Electrochemical1,5-Chlorosulfonylationand1,5-Hydrosulfonylation of Vinylcyclopropanes

Xin Zhang, Wei Li, Yuxiang Zhou, Sihui Lv, Lichun Xu, Lou Shi,* Yanni Li,* and

Deqiang Liang*

^aYunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of

Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China

*Email: shil090@nenu.edu.cn

*Email: liyanni@kmu.edu.cn

*Email: liangdq695@nenu.edu.cn

Table of Contents

I. General considerations	S1
II. Optimization of reaction conditions	S3
III. Experimental procedures	
1. General procedure for the 1,5-chlorosulfonylation and 1,5-hydro	sulfonylation of
vinylcyclopropanes	S9
2. Gram-scale synthesis	S10
3. Transformations of the products	S11
IV. Mechanistic investigations	S11
1. Quenching experiments	S12
2. Electricity on-off experiments	S12
3. Reaction kinetic profiles	S13
4. Cyclic voltammetry studies	S15
V. Spectral data of products	
VI. General procedure for the synthesis of vinylcyclopropane sub	strates 1S63
VII. Copies of ¹ H, ¹⁹ F, ¹³ C and DEPT NMR spectra	S70
VIII. References	S258

I. General considerations

Unless otherwise stated, commercially available chemicals were used without treatment. Solvents were degassed by bubbling Ar for 10 min before use. Reactions were monitored by Thin Layer Chromatography (TLC) using silica gel F254 plates. Products were purified by column chromatography over 300-400 mesh silica gel under a positive pressure of air. ¹H NMR, ¹⁹F NMR, ¹³C NMR and DEPT NMR spectra were recorded at 25 °C on a Bruker AscendTM 400 spectrometer using tetramethylsilane (TMS) as an internal standard. High-resolution mass spectra (HRMS) were obtained using a Bruker microTOF II Focus spectrometer (ESI). The Electrolysis was performed using a DJS-292B dual display potentiostat (Shanghai Xinrui Instruments Co., China). The electrochemical setup used in this research is shown in Figure S1.

Figure S1 Electrochemical setup

II. Optimization of reaction conditions

Table S1 Solvent screening^a

1	DCE	14
2	PhCF ₃	11
3	THF	31
4	Acetone	29
5	DMF	nr
6	DMSO	<5
7	MeOH	0
8	HFIP	<5
9	MeCN	38
10	MeCN/H ₂ O (9:1, v/v)	19
11	MeCN/MeOH (9:1, v/v)	17
12	MeCN/HFIP (9:1, v/v)	32

^{*a*} Reaction conditions: **1a** (0.5 mmol), **2a** (0.6 mmol), *n*-Bu₄NBF₄ (0.5 mmol), solvent (12.0 mL), graphite felt anode (15 mm \times 15 mm \times 2 mm), platinum plate cathode (15 mm \times 15 mm \times 0.3 mm), undivided cell, constant current = 10.0 mA, Ar, 50 °C, 2.7 h, isolated yields.

 Table S2 Additive screening^a

O O NHPh	+ Ts-Cl	(+) C felt Pt (-), 10 mA, 2.7 h <i>n</i> -Bu ₄ NBF ₄ (1.0 equiv), Additiv MeCN (12.0 mL), 50 °C, Ar	
1a	2a		3a
Entry	Ac	lditive (equiv)	Yield (%)
1		LiCl (0.5)	10
2		NaCl (0.5)	27
3		KCl (0.5)	14
4		CsCl (0.5)	10
5		TBAC (0.5)	16
6	1	$AgNO_{3}(1.0)$	0
7	1	AgNO ₃ (2.0)	0
8		None	38

^{*a*} Reaction conditions: **1a** (0.5 mmol), **2a** (0.6 mmol), *n*-Bu₄NBF₄ (0.5 mmol), MeCN (12.0 mL), graphite felt anode (15 mm \times 15 mm \times 2 mm), platinum plate cathode

(15 mm \times 15 mm \times 0.3 mm), undivided cell, constant current = 10.0 mA, Ar, 50 °C, 2.7 h, isolated yields.

Table S3 Acid screening^a

NHPh	+ Ts-Cl	(+) C felt Pt (-), 10 mA, 2. <i>n</i> -Bu ₄ NBF ₄ (1.0 equiv), Acid (1. MeCN (12.0 mL), 50 °C, A	7 h 0 equiv) Ar
1a	2a		3a
Entry		Acid	Yield (%)
1		TFA (1.0)	36
2		HOAc (1.0)	34
3		none	38

^{*a*} Reaction conditions: **1a** (0.5 mmol), **2a** (0.6 mmol), *n*-Bu₄NBF₄ (0.5 mmol), acid (0.5 mmol), MeCN (12.0 mL), graphite felt anode (15 mm \times 15 mm \times 2 mm), platinum plate cathode (15 mm \times 15 mm \times 0.3 mm), undivided cell, constant current = 10.0 mA, Ar, 50 °C, 2.7 h, isolated yields.

Table S4 Base screening^a

NHPh +	Ts-Cl	(+) C felt Pt (-), 10 n-Bu ₄ NBF ₄ (1.0 equiv), MeCN (12.0 mL),	0 mA, 2.7 h Base (1.0 equiv) 50 °C, Ar
1a	2a		3a
Entry		Base	Yield (%)
1		<i>n</i> -Bu ₄ NOAc	15
2		Et ₃ N	14
3		K ₂ CO ₃	<5
4		KOAc	<5
5		K ₂ HPO ₄	<5
6		2,6-lutidine	22
7		None	38

^{*a*} Reaction conditions: **1a** (0.5 mmol), **2a** (0.6 mmol), *n*-Bu₄NBF₄ (0.5 mmol), base (0.5 mmol), MeCN (12.0 mL), graphite felt anode (15 mm \times 15 mm \times 2 mm), platinum plate cathode (15 mm \times 15 mm \times 0.3 mm), undivided cell, constant current = 10.0 mA,

Ar, 50 °C, 2.7 h, isolated yields.

Table S5 Electrode screening^a

	^{?h} + Ts-Cl - 2a	Electrodes, 10 mA, 2.7 h <i>n</i> -Bu ₄ NBF ₄ (1.0 equiv) MeCN (12 mL), 50 °C, Ar	O C O NHPh Ts 3a
Entry	Anode	Cathode	Yield (%)
1	C felt	stainless steel	30
2	C felt	Ni plate	18
3	C felt	Ni foam	44
4	C felt	Cu foam	<5
5	C felt	C cloth	26
6	C felt	C felt	7
7	C felt	$\mathrm{C} \operatorname{rod}^{b}$	7
8	C felt	Pt plate	38
9	C cloth	Ni foam	13
10	$C \operatorname{rod}^{b}$	Ni foam	nr
11	Pt plate	Ni foam	19

^{*a*} Reaction conditions: **1a** (0.5 mmol), **2a** (0.6 mmol), *n*-Bu₄NBF₄ (0.5 mmol), MeCN (12.0 mL), electrodes (15 mm × 15 mm), undivided cell, constant current = 10.0 mA, Ar, 50 °C, 2.7 h, isolated yields. ^{*b*} \emptyset 6 mm.

Table S6 Electrolyte screening^a

		(+) C felt Ni foam (-) Electrolyte, 10 mA, 2.7 h	NHPh
	+ 15-01	MeCN (12.0 mL), 50 °C, Ar	Ts
1a	2a		3a
Entry	Elec	trolyte (equiv)	Yield (%)
1	L	iClO ₄ (1.0)	29
2	<i>n</i> -Et ₄ NBF ₄ (1.0)		32
3	<i>n</i> -Bu ₄ NPF ₆ (1.0)		27
4	<i>n</i> -Bu ₄ NOAc (1.0)		25
5	<i>n</i> -Bu ₄ NClO ₄ (1.0)		24
6]	TBAI (1.0)	0

7	TBAB (1.0)	<5
8	<i>n</i> -Bu ₄ NBF ₄ (1.0)	44
9	<i>n</i> -Bu4NBF4 (0.3)	27
10	<i>n</i> -Bu4NBF4 (0.5)	35
11	<i>n</i> -Bu4NBF4 (1.5)	44
12	<i>n</i> -Bu4NBF4 (2.0)	43

^{*a*} Reaction conditions: **1a** (0.5 mmol), **2a** (0.6 mmol), MeCN (12.0 mL), graphite felt anode (15 mm \times 15 mm \times 2 mm), nickel foam cathode (15 mm \times 15 mm \times 1.5 mm), undivided cell, constant current = 10.0 mA, Ar, 50 °C, 2.7 h, isolated yields.

Table S7 Temperature, substrate loading and atmosphere optimization^a

	IHPh + Ts-Cl	(+) C felt Ni foam <i>n</i> -Bu ₄ NBF ₄ MeCN (12.0 mL)	n (-), 10 mA, 2.7 h (1.0 equiv)	O C O NHPh
1a	2a (X equi	iv)		3a
Entry	<i>T</i> (°C)	X (equiv)	Atmosphere	Yield (%)
1	35	1.2	Ar	40
2	50	1.2	Ar	44
3	50	1.5	Ar	42
4	50	2.0	Ar	5
5	50	1.2	in air and sealed	19

^{*a*} Reaction conditions: **1a** (0.5 mmol), **2a** (0.6 mmol), *n*-Bu₄NBF₄ (0.5 mmol), MeCN (12.0 mL), graphite felt anode (15 mm \times 15 mm \times 2 mm), nickel foam cathode (15 mm \times 15 mm \times 15 mm \times 1.5 mm), undivided cell, constant current = 10.0 mA, 2.7 h, isolated yields.

2	5, 5.4	21
3	8, 3.4	29
4	10, 2.7	44
5	12, 2.2	43
6	15, 1.8	34
7	10, 3.5	27
8	10, 3.0	32
9	10, 2.3	47
10	10, 2.0	18
11	10, 1.7	26
12	10, 1.4	24

^{*a*} Reaction conditions: **1a** (0.5 mmol), **2a** (0.6 mmol), *n*-Bu₄NBF₄ (0.5 mmol), MeCN (12.0 mL), graphite felt anode (15 mm \times 15 mm \times 2 mm), nickel foam cathode (15 mm \times 15 mm \times 15 mm), undivided cell, constant current, Ar, 50 °C, time, isolated yields.

