Supporting Information

Defluorinative Functionalization of Perfluoroalkyl Alkenes with Ureas: Synthesis of C4-Perfluoroalkenyl

2-Imidazolones

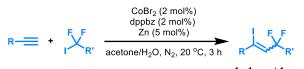
Wei Han,^a Ming-Yao Tang,^a Ye-Kun Chen,^a Mengtao Ma,^b Zhi-Liang Shen,^{*,a} and Xue-Qiang Chu^{*,a}

^a Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China. E-mails: ias_zlshen@njtech.edu.cn; xueqiangchu@njtech.edu.cn.

^b Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.

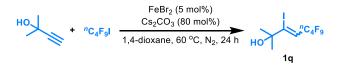
Table of Contents

General information Pa		
General procedure for the synthesis of perfluoroalkyl alkenyl iodides 1		
General procedure for the synthesis of ureas 2		
General procedure for the defluorinative synthesis of C4-perfluoroalkenyl	Page S7	
2-imidazolones 3		
Scale-up synthesis of product 3aa		
Mechanistic studies	Page S7	
Optimization of reaction conditions	Page S11	
The X-ray crystal structure of product (<i>E</i>)- 3am	Page S12	
Characterization data for products		
References	Page S31	
¹ H, ¹⁹ F, and ¹³ C NMR spectra of products	Page S32	


General information

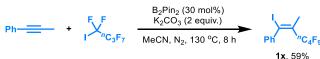
Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out under N₂ atmosphere using undistilled solvent. Melting points were recorded on an electrothermal digital melting point apparatus. ¹H, ¹⁹F, and ¹³C NMR spectra were recorded in CDCl₃ on Bruker Avance or Joel 400 MHz spectrometers. NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), multiplet (m), doublet of doublets (dd), doublet of triplets (dt), doublet of quartets (dq), triplet of doublets (td), tt (triplet of triplets), quartet of doublets (qd), and quartet of triplets (qt). The chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. High resolution mass spectrometry (HRMS) data were obtained on a Waters LC-TOF mass spectrometer (Xevo G2-XS QTof) using electrospray ionization (ESI) in positive or negative mode. Column chromatography was generally performed on silica gel (300-400 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions.

<u>Caution: The reaction should be performed under basic conditions; otherwise, attention should</u> <u>be paid to the possible release of HF! After the completion of the defluorination reaction, the</u> <u>etching was observed.</u>

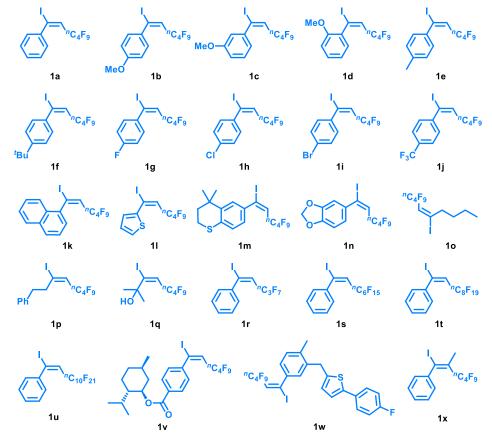

General procedure for the synthesis of perfluoroalkyl alkenyl iodides 1

General procedure A (GPA)^[1]

According to Jacobi von Wangelin's reported method, a flask (50 mL), equipped with a magnetic stir bar, was charged with alkyne (5 mmol, 1 equiv.), polyfluoroalkyl iodide (7.5 mmol, 1.5 equiv.), CoBr₂ (21.9 mg, 0.1 mmol, 0.02 equiv.), 1,2-bis(diphenylphosphino)benzene (44.6 mg, 0.1 mmol, 0.02 equiv.), dppbz), Zn (16.3 mg, 0.25 mmol, 0.05 equiv.), and acetone/H₂O (10 mL, 30/1) under N₂ atmosphere. The reaction mixture was stirred at 20 °C under N₂ atmosphere for 3 h. The reaction was then quenched by saturated NH₄Cl solution (50 mL) and extracted with EtOAc (50 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (200/1~20/1) as eluent to afford the pure product **1**.


General procedure B (GPB)^[2]

According to Hu's reported method, a flask (50 mL), equipped with a magnetic stir bar, was charged with 2-methylbut-3-yn-2-ol (420.6 mg, 5 mmol, 1 equiv.), perfluorobutyl iodide (2594.4 mg, 7.5 mmol, 1.5 equiv.), FeBr₂ (53.9 mg, 0.25 mmol, 0.05 equiv.), Cs₂CO₃ (1303.0 mg, 4 mmol, 0.8 equiv.), and anhydrous 1,4-dioxane (20 mL) under N₂ atmosphere. The reaction mixture was stirred at 60 $^{\circ}$ C under N₂ atmosphere for 24 h. The reaction was then quenched by saturated


 NH_4Cl solution (50 mL) and extracted with EtOAc (50 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (100/1~80/1) as eluent to afford the pure product **1q** (1978.2 mg, 46% yield).

General procedure C (GPC)^[3]

According to Yang's reported method, a flask (50 mL) equipped with a magnetic stir bar was charged with 1-phenyl-1-propyne (223 mg, 2 mmol, 1 equiv.), perfluorobutyl iodide (2.075 g, 6 mmol, 3 equiv.), B_2Pin_2 (152.4 mg, 0.6 mmol, 0.3 equiv.), K_2CO_3 (552 mg, 4 mmol, 2 equiv.), and MeCN (4 mL) under N₂ atmosphere. The reaction mixture was stirred at 130 °C under N₂ atmosphere for 8 h. The reaction was then quenched by saturated NH₄Cl solution (40 mL) and extracted with EtOAc (40 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether as eluent to afford the pure product **1x** (546.7 mg, 59%).

Perfluoroalkyl alkenyl iodides 1 used in the reaction:

Representative examples: (*E*)-(3,3,4,4,5,5,6,6,6-Nonafluoro-1-iodohex-1-en-1-yl)benzene (1a)^[1a]:

Following general procedure GPA.

Yield = 78% (6.99 g, 20 mmol scale). Colorless oil.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.36–7.27 (m, 5H), 6.59 (t, *J* = 13.6 Hz, 1H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -80.86 - -81.04 (m, 3F), -105.37 (q, *J* = 10.6 Hz, 2F), -123.71 (t, *J* = 9.7 Hz, 2F), -125.78 (q, *J* = 110.0 Hz, 2F) ppm.

(*E*)-1-Methyl-4-(3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohex-1-en-1-yl)benzene (1e)^[1b]:

Following general procedure GPA.

Yield = 78% (3.60 g, 10 mmol scale). Colorless oil.

Purified by flash column chromatography through silica gel (petroleum ether).

¹H NMR (400 MHz, CDCl₃): δ = 7.22–7.12 (m, 4H), 6.57 (t, *J* = 13.5 Hz, 1H), 2.36 (s, 3H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -80.92 (t, *J* = 10.3 Hz, 3F), -105.20 (q, *J* = 13.0 Hz, 2F), -123.64 - -123.77 (m, 2F), -125.69 - -125.79 (m, 2F) ppm.

(*E*)-1-(*tert*-Butyl)-4-(3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohex-1-en-1-yl)benzene (1f)^[1b]:

Following general procedure GPA.

Yield = 76% (3.83 g, 10 mmol scale). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H** NMR (400 MHz, CDCl₃): δ = 7.36–7.31 (m, 2H), 7.25–7.21 (m, 2H), 6.57 (t, *J* = 13.6 Hz, 1H), 1.32 (s, 9H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -80.89 (t, *J* = 9.9 Hz, 3F), -105.14 (q, *J* = 12.4 Hz, 2F), -123.70 - -123.80 (m, 2F), -125.67 - -125.79 (m, 2F) ppm.

(*E*)-1-Fluoro-4-(3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohex-1-en-1-yl)benzene (1g)^[1b]:

Following general procedure GPA.

Yield = 82% (3.83 g, 10 mmol scale). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.31–7.26 (m, 2H), 7.06–6.99 (m, 2H), 6.59 (t, *J* = 13.5 Hz, 1H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -80.92 (t, *J* = 9.7 Hz, 3F), -105.37 (q, *J* = 12.3 Hz, 2F), -110.74 (dq, *J* = 12.0, 6.6 Hz, 1F), -123.73 (q, *J* = 9.8 Hz, 2F), -125.85 (tt, *J* = 11.2, 6.4 Hz, 2F) ppm.

(*E*)-1-Chloro-4-(3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohex-1-en-1-yl)benzene (1h)^[1b]:

Following general procedure GPA.

Yield = 80% (3.86 g, 10 mmol scale). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.35–7.30 (m, 2H), 7.26–7.20 (m, 2H), 6.60 (t, *J* = 13.5 Hz, 1H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -80.89 (t, *J* = 9.9 Hz, 3F), -105.41 (q, *J* = 13.0 Hz, 2F), -123.69 (q, *J* = 9.7 Hz, 2F), -125.72 - -125.93 (m, 2F) ppm.

(*E*)-1-(3,3,4,4,5,5,6,6,6-Nonafluoro-1-iodohex-1-en-1-yl)-4-(trifluoromethyl)benzene (1j)^[1b]: Following general procedure GPA.

Yield = 70% (903 mg, 2.5 mmol scale). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.63–7.60 (m, 2H), 7.40 (d, *J* = 8.1 Hz, 2H), 6.65 (t, *J* = 13.4 Hz, 1H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -62.83 (s, 3F), -80.91 (t, *J* = 9.7 Hz, 3F), -105.54 (q, *J* = 12.7 Hz, 2F), -123.66 (q, *J* = 9.4 Hz, 2F), -125.74 (dt, *J* = 13.4, 6.1 Hz, 2F) ppm.

(*E*)-1-(3,3,4,4,5,5,6,6,6-Nonafluoro-1-iodohex-1-en-1-yl)naphthalene (1k)^[1b]:

Following general procedure GPA.

Yield = 20% (298.9 mg, 3 mmol scale). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.94–7.83 (m, 3H), 7.63–7.59 (m, 1H), 7.55–7.49 (m, 1H), 7.45–7.36 (m, 2H), 6.86 (t, *J* = 13.2 Hz, 1H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -80.89 (s, 3F), -107.42 (t, *J* = 15.7 Hz, 2F), -123.67 (s, 2F), -125.77 (s, 2F) ppm.

$(E)-4,4-Dimethyl-6-(3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohex-1-en-1-yl) thiochromane (1m)^{[1b]}:$

Following general procedure GPA.

Yield = 94% (1.65 g, 3.2 mmol scale). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H** NMR (400 MHz, CDCl₃): δ = 7.28 (s, 1H), 7.06–6.97 (m, 2H), 6.53 (t, *J* = 13.6 Hz, 1H), 3.06–3.01 (m, 2H), 1.99–1.92 (m, 2H), 1.31 (s, 6H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -80.92 (s, 3F), -105.09 (d, *J* = 17.8 Hz, 2F), -123.58 (s, 2F), -125.74 (s, 2F) ppm.

(*E*)-5-(3,3,4,4,5,5,6,6,6-Nonafluoro-1-iodohex-1-en-1-yl)benzo[*d*][1,3]dioxole (1n)^[1b]:

Following general procedure GPA.

Yield = 39% (973 mg, 5 mmol scale). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether).

¹H NMR (400 MHz, CDCl₃): δ = 6.85–6.70 (m, 3H), 6.53 (t, *J* = 13.5 Hz, 1H), 6.00 (s, 2H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -80.86 (s, 3F), -105.21 (d, *J* = 28.2 Hz, 2F), -123.70 (s, 2F), -125.73 (s, 2F) ppm.

(*E*)-1,1,1,2,2,3,3,4,4-Nonafluoro-6-iododec-5-ene (10)^[1b]:

Following general procedure GPA.

Yield = 52% (2.23 g, 10 mmol scale). Colorless oil.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 6.32 (t, *J* = 14.8 Hz, 1H), 2.63 (t, *J* = 7.6 Hz, 2H), 1.59–1.53 (m, 2H), 1.36 (q, *J* = 7.6 Hz, 2H), 0.93 (t, *J* = 7.3 Hz, 3H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -81.04 (dd, *J* = 30.8, 13.8 Hz, 3F), -105.60 (q, *J* = 12.6 Hz, 2F), -124.18 (dq, *J* = 16.8, 8.9 Hz, 2F), -125.66 - -125.94 (m, 2F) ppm.

(*E*)-(5,5,6,6,7,7,8,8,8-Nonafluoro-3-iodooct-3-en-1-yl)benzene (1p)^[1b]:

Following general procedure GPA.

Yield = 38% (721.3 mg, 4 mmol scale). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.34–7.29 (m, 2H), 7.26–7.19 (m, 3H), 6.36 (t, *J* = 14.4 Hz, 1H), 2.99–2.86 (m, 4H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -80.91 (t, *J* = 9.7 Hz, 3F), -105.94 (q, *J* = 13.2 Hz, 2F), -124.10 (q, *J* = 9.1 Hz, 2F), -125.70 (q, *J* = 9.9 Hz, 2F) ppm.

(*E*)-5,5,6,6,7,7,8,8,8-Nonafluoro-3-iodo-2-methyloct-3-en-2-ol (1q)^[2]:

Following general procedure GPB.

Yield = 74% (6.36 g, 20 mmol scale). Colorless oil.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 6.91–6.80 (m, 1H), 1.52 (s, 6H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -81.08 (t, *J* = 9.8 Hz, 3F), -108.64 (q, *J* = 13.0 Hz, 2F), -123.97 (q, *J* = 9.6 Hz, 2F), -125.82 (tt, *J* = 10.6, 5.3 Hz, 2F) ppm.

(E)-2-(4-Fluorophenyl)-5-(2-methyl-5-(3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohex-1-en-1-yl)benzy l)thiophene $(1w)^{[1b]}$:

Following general procedure GPA.

Yield = 69% (905.7 mg, 2 mmol scale). Colorless oil.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.50–7.45 (m, 2H), 7.18–7.13 (m, 3H), 7.06–7.01 (m, 3H), 6.62 (dt, *J* = 3.5, 1.1 Hz, 1H), 6.60–6.52 (m, 1H), 4.11 (s, 2H), 2.31 (s, 3H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -80.87 (t, *J* = 9.7 Hz, 3F), -105.12 (q, *J* = 12.9 Hz, 2F), -114.96 - -115.06 (m, 1F), -123.56 (q, *J* = 9.3 Hz, 2F), -125.71 (dt, *J* = 13.0, 5.1 Hz, 2F) ppm.

(*E*)-(3,3,4,4,5,5,6,6,6-Nonafluoro-1-iodo-2-methylhex-1-en-1-yl)benzene (1x)^[3]:

Following general procedure GPC.

Yield = 59% (546.7 mg, 2 mmol scale). White solid.

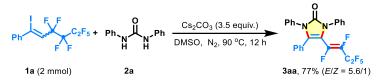
Purified by flash column chromatography through silica gel (petroleum ether).

¹H NMR (400 MHz, CDCl₃): δ = 7.31–7.23 (m, 3H), 7.17 (d, *J* = 8.3 Hz, 2H), 2.28 (s, 3H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -80.86 (t, *J* = 10.0 Hz, 3F), -103.30 (t, *J* = 14.4 Hz, 2F), -120.38 (q, *J* = 10.1 Hz, 2F), -126.09 (dt, *J* = 17.3, 10.2 Hz, 2F) ppm.


General procedure for the synthesis of ureas 2

General procedure D (GPD)^[4]

$$\mathbb{R}^{1}$$
-NH₂ + (Boc)₂O $\xrightarrow{\text{DABCO (0.1 equiv.)}}$ \mathbb{R}^{1} \mathbb{R}^{1}


According to Sun's reported method, a flask (50 mL), equipped with a magnetic stir bar, was charged with amine (2 mmol, 2.0 equiv.), DABCO (11.2 mg, 0.1 mmol, 0.1 equiv.), (Boc)₂O (218 mg, 1.0 mmol, 1.0 equiv.), and CH₂Cl₂ (10 mL) under air. The reaction mixture was stirred at room temperature under air for 30 min to 6 h. After the completion of the reaction as detected by TLC, the reaction mixture was cooled to 0 °C, *n*-hexane was then added. The resulting solid was collected and further washed with cold water and diethyl ether to afford the corresponding product

<u>General procedure for the defluorinative synthesis of C4-perfluoroalkenyl</u> <u>2-imidazolones 3</u>

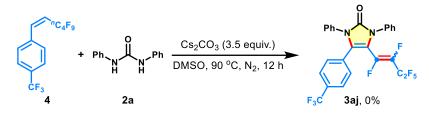
A tube (10 mL), equipped with a magnetic stir bar, was charged with perfluoroalkyl alkenyl iodide (0.3 mmol, 1 equiv., **1**), urea derivative (0.45 mmol, 1.5 equiv., **2**), Cs_2CO_3 (342.1 mg, 1.05 mmol, 3.5 equiv.), and DMSO (2 mL) under N₂ atmosphere. The reaction mixture was stirred at 90 °C (oil bath) under N₂ atmosphere for 12 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and extracted with EtOAc (20 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (20/1~2/1) as eluent to afford the pure product **3**.

Scale-up synthesis of product 3aa

A tube (10 mL), equipped with a magnetic stir bar, was charged with (3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohex-1-en-1-yl)benzene (896.9 mg, 2 mmol, 1 equiv., **1a**), *N*,*N*-diphenylurea (636.8 mg, 3 mmol, 1.5 equiv., **2a**), Cs₂CO₃ (2280.0 mg, 7 mmol, 3.5 equiv.), and DMSO (10 mL) under N₂ atmosphere. The reaction mixture was stirred at 90 °C (oil bath) under N₂ atmosphere for 12 h. The reaction was then quenched by saturated NH₄Cl solution (60 mL) and extracted with EtOAc (60 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (10/1) as eluent to afford the pure product **3aa** (756.8 mg, 77% yield).

Mechanistic studies

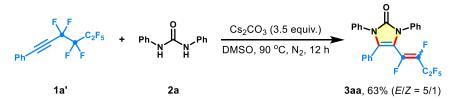
a) Radical trapping experiment



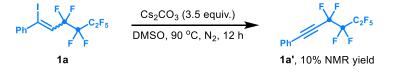
A tube (10 mL), equipped with a magnetic stir bar, was charged with (3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohex-1-en-1-yl)benzene (134.4 mg, 0.3 mmol, 1 equiv., **1a**), *N*,*N*'-diphenylurea (95.5 mg, 0.45 mmol, 1.5 equiv., **2a**), TEMPO (93.7 mg, 0.6 mmol, 2 equiv.), Cs₂CO₃ (342.1 mg, 1.05 mmol, 3.5 equiv.), and DMSO (2 mL) under N₂ atmosphere. The reaction mixture was stirred at 90 °C (oil bath) under N₂ atmosphere for 12 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and extracted with EtOAc (20 mL x 3). The

organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (10/1) as eluent to afford the pure product **3aa** (102.7 mg, 70% yield).

A reaction pathway involving open shell intermediates is unlikely.


b) The reactivity of perfluoroalkylated alkene

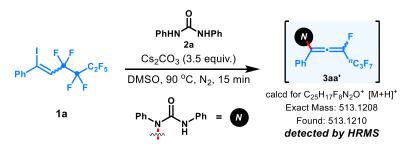
A tube (10 mL), equipped with a magnetic stir bar, was charged with (*Z*)-1-(3,3,4,4,5,5,6,6,6-nonafluorohex-1-en-1-yl)-4-(trifluoromethyl)benzene (78.0 mg, 0.2 mmol, 1 equiv., **4**), *N*,*N*'-diphenylurea (63.7 mg, 0.3 mmol, 1.5 equiv., **2a**), Cs₂CO₃ (228.1 mg, 0.7 mmol, 3.5 equiv.), and DMSO (2 mL) under N₂ atmosphere. The reaction mixture was stirred at 90 °C (oil bath) under N₂ atmosphere for 12 h. No desired product **3aj** was detected.


This result suggested that the initial reaction might start with an S_NV -type (nucleophilic vinylic substitution) $C(sp^2)$ -I bond displacement.

c) The reaction of perfluorobutyl phenyl alkyne 1a' with urea 2a

А tube (10 mL), equipped with a magnetic stir bar, was charged with (perfluorohex-1-yn-1-yl)benzene (96.1 mg, 0.3 mmol, 1 equiv., 1a'), N,N'-diphenylurea (95.5 mg, 0.45 mmol, 1.5 equiv., 2a), Cs₂CO₃ (342.1 mg, 1.05 mmol, 3.5 equiv.), and DMSO (2 mL) under N₂ atmosphere. The reaction mixture was stirred at 90 °C (oil bath) under N₂ atmosphere for 12 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and extracted with EtOAc (20 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate $(10/1 \sim 4/1)$ as eluent to afford the pure product 3aa (93.1 mg, 63% yield).

