethoxy-2-methyl-3-oxopropanoic acid (1.72 g, 93%) as a Colorless oily liquid.

1-ethyl 3-phenyl 2-methylmalonate

To a 50 mL round-bottom flask was charged with3-ethoxy-2-methyl-3oxopropanoic acid (11.77mmol, 1.0 equiv.), Thionyl chloride (10 mL). The resulting mixture was stirred for 16 h at 80 °C. The resulting mixture was concentrated under vacuum. To the above mixture was added DCM (20 mL), Phenol (12.95 mmol, 1.1 equiv.) and in porions TEA (23.54 mmol, 2.0 equiv.) over 5min at 0 °C. The resulting mixtur was stirred for additional 3 h at 25 °C. The reaction progress was monitored by TLC. After completion, the mixture was quenched with water and sat.Na₂CO₃ (20 mL), and extracted with dichloromethane (10 mL × 3). The combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether to afford 1-ethyl 3-phenyl 2-methylmalonate (2.38 g, 91%) as a Colorless oily liquid.

1-ethyl 3-phenyl 2-hydroxy-2-methylmalonate

To a 25 mL quartz tube was charged with 1-ethyl 3-phenyl 2-methylmalonate (0.2 mmol, 1.0 equiv.), NPh₃ (20 mmol %), Nal (30 mmol %) and EtOH:H₂O =1:2 (2 mL). Then the mixture was stirred for 36 h under 10 W white LED irradiation at room temperature. After completion, the mixture was quenched with water (5 mL), and extracted with ethyl acetate (10 mL × 3). The combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether to give 1-ethyl 3-phenyl 2-hydroxy-2-methylmalonate (39.15 mg, 83%).

Solution A consisting 1-ethyl 3-phenyl 2-methylmalonate (4.5 mmol, 0.1 M), NPh₃ (20% mmol) in EtOH (45 mL) and solution B consisting Nal (30% mmol, 0.03 M) in EtOH:H₂O = 4:1 (45 mL) were prepared separately. Each channel, containing a flowing stream, was pumped at 0.015 mL/min (a total of 0.03 mL/min). Both streams were mixed in a Y-mixer and flowing into tubular reactor (The tubular reactor is made up of coiled FEP tubing (1/8" OD, 1.6mm ID) with a total volume of 40 mL), which was kept under 60 W white LED irradiation at 25 °C. The reaction retention time is 22 hours. After leaving the flow system, the crude reaction mixture was collected into a 250 mL glass vial. The resulting mixture was concentrated under vacuum. After completion, the mixture was quenched with water (20 mL), and extracted with ethyl acetate (20 mL \times 3). The combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether to give 1-ethyl 3-phenyl 2-hydroxy-2-methylmalonate (0.85 g, 79%).

ethyl 3-(3,5-dichlorophenyl)-5-methyl-2,4-dioxooxazolidine-5-carboxylate A solution of malonic ester 1-ethyl 3-phenyl 2-hydroxy-2-methylmalonate (59.5 mg, 0.25 mmol) in dry n-hexane (10.0 mL) was treated, under N₂, with triethylamine (25.3 mg, 0.25 mmol) and 3,5-dichlorophenylisocyanate (70.7

mg, 0.375 mmol). After stirring at rt for 30 min, the reaction mixture was refluxed for overnight (16 h). After cooling, the suspension was filtered and the filtrate evaporated to dryness, the residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether to give ethyl 3-(3,5-dichlorophenyl)-5-methyl-2,4-dioxooxazolidine-5-carboxylate as a white solid (58.2 mg, 70%).

7. Mechanism Exploration

1.1 Free radical trapping experiments

Reaction conditions: **1a** (0.1 mmol, 1 equiv.), NPh₃ (20 mmol %), Nal (30 mmol %), radical trapping agent (0.1 mmol, 1 equiv.) in EtOH:H₂O = 1:2 (2 mL) were stirred under air for 36 hours at room temperature under the irradiation of a 10 W white LED (6000-6500 K).

In the presence of TEMPO, BHT and 1,1-diphenylethylene, the reaction did not yield the desired product **3a**. However, the generation of **11**, **12**, **13** and **14** was detected from the reaction solution, proving that the reaction was a radical reaction and that iodine radicals and intermediate E (Scheme 8), were generated.

13)

1.2 Labeling experiments

Reaction conditions: ^{*a*} **1a** (0.1 mmol), NPh₃ (20 mmol %), Nal (0.11 mmol), H₂¹⁸O (2 mL), argon, 36 h, r.t., 10 W white LED (6000-6500 k); ^{*b*} **1a** (0.1 mmol), PPh₃ (20 mmol %), Nal (30 mmol %), H₂¹⁸O (2 mL), air, 36 h, r.t., 10 W blue LED (455 nm).