Table S9 Sacrificial additive screening^a

O O NHPh	+ Ts-Cl	(+) C felt Ni foam (-), 10 mA, 2 n-Bu ₄ NBF ₄ (1.0 equiv), Sacrificial a MeCN (12.0 mL), 50 °C, Ar	additive
1a	2a		4a
Entry	Sac	crificial additive (equiv)	Yield (%)
1	HE (2.0)		64
2	TTMSS (2.0)		77
3		DIPEA (2.0)	<5
4		Et ₃ N (2.0)	<5
5	1,	4-cyclohexadiene (2.0)	24
6		TTMSS (1.0)	67
7		TTMSS (1.5)	72
8		TTMSS (2.5)	83
9 ^b		TTMSS (2.5)	0

^{*a*} Reaction conditions: **1a** (0.5 mmol), **2a** (0.6 mmol), *n*-Bu₄NBF₄ (0.5 mmol), sacrificial additive, MeCN (12.0 mL), graphite felt anode (15 mm \times 15 mm \times 2 mm), nickel

foam cathode (15 mm \times 15 mm \times 1.5 mm), undivided cell, constant current = 10 mA, Ar, 50 °C, 2.3 h, isolated yields. ^{*b*} No electric current, Ar, 50 °C.

III. Experimental procedures

1. General procedure for the 1,5-chlorosulfonylation and 1,5-hydrosulfonylation of vinylcyclopropanes

Condition A: A custom-made undivided cell (Figure S1) equipped with a stir bar, a graphite felt anode (15 mm \times 15 mm \times 2 mm), and a nickel foam cathode (15 mm \times 15 mm \times 1.5 mm) was used. Under an argon atmosphere, vinylcyclopropane **1** or **1'** (0.5 mmol), electrolyte *n*-Bu₄NBF₄ (1.0 equiv, 0.5 mmol, 0.1646 g), and sulfonyl chloride (1.2 equiv, 0.6 mmol) were added to the cell (if the sulfonyl chloride is solid, dissolve it in 2.0 mL of degassed acetonitrile before adding; if it is liquid, add it directly using a microsyringe). For *Condition B*, tris(trimethylsilyl)silane (TTMSS, 2.5 equiv, 1.25 mmol, 0.386 mL) was added at this point. Finally, degassed acetonitrile was added, bringing the total solvent volume to 12.0 mL. The mixture was electrolyzed with stirring using a constant current of 10.0 mA at 50°C (oil bath) for 2.3 hours (138 minutes). The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether–ethyl acetate) to afford products **3** or **4**.

2. Gram-scale synthesis

A custom-made undivided cell (Figure S2) equipped with a stir bar, a graphite felt anode (15 mm × 15 mm × 2 mm), and a nickel foam cathode (15 mm × 15 mm × 1.5 mm) was used. Under an argon atmosphere, vinylcyclopropane **1a** (5 mmol, 1.146 g), electrolyte *n*-Bu4NBF4 (1.0 equiv, 5 mmol, 1.646 g), *p*-toluenesulfonyl chloride **2a** (1.2 equiv, 6 mmol, 1.144 g), and tris(trimethylsilyl)silane (TTMSS, 2.5 equiv, 12.5 mmol, 3.86 mL) were added to the cell. Finally, degassed acetonitrile (100 mL) was added. The mixture was electrolyzed with stirring using a constant current of 50.0 mA at 50°C (oil bath) for 4.7 hours. The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether–ethyl acetate) to afford product **4a** (1.23 g, 64% yield).

Figure S2 Setup for gram-scale synthesis

3. Transformations of the products

To a 10 mL reaction tube equipped with a magnetic stir bar, add **3a** (0.2 mmol, 0.0840 g), HE (Hantzsch ester, 2 equiv, 0.1023 g), Na₂CO₃ (2 equiv, 0.0424 g), and Ir(ppy)₃ (1 mol%, 0.0013 g) under an argon atmosphere, along with 2 mL of acetonitrile. Illuminate the reaction with blue LEDs (6 W) for 12 hours. After the reaction was completed, add 10 mL of water to quench the reaction, and extract with 10 mL of dichloromethane (repeat three times). Evaporate the solvent and purify the residue by column chromatography (petroleum ether/ethyl acetate = 6:1, v/v) to obtain the desired product **4a** (76.3 mg, 98% yield).

To a 10 mL pressure tube equipped with a magnetic stir bar, add substrate 4 (0.2 mmol), trifluoromethanesulfonic acid (1.5 equiv, 27 μ L), and toluene (0.4 mL). Seal the tube and heat at 100°C (oil bath) for 30 hours. After the reaction is complete, add 10 mL of sodium bicarbonate solution to quench the reaction, and extract with 10 mL of dichloromethane (repeat three times). Evaporate the solvent and purify the residue by column chromatography (petroleum ether/ethyl acetate/Et₃N = 50:100:1 or petroleum ether/ethyl acetate/Et₃N = 50:100:1 or petroleum ether/ethyl acetate/Et₃N = 50:50:1, v/v/v) to obtain the desired product, **5a** (43.8 mg, 55% yield) or **5b** (66.3 mg, 61% yield).

dry THF (0.4 mL), and NaH (2 equiv, 60% dispersion in mineral oil). Seal the tube and stir at room temperature for 2 hours. After the reaction is complete, add 5 mL of water to quench the reaction, and extract with 10 mL of dichloromethane (repeat three times). Evaporate the solvent and purify the residue by column chromatography (petroleum ether/ethyl acetate = 4:1, v/v) to obtain the desired product **6** (43.3 mg, 57% yield).

IV. Mechanistic investigations

1. Quenching experiments

Condition A: A custom-made undivided cell (Figure S1) equipped with a stir bar, a graphite felt anode (15 mm × 15 mm × 2 mm), and a nickel foam cathode (15 mm × 15 mm × 1.5 mm) was used. Under an argon atmosphere, vinylcyclopropane **1** (0.5 mmol), electrolyte *n*-Bu4NBF4 (1.0 equiv, 0.5 mmol, 0.1646 g), **a scavenger** (type and loading are shown in the table above), and sulfonyl chloride (1.2 equiv, 0.6 mmol) were added to the cell. If the sulfonyl chloride is solid, dissolve it in 2.0 mL of degassed acetonitrile before adding; if it is liquid, add it directly using a microsyringe. For *Condition B*, tris(trimethylsilyl)silane (TTMSS, 2.5 equiv, 1.25 mmol, 0.386 mL) was added at this moment. Finally, degassed acetonitrile was added, bringing the total solvent volume to 12.0 mL. The mixture was electrolyzed with stirring using a constant current of 10.0 mA at 50°C (oil bath) for 2.3 h (138 min). The yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

2. Electricity on-off experiments

The reactions of 1a and 2j1 (4-fluorobenzenesulfonyl chloride) were monitored for

detection purposes. Trifluorotoluene (1 equiv) was added to the reaction mixture as an internal standard before electrolysis. A 0.1 mL aliquot of the crude reaction solution was withdrawn at regular intervals using a syringe and subjected to ¹⁹F NMR analysis.

	A(X)	B(Y)
Long Name	time	19F NMR yield
Units	min	%
Comments		
F(x)=		Electricity on/off
1	0	0
2	20	10
3	40	12
4	60	31
5	80	34
6	100	43
7	120	44
8	140	56
9	160	56

Figure S3 Electricity on-off experiments of condition A

	A(X)	B(Y)
Long Name	time	19F NMR Yield
Units	min	%
Comments		
F(x)=		Electricity on/off
1	0	0
2	20	59
3	40	60
4	60	70
5	80	72
6	100	81
7	120	81
8	140	89
9	160	90

Figure S4 Electricity on-off experiments of condition B

4. Reaction kinetic profiles

Benzotrifluoride (1 equiv) was added as an internal standard to the reaction mixture before electrolysis using 4-(Trifluoromethyl)benzenesulfonyl chloride as the radical precursor. 0.05 mL of the crude reaction solution was taken out each time via a syringe and was subjected to ¹⁹F NMR analysis.

	A(X)	B(Y)
Long Name	time	19F NMR Yield
Units	min	%
Comments		
F(x)=		
1	0	0
2	20	3
3	40	6
4	60	13
5	80	18
6	100	24
7	120	26
8	140	32
9	160	31

Figure S5 Reaction kinetic profiles of condition A

	A(X)	B(Y)
Long Name	time	19F NMR Yield
Units	min	%
Comments		
F(x)=		
1	0	0
2	20	73
3	40	86
4	60	87
5	80	89
6	100	91
7	120	94
8	140	95
9	160	96
10	180	96
11	200	95

Figure S6 Reaction kinetic profiles of condition B

5. Cyclic voltammetry studies

General procedure: Cyclic voltammetries were performed in a three-electrode cell at room temperature. The working electrode was a glassy carbon (GC, d = 3 mm) disk electrode, and the counter electrode was a platinum wire. The reference was an Ag/AgCl electrode submerged in a saturated aqueous KCl solution, and separated from

reactions by a salt bridge. 10 mL MeCN solution containing 1.0 mmol *n*-Bu₄NBF₄ was poured into the electrochemical cell in all experiments. The scan rate was 0.05 V/s.

Figure S7 Anodic cyclic voltammograms of TBAC, TsCl, 1a, or (TMS)₃SiH in MeCN

Figure S8 Cathode cyclic voltammograms of TsCl in MeCN

V. Spectral data of products

(*E*)-2-Acetyl-2-chloro-*N*-phenyl-6-tosylhex-4-enamide (**3a**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 7:1, v/v) in 47% yield (99.5 mg), *E/Z* = 25:1, which was detected by ¹H NMR spectroscopy. Yellow oil, *R_f* (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 7.60 (d, *J* = 8.2 Hz, 2H), 7.50 (d, *J* = 8.4 Hz, 2H), 7.28 (dd, *J* = 11.0, 4.8 Hz, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.11 (t, *J* = 7.4 Hz, 1H), 5.53 (tdd, *J* = 22.2, 14.9, 7.1 Hz, 2H), 3.65 (qd, *J* = 13.9, 7.1 Hz, 2H), 2.99 (dd, *J* = 14.8, 6.4 Hz, 1H), 2.75 (dd, *J* = 14.8, 7.8 Hz, 1H), 2.34 (s, 3H), 2.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.41, 164.49, 144.88, 136.39, 135.70, 133.30, 129.83, 129.19, 128.32, 125.68, 122.51, 120.37, 75.41, 59.93, 39.43, 25.16, 21.66. HRMS (ESI-TOF) Calcd for C₂₁H₂₃ClNO4S⁺ ([M+H]⁺) 420.1031. Found 420.1033.

Methyl (*E*)-2-chloro-2-(phenylcarbamoyl)-6-tosylhex-4-enoate (**3a1**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 25% yield (51.4 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Brown yellow oil, *R_f* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 7.74 – 7.64 (m, 2H), 7.55 (dd, *J* = 8.6, 1.0 Hz, 2H), 7.40 – 7.34 (m, 2H), 7.30 (d, *J* = 7.9 Hz, 2H), 7.22 – 7.15 (m, 1H), 5.68 – 5.55 (m, 2H), 3.83 (s, 3H), 3.78 – 3.69 (m, 2H), 3.25 – 3.15 (m, 1H), 2.99 (ddd, *J* = 14.8, 4.6, 2.2 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.35, 163.37, 144.84, 136.49, 135.51, 132.70, 129.79, 129.15, 128.39, 125.55, 122.91, 120.27, 70.47, 59.92, 54.10, 40.58, 21.66. HRMS (ESI-TOF) Calcd for C₂₁H₂₃ClNO₅S⁺ ([M+H]⁺) 436.0980. Found 436.0981.

