Pyruvic Acid or DBU/O₂ Guiding Organophotoredox-Cat alyzed Direct C-H Alkylation/ α -Aminoalkylation of 1,2,4-Triazine-3,5(2*H*, 4*H*)-diones with Amines

Zhao-Nan Cai, a Xiaohui Cao, *
b Hong-Yu Zhang, *
a Yuecheng Zhang *
a and Jiquan Zhao $^{\rm a}$

^aSchool of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300401, P. R. China. Phone: 86-22-60204726. E-mail: zhanghy@hebut.edu.cn; yczhang@hebut.edu.cn; caoxiaohui@gdpu.edu.cn ^bSchool of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.

Supporting Information

Table of Contents

I. General methods and materials	2
II. Synthesis of substrates	2
III. General procedure	2
IV. Optimization of reaction conditions	3
V. Unsuitable (hetero)aromatic cycles and amines	4
VI. Procedure for emission quenching experiments	4
VII. Mechanistic Experiments	5
VII. Scale-up experiment	7
IX. Characterization data of 3a-4aa	8
X. NMR charts of 3a-4u	21
XI. Computational details	72
XII. References	92

I. General methods and materials

All manipulations were performed under an air atmosphere unless otherwise statement. ¹H and ¹³C NMR spectra were recorded on a Bruker AC-P 400 spectrometer (400 MHz for ¹H, 100 MHz for ¹³C) in CDCl₃. Chemical shifts (ppm) were recorded with tetramethylsilane (TMS) as the internal reference standard. Multiplicities are given as: s (singlet), d (doublet), t (triplet), dd (doublet of doublets), q (quartet) or m (multiplet). Copies of their ¹H NMR and ¹³C NMR spectra are provided in the Supporting Information. High resolution mass spectra (HRMS) were recorded on quadrupole time-of-flight mass spectrometer (Q-TOF-MS) using electrospray ionization (ESI) as an ionization method. Emission intensities were recorded using an FS5 Spectrofluorometer. Solvents were dried and purified according to the procedure from "Purification of Laboratory Chemicals book". The crude products were purified by flash column chromatography on silica gel and the reported yields are the actual isolated yields of pure products. Unless stated otherwise, commercial reagents were used without further purification. All reagents were weighed and handled in air at room temperature.

II. Synthesis of substrates

General Procedure for the Preparation of various 1,2,4-Triazine-3,5(2H,4H)-diones

The substrates of various 1,2,4- triazine-3,5(2H,4H)-diones were synthesized according to procedures described in the previous literature studies.^{1, 2}

III. General procedure

Procedure for the Synthesis of 3a

To a solution of 2,4-dibenzyl-1,2,4-triazine-3,5(2*H*, 4*H*)-dione **1a** (0.3 mmol) and 4CzIPN (5 mol%) in DMC (3 mL) were placed in a flame-dried Schlenk-tube equipped with a magnetic stir bar, followed by addition of pyruvic acid (1.5 equiv.) and diethylamine **2a** (0.6 mmol) *via* syringe. The reaction was stirred at room temperature and irradiated with a 20 W blue light-emitting diode (LED) lamp for 12 h. The progress of the reaction was monitored by TLC. After completion, the reaction mixture was removed under reduced pressure. The crude residue thus obtained was purified by column chromatography over silica gel using petroleum ether and ethyl acetate (25:1) as an eluent to afford the 2,4-dibenzyl-6-ethyl-1,2,4-triazine-3,5(2*H*, 4*H*)-dione **3a** in 91% yield.

Procedure for the Synthesis of 4a

To a solution of 2,4-dibenzyl-1,2,4-triazine-3,5(2*H*, 4*H*)-dione **1a** (0.3 mmol) and 4CzIPN (5 mol%) in DCM (3 mL) were placed in a flame-dried Schlenk-tube equipped with a magnetic stir bar, followed by addition of DBU (2.0 equiv.) and diethylamine **2a** (0.9 mmol) *via* syringe. The reaction was stirred at room temperature under O_2 atmosphere and irradiated with a 20 W blue light-emitting diode (LED) lamp for 6 h. The progress of the reaction was monitored by TLC. After completion, the reaction

mixture was removed under reduced pressure. The crude residue thus obtained was purified by column chromatography over silica gel using petroleum ether and ethyl acetate (1:1) as an eluent to afford the 2,4-dibenzyl-6-(1-(ethylamino)ethyl)-1,2,4-triazine-3,5(2*H*, 4*H*)-dione **4a** in 79% yield.

IV. Optimization of reaction conditions

Table S1 Optimization of reaction conditions for the preparation of 4a

	+ _NH	PC Addictive Solvent O ₂ balloon 20W blue LED	
1a	2a		4a

Entry	Photocatalyst (mol%)	Base (equiv.)	Solvent (mL)	4a Yield (%) ^[a]
1 ^[b]	4CzIPN (5.0)	DBU (2.0)	DMC (3.0)	27
2 ^[b]	4CzIPN (5.0)	DBU (2.0)	DCM (3.0)	52
3 ^[b]	4CzIPN (5.0)	DBU (2.0)	DCE (3.0)	50
4 ^[b]	4CzIPN (5.0)	DBU (2.0)	H2O (3.0)	0
5 ^[b]	4CzIPN (5.0)	DBU (2.0)	EtOH (3.0)	0
6 ^[c]	4CzIPN (5.0)	DBU (2.0)	DCM (3.0)	63
7	4CzIPN (5.0)	DBU (2.0)	DCM (3.0)	79
8	EoSinY (5.0)	DBU (2.0)	DCM (3.0)	0
9	$(\text{Mes-Acr-Me})^+\text{ClO}_4^- (5.0)$	DBU (2.0)	DCM (3.0)	17
10	RoseBengal (5.0)	DBU (2.0)	DCM (3.0)	0
11	4CzPN (5.0)	DBU (2.0)	DCM (3.0)	53
12	5CzPN (5.0)	DBU (2.0)	DCM (3.0)	27
13	4CzIPN (5.0)	TMG (2.0)	DCM (3.0)	0
14	4CzIPN (5.0)	DBN (2.0)	DCM (3.0)	35
15	4CzIPN (5.0)	Pyridine (2.0)	DCM (3.0)	0
16	4CzIPN (5.0)	K ₃ PO ₄ (2.0)	DCM (3.0)	20
17	4CzIPN (5.0)	K ₂ CO ₃ (2.0)	DCM (3.0)	0
18	4CzIPN (3.0)	DBU (2.0)	DCM (3.0)	58
19	4CzIPN (7.0)	DBU (2.0)	DCM (3.0)	77
20	4CzIPN (5.0)	DBU (1.5)	DCM (3.0)	60
21	4CzIPN (5.0)	DBU (2.5)	DCM (3.0)	79

Reaction conditions: **1a** (0.3 mmol), **2a** (0.9 mmol), 4CzIPN(5 mol%) and DBU (2.0 equiv.) reacted in DCM (3.0 mL) at room temperature for 6 h under the irradiation of blue LED (20 W) in the O_2 atmosphere. ^[a] Isolated yields. ^[b] **2a** (0.6 mmol). ^[c] **2a** (0.75 mmol).

V. Unsuitable (hetero)aromatic cycles and amines.

Figure S1 Unsuitable (hetero)aromatic cycles and amines

VI. Procedure for emission quenching experiments

Figure S2 Luminescence quenching study

Emission intensities were recorded using an FS5 Spectrofluorometer. First, the emission intensity of 4CzIPN solutions was observed at 550 nm. The solutions were irradiated at 378 nm (Maximum absorption wavelength of 4CzIPN) and fluorescence was measured from 400 nm to 700 nm. In a typical experiment, the emission spectrum of a 5×10^{-5} M solution of 4CzIPN with different concentration of **1a**, **2a** and DBU in degassed anhydrous CH₃CN in 10 mm path length quartz cuvette was collected: A) the emission spectra of 5×10^{-5} M solutions of 4CzIPN with reactants (**1a**, **2a** and DBU) in degassed anhydrous CH₃CN; B) the emission spectra of a 5×10^{-5} M solution of 4CzIPN with various concentrations of DBU in degassed anhydrous CH₃CN. C) the linear relationship between I₀/I

and the increasing concentration of DBU (I_0 and I are the fluorescence intensities before and after the increasing the concentration of DBU, respectively.).

VII. Mechanistic Experiments

To a solution of 2,4-dibenzyl-1,2,4-triazine-3,5(2*H*, 4*H*)-dione **1a** (0.3 mmol), 4CzIPN (5 mol%) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (4.0 equiv.) in DMC (3 mL) were placed in a flame-dried Schlenk-tube equipped with a magnetic stir bar, followed by addition of pyruvic acid (1.5 equiv.) and diethylamine **2a** (0.6 mmol) *via* syringe. The reaction was stirred at room temperature and irradiated with a 20 W blue light-emitting diode (LED) lamp for 12 h. The target product **3a** was not detected by TLC.

To a solution of 2,4-dibenzyl-1,2,4-triazine-3,5(2*H*, 4*H*)-dione **1a** (0.3 mmol), 4CzIPN (5 mol%) and butylated hydroxytoluene (BHT) (4.0 equiv.) in DMC (3 mL) were placed in a flame-dried Schlenk-tube equipped with a magnetic stir bar, followed by addition of pyruvic acid (1.5 equiv.) and diethylamine **2a** (0.6 mmol) *via* syringe. The reaction was stirred at room temperature and irradiated with a 20 W blue light-emitting diode (LED) lamp for 12 h. The target product **3a** was not detected by TLC.

To a solution of 2,4-dibenzyl-1,2,4-triazine-3,5(2*H*, 4*H*)-dione **1a** (0.3 mmol), 4CzIPN (5 mol%) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (4.0 equiv.) in DCM (3 mL) were placed in a flame-dried Schlenk-tube equipped with a magnetic stir bar, followed by addition of DBU (2.0 equiv.) and diethylamine **2a** (0.9 mmol) *via* syringe. The reaction was stirred at room temperature under O_2 atmosphere and irradiated with a 20 W blue light-emitting diode (LED) lamp for 6 h. The target

product **4a** was not detected by TLC and DBU radical cation (DBU⁺⁺) were successfully detected by high-resolution mass spectrometer (HRMS) (Figure S3).

Figure S3 The HRMS analysis of DBU radical cation

To a solution of 2,4-dibenzyl-1,2,4-triazine-3,5(2*H*, 4*H*)-dione **1a** (0.3 mmol), 4CzIPN (5 mol%) and butylated hydroxytoluene (BHT) (4.0 equiv.) in DCM (3 mL) were placed in a flame-dried Schlenk-tube equipped with a magnetic stir bar, followed by addition of DBU (2.0 equiv.) and diethylamine **2a** (0.9 mmol) *via* syringe. The reaction was stirred at room temperature under O_2 atmosphere and irradiated with a 20 W blue light-emitting diode (LED) lamp for 6 h. The progress of the reaction was monitored by TLC. After completion, the reaction mixture was removed under reduced pressure. The crude residue thus obtained was purified by column chromatography over silica gel using petroleum ether and ethyl acetate (1:1) as an eluent to afford the 2,4-dibenzyl-6-(1-(ethylamino)ethyl)-1,2,4-triazine-3,5(2*H*, 4*H*)-dione **4a** in 16% yield.

To a solution of 2,4-dibenzyl-1,2,4-triazine-3,5(2*H*, 4*H*)-dione **1a** (0.3 mmol), 4CzIPN (5 mol%) and 1,4-diaza[2.2.2]bicyclooctane (DABCO) (4.0 equiv.) in DCM (3 mL) were placed in a flame-dried

Schlenk-tube equipped with a magnetic stir bar, followed by addition of DBU (2.0 equiv.) and diethylamine **2a** (0.9 mmol) *via* syringe. The reaction was stirred at room temperature under O_2 atmosphere and irradiated with a 20 W blue light-emitting diode (LED) lamp for 6 h. The progress of the reaction was monitored by TLC. After completion, the reaction mixture was removed under reduced pressure. The crude residue thus obtained was purified by column chromatography over silica gel using petroleum ether and ethyl acetate (1:1) as an eluent to afford the 2,4-dibenzyl-6-(1-(ethylamino)ethyl)-1,2,4-triazine-3,5(2*H*, 4*H*)-dione **4a** in 24% yield.

To a solution of 2,4-dibenzyl-1,2,4-triazine-3,5(2*H*, 4*H*)-dione **1a** (0.3 mmol), 4CzIPN (5 mol%) and NaN₃ (4.0 equiv.) in DCM (3 mL) were placed in a flame-dried Schlenk-tube equipped with a magnetic stir bar, followed by addition of DBU (2.0 equiv.) and diethylamine **2a** (0.9 mmol) *via* syringe. The reaction was stirred at room temperature under O_2 atmosphere and irradiated with a 20 W blue light-emitting diode (LED) lamp for 6 h. The progress of the reaction was monitored by TLC. After completion, the reaction mixture was removed under reduced pressure. The crude residue thus obtained was purified by column chromatography over silica gel using petroleum ether and ethyl acetate (1:1) as an eluent to afford the 2,4-dibenzyl-6-(1-(ethylamino)ethyl)-1,2,4-triazine-3,5(2*H*, 4*H*)-dione **4a** in 17% yield.

VII. Scale-up experiment

Gram-scale synthesis of 3a

To a solution of 2,4-dibenzyl-1,2,4-triazine-3,5(2*H*, 4*H*)-dione **1a** (1.17 g, 4 mmol) and 4CzIPN (5 mol%) in DMC (0.1 M) were placed in a flame-dried Schlenk-tube equipped with a magnetic stir bar, followed by addition of pyruvic acid (1.5 equiv.) and diethylamine **2a** (0.59g, 8 mmol) *via* syringe. The reaction was stirred at room temperature and irradiated with a 20 W blue light-emitting diode (LED) lamp for 24 h. The progress of the reaction was monitored by TLC. After completion, the reaction mixture was removed under reduced pressure. The crude residue thus obtained was purified by column chromatography over silica gel using petroleum ether and ethyl acetate (25:1) as an eluent to afford the 2,4-dibenzyl-6-ethyl-1,2,4-triazine-3,5(2*H*, 4*H*)-dione **3a** (1.04 g) in 81% yield.

Gram-scale synthesis of 4a

To a solution of 2,4-dibenzyl-1,2,4-triazine-3,5(2*H*, 4*H*)-dione **1a** (1.17 g, 4 mmol) and 4CzIPN (5 mol%) in DCM (0.1 M) were placed in a flame-dried Schlenk-tube equipped with a magnetic stir bar, followed by addition of DBU (2.0 equiv.) and diethylamine **2a** (0.88g, 12 mmol) *via* syringe. The reaction was stirred at room temperature under O_2 atmosphere and irradiated with a 20 W blue

light-emitting diode (LED) lamp for 6 h. The progress of the reaction was monitored by TLC. After completion, the reaction mixture was removed under reduced pressure. The crude residue thus obtained was purified by column chromatography over silica gel using petroleum ether and ethyl acetate (1:1) as an eluent to afford the 2,4-dibenzyl-6-(1-(ethylamino)ethyl)-1,2,4-triazine-3,5(2*H*, 4*H*)-dione **4a** (0.90 g) in 62% yield.

IX. Characterization data of 3a-4aa

2,4-dibenzyl-6-ethyl-1,2,4-triazine-3,5(2H,4H)-dione (**3a**). a colorless liquid (91% yield, 87.3 mg). (PET/EtOAc = 25:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 7.49–7.48 (m, 2H), 7. 42–7.41 (m, 2H), 7.37–7.30 (m, 6H), 5.09 (s, 2H), 5.09 (s, 2H), 2.64 (t, J = 7.4 Hz, 2H), 1.1 9 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 156.0, 149.1, 146.6, 136.0, 135.8, 129. 5, 128.8, 128.7, 128.6, 128.2, 128.1, 55.3, 44.2, 23.9, 10.4; HRMS (ESI): m/z calcd for C₁₉H₂₀ N₃O₂⁺ [M+H]⁺ 322.1550. Found 322.1550.

6-ethyl-2,4-dimethyl-1,2,4-triazine-3,5(2H,4H)-dione (**3b**). a colorless liquid (51% yield, 25.9 mg). (PET/EtOAc = 25:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 3.61 (s, 3H), 3.35 (s, 3H), 2.64 (q, J = 7.3 Hz, 2H), 1.19 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 1 56.4, 149.4, 145.8, 39.3, 27.1, 23.8, 10.6; HRMS (ESI): m/z calcd for C₇H₁₁N₃NaO₂⁺ [M+Na]⁺ 192.0743. Found 192.0743.

