Supporting Information for

Catalytic Asymmetric Friedländer Condensation to Construct Cyclobutanone-Fused Quinolines with Quaternary Stereogenic Centre

Li-E Wang, Si Zhang, Ruo-Shi Jin, Yi-Yuan Peng, Qiu-Ping Ding and Xing-Ping Zeng*

Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, 99 Ziyang Avenue,

Nanchang 330022, Jiangxi, China;

E-mail for X.-P. Zeng: 005173@ jxnu.edu.cn

Contents	Page
1. General Methods.	S2
2. Preparation of 2-aminobenzophenones	S3-5
3. General procedure for catalytic asymmetric Friedländer condensation	S6-13
4. General procedure for the reduction of 4l to 5	S14-15
5. Crystallographic information of 4a	S16-17
6. NMR spectra of 1, 4 and 5	S18-77
7. HPLC chromatograms of 5 , 6	S78-97

1. General Methods.

Reactions were monitored by thin layer chromatography using UV light or KMnO₄ to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. Chemical yields refer to pure isolated substances. The $[\alpha]^D$ was recorded using PolAAr 3005 High Accuracy Polarimeter. ¹H, ¹³C and ¹⁹F NMR spectra were obtained using Bruker DPX-400 spectrometer. The ee values were determined by chiral HPLC analysis using Agilent Technologies 1260 Infinity series; Structural assignments were made with additional information from NOESY {¹H} NMR experiments. The HRMS spectra were measured on Bruker maXis impact spectrometer using electron spray ionization (ESI) method. Chemical shifts were reported in ppm from tetramethyl silane with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, h = heptet, m = multiplet, br = broad.

The chiral phosphoric acid catalysts **3a-3k** were prepared according to the known methods and the characterization data were in consistent with the reported data. ^[1] All the cyclobutane-1,3-diones were known and could be prepared according to methods reported by Brand et al and our group. ^[2]

^{[1] (}a) T. Akiyama, H. Morita, J. Itoh, K. Fuchibe, Org. Lett., 2005, 7, 2583; (b) M. Hatano, T. Ikeno, T. Matsumura, S. Torii, K. Ishihara, Adv. Synth. Catal., 2008, 350, 1776; (c) F. Romanov-Michailidis, L. Guenee, A. Alexakis, Org. Lett., 2013, 15, 5890; (d) F. Romanov-Michailidis, L. Guenee, A. Alexakis, Angew. Chem. Int. Ed., 2013, 52, 9266; (e) W. W. Zi, Y. M. Wang, F. D. Toste, J. Am. Chem. Soc., 2014, 136, 12864.

^{[2] (}a) S. Brand, B. C. de Candole, J. A. Brown, *Org. Lett.*, 2003, 5, 2343; (b) K. G. Wen, C. Liu, D. H. Wei, Y. F. Niu, Y. Y. Peng, X. P. Zeng, *Org. Lett.*, 2021, 23, 1118; (c) S. Zhang, R.-S. Jin, Y.-F. Niu and X.-P. Zeng, *J. Org. Chem.*, 2023, 88, 4627; (d) C. Liu, F.-L. Zou, K.-G. Wen, Y.-Y. Peng, Q.-P. Ding and X.-P. Zeng, *Org. Lett.*, 2023, 25, 5719.

2. Preparation of 2-aminobenzophenones

 $R^{1} + H_{R_{2}} \xrightarrow{O} OH \xrightarrow{CH_{3}NHOMe \bullet HCl}{THF, r.t.} R^{1} + H_{R_{2}} \xrightarrow{O} OMe \xrightarrow{Ar-Br, n-BuLi}{THF, -78 °C} R^{1} + H_{R_{2}} \xrightarrow{Ar} H$

2-Aminobenzophenone 1a-1i were prepared according to reported methods. [3]

General procedure:

Step 1: To a stirred solution of 2-aminobenzoic acid **A** (10.0 mmol) in anhydrous THF (80 mL) was added CDI (1.60 g, 10.0 mmol) at 0 °C under N₂ atmosphere. The reaction mixture was allowed to warm to r.t. and stirred for 2 h, then a suspension of *N*,*O*-dimethylhydroxylamine hydrochloride (0.97 g, 10.0 mmol) and Et₃N (1.01 g, 1.39 mL, 10.0 mmol) in THF (20 mL) was added. The reaction mixture was stirred until completion indicated by TLC analysis, the volatile solvent was removed under reduced pressure. The residue was poured into water (50 mL), adjusted to neutral with 5% NaOH solution and extracted with EtOAc (3 × 50 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, concentrated under vacuo and purified by flash column chromatography (PE/EtOAc = 10:1) to yield Weinreb amide **B**.

Step 2: Weinreb amide **B** (5.0 mmol) and Ar-Br (5.0 mmol) were dissolved in anhydrous THF (30 mL). The solution was cooled to -78 °C and *n*-BuLi (4.0 mL, 2.5 M in hexane, 10.0 mmol) was added dropwise with stirring over 1 h. After the addition completion, 1 N HCl (10 mL) was added. The mixture was extracted with EtOAc (3×20 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (PE/EtOAc = 15:1) to yield the desired 2-aminoaryl ketones **1**.

Column chromatography afforded **1a** in 40% yield (574 mg) as a yellow solid. ¹H NMR (600 MHz, Chloroform-d) δ 7.72 (d, J = 8.5 Hz, 2H), 6.94 (d, J = 8.5 Hz, 2H), 6.60 (d, J = 2.7 Hz, 1H), 6.56 (d, J = 2.6 Hz, 1H), 5.76 (s, 2H), 3.88 (d, J = 4.6 Hz, 6H), 3.66 (s, 3H); ¹³C NMR

(101 MHz, Chloroform-d) & 197.22, 162.36, 149.18, 148.47, 136.05, 132.35, 131.76, 117.96, 113.35,

^[3] a) C.-T. Wang, P.-Y. Liang, M. Li, B. Wang, Y.-Z. Wang, X.-S. Li, W.-X. Wei, X.-Y. Gou, Y.-N. Ding, Z. Zhang, Y.-K. Li, X.-Y. Liu and Y.-M. Liang, *Angew. Chem. Int. Ed.*, 2023, 62, e202304447;
b) J. Liu, Q. Li, Y. Wei and M. Shi, *Org. Lett.*, 2020, 22, 2494; c) Y.-D. Shao, M.-M. Dong, Y.-A. Wang, P.-M. Cheng, T. Wang and D.-J. Cheng, *Org. Lett.*, 2019, 21, 4831;

106.37, 103.74, 55.87, 55.44; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₆H₁₇NNaO₄ 310.1050; Found: 310.1051.