(*E*)-2-Chloro-2-isobutyryl-*N*-phenyl-6-tosylhex-4-enamide (**3a2**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 7:1, v/v) in 45% yield (101.6 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil, *R_f* (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.70 (d, *J* = 8.3 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.17 (d, *J* = 8.3 Hz, 2H), 5.75 – 5.47 (m, 2H), 3.74 (qd, *J* = 13.9, 7.1 Hz, 2H), 3.08 (dd, *J* = 14.7, 6.3 Hz, 1H), 2.83 (dd, *J* = 14.7, 7.7 Hz, 1H), 2.43 (s, 3H), 2.34 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.44, 164.30, 144.86, 135.70, 135.49, 133.81, 133.33, 129.82, 129.67, 128.35, 122.45, 120.36, 75.41, 59.95, 39.43, 25.11, 21.65, 20.95. HRMS (ESI-TOF) Calcd for C₂₃H₂₇ClNO₄S⁺ ([M+H]⁺) 448.1344. Found 448.1344.

(*E*)-2-Benzoyl-2-chloro-*N*-phenyl-6-tosylhex-4-enamide (**3a3**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 6:1, v/v) in 35% yield (83.7 mg), E/Z = 13:1, which was detected by ¹H NMR spectroscopy. Yellow oil, *R_f* (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 8.07 – 7.96 (m, 2H), 7.76 – 7.70 (m, 2H), 7.65 – 7.58 (m, 2H), 7.58 – 7.51 (m, 1H), 7.44 – 7.35 (m, 4H), 7.32 (d, *J* = 7.9 Hz, 2H), 7.24 – 7.17 (m, 1H), 5.81 (ddd, *J* = 8.5, 8.1, 6.7 Hz, 1H), 5.60 (ddd, *J* = 15.2, 8.4, 6.5 Hz, 1H), 3.83 (dd, *J* = 13.6, 6.4 Hz, 1H), 3.73 (dd, *J* = 13.8, 8.5 Hz, 1H), 3.23 (dd, *J* = 14.5, 6.6 Hz, 1H), 3.04 (dd, *J* = 14.9, 8.5 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 189.34, 165.44, 144.95, 136.48, 135.85, 133.56, 133.49, 133.23, 129.89, 129.47, 129.22, 128.58, 128.32, 125.60, 122.76, 120.43, 72.13, 60.06, 41.14, 21.68. HRMS (ESI-TOF) Calcd for C₂₆H₂₅CINO4S⁺ ([M+H]⁺) 482.1187. Found 482.1188.

(*E*)-2-Chloro- N^{1} , N^{3} -diphenyl-2-(4-tosylbut-2-en-1-yl)malonamide (**3a4**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 6:1, v/v) in 31% yield (78.1 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Brown solid, m.p. = 120.4-121.3 °C. *R_f* (petroleum ether/ethyl acetate = 4:1, v/v) 0.33. ¹H NMR (400 MHz,

CDCl₃) δ 9.01 (s, 2H), 7.70 (d, *J* = 8.1 Hz, 2H), 7.55 (d, *J* = 7.9 Hz, 4H), 7.37 (t, *J* = 7.8 Hz, 4H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.19 (t, *J* = 7.4 Hz, 2H), 5.66 (q, *J* = 6.2 Hz, 2H), 3.76 (d, *J* = 6.0 Hz, 2H), 3.17 (d, *J* = 5.8 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.30, 144.90, 136.49, 135.56, 132.45, 129.83, 129.20, 128.36, 125.64, 123.21, 120.52, 76.12, 59.87, 44.14, 21.66. HRMS (ESI-TOF) Calcd for C₂₆H₂₆ClN₂O4S⁺ ([M+H]⁺) 497.1296. Found 497.1299.

(*E*)-2-Acetyl-2-chloro-*N*-(*p*-tolyl)-6-tosylhex-4-enamide (**3b1**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 9:1, v/v) in 38% yield (82.2 mg), E/Z = 17:1, which was detected by ¹H NMR spectroscopy. Brown oil, *R_f* (petroleum ether/ethyl acetate = 4:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.70 (d, *J* = 8.3 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.17 (d, *J* = 8.3 Hz, 2H), 5.73 – 5.50 (m, 2H), 3.74 (qd, *J* = 13.9, 7.1 Hz, 2H), 3.08 (dd, *J* = 14.7, 6.3 Hz, 1H), 2.83 (dd, *J* = 14.7, 7.7 Hz, 1H), 2.43 (s, 3H), 2.34 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.44, 164.30, 144.86, 135.70, 135.49, 133.81, 133.33, 129.82, 129.67, 128.35, 122.45, 120.36, 75.41, 59.95, 39.43, 25.11, 21.65, 20.95. HRMS (ESI-TOF) Calcd for C₂₂H₂₅CINO₄S⁺ ([M+H]⁺) 434.1187. Found 434.1190.

(*E*)-2-Acetyl-2-chloro-*N*-(4-methoxyphenyl)-6-tosylhex-4-enamide (**3b2**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 7:1, v/v) in 36% yield (80.5 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Brown oil, *R_f* (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.70 (d, *J* = 8.3 Hz, 2H), 7.49 (d, *J* = 9.0 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 6.90 (d, *J* = 9.0 Hz, 2H), 5.74 – 5.49 (m, 2H), 3.81 (s, 3H), 3.79 – 3.67 (m, 2H), 3.08 (dd, *J* = 14.7, 6.5 Hz, 1H), 2.83 (dd, *J* = 14.7, 7.8 Hz, 1H), 2.43 (s, 3H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.47, 164.26, 157.36, 144.88, 135.72, 133.42, 129.83, 129.40, 128.34, 122.39, 122.16, 114.29, 75.37, 59.96, 55.53, 39.39, 25.10, 21.65. HRMS (ESI-TOF) Calcd for C₂₂H₂₅ClNO₅S⁺ ([M+H]⁺) 450.1136. Found 450.1136.

(*E*)-2-Acetyl-2-chloro-*N*-(4-ethoxyphenyl)-6-tosylhex-4-enamide (**3b3**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 7:1, v/v) in 40% yield (93.1 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Brown oil, *R_f* (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.70 (d, *J* = 8.3 Hz, 2H), 7.47 (d, *J* = 9.0 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 6.89 (d, *J* = 9.0 Hz, 2H), 5.78 – 5.45 (m, 2H), 4.03 (q, *J* = 7.0 Hz, 2H), 3.75 (qd, *J* = 13.9, 7.2 Hz, 2H), 3.08 (dd, *J* = 14.8, 6.4 Hz, 1H), 2.83 (dd, *J* = 14.7, 7.8 Hz, 1H), 2.43 (s, 3H), 2.34 (s, 3H), 1.41 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.50, 164.22, 156.71, 144.89, 135.66, 133.43, 129.84, 129.24, 128.35, 122.40, 122.12, 114.85, 75.35, 63.75, 59.96, 39.38, 25.12, 21.68, 14.82. HRMS (ESI-TOF) Calcd for C_{23H27}CINO₅S⁺ ([M+H]⁺) 464.1293. Found 464.1294.

(*E*)-2-Acetyl-2-chloro-*N*-(4-fluorophenyl)-6-tosylhex-4-enamide (**3b4**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 7:1, v/v) in 42% yield (93.0 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil, *R_f* (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 7.70 (d, J = 8.3 Hz, 2H), 7.63 – 7.55 (m, 2H), 7.32 (d, J = 8.1 Hz, 2H), 7.10 – 7.02 (m, 2H), 5.71 (ddd, J = 14.9, 7.7, 7.0 Hz, 1H), 5.63 – 5.46 (m, 1H), 3.74 (ddd, J = 21.7, 13.8, 7.3 Hz, 2H), 3.09 (dd, J = 14.6, 6.6 Hz, 1H), 2.94 – 2.77 (m, 1H), 2.44 (s, 3H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.36, 164.61, 164.01 (d, J = 246.2 Hz), 144.97, 135.79, 133.47, 132.42 (d, J = 3.0 Hz), 129.88, 128.26, 122.44, 122.35 (d, J = 8.1 Hz), 115.91 (d, J = 22.8 Hz), 75.32, 59.93, 39.32, 25.19, 21.67. ¹⁹F NMR (376 MHz, CDCl₃) δ -116.02. HRMS (ESI-TOF) Calcd for C₂₁H₂₂ClFNO4S⁺ ([M+H]⁺) 438.0937. Found 438.0938.

S20

(*E*)-2-Acetyl-*N*-(4-bromophenyl)-2-chloro-6-tosylhex-4-enamide (**3b5**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 7:1, v/v) in 48% yield (120.0 mg), E/Z = 17:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil, *R_f* (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 7.70 (d, *J* = 8.3 Hz, 2H), 7.56 – 7.51 (m, 2H), 7.51 – 7.46 (m, 2H), 7.32 (d, *J* = 7.9 Hz, 2H), 5.75 – 5.64 (m, 1H), 5.64 – 5.49 (m, 1H), 3.78 (dd, *J* = 13.7, 6.5 Hz, 1H), 3.69 (dd, *J* = 13.8, 7.9 Hz, 1H), 3.08 (dd, *J* = 14.6, 6.6 Hz, 1H), 2.83 (dd, *J* = 14.7, 8.0 Hz, 1H), 2.44 (s, 3H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.26, 164.68, 144.97, 135.86, 135.54, 133.42, 132.14, 129.89, 128.23, 122.49, 121.96, 118.44, 75.36, 59.92, 39.34, 25.22, 21.67. HRMS (ESI-TOF) Calcd for C₂₁H₂₂BrClNO4S⁺ ([M+H]⁺) 498.0136. Found 498.0138.

(*E*)-*N*-([1,1'-Biphenyl]-4-yl)-2-acetyl-2-chloro-6-tosylhex-4-enamide (**3b6**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 7:1, v/v) in 29% yield (70.9 mg), E/Z = 17:1, which was detected by ¹H NMR spectroscopy. Yellow oil, *R_f* (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 7.74 – 7.65 (m, 4H), 7.64 – 7.54 (m, 4H), 7.48 – 7.41 (m, 2H), 7.36 (dt, *J* = 9.3, 4.3 Hz, 1H), 7.32 (t, *J* = 5.4 Hz, 2H), 5.76 – 5.65 (m, 1H), 5.65 – 5.52 (m, 1H), 3.75 (qd, *J* = 13.8, 7.2 Hz, 2H), 3.11 (dd, *J* = 14.7, 6.5 Hz, 1H), 2.86 (dd, *J* = 14.8, 7.9 Hz, 1H), 2.43 (s, 3H), 2.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.38, 164.53, 144.90, 140.21, 138.59, 135.79, 135.65, 133.38, 129.85, 128.88, 128.32, 127.78, 127.43, 126.94, 122.53, 120.63, 75.45, 59.96, 39.43, 25.19, 21.66. HRMS (ESI-TOF) Calcd for C₂₇H₂₇CINO4S⁺ ([M+H]⁺) 496.1344. Found 496.1345.