2,4-diallyl-6-ethyl-1,2,4-triazine-3,5(2H,4H)-dione (**3c**). a colorless liquid (81% yield, 53.5 mg). (PET/EtOAc = 25:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 5.98–5.81 (m, 2H), 5. 31–5.21 (m, 4H), 4.53 (s, 4H), 2.63 (q, J = 7.3 Hz, 2H), 1.18 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.7, 148.5, 146.4, 131.6, 130.5, 119.0, 118.8, 53.9, 42.8, 23.8, 10.5; HRMS (ESI): m/z calcd for C₁₁H₁₅N₃NaO₂⁺ [M+Na]⁺ 244.1056. Found 244.1053.

6-ethyl-2,4-di(prop-2-yn-1-yl)-1,2,4-triazine-3,5(2H,4H)-dione (**3d**). a colorless liquid (87% yi eld, 56.8 mg). (PET/EtOAc = 25:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ: 4.74 (s, 2H), 4.68 (s, 2H), 2.68 (q, J = 7.3 Hz, 2H), 2.35 (s, 1H), 2.21 (s, 1H), 1.20 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 155.0, 147.6, 147.1, 76.9, 76.6, 73.3, 71.6, 41.2, 29.9, 23.8,

10.3; HRMS (ESI): m/z calcd for $C_{11}H_{11}N_3NaO_2^+$ [M+Na]⁺ 240.0743. Found 240.0744.

di-tert-butyl 2,2'-(6-*ethyl-3,5-dioxo-1,2,4-triazine-2,4(3H,5H)-diyl)diacetate* (**3e**). a colorless li quid (56% yield, 61.6 mg). (PET/EtOAc = 25:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 4.56 (s, 4H), 2.65 (q, J = 7.0 Hz, 2H), 1.46 (s, 18H), 1.17 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.5, 165.6, 155.5, 148.7, 146.6, 82.8, 82.7, 53.3, 42.0, 28.0, 27.9, 23. 7, 10.3; HRMS (ESI): m/z calcd for C₁₇H₂₇N₃NaO₆⁺ [M+Na]⁺ 392.1792. Found 392.1794.

6-ethyl-2,4-bis(2-oxo-2-phenylethyl)-1,2,4-triazine-3,5(2H,4H)-dione (**3f**). a colorless liquid (7 3% yield, 82.6 mg). (PET/EtOAc = 25:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 7.98 (t, J = 6.5 Hz, 4H), 7.64–7.59 (m, 2H), 7.52–7.47 (m, 4H), 5.41 (s, 2H), 5.39 (s, 2H), 2.67 (q, J = 7.3 Hz, 2H), 1.19 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 191.6, 190.4, 1 55.7, 149.1, 146.8, 134.4, 134.3, 134.0, 133.9, 128.8, 128.7, 128.0, 127.9, 57.3, 46.4, 23.7, 10. 2; HRMS (ESI): m/z calcd for C₂₁H₁₉N₃NaO₄⁺ [M+Na]⁺ 400.1268. Found 400.1264.

2-benzyl-6-ethyl-1,2,4-triazine-3,5(2H,4H)-dione (**3g**). a colorless liquid (89% yield, 61.7 m g). (PET/EtOAc = 25:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 9.92 (s, 1H), 7.50–7.48 (m, 2H), 7.34–7.28 (m, 3H), 5.09 (s, 2H), 2.63 (q, J = 7.3 Hz, 2H), 1.18 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 156.0, 150.1, 147.4, 135.4, 129.4, 128.6, 128.1, 43.5, 23.7, 1 0.2; HRMS (ESI): m/z calcd for C₁₂H₁₃N₃NaO₂⁺ [M+Na]⁺ 254.0900. Found 254.0899.

6-ethyl-2-phenyl-1,2,4-triazine-3,5(2H,4H)-dione (**3h**). a colorless liquid (31% yield, 20.1 m g). (PET/EtOAc = 25:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ: 10.21 (s, 1H), 7.56–7.47 (m, 3H), 7.27 (s, 2H), 2.70 (q, J = 7.2 Hz, 2H), 1.23 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 155.9, 150.0, 147.9, 132.3, 129.5, 129.4, 127.8, 23.8, 10.2; HRMS (ESI): m/z calcd for C₁₁H₁₁N₃NaO₂⁺ [M+Na]⁺ 240.0743. Found 240.0742.

6-ethyl-4-methyl-2-phenyl-1,2,4-triazine-3,5(2H,4H)-dione (**3i**). a colorless liquid (79% yield, 54.8 mg). (PET/EtOAc = 25:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 7.52–7.43 (m, 3

H), 7.23–7.21 (m, 2H), 3.66 (s, 3H), 2.69 (q, J = 7.3 Hz, 2H), 1.24 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 156.1, 149.0, 146.8, 133.2, 129.4, 129.2, 127.8, 39.4, 23.9, 10.5; HRMS (ESI): m/z calcd for C₁₂H₁₄N₃O₂⁺ [M+H]⁺ 232.1081. Found 232.1080.

2-allyl-6-ethyl-4-methyl-1,2,4-triazine-3,5(2H,4H)-dione (**3j**). a colorless liquid (79% yield, 4 6.5 mg). (PET/EtOAc = 25:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 5.90–5.81 (m, 1H), 5.31–5.21 (m, 2H), 4.52 (d, J = 5.5 Hz, 2H), 3.60 (s, 3H), 2.63 (q, J = 7.3 Hz, 2H), 1.18 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.9, 148.9, 146.1, 130.5, 119.1, 42.8, 39.2, 23.7, 10.5; HRMS (ESI): m/z calcd for C₉H₁₃N₃NaO₂⁺ [M+Na]⁺ 218.0900. Found 218.090 3.

6-ethyl-4-methyl-2-(prop-2-yn-1-yl)-1,2,4-triazine-3,5(2H,4H)-dione (**3k**). a colorless liquid (8 5% yield, 49.3 mg). (PET/EtOAc = 25:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 4.68–4. 67 (m, 2H), 3.61 (s, 3H), 2.64 (q, J = 7.3 Hz, 2H), 2.20 (s, 1H), 1.18 (t, J = 7.4 Hz, 3H); ¹ ³C NMR (100 MHz, CDCl₃) δ : 155.2, 148.3, 146.1, 76.8, 71.4, 39.3, 29.8, 23.7, 10.4; HRMS (ESI): m/z calcd for C₉H₁₁N₃NaO₂⁺ [M+Na]⁺ 216.0743. Found 216.0742.

2-benzyl-6-(1-(ethylamino)ethyl)-4-(4-fluorobenzyl)-1,2,4-triazine-3,5(2H,4H)-dione (**3**I). a colo rless liquid (65% yield, 65.8 mg). (PET/EtOAc = 25:1 as the eluet). ¹H NMR (400 MHz, CD Cl₃) δ : 7.49–7.47 (m, 2H), 7.42–7.39 (m, 2H), 7.33–7.30 (m, 3H), 7.03 (t, J = 8.4 Hz, 2H), 5. 08 (s, 2H), 5.05 (s, 2H), 2.64 (q, J = 7.3 Hz, 2H), 1.19 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 163.8, 161.4, 155.9, 149.0, 146.6, 135.6, 131.7, 130.7, 130.6, 129.4, 128.5, 1 28.0, 115.6, 115.4, 54.4, 44.1, 23.7, 10.3; HRMS (ESI): m/z calcd for C₁₉H₁₈FN₃NaO₂⁺ [M+Na] ⁺ 362.1275. Found 362.1274.

tert-butyl 2-(2-*benzyl-6-ethyl-3,5-dioxo-2,5-dihydro-1,2,4-triazin-4(3H)-yl)acetate* (**3m**). a color less liquid (76% yield, 79.0 mg). (PET/EtOAc = 25:1 as the eluet). ¹H NMR (400 MHz, CDC ¹₃) δ : 7.47–7.45 (m, 2H), 7.30–7.28 (m, 2H), 5.10 (s, 2H), 4.56 (s, 2H), 2.64 (q, J = 7.3 Hz, 2H), 1.45 (s, 9H), 1.17 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.6, 155.9, 1 49.2, 146.8, 135.5, 129.2, 128.5, 127.9, 82.8, 53.3, 44.0, 27.9, 23.7, 10.3; HRMS (ESI): m/z c alcd for C₁₈H₂₃N₃NaO₄⁺ [M+Na]⁺ 368.1581. Found 368.1578.

2,4-dibenzyl-6-propyl-1,2,4-triazine-3,5(2H,4H)-dione (**3n**). a colorless liquid (51% yield, 51. 7 mg). ¹H NMR (400 MHz, CDCl₃) δ : 7.49–7.48 (m, 2H), 7.42–7.40 (m, 2H), 7.37–7.30 (m, 6H), 5.09 (s, 4H), 2.59 (t, J = 7.4 Hz, 2H), 1.69–1.63 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 156.0, 149.0, 145.6, 135.8, 135.7, 129.4, 128.6, 128.5, 128.1, 12 8.0, 55.1, 44.1, 32.2, 19.6, 13.7; HRMS (ESI): m/z calcd for C₂₀H₂₁N₃NaO₂⁺ [M+Na]⁺ 358.152 6. Found 358.1524.

2,4-dibenzyl-6-butyl-1,2,4-triazine-3,5(2H,4H)-dione (**30**). a colorless liquid (46% yield, 48.3 mg). (PET/EtOAc = 25:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 7.50–7.48 (m, 2H), 7. 42–7.40 (m, 2H), 7.37–7.30 (m, 6H), 5.09 (s, 4H), 2.61 (t, J = 7.6 Hz, 2H), 1.63–1.57 (m, 2 H), 1.38 (q, J = 7.3 Hz, 2H), 0.94 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 156. 0, 149.0, 145.7, 135.8, 135.7, 129.4, 128.6, 128.6, 128.5, 128.1, 128.0, 55.1, 44.1, 30.0, 28.2, 22.2, 13.8; HRMS (ESI): m/z calcd for C₂₁H₂₃N₃NaO₂⁺ [M+Na]⁺ 372.1682. Found 372.1681.

2,4-dibenzyl-6-pentyl-1,2,4-triazine-3,5(2H,4H)-dione (**3p**). a colorless liquid (34% yield, 37. 2 mg). ¹H NMR (400 MHz, CDCl₃) δ : 7.50–7.48 (m, 2H), 7.42–7.40 (m, 2H), 7.37–7.30 (m, 6H), 5.09 (s, 4H), 2.61 (t, J = 7.6 Hz, 2H), 1.65–1.61 (m, 2H), 1.34 (s, 4H), 0.90 (t, J = 6.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 156.0, 149.0, 145.7, 135.9, 135.7, 129.4, 128.6, 12 8.6, 128.5, 128.1, 127.9, 55.1, 44.1, 31.3, 30.2, 25.8, 22.3, 14.0; HRMS (ESI): m/z calcd for C₂₂H₂₅N₃NaO₂⁺ [M+Na]⁺ 386.1839. Found 386.1839.

2,4-dibenzyl-6-isobutyl-1,2,4-triazine-3,5(2H,4H)-dione (**3q**). a colorless liquid (72% yield, 7 5.1 mg). (PET/EtOAc = 25:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 7.48–7.47 (m, 2H), 7.41–7.39 (m, 2H), 7.34–7.30 (m, 6H), 5.09 (s, 2H), 5.09 (s, 2H), 2.48 (d, J = 7.0 Hz, 2H), 2.13–2.03 (m, 1H), 0.93 (d, J = 6.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 156.1, 148.9, 145.0, 135.8, 135.7, 129.4, 128.6, 128.6, 128.5, 128.1, 128.0, 55.2, 44.1, 39.0, 26.2, 22.4; HR MS (ESI): m/z calcd for C₂₁H₂₃N₃NaO₂⁺ [M+Na]⁺ 372.1682. Found 372.1682.

2-(4-chlorophenyl)-2-(2,6-dichloro-4-(6-ethyl-4-methyl-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H) -yl)phenyl)acetonitrile (**3r**). a colorless liquid (41% yield, 55.1 mg). (PET/EtOAc = 25:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 7.79 (s, 2H), 7.33 (q, J = 8.2 Hz, 4H), 6.18 (s, 1H), 3.42 (s, 3H), 2.77 (q, J = 7.1 Hz, 2H), 1.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.3, 148.2, 141.7, 135.6, 134.2, 130.8, 129.6, 129.1, 128.2, 124.8, 116.2, 36.9, 27.5, 24.1, 10.4; H RMS (ESI): m/z calcd for C₂₀H₁₅Cl₃N₄NaO₂⁺ [M+Na]⁺ 471.0153. Found 471.0153.

4-(3-(6-ethyl-4-methyl-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)propoxy)-3-methoxybenzalde hyde (**3s**). a colorless liquid (37% yield, 43.0 mg). (PET/EtOAc = 25:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 9.83 (s, 1H), 7.41 (d, J = 7.7 Hz, 1H), 7.36 (s, 1H), 6.91 (d, J = 8.2Hz, 1H), 4.21–4.17 (m, 4H), 3.83 (s, 3H), 3.54 (s, 3H), 2.57 (q, J = 7.2 Hz, 2H), 2.28–2.26 (m, 2H), 1.15 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 190.9, 156.4, 153.6, 149. 6, 149.3, 145.9, 130.0, 127.0, 111.2, 108.8, 67.4, 55.7, 38.8, 29.7, 27.0, 23.7, 10.4; HRMS (ES I): m/z calcd for C₁₇H₂₁N₃NaO₅⁺ [M+Na]⁺ 370.1373. Found 370.1371.

6-ethyl-2-(3-(2-methoxy-4-(3-oxobutyl)phenoxy)propyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)-dione (**3t**). a colorless liquid (40% yield, 51.9 mg). (PET/EtOAc = 25:1 as the eluet). ¹H NMR (40 0 MHz, CDCl₃) δ: 6.76–6.74 (m, 1H), 6.66 (s, 2H), 4.15 (t, J = 6.5 Hz, 2H), 4.05 (t, J = 5. 8 Hz, 2H), 3.78 (s, 3H), 3.56 (s, 3H), 2.83–2.80 (m, 2H), 2.74–2.70 (m, 2H), 2.58 (q, J = 7. 2 Hz, 2H), 2.20–2.17 (m, 2H), 2.13 (s, 3H), 1.15 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 208.1, 156.3, 149.3, 149.2, 146.5, 145.9, 133.9, 120.1, 113.4, 112.1, 67.2, 55.7, 45.4, 39.2, 38.7, 30.1, 29.4, 27.2, 23.7, 10.4; HRMS (ESI): m/z calcd for C₂₀H₂₇N₃NaO₅⁺ [M+Na]⁺ 412.1843. Found 412.1844.

(2R, 3S, 5R)-5-(6-ethyl-4-methyl-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)-2-(((4-methylbenzoy l)oxy)methyl)tetrahydrofuran-3-yl 4-methylbenzoate (**3u**). a colorless liquid (51% yield, 77.6 mg). (PET/EtOAc = 25:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 7.92 (t, J = 9.2 Hz, 4H), 7.26–7.24 (m, 2H), 7.19 (d, J = 7.6 Hz, 2H), 6.75–6.72 (m, 1H), 5.74(s, 1H), 4.58–4.55 (m, 1H), 4.53–4.49 (m, 1H), 3.34 (s, 3H), 3.06–2.99 (m, 1H), 2.65 (q, J = 7.1 Hz, 2H), 2.49–2.39 (m, 8H), 1.21 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.2, 166.0, 155.7, 149.3, 147.1, 144.2, 143.8, 129.7, 129.7, 129.2, 129.0, 126.9, 126.6, 86.5, 81.9, 75.0, 64.4, 34.9, 27.2, 24.0, 21.7, 21.6, 10.3; HRMS (ESI): m/z calcd for C₂₇H₂₉N₃NaO₇⁺ [M+Na]⁺ 530.1898. Found 530.1894.