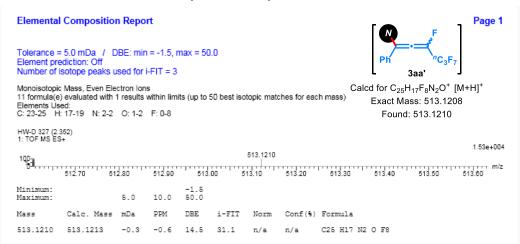
d) Dehydroiodination of perfluoroalkyl alkenyl iodide 1a

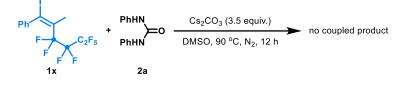


A tube (10 mL), equipped with a magnetic stir bar, was charged with (3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohex-1-en-1-yl)benzene (134.4 mg, 0.3 mmol, 1 equiv., **1a**),

 Cs_2CO_3 (342.1 mg, 1.05 mmol, 3.5 equiv.), and DMSO (2 mL) under N₂ atmosphere. The reaction mixture was stirred at 90 °C (oil bath) under N₂ atmosphere for 12 h. The tube was then cooled to room temperature and the reaction mixture was quenched by saturated NH₄Cl solution (20 mL) followed by extraction with EtOAc (20 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The residue was directly analyzed by NMR analysis. ~10% NMR yield of (perfluorohex-1-yn-1-yl)benzene (1a') was determined by ¹⁹F NMR analysis of the residue using 1-fluoro-4-methoxybenzene (0.3 mmol) as an internal standard.

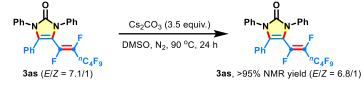
<u>Although the condensation of presynthesized 1a' with N,N'-diphenylurea 2a readily occurred,</u> the generation of (perfluorohex-1-yn-1-yl)benzene 1a' (~10% NMR yield) in a low yield in the absence of urea 2a under the standard conditions reflected that 1a' might not be a real reaction intermediate.


e) Detection of possible intermediate 3aa'


A tube (10 mL), equipped with a magnetic stir bar, was charged with (3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohex-1-en-1-yl)benzene (134.4 mg, 0.3 mmol, 1 equiv., **1a**), *N*,*N*-diphenylurea (95.5 mg, 0.45 mmol, 1.5 equiv.), Cs₂CO₃ (342.1 mg, 1.05 mmol, 3.5 equiv.), and DMSO (2 mL) under N₂ atmosphere. The reaction mixture was stirred at 90 °C (oil bath) under N₂ atmosphere for 15 min. Upon completion of the reaction, the tube was cooled to room temperature, and the mixture was passed through a short pad of Celite and rinsed with MeOH. A sample was taken from the filtrate and was directly analyzed by HRMS.

HRMS analysis of the reaction mixture suggested the involvement of possible intermediate <u>3aa'</u>.

The intermediate 3aa' was detected by HRMS analysis:



f) The use of perfluorobutyl alkenyl iodide 1x

A tube (10 mL) equipped with a magnetic stir bar was charged with (*E*)-(3,3,4,4,5,5,6,6,6-nonafluoro-1-iodo-2-methylhex-1-en-1-yl)benzene (138.6 mg, 0.3 mmol, 1 equiv., **1x**), *N*,*N*'-diphenylurea (95.5 mg, 0.45 mmol, 1.5 equiv., **2a**), Cs₂CO₃ (342.1 mg, 1.05 mmol, 3.5 equiv.), and DMSO (2 mL) under N₂ atmosphere. The reaction mixture was stirred at 90 °C (oil bath) under N₂ atmosphere for 12 h. No defluorinative coupled product was observed. *This result indicates the involvement of a fluoroallene intermediate.*

g) The effect of reaction conditions on the E/Z ratio of product 3as

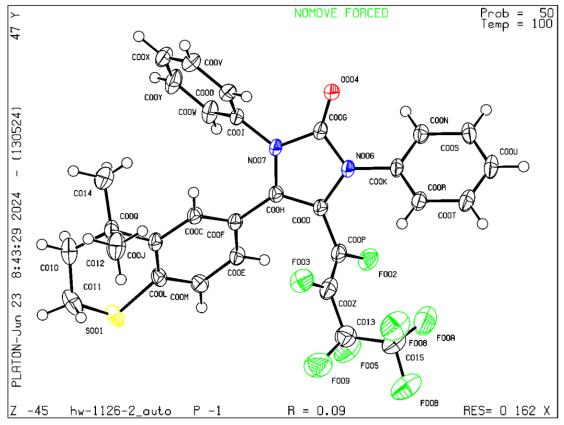
A tube (10 mL) equipped with a magnetic stir bar was charged with 4-(perfluorohex-1-en-1-yl)-1,3,5-triphenyl-1,3-dihydro-2*H*-imidazol-2-one (59.2 mg, 0.1 mmol, 1 equiv., 3as), Cs₂CO₃ (114.0 mg, 0.35 mmol, 3.5 equiv.), and DMSO (2 mL) under N₂ atmosphere. The reaction mixture was stirred at 90 °C (oil bath) under N₂ atmosphere for 24 h. The tube was then cooled to room temperature and the reaction mixture was quenched by saturated NH₄Cl solution (20 mL) followed by extraction with EtOAc (20 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The residue was directly analyzed by NMR analysis. >95% NMR yield of 4-(perfluorohex-1-en-1-yl)-1,3,5-triphenyl-1,3-dihydro-2H-imidazol-2-one (**3as**), with a E/Z ratio of 6.8/1, was determined through ¹⁹F NMR analysis of the residue, employing 1-fluoro-4-methoxybenzene (0.1 mmol) as the internal standard.

Optimization of reaction conditions

Table S1. Optimization of reaction conditions^a

	Ph	F F C_2F_5 + Ph	O N Ph − H H	Base (x equiv Sol., Temp., N ₂ ,	Time Ph-	N ^{Ph} F [†] Ph		5
		1a	2a			F C ₂ F ₅ 3aa	1a'	
Enter	1/2	D ()	C - 1	T (0 C)	Time (b)	Yields	$(\%)^b$	
Entry	1a/2a	Base (x equiv)	Sol.	Temp. (°C)	Time (h)	3aa (<i>E</i> / <i>Z</i>) ^{<i>c</i>}	1a	1a'
1	1/1.5	Cs ₂ CO ₃ (2.5)	NMP	90	12	14 (5.9/1)	2	21
2	1/1.5	Cs ₂ CO ₃ (2.5)	DMSO	90	12	50 (5.7/1)	1	5
3	1/1.5	Cs ₂ CO ₃ (2.5)	MeCN	80	12	29 (5.6/1)	3	9
4	1/1.5	Cs ₂ CO ₃ (2.5)	DMF	90	24	40 (5.7/1)	3	21
5	1/1.5	Cs ₂ CO ₃ (2.5)	DMSO	90	24	44 (5.3/1)	2	5
6	1/1.5	Cs ₂ CO ₃ (2.5)	DMSO	50	12	27 (6.6/1)	2	31
7	1/1.5	Cs ₂ CO ₃ (2.5)	DMSO	70	12	36 (6.2/1)	2	22
8	1/1.5	Cs ₂ CO ₃ (2.5)	DMSO	110	12	51 (3.6/1)	0	1
9	1/2	Cs ₂ CO ₃ (2.5)	DMSO	90	12	45 (5.4/1)	0	3
10	1/3	Cs ₂ CO ₃ (2.5)	DMSO	90	12	39 (4.6/1)	2	3
11	1.5/1	Cs ₂ CO ₃ (2.5)	DMSO	90	12	32 (5.4/1)	9	11
12	1/1.5	Cs ₂ CO ₃ (2)	DMSO	90	12	29 (5.4/1)	3	5
13	1/1.5	Cs ₂ CO ₃ (3)	DMSO	90	12	59 (5.5/1)	0	2
14	1/1.5	Cs_2CO_3 (3.5)	DMSO	90	12	74 (70%) ^d (5.6/1)	0	1
15	1/1.5	Cs ₂ CO ₃ (4)	DMSO	90	12	71 (5.5/1)	1	0
16	1/1.5	Cs ₂ CO ₃ (5)	DMSO	90	12	68 (5.5/1)	0	0
17	1/1.5	K ₂ CO ₃ (3.5)	DMSO	90	12	21 (5/1)	0	3
18	1/1.5	K ₃ PO ₄ (3.5)	DMSO	90	12	9 (5/1)	0	4
19	1/1.5	LiOH (3.5)	DMSO	90	12	44 (5.8/1)	0	5
20	1/1.5	^t BuOLi (3.5)	DMSO	90	12	43 (5.6/1)	0	2
21	1/1.5	DABCO (3.5)	DMSO	90	12	trace	trace	trace
22	1/1.5	Et ₃ N (3.5)	DMSO	90	12	trace	trace	trace
23	1/1.2	Cs ₂ CO ₃ (3.5)	DMSO	90	12	60 (5.7/1)	1	1
24	1/1	Cs ₂ CO ₃ (3.5)	DMSO	90	12	63 (5.6/1)	1	1
25^{e}	1/1.5	Cs_2CO_3 (3.5)	DMSO	90	12	56 (5.6/1)	1	1
26 ^f	1/1.5	Cs ₂ CO ₃ (3.5)	DMSO	90	12	71 (5/1)	1	1
27	1/1.5	Cs ₂ CO ₃ (3.5)	DMSO	90	6	68 (5.7/1)	1	2

^{*a*} Reaction conditions: **1a** (0.3-0.45 mmol), **2a** (0.3-0.9 mmol), and base (0.6-1.5 mmol) in solvent (2 mL) at 50-110 °C under N₂ for 6-24 h. ^{*b*} Yields were determined by ¹⁹F NMR analysis with 1-methoxy-4-(trifluoromethyl)benzene (0.3 mmol) as an internal standard. ^{*c*} The ratio of E/Z isomers was determined through ¹⁹F NMR analysis of the crude products. ^{*d*} Isolated yield. ^{*e*} DMSO (1 mL) was used. ^{*f*} DMSO (3 mL) was used.


The X-ray crystal structure of product (E)-3am

The single crystal was grown from the mixed solution of DCM/EtOAc/DMF (v/v/v = 10/3/1) by slowly evaporating the above solvents at room temperature.

$(E) \hbox{-} 4 \hbox{-} (4, 4 \hbox{-} Dimethyl thiochroman \hbox{-} 6 \hbox{-} yl) \hbox{-} 5 \hbox{-} (perfluorobut \hbox{-} 1 \hbox{-} en \hbox{-} 1 \hbox{-} yl) \hbox{-} 1, 3 \hbox{-} diphenyl \hbox{-} 1, 3 \hbox{-} 1,$

H-imidazol-2-one [(*E*)-3am; displacement ellipsoids are drawn at the 50% probability levels]:

_chemical_name_systematic P1 _chemical_formula_moiety 'C30 H23 F7 N2 O S' chemical formula sum 'C30 H23 F7 N2 O S' _chemical_formula_weight 592.56 _space_group_crystal_system 'triclinic' _space_group_IT_number 2 _space_group_name_H-M_alt 'P -1' '-P 1' _space_group_name_Hall _cell_length_a 6.9880(2)_cell_length_b 12.2498(4)

_cell_length_c	16.3380(6)
cell_angle_alpha	105.013(3)
_cell_angle_beta	90.608(3)
_cell_angle_gamma	93.178(2)
cell_volume	1348.29(8)
 _cell_formula_units_Z	2
	6487
_cell_measurement_temperature	100.01(10)
_cell_measurement_theta_max	73.9870
_cell_measurement_theta_min	2.7590
shelx_estimated_absorpt_T_max	0.844
shelx_estimated_absorpt_T_min	0.844
_exptl_absorpt_coefficient_mu	1.753
_exptl_absorpt_correction_T_max	1.00000
_exptl_absorpt_correction_T_min	0.69281
_exptl_absorpt_correction_type	multi-scan
_exptl_crystal_colour	'clear whiteish white'
_exptl_crystal_colour_lustre	clear
_exptl_crystal_colour_modifier	whiteish
_exptl_crystal_colour_primary	white
_exptl_crystal_density_diffrn	1.460
_exptl_crystal_description	plate
_exptl_crystal_F_000	608
_exptl_crystal_size_max	0.1
_exptl_crystal_size_mid	0.1
_exptl_crystal_size_min	0.1
_diffrn_reflns_av_R_equivalents	0.0203
_diffrn_reflns_av_unetI/netI	0.0213
_diffrn_reflns_Laue_measured_frac	
_diffrn_reflns_Laue_measured_frac	
_diffrn_reflns_limit_h_max	5
_diffrn_reflns_limit_h_min	-8
_diffrn_reflns_limit_k_max	12
_diffrn_reflns_limit_k_min	-14
_diffrn_reflns_limit_l_max	19
_diffrn_reflns_limit_1_min	-19
diffrn reflns number	8377
_diffrn_reflns_point_group_measur	
_diffrn_reflns_theta_full	63.998
_diffrn_reflns_theta_max	63.998
_diffrn_reflns_theta_min	2.801
_diffrn_ambient_environment	N~2~
_diffrn_ambient_temperature	100.01(10)
	100.01(10)

_diffrn_detector	'CCD plate'
_diffrn_detector_area_resol_mean	10.4741
_diffrn_detector_type	Atlas
_diffrn_measured_fraction_theta_full	0.998
_diffrn_measured_fraction_theta_max	x 0.998

List of Runs (angles in degrees, time in seconds):

#7		Start					\k	h	Frames
1		-78.00					19.00	120.00	106
2	\mathbf{w}	-65.00 -	-10.00	1.00	1.00	 -41.73 1	25.00	90.00	55
3	\mathbf{w}	-114.00 -	-29.00	1.00	1.00	 -41.73 -3	38.00 -6	0.00	85
4	\mathbf{w}	25.00	94.00	1.00	1.00	 41.73	-125.00	-90.00	69
5	\mathbf{w}	55.00	84.00	1.00	1.00	 41.73	-129.00	80.00	29
6	\mathbf{w}	25.00	100.00	1.00	1.75	 106.33	-94.00 1	20.00	75
7	\mathbf{w}	116.00	172.00	1.00	1.75	 106.33	30.00	-180.00	56
8	\mathbf{w}	107.00	172.00	1.00	1.75	 106.33	125.00-	180.00	65
9	\mathbf{w}	45.00	88.00	1.00	1.75	 106.33	-125.00	0.00	43
10	\mathbf{w}	111.00	151.00	1.00	1.75	 106.33	125.00	120.00	40
11	\mathbf{w}	85.00	178.00	1.00	1.75	 106.33	30.00	-120.00	93
12	\mathbf{w}	73.00	112.00	1.00	1.75	 106.33-	125.00	-30.00	39
13	\mathbf{w}	52.00	117.00	1.00	1.75	 106.33-	125.00	60.00	65
14	\mathbf{w}	26.00	64.00	1.00	1.75	 106.33	-94.00	150.00	38
15	\mathbf{w}	84.00	109.00	1.00	1.75	 106.33	-94.00 1	50.00	25
16	\mathbf{w}	36.00	131.00	1.00	1.75	 106.33	-61.00 1	50.00	95
17	\mathbf{w}	120.00	178.00	1.00	1.75	 106.33	30.00	120.00	58
18	\mathbf{w}	142.00	178.00	1.00	1.75	 106.33	45.00	-60.00	36
19	\mathbf{w}	84.00	130.00	1.00	1.75	 106.33	45.00	-60.00	46

_diffrn_measurement_device

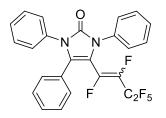
_diffrn_measurement_device_type

_diffrn_measurement_method

'four-circle diffractometer'

'SuperNova, Dual, Cu at home/near, Atlas' '\w scans'

_diffrn_orient_matrix_type

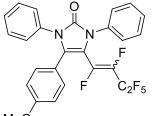

'CrysAlisPro convention (1999,Acta A55,543-557)'

•	
_diffrn_orient_matrix_UB_11	0.0060155000
_diffrn_orient_matrix_UB_12	-0.1271883000
_diffrn_orient_matrix_UB_13	-0.0439701000
_diffrn_orient_matrix_UB_21	0.0002845000
_diffrn_orient_matrix_UB_22	-0.0266390000
_diffrn_orient_matrix_UB_23	0.0871246000
_diffrn_orient_matrix_UB_31	-0.2207892000
_diffrn_orient_matrix_UB_32	-0.0113626000
_diffrn_orient_matrix_UB_33	-0.0036165000
_diffrn_radiation_monochromator	mirror

_diffrn_radiation_probe	х-гау
_diffrn_radiation_type	'Cu K\a'
_diffrn_radiation_wavelength	1.54184
diffrn_source	'micro-focus sealed X-ray tube'
diffrn_source_type	'SuperNova (Cu) X-ray Source'
_reflns_Friedel_coverage	0.000
_reflns_number_gt	4161
_reflns_number_total	4452
	uess 99.79
reflns_odcompleteness_iscentric	1
reflns_odcompleteness_theta	66.97
_reflns_threshold_expression	I > 2 s(I)
computing_cell_refinement	'CrysAlisPro 1.171.42.94a (Rigaku OD, 2023)'
computing_data_collection	'CrysAlisPro 1.171.42.94a (Rigaku OD, 2023)'
_computing_data_reduction	'CrysAlisPro 1.171.42.94a (Rigaku OD, 2023)'
_computing_molecular_graphics	'Olex2 1.3 (Dolomanov et al., 2009)'
_computing_publication_material	'Olex2 1.3 (Dolomanov et al., 2009)'
_computing_structure_refinement	'SHELXL 2018/3 (Sheldrick, 2015)'
_computing_structure_solution	'SHELXT 2018/2 (Sheldrick, 2018)'
_refine_diff_density_max	1.359
_refine_diff_density_min	-0.667
_refine_diff_density_rms	0.113
_refine_ls_extinction_method	none
_refine_ls_goodness_of_fit_ref	1.026
_refine_ls_hydrogen_treatment	constr
_refine_ls_matrix_type	full
_refine_ls_number_parameters	372
_refine_ls_number_reflns	4452
_refine_ls_number_restraints	0
_refine_ls_R_factor_all	0.0916
_refine_ls_R_factor_gt	0.0877
_refine_ls_restrained_S_all	1.026
_refine_ls_shift/su_max	0.000
_refine_ls_shift/su_mean	0.000
_refine_ls_structure_factor_coef	Fsqd
_refine_ls_weighting_details	
'w=1/[\s^2^(Fo^2^)+(0.1548P)^2^	+4.3423P] where P=(Fo^2^+2Fc^2^)/3'
_refine_ls_weighting_scheme	calc
_refine_ls_wR_factor_gt	0.2514
_refine_ls_wR_factor_ref	0.2549

Characterization data for products

Note: All ¹⁹F NMR analyses of the E/Z isomer ratio were based on two characteristic fluorine peaks within the range of -119 to -121 ppm.


4-(Perfluorobut-1-en-1-yl)-1,3,5-triphenyl-1,3-dihydro-2*H*-imidazol-2-one (3aa):

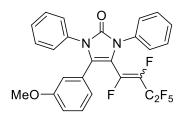
Yield = 70% (103.5 mg, E/Z = 5.3/1). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1). ¹H NMR (400 MHz, CDCl₃) of *E*-isomer: δ = 7.50 (d, *J* = 4.4 Hz, 4H), 7.42–7.38 (m, 1H), 7.35–7.23 (m, 8H), 7.21–7.16 (m, 2H) ppm.

¹⁹F NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -84.36 (t, *J* = 3.4 Hz, 3F), -120.64 – -120.80 (m, 2F), -127.18 – -127.77 (m, 1F), -156.04 – -156.58 (m, 1F) ppm; **Z**-isomer: δ = -83.22 (d, *J* = 9.0 Hz, 3F), -99.96 (d, *J* = 22.6 Hz, 1F), -119.66 (d, *J* = 15.0 Hz, 2F), -140.72 – -140.93 (m, 1F) ppm. ¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: δ = 151.4, 145.0 (dd, *J*_{C-F} = 257.0, 42.5 Hz), 143.9–137.9 (m, 1C), 129.34, 129.28, 128.9, 128.73, 128.71, 128.6, 128.2, 127.8, 127.3, 126.7, 126.6, 126.3, 125.8, 107.5 (dd, *J*_{C-F} = 27.3, 5.1 Hz) ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₅H₁₆F₇N₂O [M+H]⁺ 493.1145, found: 493.1148.

4-(4-Methoxyphenyl)-5-(perfluorobut-1-en-1-yl)-1,3-diphenyl-1,3-dihydro-2*H*-imidazol-2-one (3ab):


Yield = 55% (86.8 mg, E/Z = 6.9/1). Yellow solid.