(*E*)-2-Acetyl-2-chloro-6-tosyl-*N*-(4-(trifluoromethyl)phenyl)hex-4-enamide (**3b7**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 6:1, v/v) in 40% yield (97.6 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil, R_f (petroleum ether/ethyl acetate = 2.5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (s, 1H), 7.79 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 8.3 Hz, 2H), 7.64 (d, J =

8.6 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 5.80 – 5.67 (m, 1H), 5.67 – 5.53 (m, 1H), 3.78 (dd, J = 13.6, 6.5 Hz, 1H), 3.69 (dd, J = 13.7, 8.1 Hz, 1H), 3.11 (dd, J = 14.6, 6.5 Hz, 1H), 2.85 (dd, J = 14.7, 8.2 Hz, 1H), 2.44 (s, 3H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.15, 165.08, 145.02, 139.51, 135.93, 133.43, 129.91, 128.17, 127.30 (q, J = 32.9 Hz), 126.37 (q, J = 3.7 Hz), 125.70 (q, J = 272.4 Hz),122.57, 120.13, 75.34, 59.91, 39.33, 25.26, 21.65. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.30. HRMS (ESI-TOF) Calcd for C₂₂H₂₂ClF₃NO₄S⁺ ([M+H]⁺) 488.0905. Found 488.0908.

(*E*)-2-Acetyl-2-chloro-N-(4-cyanophenyl)-6-tosylhex-4-enamide (**3b8**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 7:1, v/v) in 36% yield (80.7 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil, *R_f* (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H), 7.92 – 7.78 (m, 2H), 7.71 (d, *J* = 8.3 Hz, 2H), 7.69 – 7.63 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 5.90 – 5.69 (m, 1H), 5.69 – 5.48 (m, 1H), 3.78 (dd, *J* = 13.5, 6.5 Hz, 1H), 3.68 (dd, *J* = 13.6, 8.2 Hz, 1H), 3.10 (dd, *J* = 14.6, 6.7 Hz, 1H), 2.85 (dd, *J* = 14.6, 8.3 Hz, 1H), 2.45 (s, 3H), 2.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.04, 165.31, 145.11, 140.47, 136.00, 133.51, 133.27, 129.97, 128.11, 122.59, 120.42, 118.54, 108.64, 75.29, 59.89, 39.26, 25.34, 21.68. HRMS (ESI-TOF) Calcd for C₂₂H₂₂ClN₂O4S⁺ ([M+H]⁺) 445.0983. Found 445.0984.

Ethyl (*E*)-4-(2-acetyl-2-chloro-6-tosylhex-4-enamido)benzoate (**3b9**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 5:1, v/v) in 38% yield (93.1 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil, *R_f* (petroleum ether/ethyl acetate = 2:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 8.12 – 7.98 (m, 2H), 7.77 – 7.65 (m, 4H), 7.32 (d, *J* = 8.0 Hz, 2H), 5.80 – 5.65 (m, 1H), 5.64 – 5.50 (m, 1H), 4.38 (q, *J* = 7.1 Hz, 2H), 3.73 (ddd, *J* = 21.7, 13.7, 7.2 Hz, 2H), 3.10 (dd, *J* = 14.7, 6.5 Hz, 1H), 2.86 (dd, *J* = 14.7, 8.0 Hz, 1H), 2.44 (s, 3H), 2.36 (s, 3H), 1.40 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.23, 165.88, 164.87, 144.96, 140.38, 135.85, 133.32, 130.80, 129.89, 128.23, 127.34, 122.60, 119.53, 75.43,

61.06, 59.91, 39.43, 25.28, 21.66, 14.35. HRMS (ESI-TOF) Calcd for C₂₄H₂₇ClNO₆S⁺ ([M+H]⁺) 492.1242. Found 492.1240.

(*E*)-3-Chloro-1-methyl-3-(4-tosylbut-2-en-1-yl)indolin-2-one (**3c**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 21% yield (39.7 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Brown yellow oil, *R_f* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.02 (ddd, J = 13.3, 9.9, 4.3 Hz, 2H), 6.90 – 6.74 (m, 1H), 6.44 (d, J = 7.7 Hz, 1H), 5.26 (dt, J = 15.0, 7.4 Hz, 1H), 4.93 (dt, J = 15.1, 7.5 Hz, 1H), 3.58 (dd, J = 13.4, 6.3 Hz, 1H), 3.40 (d, J = 7.4 Hz, 2H), 3.08 (s, 3H), 2.94 (dd, J = 13.4, 8.3 Hz, 1H), 2.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.38, 144.54, 143.35, 135.80, 134.97, 129.72, 128.54, 128.38, 127.39, 123.00, 121.80, 120.44, 107.80, 59.77, 55.57, 32.14, 25.82, 21.65. HRMS (ESI-TOF) Calcd for C₂₀H₂₁ClNO₃S⁺ ([M+H]⁺) 390.0925. Found 390.0922.

(*E*)-2-Acetyl-2-chloro-*N*-(2-chlorophenyl)-6-tosylhex-4-enamide (**3d1**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 7:1, v/v) in 41% yield (94.1 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil, *R_f* (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 9.02 (s, 1H), 8.21 (dd, *J* = 8.2, 1.5 Hz, 1H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.43 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.36 – 7.27 (m, 3H), 7.15 (td, *J* = 7.8, 1.5 Hz, 1H), 5.65 – 5.57 (m, 2H), 3.79 – 3.71 (m, 2H), 3.16 – 3.01 (m, 1H), 2.97 – 2.84 (m, 1H), 2.42 (s, 3H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.16, 164.35, 144.80, 135.45, 133.14, 132.59, 129.75, 129.37, 128.41, 127.88, 126.28, 124.21, 122.82, 121.81, 75.89, 59.88, 39.72, 25.13, 21.63. HRMS (ESI-TOF) Calcd for C₂₁H₂₂Cl₂NO4S⁺ ([M+H]⁺) 454.0641. Found 454.0642.

(*E*)-2-Acetyl-2-chloro-*N*-(*o*-tolyl)-6-tosylhex-4-enamide (**3d2**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 6:1, v/v) in 44% yield (95.2 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil, *R_f* (petroleum ether/ethyl acetate = 2.5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 8.3 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 7.8 Hz, 2H), 7.18 – 7.11 (m, 1H), 5.77 – 5.47 (m, 2H), 3.82 – 3.68 (m, 2H), 3.11 (d, *J* = 6.3 Hz, 1H), 2.97 – 2.83 (m, 1H), 2.41 (s, 3H), 2.35 (s, 3H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.33, 164.27, 144.85, 135.55, 134.31, 133.03, 130.80, 129.79, 129.65, 128.39, 126.95, 126.36, 122.61, 122.57, 75.96, 59.91, 39.60, 25.06, 21.62, 17.64. HRMS (ESI-TOF) Calcd for C₂₂H₂₅ClNO4S⁺ ([M+H]⁺) 434.1187. Found 434.1187.

(*E*)-2-Acetyl-2-chloro-*N*-(2-methoxyphenyl)-6-tosylhex-4-enamide (**3d3**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 6:1, v/v) in 41% yield (91.1 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil, *R_f* (petroleum ether/ethyl acetate = 2.5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 9.13 (s, 1H), 8.25 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.71 – 7.58 (m, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.18 – 7.10 (m, 1H), 6.98 (td, *J* = 7.8, 1.2 Hz, 1H), 6.93 (dd, *J* = 8.2, 1.2 Hz, 1H), 5.66 – 5.51 (m, 2H), 3.94 (s, 3H), 3.76 – 3.68 (m, 2H), 3.05 (dd, *J* = 14.8, 5.9 Hz, 1H), 2.89 (dd, *J* = 14.8, 6.2 Hz, 1H), 2.41 (s, 3H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.57, 163.90, 148.66, 144.73, 135.43, 133.01, 129.72, 128.41, 126.13, 125.37, 122.41, 121.03, 119.74, 110.27, 75.81, 59.89, 55.99, 39.68, 25.05, 21.62. HRMS (ESI-TOF) Calcd for C₂₂H₂₅ClNO₅S⁺ ([M+H]⁺) 450.1136. Found 450.1137.

(*E*)-2-Acetyl-2-chloro-*N*-(2,4-dimethylphenyl)-6-tosylhex-4-enamide (**3e**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 6:1, v/v) in 39% yield (88.1 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil, *R_f* (petroleum ether/ethyl acetate = 2.5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.58 (d, *J* = 8.7 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.04 (s, 2H), 5.62 (dt, *J* = 13.4, 6.8 Hz, 2H), 3.75 (dd, *J* = 6.8, 2.8 Hz, 2H), 3.08 (dd, *J* = 14.8, 6.3 Hz, 1H), 2.94 – 2.81 (m, 1H), 2.41 (s, 3H), 2.34 (s, 3H), 2.31 (s, 3H), 2.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.35, 164.24, 144.83, 136.26, 135.54, 133.08, 131.64, 131.44, 129.78, 128.41, 127.45, 122.78, 122.56, 75.91, 59.94, 39.58, 25.03, 21.62, 20.93, 17.59. HRMS (ESI-TOF) Calcd for C₂₃H₂₇ClNO₄S⁺ ([M+H]⁺) 448.1344. Found 448.1346.

(*E*)-2-Acetyl-2-chloro-*N*-(*m*-tolyl)-6-tosylhex-4-enamide (**3f1**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 7:1, v/v) in 45% yield (97.6 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil, *R_f* (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 8.3 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 7.8 Hz, 2H), 7.18 – 7.11 (m, 1H), 5.73 – 5.50 (m, 2H), 3.80 – 3.69 (m, 2H), 3.17 – 3.00 (m, 1H), 2.94 – 2.84 (m, 1H), 2.41 (s, 3H), 2.35 (s, 3H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.33, 164.27, 144.85, 135.55, 134.31, 133.03, 130.80, 129.79, 129.65, 128.39, 126.95, 126.36, 122.61, 122.57, 75.96, 59.91, 39.60, 25.06, 21.62, 17.64. HRMS (ESI-TOF) Calcd for C₂₂H₂₅ClNO₄S⁺ ([M+H]⁺) 434.1187. Found 434.1190.