The ¹⁸OH was determined in reaction solution by HRMS. The integral method was used by comparing ¹⁸O and ¹⁶O in HRMS. The data indicate that the hydroxyl group in product **3a** is from water and not air.

1.3 DFT calculations study

Reaction Coordinate

1.3.1 Computational methods

DFT theoretical calculations have been carried out using the Gaussian 16 program package.⁸ The B3LYP density functional method with the D3(BJ) dispersion correction was employed in this work to carry out all the computations.⁹ Geometry optimizations and harmonic frequency calculations were performed with the SDD¹⁰ basis set for I atom and 6-31g(d)¹¹ basis set for other elements. All structures have been optimized considering solvent effects using the PCM¹² model for water. The single-point energy calculations were carried out using the def2-TZVP basisset ¹³ to provide better energy correction. The relative free energies are given in kcal/mol.

1.2 Calculated molecular orbitals and single point energies of EDA complexes in the S0 ground state

2-2

2-3

2-4

номо

3-4

С

С

С

С

С

С

Н

С

1-NPh₃-NaI EDA complex

(1-1)

2.18210700

single point energies = -1901.99661427 Hartree

-3.64244100	4.18050800	-0.53611400
-4.29805700	3.46529300	0.46984300
-3.59707300	2.53826300	1.24009500
-2.22314700	2.32874700	1.01866300
-1.57009900	3.06442600	0.00895300
-2.27725700	3.97612900	-0.76652900
-4.19504900	4.89256100	-1.14240100
F 2FC10100	2 625 45 200	0 65256000

Н 0.65256800 -5.35618100 3.62545300 Н -4.12613600 1.99984100 2.01796700 Н -0.51759900 2.88506000 -0.17848900 Н -1.76561800 4.51602900 -1.55667400 С -1.415432001.34210200 1.77896900 0 -0.18764600 1.33447500 1.68598300 С -2.09460500 0.30135100 2.68145300 Н -3.17753700 0.40026400 2.65572500 С -1.59820100 0.46535000 4.13697500 Н -1.87341400 1.45520000 4.51280900 Н -2.06105100 -0.28939600 4.77940300 Н -0.51202000 0.35983000 4.18766700

-1.76459500

-1.10249900

0	-0.63134400	-1.52598800	1.99535100
0	-2.85916100	-1.83013100	2.00815200
С	-2.67526400	-3.20050600	1.53711800
Н	-2.25461000	-3.15088600	0.52981800
Н	-1.96018500	-3.69813500	2.19771100
С	-4.03717600	-3.86145400	1.55553600
Н	-4.73297200	-3.32561500	0.90391500
Н	-3.94558400	-4.89008600	1.19183700
Н	-4.44633200	-3.88609900	2.57044900
Na	1.40337800	-0.39782700	1.77203400
Ν	0.06828700	-0.77795500	-1.91080800
С	-1.26176200	-1.26945900	-1.81182200
С	-1.59841100	-2.53547800	-2.31934100
С	-2.26376000	-0.49066700	-1.21128300
С	-2.90954800	-3.00335900	-2.22599500
Н	-0.83193000	-3.14581100	-2.78580200
С	-3.57394900	-0.95885900	-1.13313700
Н	-2.01490900	0.49081800	-0.82891900
С	-3.90774000	-2.21748000	-1.64128500
Н	-3.15315200	-3.98374500	-2.62603700
Н	-4.32964900	-0.33774300	-0.66034400
Н	-4.92838500	-2.58280700	-1.58026500
С	1.16188200	-1.65351100	-1.67381700
С	2.32264600	-1.58039200	-2.46107500
С	1.09650300	-2.60690000	-0.64259000
С	3.40283100	-2.42347600	-2.20144200
Н	2.37678000	-0.85611200	-3.26720400
С	2.17743200	-3.45525600	-0.39917500
Н	0.20585800	-2.66986700	-0.02701800
С	3.33980500	-3.36656200	-1.17075800
Н	4.29353100	-2.35070800	-2.81961200
Н	2.10932900	-4.18338500	0.40490100
Н	4.18093600	-4.02538700	-0.97632500
I	4.41779300	0.73659600	1.26674000
С	0.29875900	0.58614800	-2.23743100
С	-0.53649100	1.25010400	-3.15238700
С	1.36275300	1.29581500	-1.65408600
С	-0.32573000	2.59485600	-3.45379200
Н	-1.35503900	0.71154100	-3.61811700
С	1.57580100	2.63612400	-1.97523600
Н	2.03526000	0.80108600	-0.96233100
С	0.73103400	3.29953900	-2.87010900
Н	-0.98773300	3.08990200	-4.15903500
Н	2.40317200	3.16445400	-1.50867800