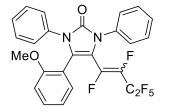
Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1). ¹H NMR (400 MHz, CDCl₃) of *E*-isomer: δ = 7.50–7.46 (m, 4H), 7.42–7.36 (m, 1H), 7.34 (dt, *J* = 6.5, 1.4 Hz, 2H), 7.32–7.28 (m, 1H), 7.26–7.22 (m, 2H), 7.12–7.06 (m, 2H), 6.83–6.79 (m, 2H), 3.76 (s, 3H) ppm.

¹⁹F NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -84.35 (t, *J* = 4.4 Hz, 3F), -120.58 (dd, *J* = 24.8, 14.1 Hz, 2F), -126.97 - -127.56 (m, 1F), -156.27 - -156.80 (m, 1F) ppm; **Z**-isomer: δ = -83.88 (s, 3F), -95.53 (d, *J* = 22.3 Hz, 1F), -119.54 (dd, *J* = 31.3, 17.4 Hz, 2F), -141.06 - -141.23(m, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: δ = 160.3, 151.5, 145.2 (dd, J_{C-F} = 258.6, 42.4 Hz), 145.8–137.8 (m, 1C), 134.3, 134.2, 130.2, 129.3, 129.0, 128.1, 127.8, 127.4, 126.3, 125.8, 118.8, 114.1, 107.0 (dd, J_{C-F} = 22.3, 5.1 Hz), 55.1 ppm, carbons corresponding to the C₂F₅ group cannot

be identified due to C-F coupling. **HRMS (m/z):** calcd for $C_{26}H_{18}F_7N_2O_2$ [M+H]⁺ 523.1251, found: 523.1255.

4-(3-Methoxyphenyl)-5-(perfluorobut-1-en-1-yl)-1,3-diphenyl-1,3-dihydro-2*H*-imidazol-2-one (3ac):

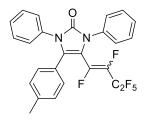

Yield = 56% (87.7 mg, E/Z = 4.7/1). Yellow solid.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1). ¹H NMR (400 MHz, CDCl₃) of *E*-isomer: δ = 7.50–7.45 (m, 5H), 7.28–7.25 (m, 2H), 7.23–7.18 (m, 5H), 6.93 (t, *J* = 7.5 Hz, 1H), 6.75 (d, *J* = 8.4 Hz, 1H), 3.42 (s, 3H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -84.40 (t, *J* = 4.2 Hz, 3F), -120.60 - -120.77 (m, 2F), -126.73 - -127.36 (m, 1F), -155.76 - -156.27 (m, 1F) ppm; **Z**-isomer: δ = -83.19 - -83.26 (m, 3F), -95.89 (d, *J* = 20.6 Hz, 1F), -119.55 - -119.63 (m, 2F), -140.64 - -140.85 (m, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: δ = 159.5, 151.4, 145.0 (dd, J_{C-F} = 258.6, 42.4 Hz), 140.1–138.1 (m, 1C), 134.2, 134.1, 129.6, 129.3, 129.0, 128.4, 128.2, 127.9, 127.3, 126.3, 125.9, 121.1, 115.6, 113.8, 107.5 (dd, J_{C-F} = 22.2, 4.1 Hz), 55.0 ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₆H₁₈F₇N₂O₂ [M+H]⁺ 523.1251, found: 523.1249.

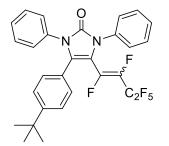

4-(2-Methoxyphenyl)-5-(perfluorobut-1-en-1-yl)-1,3-diphenyl-1,3-dihydro-2*H*-imidazol-2-one (3ad):

Yield = 34% (53.3 mg, E/Z = 4.8/1). Yellow solid.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1). ¹H NMR (400 MHz, CDCl₃) of *E*-isomer: δ = 7.50–7.45 (m, 5H), 7.28–7.25 (m, 2H), 7.20 (dddd, *J* = 10.4, 6.1, 2.1, 1.1 Hz, 5H), 6.93 (td, *J* = 7.5, 1.0 Hz, 1H), 6.75 (dd, *J* = 8.4, 1.0 Hz, 1H), 3.42 (s, 3H) ppm.

¹⁹**F NMR** (**376 MHz**, **CDCl**₃) of *E*-isomer: δ = -84.40 (t, *J* = 4.2 Hz, 3F), -120.60 – -120.77 (m, 2F), -126.73 – -127.36 (m, 1F), -155.76 – -156.27 (m, 1F) ppm; **Z**-isomer: δ = -83.19 – -83.26 (m, 3F), -95.89 (d, 1F), -119.55 – -119.63 (m, 2F), -140.64 – -140.85 (m, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: δ = 156.9, 151.4, 145.3 (dd, J_{C-F} = 256.5, 42.4 Hz), 141.4–137.3 (m, 1C), 134.8, 134.6, 131.6, 131.0, 129.3, 128.5, 128.2, 127.9, 127.5, 126.4, 125.7, 120.7, 115.8, 111.1, 107.8 (dd, J_{C-F} = 26.3, 5.1Hz), 54.9 ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.


4-(Perfluorobut-1-en-1-yl)-1,3-diphenyl-5-(p-tolyl)-1,3-dihydro-2H-imidazol-2-one (3ae): Yield = 66% (100.7 mg, E/Z = 5.6/1). Yellow solid.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1). ¹**H NMR (400 MHz, CDCl₃) of** *E***-isomer:** δ = 7.49–7.45 (m, 4H), 7.38 (ddd, *J* = 6.4, 5.4, 2.5 Hz, 1H), 7.34–7.30 (m, 2H), 7.30–7.27 (m, 1H), 7.24–7.20 (m, 2H), 7.06 (q, *J* = 8.2 Hz, 4H), 2.30 (s, 3H) ppm.

¹⁹F NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -84.36 (t, *J* = 4.2 Hz, 3F), -120.58 – -120.73 (m, 2F), -126.93 – -127.51 (m, 1F), -156.17 – -156.67 (m, 1F) ppm; **Z**-isomer: δ = -83.22 (d, *J* = 8.8 Hz, 3F), -95.67 (d, *J* = 20.8 Hz, 1F), -119.47 – -119.66 (m, 2F), -141.07 (ddt, *J* = 30.0, 17.4, 8.7 Hz, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: δ = 151.5, 144.7 (dd, J_{C-F} = 256.5, 42.4 Hz), 139.6, 138.9–137.9 (m, 1C), 134.3, 134.2, 129.4, 129.3, 129.0, 128.6, 128.3, 128.1, 127.8, 127.4, 125.9, 123.7 (d, J_{C-F} = 2.2Hz), 107.2 (dd, J_{C-F} = 26.3, 5.1Hz), 21.2 ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₆H₁₈F₇N₂O [M+H]⁺ 507.1302, found: 507.1302.

4-(4-(*tert*-Butyl)phenyl)-5-(perfluorobut-1-en-1-yl)-1,3-diphenyl-1,3-dihydro-2*H*-imidazol-2-one (3af):

Yield = 62% (101.6 mg, E/Z = 6.1/1). Yellow solid.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1).

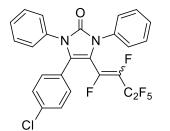
¹H NMR (400 MHz, CDCl₃) of *E*-isomer: δ = 7.49–7.46 (m, 5H), 7.34–7.28 (m, 5H), 7.24 (dt, *J* = 7.0, 1.5 Hz, 2H), 7.10–7.05 (m, 2H), 1.27 (s, 9H) ppm.

¹⁹F NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -84.36 (t, *J* = 4.3 Hz, 3F), -120.57 – -120.76 (m, 2F), -126.71 – -127.32 (m, 1F), -156.26 (ddtd, *J* = 149.1, 13.4, 8.8, 4.3 Hz, 1F) ppm; *Z*-isomer: δ = -83.24 (d, *J* = 8.9 Hz, 3F), -95.82 (d, *J* = 22.2 Hz, 1F), -119.69 (dd, *J* = 76.7, 17.7 Hz, 2F), -141.18 (ddt, *J* = 29.8, 17.7, 8.9 Hz, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: δ = 152.7, 151.5, 145.2 (dd, J_{C-F} = 256.5, 42.4 Hz), 141.1–138.6 (m, 1C), 134.3, 134.2, 129.3, 128.9, 128.4, 128.1, 127.8, 127.4, 126.3, 125.9, 125.6, 123.7 (d, J_{C-F} = 3.4 Hz), 107.3 ((dd, J_{C-F} = 28.3, 5.1 Hz), 34.7, 31.0 ppm, carbons corresponding to

the C₂F₅ group cannot be identified due to C-F coupling. **HRMS (m/z):** calcd for C₂₉H₂₄F₇N₂O [M+H]⁺ 549.1771, found: 549.1770.

4-(4-Fluorophenyl)-5-(perfluorobut-1-en-1-yl)-1,3-diphenyl-1,3-dihydro-2*H*-imidazol-2-one (3ag):


Yield = 35% (53.0 mg, E/Z = 4.3/1). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1). ¹H NMR (400 MHz, CDCl₃) of *E*-isomer: $\delta = 7.53-7.41$ (m, 5H), 7.37–7.31 (m, 3H), 7.23–7.20 (m, 2H), 7.15 (ddt, J = 8.0, 5.1, 2.5 Hz, 2H), 7.04–6.96 (m, 2H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -84.37 (q, *J* = 4.4 Hz, 3F), -110.05 – -110.14 (m, 1F), -120.62 – -120.76 (m, 2F), -127.33 – -127.93 (m, 1F), -155.90 – -156.47 (m, 1F) ppm; *Z*-isomer: δ = -83.23 (d, *J* = 8.8 Hz, 3F), -96.20 (d, *J* = 20.8 Hz, 1F), -110.17 (t, *J* = 5.2 Hz, 1F), -119.60 (d, *J* = 17.5 Hz, 2F), -140.26 – -140.53 (m, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: $\delta = 163.1$ (d, $J_{C-F} = 251.5$ Hz), 151.4, 145.7 (dd, $J_{C-F} = 256.5$, 42.4 Hz), 141.1–138.6 (m, 1C), 134.2, 133.9, 130.9 (d, $J_{C-F} = 8.2$ Hz), 129.4, 129.1, 128.3, 128.1, 127.4, 126.3, 125.9, 122.9, 116.1 (d, $J_{C-F} = 22.2$ Hz), 107.9 (dd, $J_{C-F} = 22.2$, 7.2 Hz) ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{25}H_{15}F_8N_2O$ [M+H]⁺ 511.1051, found: 511.1050.

4-(4-Chlorophenyl)-5-(perfluorobut-1-en-1-yl)-1,3-diphenyl-1,3-dihydro-2*H*-imidazol-2-one (3ah):

Yield = 52% (82.7 mg, E/Z = 4.6/1). Yellow solid.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1).


¹**H NMR (400 MHz, CDCl₃) of** *E***-isomer:** δ = 7.51–7.42 (m, 5H), 7.37–7.34 (m, 2H), 7.30–7.26 (m, 3H), 7.24–7.20 (m, 2H), 7.12–7.08 (m, 2H) ppm.

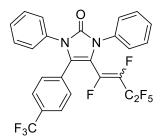
¹⁹F NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -84.33 (d, *J* = 3.7 Hz, 3F), -120.62 – -120.76 (m, 2F), -127.20 – -127.79 (m, 1F), -155.51 – -156.29 (m, 1F) ppm; **Z**-isomer: δ = -83.22 (d, *J* = 9.0 Hz, 3F), -96.20 (d, *J* = 19.4 Hz, 1F), -119.59 (dd, *J* = 17.9, 7.7 Hz, 2F), -140.04 – -140.26 (m, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: $\delta = 151.4$, 144.5 (dd, $J_{C-F} = 257.6$, 44.5 Hz),

141.0–137.7 (m, 1C), 135.7, 134.1, 133.8, 130.0, 129.4, 129.2, 129.1, 128.4, 128.1, 127.3, 126.3, 125.9, 125.2 (d, $J_{C-F} = 3.4$ Hz), 108.0 (dd, $J_{C-F} = 27.6$, 5.1 Hz) ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₅H₁₅ClF₇N₂O [M+H]⁺ 527.0756, found: 527.0756.

4-(4-Bromophenyl)-5-(perfluorobut-1-en-1-yl)-1,3-diphenyl-1,3-dihydro-2*H*-imidazol-2-one (3ai):


Yield = 40% (68.4 mg, E/Z = 4.6/1). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1). ¹H NMR (400 MHz, CDCl₃) of *E*-isomer: δ = 7.51–7.41 (m, 8H), 7.38–7.34 (m, 2H), 7.23–7.19 (m, 2H), 7.05–7.01 (m, 2H) ppm.

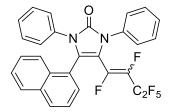
¹⁹F NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -84.31 (t, *J* = 3.9 Hz, 3F), -120.62 – -120.77 (m, 2F), -127.19 – -127.78 (m, 1F), -155.58 – -156.08 (m, 1F) ppm; **Z**-isomer: δ = -83.18 – -83.24 (m, 3F), -96.21 (d, *J* = 19.7 Hz, 1F), -119.60 (dd, *J* = 17.3, 10.1 Hz, 2F), -139.94 – -140.16 (m, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: δ = 151.4, 144.9 (dd, J_{C-F} = 256.5, 45.5 Hz), 141.4–137.8 (m, 1C), 134.0, 133.8, 132.0, 130.2, 129.4, 129.2, 128.4, 128.2, 127.3, 126.3, 125.9, 125.7, 123.9, 107.7 (dd, J_{C-F} = 28.2, 5.1 Hz) ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₅H₁₅BrF₇N₂O [M+H]⁺ 571.0250, found: 571.0255.

4-(Perfluorobut-1-en-1-yl)-1,3-diphenyl-5-(4-(trifluoromethyl)phenyl)-1,3-dihydro-2*H*-imidazol-2-one (3aj):

Yield = 44% (73.8 mg, E/Z = 4.6/1). Yellow solid.


Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1). ¹H NMR (400 MHz, CDCl₃) of *E*-isomer: δ = 7.56 (d, *J* = 8.3 Hz, 2H), 7.53–7.42 (m, 5H), 7.40–7.27 (m, 5H), 7.25–7.20 (m, 2H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃) of** *E*-isomer: δ = -62.91 (s, 3F), -84.37 (t, *J* = 4.4 Hz, 3F), -120.72 - -120.87 (m, 2F), -127.24 - -127.86 (m, 1F), -155.29 - -155.84 (m, 1F) ppm; *Z*-isomer: δ = -62.88, (s, 3F), -83.31 (d, *J* = 8.9 Hz, 3F), -96.57 (d, *J* = 19.3 Hz, 1F), -119.71 (s, 2F), -139.65 (ddt,

J = 26.8, 17.9, 8.9 Hz, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: δ = 151.4, 144.5 (dd, J_{C-F} = 266.7, 41.5 Hz), 141.2–138.1 (m, 1C), 131.3 (q, J_{C-F} = 33.3 Hz), 130.5, 129.6, 129.5, 129.3, 129.1, 128.5, 128.3, 127.3, 126.4, 126.0, 125.7 (q, J_{C-F} = 4.5 Hz), 124.9, 122.2, 108.6 (dd, J_{C-F} = 26.7, 3.3 Hz) ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{26}H_{15}F_{10}N_2O$ [M+H]⁺ 561.1019, found: 561.1017.

4-(Naphthalen-1-yl)-5-(perfluorobut-1-en-1-yl)-1,3-diphenyl-1,3-dihydro-2*H*-imidazol-2-one (3ak):

Yield = 43% (70.3 mg, E/Z = 10.6/1). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1).

¹**H NMR (400 MHz, CDCl₃) of** *E***-isomer:** δ = 7.90–7.85 (m, 1H), 7.81 (dt, *J* = 7.3, 3.0 Hz, 2H), 7.59–7.39 (m, 9H), 7.20–7.07 (m, 5H) ppm.

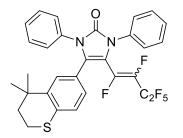
¹⁹**F** NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -84.78 (t, *J* = 2.9 Hz, 3F), -120.82 (dd, *J* = 25.0, 13.1 Hz, 2F), -130.33 - -131.00 (m, 1F), -156.46 - -157.20 (m, 1F) ppm; **Z**-isomer: δ = -83.18 (d, *J* = 9.0 Hz, 3F), -96.44 (d, *J* = 19.9 Hz, 1F), -118.89 - -119.07 (m, 2F), -141.79 - -142.02 (m, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: δ = 151.6, 144.8 (dd, J_{C-F} = 266.7, 41.5 Hz), 140.6–137.3 (m, 1C), 134.5, 134.1, 133.3, 131.4, 130.6, 129.5, 129.4, 129.3, 128.7, 128.4, 128.2, 127.8, 127.0, 126.6, 126.4, 125.7, 124.9, 124.4, 124.2, 109.2 (dd, J_{C-F} = 26.7, 5.1 Hz) ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{29}H_{18}F_7N_2O$ [M+H]⁺ 543.1302, found: 543.1306.

4-(Perfluorobut-1-en-1-yl)-1,3-diphenyl-5-(thiophen-2-yl)-1,3-dihydro-2*H*-imidazol-2-one (3al):

Yield = 67% (100.3 mg, E/Z = 11.8/1). Yellow solid.


Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1). ¹H NMR (400 MHz, CDCl₃) of *E*-isomer: $\delta = 7.53-7.38$ (m, 8H), 7.37–7.30 (m, 3H), 6.98–6.89 (m, 2H) ppm.

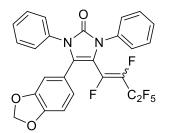
¹⁹**F NMR (376 MHz, CDCl₃) of** *E*-isomer: δ = -84.29 (t, *J* = 4.7 Hz, 3F), -120.62 - -120.77 (m, 2F), -126.84 - -127.58 (m, 1F), -155.03 (dddt, *J* = 150.1, 13.9, 8.9, 4.3 Hz, 1F) ppm; *Z*-isomer: δ = -83.25 (d, *J* = 8.5 Hz, 3F), -96.67 (d, *J* = 20.6 Hz, 1F), -119.62 (dd, *J* = 17.5, 8.5 Hz, 2F),

-139.93 (ddd, *J* = 29.6, 16.9, 8.6 Hz, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: δ = 151.3, 144.6 (dd, J_{C-F} = 246.4, 43.4 Hz), 141.8–138.6 (m, 1C), 134.0, 133.9, 129.4, 129.2, 128.62, 128.58, 128.4, 127.9, 127.2, 126.70, 126.67, 125.9, 123.6, 108.2 (dd, J_{C-F} = 26.7, 4.2 Hz) ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₃H₁₄F₇N₂OS [M+H]⁺ 499.0710, found: 499.0712.

4-(4,4-Dimethylthiochroman-6-yl)-5-(perfluorobut-1-en-1-yl)-1,3-diphenyl-1,3-dihydro-2*H*-imidazol-2-one (3am):

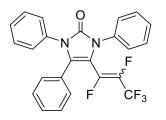

Yield = 60% (107.1 mg, E/Z = 4.8/1). Yellow solid.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1). ¹H NMR (400 MHz, CDCl₃) of *E*-isomer: δ = 7.52–7.44 (m, 5H), 7.43–7.35 (m, 4H), 7.32 (dd, *J* = 7.1, 1.8 Hz, 1H), 7.04–7.00 (m, 2H), 6.88 (dd, *J* = 8.2, 1.9 Hz, 1H), 3.03–2.97 (m, 2H), 1.92–1.86 (m, 2H), 1.06 (s, 6H) ppm.

¹⁹F NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -84.28 - -84.39 (m, 3F), -120.39 - -120.55 (m, 2F), -125.70 - -126.31 (m, 1F), -155.81 (dddd, *J* = 149.8, 17.9, 9.2, 4.3 Hz, 1F) ppm; *Z*-isomer: δ = -83.23 (dd, *J* = 8.5, 2.3 Hz, 3F), -95.48 (dd, *J* = 21.6, 4.0 Hz, 1F), -119.53 - -119.70 (m, 2F), -140.96 (dt, *J* = 23.5, 9.0 Hz, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: δ = 151.4, 145.5 (dd, J_{C-F} = 257.6, 43.4 Hz), 142.1, 141.1–138.5 (m, 1C), 134.3, 134.2, 134.1, 129.4, 129.3, 129.1, 128.1, 127.9, 127.5, 127.2, 126.7, 126.3, 125.9, 125.7, 121.9, 106.8 (dd, J_{C-F} = 27.8, 4.3 Hz), 36.9, 32.7, 29.7, 23.0 ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₃₀H₂₄F₇N₂OS [M+H]⁺ 593.1492, found: 593.1496.