(*E*)-2-Acetyl-2-chloro-*N*-(3-chlorophenyl)-6-tosylhex-4-enamide (**3f2**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 6:1, v/v) in 34% yield (77.3 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil, R_f (petroleum ether/ethyl acetate = 2.5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 7.78 (t, J = 2.0 Hz, 1H), 7.71 (d, J = 8.3 Hz, 2H), 7.46 (ddd, J = 8.2, 2.0, 0.9

Hz, 1H), 7.36 – 7.28 (m, 3H), 7.18 (ddd, J = 8.0, 2.0, 1.0 Hz, 1H), 5.65 (dtd, J = 22.9, 15.3, 7.9 Hz, 2H), 3.74 (ddd, J = 21.6, 13.7, 7.2 Hz, 2H), 3.09 (dd, J = 14.7, 6.4 Hz, 1H), 2.84 (dd, J = 14.7, 7.9 Hz, 1H), 2.45 (s, 3H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.18, 164.74, 144.96, 137.53, 135.81, 134.84, 133.33, 130.16, 129.88, 128.24, 125.67, 122.57, 120.38, 118.35, 75.29, 59.95, 39.34, 25.21, 21.66. HRMS (ESI-TOF) Calcd for C₂₁H₂₂Cl₂NO4S⁺ ([M+H]⁺) 454.0641. Found 454.0645.

(*E*)-2-Acetyl-2-chloro-*N*-(4-chloro-2,5-dimethoxyphenyl)-6-tosylhex-4-enamide (**3g**), Isolated by flash column chromatography (petroleum ether/ethyl acetate = 5:1, v/v) in 32% yield (82.7 mg), *E/Z* > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow solid, m.p. = 132.6-133.6 °C, *R_f* (petroleum ether/ethyl acetate = 2:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 9.14 (s, 1H), 8.11 (s, 1H), 7.68 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 6.95 (s, 1H), 5.60 (qd, *J* = 15.4, 8.8 Hz, 2H), 3.90 (s, 3H), 3.88 (s, 3H), 3.73 (d, *J* = 6.3 Hz, 2H), 3.05 (dd, *J* = 14.7, 6.3 Hz, 1H), 2.96 – 2.85 (m, 1H), 2.43 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.51, 164.03, 149.11, 144.79, 142.64, 135.59, 132.87, 129.75, 128.36, 125.35, 122.52, 117.60, 112.62, 104.76, 75.92, 59.84, 56.76, 56.69, 39.79, 25.19, 21.63. HRMS (ESI-TOF) Calcd for C₂₃H₂₆Cl₂NO₆S⁺ ([M+H]⁺) 514.0852. Found 514.0854.

(*E*)-2-Benzoyl-2-chloro-*N*-isopropyl-6-tosylhex-4-enamide (**3h**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 6:1, v/v) in 36% yield (81.0 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil, R_f (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.3 Hz, 2H), 7.76 (d, J = 8.3 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.8 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 6.73 (d, J = 8.0 Hz, 1H), 5.69 (dt, J = 14.8, 7.4 Hz, 1H), 5.62 – 5.49 (m, 1H), 4.07 (tt, J = 13.3, 6.6 Hz, 1H), 3.77 (ddd, J = 21.9, 13.9, 7.3 Hz, 2H), 3.11 (dd, J = 14.6, 6.7 Hz, 1H), 2.95 (dd, J = 14.7, 7.9 Hz, 1H), 2.45 (s, 3H), 1.23 (dd, J = 7.7, 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 189.69, 166.06, 144.89, 135.72, 133.65, 133.56, 133.33, 129.86, 129.38, 128.41, 128.31, 122.16, 72.01, 60.11, 42.57,

41.03, 22.35, 22.08, 21.68. HRMS (ESI-TOF) Calcd for $C_{23}H_{27}CINO_4S^+$ ([M+H]⁺) 448.1344. Found 448.1345.

(*E*)-2-Chloro-2-isobutyryl-*N*-phenyl-6-(phenylsulfonyl)hex-4-enamide (**3i1**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 7:1, v/v) in 34% yield (73.8 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil, *R_f* (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.82 (d, J = 7.2 Hz, 2H), 7.62 (t, J = 7.5 Hz, 1H), 7.58 (d, J = 7.6 Hz, 2H), 7.51 (t, J = 7.7 Hz, 2H), 7.38 (t, J = 7.9 Hz, 2H), 7.20 (t, J = 7.4 Hz, 1H), 5.62 (dtd, J = 22.4, 15.1, 7.1 Hz, 2H), 3.76 (qd, J = 13.9, 7.2 Hz, 2H), 3.10 (dd, J = 14.7, 6.5 Hz, 1H), 3.02 (dt, J = 13.4, 6.7 Hz, 1H), 2.83 (dd, J = 14.8, 7.7 Hz, 1H), 1.22 (d, J = 6.7 Hz, 3H), 1.15 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.65, 164.23, 138.62, 136.41, 133.80, 133.65, 129.20, 129.18, 128.32, 125.62, 122.15, 120.29, 75.90, 59.88, 39.49, 37.53, 21.46, 20.70, HRMS (ESI-TOF) Calcd for C₂₃H₂₅ClNO4S⁺ ([M+H]⁺) 434.1187. Found 434.1190.

(*E*)-2-Chloro-2-isobutyryl-6-((4-methoxyphenyl)sulfonyl)-*N*-phenylhex-4-enamide (**3i2**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 5:1, v/v) in 33% yield (76.6 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil, R_f (petroleum ether/ethyl acetate = 2:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 9.14 (s, 1H), 8.11 (s, 1H), 7.68 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 6.95 (s, 1H), 5.60 (qd, J = 15.4, 8.8 Hz, 2H), 3.90 (s, 3H), 3.88 (s, 3H), 3.73 (d, J = 6.3 Hz, 2H), 3.05 (dd, J = 14.7, 6.3 Hz, 1H), 2.91 (dd, J = 14.7, 6.4 Hz, 1H), 2.44 (d, J = 9.7 Hz, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.51, 164.03, 149.11, 144.79, 142.64, 135.59, 132.87, 129.75, 128.36, 125.35, 122.52, 117.60, 112.62, 104.76, 75.92, 59.84, 56.76, 56.69, 39.79, 25.19, 21.63. HRMS (ESI-TOF) Calcd for C₂₃H₂₇CINO₅S⁺ ([M+H]⁺) 464.1293. Found 464.1296.

(*E*)-2-Acetyl-2-chloro-6-((4-fluorophenyl)sulfonyl)-*N*-phenylhex-4-enamide (**3j1**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 4:1, v/v) in 31% yield (66.4 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil, R_f (petroleum ether/ethyl acetate = 2:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 7.86 – 7.76 (m, 2H), 7.64 – 7.53 (m, 2H), 7.43 – 7.33 (m, 2H), 7.24 – 7.12 (m, 3H), 5.78 – 5.64 (m, 1H), 5.64 – 5.49 (m, 1H), 3.86 – 3.65 (m, 2H), 3.10 (dd, J = 14.8, 6.6 Hz, 1H), 2.87 (dd, J = 14.8, 7.7 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.26, 165.83 (d, J = 257.7 Hz), 164.33, 136.33, 134.59 (d, J = 3.2 Hz), 133.81, 131.24 (d, J = 9.7 Hz), 129.24, 125.75, 122.07, 120.24, 116.55 (d, J = 22.7 Hz), 75.40, 59.97, 39.46, 25.11. ¹⁹F NMR (376 MHz, CDCl₃) δ -103.03. HRMS (ESI-TOF) Calcd for C₂₀H₂₀ClFNO4S⁺ ([M+H]⁺) 424.0780. Found 424.0782.

(*E*)-2-Acetyl-6-((4-bromophenyl)sulfonyl)-2-chloro-*N*-phenylhex-4-enamide (**3j2**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 6:1, v/v) in 41% yield (98.5 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil, R_f (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 7.65 (t, J = 1.9 Hz, 4H), 7.61 – 7.54 (m, 2H), 7.43 – 7.34 (m, 2H), 7.24 – 7.16 (m, 1H), 5.70 (ddd, J = 14.7, 7.7, 6.9 Hz, 1H), 5.63 – 5.42 (m, 1H), 3.76 (qd, J = 14.0, 7.3 Hz, 2H), 3.10 (dd, J = 14.8, 6.7 Hz, 1H), 2.86 (dd, J = 14.8, 7.8 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.24, 164.32, 137.54, 136.32, 133.96, 132.55, 129.90, 129.25, 125.76, 121.92, 120.25, 75.40, 59.85, 39.47, 25.11. HRMS (ESI-TOF) Calcd for C₂₀H₂₀BrClNO4S⁺ ([M+H]⁺) 483.9979. Found 483.9978.

(E)-2-Acetyl-2-chloro-N-phenyl-6-((4-(trifluoromethyl)phenyl)sulfonyl)hex-4-

enamide (**3j3**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 4:1, v/v) in 33% yield (77.4 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil, R_f (petroleum ether/ethyl acetate = 2:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 7.95 (d, J = 8.1 Hz, 2H), 7.78 (d, J = 8.2 Hz, 2H), 7.62 – 7.55 (m, 2H), 7.42 – 7.35 (m, 2H), 7.24 – 7.18 (m, 1H), 5.73 (ddd, J = 14.7, 7.6, 6.9 Hz, 1H), 5.58 (dt, J = 15.2, 7.0 Hz, 1H), 3.89 – 3.68 (m, 2H), 3.10 (dd, J = 14.7, 6.8 Hz, 1H), 2.88 (dd, J = 14.8, 7.7 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.20, 164.27, 142.05, 136.31, 135.54 (q, J = 33.2 Hz), 134.37, 129.25, 129.02, 126.38 (q, J = 3.6 Hz), 125.78, 123.08 (q, J = 274.3 Hz), 121.51, 120.23, 75.37, 59.72, 39.47, 25.08. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.16. HRMS (ESI-TOF) Calcd for C₂₁H₂₀ClF₃NO₄S⁺ ([M+H]⁺) 474.0748. Found 474.0747.

Ethyl (*E*)-4-((5-chloro-6-oxo-5-(phenylcarbamoyl)hept-2-en-1-yl)sulfonyl)benzoate (**3j4**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 6:1, v/v) in 45% yield (108.3 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil, *R_f* (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 8.18 (d, *J* = 8.6 Hz, 2H), 7.89 (d, *J* = 8.6 Hz, 2H), 7.58 (dd, *J* = 8.6, 1.0 Hz, 2H), 7.38 (t, *J* = 8.0 Hz, 2H), 7.24 – 7.18 (m, 1H), 5.70 (ddd, *J* = 14.7, 7.7, 6.9 Hz, 1H), 5.64 – 5.49 (m, 1H), 4.43 (q, *J* = 7.1 Hz, 2H), 3.79 (qd, *J* = 14.0, 7.3 Hz, 2H), 3.09 (dd, *J* = 14.8, 6.6 Hz, 1H), 2.85 (dd, *J* = 14.7, 7.8 Hz, 1H), 2.34 (s, 3H), 1.43 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.25, 164.96, 164.33, 142.21, 136.31, 135.34, 134.05, 130.29, 129.22, 128.42, 125.74, 121.80, 120.29, 75.35, 61.89, 59.74, 39.47, 25.10, 14.27. HRMS (ESI-TOF) Calcd for C₂₃H₂₅ClNO₆S⁺ ([M+H]⁺) 478.1086. Found 478.1089.