Column chromatography afforded 1b in 50% yield (677 mg) as a yellow solid. ¹H NMR (600 MHz, Chloroform-d) δ 7.71 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8.9 Hz, 2H), 6.91 (d, J = 3.0 Hz, 1H), 6.86 (d, J = 2.9 Hz, 1H), 5.52 (s, 2H), 3.87 (s, 3H), 3.66 (s, 3H), 2.21 (s, 3H). ¹³C NMR (101

MHz, Chloroform-d) & 197.69, 162.42, 149.27, 143.08, 132.41, 131.86, 125.23, 122.97, 118.92, 114.77, 113.37, 55.92, 55.45, 17.69; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₆H₁₇NNaO₃ 294.1101; Found: 294.1104.

Column chromatography afforded 1c in 53% yield (681 mg) as an orange solid. ¹H NMR (400 MHz, Chloroform-d) δ 7.68f (t, 2H), 7.09 (dd, J = 8.2, 1.3 Hz, 1H), 6.95 – 6.93 (m, 2H), 6.87 (dd, J = 7.9, 1.3 Hz, 1H), 6.56 (t, J = 8.0 Hz, 1H), 3.88 (d, J = 11.6 Hz, 6H); ¹³C NMR (101 MHz, Chloroform-d) δ 197.69, 162.24, 147.36, 141.45, 132.58, 131.72, 125.55, 118.38, 113.97, 113.30, 112.70, 55.80,

55.44; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₅H₁₅NNaO₃ 280.0944; Found: 280.0948.

Column chromatography afforded 1d in 52% yield (746 mg) as a yellow solid. ¹H NMR (600 MHz, Chloroform-d) δ 7.35 (t, J = 7.8 Hz, 1H), 7.23 – 7.21 (m, 2H), 7.07 – 7.05 (m, 1H), 6.61 (d, J = 2.6 Hz, 1H), 6.55 (d, J = 2.7 Hz, 1H), 6.06 (s, 2H), 3.89 (s, 3H), 3.84 (s, 3H), 3.64

(s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 198.21, 159.39, 148.95, 148.37, 141.48, 137.06, 129.00, 121.68, 117.46, 116.71, 113.66, 106.33, 104.38, 55.89, 55.84, 55.43; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₆H₁₇NNaO₄ 310.1050; Found: 310.1049.

Column chromatography afforded 1e in 45% yield 713 mg) as a yellow solid. ¹H NMR (600 MHz, Chloroform-d) δ 6.80 (d, J = 2.3 Hz, 2H), 6.61 - 6.58 (m, 3H), 6.06 (s, 2H), 3.89 (s, 3H), 3.81 (d, J = 1.0 Hz, 6H), 3.65 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 198.03,

160.41, 148.95, 148.36, 142.10, 137.12, 116.53, 106.84, 106.23, 104.48, 103.61, 55.89, 55.87, 55.57; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₇H₁₉NNaO₅ 340.1155; Found: 340.1160.

Column chromatography afforded 1f in 48% yield (722 mg) as an orange solid. ¹H NMR (400 MHz, Chloroform-d) δ 7.29 – 7.24 (m, 2H), 6.85 (d, J = 8.1 Hz, 1H), 6.57 (dd, J = 19.2, 2.7 Hz, 2H), 6.05 (s, 2H), 3.88 (s, 3H), 3.68 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 196.70,

150.53, 149.21, 148.47, 147.64, 136.07, 134.03, 125.41, 117.77, 109.69, 107.60, 106.30, 103.85, 101.65, 55.91, 55.88; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₆H₁₅NNaO₅ 324.0842; Found: 324.0845.

Column chromatography afforded 1g in 41% yield (555 mg) as an orange solid. ¹H NMR (400 MHz, Chloroform-d) δ 7.61 – 7.59 (m, 2H), 7.25 (d, J = 8.0 Hz, 2H), 6.58 (dd, J = 19.7, 2.6 Hz, 2H), 5.86 (s, 2H), 3.88 (s, 3H), 3.64 (s, 3H), 2.42 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 198.27,

149.02, 148.41, 141.75, 137.28, 136.61, 129.46, 128.74, 117.31, 106.44, 104.06, 55.88, 55.85, 21.57; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₆H₁₇NNaO₃ 294.1101; Found: 294.1104.

Column chromatography afforded 1h in 40% yield (582 mg) as an orange solid. ¹H NMR (600 MHz, Chloroform-d) δ 7.62 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.5 Hz, 2H), 6.61 (d, J = 2.6 Hz, 1H), 6.46 (d, J = 2.6 Hz, 1H), 3.89 (s, 3H), 3.64 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) 8 197.07, 149.04, 148.47, 138.49, 137.34, 137.17, 130.59, 128.37, 116.35, 105.89, 104.47, 55.91, 55.83; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₅H₁₄ClNNaO₃ 314.0554; Found: 314.0550.

Column chromatography afforded 1i in 39% yield (599 mg) as a yellow solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.17 (d, 1H), 7.93 – 7.89 (m, 3H), 7.80 (dd, J = 8.5, 1.7 Hz, 1H), 7.59 – 7.54 (m, 2H), 6.64 – 6.59 (m, 2H), 6.06 (s, 2H), 3.91 (s, 3H), 3.60 (d, J = 1.2 Hz, 3H); ¹³C

NMR (101 MHz, Chloroform-d) & 198.38, 149.04, 148.47, 137.41, 137.07, 134.61, 132.40, 130.08, 129.13, 127.91, 127.80, 127.73, 126.68, 125.78, 117.05, 106.34, 104.34, 55.92, 55.84; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₇NNaO₃ 330.1101; Found: 330.1099.