4-(Benzo[*d*][1,3]dioxol-5-yl)-5-(perfluorobut-1-en-1-yl)-1,3-diphenyl-1,3-dihydro-2*H*-imidazol-2-one (3an):

Yield = 46% (74.2 mg, E/Z = 8.4/1). Yellow solid.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1). ¹H NMR (400 MHz, CDCl₃) of *E*-isomer: δ = 7.51–7.43 (m, 4H), 7.40–7.30 (m, 4H), 7.25–7.22 (m, 2H), 6.75–6.70 (m, 2H), 6.56 (d, *J* = 1.6 Hz, 1H), 5.96 (s, 2H) ppm. ¹⁹**F NMR** (**376 MHz, CDCl**₃) of *E*-isomer: δ = -84.37 (t, *J* = 4.4 Hz, 3F), -120.55 – -120.71 (m, 2F), -127.00 – -127.60 (m, 1F), -155.97 – -156.58 (m, 1F) ppm; **Z**-isomer: δ = -83.14 (d, *J* = 8.7 Hz, 3F), -95.63 (d, *J* = 20.8 Hz, 1F), -119.50 (dd, *J* = 50.6, 17.3 Hz, 2F), -140.66 – -140.93 (m, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: δ = 151.4, 148.6, 147.9, 145.0 (dd, J_{C-F} = 263.6, 43.4 Hz), 140.9–137.7 (m, 1C), 134.2, 134.1, 129.4, 129.1, 128.2, 128.0, 127.3, 126.3, 125.9, 123.3, 120.2, 109.0, 108.6, 107.3 (dd, J_{C-F} = 26.6, 5.1 Hz), 101.5 ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₆H₁₆F₇N₂O₃ [M+H]⁺ 537.1044, found: 537.1045.

4-(Perfluoroprop-1-en-1-yl)-1,3,5-triphenyl-1,3-dihydro-2*H*-imidazol-2-one (3ar):

Yield = 61% (80.5 mg, E/Z = 2.5/1). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1).

¹**H NMR (400 MHz, CDCl₃) of** *E***-isomer:** δ = 7.52–7.47 (m, 4H), 7.44–7.39 (m, 1H), 7.35–7.29 (m, 6H), 7.26–7.22 (m, 2H), 7.19–7.15 (m, 2H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -68.00 (dd, *J* = 20.8, 11.9 Hz, 3F), -128.54 – -129.14 (m, 1F), -158.22 – -158.74 (m, 1F) ppm; **Z**-isomer: δ = -68.67 (dd, *J* = 12.0, 7.4 Hz, 3F), -103.39 – -103.59 (m, 1F), -142.64 (dq, *J* = 20.3, 13.1 Hz, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: δ = 151.5, 144.4–141.4 (m, 1C), 140.3–137.9 (m, 1C), 134.3, 134.1, 129.5, 129.43, 129.36, 129.0, 128.8, 128.6, 128.2, 127.9, 127.3, 126.4, 125.9, 107.3 (dd, J_{C-F} = 26.6, 5.1 Hz) ppm, carbons corresponding to the CF₃ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₄H₁₆F₅N₂O [M+H]⁺ 443.1177, found: 443.1180.

4-(Perfluorohex-1-en-1-yl)-1,3,5-triphenyl-1,3-dihydro-2*H*-imidazol-2-one (3as):

Yield = 60% (106.9 mg, E/Z = 7.5/1). Yellow solid.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1). ¹H NMR (400 MHz, CDCl₃) of *E*-isomer: δ = 7.50–7.45 (m, 4H), 7.35–7.21 (m, 9H), 7.18–7.15 (m, 2H) ppm.

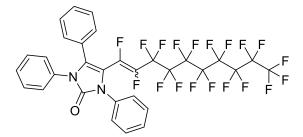
¹⁹**F NMR (376 MHz, CDCl₃) of** *E***-isomer:** δ = -80.95 (t, *J* = 9.9 Hz, 3F), -117.42 (dq, *J* = 25.3, 13.0 Hz, 2F), -124.31 - -124.60 (m, *J* = 8.9 Hz, 2F), -126.43 (t, *J* = 11.7 Hz, 2F), -126.50 - -127.07 (m, 1F), -154.77 - -155.49 (m, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: $\delta = 151.5$, 144.8 (dd, $J_{C-F} = 263.6$, 43.4 Hz), 140.7–137.8 (m, 1C), 134.3, 134.1, 129.4, 129.3, 129.0, 128.8, 128.6, 128.4, 128.2, 127.9, 127.4, 126.7, 126.3, 107.6 (dd, $J_{C-F} = 27.6$, 5.1 Hz) ppm, carbons corresponding to the C₄F₉ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₇H₁₆F₁₁N₂O [M+H]⁺ 593.1081, found: 593.1089.

4-(Perfluorooct-1-en-1-yl)-1,3,5-triphenyl-1,3-dihydro-2*H*-imidazol-2-one (3at):

Yield = 58% (120.8 mg, E/Z = 7.3/1). Yellow solid.


Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1).

¹**H** NMR (400 MHz, CDCl₃) of *E*-isomer: δ = 7.47 (d, *J* = 3.8 Hz, 4H), 7.33–7.21 (m, 9H), 7.18–7.15 (m, 2H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃) of** *E*-isomer: δ = -80.75 (t, *J* = 9.8 Hz, 3F), -117.26 (dq, *J* = 25.7, 13.1 Hz, 2F), -122.32 (s, 2F), -122.83 (s, 2F), -123.64 (s, 2F), -126.06 - -126.24 (m, 2F), -126.68 (dtt, *J* = 149.3, 25.0, 6.3 Hz, 1F), -154.72 - -155.31 (m, 1F) ppm.

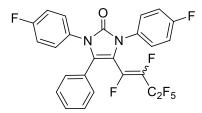
¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: δ = 151.5, 145.2 (dd, J_{C-F} = 258.3, 42.6 Hz), 141.2–138.2 (m, 1C), 134.3, 134.1, 129.4, 129.3, 129.0, 128.9, 128.6, 128.2, 127.9, 127.4, 126.8, 126.3, 126.0, 107.6 (dd, J_{C-F} = 27.3, 5.1 Hz) ppm, carbons corresponding to the C₆F₁₃ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₉H₁₆F₁₅N₂O [M+H]⁺ 693.1018, found: 693.1018.

4-(Perfluorodec-1-en-1-yl)-1,3,5-triphenyl-1,3-dihydro-2*H*-imidazol-2-one (3au):

Yield = 38% (91.1 mg, E/Z = 6.8/1). Yellow solid.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1).


¹**H NMR (400 MHz, CDCl₃) of** *E***-isomer:** δ = 7.49–7.46 (m, 4H), 7.34–7.20 (m, 9H), 7.18–7.15 (m, 2H) ppm.

¹⁹F NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -80.69 (t, *J* = 9.7 Hz, 3F), -117.24 (dq, *J* = 25.2, 12.0 Hz, 2F), -121.56 - -122.24 (m, 6F), -122.67 (dq, *J* = 19.3, 8.9 Hz, 2F), -123.45 - -123.72 (m, 2F), -126.06 (q, *J* = 8.1 Hz, 2F), -126.36 - -126.98 (m, 1F), -154.97 (dt, *J* = 150.4, 14.6 Hz, 1F) ppm.

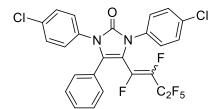
¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: $\delta = 151.5$, 145.1 (dd, $J_{C-F} = 258.3$, 42.6 Hz),

141.2–138.1 (m, 1C), 134.3, 134.1, 129.4, 129.3, 129.0, 128.9, 128.6, 128.3, 127.9, 127.4, 126.8, 126.3, 126.0, 107.6 (dd, $J_{C-F} = 26.5$, 5.2 Hz) ppm, carbons corresponding to the C₈F₁₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{31}H_{16}F_{19}N_2O$ [M+H]⁺ 793.0954, found: 793.0954.

1,3-Bis(4-fluorophenyl)-4-(perfluorobut-1-en-1-yl)-5-phenyl-1,3-dihydro-2*H*-imidazol-2-one (3ba):

Yield = 67% (105.9 mg, E/Z = 5.9/1). Yellow oil.


Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1).

¹**H NMR (400 MHz, CDCl₃) of** *E***-isomer:** δ = 7.46–7.41 (m, 2H), 7.36–7.29 (m, 3H), 7.23–7.13 (m, 6H), 7.06–7.00 (m, 2H) ppm.

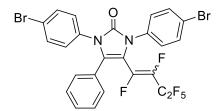
¹⁹**F NMR** (**376 MHz**, **CDCl**₃) of *E*-isomer: δ = -84.41 (t, *J* = 3.8 Hz, 3F), -112.31 (dt, *J* = 8.9, 4.4 Hz, 1F), -112.62 (d, *J* = 8.9 Hz, 1F), -120.75 (dd, *J* = 25.0, 12.3 Hz, 2F), -127.64 - -128.24 (m, 1F), -155.56 - -156.22 (m, 1F) ppm; **Z**-isomer: δ = -83.28 (d, *J* = 8.9 Hz, 3F), -96.57 (d, *J* = 19.4 Hz, 1F), -112.02 (dd, *J* = 10.7, 6.7 Hz, 1F), -112.65 - -112.74 (m, 1F), -119.58 (d, *J* = 17.1 Hz, 2F), -140.17 (ddt, *J* = 26.7, 17.8, 9.0 Hz, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: $\delta = 163.2$ (d, $J_{C-F} = 36.4$ Hz), 160.7 (d, $J_{C-F} = 36.4$ Hz), 151.5, 144.5 (dd, $J_{C-F} = 257.5$, 42.7 Hz), 141.2–137.9 (m, 1C), 130.0 (d, $J_{C-F} = 3.0$ Hz), 129.6, 129.1 (d, $J_{C-F} = 9.2$ Hz), 128.82, 128.78, 128.44, 128.35, 128.0 (d, $J_{C-F} = 8.1$ Hz), 126.4, 116.5 (d, $J_{C-F} = 23.2$ Hz), 116.2 (d, $J_{C-F} = 23.2$ Hz), 107.6 (dd, $J_{C-F} = 27.3$, 5.1 Hz) ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₅H₁₄F₉N₂O [M+H]⁺ 529.0957, found: 529.0959.

1,3-Bis(4-chlorophenyl)-4-(perfluorobut-1-en-1-yl)-5-phenyl-1,3-dihydro-2*H*-imidazol-2-one (3ca):

Yield = 66% (111.2 mg, E/Z = 5/1). Yellow solid.


Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1). ¹H NMR (400 MHz, CDCl₃) of *E*-isomer: δ = 7.48 (dq, *J* = 9.4, 2.7 Hz, 2H), 7.43–7.38 (m, 2H), 7.38–7.28 (m, 5H), 7.18–7.13 (m, 4H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -84.32 (d, *J* = 5.5 Hz, 3F), -120.60 – -120.79 (m, 2F), -127.66 – -128.28 (m, 1F), -155.35 – -155.90 (m, 1F) ppm; **Z**-isomer: δ = -83.26 (d, *J* = 9.0 Hz, 3F), -96.34 (d, *J* = 19.3 Hz, 1F), -119.63 (dd, *J* = 18.0, 7.6 Hz, 2F), -139.76 (dq, *J* = 17.9, 8.9

Hz, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: δ = 151.1, 144.6 (dd, J_{C-F} = 257.5, 42.7 Hz), 140.1–138.4 (m, 1C), 134.2, 133.8, 132.6, 132.4, 129.8, 129.6, 129.3, 128.9, 128.8, 128.4, 127.5, 127.1, 126.2, 107.5 (dd, J_{C-F} = 27.2, 4.1 Hz) ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₅H₁₄Cl₂F₇N₂O [M+H]⁺ 561.0366, found: 561.0369.

1,3-Bis(4-bromophenyl)-4-(perfluorobut-1-en-1-yl)-5-phenyl-1,3-dihydro-2*H*-imidazol-2-one (3da):

Yield = 73% (141.5 mg, E/Z = 5.1/1). Yellow oil.

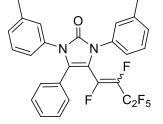
Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1).

¹**H NMR (400 MHz, CDCl₃) of** *E***-isomer:** δ = 7.66–7.60 (m, 2H), 7.47 (dd, *J* = 9.0, 2.6 Hz, 2H), 7.38–7.30 (m, 5H), 7.17–7.07 (m, 4H) ppm.

¹⁹F NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -84.24 - -84.34 (m, 3F), -120.68 (dd, *J* = 26.0, 12.7 Hz, 2F), -127.99 (dtd, *J* = 149.1, 24.7, 5.7 Hz, 1F), -155.15 - -155.88 (m, 1F) ppm; **Z**-isomer: δ = -83.24 (d, *J* = 8.8 Hz, 3F), -96.32 (d, *J* = 19.4 Hz, 1F), -119.63 (dd, *J* = 17.4, 9.7 Hz, 2F), -139.56 - -139.77(m, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: δ = 151.0, 144.6 (dd, J_{C-F} = 258.1, 43.2 Hz), 141.2–137.9 (m, 1C), 133.1, 132.9, 132.8, 132.6, 132.2, 129.8, 128.9, 128.8, 128.7, 127.3, 126.2, 122.2, 121.8, 107.5 (dd, J_{C-F} = 26.2, 5.1 Hz) ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₅H₁₄Br₂F₇N₂O [M+H]⁺ 648.9356, found: 648.9354.


1,3-Bis(2-bromophenyl)-4-(perfluorobut-1-en-1-yl)-5-phenyl-1,3-dihydro-2*H*-imidazol-2-one (3ea):

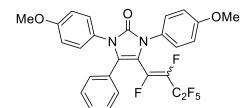
Yield = 56% (109.9 mg, E/Z = 14.1/1). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1). ¹H NMR (400 MHz, CDCl₃) of *E*-isomer: δ = 7.67–7.64 (m, 1H), 7.57–7.53 (m, 1H), 7.37 (ddd, *J* = 7.5, 3.8, 1.7 Hz, 1H), 7.27 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.24–7.12 (m, 9H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -84.49 (t, *J* = 4.0 Hz, 3F), -120.77 - -120.96 (m, 2F), -131.50 - -132.20 (m, 1F), -155.63 - -156.30 (m, 1F) ppm; **Z**-isomer: δ = -82.94 (dd, *J* = 24.6, 9.2 Hz, 3F), -100.03 (s, 1F), -118.82 (d, *J* = 18.4 Hz, 2F), -140.19 - -141.53 (m, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: δ = 150.3, 144.6 (dd, J_{C-F} = 258.1, 43.2 Hz), 140.6–137.8 (m, 1C), 133.73, 133.69, 133.5, 133.4, 131.5, 131.1, 131.0, 130.7, 130.5, 129.6, 128.7, 128.6, 128.4, 128.3, 126.5, 124.1, 123.5, 108.0 (dd, J_{C-F} = 27.1, 7.1 Hz) ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling. HRMS (m/z): calcd for C₂₅H₁₄Br₂F₇N₂O [M+H]⁺ 648.9356, found: 648.9355.

4-(Perfluorobut-1-en-1-yl)-5-phenyl-1,3-di*m***-tolyl-1,3-di***h***ydro-2***H***-imidazol-2-one (3fa):** Yield = 44% (69.5 mg, *E*/*Z* = 9.6/1). Yellow solid.


Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1).

¹**H NMR (400 MHz, CDCl₃) of** *E***-isomer:** δ = 7.40–7.26 (m, 6H), 7.24–7.14 (m, 5H), 7.10 (d, *J* = 7.9 Hz, 1H), 6.94 (d, *J* = 8.0 Hz, 1H), 2.41 (s, 3H), 2.30 (s, 3H) ppm.

¹⁹F NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -84.42 (d, *J* = 4.3 Hz, 3F), -120.65 – -120.83 (m, 2F), -126.90 – -127.52 (m, 1F), -156.02 – -156.80 (m, 1F) ppm; **Z**-isomer: δ = -83.20 (d, *J* = 9.0 Hz, 3F), -96.19 (d, *J* = 20.9 Hz, 1F), -119.59 (dd, *J* = 17.2, 8.0 Hz, 2F), -141.24 (dd, *J* = 19.6, 9.2 Hz, 1F) ppm.

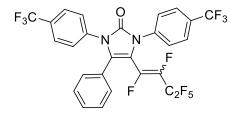
¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: δ = 151.6, 147.4–143.4 (m, 1C), 141.8–140.5 (m, 1C), 139.4, 139.0, 134.1, 134.0, 129.3, 129.2, 129.1, 129.0, 128.8, 128.72, 128.66, 128.6, 128.0, 126.9, 126.5, 124.4, 122.8, 107.5 (dd, J_{C-F} = 27.1, 6.1 Hz), 21.2 (2C) ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₇H₂₀F₇N₂O [M+H]⁺ 521.1458, found: 521.1460.

1,3-Bis(4-methoxyphenyl)-4-(perfluorobut-1-en-1-yl)-5-phenyl-1,3-dihydro-2*H*-imidazol-2-one (3ga):

Yield = 61% (100.6 mg, E/Z = 5.4/1). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1).


¹**H NMR (400 MHz, CDCl₃) of** *E***-isomer:** δ = 7.39–7.35 (m, 2H), 7.33–7.27 (m, 3H), 7.18–7.11 (m, 4H), 7.01–6.98 (m, 2H), 6.87–6.82 (m, 2H), 3.83 (s, 3H), 3.76 (s, 3H) ppm.

¹⁹F NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -84.37 (d, *J* = 5.0 Hz, 3F), -120.68 (dd, *J* = 23.1, 15.6 Hz, 2F), -127.22 - -127.82 (m, 1F), -156.39 - -156.94 (m, 1F) ppm; *Z*-isomer: δ = -83.24 (d, *J* = 9.0 Hz, 3F), -96.21 (d, *J* = 21.5 Hz, 1F), -119.39 - -119.59 (m, 2F), -141.06 - -141.26 (m, 1F) ppm.

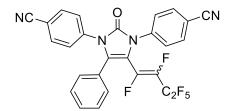
¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: δ = 159.3, 158.9, 151.9, 145.2 (dd, J_{C-F} = 256.9, 43.0

Hz), 140.9–137.4 (m, 1C), 129.6, 129.3, 128.9, 128.8, 128.6, 128.0, 127.5, 127.0, 126.9, 114.6, 114.2, 107.4 (dd, $J_{C-F} = 26.3$, 5.1 Hz), 55.4, 55.3 ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₇H₂₀F₇N₂O₃ [M+H]⁺ 553.1357, found: 553.1349.

4-(Perfluorobut-1-en-1-yl)-5-phenyl-1,3-bis(4-(trifluoromethyl)phenyl)-1,3-dihydro-2*H*-imidazol-2-one (3ha):

Yield = 55% (102.9 mg, E/Z = 4.8/1). Yellow solid.


Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1).

¹**H** NMR (400 MHz, CDCl₃) of *E*-isomer: $\delta = 7.79$ (dd, J = 8.8, 2.8 Hz, 2H), 7.62 (dd, J = 8.7, 2.4 Hz, 4H), 7.42–7.32 (m, 5H), 7.18 (tt, J = 6.8, 1.5 Hz, 2H) ppm.

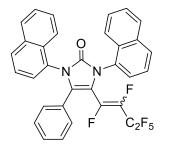
¹⁹F NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -62.59 (s, 3F), -62.62 (s, 3F), -84.39 (q, *J* = 4.1 Hz, 3F), -120.81 (ddd, *J* = 25.8, 13.0, 3.2 Hz, 2F), -127.85 - -128.46 (m, 1F), -155.04 (dtt, *J* = 149.4, 13.9, 4.2 Hz, 1F) ppm; *Z*-isomer: δ = -62.54 (s, 3F), -62.56 (s, 3F), -83.33 (d, *J* = 8.2 Hz, 3F), -96.48 (d, *J* = 18.6 Hz, 1F), -119.75 - -119.90 (m, 2F), -139.07 (dq, *J* = 17.4, 8.8 Hz, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: δ = 150.9, 145.9, 145.4 (dd, J_{C-F} = 257.7, 43.4 Hz), 141.8–138.7 (m, 1C), 137.1, 136.9, 130.5, 130.1 (q, J_{C-F} = 43.0 Hz), 129.8, 129.1, 128.8, 127.3, 126.7 (q, J_{C-F} = 3.7 Hz), 126.3, 126.2 (q, J_{C-F} = 7.2 Hz), 125.9, 124.9 (d, J_{C-F} = 4.7 Hz), 122.2 (d, J_{C-F} = 4.7 Hz), 107.7 (dd, J_{C-F} = 27.4, 5.1 Hz) ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₇H₁₄F₁₃N₂O [M+H]⁺ 629.0893, found: 629.0896.