(E)-2-Acetyl-2-chloro-6-((4-cyanophenyl)sulfonyl)-N-phenylhex-4-enamide(3j5).Isolated by flash column chromatography (petroleum ether/ethyl acetate = 6:1, v/v) in

52% yield (112.9 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Brown oil, R_f (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 7.95 – 7.85 (m, 2H), 7.81 – 7.73 (m, 2H), 7.62 – 7.53 (m, 2H), 7.44 – 7.35 (m, 2H), 7.25 – 7.18 (m, 1H), 5.72 (dd, J = 15.0, 7.6 Hz, 1H), 5.63 – 5.47 (m, 1H), 3.87 – 3.71 (m, 2H), 3.10 (dd, J = 14.8, 7.0 Hz, 1H), 2.88 (dd, J = 14.8, 7.5 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.13, 164.19, 142.58, 136.28, 134.60, 132.96, 129.31, 129.12, 125.86, 121.24, 120.23, 117.67, 117.06, 75.33, 59.64, 39.49, 25.06. HRMS (ESI-TOF) Calcd for C₂₁H₂₀ClN₂O4S⁺ ([M+H]⁺) 431.0827. Found 431.0827.

(*E*)-2-Acetyl-2-chloro-6-((2-fluorophenyl)sulfonyl)-*N*-phenylhex-4-enamide (**3k**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 4:1, v/v) in 46% yield (97.3 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil, R_f (petroleum ether/ethyl acetate = 2:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.83 – 7.76 (m, 1H), 7.65 – 7.60 (m, 1H), 7.58 (dt, J = 8.8, 1.7 Hz, 2H), 7.39 (dd, J = 11.3, 4.6 Hz, 2H), 7.30 – 7.25 (m, 1H), 7.20 (dt, J = 9.4, 4.1 Hz, 2H), 5.75 (ddd, J = 14.8, 7.8, 6.9 Hz, 1H), 5.60 (dt, J = 14.9, 7.4 Hz, 1H), 3.99 (qd, J = 13.9, 7.4 Hz, 2H), 3.05 (dd, J = 14.7, 6.7 Hz, 1H), 2.82 (dd, J = 14.7, 7.9 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.29, 164.36, 159.43 (d, J = 256.4 Hz), 136.34 (d, J = 8.4 Hz), 136.33, 133.90, 130.88, 129.22, 126.38 (d, J = 14.8 Hz), 125.73, 124.80 (d, J = 3.7 Hz), 121.77, 120.36, 117.10 (d, J = 15.4 Hz), 75.27, 59.15, 59.13, 39.38, 25.11. HRMS (ESI-TOF) Calcd for C₂₀H₂₀CIFNO4S⁺ ([M+H]⁺) 424.0780. Found 424.0781.

(*E*)-2-Chloro-2-isobutyryl-*N*-phenyl-6-(*m*-tolylsulfonyl)hex-4-enamide (**311**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 6:1, v/v) in 60% yield (134.5 mg), E/Z = 16:1, which was detected by ¹H NMR spectroscopy. Pale yellow solid, m.p. = 114.5-115.4 °C, *R_f* (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.67 – 7.53 (m, 4H), 7.44 – 7.34 (m, 4H), 7.24 – 7.15

(m, 1H), 5.74 - 5.62 (m, 1H), 5.62 - 5.51 (m, 1H), 3.75 (qd, J = 13.9, 7.2 Hz, 2H), 3.11 (dd, J = 14.7, 6.4 Hz, 1H), 3.02 (dt, J = 13.3, 6.7 Hz, 1H), 2.83 (dd, J = 14.7, 7.9 Hz, 1H), 2.41 (s, 3H), 1.22 (d, J = 6.7 Hz, 3H), 1.16 (d, J = 6.7 Hz, 3H). 13 C NMR (101 MHz, CDCl₃) δ 203.71, 164.29, 139.54, 138.51, 136.41, 134.61, 133.55, 129.19, 129.04, 128.58, 125.62, 125.47, 122.24, 120.37, 75.90, 59.89, 39.49, 37.58, 21.50, 21.33, 20.72. HRMS (ESI-TOF) Calcd for C₂₃H₂₇ClNO4S⁺ ([M+H]⁺) 448.1344. Found 448.1344.

(*E*)-2-Chloro-6-((3-chlorophenyl)sulfonyl)-2-isobutyryl-*N*-phenylhex-4-enamide (**312**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 6:1, v/v) in 43% yield (101.7 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil, R_f (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.85 (t, J = 1.8 Hz, 1H), 7.72 – 7.66 (m, 1H), 7.62 – 7.53 (m, 3H), 7.45 (t, J = 7.9 Hz, 1H), 7.39 (dd, J = 10.7, 5.2 Hz, 2H), 7.21 (dd, J = 11.7, 4.2 Hz, 1H), 5.75 – 5.63 (m, 1H), 5.58 (dt, J = 15.2, 6.9 Hz, 1H), 3.78 (qd, J = 14.0, 7.2 Hz, 2H), 3.13 (dd, J = 14.8, 6.4 Hz, 1H), 3.03 (dt, J = 13.3, 6.7 Hz, 1H), 2.85 (dd, J = 14.7, 7.8 Hz, 1H), 1.22 (d, J = 6.7 Hz, 3H), 1.15 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.58, 164.13, 140.23, 136.34, 135.46, 134.18, 133.98, 130.50, 129.22, 128.48, 126.51, 125.67, 121.67, 120.26, 75.83, 59.83, 39.54, 37.48, 21.42, 20.70. HRMS (ESI-TOF) Calcd for C₂₂H₂₄Cl₂NO4S⁺ ([M+H]⁺) 468.0798. Found 468.0799.

(*E*)-2-Chloro-6-((3,4-dimethylphenyl)sulfonyl)-2-isobutyryl-*N*-phenylhex-4-enamide (**3m**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 6:1, v/v) in 38% yield (88.7 mg), *E/Z* > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow solid, m.p. = 129.1-130.5 °C, *R_f* (petroleum ether/ethyl acetate = 2.5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 7.58 (ddd, *J* = 4.2, 3.3, 1.7 Hz, 3H), 7.53 (dd, *J* = 7.9, 1.9 Hz, 1H), 7.41 – 7.33 (m, 2H), 7.25 (d, *J* = 8.2 Hz, 1H), 7.22 – 7.16 (m, 1H), 5.74 – 5.62 (m, 1H), 5.61 – 5.48 (m, 1H), 3.73 (qd, *J* = 13.8, 7.2 Hz, 2H), 3.10 (dd, *J* = 14.7, 6.4 Hz, 1H), 3.03 (dt, *J* = 13.4, 6.7 Hz, 1H), 2.82 (dd, *J* = 14.7, 7.9 Hz, 1H), 2.32 (s, 3H), 2.30 (s, 3H), 1.22 (d, J = 6.7 Hz, 3H), 1.16 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.75, 164.36, 143.55, 138.06, 136.44, 135.91, 133.34, 130.28, 129.18, 128.99, 125.87, 125.61, 122.47, 120.42, 75.93, 59.99, 39.49, 37.59, 21.49, 20.71, 20.04, 19.80. HRMS (ESI-TOF) Calcd for C₂₄H₂₉ClNO4S⁺ ([M+H]⁺) 462.1500. Found 462.1502.

(*E*)-2-Chloro-2-isobutyryl-6-(naphthalen-1-ylsulfonyl)-*N*-phenylhex-4-enamide (**3n**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 6:1, v/v) in 34% yield (82.1 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Brown oil, R_f (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, J = 8.5 Hz, 1H), 8.41 (s, 1H), 8.18 (dd, J = 7.3, 1.2 Hz, 1H), 8.10 (d, J = 8.2 Hz, 1H), 7.97 – 7.91 (m, 1H), 7.67 – 7.52 (m, 5H), 7.38 (dd, J = 10.7, 5.1 Hz, 2H), 7.20 (dd, J = 10.6, 4.2 Hz, 1H), 5.62 – 5.46 (m, 2H), 4.05 – 3.88 (m, 2H), 3.08 – 2.93 (m, 2H), 2.79 – 2.69 (m, 1H), 1.19 (d, J = 6.7 Hz, 3H), 1.13 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.65, 164.26, 136.38, 135.31, 134.14, 133.63, 133.45, 131.21, 129.30, 129.18, 128.85, 128.77, 127.04, 125.59, 124.37, 123.99, 122.14, 120.36, 75.72, 59.48, 39.40, 37.54, 21.44, 20.67. HRMS (ESI-TOF) Calcd for C₂₆H₂₇ClNO4S⁺ ([M+H]⁺) 484.1344. Found 484.1347.

(*E*)-2-Chloro-2-isobutyryl-*N*-phenyl-6-(thiophen-2-ylsulfonyl)hex-4-enamide (**30**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 6:1, v/v) in 29% yield (63.6 mg), E/Z = 17:1, which was detected by ¹H NMR spectroscopy. Yellow oil, *R_f* (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 7.66 (dd, *J* = 5.0, 1.3 Hz, 1H), 7.59 (ddd, *J* = 9.6, 6.1, 1.0 Hz, 3H), 7.42 – 7.34 (m, 2H), 7.23 – 7.17 (m, 1H), 7.10 (dd, *J* = 5.0, 3.8 Hz, 1H), 5.68 (tdd, *J* = 22.2, 15.3, 6.8 Hz, 2H), 3.85 (qd, *J* = 13.8, 6.9 Hz, 2H), 3.14 (dd, *J* = 14.6, 6.4 Hz, 1H), 3.03 (dt, *J* = 13.3, 6.7 Hz, 1H), 2.86 (dd, *J* = 14.6, 7.4 Hz, 1H), 1.22 (d, *J* = 6.7 Hz, 3H), 1.16 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.67, 164.21, 139.41, 136.42,

134.55, 134.23, 133.99, 129.22, 127.87, 125.64, 122.14, 120.31, 75.84, 61.13, 39.54, 37.53, 21.46, 20.71. HRMS (ESI-TOF) Calcd for $C_{20}H_{23}CINO_4S_2^+$ ([M+H]⁺) 440.0752. Found 440.0749.