3. General procedure for catalytic asymmetric Friedländer condensation

5Å MS (150 mg) was flame dried under vacuum in a 25 mL Schlenk tube. After cooling to room temperature, 2-aminobenzophenone 1 (0.25 mmol), cyclobutane-1,3-diones 2 (1.2 equiv., 0.30 mmol), 3i (5 mol%, 0.0125 mmol, 11.8 mg), magnetic stir-ring bar and toluene (2.0 mL) were sequentially added under N2 atmosphere. The resulting mixture was stirred at 50 °C until TLC analysis show the full consumption of 2-aminobenzophenone 1. In the following, TfOH (0.25 mmol, 18 μ L) was added and the resulting mixture was heated to 100 °C with oil bath for 1.0 h. After cooling to room temperature, 0.5 mmol K2CO3 and 100 µl H2O were added and stirred for 0.5h, then silica gel column chromatography was performed directly to obtain product 4.

Column chromatography using DCM/EtOAc (50/1-40/1) as the eluent afforded 4a in 92% yield (101.1 mg) as a light-yellow oil. HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 20/80, 1.0 mL/min, 205 nm; t_r (major) = 15.11 min, t_r (minor) = 13.22 min) gave the isomeric composition of the product: 93% ee; $[a]_D^{15.2}$ = +59.9 (c = 0.90 in CHCl₃); ¹H NMR (600 MHz, Chloroform-d) δ 7.49 (d, J = 8.7 Hz, 2H), 7.16 (d, J = 7.4 Hz, 2H), 7.11 (t, J = 7.4 Hz, 2H), 7.06 – 7.03 (m, 4H), 6.88 (d, J = 2.5 Hz, 1H), 4.12 (s, 3H), 3.88 (s, 3H), 3.80 (s, 3H), 3.41 (d, J = 13.9 Hz, 1H), 3.27 (d, J = 13.9 Hz, 1H), 1.65 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 195.60, 171.17, 160.98, 157.78, 156.58, 141.76, 141.72, 137.31, 135.71, 131.66, 130.09, 129.05, 127.92, 126.24, 125.57, 114.35, 103.66, 97.82, 73.14, 56.54, 55.46, 55.40, 41.86, 20.01; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₈H₂₅NNaO₄ 462.1676; Found: 462.1679.

6.76 min, t_r (minor) = 5.84 min) gave the isomeric composition of the product: 92% ee; $[a]_D^{15.4}$ =

+55.5 (c = 0.98 in CHCl₃); ¹H NMR (600 MHz, Chloroform-d) δ 7.56– 7.54 (m, 2H), 7.36 – 7.34 (m, 2H), 7.26 – 7.25 (m, 2H), 7.17 – 7.14 (m, 2H), 7.12 – 7.09 (m, 1H), 7.07 – 7.05 (m, 2H), 3.89 (s, 3H), 3.80 (s, 3H), 3.28 (dd, J = 2.1 Hz, 2H), 2.86 (s, 3H), 1.59 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 195.82, 171.22, 160.93, 156.95, 139.44, 137.37, 134.55, 131.76, 130.15, 128.34, 127.92, 126.28, 125.80, 124.22, 114.37, 104.19, 72.54, 55.41, 55.34, 41.69, 19.85, 19.17; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₈H₂₅NNaO₃ 462.1727; Found: 462.1727.

PMP

Bn

Column chromatography using DCM/EtOAc (50/1-40/1) as the eluent afforded **4c** in 96% yield (97.8 mg) as a yellow solid. HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 20/80, 1.0 mL/min, 205 nm; t_r (major) = 11.90 min, t_r (minor)

⁶Me 4c ¹PrOH/hexane = 20/80, 1.0 mL/min, 205 nm; t_r (major) = 11.90 min, t_r (minor) = 10.03 min) gave the isomeric composition of the product: 89% ee; $[a]_D^{15.4} = +54.7$ (c = 0.75 in CHCl₃); m.p. 134.5-136.4 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.76 – 7.74 (m, 1H), 7.49 (d, J = 8.7 Hz, 2H), 7.41 (t, J = 8.2 Hz, 1H), 7.23 – 7.21 (m, 1H), 7.19 – 7.16 (m, 2H), 7.13 – 7.03 (m, 5H), 4.15 (s, 3H), 3.88 (s, 3H), 3.43 (d, J = 13.8 Hz, 1H), 3.29 (d, J = 13.9 Hz, 1H), 1.67 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 195.58, 173.24, 161.22, 155.77, 145.00, 143.45, 137.18, 135.29, 132.21, 130.08, 128.32, 127.95, 126.30, 126.02, 125.26, 120.26, 114.30, 110.56, 73.47, 56.50, 55.42, 41.80, 19.94; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₇H₂₃NNaO₃ 432.1570; Found: 432.1560.

Column chromatography using DCM/EtOAc (50/1-40/1) as the eluent afforded **4d** in 92% yield (101.3 mg) as a yellow solid. HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 20/80, 1.0 mL/min, 205 nm; t_r (major) = 8.63 min, t_r (minor) = 7.05 min) gave the isomeric composition of the

product: 91% ee; $[a]_D^{15.5} = +111.0$ (c = 0.98 in CHCl₃); m.p. 66.7-68.2 °C; ¹H NMR (600 MHz, Chloroform-d) δ 7.30 (t, J = 7.9 Hz, 1H), 7.04 (d, J = 6.9 Hz, 2H), 7.00 – 6.94 (m, 6H), 6.86 (t, J = 2.0 Hz, 1H), 6.78 (d, J = 2.6 Hz, 1H), 4.01 (s, 3H), 3.73 (s, 3H), 3.66 (s, 3H), 3.31 (d, J = 13.9 Hz, 1H), 3.17 (d, J = 13.9 Hz, 1H), 1.57 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 195.29, 170.95, 159.80, 157.90, 156.55, 141.49, 137.25, 136.22, 134.45, 130.08, 129.76, 129.09, 127.90, 126.26, 122.09, 116.03, 114.99, 103.83, 97.66, 73.50, 56.54, 55.45, 55.42, 41.92, 20.01; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₈H₂₅NNaO₄ 462.1676; Found: 462.1674.