2-(4-benzyl-6-ethyl-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)ethyl (S)-2-(6-methoxynaphthale n-2-yl)propanoate (**3v**). a colorless liquid (37% yield, 54.1 mg). (PET/EtOAc = 25:1 as the elu et). ¹H NMR (400 MHz, CDCl₃) δ : 7.68–7.63 (m, 2H), 7.58 (s, 1H), 7.40–7.31 (m, 6H), 7.14 –7.10 (m, 2H), 4.99 (s, 2H), 4.45–4.38 (m, 1H), 4.31–4.21 (m, 2H), 4.16–4.09 (m, 1H), 3.91 (s, 3H), 3.72 (q, J = 7.2 Hz, 1H), 2.54 (q, J = 7.4 Hz, 2H), 3.72 (d, J = 7.1 Hz, 3H), 1.16 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 174.4, 157.6, 155.9, 148.8, 146.1, 135.9, 135.4, 133.6, 129.2, 128.8, 128.7, 128.6, 128.1, 127.0, 126.2, 125.9, 118.9, 105.5, 61.0, 55.3, 55.1, 45.3, 39.6, 23.6, 18.4, 10.3; HRMS (ESI): m/z calcd for C₂₈H₃₀N₃O₅⁺ [M+H]⁺ 488.2180. Found 488.2176.

2-(4-benzyl-6-ethyl-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)ethyl 5-(2,5-dimethylphenoxy)-2, 2-dimethylpentanoate (**3w**). a colorless liquid (43% yield, 65.4 mg). (PET/EtOAc = 25:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 7.40–7.39 (m, 2H), 7.35–7.31 (m, 3H), 7.00 (d, J = 7. 0 Hz, 1H), 6.65 (d, J = 7.2 Hz, 1H), 6.59 (s, 1H), 5.08 (s, 2H), 4.32–4.31 (m, 2H), 4.24–4.2 3 (m, 2H), 3.88–3.85 (m, 2H), 2.63 (q, J = 7.2 Hz, 2H), 2.31 (s, 3H), 2.16 (s, 3H), 1.66–1.6 5 (m, 2H), 1.28 (d, J = 10.7 Hz, 2H), 1.20–1.17 (m, 3H), 1.13 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 177.6, 157.0, 156.1, 148.9, 146.3, 136.5, 135.9, 130.3, 128.8, 128.7, 128.2, 123.6, 120.7, 112.0, 67.9, 60.8, 55.2, 42.0, 39.8, 36.9, 29.8, 25.1, 25.0, 23.9, 21.5, 15.8, 10.5; HRMS (ESI): m/z calcd for C₂₉H₃₈N₃O₅⁺ [M+H]⁺ 508.2806. Found 508.2805.

2-(4-benzyl-6-ethyl-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)ethyl 2-(3-cyano-4-isobutoxyphe nyl)-4-methylthiazole-5-carboxylate (**3x**). a colorless liquid (19% yield, 32.7 mg). (PET/EtOAc = 25:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 8.13 (s, 1H), 8.07 (d, J = 8.8 Hz, 1H), 7. 38–7.34 (m, 3H), 7.30–7.27 (m, 2H), 7.01 (d, J = 8.9 Hz, 1H), 5.09 (s, 2H), 4.55–4.53 (m, 2 H), 4.36–4.34 (m, 2H), 3.91–3.90 (m, 2H), 2.70 (s, 3H), 2.64 (q, J = 7.3 Hz, 2H), 2.24–2.18 (m, 1H), 1.18 (t, J = 7.4 Hz, 3H), 1.10 (t, J = 6.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 167.5, 162.5, 161.7, 161.7, 156.0, 148.9, 146.4, 135.7, 132.6, 132.1, 128.6, 128.1, 126.0, 121. 1, 115.4, 112.6, 103.0, 75.7, 61.6, 55.1, 39.7, 28.1, 23.9, 19.0, 17.4, 10.4; HRMS (ESI): m/z c alcd for C₃₀H₃₂N₅O₅S⁺ [M+H]⁺ 574.2119. Found 574.2119.

2,4-*dibenzyl*-6-(*1*-(*ethylamino*)*ethyl*)-*1*,2,4-*triazine*-3,5(2*H*,4*H*)-*dione* (**4a**). a yellow liquid (79% yield, 86.3 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 7.48–7.46 (m, 2H), 7.40–7.38 (m, 2H), 7.34–7.30 (m, 6H), 5.18–5.02 (m, 4H), 3.98 (q, *J* = 6.4 Hz, 1H), 2.52–2.51 (m, 2H), 1.84 (s, 1H), 1.36 (d, *J* = 6.6 Hz, 3H), 1.06 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.4, 148.7, 146.8, 135.6, 135.5, 129.3, 128.6, 128.6, 128.5, 128.2, 128.0, 55.2, 53.3, 44.0, 41.4, 19.6, 15.3; HRMS (ESI): m/z calcd for C₂₁H₂₅N₄O₂⁺ [M+H]⁺ 365.1972. Found 365.1972.

6-(1-(ethylamino)ethyl)-2,4-bis(4-methylbenzyl)-1,2,4-triazine-3,5(2H,4H)-dione (**4b**). a yellow liquid (74% yield, 86.9 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ: 7.38–7.36 (m, 2H), 7.29–7.26 (m, 2H), 7.13 (t, *J* = 8.1 Hz, 4H), 5.13–4.98 (m, 4H), 3.96 (q, *J* = 6.4 Hz, 1H), 2.51 (q, *J* = 6.8 Hz, 2H), 2.33 (s, 3H), 2.32 (s, 3H), 1.87 (s, 1H), 1.34 (d, *J* = 6.4 Hz, 3H), 1.06 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 155.5, 148.7, 146.6, 137.9, 137.8, 132.6, 129.4, 129.3, 129.2, 128.6, 55.0, 53.3, 43.8, 41.4, 21.1, 19.6, 15.2; HRMS (ESI): m/z calcd for C₂₃H₂₉N₄O₂⁺ [M+H]⁺ 393.2285. Found 393.2284.

2,4-bis(4-chlorobenzyl)-6-(1-(ethylamino)ethyl)-1,2,4-triazine-3,5(2H,4H)-dione (4c). a yellow liquid (64% yield, 82.6 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 7.41–7.39 (m, 2H), 7.31–7.27 (m, 6H), 5.12–4.99 (m, 4H), 3.96 (q, J = 6.6 Hz, 1H), 2.58–2.47 (m, 2H), 1.83 (s, 1H), 1.35 (d, J = 6.7 Hz, 3H), 1.07 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.3, 148.6, 147.1, 134.3, 134.1,133.9, 133.9, 130.9, 130.1, 128.9, 128.7, 54.6, 53.3, 43.4, 41.5, 19.5, 15.3; HRMS (ESI): m/z calcd for C₂₁H₂₃Cl₂N₄O₂+ [M+H]⁺ 433.1193. Found 433.1190.

6-(1-(ethylamino)ethyl)-2,4-dimethyl-1,2,4-triazine-3,5(2H,4H)-dione (4d). a yellow liquid (74% yield, 47.2 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 3.99 (q, *J* = 6.5 Hz, 1H), 3.61 (s, 3H), 3.32 (s, 3H), 2.89 (s, 1H), 2.62–2.60 (m, 2H), 1.38 (d, *J* = 6.5 Hz, 3H), 1.11 (t, *J* = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.8, 149.0, 145.2, 53.3, 41.5, 39.5, 27.0, 19.1, 14.8; HRMS (ESI): m/z calcd for C₉H₁₇N₄O₂⁺ [M+H]⁺ 213.1346. Found 213.1345.

2,4-diethyl-6-(1-(ethylamino)ethyl)-1,2,4-triazine-3,5(2H,4H)-dione (**4e**). a yellow liquid (65% yield, 47.3 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 4.04-3.99 (m, 1H), 3.97-3.93 (m, 4H), 2.59-2.54 (m, 2H), 1.94 (s, 1H), 1.35 (d, J = 6.7 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H), 1.22 (t, J = 7.0 Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.4, 148.3, 146.2, 53.4, 46.7, 41.5, 36.0, 19.4, 15.2, 13.3, 12.5; HRMS (ESI): m/z calcd for C₁₁H₂₁N₄O₂⁺ [M+H]⁺ 241.1659. Found 241.1658.

6-(1-(ethylamino)ethyl)-2,4-dipropyl-1,2,4-triazine-3,5(2H,4H)-dione (**4f**). a yellow liquid (68% yield, 54.6 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ: 3.95-3.91 (m, 1H), 3.89-3.83 (m, 4H), 2.54 (q,*J*= 6.6 Hz, 2H), 2.02 (s, 1H), 1.73 (t,*J*= 7.3 Hz, 2H), 1.63 (t,*J*= 7.4 Hz, 2H), 1.31 (d,*J*= 6.7 Hz, 3H), 1.06 (t,*J*= 7.1 Hz, 3H), 0.91 (t,*J*= 7.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ: 155.5, 148.7, 146.1, 53.4, 53.0, 42.2, 41.4, 21.4, 20.5, 19.4, 15.3, 11.2, 10.8; HRMS (ESI): m/z calcd for C₁₃H₂₅N₄O₂⁺ [M+H]⁺ 269.1972. Found 269.1973.

2,4-*diallyl-6*-(1-(*ethylamino*)*ethyl*)-1,2,4-*triazine*-3,5(2H,4H)-*dione* (**4g**). a yellow liquid (63% yield, 49.7 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 5.96-5.80 (m, 2H), 5.29-5.20 (m, 4H), 4.60-4.50 (m, 4H), 3.95 (q, J = 6.4 Hz, 1H), 2.58-2.53 (m, 2H), 1.90 (s, 1H), 1.35 (d, J = 6.7 Hz, 3H), 1.07 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.2, 148.3, 146.7, 131.3, 130.3, 119.1, 118.9, 53.9, 53.5, 42.8, 41.5, 19.5, 15.3; HRMS (ESI): m/z calcd for C₁₃H₂₁N₄O₂⁺ [M+H]⁺ 265.1659. Found 265.1661.

6-(1-(ethylamino)ethyl)-2,4-di(prop-2-yn-1-yl)-1,2,4-triazine-3,5(2H,4H)-dione (**4h**). a yellow liquid (66% yield, 51.4 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 4.80-4.68 (m, 4H), 3.99 (q, J = 6.1 Hz, 1H), 2.59 (q, J = 6.7 Hz, 2H), 2.35 (s, 1H), 2.22 (s, 1H), 1.83 (s, 1H), 1.39 (d, J = 6.6 Hz, 3H), 1.09 (t, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 154.5, 147.5, 147.4, 76.4, 73.5, 71.8, 53.5, 41.5, 41.3, 29.9, 19.5, 15.3; HRMS (ESI): m/z calcd for C₁₃H₁₇N₄O₂⁺ [M+H]⁺ 261.1346. Found 261.1341.

6-(1-(ethylamino)ethyl)-2,4-bis(2-oxo-2-phenylethyl)-1,2,4-triazine-3,5(2H,4H)-dione (**4i**). a yellow liquid (66% yield, 83.7 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ: 7.99-7.95 (m, 4H), 7.64-7.59 (m, 2H), 7.51-7.47 (m, 4H), 5.43-5.38 (m, 4H), 4.00 (q, *J* = 6.7 Hz, 1H), 2.65-2.56 (m, 2H), 2.17 (s, 1H), 1.39 (d, *J* = 6.7 Hz, 3H), 1.08 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 191.5, 190.3, 155.3, 148.9, 147.3, 134.4, 134.3, 134.1, 134.0, 128.9, 128.8, 128.1, 128.0, 57.4, 53.5, 46.4, 41.4, 19.5, 15.3; HRMS (ESI): m/z calcd for C₂₃H₂₅N₄O₄⁺ [M+H]⁺ 421.1870. Found 421.1870.

6-(1-(ethylamino)ethyl)-2,4-bis(2-(4-methoxyphenyl)-2-oxoethyl)-1,2,4-triazine-3,5(2H,4H)-dione(**4j**). a yellow liquid (64% yield, 92.0 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 7.97-7.92 (m, 4H), 6.96-6.94 (m, 4H), 5.37-5.33 (m, 4H), 3.99 (q, J = 6.3 Hz, 1H), 3.86 (s, 6H), 2.65-2.55 (m, 2H), 2.06 (s, 1H), 1.39 (d, J = 6.6 Hz, 3H), 1.07 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 190.0, 188.8, 164.3, 155.4, 149.1, 147.2, 130.5, 130.4, 127.6, 127.4, 114.2, 114.1, 57.2, 55.6, 53.6, 46.2, 41.5, 19.6, 15.4; HRMS (ESI): m/z calcd for C₂₅H₂₉N₄O₆⁺ [M+H]⁺ 481.2082. Found 481.2076.

6-(1-(ethylamino)ethyl)-2,4-bis(2-(4-fluorophenyl)-2-oxoethyl)-1,2,4-triazine-3,5(2H,4H)-dione (**4k**). a yellow liquid (62% yield, 85.3 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ: 8.03-7.97 (m, 4H), 7.19-7.14 (m, 4H), 5.39-5.34 (m, 4H), 3.99 (q, J = 6.3 Hz, 1H), 2.61-2.58 (m, 2H), 2.19 (s, 1H), 1.38 (d, J = 6.6 Hz, 3H), 1.07 (t, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 189.9, 188.7, 167.5, 167.5, 164.9, 164.9, 155.2, 148.9, 147.3, 130.8(d, J = 9.6 Hz), 116.2(d, J = 8.3 Hz), 116.0(d, J = 8.4 Hz), 57.2, 53.5, 46.2, 41.4, 19.5, 15.2; HRMS (ESI): m/z calcd for C₂₃H₂₃F₂N₄O₄⁺ [M+H]⁺ 457.1682. Found 457.1681.

2,4-*bis*(2-(4-*chlorophenyl*)-2-*oxoethyl*)-6-(1-(*ethylamino*)*ethyl*)-1,2,4-*triazine*-3,5(2H,4H)-*dione* (**4l**). a yellow liquid (61% yield, 89.7 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 7.94-7.89 (m, 4H), 7.49-7.47 (m, 4H), 5.39-5.34 (m, 4H), 4.00 (q, *J* = 6.5 Hz, 1H), 2.64-2.57 (m, 2H), 1.79 (s, 1H), 1.39 (d, *J* = 6.7 Hz, 3H), 1.08 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 190.3, 189.2, 155.2, 148.9, 147.5, 140.7, 140.7, 132.7, 132.6, 129.5, 129.4, 129.3, 129.3, 57.3, 53.6, 46.3, 41.5, 19.6, 15.3; HRMS (ESI): m/z calcd for C₂₃H₂₃Cl₂N₄O₄+ [M+H]⁺ 489.1091. Found 489.1083.

di-tert-butyl 2,2'-(6-(1-(*ethylamino*)*ethyl*)-3,5-*dioxo*-1,2,4-*triazine*-2,4(3H,5H)-*diyl*)*diacetate* (**4m**). a yellow liquid (41% yield, 50.9 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 4.62-4.54 (m, 4H), 4.00 (q, *J* = 6.5 Hz, 1H), 2.60-2.51 (m, 2H), 1.85 (s, 1H), 1.44 (s, 18H), 1.35 (d, *J* = 6.5 Hz, 3H), 1.06 (t, *J* = 6.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.2, 165.4, 155.0, 148.5, 147.0, 82.9, 82.8, 53.5, 53.3, 42.0, 41.4, 27.9, 27.9, 19.6, 15.2; HRMS (ESI): m/z calcd for C₁₉H₃₃N₄O₆⁺ [M+H]⁺ 413.2395. Found 413.2394.

6-(1-(ethylamino)ethyl)-4-methyl-2-phenyl-1,2,4-triazine-3,5(2H,4H)-dione (**4n**). a yellow liquid (71% yield, 58.4 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 7.51-7.43 (m, 3H), 7.22-7.20(m, 2H), 4.00 (q, *J* = 6.3 Hz, 1H), 3.66 (s, 3H), 2.66-2.63 (m, 2H), 1.93 (s, 1H), 1.39 (d, *J* = 6.3 Hz, 3H), 1.11 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.6, 148.7, 146.9, 132.9, 129.5, 129.3, 127.7, 53.6, 41.5, 39.5, 19.3, 15.2; HRMS (ESI): m/z calcd for C₁₄H₁₉N₄O₂⁺ [M+H]⁺

275.1503. Found 275.1504.

6-(1-(ethylamino)ethyl)-4-methyl-2-(p-tolyl)-1,2,4-triazine-3,5(2H,4H)-dione (40). a yellow liqu id (77% yield, 66.3 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 7.3 1-7.29 (m, 2H), 7.10-7.08 (m, 2H), 3.99 (q, J = 6.6 Hz, 1H), 3.66 (s, 3H), 2.65-2.63 (m, 2H), 2.39 (s, 3H), 1.94 (s, 1H), 1.40 (d, J = 6.7 Hz, 3H), 1.11 (t, J = 6.9 Hz, 3H); ¹³C NMR (1 00 MHz, CDCl₃) δ : 155.7, 148.7, 147.0, 139.4, 130.2, 130.1, 127.4, 53.6, 41.5, 39.5, 21.2, 19. 3, 15.3; HRMS (ESI): m/z calcd for C₁₅H₂₁N₄O₂⁺ [M+H]⁺ 289.1659. Found 289.1653.