4,4'-(2-Oxo-4-(perfluorobut-1-en-1-yl)-5-phenyl-1*H*-imidazole-1,3(2*H*)-diyl)dibenzonitrile (3ia):

Yield = 72% (117.9 mg, E/Z = 3.9/1). Yellow oil.


Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1).

¹H NMR (400 MHz, CDCl₃) of *E*-isomer: δ = 7.84–7.78 (m, 2H), 7.65–7.58 (m, 4H), 7.44–7.31 (m, 5H), 7.17–7.10 (m, 2H) ppm.

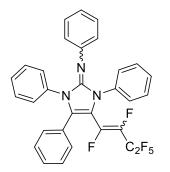
¹⁹F NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -84.24 (d, *J* = 4.2 Hz, 3F), -120.69 (dd, *J* = 24.1, 13.6 Hz, 2F), -127.92 - -128.58 (m, 1F), -154.15 - -154.71 (m, 1F) ppm; *Z*-isomer: δ = -83.28 (d, *J* = 8.6 Hz, 3F), -96.21 (d, *J* = 19.1 Hz, 1F), -119.83 (d, *J* = 16.6 Hz, 2F), -138.28 (dt, *J* = 17.5, 8.8 Hz, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: $\delta = 150.4$, 143.2 (dd, $J_{C-F} = 259.6$, 43.5 Hz), 141.3–138.9 (m, 1C), 137.8, 137.5, 133.4, 132.9, 130.4, 129.2, 128.7, 127.5, 126.1, 125.9, 125.6, 117.8, 112.0, 111.79, 111.76, 107.6 (dd, $J_{C-F} = 27.2$, 5.2 Hz) ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₇H₁₄F₇N₄O [M+H]⁺ 543.1050, found: 543.1054.

1,3-Di(naphthalen-1-yl)-4-(perfluorobut-1-en-1-yl)-5-phenyl-1,3-dihydro-2*H*-imidazol-2-one (3ja):

Yield = 72% (128.4 mg, E/Z = 8.6/1). Yellow oil.

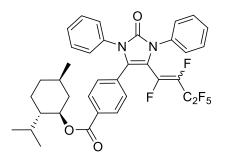

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1).

¹**H NMR (400 MHz, CDCl₃) of** *E***-isomer:** δ = 8.02–7.94 (m, 4H), 7.93–7.86 (m, 3H), 7.73 (dd, *J* = 7.3, 1.3 Hz, 1H), 7.68–7.58 (m, 4H), 7.55–7.46 (m, 2H), 7.24–7.12 (m, 5H) ppm.

¹⁹F NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -84.57 - -84.78 (m, 3F), -120.97 (td, *J* = 23.5, 22.5, 11.6 Hz, 2F), -129.05 - -130.04 (m, 1F), -155.76 - -156.57 (m, 1F) ppm; *Z*-isomer: δ = -82.83 (t, *J* = 9.7 Hz, 3F), -97.16 (dd, *J* = 27.1, 19.8 Hz, 1F), -119.15 (d, *J* = 19.8 Hz, 2F), -140.73 - -141.63 (m, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: $\delta = 152.1$, 145.2 (dd, $J_{C-F} = 259.6$, 47.5 Hz), 140.7–137.9 (m, 1C), 134.4, 134.3, 134.2, 130.7, 130.4, 130.0, 129.7, 129.4, 128.5, 128.3, 127.5, 127.3, 127.2, 126.8, 126.61, 126.56, 126.5, 126.3, 125.3, 125.20, 125.15, 122.6, 122.5, 122.4, 122.0, 109.0 (dd, $J_{C-F} = 26.4$, 5.2 Hz) ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₃₃H₂₀F₇N₂O [M+H]⁺ 593.1458, found: 593.1459.


3-(3,5-Dimethyl-4-nitro-1*H*-pyrazol-1-yl)-5,5,6,6,7,7,8,8,8-nonafluoro-2-methyloct-3-en-2-ol (3ma):

Yield = 78% (133.3 mg, E/Z = 4.2/1). Yellow solid.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1). ¹H NMR (400 MHz, CDCl₃) of *E*-isomer: δ = 7.26–7.10 (m, 15H), 6.78–6.71 (m, 2H), 6.55–6.49 (m, 3H) ppm. ¹⁹F NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -84.51 (q, *J* = 4.0 Hz, 3F), -120.68 – -120.83 (m, 2F), -125.72 – -126.31 (m, 1F), -156.01 (dtt, *J* = 153.2, 14.0, 4.5 Hz, 1F) ppm; *Z*-isomer: δ = -83.12 – -83.22 (m, 3F), -96.57 (d, *J* = 24.4 Hz, 1F), -119.21 (dd, *J* = 30.4, 18.3 Hz, 2F), -141.34 – -141.57 (m, 1F) ppm.

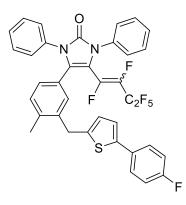
¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: δ = 147.8, 145.2 (dd, J_{C-F} = 259.6, 47.5 Hz), 144.0, 141.6–138.3 (m, 1C), 135.9, 135.6, 132.2, 129.1, 128.9, 128.7, 128.6, 128.5, 128.4, 127.8, 127.7, 127.5, 127.2, 127.0, 122.2, 120.0, 110.3 (dd, J_{C-F} = 26.4, 4.5 Hz) ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₃₁H₂₁F₇N₃ [M+H]⁺ 568.1618, found:568.1620.

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl

4-(2-oxo-5-(perfluorobut-1-en-1-yl)-1,3-diphenyl-2,3-dihydro-1*H*-imidazol-4-yl)benzoate (3av):

Yield = 37% (49.3 mg, 0.2 mmol scale, E/Z = 5.4/1). Yellow oil.


Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1).

¹**H** NMR (400 MHz, CDCl₃) of *E*-isomer: $\delta = 7.98-7.94$ (m, 2H), 7.52–7.42 (m, 5H), 7.37–7.33 (m, 2H), 7.25–7.21 (m, 4H), 4.92 (td, J = 10.9, 4.4 Hz, 1H), 2.14–2.07 (m, 1H), 1.97–1.89 (m, 1H), 1.73 (dt, J = 11.6, 3.0 Hz, 2H), 1.57–1.51 (m, 2H), 1.15–1.05 (m, 2H), 0.91 (dd, J = 6.8, 3.4 Hz, 8H), 0.78 (d, J = 6.9 Hz, 3H) ppm.

¹⁹F NMR (376 MHz, CDCl₃) of *E*-isomer: δ = -84.31 (t, *J* = 4.2 Hz, 3F), -120.66 – -120.84 (m, 2F), -126.99 – -127.61 (m, 1F), -155.29 – -155.85 (m, 1F) ppm; **Z**-isomer: δ = -83.22 (tt, *J* = 5.5, 2.7 Hz, 3F), -96.01 – -96.44 (m, 1F), -119.54 – -119.76 (m, 2F), -139.75 (dq, *J* = 18.3, 8.9 Hz, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: $\delta = 165.3$, 151.6, 147.5–143.6 (m, 1C), 142.3–138.9 (m, 1C), 134.1, 134.0, 131.6, 131.0, 130.0, 129.6, 129.4, 128.8, 128.6, 128.3, 127.4, 126.1, 109.0–108.3 (m, 1C), 75.5, 47.3, 41.0, 34.3, 31.5, 26.5, 23.6, 22.1, 20.8, 16.5 ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₃₆H₃₄F₇N₂O₃ [M+H]⁺ 675.2452, found: 675.2458.

4-(3-((5-(4-Fluorophenyl)thiophen-2-yl)methyl)-4-methylphenyl)-5-(perfluorobut-1-en-1-yl)-1,3-diphenyl-1,3-dihydro-2*H*-imidazol-2-one (3aw):

Yield =33% (68.6 mg, E/Z = 4.9/1). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1).

¹**H NMR (400 MHz, CDCl₃) of** *E***-isomer:** δ = 7.51–7.38 (m, 7H), 7.33–7.20 (m, 5H), 7.15–6.94 (m, 6H), 6.40 (d, *J* = 3.7 Hz, 1H), 3.98 (s, 2H), 2.29 (s, 3H) ppm.

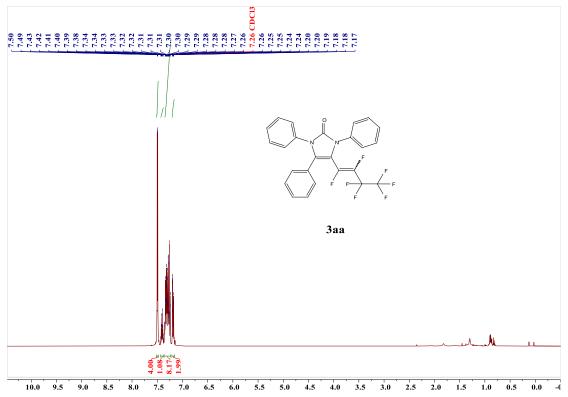
¹⁹**F NMR (376 MHz, CDCl₃) of** *E*-isomer: δ = -84.32 (q, *J* = 3.8, 3.1 Hz, 3F), -114.72 - -114.88 (m, 1F), -120.54 (dd, *J* = 24.1, 13.8 Hz, 2F), -126.72 - -127.35 (m, 1F), -156.02 - -156.64 (m, 1F) ppm; **Z**-isomer: δ = -83.11 (d, *J* = 8.9 Hz, 3F), -95.45 (d, *J* = 20.9 Hz, 1F), -114.83 - -114.93 (m, 1F), -119.44 (dd, *J* = 97.0, 17.5 Hz, 2F), -140.61 - -140.96 (m, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃) of *E*-isomer: δ = 161.5 (d, J_{C-F} = 246.5 Hz), 151.5, 146.4 (d, J_{C-F} = 42.5 Hz), 143.9 (d, J_{C-F} = 42.3 Hz), 141.9, 141.6, 138.7, 138.1, 134.3, 134.2, 130.8, 129.8, 129.3, 129.0, 128.1, 127.8, 127.4, 127.2, 127.0 (d, J_{C-F} = 8.2 Hz), 126.3, 126.1, 125.9, 124.6, 122.6, 122.57, 115.7 (d, J_{C-F} = 21.7 Hz), 107.2 (dd, J_{C-F} = 27.1, 5.1 Hz), 33.6, 19.3 ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₃₇H₂₅F₈N₂OS [M+H]⁺ 697.1554, found: 697.1560.

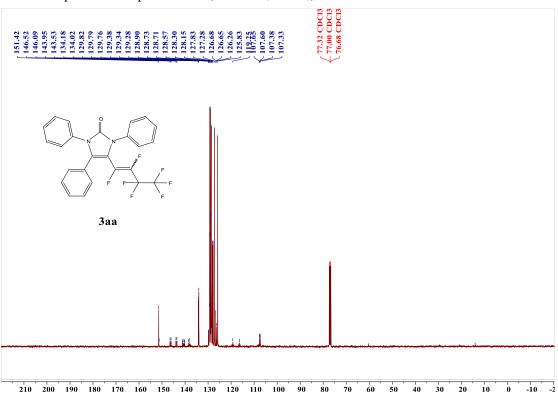
References

[1] a) G. Wu, A. Jacobi von Wangelin, *Chem. Sci.* **2018**, *9*, 1795-1802; b) W. Han, Y.-L. Chen, X. Tang, J. Zhou, M. Ma, Z.-L. Shen, X.-Q. Chu, *Green Chem.* **2023**, *25*, 9672–9679.

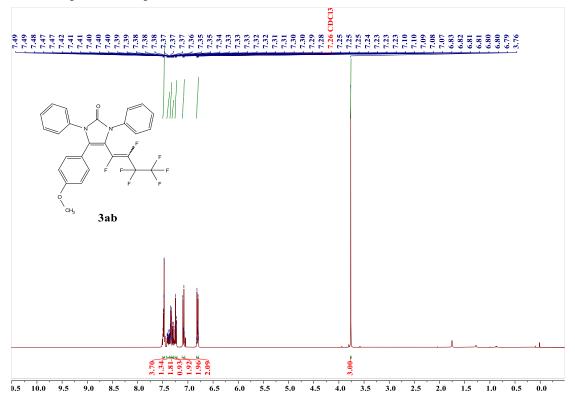

[2] T. Xu, C. W. Cheung, X. Hu, Angew. Chem. Int. Ed. 2014, 53, 4910-4914.

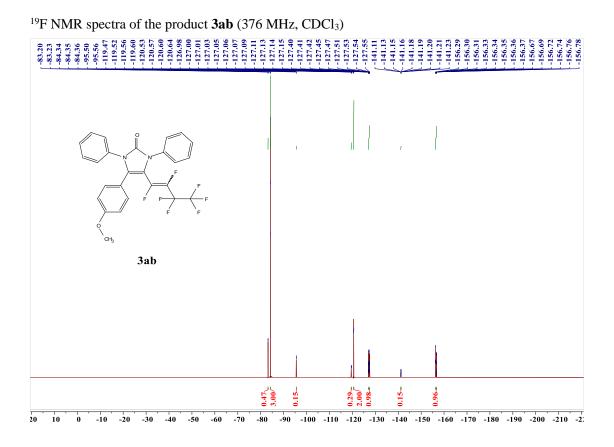
[3] J. Wu, C. Wang, Z. Wang, H. Li, R. Liu, Y. Wang, P. Zhou, D. Li, J. Yang, *Synthesis* **2022**, *54*, 3055–3068.

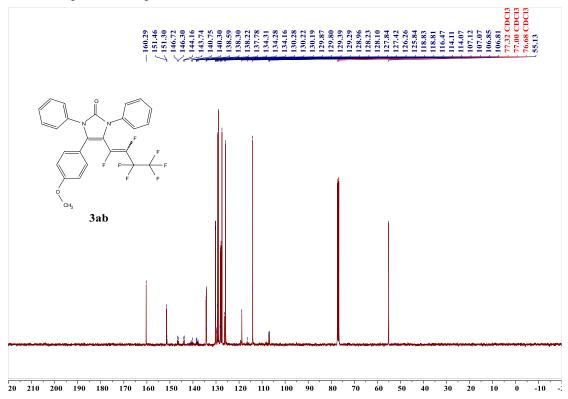

[4] M. Wang, J. Han, X. Si, Y. Hu, J. Zhu, X. Sun, Tetrahedron Lett. 2018, 59, 1614–1618.

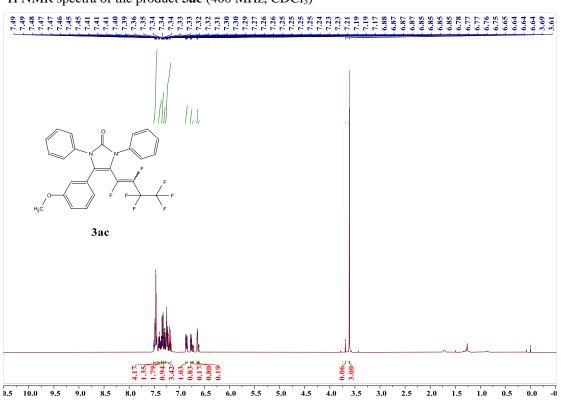

¹H, ¹⁹F, and ¹³C NMR spectra of products

¹H NMR spectra of the product **3aa** (400 MHz, CDCl₃)

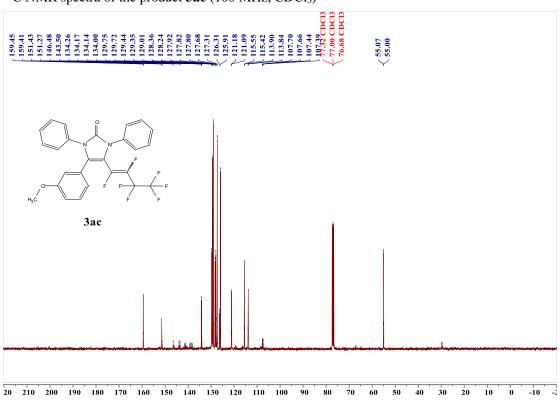

 ^{19}F NMR spectra of the product **3aa** (376 MHz, CDCl₃)



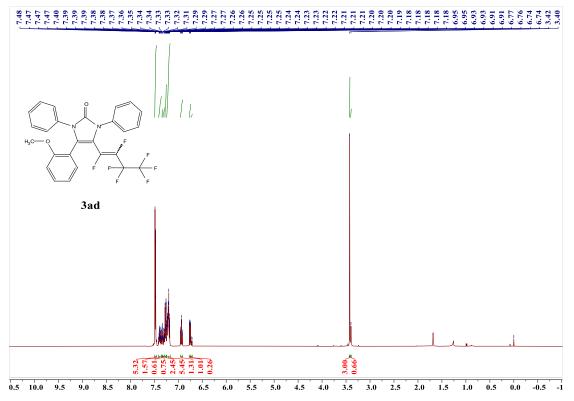

¹³C NMR spectra of the product **3aa** (100 MHz, CDCl₃)

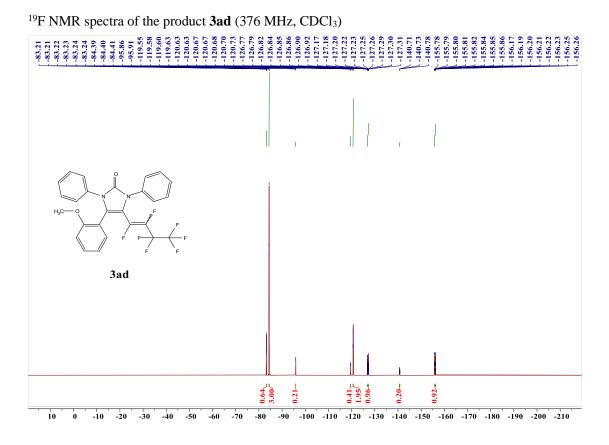

¹H NMR spectra of the product **3ab** (400 MHz, CDCl₃)

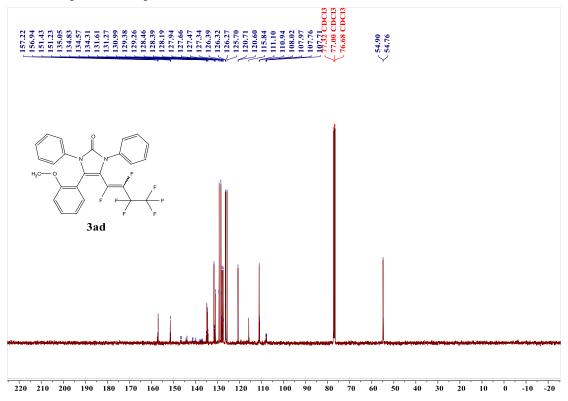
¹³C NMR spectra of the product **3ab** (100 MHz, CDCl₃)

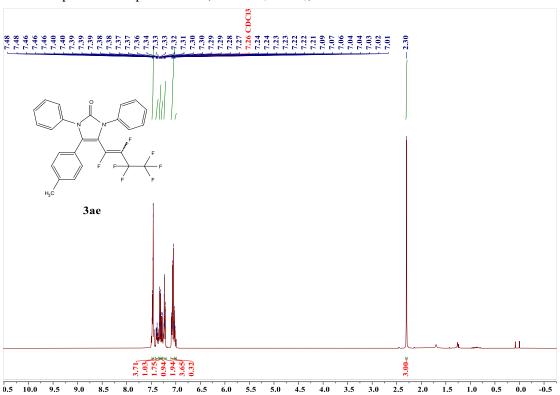


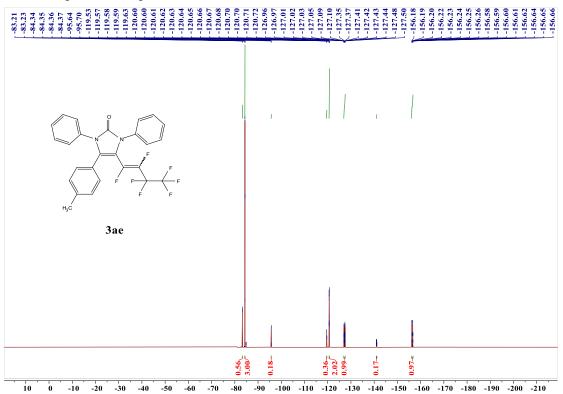
¹⁹F NMR spectra of the product **3ac** (376 MHz, CDCl₃)

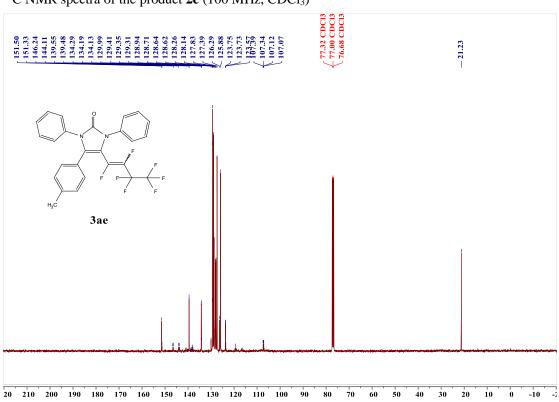


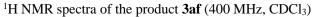

¹H NMR spectra of the product **3ac** (400 MHz, CDCl₃)