Column chromatography using DCM/EtOAc (50/1-40/1) as the eluent afforded **4e** in 91% yield (105.7 mg) as a yellow solid. HPLC analysis (Chiralcel AD-H, 'PrOH/hexane = 15/85, 1.0 mL/min, 205 nm; t_r (major) = 10.20 min, t_r (minor) = 8.92 min) gave the isomeric composition of the

product: 89% ee; $[a]_D^{15.5} = +86.9$ (c = 0.51 in CHCl₃); m.p. 61.3-62.7 °C; ¹H NMR (600 MHz, Chloroform-d) δ 7.13 (d, J = 8.0 Hz, 2H), 7.10 – 7.04 (m, 4H), 6.89 (t, J = 2.0 Hz, 1H), 6.58–6.57 (m, 3H), 4.13 (d, J = 1.6 Hz, 3H), 3.82 – 3.80 (m, 9H), 3.41 (d, J = 13.9 Hz, 1H), 3.27 (d, J = 13.9 Hz, 1H), 1.67 (d, J = 1.5 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 195.18, 170.92, 160.91, 157.88, 156.56, 137.27, 136.25, 134.90, 130.10, 129.08, 127.87, 126.24, 107.80, 103.87, 102.34, 97.71, 73.57, 56.57, 55.58, 55.53, 41.96, 19.97; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₉H₂₇NNaO₅ 492.1781; Found: 492.1784.

Column chromatography using DCM/EtOAc (50/1-40/1) as the eluent afforded **4f** in 88% yield (116.1 mg) as a yellow solid. HPLC analysis (Chiralcel OD-3, ^{*i*}PrOH/hexane = 20/80, 0.5 mL/min, 205 nm; t_r (major) = 13.18 min, t_r (minor) = 11.79 min) gave the isomeric composition of the product: 89% ee; $[\alpha]_D^{15.4} = +51.0$ (c = 0.92 in CHCl₃); m.p. 67.7-68.9 °C;

¹H NMR (400 MHz, Chloroform-d) δ 7.26 (s, 1H), 7.16 – 7.03 (m, 6H), 7.01 – 6.93 (m, 2H), 6.88 (d, J = 2.5 Hz, 1H), 6.06 (t, 2H), 4.13 (s, 3H), 3.81 (s, 3H), 3.41 (d, J = 13.8 Hz, 1H), 3.27 (d, J = 13.8 Hz, 1H), 1.66 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 195.38, 171.03, 157.84, 156.59, 149.13, 148.16, 141.42, 137.26, 135.89, 130.07, 129.09, 129.03, 128.22, 127.92, 126.95, 126.25, 124.60, 110.14, 108.78, 103.72, 101.62, 97.71, 73.31, 56.55, 55.49, 41.88, 20.01; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₈H₂₃NNaO₅ 476.1468; Found: 476.1466.

Column chromatography using DCM/EtOAc (50/1-40/1) as the eluent afforded **4g** in 85% yield (89.9 mg) as a yellow solid. HPLC analysis (Chiralcel AD-H, PrOH/hexane = 15/85, 0.75 mL/min, 250 nm; t_r (major) = 10.32 min, t_r (minor) = 9.45 min) gave the isomeric composition of the product: 94% ee; $[\alpha]_D^{15.4} = +100.4$ (c = 0.82 in CHCl₃); m.p. 61.4-62.9 °C;

¹H NMR (400 MHz, Chloroform-d) δ 7.39 (d, J = 7.9 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 7.17–7.14 (m, 2H), 7.12–7.03 (m, 4H), 6.88 (d, J = 2.5 Hz, 1H), 4.12 (s, 3H), 3.77 (s, 3H), 3.41 (d, J = 13.8

Hz, 1H), 3.27 (d, J = 13.8 Hz, 1H), 2.43 (s, 3H), 1.66 (s, 3H); ¹³ C NMR (101 MHz, Chloroform-d) δ 195.50, 171.12, 157.81, 156.54, 142.00, 141.68, 140.11, 137.28, 136.04, 130.36, 130.09, 129.90, 129.57, 129.14, 127.92, 126.24, 103.74, 97.75, 73.32, 56.55, 55.45, 41.87, 21.48, 20.03; RMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₈H₂₅NNaO₃ 446.1727; Found: 446.1727.

Column chromatography using DCM/EtOAc (50/1-40/1) as the eluent afforded **4h** in 90% yield (100.2mg) as a yellow solid. HPLC analysis (Chiralcel AD-H, iPrOH/hexane = 20/80, 1.0 mL/min, 205 nm; tr (major) = 9.32 min, tr (minor) = 8.48 min) gave the isomeric composition of the product: 88% ee; [a]D^{15.4} = +76.7 (c = 0.78 in CHCl₃); m.p. 61.3-64.3 °C;

¹H NMR (400 MHz, Chloroform-d) δ 7.49 (d, J = 8.3 Hz, 2H), 7.39 (d, J = 8.3 Hz, 2H), 7.14 – 7.04 (m, 5H), 6.90 (s, 2H), 4.13 (s, 3H), 3.79 (s, 3H), 3.40 (d, J = 13.8 Hz, 1H), 3.27 (d, J = 13.8 Hz, 1H), 1.67 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 196.32, 171.77, 161.14, 157.93, 156.63, 142.03, 141.80, 141.74, 135.69, 131.92, 129.15, 129.03, 128.29, 128.25, 125.79, 125.66, 125.30, 114.46, 103.73, 97.98, 72.11, 56.52, 55.52, 55.44, 37.13, 32.17, 20.38; HRMS (ESI) m/z: [M+Na]+ Calcd for C₂₇H₂₂ClNNaO₃ 466.1180; Found: 466.1184.