6-(1-(ethylamino)ethyl)-2-(4-fluorophenyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)-dione (**4p**). a yel low liquid (56% yield, 48.7 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl ₃) δ: 7.20-7.18 (m, 4H), 3.99 (q, J = 6.6 Hz, 1H), 3.66 (s, 3H), 2.68-2.59 (m, 2H), 1.82 (s, 1 H), 1.40 (d, J = 6.6 Hz, 3H), 1.11 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 163. 9, 161.4, 155.6, 148.7, 147.1, 129.7 (d, J = 8.9 Hz), 128.6 (d, J = 3.2 Hz) , 116.6, 116.4, 53. 6, 41.6, 39.5, 19.4, 15.3; HRMS (ESI): m/z calcd for C₁₄H₁₈FN₄O₂⁺ [M+H]⁺ 293.1408. Found 293.1408.

2-*allyl-6-(1-(ethylamino)ethyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)-dione* (**4q**). a yellow liquid (64% yield, 45.6 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 5.90-5.81 (m, 1H), 5.31-5.22 (m, 2H), 4.53 (d, *J* = 5.5 Hz, 2H), 3.96 (q, *J* = 6.6 Hz, 1H), 3.62 (s, 3H), 2.63-2.54 (m, 2H), 1.78 (s, 1H), 1.36 (d, *J* = 6.6 Hz, 3H), 1.09 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.4, 148.7, 146.5, 130.3, 119.2, 53.4, 42.8, 41.5, 39.4, 19.5, 15.3; HRMS (ESI): m/z calcd for C₁₁H₁₉N₄O₂⁺ [M+H]⁺ 239.1503. Found 239.1500.

6-(1-(ethylamino)ethyl)-4-methyl-2-(prop-2-yn-1-yl)-1,2,4-triazine-3,5(2H,4H)-dione (**4r**). a yellow liquid (77% yield, 54.8 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ: 4.65 (s, 2H), 3.94 (q, J = 6.2 Hz, 1H), 3.61 (s, 3H), 2.57–2.54 (m, 2H), 2.19 (s, 1H), 1.86 (s, 1H), 1.34 (d, J = 6.2 Hz, 3H), 1.06 (t, J = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 154.6, 148.0, 146.4, 76.6, 71.5, 53.3, 41.4, 39.3, 29.7, 19.3, 15.2; HRMS (ESI): m/z calcd for C₁₁H₁₇N₄O₂⁺ [M+H]⁺ 237.1346. Found 237.1347.

2,4-dibenzyl-6-(1-(propylamino)propyl)-1,2,4-triazine-3,5(2H,4H)-dione (**4s**). a yellow liquid (67% yield, 79.2 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 7.46–7.45 (m, 2H), 7.39–7.37 (m, 2H), 7.34–7.28 (m, 6H), 5.18–5.04 (m, 4H), 3.75 (t, J = 6.5 Hz, 1H), 2.39 (t, J = 6.6 Hz, 2H), 1.82 (s, 1H), 1.82–1.67 (m, 2H), 1.51–1.35 (m, 2H), 0.89–0.8 3 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.6, 148.7, 146.1, 135.6, 135.6, 129.2, 128.6, 1 28.5, 128.1, 127.9, 59.4, 55.2, 49.3, 44.0, 26.4, 23.3, 11.6, 10.4; HRMS (ESI): m/z calcd for C₂₃H₂₉N₄O₂+ [M+H]⁺ 393.2285. Found 393.2286.

2,4-dibenzyl-6-(1-(butylamino)butyl)-1,2,4-triazine-3,5(2H,4H)-dione (**4t**). a yellow liquid (6 3% yield, 78.8 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 7.46–7.4 4 (m, 2H), 7.38–7.28 (m, 8H), 5.18–5.04 (m, 4H), 3.80 (t, J = 6.6 Hz, 1H), 2.42 (t, J = 7.0 Hz, 2H), 1.82 (s, 1H), 1.77–1.60 (m, 2H), 1.46–1.36 (m, 2H), 1.34–1.22 (m, 4H), 0.91–0.84 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.6, 148.7, 146.4, 135.6, 135.6, 129.2, 128.6, 128. 5, 128.1, 127.9, 58.2, 55.1, 47.1, 44.0, 35.7, 32.3, 20.3, 19.3, 13.9, 13.8; HRMS (ESI): m/z ca lcd for C₂₅H₃₃N₄O₂⁺ [M+H]⁺ 421.2598. Found 421.2596.

2,4-dibenzyl-6-(1-(pentylamino)pentyl)-1,2,4-triazine-3,5(2H,4H)-dione (**4u**). a yellow liquid (38% yield, 50.7 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 7.45–7.43 (m, 2H), 7.38–7.29 (m, 8H), 5.17–5.04 (m, 4H), 3.79 (t, J = 6.6 Hz, 1H), 2.45–2.39 (m, 2H), 1.76 (s, 1H), 1.71–1.65 (m, 4H), 1.29–1.19 (m, 8H), 0.88–0.83 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.6, 148.7, 146.2, 135.7, 135.6, 129.2, 128.7, 128.6, 128.2, 128.0, 58.5, 58. 4, 55.2, 47.5, 44.0, 33.3, 29.8, 29.4, 28.3, 22.5, 14.0, 14.0; HRMS (ESI): m/z calcd for C₂₇H₃₇ N₄O₂+ [M+H]⁺ 449.2911. Found 449.2904.

2,4-dibenzyl-6-(1-(benzylamino)ethyl)-1,2,4-triazine-3,5(2H,4H)-dione (**4v**). a yellow liquid (3 0% yield, 38.7 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 7.49–7.4 7 (m, 2H), 7.42–7.40 (m, 2H), 7.36–7.31 (m, 6H), 7.17–7.15 (m, 5H), 5.13–5.02 (m, 2H), 4.0 0 (q, J = 6.4 Hz, 1H), 3.67 (q, J = 13.2 Hz, 2H), 2.03 (s, 1H), 1.39 (q, J = 6.6 Hz, 1H); ¹³ C NMR (100 MHz, CDCl₃) δ : 155.3, 148.7, 146.8, 140.0, 135.6, 135.5, 129.4, 128.7, 128.7, 1 28.5, 128.5, 128.2, 128.0, 126.8, 126.8, 55.2, 53.6, 51.5, 44.0, 19.7; HRMS (ESI): m/z calcd f or C₂₆H₂₇N₄O₂⁺ [M+H]⁺ 427.2129. Found 427.2130.

4-(3-(6-(1-(ethylamino)ethyl)-4-methyl-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)propoxy)-3-m ethoxybenzaldehyde (**4w**). a yellow liquid (47% yield, 36.7 mg). (PET/EtOAc = 1:1 as the elue t). ¹H NMR (400 MHz, CDCl₃) δ : 9.81 (s, 1H), 7.40 (d, J = 7.9 Hz, 1H), 7.35 (s, 1H), 6.90 (d, J = 8.1 Hz, 1H), 4.16 (t, J = 6.0 Hz, 4H), 3.92 (q, J = 6.5 Hz, 1H), 3.84 (s, 3H), 3.57 (s, 3H), 2.58–2.54 (m, 2H), 2.37 (s, 1H), 2.28–2.22 (m, 2H), 1.31 (d, J = 6.7 Hz, 3H), 1.06 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 190.9, 155.8, 153.6, 149.6, 148.9, 145. 8, 130.0, 126.8, 111.3, 109.0, 67.2, 55.8, 53.4, 41.4, 39.4, 38.6, 19.2, 15.1; HRMS (ESI): m/z calcd for C₁₉H₂₇N₄O₅⁺ [M+H]⁺ 391.1976. Found 391.1975.

4-benzyl-6-(1-(ethylamino)ethyl)-2-(2-((4-methyl-2-oxo-2H-chromen-7-yl)oxy)ethyl)-1,2,4-triazine -3,5(2H,4H)-dione (**4x**). a yellow liquid (33% yield, 47.1 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 7.45–7.43 (m, 1H), 7.40–7.38 (m, 2H), 7.34–7.32 (m, 2H), 7. 24 (s, 1H), 6.78–6.76 (m, 2H), 6.12 (s, 1H), 5.19–5.04 (m, 2H), 4.39–4.36 (m, 2H), 4.27 (d, J = 5.5 Hz, 2H), 4.05 (q, J = 6.8 Hz, 1H), 2.66–2.52 (m, 2H), 2.37 (s, 3H), 1.40 (d, J = 6.6 Hz, 3H), 1.10 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 161.1, 161.1, 155.5, 15 5.1, 152.4, 148.5, 145.3, 135.3, 130.4, 128.7, 128.5, 128.3, 125.6, 113.9, 112.2, 101.7, 64.1, 55. 4, 53.1, 41.2, 39.4, 18.9, 18.6, 14.6; HRMS (ESI): m/z calcd for C₂₆H₂₉N₄O₅⁺ [M+H]⁺ 477.213 2. Found 477.2125.

2-(4-benzyl-6-(1-(ethylamino)ethyl)-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)ethyl 5-(2,5-dim ethylphenoxy)-2,2-dimethylpentanoate (**4y**). a yellow liquid (62% yield, 102.3 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 7.39–7.37 (m, 2H), 7.35–7.30 (m, 3H), 6. 99 (d, J = 7.3 Hz, 1H), 6.65 (d, J = 7.4 Hz, 1H), 6.60 (s, 1H), 5.17–5.02 (m, 2H), 4.35–4.2 9 (m, 2H), 4.23–4.21 (m, 2H), 3.96 (q, J = 6.6 Hz, 1H), 3.89–3.86 (m, 2H), 2.52 (q, J = 7.0 Hz, 2H), 2.30 (s, 3H), 2.17 (s, 3H), 2.01 (s, 1H), 1.70–1.63 (m, 4H), 1.36 (d, J = 6.7 Hz, 3 H), 1.12 (s, 6H), 1.07 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 177.4, 156.8, 155. 4, 148.5, 146.5, 136.3, 135.5, 130.2, 128.6, 128.6, 128.1, 123.4, 120.6, 111.8, 67.8, 60.6, 55.1, 53.4, 41.9, 41.4, 39.8, 36.8, 24.9, 24.9, 21.3, 19.6, 15.7, 15.2; HRMS (ESI): m/z calcd for C ${}_{31}H_{43}N_4O_5^+$ [M+H]⁺ 551.3228. Found 551.3227.

2-(4-benzyl-6-(1-(ethylamino)ethyl)-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)ethyl 11-oxo-6,1

1-dihydrodibenzo[b,e]oxepine-2-carboxylate (**4z**). a yellow liquid (46% yield, 74.6 mg). (PET/Et OAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 8.05–8.04 (m, 1H), 7.88–7.86 (m, 1 H), 7.57–7.53 (m, 1H), 7.48–7.44 (m, 1H), 7.40–7.35 (m, 5H), 7.33–7.31 (m, 2H), 7.01 (d, *J* = 8.4 Hz, 1H), 5.18–5.04 (m, 4H), 4.35–4.34 (m, 2H), 4.24–4.20 (m, 2H), 4.04–3.99 (m, 1H), 3.49 (s, 2H), 2.63–2.62 (m, 1H), 2.60–2.55 (m, 2H), 1.41–1.39 (m, 3H), 1.11–1.08 (m, 3H); ¹ ³C NMR (100 MHz, CDCl₃) δ : 190.8, 171.3, 160.4, 155.6, 148.7, 145.8, 140.4, 136.5, 135.5, 135.5, 132.7, 132.5, 129.5, 129.2, 128.3, 127.8, 127.4, 125.0, 121.0, 73.6, 61.2, 55.4, 53.3, 41. 4, 39.7, 19.3, 14.9; HRMS (ESI): m/z calcd for C₃₁H₃₁N₄O₆⁺ [M+H]⁺ 555.2238. Found 555.223 4.

(2R,3S,5R)-5-(6-(1-(ethylamino)ethyl)-4-methyl-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)-2-(((4-methylbenzoyl)oxy)methyl)tetrahydrofuran-3-yl 4-methylbenzoate (**4aa**). a yellow liquid (30% yield, 49.5 mg). (PET/EtOAc = 1:1 as the eluet). ¹H NMR (400 MHz, CDCl₃) δ : 7.94–7.92 (m, 2H), 7.87–7.86 (m, 2H), 7.26–7.25 (m, 2H), 7.20–7.18 (m, 2H), 6.74–6.71 (m, 1H), 5.74–5.71 (m, 1H), 4.57–4.56 (m, 1H), 4.53–4.50 (m, 1H), 3.36 (s, 3H), 3.06–3.01 (m, 1H), 2.59–2. 53 (m, 2H), 2.52–2.51 (m, 1H), 2.43 (s, 3H), 2.39 (s, 3H), 1.58 (s, 1H), 1.27–1.25 (m, 3H), 1.24–1.23 (m, 2H), 0.88–0.83 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 192.1, 166.2, 166.0, 1 52.7, 148.6, 144.5, 144.1, 137.6, 129.8, 129.6, 129.2, 129.2, 126.7, 126.3, 87.4, 82.4, 74.2, 63. 7, 35.2, 29.7, 27.8, 27.5, 21.7, 21.7; HRMS (ESI): m/z calcd for C₂₉H₃₅N₄O₇⁺ [M+H]⁺ 551.250 0. Found 551.2502.

X. NMR charts of 3a-4u

3b-¹³C

3c-¹³C

S23

3d-¹³C

3e-¹³C

4f-¹³C

3i-¹³C

S29

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

3r-¹³C

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

3w-¹³C

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

4b-¹³C

4d-¹³C

4e-¹³C

4f-¹³C

4g-¹³C

0 -10 -20

10

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 f1 (ppm)

4s-¹³C

4t-¹³C

4u-¹³C

$$4\mathbf{w}^{-1}\mathbf{H}$$

4w-¹³C

4x-¹³**C**

4y-¹³**C**

 $4z^{-1}H$

4aa-¹³C

XI. Computational details

Quantum chemistry calculations were conducted with the Gaussian 09 software package³. The structures were optimized by the density functional theory (DFT)⁴ with B3LYP-D3 functional^{5,6} with basis set def2-SVP⁷ using IEFPCM⁸ continuum solvent model (solvent = dichloroethane). Frequency analysises were performed at the same level of theory to verify the stationary points to be real minima or saddle points and to obtain the thermodyanamic energy corrections at 298.15K. All transition states were confirmed by intrinsic reaction coordinate (IRC) calculations were performed to confirm the connection between two correctminima for a transition state. In order to get more accurate electronic energies, the single point energy were calculated at the M062x⁹-D3 /def2-TZVP level of theory using SMD¹⁰ continuum solvent model (solvent = dichloroethane).