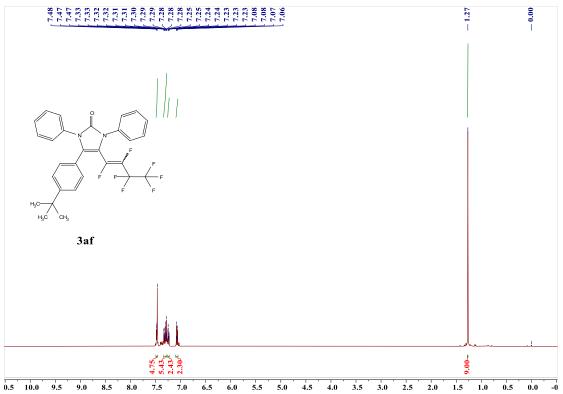

¹³C NMR spectra of the product **3ac** (100 MHz, CDCl₃)

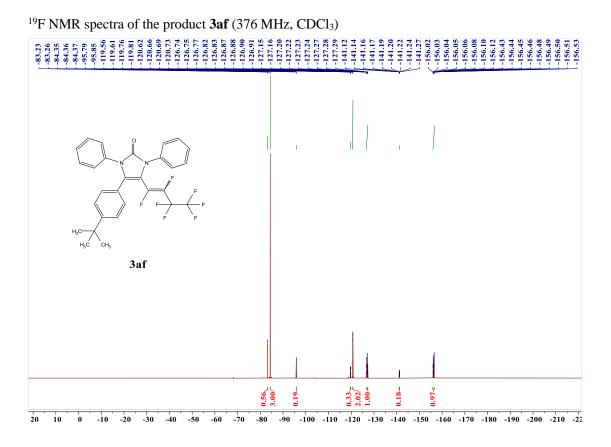

¹H NMR spectra of the product **3ad** (400 MHz, CDCl₃)

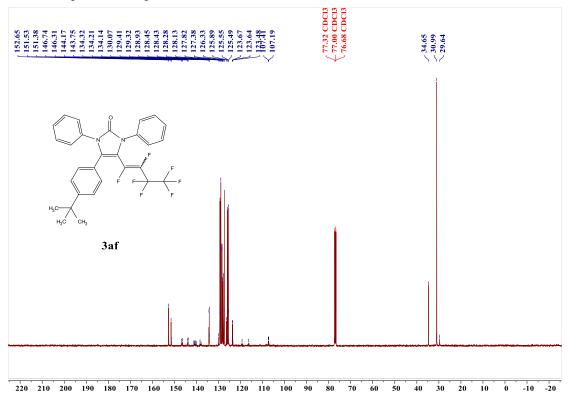

¹³C NMR spectra of the product **3ad** (100 MHz, CDCl₃)

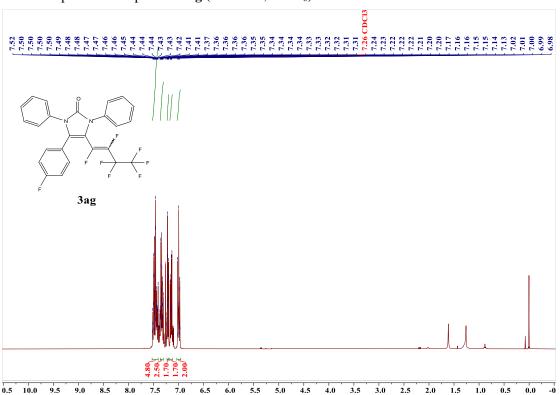


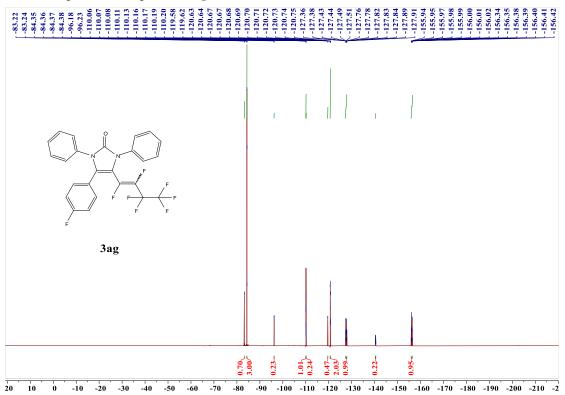

¹H NMR spectra of the product **3ae** (400 MHz, CDCl₃)

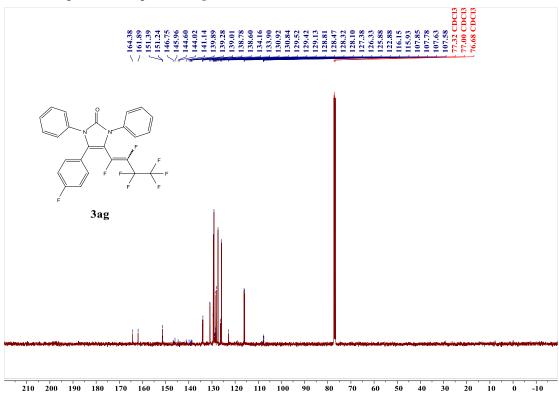

¹⁹F NMR spectra of the product **3ae** (376 MHz, CDCl₃)



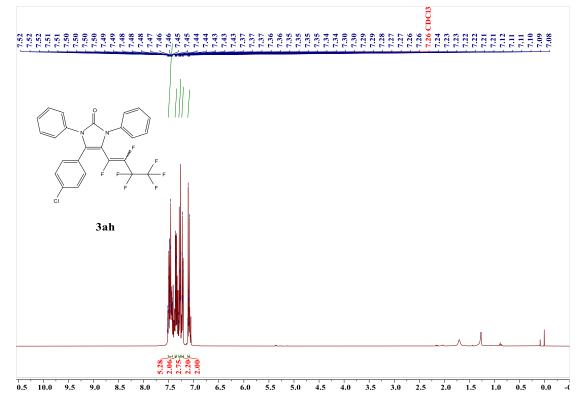

¹³C NMR spectra of the product **2e** (100 MHz, CDCl₃)

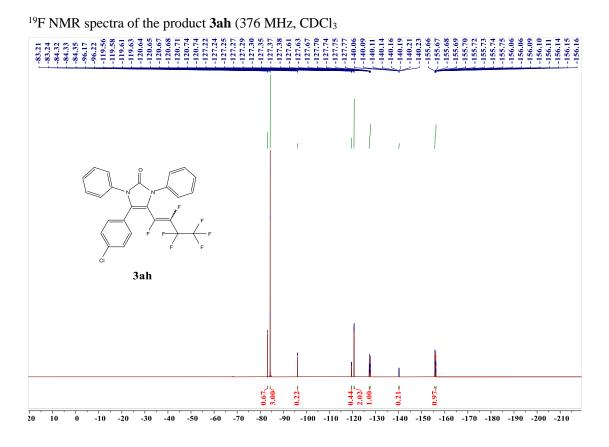


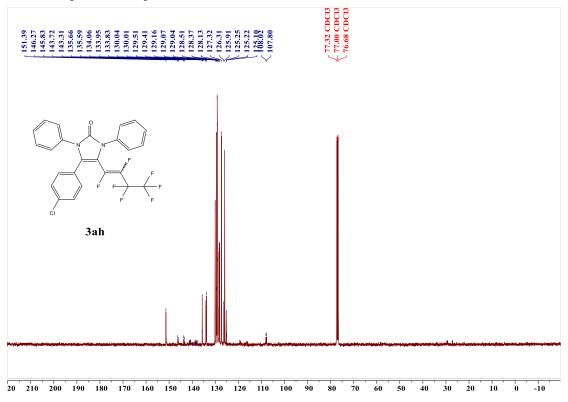

¹³C NMR spectra of the product **3af** (100 MHz, CDCl₃)



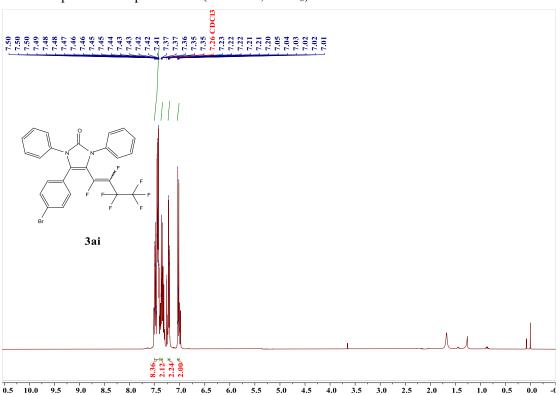
¹H NMR spectra of the product **3ag** (400 MHz, CDCl₃)


¹⁹F NMR spectra of the product **3ag** (376 MHz, CDCl₃)

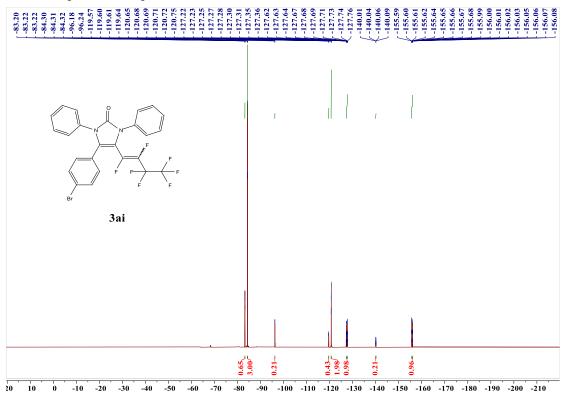


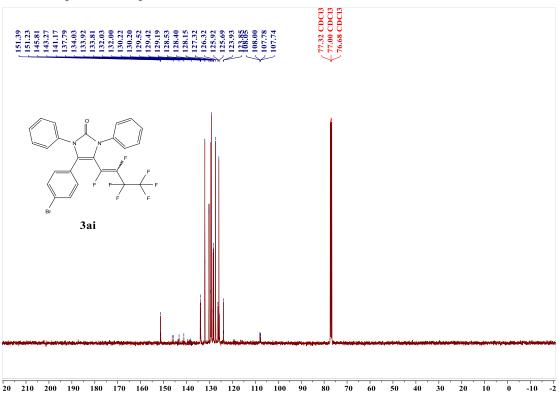

¹³C NMR spectra of the product **3ag** (100 MHz, CDCl₃)

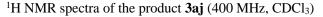
¹H NMR spectra of the product **3ah** (400 MHz, CDCl₃)

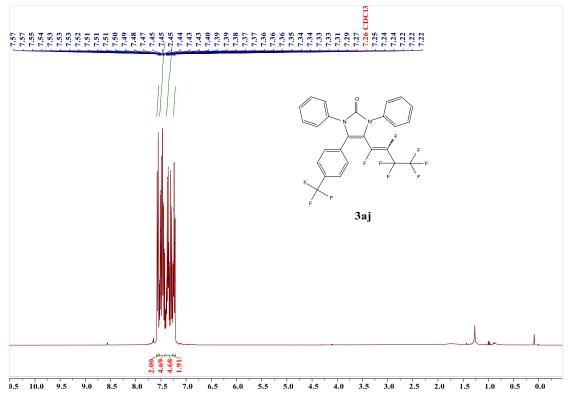


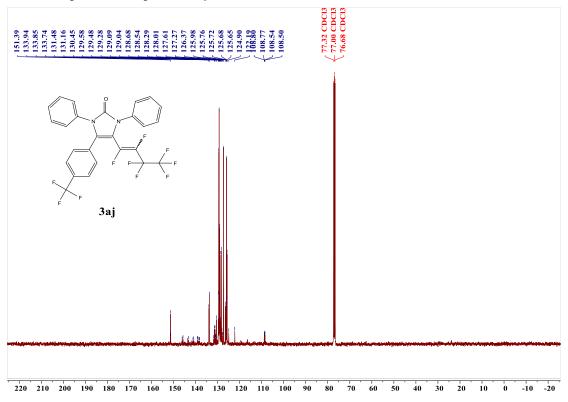
¹³C NMR spectra of the product **3ah** (100 MHz, CDCl₃)

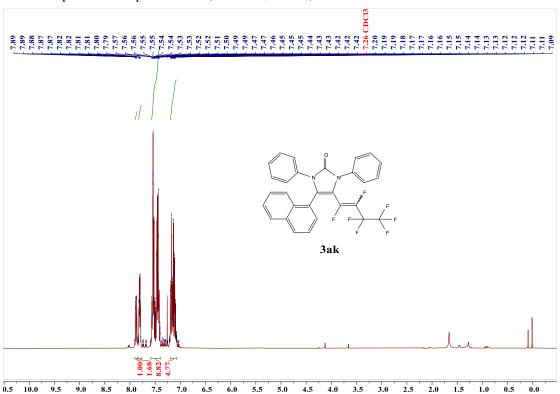


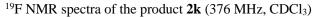

S43

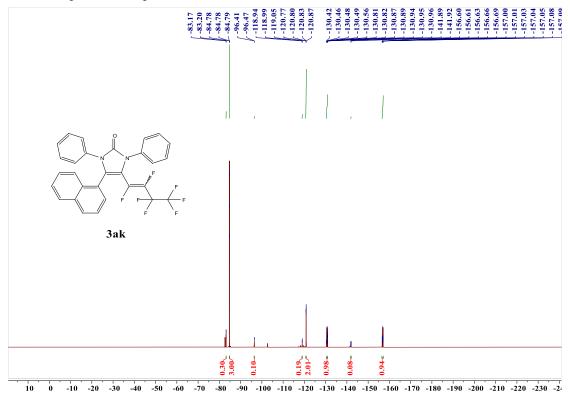

¹H NMR spectra of the product **3ai** (400 MHz, CDCl₃)

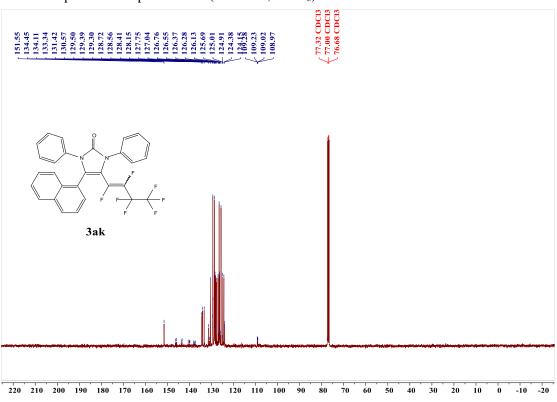

¹⁹F NMR spectra of the product **3ai** (376 MHz, CDCl₃)

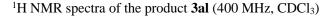

¹³C NMR spectra of the product **3ai** (100 MHz, CDCl₃)

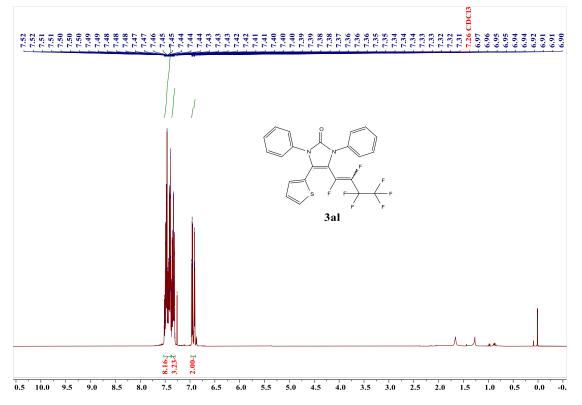


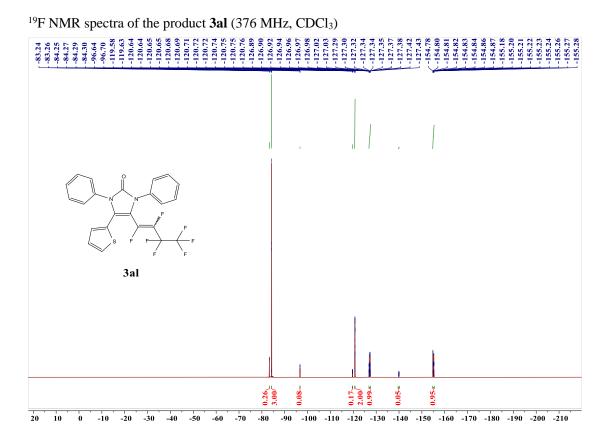


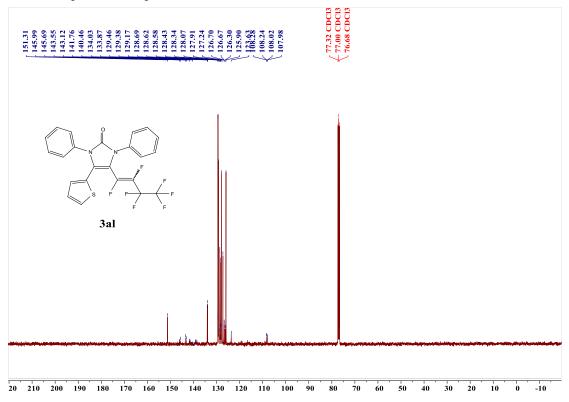

¹³C NMR spectra of the product **3aj** (100 MHz, CDCl₃)

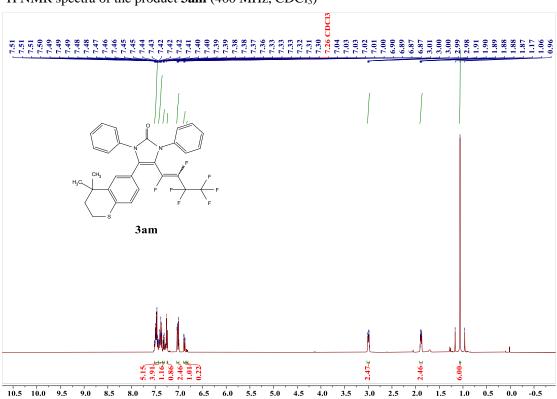


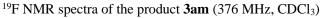

¹H NMR spectra of the product **3ak** (400 MHz, CDCl₃)

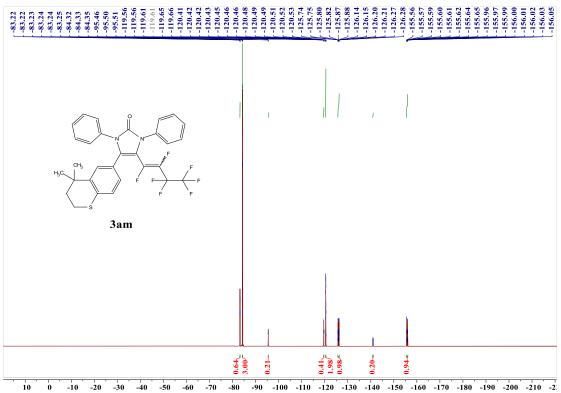


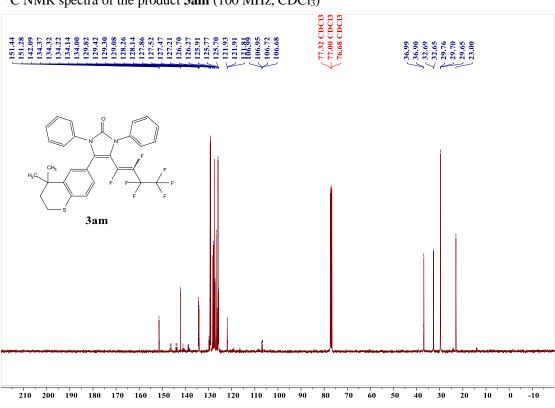



¹³C NMR spectra of the product **3ak** (100 MHz, CDCl₃)