Column chromatography using DCM/EtOAc (50/1-40/1) as the eluent afforded **4i** in 89% yield (101.5 mg) as a yellow solid. HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 20/80, 1.0 mL/min, 205 nm; t_r (major) = 13.82 min, t_r (minor) = 11.86 min) gave the isomeric composition of the product: 89% ee; $[a]_D^{15.5} = +70.0$ (c = 1.08 in CHCl₃); m.p. 91.2-93.6 °C;

¹H NMR (600 MHz, Chloroform-d) δ 7.97– 7.94 (m, 2H), 7.89 (d, J = 7.9 Hz, 2H), 7.56 – 7.54 (m, 3H), 7.18 – 7.16 (m, 2H), 7.12 (t, J = 7.5 Hz, 2H), 7.07 – 7.05 (m, 2H), 6.90 (d, J = 2.5 Hz, 1H), 4.13 (s, 3H), 3.73 (s, 3H), 3.43 (d, J = 13.9 Hz, 1H), 3.30 (d, J = 13.9 Hz, 1H), 1.69 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 195.36, 171.09, 158.02, 156.63, 141.72, 137.28, 136.46, 133.70, 133.15, 130.76, 130.14, 130.02, 129.31, 128.67, 128.52, 127.97, 127.82, 127.38, 126.85, 126.77, 126.30, 103.85, 97.69, 73.53, 56.59, 55.48, 41.95, 20.06; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₁H₂₅NNaO₃ 482.1727; Found: 482.1727.

Column chromatography using DCM/EtOAc (50/1-40/1) as the eluent afforded **4j** in 98% yield (111.5 mg) as a yellow solid. HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 15/85, 1.0 mL/min, 205

nm; $t_r (major) = 13.28 \text{ min}, t_r (minor) = 10.86 \text{ min})$ gave the isomeric composition of the product: 87% ee; $[\alpha]_D^{15.4} = +55.5 (c = 0.97 \text{ in CHCl}_3)$; m.p. 150.1-152.7 °C; ¹H NMR (400 MHz, Chloroformd) δ 7.50 (d, J = 8.8 Hz, 2H), 7.12 – 7.07 (m, 2H), 7.07 – 7.04 (m, 3H), 6.89 (d, J = 2.5 Hz, 1H), 6.78 (t, J = 8.7 Hz, 2H), 4.13 (s, 3H), 3.89 (s, 3H), 3.81 (s, 3H), 3.37 (d, J = 14.0 Hz, 1H), 3.24 (d, J = 14.0 Hz, 1H), 1.64 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 195.46, 170.91, 162.73, 161.06, 160.31, 157.87, 156.56, 135.65, 133.02, 131.66, 131.55, 131.47, 129.07, 125.50, 114.79, 114.58, 114.39, 103.78, 97.90, 73.10, 56.54, 55.47, 55.40, 40.91, 20.03; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₈H₂₄FNNaO₄ 480.1582; Found: 480.1581.

Column chromatography using DCM/EtOAc (50/1-40/1) as the eluent afforded **4k** in 88% yield (111.9 mg) as a yellow solid. HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 20/80, 1.0

mL/min, 205 nm; t_r (major) = 16.41 min, t_r (minor) = 14.73 min) gave the isomeric composition of the product: 93% ee; $[a]_D^{15.3}$ = +35.8 (c = 1.05 in CHCl₃); m.p. 69.3-72.1 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.51 – 7.49 (m, 2H), 7.38 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 2.0 Hz, 2H), 7.07 – 7.04 (m, 3H), 6.90 (d, J = 2.5 Hz, 1H), 4.12 (s, 3H), 3.88 (s, 3H), 3.80 (s, 3H), 3.45 (d, J = 13.8 Hz, 1H), 3.32 (d, J = 13.8 Hz, 1H), 1.66 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 194.94, 170.59, 161.09, 157.95, 156.54, 142.24, 141.72, 141.48, 135.43, 131.62, 130.38, 129.13, 129.01, 128.20, 125.38, 124.86, 124.82, 124.78, 122.89, 114.38, 103.89, 97.86, 77.31, 72.61, 56.52, 55.43, 55.35, 41.43, 20.07; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₉H₂₄F₃NNaO₄ 530.1550; Found: 530.1541.

Column chromatography using DCM/EtOAc (50/1-40/1) as the eluent afforded **4l** in 94% yield (111.4mg) as a yellow solid. HPLC analysis (Chiralcel OD-3, ^{*i*}PrOH/hexane = 10/90, 0.5 mL/min, 205 nm; t_r (major) = 15.34 min, t_r (minor) = 12.74 min) gave the isomeric

composition of the product: 90% ee; $[a]_D^{15.2} = +52.5$ (c = 0.92 in CHCl₃); m.p. 57.9-60.3 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.55 – 7.53 (m, 2H), 7.22 (d, J = 2.0 Hz, 1H), 7.08 – 7.02 (m, 6H), 6.89 (d, J = 2.5 Hz, 1H), 4.12 (s, 3H), 3.90 (s, 3H), 3.81 (s, 3H), 3.35 (d, J = 13.9 Hz, 1H), 3.25

(d, J = 13.9 Hz, 1H), 1.63 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 195.04, 170.81, 161.10, 157.93, 156.60, 139.35, 135.50, 133.74, 131.71, 130.12, 129.17, 129.11, 128.27, 126.54, 125.50, 114.42, 103.87, 97.90, 72.63, 56.59, 55.48, 55.42, 41.31, 19.89; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₈H₂₄ClNNaO₄ 496.1286; Found: 496.1293.

Column chromatography using DCM/EtOAc (50/1-40/1) as the eluent afforded 4m in 96% yield (108.5 mg) as a light-yellow oil. HPLC analysis (Chiralcel OD-3, ^{*i*}PrOH/hexane = 10/90, 0.5)

mL/min, 205 nm; t_r (major) = 14.10 min, t_r (minor) = 12.32 min) gave the isomeric composition of the product: 85% ee; $[a]_D^{15.3} = +38.3$ (c = 0.91 in CHCl₃); ¹H NMR (400 MHz, Chloroform-d) δ 7.51 (d, J = 8.8 Hz, 2H), 7.08 – 7.04 (m, 5H), 6.93 – 6.88 (m, 3H), 4.12 (s, 3H), 3.89 (s, 3H), 3.81 (s, 3H), 3.37 (d, J = 13.9 Hz, 1H), 3.23 (d, J = 13.9 Hz, 1H), 2.20 (s, 3H), 1.63 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 195.68, 171.36, 161.00, 157.78, 156.58, 135.75, 135.65, 134.16, 131.71, 129.95, 129.06, 128.63, 125.61, 114.35, 103.63, 97.86, 73.15, 56.55, 55.46, 55.41, 41.44, 20.97, 19.96; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₉H₂₇NNaO₄ 476.1832; Found: 476.1835.