	Energy (au)	Thermal correction	Thermal correction	Imaginary
		to Enthalpy (au)	to Gibbs Free	frequency (cm ⁻¹)
			Energy (au))	
	M062x-D3	B3LYP-D3	B3LYP-D3	B3LYP-D3 /
	/def2TZVP/SMD	/def2SVP/IEFPCM	/def2SVP/IEFPCM	/def2SVP/IEFPCM
Substrate	-971.556072	0.312958	0.245328	None
HNEt ₂	-213.767052	0.156382	0.118596	None
HNEt ₂ -CR	-213.557019	0.155963	0.116847	None
H2NEt2	-214.229553	0.172429	0.133913	None
NEt ₂ -C-Radical	-213.115582	0.142572	0.103719	None
NEt ₂ -N-Radical	-213.110557	0.141358	0.101454	None
³ O ₂	-150.327196	0.007176	-0.016086	None
¹ O ₂	-150.26844	0.00714	-0.015087	None
HO ₂	-150.914738	0.017938	-0.008023	None
TS-1	-1184.681484	0.457714	0.371104	-178.06
INT-1	-1184.699442	0.459995	0.375301	None
4 a	-1184.138656	0.44926	0.365307	None
H_2O_2	-151.557405	0.029554	0.003583	None
TS-2	-1184.649872	0.454957	0.371605	-1602.27
INT-1-pAcid	-1527.144544	0.540332	0.438578	None
TS-2-pAcid	-1527.130378	0.537035	0.440843	-1368.06
INT-2-pAcid	-1527.146218	0.541073	0.442392	None

Table S3 Calculated energy data and imaginary frequencies for all structure.
TS-3-pAcid	-1527.118126	0.53901	0.438666	-238.20
TS-3	-1184.681925	0.458861	0.374447	-369.96
NH ₂ Et	-135.15913	0.097525	0.066802	None
INT-3	-1049.53404	0.358385	0.283927	None

Structures of Transition states

TS-1

TS-2-pAcid

TS-3-pAcid

Coordinations

Substrate

Charge =	0	Multiplicity = 1		
С		0.14270500	-2.73659200	-1.15732100
С		0.01393000	-1.12079700	1.08142900
С		-1.18945300	-2.31375200	-0.70640200
Ν		-1.15944100	-1.51881200	0.44526100
Ν		1.18784500	-1.62555200	0.52033100
Ν		1.23976900	-2.39117400	-0.57409200
0		0.02279000	-0.39062100	2.05642000
0		-2.22868000	-2.61037500	-1.27100600
С		2.48522100	-1.18101500	1.06332200
Н		2.34683600	-1.01827900	2.13837400
Н		3.17940100	-2.01721700	0.91422100
С		-2.43379100	-0.99210900	0.97562600
Н		-2.33405200	-0.94246200	2.06577200
Н		-3.20274500	-1.72846500	0.71544700
С		-2.77210700	0.36758100	0.39920900
С		-2.39039600	1.54070900	1.06833800
С		-3.44052900	0.46736300	-0.83180900
С		-2.67966000	2.79403500	0.51956100
Н		-1.85293200	1.46251100	2.01568400
С		-3.72807400	1.72060400	-1.38061900
Н		-3.72341200	-0.44652900	-1.35922600
С		-3.34924600	2.88670900	-0.70559000
Н		-2.38005900	3.70164900	1.05005400
Н		-4.25114600	1.78755500	-2.33814400
Н		-3.57571300	3.86649400	-1.13414300
С		2.98208500	0.07454000	0.37976700
С		3.84507900	-0.01338300	-0.72243900
С		2.54339600	1.33847400	0.80711200
С		4.27020000	1.14286500	-1.38462600
Н		4.18556700	-0.99454400	-1.06401400
С		2.96650100	2.49401900	0.14424500
Н		1.85946600	1.40637700	1.65597300
С		3.83138900	2.39890800	-0.95224400

Н	4.94625300	1.06257600	-2.23973500
Н	2.62072600	3.47323100	0.48538500
Н	4.16385500	3.30319000	-1.46845200
Н	0.20436800	-3.36832200	-2.04635900

HNEt₂

Charge = 0 Multiplicity = 1

-			
N	-0.07487000	-0.67659600	0.20331600
Н	-0.10553000	-0.66698800	1.22414800
С	1.31181800	-0.61543700	-0.24474200
С	2.11492200	0.62396500	0.17536900
Н	1.31583800	-0.69647100	-1.34728600
Н	1.82616700	-1.51902000	0.12763100
Н	3.15911800	0.55018000	-0.17078800
Н	1.69003200	1.55005200	-0.24352100
Н	2.12963900	0.72597000	1.27412900
С	-0.96116600	0.35632900	-0.31874300
С	-2.40120300	0.11965400	0.12641600
Н	-0.90475900	0.32264100	-1.42236100
Н	-0.66071600	1.38895700	-0.03328300
Н	-3.07808900	0.87807000	-0.29802400
Н	-2.74631600	-0.87788100	-0.18903600
Н	-2.48751900	0.17359200	1.22537900

HNEt ₂ -CR			
Charge = 1	Multiplicity = 2		
Ν	-0.00411400	-0.39358000	0.44142400
Н	-0.16490600	-0.22090500	1.44146300
С	1.34803200	-0.61547600	0.01165500
С	2.10083700	0.73301200	-0.10498400
Н	1.32470900	-1.13058400	-0.95902100
Н	1.84177000	-1.25224400	0.76286300
Н	3.12670000	0.51219300	-0.43283400
Н	1.61664300	1.38214600	-0.84826200
Н	2.13913200	1.24969200	0.86433300
С	-1.13731500	-0.34788000	-0.43731500
С	-2.28912100	0.48902000	0.09987600
Н	-1.45012500	-1.40848400	-0.57890300
Н	-0.78090000	-0.01862500	-1.42888100
Н	-3.13062000	0.43062600	-0.60408400
Н	-2.63557300	0.11591600	1.07584200
Н	-1.99263100	1.54327300	0.20212700

H₂NEt₂

Charge =	1	Multiplicity $= 1$			
N		0.04863800	0.64911200	0.22513700	
Н		0.41612500	1.58963900	0.02777700	
С		-1.38579200	0.59013800	-0.24831200	
С		-2.09578700	-0.68241700	0.17699300	
Н		-1.35460800	0.70131900	-1.34141600	
Н		-1.87549900	1.47914800	0.17235100	
Н		-3.14862000	-0.61141800	-0.13212300	
Н		-1.67123500	-1.57969200	-0.29507600	
Н		-2.07567600	-0.80982500	1.27074400	
С		0.98794600	-0.37089800	-0.36690500	
С		2.40469100	-0.17718500	0.14321700	
Н		0.92127200	-0.25577600	-1.45768100	
Н		0.59405600	-1.35929900	-0.09921500	
Н		3.05043000	-0.94980400	-0.29810000	
Н		2.81063200	0.80534100	-0.14321900	
Н		2.45722700	-0.27920100	1.23847800	
Н		0.06908300	0.56795800	1.25155900	

NEt₂-C-Radical

Charge =	0	Multiplicity $= 2$			
N		0.07190700	-0.61692800	-0.24108000	
С		-1.31836700	-0.59997500	0.18764300	
С		-2.07389100	0.69305800	-0.13819100	
Н		-1.33645800	-0.77607200	1.27754900	
Н		-1.83143800	-1.46075100	-0.27403100	
Н		-3.11240900	0.64856400	0.22869200	
Н		-1.57552600	1.55766100	0.32838000	
Н		-2.10383800	0.86575500	-1.22713600	
С		1.01004600	0.17675000	0.41847500	
С		2.39535300	0.24364000	-0.13718400	
Н		0.86651500	0.23680200	1.50453600	
Н		3.00244500	0.98308100	0.40808400	
Н		2.93689400	-0.72751600	-0.08522100	
Н		2.39235100	0.53923800	-1.20350800	
Н		0.17927400	-0.62910500	-1.25424900	

NEt₂-N-Radical

0	Multiplicity $= 2$		
	0.00000600	0.30498000	0.00008400
	1.20350800	-0.48025400	0.01192400
	2.45999500	0.38508300	-0.00551200
	1.20558900	-1.18170700	-0.85240600
	1.20568500	-1.14436000	0.90541700
	0	0 Multiplicity = 2 0.00000600 1.20350800 2.45999500 1.20558900 1.20568500	0 Multiplicity = 2 0.00000600 0.30498000 1.20350800 -0.48025400 2.45999500 0.38508300 1.20558900 -1.18170700 1.20568500 -1.14436000

Н		3.36913100	-0.23674900	0.00801100
Н		2.48477900	1.01448500	-0.90938100
Н		2.48341000	1.05194800	0.87108000
С		-1.20351200	-0.48028000	-0.01192700
С		-2.46000600	0.38509000	0.00546300
Н		-1.20563800	-1.18170800	0.85240900
Н		-1.20562100	-1.14430000	-0.90546800
Н		-3.36915300	-0.23672200	-0.00837200
Н		-2.48492200	1.01430600	0.90945300
Н		-2.48321400	1.05211700	-0.87101000
³ O ₂				
Charge =	0	Multiplicity $= 3$		
0		0.00000000	0.00000000	0.59981400
0		0.00000000	0.00000000	-0.59981400
$^{1}O_{2}$				
Charge =	0	Multiplicity = 1		
0		0.00000000	0.00000000	0.60039600
0		0.00000000	0.00000000	-0.60039600
HO ₂				
Charge =	0	Multiplicity = 2		
0		0.05544500	-0.60242800	0.00000000
0		0.05544500	0.71247200	0.00000000
Н		-0.88711900	-0.88035600	0.00000000
TS-1				
Charge =	0	Multiplicity = 2		
С		1.69524700	-0.51308200	-0.79654500
С		-0.14255800	-0.10199700	1.23294700
С		0.78407900	-1.60773500	-0.48320800
Ν		-0.08475500	-1.33845700	0.58369200
Ν		0.73719500	0.85601600	0.76826900
Ν		1.55035400	0.72677600	-0.31805200
0		-0.91936000	0.10896100	2.15764900
0		0.78766600	-2.69701800	-1.04599600
С		0.62535500	2.22383000	1.29225200
Н		0.31920500	2.15087200	2.34225700
Н		1.63414000	2.65414800	1.24262300
С		-1.03690100	-2.37940200	1.00297500
Н		-1.19333900	-2.25964500	2.08107700
Н		-0.55077500	-3.34337000	0.81244000
С		-2.35201400	-2.29023200	0.25512400

С	-3.38683000	-1.46885400	0.73021600
С	-2.53610400	-2.99470900	-0.94490100
С	-4.58760900	-1.36092600	0.02207400
Н	-3.23347700	-0.90348300	1.65173900
С	-3.73758200	-2.88798700	-1.65264900
Н	-1.72180500	-3.61529700	-1.32607000
С	-4.76667000	-2.07136200	-1.17041100
Н	-5.38675500	-0.71888900	0.40215300
Н	-3.87054800	-3.44345500	-2.58485600
Н	-5.70592300	-1.98764300	-1.72348500
С	-0.36033300	3.05462400	0.49824100
С	0.07075600	3.81111500	-0.60151900
С	-1.72871500	3.02677800	0.81320000
С	-0.84723300	4.53404000	-1.37028400
Н	1.13305800	3.82857400	-0.85811700
С	-2.64722200	3.74825300	0.04498800
Н	-2.06691400	2.42191800	1.65748100
С	-2.20849800	4.50424800	-1.04836400
Н	-0.49887900	5.12226000	-2.22337000
Н	-3.70990600	3.71977000	0.29991000
Н	-2.92652800	5.06935100	-1.64839300
С	3.47204000	-1.39496900	0.31789100
Н	3.67303800	-2.08330600	-0.50726000
С	2.94196000	-1.99244300	1.58608800
Н	2.21227700	-2.78440300	1.37420500
Н	3.76630500	-2.44534000	2.16722300
Н	2.46467900	-1.23139900	2.22484300
Ν	4.31444900	-0.33739500	0.42946100
Н	4.15371600	0.25748400	1.23857400
С	4.87588100	0.36506600	-0.72152800
С	5.52587900	-0.55991000	-1.74501900
Н	5.62641400	1.06841600	-0.32935600
Н	4.08834600	0.97501000	-1.20343700
Н	6.01710000	0.04145500	-2.52473300
Н	6.28533000	-1.20154300	-1.27077800
Н	4.79143000	-1.20817800	-2.24752300
Н	2.21508000	-0.59350100	-1.75336800

INT-1

Charge =	0	Multiplicity $= 2$		
С		-1.42796800	-0.75818700	-0.10665300
С		0.86257200	0.14289700	-1.46687000
С		-1.39215700	0.66453000	-0.65492600
Ν		-0.19236200	1.03453200	-1.24323800