(*E*)-2-Acetyl-2-chloro-6-(ethylsulfonyl)-*N*-phenylhex-4-enamide (**3p**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 5:1, v/v) in 38% yield (67.0 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil, *R_f* (petroleum ether/ethyl acetate = 2:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 7.63 – 7.55 (m, 2H), 7.38 (dd, *J* = 10.8, 5.1 Hz, 2H), 7.20 (t, *J* = 7.4 Hz, 1H), 5.89 (dt, *J* = 14.7, 7.3 Hz, 1H), 5.80 – 5.66 (m, 1H), 3.71 – 3.56 (m, 2H), 3.17 (dd, *J* = 14.6, 7.0 Hz, 1H), 2.93 (dd, *J* = 14.5, 7.4 Hz, 1H), 2.89 – 2.78 (m, 2H), 2.36 (s, 3H), 1.25 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.40, 164.44, 136.37, 133.46, 129.22, 125.72, 122.42, 120.24, 75.34, 55.65, 45.85, 39.65, 25.17, 6.26. HRMS (ESI-TOF) Calcd for C₁₆H₂₁ClNO4S⁺ ([M+H]⁺) 358.0874. Found 358.0874.

(*E*)-2-Acetyl-*N*-phenyl-6-tosylhex-4-enamide (**4a**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 6:1, v/v) in 83% yield (160.3 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil, R_f (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.69 (d, J = 8.2 Hz, 2H), 7.53 (d, J = 7.7 Hz, 2H), 7.31 (t, J = 8.5 Hz, 4H), 7.12 (t, J = 7.4 Hz, 1H), 5.72 – 5.59 (m, 1H), 5.59 – 5.44 (m, 1H), 3.72 (d, J = 7.2 Hz, 2H), 3.50 (t, J = 7.3 Hz, 1H), 2.67 (t, J = 7.0 Hz, 2H), 2.42 (s, 3H), 2.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 205.90, 165.90, 144.93, 137.45, 136.59, 135.57, 129.86, 129.03, 128.29, 124.77, 120.05, 119.52, 61.07, 59.86, 32.88, 29.53, 21.64. HRMS (ESI-TOF) Calcd for C₂₁H₂₄NO₄S⁺ ([M+H]⁺) 386.1421. Found 386.1422.

Methyl (*E*)-2-(phenylcarbamoyl)-6-tosylhex-4-enoate (**4a1**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 67% yield (134.6 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Colourless oil, R_f (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 7.73 – 7.63 (m, 2H), 7.54 (dd, J = 8.5, 0.9 Hz, 2H), 7.31 (dd, J = 11.1, 4.9 Hz, 4H), 7.11 (t, J = 7.4 Hz, 1H), 5.57 (tdd, J = 22.5, 15.3, 7.0 Hz, 2H), 3.75 (s, 3H), 3.71 (d, J = 7.0 Hz, 2H), 3.42 (t, J = 7.2 Hz, 1H), 2.71 (t, J = 7.0 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.14, 165.44, 144.88, 137.52, 136.51, 135.48, 129.81, 129.00, 128.34, 124.67, 120.04, 119.53, 59.87, 52.88, 52.78, 32.91, 21.64. HRMS (ESI-TOF) Calcd for C₂₁H₂₄NO₅S⁺ ([M+H]⁺) 402.1370. Found 402.1370.

(*E*)-2-Isobutyryl-*N*-phenyl-6-tosylhex-4-enamide (**4a2**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 3:1, v/v) in 72% yield (148.4 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil, R_f (petroleum ether/ethyl acetate = 1.5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (s, 1H), 7.70 (d, J = 8.3 Hz, 2H), 7.56 – 7.45 (m, 2H), 7.37 – 7.27 (m, 4H), 7.12 (t, J = 7.4 Hz, 1H), 5.69 – 5.41 (m, 2H), 3.71 (dd, J = 7.2, 2.5 Hz, 3H), 2.76 (dt, J = 13.8, 6.9 Hz, 1H), 2.71 – 2.57 (m, 2H), 2.43 (s, 3H), 1.13 (d, J = 6.9 Hz, 3H), 1.10 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 212.97, 165.77, 144.86, 137.37, 136.20, 135.65, 129.82, 129.03, 128.33, 124.70, 119.97, 119.80, 59.83, 58.73, 41.72, 34.53, 21.65, 17.92, 17.63. HRMS (ESI-TOF) Calcd for C₂₃H₂₈NO4S⁺ ([M+H]⁺) 414.1734. Found 414.1735.

(*E*)-2-Benzoyl-*N*-phenyl-6-tosylhex-4-enamide (**4a3**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 6:1, v/v) in 76% yield (169.2 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow solid, m.p. = 123.0-123.9 °C *R_f* (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 8.01 (d, *J* = 7.5 Hz, 2H), 7.63 (dd, *J* = 18.5, 7.8 Hz, 3H), 7.49 (t, *J* = 8.0 Hz, 4H), 7.35 – 7.20 (m, 4H), 7.10 (t, *J* = 7.4 Hz, 1H), 5.57 (tdd, *J* = 22.6, 15.2,

7.0 Hz, 2H), 4.44 (t, J = 7.2 Hz, 1H), 3.68 (d, J = 7.1 Hz, 2H), 2.93 – 2.67 (m, 2H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.04, 166.07, 144.80, 137.44, 136.25, 135.93, 135.46, 134.31, 129.76, 129.05, 128.99, 128.73, 128.34, 124.69, 120.08, 119.87, 59.83, 55.74, 34.60, 21.63. HRMS (ESI-TOF) Calcd for C₂₆H₂₆NO₄S⁺ ([M+H]⁺) 448.1577. Found 448.1577.

(*E*)- N^1 , N^3 -Diphenyl-2-(4-tosylbut-2-en-1-yl)malonamide (**4a4**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 4:1, v/v) in 84% yield (169.2 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. White solid, m.p. = 164.7-165.6 °C. *R_f* (petroleum ether/ethyl acetate = 2:1, v/v) 0.33. ¹H NMR (400 MHz, DMSO) δ 9.96 (s, 2H), 7.62 (dd, *J* = 19.0, 8.1 Hz, 6H), 7.31 (dd, *J* = 13.0, 5.0 Hz, 6H), 7.06 (t, *J* = 7.3 Hz, 2H), 5.70 – 5.37 (m, 2H), 3.98 (d, *J* = 7.0 Hz, 2H), 3.52 (t, *J* = 7.3 Hz, 1H), 2.60 (t, *J* = 6.7 Hz, 2H), 2.27 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 167.27, 144.53, 139.40, 137.46, 136.09, 129.99, 129.23, 128.47, 123.94, 119.72, 119.49, 58.87, 54.69, 32.30, 21.43. HRMS (ESI-TOF) Calcd for C₂₆H₂₇N₂O4S⁺ ([M+H]⁺) 463.1686. Found 463.1689.

(*E*)-2-Cyano-*N*-phenyl-6-tosylhex-4-enamide (**4a5**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 63% yield (116.9 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. White solid, m.p. = 164.5-165.4 °C. *R_f* (petroleum ether/ethyl acetate = 1.5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.75 (d, *J* = 8.3 Hz, 2H), 7.53 (d, *J* = 7.7 Hz, 2H), 7.35 (dd, *J* = 17.7, 7.8 Hz, 4H), 7.19 (t, *J* = 7.4 Hz, 1H), 5.71 (t, *J* = 4.3 Hz, 2H), 3.79 (d, *J* = 5.8 Hz, 2H), 3.59 (t, *J* = 6.5 Hz, 1H), 2.78 (t, *J* = 6.0 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.47, 145.06, 136.50, 135.39, 134.02, 129.90, 129.19, 128.41, 125.62, 122.13, 120.45, 117.27, 59.79, 39.06, 32.74, 21.66. HRMS (ESI-TOF) Calcd for C₂₀H₂₁N₂O₃S⁺ ([M+H]⁺) 369.1267. Found 369.1268.

(*E*)-*N*-(4-Chlorophenyl)-2-(thiophene-2-carbonyl)-6-tosylhex-4-enamide (4b). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 4:1, v/v) in 92% yield (224.8 mg), *E/Z* > 20:1, which was detected by ¹H NMR spectroscopy. Yellow solid, m.p. = 145.3-146.2 °C. *R_f* (petroleum ether/ethyl acetate = 2:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.70 (s, 1H), 7.86 (dd, *J* = 3.9, 0.9 Hz, 1H), 7.77 (dd, *J* = 4.9, 0.9 Hz, 1H), 7.67 (d, *J* = 8.3 Hz, 2H), 7.52 – 7.45 (m, 2H), 7.31 – 7.24 (m, 4H), 7.18 (dd, *J* = 4.8, 4.0 Hz, 1H), 5.71 – 5.58 (m, 1H), 5.58 – 5.41 (m, 1H), 4.26 (t, *J* = 7.2 Hz, 1H), 3.68 (d, *J* = 7.1 Hz, 2H), 2.81 (dtd, *J* = 21.3, 14.3, 7.1 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.73, 165.87, 144.86, 142.96, 136.48, 136.02, 135.81, 135.55, 134.14, 129.80, 129.63, 128.98, 128.92, 128.32, 121.34, 120.12, 59.78, 56.56, 35.27, 21.66. HRMS (ESI-TOF) Calcd for C₂₄H₂₃ClNO₄S₂⁺ ([M+H]⁺) 488.0752. Found 488.0756.

(*E*)-2-Acetyl-*N*-(2-chlorophenyl)-6-tosylhex-4-enamide (**4c1**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 62% yield (129.8 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil. *R_f* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.24 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.69 (t, *J* = 8.4 Hz, 2H), 7.38 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.29 – 7.25 (m, 1H), 7.07 (td, *J* = 7.9, 1.5 Hz, 1H), 5.66 – 5.46 (m, 2H), 3.72 (d, *J* = 6.2 Hz, 2H), 3.56 (t, *J* = 7.2 Hz, 1H), 2.71 (dd, *J* = 9.4, 4.0 Hz, 2H), 2.43 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.07, 165.67, 144.84, 135.66, 135.52, 134.07, 129.79, 129.22, 128.34, 127.66, 125.32, 123.61, 121.97, 120.18, 60.86, 59.80, 33.46, 30.06, 21.63. HRMS (ESI-TOF) Calcd for C₂₁H₂₃CINO₄S⁺ ([M+H]⁺) 420.1031. Found 420.1032.