Column chromatography using DCM/EtOAc (50/1-40/1) as the eluent afforded **4n** in 89% yield (108.6 mg) as a yellow solid. HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 20/80, 1.0

mL/min, 205 nm; t_r (major) = 15.63 min, t_r (minor) = 13.86 min) gave the isomeric composition of the product: 87% ee; $[a]_D^{15.4}$ = +93.3 (c = 0.95 in CHCl₃); m.p. 84.3-86.0 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.27 (d, J = 8.5 Hz, 1H), 7.68 (d, J = 8.1 Hz, 1H), 7.58 (d, J = 8.2 Hz, 1H), 7.45 – 7.41 (m, 2H), 7.38 – 7.32 (m, 3H), 7.27 – 7.24 (m, 2H), 6.99 – 6.97 (m, 3H), 6.84 (d, J = 2.5 Hz, 1H), 4.11 (s, 3H), 3.89 – 3.76 (m, 8H), 1.74 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 195.25, 171.20, 160.94, 157.74, 156.57, 141.62, 135.59, 133.73, 133.66, 132.25, 131.64, 128.95, 128.90, 128.18, 127.14, 125.51, 125.36, 125.26, 125.12, 125.07, 114.30, 103.65, 97.78, 73.32, 56.56, 55.42, 55.37, 37.78, 20.41; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₂H₂₇NNaO₄ 512.1832; Found: 512.1822.

Column chromatography using DCM/EtOAc (50/1-40/1) as the eluent afforded **40** in 97% yield (109.3 mg) as a light-yellow oil. HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 20/80, 1.0 mL/min,

205 nm; t_r (major) = 14.27 min, t_r (minor) = 11.41 min) gave the isomeric composition of the product: 85% ee; $[\alpha]_D^{15.2} = -3.9$ (c = 0.69 in CHCl₃); ¹H NMR (400 MHz, Chloroform-d) δ 7.72 (d, J = 8.7 Hz, 2H), 7.21 – 7.17 (m, 3H), 7.12 – 7.09 (m, 5H), 6.90 (d, J = 2.5 Hz, 1H), 4.11 (s, 3H), 3.92 (s, 3H), 3.84 (s, 3H), 2.73 – 2.60 (m, 2H), 2.41 – 2.27 (m, 2H), 1.66 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 196.32, 171.77, 161.14, 157.93, 156.63, 142.03, 141.80, 141.74, 135.69, 131.92, 129.15, 129.03, 128.29, 128.25, 125.79, 125.66, 125.30, 114.46, 103.73, 97.98, 72.11, 56.52, 55.52, 55.44, 37.13, 32.17, 20.38. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₉H₂₇NNaO₄ 476.1832; Found: 476.1835.

Column chromatography using DCM/EtOAc (50/1-40/1) as the eluent afforded **4p** in 97% yield (113.0 mg) as a yellow solid. HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 20/80, 1.0 mL/min, 205 nm; t_r (major) = 12.53 min, t_r (minor) = 8.68 min) gave the isomeric

composition of the product: 91% ee; $[a]_D^{15.3} = +3.8$ (c = 1.08 in CHCl₃); m.p. 173.5-175.1 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.70 (d, J = 8.7 Hz, 2H), 7.20 (t, J = 7.4 Hz, 2H), 7.15 – 7.08 (m, 6H), 6.88 (d, J = 2.5 Hz, 1H), 4.10 (s, 3H), 3.91 (s, 3H), 3.82 (s, 3H), 2.57 (t, J = 7.8 Hz, 2H), 2.14 – 1.99 (m, 2H), 1.70 – 1.60 (m, 5H); ¹³C NMR (101 MHz, Chloroform-d) δ 196.67, 172.06, 161.11, 157.85, 156.54, 142.02, 135.51, 131.91, 129.13, 128.44, 128.23, 125.70, 125.65, 114.42, 103.66, 97.99, 72.14, 56.53, 55.51, 55.43, 36.33, 35.31, 27.77, 20.41; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₀H₂₉NNaO₄ 490.1989; Found: 490.1990.

Column chromatography using DCM/EtOAc (50/1-40/1) as the eluent afforded **4q** in 97% yield (108.1 mg) as a yellow solid. HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 10/90, 1.0 mL/min, 205

nm; t_r (major) = 22.53 min, t_r (minor) = 20.20 min) gave the isomeric composition of the product: 89% ee; $[a]_D^{15.4} = +16.5$ (c = 0.88 in CHCl₃); m.p. 67.3-71 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.72 (d, J = 8.8 Hz, 2H), 7.16 (d, J = 2.5 Hz, 1H), 7.10 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 2.5 Hz, 1H), 4.10 (s, 3H), 3.90 (s, 3H), 3.83 (s, 3H), 1.94 (d, J = 6.4 Hz, 2H), 1.73 – 1.51 (m, 9H), 1.17 – 1.04 (m, 3H), 0.97 – 0.84 (m, 2H); ¹³C NMR (101 MHz, Chloroform-d) δ 196.82, 172.49, 161.05, 157.79, 156.61, 141.85, 141.70, 135.69, 131.83, 129.03, 125.69, 114.42, 103.60, 97.92, 71.84, 56.50, 55.47, 55.40, 43.11, 34.76, 34.36, 34.14, 26.21, 26.15, 26.12, 21.02; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₈H₃₁NNaO₄ 468.2145; Found: 468.2150.