N -0.56962000 -1.70453700 -0.779 O 1.95415900 0.51296000 -1.865 O -2.30998800 1.45365400 -0.528 C 1.60500600 -2.19993600 -1.598 H 1.06052900 -3.08437000 -1.595 H 2.21279700 -1.79617100 -2.415 C 0.02003900 2.45624900 -1.592 H -0.94910000 2.84456800 -1.924 C 0.54735700 3.25847800 -0.420 C -0.33877200 3.91459300 0.448 C 1.92717200 3.32610300 -0.163 C 0.14677900 4.63100500 1.54 H -1.41343100 3.85035600 0.263 C 1.52316600 4.04237300 0.922 H 2.61525900 2.80189300 -0.833 C 1.52316600 4.69687200 1.78 H 1.90268100 5.25771900 2.64 C <t< th=""><th></th></t<>	
O 1.95415900 0.51296000 -1.865 O -2.30998800 1.45365400 -0.528 C 1.60500600 -2.19993600 -1.598 H 1.06052900 -3.08437000 -1.953 H 2.21279700 -1.79617100 -2.415 C 0.02003900 2.45624900 -1.594 H -0.94910000 2.84456800 -1.924 H 0.72302500 2.47982400 -2.43 C 0.54735700 3.25847800 -0.420 C -0.33877200 3.91459300 0.444 C 1.92717200 3.32610300 -0.166 C 0.14677900 4.63100500 1.54 H -1.41343100 3.85035600 0.266 C 2.41228100 4.04237300 0.922 H 2.61525900 2.80189300 -0.833 C 1.52316600 4.69687200 1.78 H 1.90268100 5.25771900 2.64 C 2	64500
O -2.30998800 1.45365400 -0.528 C 1.60500600 -2.19993600 -1.598 H 1.06052900 -3.08437000 -1.595 H 2.21279700 -1.79617100 -2.415 C 0.02003900 2.45624900 -1.597 H -0.94910000 2.84456800 -1.924 H 0.72302500 2.47982400 -2.43 C 0.54735700 3.25847800 -0.420 C -0.33877200 3.91459300 0.448 C 1.92717200 3.32610300 -0.166 C 0.14677900 4.63100500 1.54 H -1.41343100 3.85035600 0.266 C 2.41228100 4.04237300 0.922 H 2.61525900 2.80189300 -0.833 C 1.52316600 4.69687200 1.78 H -0.55232800 5.13971400 2.216 H 3.4860700 4.09047400 1.111 H 1	549700
C 1.60500600 -2.19993600 -1.598 H 1.06052900 -3.08437000 -1.953 H 2.21279700 -1.79617100 -2.415 C 0.02003900 2.45624900 -1.593 H -0.94910000 2.84456800 -1.924 H 0.72302500 2.47982400 -2.43 C 0.54735700 3.25847800 -0.420 C -0.33877200 3.91459300 0.444 C 1.92717200 3.32610300 -0.168 C 0.14677900 4.63100500 1.54 H -1.41343100 3.85035600 0.263 C 2.41228100 4.04237300 0.922 H 2.61525900 2.80189300 -0.833 C 1.52316600 4.69687200 1.78 H -0.55232800 5.13971400 2.216 H 3.4860700 4.09047400 1.11 H 1.90268100 5.2577190 2.64 C 2.4578	81900
H 1.06052900 -3.08437000 -1.953 H 2.21279700 -1.79617100 -2.415 C 0.02003900 2.45624900 -1.594 H -0.94910000 2.84456800 -1.924 H 0.72302500 2.47982400 -2.433 C 0.54735700 3.25847800 -0.420 C -0.33877200 3.91459300 0.448 C 1.92717200 3.32610300 -0.166 C 0.14677900 4.63100500 1.54 H -1.41343100 3.85035600 0.263 C 2.41228100 4.04237300 0.922 H 2.61525900 2.80189300 -0.833 C 1.52316600 4.69687200 1.78 H -0.55232800 5.13971400 2.210 H 3.48860700 4.09047400 1.11 H 1.90268100 5.25771900 2.64 C 2.45780000 -2.52829200 -0.393 C 2.6558300 -3.54123000 0.494 C 4.37766400 <t< td=""><td>61300</td></t<>	61300
H 2.21279700 -1.79617100 -2.415 C 0.02003900 2.45624900 -1.594 H -0.94910000 2.84456800 -1.924 H 0.72302500 2.47982400 -2.43 C 0.54735700 3.25847800 -0.420 C -0.33877200 3.91459300 0.448 C 1.92717200 3.32610300 -0.168 C 0.14677900 4.63100500 1.54 H -1.41343100 3.85035600 0.263 C 2.41228100 4.04237300 0.922 H 2.61525900 2.80189300 -0.833 C 1.52316600 4.69687200 1.78 H -0.55232800 5.13971400 2.216 H 3.48860700 4.09047400 1.11 H 1.90268100 5.25771900 2.64 C 2.45780000 -2.52829200 -0.393 C 3.61758200 -1.78717500 -0.117 C 2.06558300 -3.54123000 0.494 C 3.91097100 <t< td=""><td>31600</td></t<>	31600
C 0.02003900 2.45624900 -1.592 H -0.94910000 2.84456800 -1.924 H 0.72302500 2.47982400 -2.43 C 0.54735700 3.25847800 -0.420 C -0.33877200 3.91459300 0.448 C 1.92717200 3.32610300 -0.168 C 0.14677900 4.63100500 1.54 H -1.41343100 3.85035600 0.263 C 2.41228100 4.04237300 0.922 H 2.61525900 2.80189300 -0.833 C 1.52316600 4.69687200 1.78 H -0.55232800 5.13971400 2.216 H 3.48860700 4.09047400 1.11 H 1.90268100 5.25771900 2.64 C 2.45780000 -2.52829200 -0.393 C 3.61758200 -1.78717500 -0.177 C 2.06558300 -3.54123000 0.494 C 3.983	81500
H -0.94910000 2.84456800 -1.924 H 0.72302500 2.47982400 -2.43 C 0.54735700 3.25847800 -0.420 C -0.33877200 3.91459300 0.448 C 1.92717200 3.32610300 -0.166 C 0.14677900 4.63100500 1.54 H -1.41343100 3.85035600 0.263 C 2.41228100 4.04237300 0.922 H 2.61525900 2.80189300 -0.833 C 1.52316600 4.69687200 1.78 H -0.55232800 5.13971400 2.216 H 3.48860700 4.09047400 1.11 H 1.90268100 5.25771900 2.64 C 2.45780000 -2.52829200 -0.393 C 3.61758200 -1.78717500 -0.117 C 2.06558300 -3.54123000 0.494 C 2.82473500 -3.81583100 1.636 H 3.91097100 -0.98420600 -0.797 C 2.82473500 <t< td=""><td>48200</td></t<>	48200
H 0.72302500 2.47982400 -2.43 C 0.54735700 3.25847800 -0.420 C -0.33877200 3.91459300 0.444 C 1.92717200 3.32610300 -0.166 C 0.14677900 4.63100500 1.54 H -1.41343100 3.85035600 0.263 C 2.41228100 4.04237300 0.922 H 2.61525900 2.80189300 -0.833 C 1.52316600 4.69687200 1.78 H -0.55232800 5.13971400 2.210 H 3.48860700 4.09047400 1.11 H 1.90268100 5.25771900 2.64 C 2.45780000 -2.52829200 -0.393 C 3.61758200 -1.78717500 -0.117 C 2.06558300 -3.54123000 0.494 C 2.82473500 -3.81583100 1.632 H 3.91097100 -0.98420600 -0.797 C 2.82473500 -3.81583100 1.632 H 5.28080300 <td< td=""><td>92200</td></td<>	92200
C 0.54735700 3.25847800 -0.420 C -0.33877200 3.91459300 0.448 C 1.92717200 3.32610300 -0.168 C 0.14677900 4.63100500 1.54 H -1.41343100 3.85035600 0.263 C 2.41228100 4.04237300 0.922 H 2.61525900 2.80189300 -0.833 C 1.52316600 4.69687200 1.78 H -0.55232800 5.13971400 2.216 H 1.90268100 5.25771900 2.64 C 2.45780000 -2.52829200 -0.393 C 3.61758200 -1.78717500 -0.117 C 2.06558300 -3.54123000 0.494 C 3.91097100 -0.98420600 -0.797 C 2.82473500 -3.81583100 1.630 H 1.15772800 -4.1455400 0.290 C 3.98316700 -3.07713300 1.907 H 5.2	16500
C -0.33877200 3.91459300 0.444 C 1.92717200 3.32610300 -0.163 C 0.14677900 4.63100500 1.54 H -1.41343100 3.85035600 0.263 C 2.41228100 4.04237300 0.922 H 2.61525900 2.80189300 -0.833 C 1.52316600 4.69687200 1.78 H -0.55232800 5.13971400 2.216 H 3.48860700 4.09047400 1.11 H 1.90268100 5.25771900 2.64 C 2.45780000 -2.52829200 -0.393 C 3.61758200 -1.78717500 -0.117 C 2.06558300 -3.54123000 0.494 C 4.37766400 -2.06209700 1.023 H 3.91097100 -0.98420600 -0.797 C 2.82473500 -3.81583100 1.630 H 1.15772800 -4.11455400 0.290 C 3.98316700 -3.07713300 1.902 H 2.51222500 <t< td=""><td>)14300</td></t<>)14300
C 1.92717200 3.32610300 -0.168 C 0.14677900 4.63100500 1.54 H -1.41343100 3.85035600 0.266 C 2.41228100 4.04237300 0.922 H 2.61525900 2.80189300 -0.833 C 1.52316600 4.69687200 1.78 H -0.55232800 5.13971400 2.216 H 3.48860700 4.09047400 1.11 H 1.90268100 5.25771900 2.64 C 2.45780000 -2.52829200 -0.393 C 3.61758200 -1.78717500 -0.117 C 2.06558300 -3.54123000 0.494 C 4.37766400 -2.06209700 1.023 H 3.91097100 -0.98420600 -0.797 C 2.82473500 -3.81583100 1.636 H 1.15772800 -4.11455400 0.290 C 3.98316700 -3.07713300 1.902 H 2.52	378900
C 0.14677900 4.63100500 1.54 H -1.41343100 3.85035600 0.263 C 2.41228100 4.04237300 0.922 H 2.61525900 2.80189300 -0.833 C 1.52316600 4.69687200 1.78 H -0.55232800 5.13971400 2.210 H 3.48860700 4.09047400 1.11 H 1.90268100 5.25771900 2.64 C 2.45780000 -2.52829200 -0.393 C 3.61758200 -1.78717500 -0.117 C 2.06558300 -3.54123000 0.494 C 3.91097100 -0.98420600 -0.797 C 2.82473500 -3.81583100 1.636 H 1.15772800 -4.11455400 0.290 C 3.98316700 -3.07713300 1.902 H 5.28080300 -1.48115200 1.227 H 4.57817100 -3.29229100 2.792 C -2.8	360200
H -1.41343100 3.85035600 0.263 C 2.41228100 4.04237300 0.922 H 2.61525900 2.80189300 -0.833 C 1.52316600 4.69687200 1.78 H -0.55232800 5.13971400 2.216 H 3.48860700 4.09047400 1.11 H 1.90268100 5.25771900 2.64 C 2.45780000 -2.52829200 -0.393 C 3.61758200 -1.78717500 -0.117 C 2.06558300 -3.54123000 0.494 C 4.37766400 -2.06209700 1.023 H 3.91097100 -0.98420600 -0.797 C 2.82473500 -3.81583100 1.636 H 1.15772800 -4.11455400 0.290 C 3.98316700 -3.07713300 1.902 H 5.28080300 -1.48115200 1.227 H 4.57817100 -3.29229100 2.792 C -2.85801700 -1.34526600 -0.000 H -2.70093500	736700
C 2.41228100 4.04237300 0.922 H 2.61525900 2.80189300 -0.833 C 1.52316600 4.69687200 1.78 H -0.55232800 5.13971400 2.216 H 3.48860700 4.09047400 1.11 H 1.90268100 5.25771900 2.64 C 2.45780000 -2.52829200 -0.393 C 3.61758200 -1.78717500 -0.117 C 2.06558300 -3.54123000 0.494 C 4.37766400 -2.06209700 1.023 H 3.91097100 -0.98420600 -0.797 C 2.82473500 -3.81583100 1.636 H 1.15772800 -4.11455400 0.290 C 3.98316700 -3.07713300 1.902 H 5.2880300 -1.48115200 1.227 H 4.57817100 -3.29229100 2.792 C -2.85801700 -1.34526600 -0.000 H -2.70093500 -2.38210700 0.341 C -3.52955700	367700
H 2.61525900 2.80189300 -0.833 C 1.52316600 4.69687200 1.78 H -0.55232800 5.13971400 2.216 H 3.48860700 4.09047400 1.11 H 1.90268100 5.25771900 2.64 C 2.45780000 -2.52829200 -0.393 C 3.61758200 -1.78717500 -0.117 C 2.06558300 -3.54123000 0.494 C 4.37766400 -2.06209700 1.023 H 3.91097100 -0.98420600 -0.797 C 2.82473500 -3.81583100 1.636 H 1.15772800 -4.11455400 0.290 C 3.98316700 -3.07713300 1.902 H 5.28080300 -1.48115200 1.227 H 2.51222500 -4.60961200 2.319 H 4.57817100 -3.29229100 2.792 C -2.85801700 -1.34526600 -0.000 H -2.70093500 -2.38210700 0.341 C -3.52955700	957500
C 1.52316600 4.69687200 1.78 H -0.55232800 5.13971400 2.216 H 3.48860700 4.09047400 1.11 H 1.90268100 5.25771900 2.64 C 2.45780000 -2.52829200 -0.393 C 3.61758200 -1.78717500 -0.117 C 2.06558300 -3.54123000 0.494 C 4.37766400 -2.06209700 1.023 H 3.91097100 -0.98420600 -0.797 C 2.82473500 -3.81583100 1.636 H 1.15772800 -4.11455400 0.290 C 3.98316700 -3.07713300 1.902 H 5.28080300 -1.48115200 1.227 H 2.51222500 -4.60961200 2.319 H 4.57817100 -3.29229100 2.792 C -2.85801700 -1.34526600 -0.000 H -2.70093500 -2.38210700 0.341 C -3.52955700 -1.39074500 -1.385 H -2.85670200	541500
H-0.552328005.139714002.210H3.488607004.090474001.114H1.902681005.257719002.64C2.45780000-2.52829200-0.393C3.61758200-1.78717500-0.117C2.06558300-3.541230000.494C4.37766400-2.062097001.023H3.91097100-0.98420600-0.797C2.82473500-3.815831001.636H1.15772800-4.114554000.290C3.98316700-3.077133001.902H5.28080300-1.481152001.227H2.51222500-4.609612002.319H4.57817100-3.292291002.792C-2.85801700-1.34526600-0.000H-2.70093500-2.382107000.341C-3.52955700-1.39074500-1.385H-2.85670200-1.85508300-2.124H-4.45819300-1.97566600-1.359H-3.77412400-0.37356100-1.728N-3.58189600-0.651618001.053	992600
H3.488607004.090474001.11H1.902681005.257719002.64C2.45780000-2.52829200-0.393C3.61758200-1.78717500-0.117C2.06558300-3.541230000.494C4.37766400-2.062097001.023H3.91097100-0.98420600-0.797C2.82473500-3.815831001.636H1.15772800-4.114554000.290C3.98316700-3.077133001.902H5.28080300-1.481152001.227H2.51222500-4.609612002.319H4.57817100-3.292291002.792C-2.85801700-1.34526600-0.000H-2.70093500-2.382107000.341C-3.52955700-1.39074500-1.385H-2.85670200-1.85508300-2.124H-4.45819300-1.97566600-1.359H-3.77412400-0.37356100-1.728N-3.58189600-0.651618001.053	526400
H1.902681005.257719002.64C2.45780000-2.52829200-0.393C3.61758200-1.78717500-0.117C2.06558300-3.541230000.494C4.37766400-2.062097001.023H3.91097100-0.98420600-0.797C2.82473500-3.815831001.636H1.15772800-4.114554000.290C3.98316700-3.077133001.902H2.51222500-4.609612002.319H4.57817100-3.292291002.793C-2.85801700-1.34526600-0.000H-2.70093500-2.382107000.341C-3.52955700-1.39074500-1.385H-2.85670200-1.85508300-2.124H-4.45819300-1.97566600-1.359H-3.77412400-0.37356100-1.728N-3.58189600-0.651618001.053	455600
C 2.45780000 -2.52829200 -0.393 C 3.61758200 -1.78717500 -0.117 C 2.06558300 -3.54123000 0.494 C 4.37766400 -2.06209700 1.023 H 3.91097100 -0.98420600 -0.797 C 2.82473500 -3.81583100 1.636 H 1.15772800 -4.11455400 0.290 C 3.98316700 -3.07713300 1.902 H 5.28080300 -1.48115200 1.227 H 2.51222500 -4.60961200 2.319 H 4.57817100 -3.29229100 2.792 C -2.85801700 -1.34526600 -0.000 H -2.70093500 -2.38210700 0.341 C -3.52955700 -1.39074500 -1.385 H -2.85670200 -1.85508300 -2.124 H -3.77412400 -0.37356100 -1.728 N -3.58189600 -0.65161800 1.053	802400
C 3.61758200 -1.78717500 -0.117 C 2.06558300 -3.54123000 0.494 C 4.37766400 -2.06209700 1.023 H 3.91097100 -0.98420600 -0.797 C 2.82473500 -3.81583100 1.636 H 1.15772800 -4.11455400 0.290 C 3.98316700 -3.07713300 1.902 H 5.28080300 -1.48115200 1.227 H 2.51222500 -4.60961200 2.319 H 4.57817100 -3.29229100 2.793 C -2.85801700 -1.34526600 -0.000 H -2.70093500 -2.38210700 0.341 C -3.52955700 -1.39074500 -1.385 H -2.85670200 -1.85508300 -2.124 H -3.77412400 -0.37356100 -1.728 N -3.58189600 -0.65161800 1.053	14400
C 2.06558300 -3.54123000 0.494 C 4.37766400 -2.06209700 1.023 H 3.91097100 -0.98420600 -0.797 C 2.82473500 -3.81583100 1.636 H 1.15772800 -4.11455400 0.290 C 3.98316700 -3.07713300 1.902 H 5.28080300 -1.48115200 1.227 H 2.51222500 -4.60961200 2.319 H 4.57817100 -3.29229100 2.792 C -2.85801700 -1.34526600 -0.000 H -2.70093500 -2.38210700 0.341 C -3.52955700 -1.39074500 -1.385 H -2.85670200 -1.85508300 -2.124 H -3.77412400 -0.37356100 -1.728 N -3.58189600 -0.65161800 1.053	71000
C 4.37766400 -2.06209700 1.023 H 3.91097100 -0.98420600 -0.797 C 2.82473500 -3.81583100 1.636 H 1.15772800 -4.11455400 0.290 C 3.98316700 -3.07713300 1.902 C 3.98316700 -3.07713300 1.902 H 5.28080300 -1.48115200 1.227 H 2.51222500 -4.60961200 2.319 H 4.57817100 -3.29229100 2.792 C -2.85801700 -1.34526600 -0.000 H -2.70093500 -2.38210700 0.341 C -3.52955700 -1.39074500 -1.385 H -2.85670200 -1.85508300 -2.124 H -3.77412400 -0.37356100 -1.728 N -3.58189600 -0.65161800 1.053	185000
H3.91097100-0.98420600-0.797C2.82473500-3.815831001.636H1.15772800-4.114554000.290C3.98316700-3.077133001.902H5.28080300-1.481152001.227H2.51222500-4.609612002.319H4.57817100-3.292291002.792C-2.85801700-1.34526600-0.000H-2.70093500-2.382107000.341C-3.52955700-1.39074500-1.385H-2.85670200-1.85508300-2.124H-3.77412400-0.37356100-1.728N-3.58189600-0.651618001.053	309700
C 2.82473500 -3.81583100 1.636 H 1.15772800 -4.11455400 0.290 C 3.98316700 -3.07713300 1.902 H 5.28080300 -1.48115200 1.227 H 2.51222500 -4.60961200 2.319 H 4.57817100 -3.29229100 2.792 C -2.85801700 -1.34526600 -0.000 H -2.70093500 -2.38210700 0.341 C -3.52955700 -1.39074500 -1.385 H -2.85670200 -1.85508300 -2.124 H -4.45819300 -1.97566600 -1.359 H -3.77412400 -0.37356100 -1.728 N -3.58189600 -0.65161800 1.053	77100
H1.15772800-4.114554000.290C3.98316700-3.077133001.902H5.28080300-1.481152001.227H2.51222500-4.609612002.319H4.57817100-3.292291002.792C-2.85801700-1.34526600-0.000H-2.70093500-2.382107000.341C-3.52955700-1.39074500-1.385H-2.85670200-1.85508300-2.124H-4.45819300-1.97566600-1.359H-3.77412400-0.37356100-1.728N-3.58189600-0.651618001.053	557100
C3.98316700-3.077133001.902H5.28080300-1.481152001.222H2.51222500-4.609612002.319H4.57817100-3.292291002.792C-2.85801700-1.34526600-0.000H-2.70093500-2.382107000.341C-3.52955700-1.39074500-1.385H-2.85670200-1.85508300-2.124H-3.77412400-0.37356100-1.728N-3.58189600-0.651618001.053	07500
H5.28080300-1.481152001.227H2.51222500-4.609612002.319H4.57817100-3.292291002.793C-2.85801700-1.34526600-0.000H-2.70093500-2.382107000.341C-3.52955700-1.39074500-1.385H-2.85670200-1.85508300-2.124H-4.45819300-1.97566600-1.359H-3.77412400-0.37356100-1.728N-3.58189600-0.651618001.053	224800
H2.51222500-4.609612002.319H4.57817100-3.292291002.793C-2.85801700-1.34526600-0.000H-2.70093500-2.382107000.341C-3.52955700-1.39074500-1.385H-2.85670200-1.85508300-2.124H-4.45819300-1.97566600-1.359H-3.77412400-0.37356100-1.728N-3.58189600-0.651618001.053	/30900
H4.57817100-3.292291002.793C-2.85801700-1.34526600-0.000H-2.70093500-2.382107000.341C-3.52955700-1.39074500-1.385H-2.85670200-1.85508300-2.124H-4.45819300-1.97566600-1.359H-3.77412400-0.37356100-1.728N-3.58189600-0.651618001.053	98000
C-2.85801700-1.34526600-0.000H-2.70093500-2.382107000.341C-3.52955700-1.39074500-1.385H-2.85670200-1.85508300-2.124H-4.45819300-1.97566600-1.359H-3.77412400-0.37356100-1.728N-3.58189600-0.651618001.053	357600
H-2.70093500-2.382107000.341C-3.52955700-1.39074500-1.385H-2.85670200-1.85508300-2.124H-4.45819300-1.97566600-1.359H-3.77412400-0.37356100-1.728N-3.58189600-0.651618001.053	89000
C-3.52955700-1.39074500-1.385H-2.85670200-1.85508300-2.124H-4.45819300-1.97566600-1.359H-3.77412400-0.37356100-1.728N-3.58189600-0.651618001.053	63600
H-2.85670200-1.85508300-2.124H-4.45819300-1.97566600-1.359H-3.77412400-0.37356100-1.728N-3.58189600-0.651618001.053	53200
H-4.45819300-1.97566600-1.359H-3.77412400-0.37356100-1.728N-3.58189600-0.651618001.053	54200
H-3.77412400-0.37356100-1.728N-3.58189600-0.651618001.053	66900
N -3.58189600 -0.65161800 1.053	01100
	38700
Н -3.87433800 0.27124200 0.738	380000
C -4.63167900 -1.35169000 1.776	31300
C -5.95241100 -1.62121300 1.038	62200
Н -4.85611500 -0.75828400 2.680	91500
Н -4.21547400 -2.30766100 2.142	0.4.500