iv Electrostatic potential (ESP) analysis of 1-1 structure

5.000e-2
8. Proposed mechanism conclusions

Based on mechanism study experiments and previous literatures, we propose a rational mechanism for this reaction (see Scheme 8 for proposed full catalytic cycles for NaI-NPh₃ EDA complex system). Preliminary density functional theory (DFT) calculations support the viability of this path way (Scheme 7, iv). Initially, Nal and NPh₃ form complex A, which in turn generates complex B with substrate 1, which undergoes single electron transfer (SET) by light to produce iodine radical D and ketyl radical C. The free-energy barrier of 55.2 kcal/mol indicates that the process does not react spontaneously at ambient temperature and pressure, which is in agreement with the experimental photoexcitation. Subsequently, radicals C and D undergo radical rearrangement and single electron transfer (SET) to form the persistent radical E, complex A, and hydrogen radical F. The free energy barriers are shown to be able to proceed spontaneously. The Hydrogen Detector can detect hydrogen generation by F. DFT calculations indicate that radical E is more susceptible to G formation via D radical/radical cross-coupling (by HRMS) than direct hydration hydroxylation of radical E to product 3. Intermediate G was then hydrolyzed to product 3 by SN1 reaction. However, when hydrolysis produces HI, it may prompt a shift from E to 3. Unusually, when the R¹ substituent is p-pyridine, it generates the persistent radical J is formed by 1,2-aryl migration and elimination of one portion of the CO. Similarly, J undergoes radical/radical cross-coupling, dehalogenation, and hydration to form α -hydroxy- β -monocarbonyl 5.

9. NMR spectra

3a ¹H NMR (400 MHz, CDCl₃)

200 180 160 140 120 100 80 60 40 20 0

3b ¹H NMR (400 MHz, CDCl3)

3c¹H NMR (500 MHz, CDCl3)

3c¹³C NMR (126 MHz, CDCl₃)

3d ¹H NMR (500 MHz, CDCl₃)

3d ¹³C NMR (126 MHz, CDCl₃)

3e¹H NMR (500 MHz, CDCl₃)

3e¹³C NMR (126 MHz, CDCl₃)

3f¹H NMR (500 MHz, CDCl₃)

3f¹³C NMR (126 MHz, CDCl₃)

3g ¹H NMR (400 MHz, CDCl3)

3g ¹³C NMR (101 MHz, CDCl₃)

3g ¹⁹F NMR (376 MHz, CDCl₃)

— -103.491

3h ¹H NMR (400 MHz, CDCl₃)

-40

60

-80

20

-100

-120

-140

-160

-180

-200

-2

3h ¹³C NMR (101 MHz, CDCl₃)

100

80

60

20

-2

-200

40

3h ¹⁹F NMR (376 MHz, CDCl₃)

160

140

120

200

20

0

-20

-40

-60

-80

180

45

-100

-120

-140

-160

-180

3i¹H NMR (500 MHz, CDCl₃)

3i ¹³C NMR (101 MHz, CDCl₃)

194.604	172.365	135.088 134.906 133.425 129.501 129.501 127.461	79.754 77.254 77.000 76.746	62.785	23.426	13.817	
	1	S1 /-	\searrow		1	- I	

3j ¹H NMR (400 MHz, CDCl₃)

3j ¹³C NMR (101 MHz, CDCl₃)

3j ¹⁹F NMR (376 MHz, CDCl₃)

— -107.763

-40

-20

-60

20

-120

-140

-160

-180

-200

-2

-100

-80

3l ¹³C NMR (126 MHz, CDCl₃)

3m ¹H NMR (500 MHz, CDCl₃)

3m¹³C NMR (126 MHz, CDCl₃)

30 ¹H NMR (500 MHz, CDCl₃)

30 ¹³C NMR (126 MHz, CDCl₃)

3q ¹³C NMR (126 MHz, CDCl₃)

3r¹³C NMR (126MHz, CDCl₃)

3u ¹³C NMR (126 MHz, CDCl₃)

3v¹H NMR (500 MHz, CDCl₃)

3w¹⁹F NMR (376 MHz, CDCl₃)

0

-20

-40

-60

-80

-100

-120

-160

-140

-200

-180

3x ¹H NMR (500 MHz, CDCl₃)

3x ¹³C NMR (126 MHz, CDCl₃)