Column chromatography using DCM/EtOAc (50/1-40/1) as the eluent afforded **4r** in 84% yield (89.3 mg) as a light-yellow oil. HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 20/80, 1.0 mL/min, 205 nm; t_r (major)

= 18.37 min, t_r (minor) = 7.54 min) gave the isomeric composition of the product: 77% ee; $[a]_D^{15.3}$ = +64.6 (c = 0.36 in CHCl₃); m.p. 129.4-133.2 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.72 (d, J = 8.8 Hz, 2H), 7.68 – 7.66 (m, 2H), 7.33 (t, J = 7.5 Hz, 2H), 7.26 – 7.20 (m, 1H), 7.16 (d, J = 2.6 Hz, 1H), 7.10 – 7.08 (m, 2H), 6.92 (d, J = 2.5 Hz, 1H), 4.13 (s, 3H), 3.90 (s, 3H), 3.84 (s, 3H), 1.98 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 193.12, 170.40, 161.18, 158.09, 156.71, 143.05, 142.11, 140.41, 135.33, 131.93, 129.25, 128.49, 126.97, 126.24, 125.52, 114.44, 103.90, 97.89, 75.16, 56.57, 55.54, 55.45, 23.25. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₇H₂₃NNaO₄ 448.1519; Found: 448.1515.

4. General procedure for the reduction of 4l to 5.

To a flame dried 25 mL Schlenk tube was added **41** (0.47 mmol, 223 mg), the tube was the evacuated, back filled with N₂ and added anhydrous MeOH (3 mL). The solution was cooled to -15 °C and stirred for 15 min before the slowly addition of NaBH₄. After additional 1.0 hour at -15 °C, the reaction was quenched by slowly addition of saturated NH₄Cl (5 mL) and diluted with EtOAc (20 mL). The biphasic solution was separated and the organic phase was dried over anhydrous MgSO₄. After filtration, the solvent was evaporated under vacuum and the residue was subjected to column chromatography to afford **5a** and **5b**.

Column chromatography using PE/EtOAc (3/1-1/1) as the eluent afforded **5a** in 44% yield (98.6 mg) as a light-yellow soild. HPLC analysis (Chiralcel OD-H, ^{*i*}PrOH/hexane = 15/85, 1.0 mL/min, 205 nm; t_r (major) = 16.84 min, t_r (minor) = 13.78 min) gave the

isomeric composition of the product: 90% ee; $[a]_D^{32.2} = +16.7$ (c = 0.90 in CHCl₃); m.p. 84.5-86.2 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.60 (d, J = 8.7 Hz, 2H), 7.48 (s, 1H), 7.26 – 7.17 (m, 3H), 7.05 (d, J = 8.7 Hz, 2H), 6.95 (d, J = 2.6 Hz, 1H), 6.75 (d, J = 2.6 Hz, 1H), 5.05 (s, 1H), 4.06 (s, 3H), 3.89 (s, 3H), 3.79 (s, 3H), 3.33 – 3.23 (m, 2H), 1.42 (s, 3H); ¹³C NMR (101 MHz, Chloroformd) δ 166.29, 160.05, 157.21, 156.45, 142.40, 140.56, 135.77, 134.00, 131.26, 129.88, 129.47, 128.07, 126.82, 126.50, 114.21, 100.75, 96.84, 74.85, 58.90, 56.34, 55.39, 55.35, 42.50, 18.06; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₈H₂₆ClNNaO₄ 498.1443; Found: 498.1444.

Column chromatography using PE/EtOAc (3/1-1/1) as the eluent afforded **5b** in 50% yield (111.0 mg) as a light-yellow solid. HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 15/85, 1.0 mL/min, 205

nm; t_r (major) = 16.70 min, t_r (minor) = 10.34 min) gave the isomeric composition of the product: 90% ee; $[a]_D^{32.2} = +84.8$ (c = 0.82 in CHCl₃); m.p. 91.5-92.3 °C; ¹H NMR (400 MHz, Chloroformd) δ 7.58 (d, J = 8.8 Hz, 2H), 7.25 (d, J = 10.9 Hz, 1H), 7.16 – 7.03 (m, 5H), 6.95 (d, J = 2.6 Hz, 1H), 6.76 (d, J = 2.6 Hz, 1H), 5.19 (s, 1H), 4.07 (s, 3H), 3.88 (s, 3H), 3.78 (s, 3H), 3.22 (dd, 2H), 1.45 (s, 3H); 13 C NMR (101 MHz, Chloroform-d) δ 166.27, 160.05, 157.22, 156.44, 142.42, 140.55, 135.74, 134.00, 131.26, 129.88, 129.47, 128.07, 126.81, 126.50, 114.21, 100.75, 96.83, 74.84, 58.89, 56.33, 55.40, 55.35, 42.50, 18.06; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₈H₂₆ClNNaO₄ 498.1443; Found: 498.1444.

5. Crystallographic information for product 4a

The single crystal of compound **4a** was prepared from its solution in dichloromethane/petroleum ether by slow evaporation of the solvent. The data integration and empirical absorption correction were carried out using SAINT program. Using Olex2 and SHELXTL, the structure was solved by direct method and refined matrix least-squares on F2 with anisotropic displacement. Non-hydrogen atoms were refined an isotropically, hydrogen atoms were constrained to ideal geometries. The absolute configuration was determined by single crystal X-ray diffraction analysis on Rigaku XtaLAB PRO MM003-DS dual system with a Cu micro-focus source.

Figure S1. ORTEP of 4a (The ellipsoid contour of probability level is 50%).

Deposition Number	2364614	
Identification code	exp_3756_auto	
Empirical formula	C ₂₈ H ₂₅ NO ₄	
Formula weight	439.49	
Temperature/K	173.00(10)	
Crystal system	orthorhombic	
Space group	$P2_{1}2_{1}2_{1}$	
a/Å	10.00580(10)	
b/Å	16.9779(2)	
c/Å	26.8076(2)	
$\alpha/^{\circ}$	90	
β/°	90	
$\gamma/^{\circ}$	90	
Volume/Å ³	4554.01(8)	
Z	8	
$\rho_{calc}g/cm^3$	1.282	