Н	-6.7	70879100	-2.02135100	1.73447200
Н	-6.3	35133600	-0.68960100	0.60310400
Н	-5.8	33204200	-2.35083800	0.22352300
Н	-1.0	6365700	-0.64600500	0.93889700
4 a				
Charge =	0 Multiplicity	= 1		
С	1.73	8789300	-0.06371100	-0.85261500
С	-0.8	84469500	0.07191300	-1.75426500
С	1.0	02523300	-1.32626800	-0.97199800
Ν	-0.2	27637000	-1.16447200	-1.44562500
Ν	0.	01346400	1.15304900	-1.61906400
Ν	1.1	27494000	1.07951900	-1.15982200
0	-2.0	00337800	0.19203700	-2.11769200
0	1.4	47597200	-2.42581400	-0.68628700
С	-0.5	51454300	2.51514600	-1.81008200
Н	0.1	30914100	3.11092400	-2.22286100
Н	-1.3	31602100	2.44888100	-2.55490500
С	-1.1	4492600	-2.35610200	-1.54094900
Н	-0.4	48852800	-3.20073200	-1.77874500
Н	-1.8	3370700	-2.18527200	-2.37549500
С	-1.9	0338500	-2.60849100	-0.25395700
С	-1.3	32845800	-3.38118700	0.76782000
С	-3.1	7223500	-2.04272400	-0.05232200
С	-2.0)1357900	-3.58933100	1.96868600
Н	-0.3	33397500	-3.80702100	0.61725500
С	-3.8	35708100	-2.25152800	1.14876900
Н	-3.6	51244300	-1.42764400	-0.83990400
С	-3.2	27973900	-3.02536500	2.16168400
Н	-1.5	55727300	-4.19404600	2.75675300
Н	-4.8	84563300	-1.80819700	1.29458000
Н	-3.8	81577900	-3.18869800	3.10026700
С	-1.0	02194100	3.10642900	-0.51229800
С	-2.2	29756200	2.76834900	-0.03069000
С	-0.2	20366700	3.94913500	0.25358900
С	-2.7	4589000	3.26966900	1.19434400
Н	-2.9	92925000	2.09948200	-0.61963600
С	-0.6	55327300	4.45367700	1.47851900
Н	0.	79322400	4.21032100	-0.11154000
С	-1.9	2510800	4.11423600	1.95137600
Н	-3.7	74033800	3.00098700	1.56006600
Н	-0.0	00793200	5.11263200	2.06513400
Н	-2.2	27711300	4.50748200	2.90858600
С	3.	19854500	-0.11535100	-0.29317600
Н	3.:	50785200	0.93728900	-0.19545000

С	4.16243100	-0.82723500	-1.25840900
Н	4.15709000	-0.34514700	-2.24946700
Н	5.18903500	-0.79867300	-0.86620300
Н	3.86656600	-1.87918200	-1.38386700
Ν	3.12853700	-0.68578100	1.04941100
Н	3.20626900	-1.69992300	1.01960000
С	3.94375800	-0.08708400	2.09438300
С	5.46710300	-0.16499800	1.92032300
Н	3.66485100	-0.57195400	3.04591500
Н	3.64484500	0.97186900	2.19834300
Н	5.98163000	0.25699600	2.79969600
Н	5.79604200	-1.21095000	1.80119000
Н	5.80339800	0.39952800	1.03582300

H_2O_2

Charge =	0	Multiplicity = 1		
0		-0.00000400	0.72582300	0.00000000
0		-0.00000400	-0.72580600	0.00000000
Н		-0.95766200	0.88399400	0.00000000
Н		0.95772000	-0.88413200	0.00000000

TS-2

Charge =	0	Multiplicity $= 2$		
С		-1.62720800	-0.55241600	-0.61601300
С		0.85314000	0.10379300	-1.70076500
С		-1.36991800	0.85045100	-0.96304800
Ν		-0.09207500	1.11003300	-1.46599200
Ν		0.40647400	-1.18832100	-1.52886100
Ν		-0.82356800	-1.56995200	-1.08926800
0		1.99798200	0.36510500	-2.05523800
0		-2.16476900	1.76914800	-0.75368600
С		1.35377900	-2.29150000	-1.73539200
Н		0.76244100	-3.13191200	-2.12246900
Н		2.07590800	-1.97831500	-2.49822700
С		0.34338300	2.50965900	-1.60894800
Н		-0.54179300	3.08763700	-1.89794200
Н		1.07544300	2.54003700	-2.42357200
С		0.94196300	3.05602300	-0.32791600
С		0.12361400	3.67199400	0.63264000
С		2.31402700	2.91546100	-0.06494100
С		0.66850300	4.14671600	1.82994100
Н		-0.94710600	3.76189600	0.43635300
С		2.85897700	3.38963100	1.13231000
Η		2.94599500	2.41676900	-0.80275300

С	2.03796300	4.00763100	2.08249000	
Н	0.02173300	4.62740500	2.56888500	
Н	3.92926000	3.27640100	1.32463100	
Н	2.46443200	4.37949800	3.01789500	
С	2.05732600	-2.66917500	-0.44904100	
С	3.23021600	-2.00255400	-0.05928900	
С	1.51103100	-3.64130700	0.40199000	
С	3.84947200	-2.30977100	1.15580300	
Н	3.64217100	-1.22924900	-0.71167300	
С	2.12942200	-3.94935300	1.61831100	
Н	0.59194500	-4.15520300	0.10868700	
С	3.30089400	-3.28468300	1.99743700	
Н	4.76326500	-1.78567200	1.44820500	
Н	1.69607800	-4.71119000	2.27180100	
Н	3.78572900	-3.52588200	2.94704700	
С	-3.08521000	-0.94171400	-0.34050200	
Н	-3.07843700	-2.02838200	-0.16720800	
С	-4.13516300	-0.57327500	-1.37973900	
Н	-3.89373400	-1.07605500	-2.32894200	
Н	-5.14011300	-0.89568000	-1.07124200	
Н	-4.14628900	0.51140300	-1.55406400	
Ν	-3.22581500	-0.29580700	1.01064200	
Н	-3.49156100	0.68630500	0.89577100	
С	-3.96105900	-0.97018600	2.08769800	
С	-5.45786500	-1.13921600	1.83377000	
Н	-3.79290400	-0.38099100	3.00270500	
Н	-3.48394000	-1.95066400	2.24732900	
Н	-5.94082100	-1.57864500	2.72056600	
Н	-5.93841100	-0.16900300	1.62824900	
Н	-5.65130500	-1.80811700	0.98158100	
Н	-1.85252600	-0.30534300	0.80335300	

INT-1-pAcid

Charge =	0	Multiplicity = 2		
С		-1.54108100	-1.17873300	-0.41737700
С		0.58159700	-0.97793500	-2.16891200
С		-1.60528600	-0.14861200	-1.45223800
Ν		-0.46277500	-0.04436500	-2.24170200
Ν		0.33086100	-2.10655100	-1.41305600
Ν		-0.75412600	-2.32130500	-0.62301900
0		1.63591000	-0.80595100	-2.76593900
0		-2.52018100	0.68203600	-1.55222000
С		1.41472700	-3.08615300	-1.24853200
Н		0.92503000	-4.05634500	-1.09179300

Н	1.98923600	-3.11952000	-2.18132300
С	-0.19625800	1.22532300	-2.94280100
Н	-1.16796900	1.61644100	-3.26483100
Н	0.41086800	0.99718500	-3.82530300
С	0.51105900	2.21231000	-2.03283600
С	-0.21577900	2.93456700	-1.07098500
С	1.90373200	2.37011200	-2.09011300
С	0.43686700	3.80009900	-0.18873700
Н	-1.29718500	2.79836100	-1.00762100
С	2.55679200	3.24380700	-1.21385300
Н	2.47606100	1.78821600	-2.81564800
С	1.82535300	3.96072700	-0.26119500
Н	-0.13815200	4.34026100	0.56701300
Н	3.64251600	3.35773500	-1.26972000
Н	2.33587000	4.63271400	0.43322600
С	2.29982500	-2.72387100	-0.07397300
С	3.41257800	-1.88640600	-0.25214900
С	1.97062300	-3.15370500	1.21991300
С	4.19002600	-1.49885900	0.84265600
Н	3.65008800	-1.52574500	-1.25505100
С	2.74555900	-2.76389000	2.31690200
Н	1.09480600	-3.79079800	1.36681000
С	3.85935400	-1.93767400	2.13011400
Н	5.05445900	-0.84690600	0.69217700
Н	2.48017100	-3.10688400	3.32040600
Н	4.46699900	-1.63365900	2.98640700
С	-2.84098800	-1.50142300	0.31422900
Н	-2.58063600	-2.10898300	1.19441700
С	-3.84844200	-2.25240400	-0.55123400
Н	-3.34758200	-3.14686400	-0.94742300
Н	-4.73147600	-2.58097500	0.01605300
Н	-4.17296900	-1.63302300	-1.40121100
Ν	-3.39948000	-0.20611700	0.84680700
Н	-3.53456600	0.39643900	0.01133300
С	-4.62020300	-0.26884800	1.71274200
С	-5.90423700	0.03368300	0.95496600
Н	-4.46738800	0.46650200	2.51554400
Н	-4.64404500	-1.26285900	2.18228500
Н	-6.75596000	-0.00527500	1.65004900
Н	-5.87401800	1.04355400	0.51596700
Н	-6.08986400	-0.68947200	0.14850100
Н	-0.68822400	-0.48112900	0.45468400
С	0.84291100	1.89395100	2.50411700
0	0.51286000	2.83764900	3.18514300

С	2.26432600	1.50108400	2.21917900
Н	2.43544300	1.51601200	1.13195100
Н	2.95446500	2.18749800	2.72634700
Н	2.43915200	0.46153200	2.53664100
С	-0.25697200	0.99795300	1.85945300
0	0.19864200	0.07045800	1.10094400
0	-1.44659700	1.22477200	2.10648000
Н	-2.62803700	0.29201500	1.37560200

TS-2-pAcid

Charge =	0	Multiplicity $= 2$		
С		-1.54108100	-1.17873300	-0.41737700
С		0.58159700	-0.97793500	-2.16891200
С		-1.60528600	-0.14861200	-1.45223800
Ν		-0.46277500	-0.04436500	-2.24170200
Ν		0.33086100	-2.10655100	-1.41305600
Ν		-0.75412600	-2.32130500	-0.62301900
0		1.63591000	-0.80595100	-2.76593900
0		-2.52018100	0.68203600	-1.55222000
С		1.41472700	-3.08615300	-1.24853200
Н		0.92503000	-4.05634500	-1.09179300
Н		1.98923600	-3.11952000	-2.18132300
С		-0.19625800	1.22532300	-2.94280100
Н		-1.16796900	1.61644100	-3.26483100
Н		0.41086800	0.99718500	-3.82530300
С		0.51105900	2.21231000	-2.03283600
С		-0.21577900	2.93456700	-1.07098500
С		1.90373200	2.37011200	-2.09011300
С		0.43686700	3.80009900	-0.18873700
Н		-1.29718500	2.79836100	-1.00762100
С		2.55679200	3.24380700	-1.21385300
Н		2.47606100	1.78821600	-2.81564800
С		1.82535300	3.96072700	-0.26119500
Н		-0.13815200	4.34026100	0.56701300
Н		3.64251600	3.35773500	-1.26972000
Н		2.33587000	4.63271400	0.43322600
С		2.29982500	-2.72387100	-0.07397300
С		3.41257800	-1.88640600	-0.25214900
С		1.97062300	-3.15370500	1.21991300
С		4.19002600	-1.49885900	0.84265600
Н		3.65008800	-1.52574500	-1.25505100
С		2.74555900	-2.76389000	2.31690200
Н		1.09480600	-3.79079800	1.36681000
С		3.85935400	-1.93767400	2.13011400

5.05445900	-0.84690600	0.69217700
2.48017100	-3.10688400	3.32040600
4.46699900	-1.63365900	2.98640700
-2.84098800	-1.50142300	0.31422900
-2.58063600	-2.10898300	1.19441700
-3.84844200	-2.25240400	-0.55123400
-3.34758200	-3.14686400	-0.94742300
-4.73147600	-2.58097500	0.01605300
-4.17296900	-1.63302300	-1.40121100
-3.39948000	-0.20611700	0.84680700
-3.53456600	0.39643900	0.01133300
-4.62020300	-0.26884800	1.71274200
-5.90423700	0.03368300	0.95496600
-4.46738800	0.46650200	2.51554400
-4.64404500	-1.26285900	2.18228500
-6.75596000	-0.00527500	1.65004900
-5.87401800	1.04355400	0.51596700
-6.08986400	-0.68947200	0.14850100
-0.68822400	-0.48112900	0.45468400
0.84291100	1.89395100	2.50411700
0.51286000	2.83764900	3.18514300
2.26432600	1.50108400	2.21917900
2.43544300	1.51601200	1.13195100
2.95446500	2.18749800	2.72634700
2.43915200	0.46153200	2.53664100
-0.25697200	0.99795300	1.85945300
0.19864200	0.07045800	1.10094400
-1.44659700	1.22477200	2.10648000
-2.62803700	0.29201500	1.37560200
	5.05445900 2.48017100 4.46699900 -2.84098800 -2.58063600 -3.84844200 -3.34758200 -4.73147600 -4.17296900 -3.39948000 -3.53456600 -4.62020300 -4.62020300 -4.62020300 -4.62020300 -4.6404500 -6.75596000 -5.87401800 -6.08986400 -0.68822400 0.84291100 0.51286000 2.26432600 2.26432600 2.43544300 2.95446500 2.43915200 -0.25697200 0.19864200 -1.44659700 -2.62803700	5.05445900 -0.84690600 2.48017100 -3.10688400 4.46699900 -1.63365900 -2.84098800 -1.50142300 -2.58063600 -2.10898300 -3.84844200 -2.25240400 -3.34758200 -3.14686400 -4.73147600 -2.58097500 -4.17296900 -1.63302300 -3.39948000 -0.20611700 -3.53456600 0.39643900 -4.62020300 -0.26884800 -5.90423700 0.03368300 -4.6404500 -1.26285900 -6.75596000 -0.00527500 -5.87401800 1.04355400 -6.08986400 -0.68947200 -0.68822400 -0.48112900 0.84291100 1.89395100 0.51286000 2.83764900 2.26432600 1.50108400 2.43544300 1.51601200 2.95446500 2.18749800 2.43915200 0.07045800 -0.25697200 0.99795300 0.19864200 0.29201500