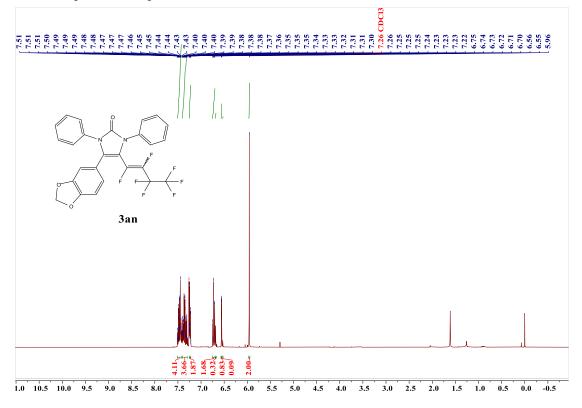


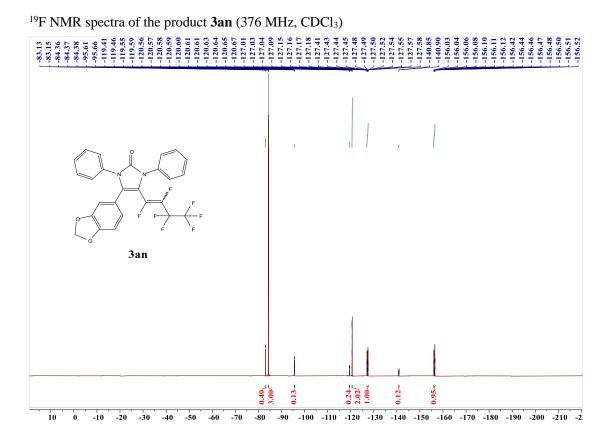


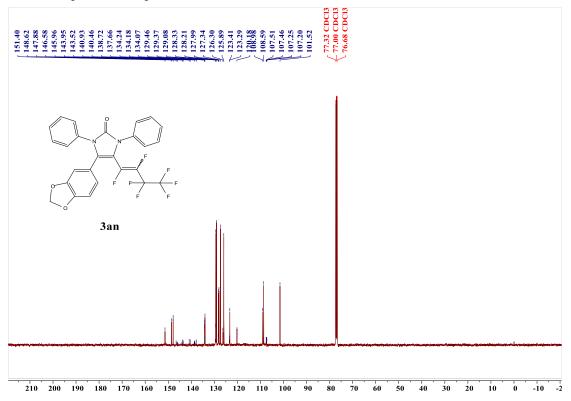

¹³C NMR spectra of the product **3al** (100 MHz, CDCl₃)



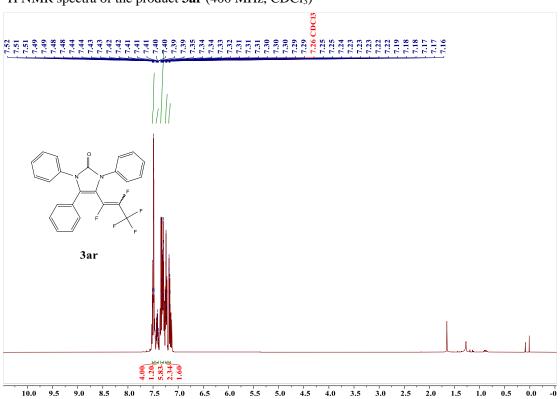
¹H NMR spectra of the product **3am** (400 MHz, CDCl₃)

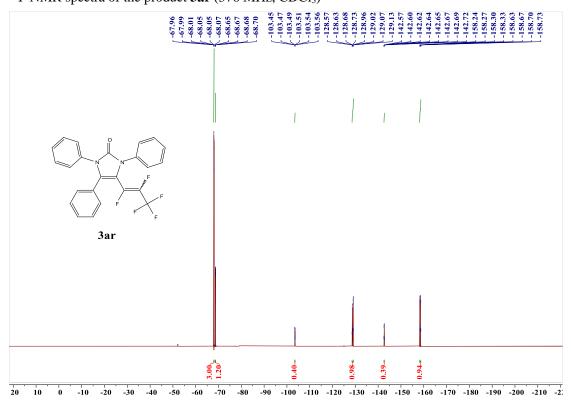


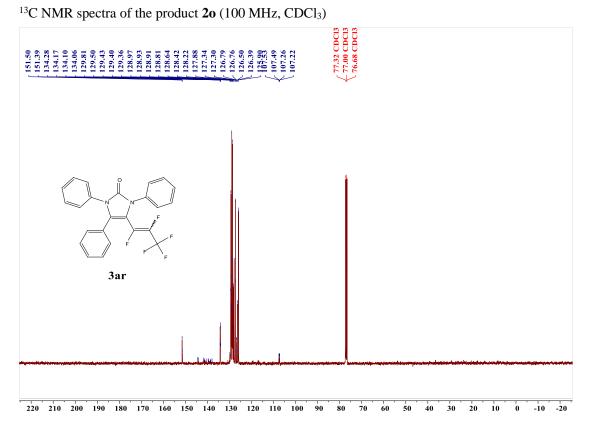



¹³C NMR spectra of the product **3am** (100 MHz, CDCl₃)

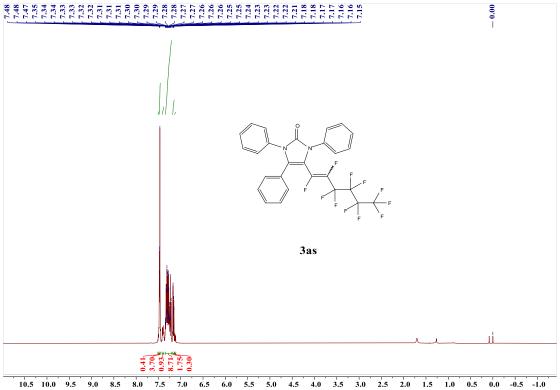
¹H NMR spectra of the product **3an** (400 MHz, CDCl₃)

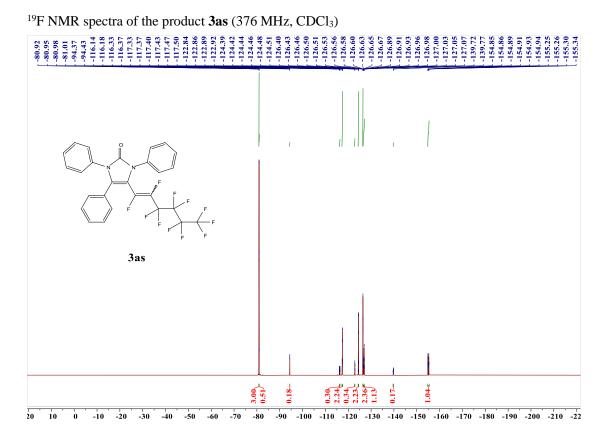


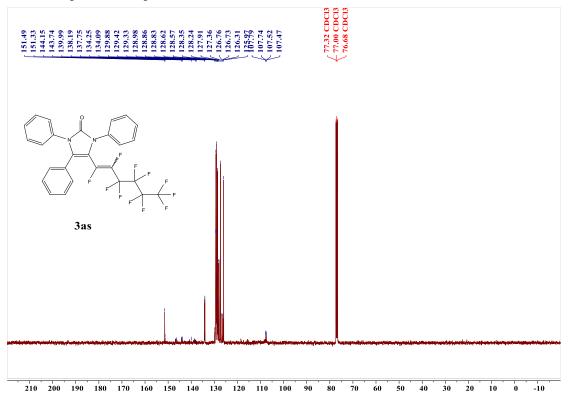

¹³C NMR spectra of the product **3an** (100 MHz, CDCl₃)

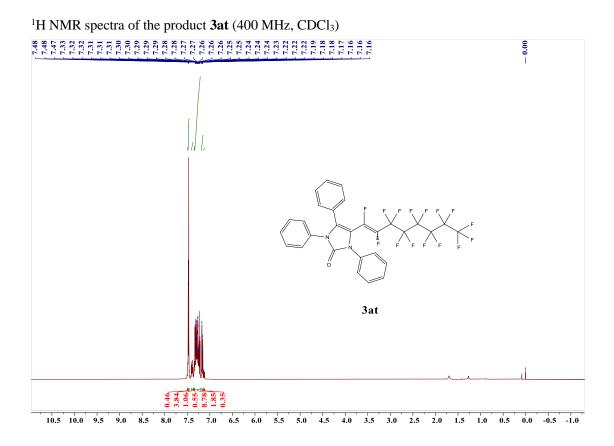


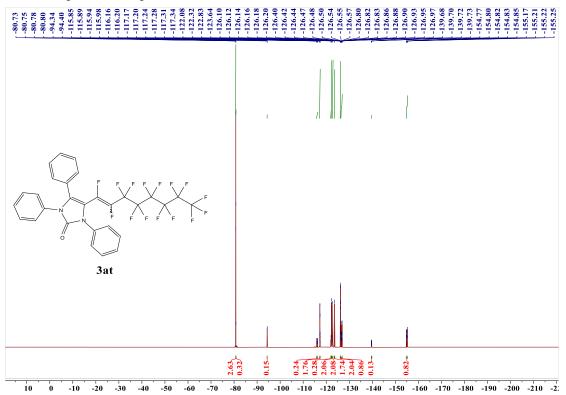
S52

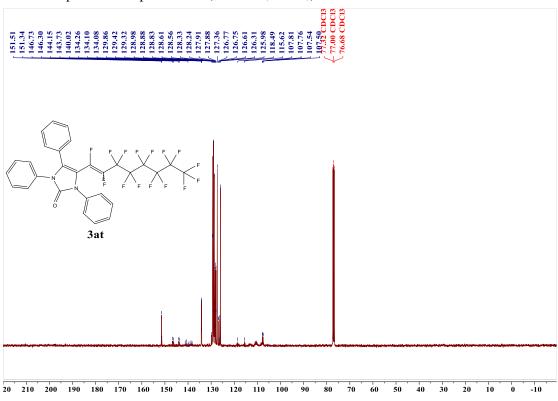


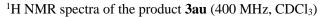

¹⁹F NMR spectra of the product **3ar** (376 MHz, CDCl₃)

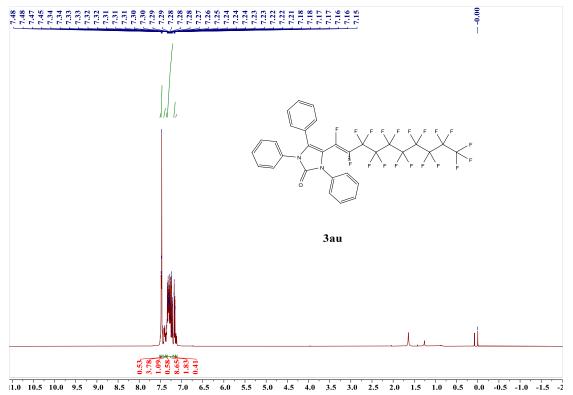


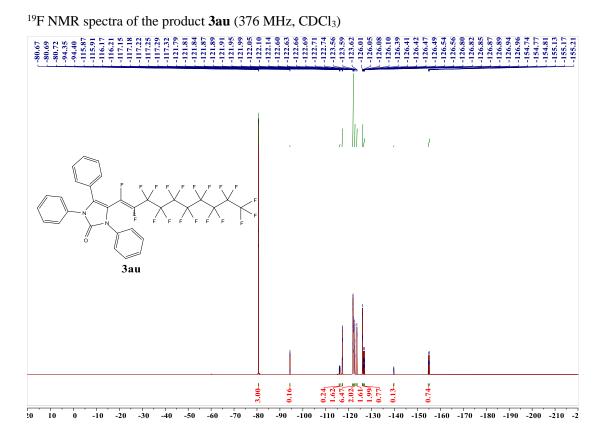

¹H NMR spectra of the product **3as** (400 MHz, CDCl₃)

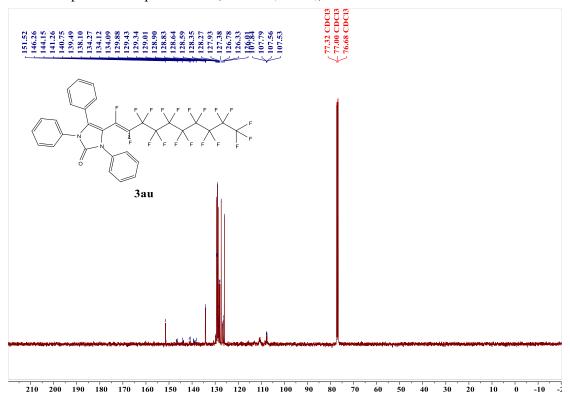


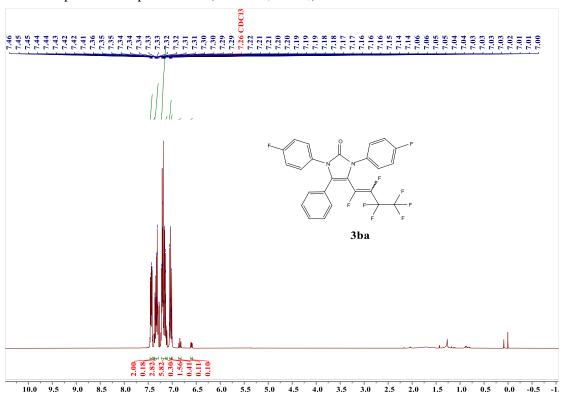

¹³C NMR spectra of the product **3as** (100 MHz, CDCl₃)



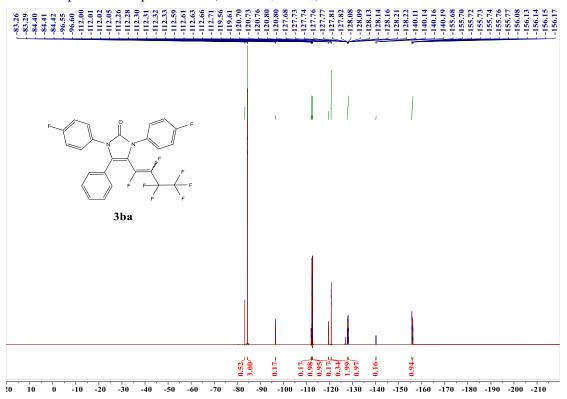

 ^{19}F NMR spectra of the product **3at** (376 MHz, CDCl₃)

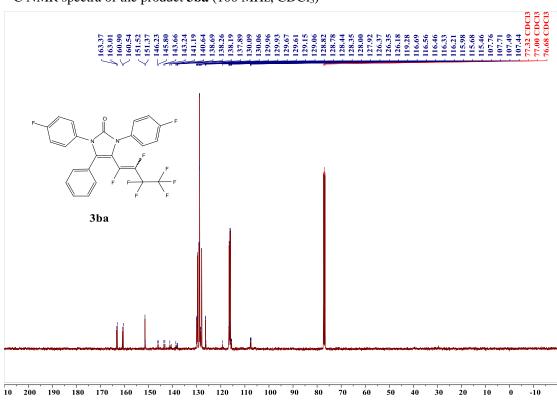



¹³C NMR spectra of the product **3at** (100 MHz, CDCl₃)

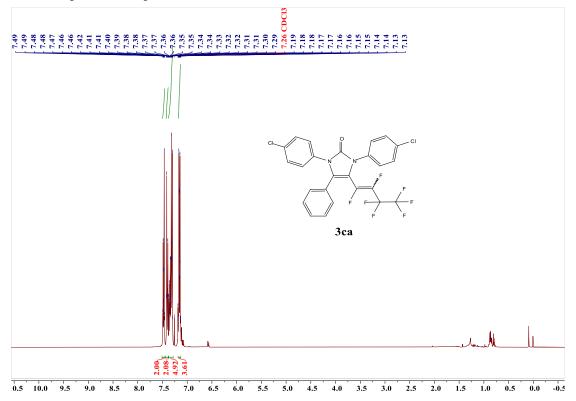


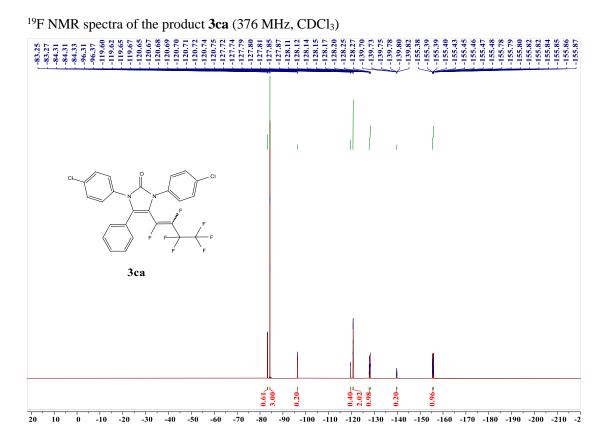
¹³C NMR spectra of the product **3au** (100 MHz, CDCl₃)

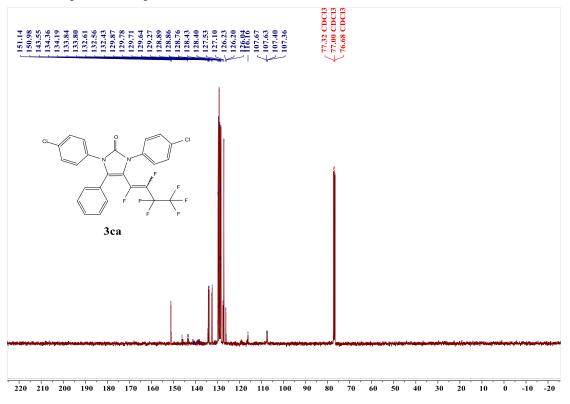



S58

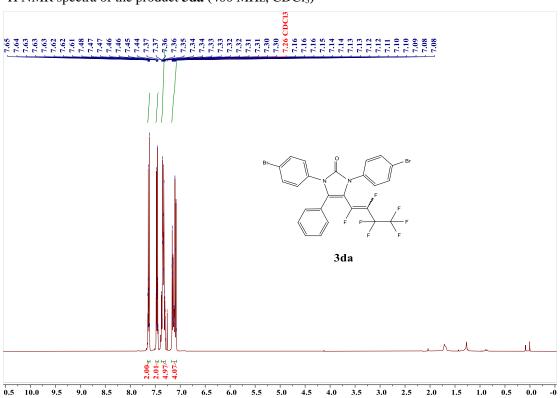
¹H NMR spectra of the product **3ba** (400 MHz, CDCl₃)


¹⁹F NMR spectra of the product **3ba** (376 MHz, CDCl₃)

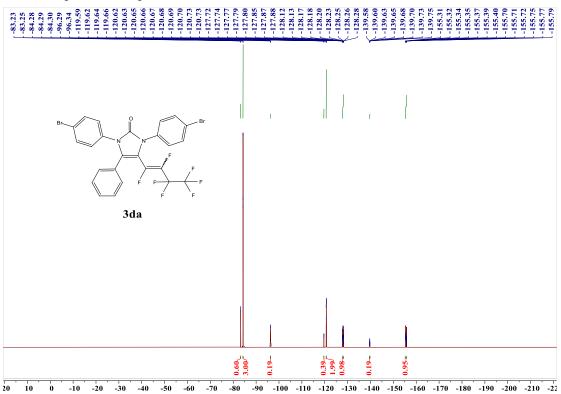


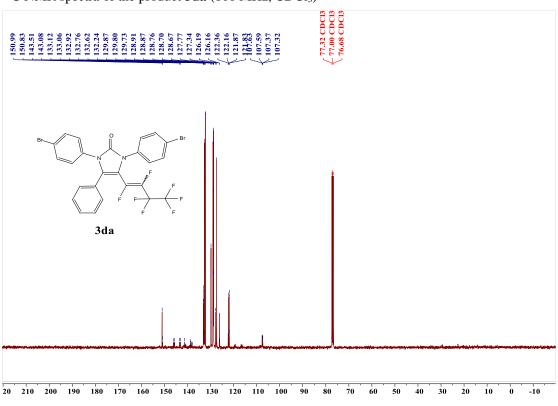

¹³C NMR spectra of the product **3ba** (100 MHz, CDCl₃)

¹H NMR spectra of the product **3ca** (400 MHz, CDCl₃)

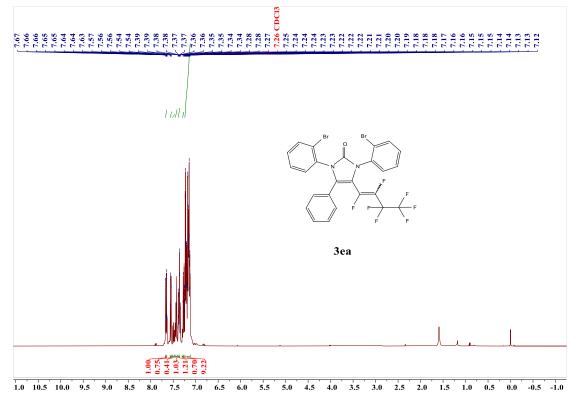


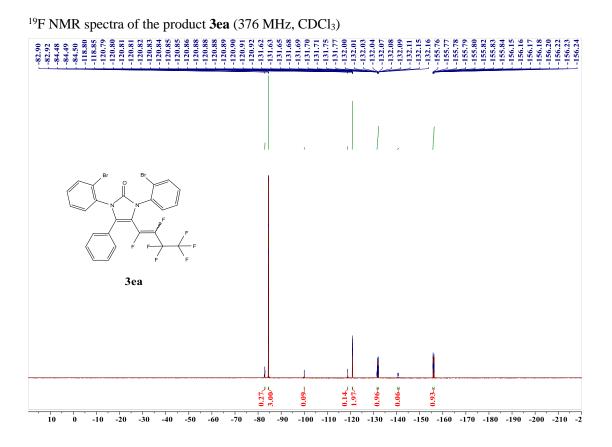
¹³C NMR spectra of the product **3ca** (100 MHz, CDCl₃)