Fable SI Crystal data and structure refinem	ent for	4a
---	---------	-----------

µ/mm ⁻¹	0.689
F(000)	1856.0
Crystal size/mm ³	0.36 imes 0.32 imes 0.26
Radiation	Cu Ka ($\lambda = 1.54184$)
2 Θ range for data collection/°	6.162 to 134.158
Index ranges	$-11 \le h \le 11, -20 \le k \le 20, -32 \le l \le 32$
Reflections collected	121861
Independent reflections	$8098 [R_{int} = 0.0538, R_{sigma} = 0.0185]$
Data/restraints/parameters	8098/0/603
Goodness-of-fit on F ²	1.050
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0304, wR_2 = 0.0761$
Final R indexes [all data]	$R_1 = 0.0316, wR_2 = 0.0767$
Largest diff. peak/hole / e Å ⁻³	0.52/-0.14
Flack parameter	-0.04(4)

¹H NMR Spectrum (600 MHz, Chloroform-d) of **1a**

¹³C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of **1a**

¹H NMR Spectrum (600 MHz, Chloroform-d) of **1b**

 ^{13}C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of 1b

¹H NMR Spectrum (400 MHz, Chloroform-d) of **1c**

¹H NMR Spectrum (600 MHz, Chloroform-d) of **1d**

 ^{13}C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of 1d

¹H NMR Spectrum (600 MHz, Chloroform-d) of **1e**

¹³C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of **1e**

¹H NMR Spectrum (400 MHz, Chloroform-d) of **1f**

¹³C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of **1f**

¹H NMR Spectrum (400 MHz, Chloroform-d) of **1g**

¹³C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of **1g**

¹H NMR Spectrum (600 MHz, Chloroform-d) of **1h**

 ^{13}C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of 1h

¹H NMR Spectrum (400 MHz, Chloroform-d) of 1i

¹³C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of **1i**

1H NMR Spectrum (600 MHz, Chloroform-d) of 4a

¹³C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of 4a

¹H NMR Spectrum (600 MHz, Chloroform-d) of **4b**

¹³C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of **4b**

¹H NMR Spectrum (400 MHz, Chloroform-d) of **4c**

¹³C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of **4c**

¹H NMR Spectrum (600 MHz, Chloroform-d) of **4d**

 ^{13}C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of 4d

¹H NMR Spectrum (600 MHz, Chloroform-d) of **4e**

¹³C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of **4e**

¹H NMR Spectrum (400 MHz, Chloroform-d) of **4f**

¹³C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of **4f**

 ^{13}C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of 4g

¹H NMR Spectrum (400 MHz, Chloroform-d) of **4h**

¹³C{¹H} NMR Spectrum (101 MHz, Chloroform-d) of **4h**

^{13}C {1H} NMR Spectrum (101 MHz, Chloroform-d) of 4i

¹H NMR Spectrum (400 MHz, Chloroform-d) of 4j

^{13}C {1H} NMR Spectrum (101 MHz, Chloroform-d) of 4j

¹H NMR Spectrum (400 MHz, Chloroform-d) of **4**k

 ^{13}C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of 4k

¹H NMR Spectrum (400 MHz, Chloroform-d) of **4**

¹³C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of **4**

¹H NMR Spectrum (400 MHz, Chloroform-d) of **4m**

¹³C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of **4m**

¹³C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of **4n**

¹H NMR Spectrum (400 MHz, Chloroform-d) of **40**

 ^{13}C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of 4o

¹H NMR Spectrum (400 MHz, Chloroform-d) of **4p**

¹³C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of **4p**

¹H NMR Spectrum (400 MHz, Chloroform-d) of **4q**

¹³C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of **4q**

¹H NMR Spectrum (400 MHz, Chloroform-d) of **4r**

¹³C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of **4r**

¹H NMR Spectrum (400 MHz, Chloroform-d) of **5a**

¹³C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of **5a**

¹H NMR Spectrum (400 MHz, Chloroform-d) of **5b**

¹³C {¹H} NMR Spectrum (101 MHz, Chloroform-d) of **5b**

S76

No.	Ret. Time [min]	e Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.232	BB	0.3411	2304.74463	105.00569	49.4563
2	14.190	BB	0.4078	2355.41602	89.28214	50.5437

No.	Ret. Time [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	13.219	BB	0.3130	336.81229	16.79228	3.5333
2	15.112	BB	0.3821	9195.75977	372.34534	96.4667

1	5.837 VB	0.1438	1.52158e4	1616.64832	49.8700
2	6.719 BV	0.1663	1.52951e4	1412.72034	50.1300

1	7.419 BV	0.1722 1.33246e	4 1203.21643	49.6704
2	9.261 VB	0.2282 1.35014e	4 920.19501	50.3296

INO.	[min]		[min]	[mau^s]	[MAU]	%	
1	7.051	BV	0.1637	2823.65234	268.46362	4.6038	
2	8.628	BV	0.2845	5.85089e4	3227.43115	95.3962	

No.	[min]	е Туре	[min]	i Area [mAU*s]	[mAU]	Area %	
1	8.859	BB	0.2164	2.01709e4	1449.20459	49.4746	
2	10.470	VB	0.2668	2.05993e4	1191.01147	50.5254	

No.	Ret. Time [min]	Type Width [min]	n Area [mAU*s]	Height [mAU]	Area %
	1	1 1	1	1	1
1	9.504 VB	0.2129	502.72849	36.68983	49.8052
2	10.402 BB	0.2797	506.66010	28.18185	50.1948

1	8.484	VB	0.1827	2816.00439	238.62781	5.8956
2	9.315	BB	0.2354	4.49483e4	2989.49365	94.1044

1	13.042	BB	0.4284	5566.97266	185.87175	49.2288
2	15.561	BB	0.4508	5741.39746	193.16600	50.7712

No.	Ret. Time [min]	Туре	Vidth [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.321 BV	0.40	59 1.0)9570e4	402.14716	92.6417
2	14.096 VB	0.47	93 87	0.29291	26.76643	7.3583

_	No.	Ret. Time [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	1	20.356	VB	0.4990	2.33221e4	727.55328	50.0588
	2	22.623	BB	0.5505	2.32674e4	653.29877	49.9412

_	INU.	נווווון		[[[]]]	[ITIAU S]	[ITIAU]	70	
	1	20.200	BB	0.4930	861.54956	27.31194	5.5692	
	2	22.527	BB	0.5487	1.46085e4	412.97748	94.4308	