INT-2-pAcid

Charge =	0	Multiplicity $= 2$		
С		1.73155900	-1.37141600	0.21402900
С		-0.27240000	-1.24923200	2.12660500
С		1.97758800	-0.60833400	1.37292600
Ν		0.88610400	-0.48721700	2.26795900
Ν		-0.34791300	-2.01640600	0.98782300
Ν		0.53270000	-1.93945700	-0.08327300
0		-1.16958300	-1.22217800	2.96566300
0		3.04893300	0.02210800	1.60508100
С		-1.50735300	-2.88402800	0.77979400
Н		-1.14346100	-3.78250100	0.26230200
Н		-1.86735800	-3.17441100	1.77546300
С		0.79626600	0.71629400	3.10909100

Н	1.82273500	1.00657000	3.35966800
Н	0.25646100	0.45663500	4.02668000
С	0.08220200	1.80822900	2.33460400
С	0.76448600	2.50968200	1.32590500
С	-1.29069000	2.03802500	2.51176100
С	0.08728400	3.41845000	0.50877200
Н	1.82809700	2.31360700	1.17151000
С	-1.96916400	2.95239800	1.69850800
Н	-1.83062600	1.47673200	3.27758700
С	-1.28274700	3.64137100	0.69248800
Н	0.62128300	3.93552200	-0.29152000
Н	-3.03977000	3.11910000	1.84384300
Н	-1.81377900	4.34353800	0.04485700
С	-2.63319800	-2.24024700	-0.00733000
С	-3.37773900	-1.18784500	0.55354600
С	-2.94782700	-2.67938400	-1.29924800
С	-4.41773800	-0.59513700	-0.16511200
Н	-3.12750600	-0.84138600	1.55823700
С	-3.99145900	-2.08735200	-2.02093800
Н	-2.36964800	-3.49259700	-1.74733600
С	-4.72983200	-1.04457400	-1.45469900
Н	-4.98939400	0.22249500	0.28209100
Н	-4.22584200	-2.44172200	-3.02824200
Н	-5.54449300	-0.57996700	-2.01627400
С	2.82045800	-1.50558700	-0.82161500
Н	2.36235400	-1.81211100	-1.77422000
С	3.89523900	-2.51268900	-0.41457000
Н	3.40879500	-3.48342600	-0.24409900
Н	4.65926500	-2.65165200	-1.19443400
Н	4.38078800	-2.19906700	0.52102800
Ν	3.38706700	-0.12047400	-1.04395500
Н	3.60197400	0.21906700	-0.07209000
С	4.52736100	0.05536500	-1.99530700
С	5.87954600	0.10287800	-1.29906200
Н	4.34195100	0.99694100	-2.53142100
Н	4.47381300	-0.75506000	-2.73670500
Н	6.67009500	0.26347700	-2.04696300
Н	5.92169300	0.93529600	-0.57902000
Н	6.10391400	-0.82908300	-0.76192900
Н	-0.17277100	-0.94542500	-1.15781400
С	-1.09923600	2.03887800	-2.33804600
0	-0.62081900	3.04969500	-2.79619200
С	-2.56512900	1.80171800	-2.13063900
Н	-2.75345900	1.60569500	-1.06324700

Н	-3.13779400	2.67436400	-2.46913200
Н	-2.88524500	0.89085100	-2.65889600
С	-0.13202000	0.89898500	-1.90125700
0	-0.75545100	-0.20105100	-1.58595500
0	1.07205500	1.09324500	-1.88481000
Н	2.56840500	0.44016500	-1.36130700

TS-3-pAcid

Charge =	0	Multiplicity $= 2$		
С		1.70724300	-1.53742800	-1.03852900
С		-0.36940300	-0.05686100	-2.21901800
С		0.40455100	-2.18014600	-1.19327000
Ν		-0.59266700	-1.35722900	-1.75616500
Ν		0.90320300	0.42310200	-2.01504900
Ν		1.86300000	-0.18963400	-1.25468400
0		-1.24765800	0.59549200	-2.77046700
0		0.13378300	-3.33101800	-0.86119500
С		1.24253600	1.77875000	-2.46569300
Н		2.29304500	1.74115600	-2.78370100
Н		0.61430700	1.99269200	-3.33847800
С		-1.95037400	-1.89634300	-1.91619500
Н		-1.84580800	-2.98737800	-1.94570000
Н		-2.33992400	-1.54561800	-2.87872500
С		-2.88103000	-1.49298600	-0.79046600
С		-2.67855700	-1.99642500	0.50591400
С		-3.95275600	-0.61920800	-1.02069700
С		-3.54068100	-1.64107800	1.54658100
Н		-1.83697000	-2.66740900	0.69166100
С		-4.82141900	-0.26929200	0.01975600
Н		-4.10243200	-0.20682800	-2.02146800
С		-4.61824300	-0.78056700	1.30519700
Н		-3.36208800	-2.02618500	2.55290100
Н		-5.65395200	0.41211400	-0.17361000
Н		-5.28965200	-0.50082900	2.12079100
С		1.04391300	2.83110300	-1.39617300
С		-0.21073500	3.43350400	-1.21958800
С		2.09430300	3.17677700	-0.53370000
С		-0.40882000	4.37175500	-0.20305300
Н		-1.03470100	3.14462400	-1.87626100
С		1.89513400	4.10715500	0.49139200
Н		3.07321300	2.70774200	-0.66403000
С		0.64280700	4.70778200	0.65805200
Н		-1.38899600	4.83926400	-0.07794400
Н		2.72050100	4.36681600	1.15951800

Н	0.48665300	5.43897000	1.45547200
С	2.83722900	-2.22098100	-0.52352400
Н	3.76052500	-1.65986100	-0.68499600
С	2.98694200	-3.71600900	-0.49790800
Н	2.94853600	-4.10862900	-1.52805200
Н	3.95623500	-3.99725400	-0.06132700
Н	2.17295400	-4.19874200	0.05538300
Ν	2.92166000	-1.86645800	1.50426800
Н	3.30917500	-2.67388500	1.99625400
С	3.62559400	-0.62464900	1.84282800
С	5.13757700	-0.78525700	1.75704200
Н	3.33723000	-0.28400700	2.85421000
Н	3.28465800	0.14942300	1.13583900
Н	5.63793800	0.16409000	1.99995300
Н	5.49529000	-1.54714700	2.46957600
Н	5.45622800	-1.08791300	0.74718100
Н	1.06126300	0.46054400	0.36180300
С	-1.46354100	0.67037700	2.45653700
0	-1.75331400	0.28023100	3.56252600
С	-2.21025200	1.71042300	1.67801300
Н	-2.51895200	1.29008000	0.70690200
Н	-3.08959200	2.04129100	2.24379100
Н	-1.54273300	2.55648800	1.45230300
С	-0.21942000	0.04693600	1.76879500
0	0.29054300	0.85031900	0.85296300
0	0.20839700	-1.04416200	2.07641500
Н	1.92207800	-1.79296200	1.72646000

INT-2

Charge =	0	Multiplicity $= 2$		
С		-1.46791600	-1.06208200	-0.48876400
С		0.69253900	0.03505800	-1.81400400
С		-1.55558400	0.28478700	-0.87069600
Ν		-0.42854400	0.81474200	-1.54947100
Ν		0.60530300	-1.29232500	-1.45083900
Ν		-0.42893200	-1.88491900	-0.75244700
0		1.69851200	0.51008500	-2.34028900
0		-2.54857700	1.05435600	-0.61681200
С		1.79273700	-2.13662600	-1.57717900
Н		1.44093500	-3.14658000	-1.83047900
Н		2.39044800	-1.74804300	-2.41042100
С		-0.30760200	2.26636700	-1.71697600
Н		-1.32486800	2.65435500	-1.84440800
Н		0.26758800	2.45162500	-2.63169300

С	0.36454300	2.91611200	-0.52141000
С	-0.37304200	3.18124200	0.64479800
С	1.73896700	3.19880300	-0.53489300
С	0.25038500	3.72710100	1.77077300
Н	-1.43831800	2.93794700	0.65675500
С	2.36347400	3.74619700	0.59106800
Н	2.31893800	2.96822000	-1.43112600
С	1.62100100	4.01226000	1.74686200
Н	-0.33479400	3.93208700	2.67159000
Н	3.43489300	3.96306300	0.56689500
Н	2.10891700	4.43934600	2.62709900
С	2.60885000	-2.15980000	-0.29963500
С	3.39243700	-1.04776400	0.05494500
С	2.55008800	-3.25391200	0.57432000
С	4.10451000	-1.03592800	1.25701800
Н	3.42495500	-0.18798600	-0.61828900
С	3.26536900	-3.24539200	1.77771800
Н	1.93469900	-4.11875000	0.31147800
С	4.04415200	-2.13605800	2.12198900
Н	4.70996500	-0.16462800	1.52109300
Н	3.21146500	-4.10672300	2.44907100
Н	4.60274600	-2.12737600	3.06172400
С	-2.67066600	-1.69700200	0.17021000
Н	-2.34195200	-2.57750200	0.74205100
С	-3.74115600	-2.10523100	-0.84103400
Н	-3.27682400	-2.80894900	-1.54609300
Н	-4.60112700	-2.61135300	-0.37662100
Н	-4.09185600	-1.23055700	-1.40828500
Ν	-3.19326500	-0.68204500	1.17032900
Н	-3.18641100	0.22783400	0.57807300
С	-4.48501500	-0.94770600	1.88046400
С	-5.67764000	-0.28557600	1.20562000
Н	-4.36650600	-0.55629100	2.90032800
Н	-4.60789700	-2.03764800	1.96367600
Н	-6.58237200	-0.47751700	1.80133600
Н	-5.53774700	0.80484200	1.14266500
Н	-5.85144600	-0.67007900	0.19169500
Н	-2.44743600	-0.54214400	1.85852800

TS-3

Charge =	0	Multiplicity $= 2$		
С		0.92040100	-1.32067200	-1.40873200
С		-1.00357400	0.64544200	-1.91949200
С		-0.46835600	-1.66862600	-1.21348500

Ν	-1.38656200	-0.65333200	-1.58467700
Ν	0.35063200	0.83974700	-2.07970000
Ν	1.32310100	-0.09577200	-1.86771000
0	-1.82361500	1.55009300	-2.06101000
0	-0.89817800	-2.74139700	-0.78152400
С	0.87322600	2.21175800	-2.06809300
Н	1.71614400	2.25138400	-2.77211900
Н	0.07765400	2.87822000	-2.41867900
С	-2.81871600	-0.89861000	-1.35816800
Н	-2.99618000	-1.95919200	-1.56970500
Н	-3.37190200	-0.28832300	-2.08130400
С	-3.24941500	-0.56346700	0.05902300
С	-3.20051000	-1.53841600	1.06868000
С	-3.66693100	0.73603600	0.39081100
С	-3.56460000	-1.22202300	2.38151400
Н	-2.85474900	-2.54248100	0.81547800
С	-4.02938800	1.05331100	1.70380300
Н	-3.68787700	1.49889700	-0.38949800
С	-3.97959500	0.07509700	2.70342900
Н	-3.52418500	-1.99191500	3.15697400
Н	-4.35355800	2.06880800	1.94727900
Н	-4.26463200	0.32245300	3.72953800
С	1.31685200	2.55920000	-0.66090000
С	0.35954400	2.88727200	0.31287000
С	2.65774300	2.41601500	-0.27407000
С	0.73607100	3.06815000	1.64708600
Н	-0.68943000	2.97689500	0.01888500
С	3.03697200	2.59444200	1.06203500
Н	3.40658100	2.15021500	-1.02447700
С	2.07579300	2.91893700	2.02594100
Н	-0.01981600	3.32063600	2.39526800
Н	4.08527200	2.47943600	1.35059400
Н	2.36992800	3.05653700	3.06962000
С	1.99825700	-2.11750100	-0.90347400
Н	2.94853800	-1.88742200	-1.39966200
С	1.85677300	-3.55249000	-0.48025000
Н	1.52705100	-4.15170000	-1.34374400
Н	2.82054600	-3.95243000	-0.13462800
Н	1.09437800	-3.67770700	0.29820300
Ν	2.51606200	-1.15364900	0.67219200
Н	1.72248000	-1.21123000	1.31574900
С	3.80371900	-1.42851200	1.33579200
С	3.67686800	-2.47106000	2.43814000
Н	4.20848600	-0.48852300	1.74837500

Н	4.50915400	-1.76314200	0.55623300
Н	4.66208100	-2.66748200	2.88647100
Н	3.00636600	-2.11730400	3.23848200
Н	3.28092500	-3.42281100	2.05498700
Н	2.49165000	-0.21605100	0.25648100

INT-3

Charge =	0	Multiplicity $= 2$		
С		0.21281900	2.57625400	0.19317800
С		-0.10223500	0.37054000	-1.51422400
С		1.42108100	1.79983300	-0.20742700
Ν		1.16981000	0.73561400	-1.07227900
Ν		-1.13367600	1.18894600	-1.07540200
Ν		-1.01144000	2.23125300	-0.24672500
0		-0.29773000	-0.59428500	-2.23551800
0		2.55133900	2.04815100	0.17692600
С		-2.51820500	0.80703200	-1.41171600
Н		-3.08773000	1.74409100	-1.44061400
Н		-2.50502200	0.36265100	-2.41338400
С		2.30354600	-0.12066400	-1.47822200
Н		3.18198100	0.53091200	-1.54369400
Н		2.06775200	-0.50989500	-2.47464700
С		2.54386100	-1.25186400	-0.49898000
С		3.43338200	-1.08647600	0.57421800
С		1.85316900	-2.46713600	-0.63359700
С		3.63502900	-2.12129700	1.49291900
Н		3.95668700	-0.13489300	0.69006900
С		2.05403900	-3.50097500	0.28593700
Н		1.14880800	-2.59003500	-1.45913700
С		2.94633200	-3.33104400	1.35062400
Н		4.33211400	-1.98231700	2.32345000
Н		1.51252100	-4.44353700	0.17038200
Н		3.10460300	-4.14017800	2.06839900
С		-3.09277900	-0.15580600	-0.39515200
С		-2.97477800	-1.54234000	-0.57897700
С		-3.69943700	0.33015700	0.77322500
С		-3.46256400	-2.42779600	0.38702600
Н		-2.48555800	-1.92141700	-1.47883900
С		-4.18648400	-0.55479400	1.73992300
Н		-3.78573400	1.40913500	0.92573400
С		-4.06934900	-1.93614700	1.54819700
Н		-3.36791500	-3.50584600	0.23305500
Н		-4.66035500	-0.16541300	2.64471500
Н		-4.45131700	-2.62860100	2.30280100

С	0.30639200	3.68067100	1.04252200
Н	-0.65491800	4.15583000	1.26104400
С	1.53945700	4.25144500	1.65837300
Н	2.28007900	4.53882300	0.89312100
Н	1.29678900	5.13213000	2.26904300
Н	2.05583100	3.50938600	2.29099700

NH₂Et

Charge =	0	Multiplicity $= 1$		
С		-0.05220300	0.55567600	0.05273200
С		1.24962300	-0.23615900	-0.02657600
Н		-0.06934900	1.30898100	-0.75490100
Н		-0.06620300	1.12992100	1.00511700
Н		2.12603800	0.42557100	0.06263100
Н		1.30826400	-0.97995500	0.78699800
Н		1.31539500	-0.77990200	-0.98284200
Ν		-1.20956100	-0.32409800	-0.12346100
Н		-1.26089500	-0.97549500	0.66311700
Н		-2.07083900	0.22246500	-0.07282800

XII. References

- 1 P.-J. Huang and K.-H. Lee, *Med. Chem. Res.*, **2010**, *20*, 1081-1090.
- 2 C. Hwang, S. Y. Yang, C. L. Chuang and G. H. Lee, *Molecules*, 2017, 22, 1924.
- 3 M. J. Frisch, et al. Gaussian 09, Revision D.01 (Gaussian, Inc.: Wallingford, CT, 2009).
- 4 P. Hohenberg, W. Kohn, *Phys. Rev.***1964**, *136*(3B), 864
- 5 A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652
- 6 S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465
- 7 F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305
- 8 Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 2005, 105, 2999-3094
- 9 A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B. 2009, 113, 6378-6396
- 10 Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157-167