3y ¹H NMR (500 MHz, CDCl₃)

3y ¹³C NMR (126 MHz, CDCl₃)

3z ¹H NMR (500 MHz, CDCl₃)

3aa ¹H NMR (500 MHz, CDCl₃)

3aa 13C NMR (126 MHz, CDCl3)

3ab ¹H NMR (400 MHz, CDCl₃)

3ab ¹³C NMR (101 MHz, CDCl₃)

3ac ¹H NMR (500 MHz, CDCl₃)

3ac ¹³C NMR (126 MHz, CDCl₃)

3ad ¹H NMR (500 MHz, CDCl₃)

3ad ¹³C NMR (126 MHz, CDCl₃)

3ae ¹H NMR (400 MHz, CDCl₃)

3ae ¹³C NMR (101 MHz, CDCl₃)

3af ¹H NMR (500 MHz, CDCl₃)

3af ¹³C NMR (126 MHz, CDCl₃)

5a ¹H NMR (500 MHz, CDCl₃)

5a ¹³C NMR (126 MHz, CDCl₃)

5b ¹H NMR (500 MHz, CDCl₃)

5c¹H NMR (500 MHz, CDCl₃)

5c ¹³C NMR (126 MHz, CDCl₃)

0

5d ¹H NMR (400 MHz, CDCl₃)

120 100 80

5e¹H NMR (500 MHz, CDCl₃)

5e¹³C NMR (126 MHz, CDCl₃)

6¹³C NMR (126 MHz, CDCl₃)

6¹H NMR (500 MHz, CDCl₃)

7¹H NMR (500 MHz, CDCl₃)

7¹³C NMR (126 MHz, CDCl₃)

9¹H NMR (500 MHz, CDCl₃)

9¹³C NMR (126 MHz, CDCl₃)

10¹H NMR (500 MHz, CDCl₃)

10¹³C NMR (126 MHz, CDCl₃)

10. References

- (1) L. Li, F. Han, X. Nie, Y. Hong, S. Ivlev and E. Meggers, Angew. Chem. Int. Ed., 2020, 59, 12392.
- (2) S. Kobori, S. Huh, S. D. Appavoo and A. K. Yudin, J. Am. Chem. Soc., 2021, 143, 5166.
- (3) A. L. Gabbey, N. W. Michel, J. M. Hughes, L. C. Campeau and S. A. Rousseaux, Org. Lett., 2022, 24, 3173.
- (4) Z. Xing, B. Fang, S. Luo, X. Xie, and Wang, X. Generation of Fused Seven-Membered Polycyclic Systems via Ring Expansion and Application to the Total Synthesis of Sesquiterpenoids. Org. Lett., 2022, 24, 4034.
- (5) F. Wu, H. Li, R. Hong and L. Deng, Angew. Chem. Int. Ed., 2006, 45, 947.
- (6) K. Wang, B. Wang, X. Liu, H. Fan, Y. Liu and C. Li, *Chin. J. Catal.* 2021, **42**, 1227.
- (7) P. Drouhin and R. J. Taylor, *Eur. J. Org. Chem.*, 2015, **11**, 2333.
- (8) (a) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. P. G. A. Barone, G. A. Petersson, H. J. R. A. Nakatsuji and X. Li, Gaussian 16 Revision C. 01. Gaussian Inc. Wallingford CT, 2016, 1, 572. (b) R. D. I. I. Dennington, T. A. Keith and J. M. Millam, GaussView, version 6.0. 16. Semichem Inc Shawnee Mission KS (2016,).
- (9) (a) A. D. Becke, *Phys. Rev. A.*, 1988, **38**, 3098. (b) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B.*, 1988, **37**, 785. (c) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 1372. (d) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem.*, 1994, **98**, 11623. (e) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J. Chem. Phys.*, 2010, **132**, 154104. (f) S. Grimme, S. Ehrlich and L. Goerigk, *J. Comput. Chem.*, 2011, **32**, 1456.
- (10) D. Andrae, U. Haeussermann, M. Dolg, H. Stoll and H. Preuss, Theor. Chim. Acta., 1990, 77, 123.
- (11) (a) M. J. Frisch, J. A. Pople and J. S. Binkley, J. Chem. Phys., 1984, 80, 3265. (b) R. H. W. J. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724. (c) P. C. Hariharan and J. A. Pople, Theor. Chim., 1973, 28, 213.
- (12) R. J. Hall, M. M. Davidson, N. A. Burton and I. H. Hillier, J. Phys. Chem., 1995, 99, 921.
- (13) (a) A. Schäfer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571. (b) A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829.