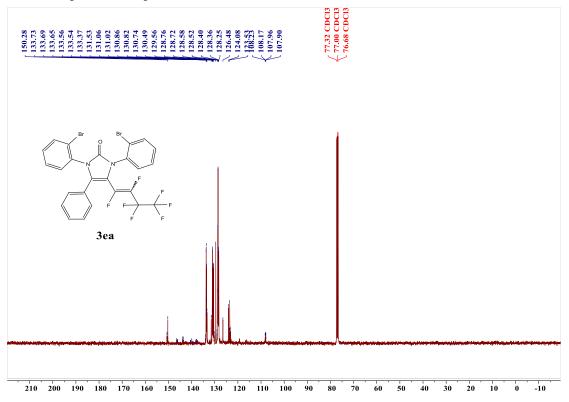


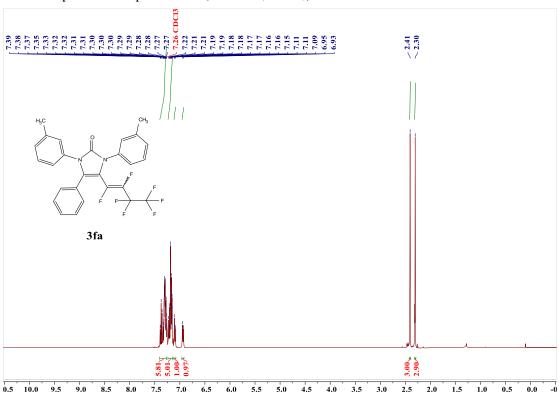

S61

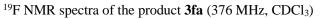
¹H NMR spectra of the product **3da** (400 MHz, CDCl₃)

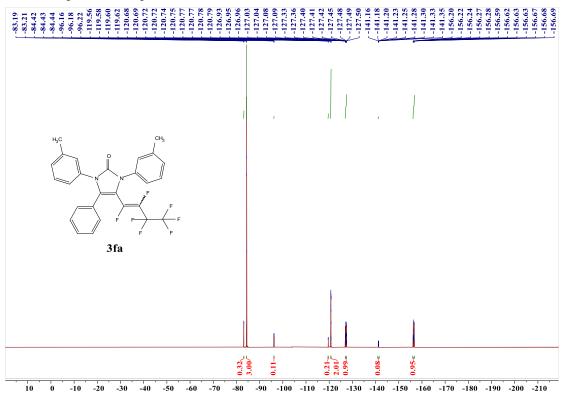

¹⁹F NMR spectra of the product **3da** (376 MHz, CDCl₃)

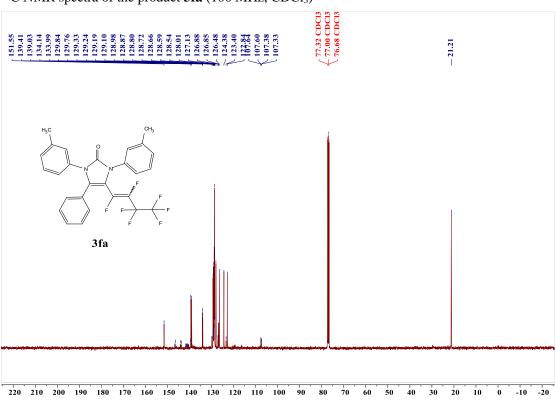



¹³C NMR spectra of the product **3da** (100 MHz, CDCl₃)

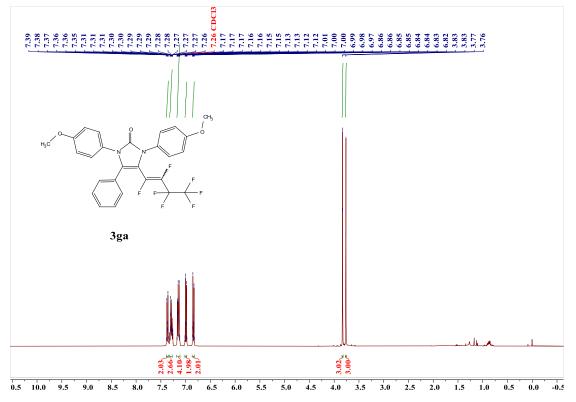

¹H NMR spectra of the product **3ea** (400 MHz, CDCl₃)

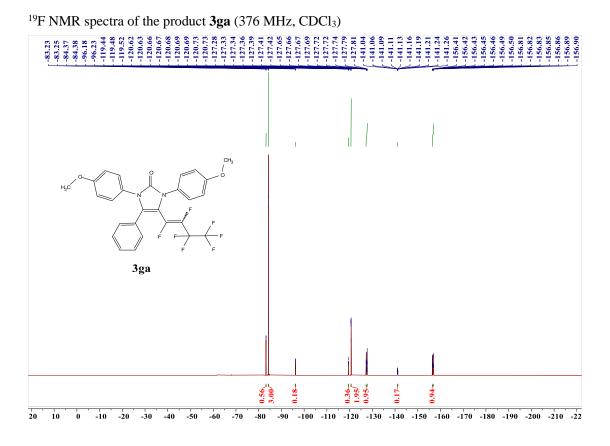


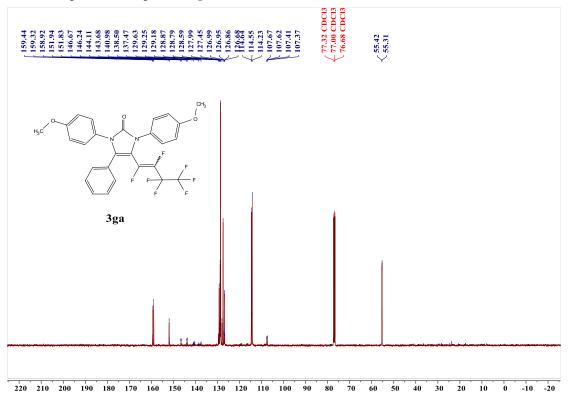

¹³C NMR spectra of the product **3ea** (100 MHz, CDCl₃)



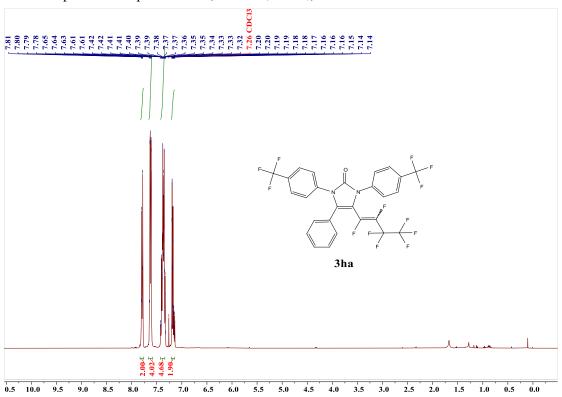
¹H NMR spectra of the product **3fa** (400 MHz, CDCl₃)



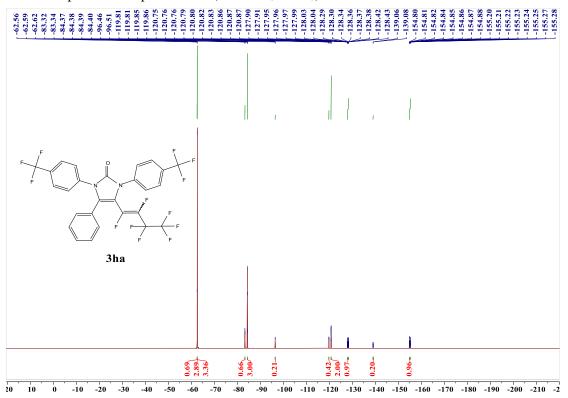


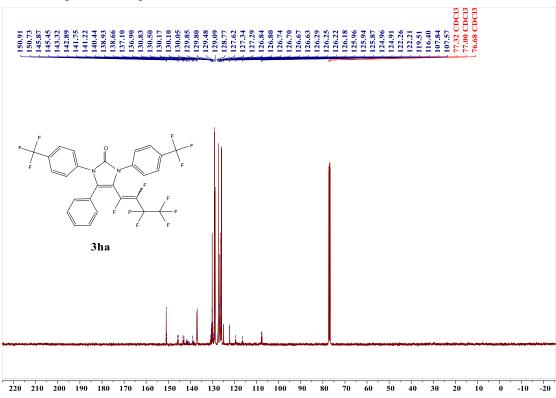

¹³C NMR spectra of the product **3fa** (100 MHz, CDCl₃)

¹H NMR spectra of the product **3ga** (400 MHz, CDCl₃)

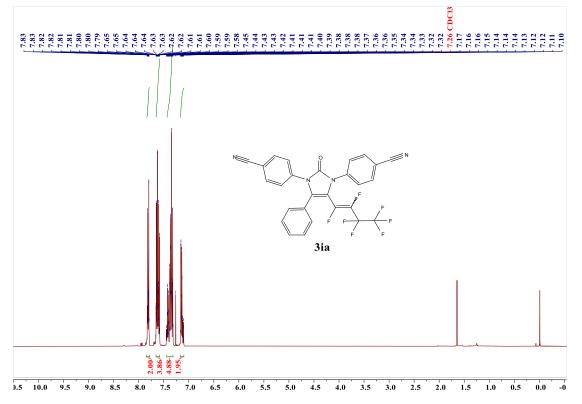


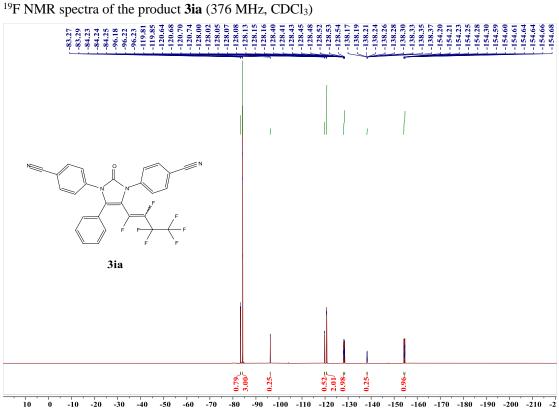
¹³C NMR spectra of the product **3ga** (100 MHz, CDCl₃)



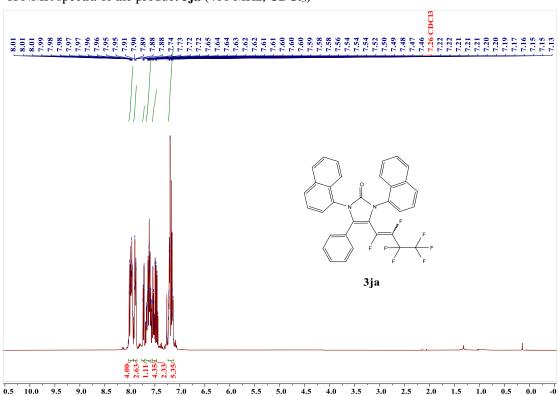

S67

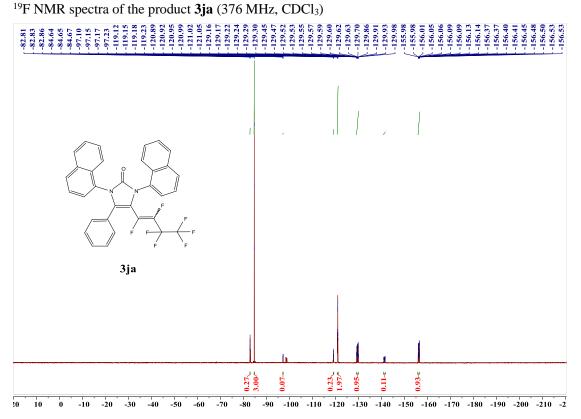
¹H NMR spectra of the product **3ha** (400 MHz, CDCl₃)

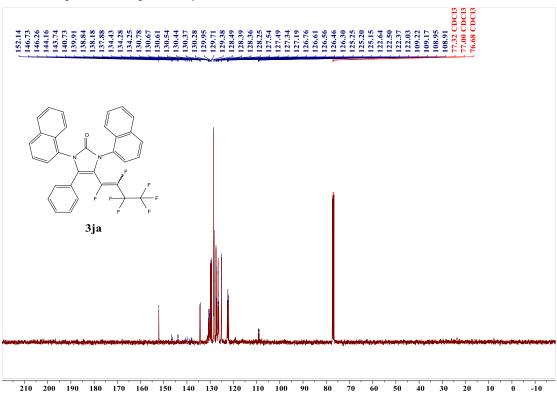

¹⁹F NMR spectra of the product **3ha** (376 MHz, CDCl₃)

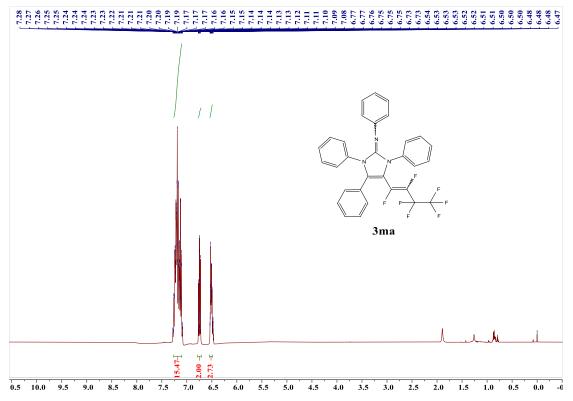


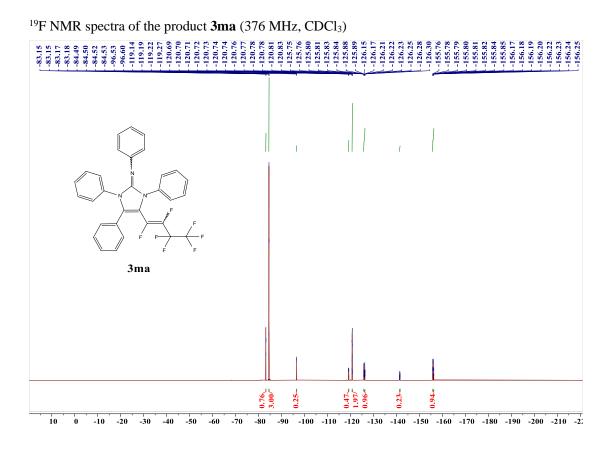
¹³C NMR spectra of the product **3ha** (100 MHz, CDCl₃)

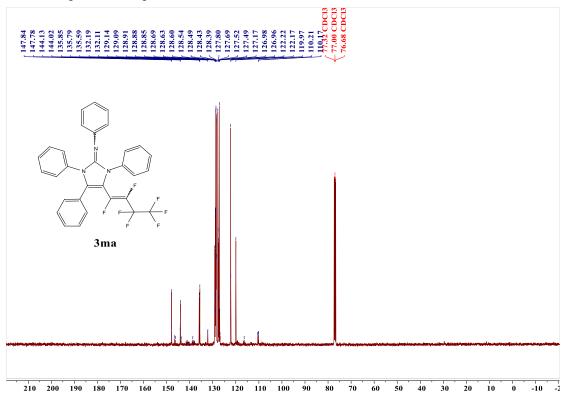

¹H NMR spectra of the product **3ia** (400 MHz, CDCl₃)

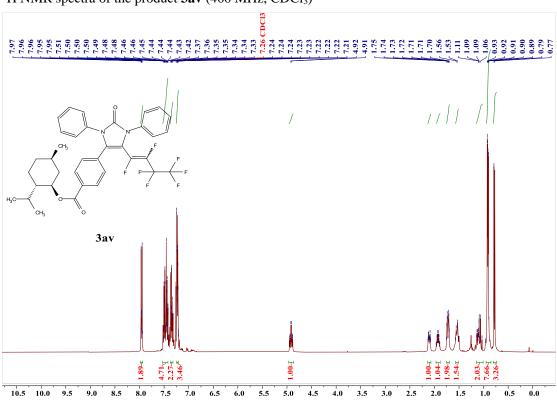


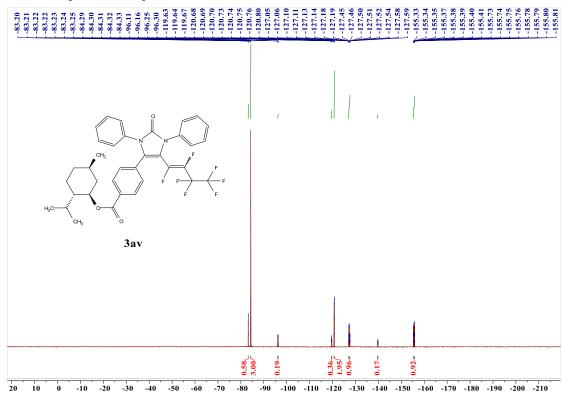

¹³C NMR spectra of the product **3ia** (100 MHz, CDCl₃)

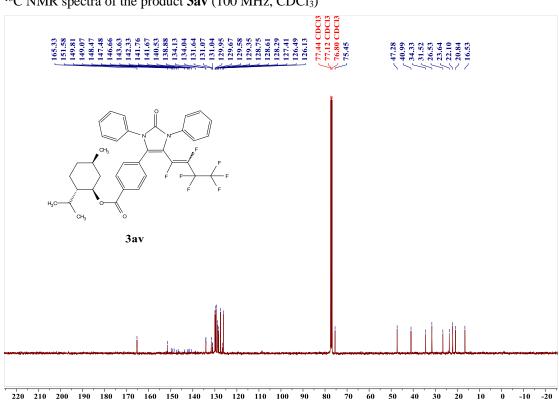



¹H NMR spectra of the product **3ja** (400 MHz, CDCl₃)

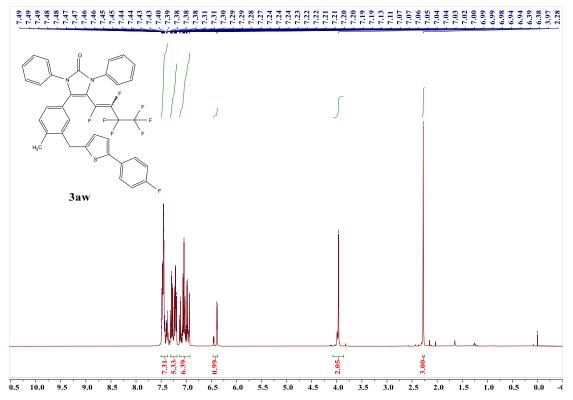

¹³C NMR spectra of the product **3ja** (100 MHz, CDCl₃)

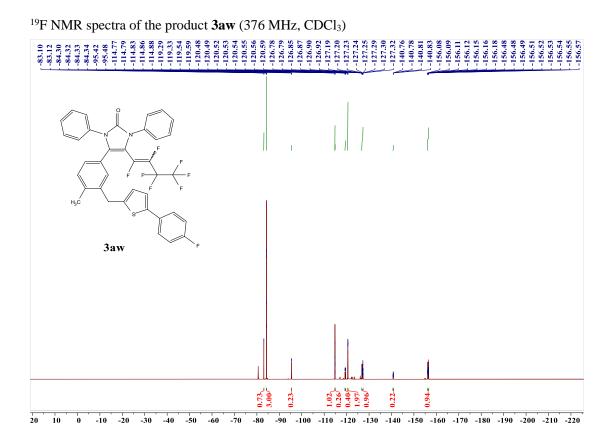

¹H NMR spectra of the product **3ma** (400 MHz, CDCl₃)

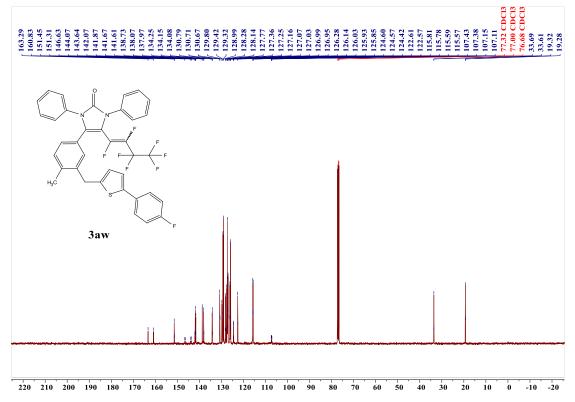

¹³C NMR spectra of the product **3ma** (100 MHz, CDCl₃)



¹H NMR spectra of the product **3av** (400 MHz, CDCl₃)


¹⁹F NMR spectra of the product **3av** (376 MHz, CDCl₃)




¹³C NMR spectra of the product **3av** (100 MHz, CDCl₃)

¹H NMR spectra of the product **3aw** (400 MHz, CDCl₃)

¹³C NMR spectra of the product **3aw** (100 MHz, CDCl₃)