(*E*)-2-Acetyl-*N*-(2-methoxyphenyl)-6-tosylhex-4-enamide (**4c2**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 3:1, v/v) in 68% yield (141.5 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil. *R_f* (petroleum ether/ethyl acetate = 1.5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 8.27 (dd, J = 8.0, 1.5 Hz, 1H), 7.68 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.07 (td, J = 7.9, 1.6 Hz, 1H), 6.95 (td, J = 7.8, 1.2 Hz, 1H), 6.89 (dd, J = 8.1, 1.1 Hz, 1H), 5.63 – 5.43 (m, 2H), 3.90 (s, 3H), 3.71 (d, J = 6.2 Hz, 2H), 3.48 (t, J = 7.3 Hz, 1H), 2.73 – 2.63 (m, 2H), 2.41 (s, 3H), 2.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 205.24, 165.31, 148.21, 144.79, 136.23, 135.48, 129.77, 128.36, 127.04, 124.45, 120.98, 119.93, 119.73, 110.10, 61.72, 59.86, 55.84, 32.72, 29.33, 21.61. HRMS (ESI-TOF) Calcd for C₂₂H₂₆NO₅S⁺ ([M+H]⁺) 416.1526. Found 416.1529.

(*E*)-2-Acetyl-*N*-(o-tolyl)-6-tosylhex-4-enamide (**4c3**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 3:1, v/v) in 71% yield (141.2 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. White solid, m.p. = 119.1-120.1 °C. *R_f* (petroleum ether/ethyl acetate = 1.5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.24 – 7.15 (m, 2H), 7.09 (dd, *J* = 10.7, 4.1 Hz, 1H), 5.58 (tdd, *J* = 22.5, 15.3, 6.9 Hz, 2H), 3.72 (d, *J* = 6.9 Hz, 2H), 3.56 (t, *J* = 7.2 Hz, 1H), 2.77 – 2.63 (m, 2H), 2.43 (s, 3H), 2.29 (s, 3H), 2.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 207.33, 165.62, 144.87, 136.00, 135.58, 135.23, 130.58, 129.83, 129.09, 128.33, 126.75, 125.45, 122.63, 119.94, 60.49, 59.82, 33.81, 30.18, 21.64, 17.75. HRMS (ESI-TOF) Calcd for C₂₂H₂₆NO₄S⁺ ([M+H]⁺) 400.1577. Found 400.1577.

(*E*)-2-Acetyl-*N*-(3-chlorophenyl)-6-tosylhex-4-enamide (**4d1**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 80% yield (167.2 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil. *R_f* (petroleum ether/ethyl acetate = 1:1.5, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.77 – 7.57 (m, 3H), 7.37 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.24

(t, J = 8.1 Hz, 1H), 7.15 – 7.05 (m, 1H), 5.73 – 5.60 (m, 1H), 5.60 – 5.47 (m, 1H), 3.72 (dd, J = 7.1, 2.1 Hz, 2H), 3.50 (t, J = 7.2 Hz, 1H), 2.68 (t, J = 7.0 Hz, 2H), 2.43 (s, 3H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.07, 166.02, 144.99, 138.55, 136.40, 135.65, 134.68, 130.01, 129.90, 128.25, 124.77, 120.13, 119.74, 117.98, 60.87, 59.84, 33.11, 29.77, 21.65. HRMS (ESI-TOF) Calcd for C₂₁H₂₃ClNO₄S⁺ ([M+H]⁺) 420.1031. Found 420.1030.

(*E*)-2-Acetyl-*N*-(*m*-tolyl)-6-tosylhex-4-enamide (**4d2**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 83% yield (165.1 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil. *R_f* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.69 (d, *J* = 8.2 Hz, 2H), 7.38 (s, 1H), 7.31 (d, *J* = 8.0 Hz, 3H), 7.20 (t, *J* = 7.8 Hz, 1H), 6.95 (d, *J* = 7.5 Hz, 1H), 5.71 – 5.59 (m, 1H), 5.58 – 5.44 (m, 1H), 3.72 (d, *J* = 7.0 Hz, 2H), 3.47 (t, *J* = 7.3 Hz, 1H), 2.68 (t, *J* = 7.0 Hz, 2H), 2.43 (s, 3H), 2.34 (s, 3H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.10, 165.66, 144.89, 139.01, 137.27, 136.46, 135.62, 129.84, 128.87, 128.31, 125.60, 120.63, 119.65, 117.08, 61.17, 59.87, 33.03, 29.61, 21.64, 21.47. HRMS (ESI-TOF) Calcd for C₂₂H₂₆NO4S⁺ ([M+H]⁺) 400.1577. Found 400.1575.

(*E*)-2-Acetyl-*N*-(*p*-tolyl)-6-tosylhex-4-enamide (**4e1**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 3:1, v/v) in 76% yield (151.4 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow solid, m.p. = 98.7-99.6 °C. *Rf* (petroleum ether/ethyl acetate = 1.5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 8.2 Hz, 2H), 5.70 – 5.58 (m, 1H), 5.58 – 5.45 (m, 1H), 3.71 (d, *J* = 7.1 Hz, 2H), 3.47 (t, *J* = 7.3 Hz, 1H), 2.67 (t, *J* = 7.0 Hz, 2H), 2.42 (s, 3H), 2.31 (s, 3H), 2.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.03, 165.65, 144.89, 136.56, 135.59, 134.83, 134.48, 129.85, 129.51, 128.31, 120.09, 119.55, 61.08, 59.87, 32.94,

29.56, 21.64, 20.89. HRMS (ESI-TOF) Calcd for $C_{22}H_{26}NO_4S^+$ ([M+H]⁺) 400.1577. Found 400.1577.

(*E*)-2-Acetyl-*N*-(4-methoxyphenyl)-6-tosylhex-4-enamide (**4e2**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 68% yield (141.0 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow solid, m.p. = 112.6-112.9 °C. *R_f* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.69 (d, *J* = 8.2 Hz, 2H), 7.46 – 7.39 (m, 2H), 7.31 (d, *J* = 8.2 Hz, 2H), 6.91 – 6.79 (m, 2H), 5.71 – 5.58 (m, 1H), 5.58 – 5.45 (m, 1H), 3.78 (s, 3H), 3.72 (d, *J* = 7.1 Hz, 2H), 3.47 (t, *J* = 7.3 Hz, 1H), 2.67 (t, *J* = 7.0 Hz, 2H), 2.43 (s, 3H), 2.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 205.98, 165.66, 156.71, 144.91, 136.65, 135.60, 130.51, 129.86, 128.30, 121.86, 119.48, 114.15, 60.95, 59.87, 55.50, 32.89, 29.52, 21.65. HRMS (ESI-TOF) Calcd for C₂₂H₂₆NO₅S⁺ ([M+H]⁺) 416.1526. Found 416.1523.

(*E*)-2-Acetyl-N-(4-ethoxyphenyl)-6-tosylhex-4-enamide (**4e3**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 71% yield (151.5 mg), *E/Z* > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow solid, m.p. = 131.2-132.2 °C. *R_f* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.44 – 7.38 (m, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 6.91 – 6.75 (m, 2H), 5.63 (dd, *J* = 14.7, 7.5 Hz, 1H), 5.53 (dd, *J* = 15.0, 7.6 Hz, 1H), 4.00 (q, *J* = 7.0 Hz, 2H), 3.72 (d, *J* = 7.1 Hz, 2H), 3.46 (t, *J* = 7.3 Hz, 1H), 2.67 (t, *J* = 7.0 Hz, 2H), 2.43 (s, 3H), 2.26 (s, 3H), 1.40 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.03, 165.58, 156.08, 144.90, 136.63, 135.60, 130.36, 129.85, 128.31, 121.81, 119.51, 114.77, 63.72, 60.98, 59.87, 32.92, 29.54, 21.65, 14.82. HRMS (ESI-TOF) Calcd for C₂₃H₂₈NO₅S⁺ ([M+H]⁺) 430.1683. Found 430.1681.

(*E*)-2-Acetyl-*N*-(4-(*tert*-butyl)phenyl)-6-tosylhex-4-enamide (**4e4**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 79% yield (173.3 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil. *R_f* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.48 – 7.41 (m, 2H), 7.37 – 7.28 (m, 4H), 5.62 (dd, *J* = 14.6, 7.6 Hz, 1H), 5.53 (dd, *J* = 14.9, 7.6 Hz, 1H), 3.72 (d, *J* = 7.1 Hz, 2H), 3.48 (t, *J* = 7.3 Hz, 1H), 2.67 (t, *J* = 7.0 Hz, 2H), 2.42 (s, 3H), 2.26 (s, 3H), 1.30 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 205.90, 165.71, 147.83, 144.89, 136.61, 135.58, 134.79, 129.85, 128.31, 125.86, 119.81, 119.53, 61.13, 59.87, 34.42, 32.86, 31.34, 29.48, 21.64. HRMS (ESI-TOF) Calcd for C₂₅H₃₂NO4S⁺ ([M+H]⁺) 422.2047. Found 422.2048.

(*E*)-2-Acetyl-*N*-(4-fluorophenyl)-6-tosylhex-4-enamide (**4e5**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 77% yield (155.4 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil. *R_f* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.56 – 7.44 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.07 – 6.93 (m, 2H), 5.74 – 5.61 (m, 1H), 5.59 – 5.46 (m, 1H), 3.72 (d, *J* = 7.3 Hz, 2H), 3.50 (t, *J* = 7.2 Hz, 1H), 2.68 (t, *J* = 7.0 Hz, 2H), 2.43 (s, 3H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 205.96, 165.97, 159.64 (d, *J* = 245.1 Hz), 144.99, 136.64, 135.63, 133.46 (d, *J* = 2.8 Hz), 129.89, 128.25, 121.89 (d, *J* = 8.0 Hz), 119.50, 115.66 (d, *J* = 22.6 Hz), 60.84, 59.84, 32.94, 29.60, 21.65. ¹⁹F NMR (376 MHz, CDCl₃) δ -117.33. HRMS (ESI-TOF) Calcd for C₂₁H₂₃FNO₄S⁺ ([M+H]⁺) 404.1326. Found 404.1328.

(*E*)-2-Acetyl-*N*-(4-chlorophenyl)-6-tosylhex-4-enamide (**4e6**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 80% yield (168.8

mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow solid, m.p. = 101.4-102.3 °C. R_f (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 7.69 (d, J = 8.3 Hz, 2H), 7.54 – 7.47 (m, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.30 – 7.26 (m, 2H), 5.75 – 5.61 (m, 1H), 5.60 – 5.47 (m, 1H), 3.72 (d, J = 7.0 Hz, 2H), 3.51 (t, J = 7.2 Hz, 1H), 2.68 (t, J = 7.1 Hz, 2H), 2.43 (s, 3H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.04, 165.99, 145.00, 136.54, 136.02, 135.66, 129.90, 129.72, 129.02, 128.24, 121.31, 119.60, 60.87, 59.83, 33.04, 29.71, 21.66. HRMS (ESI-TOF) Calcd for C₂₁H₂₃CINO4S⁺ ([M+H]⁺) 420.1031. Found 420.1033.

(*E*)-2-acetyl-*N*-(4-bromophenyl)-6-tosylhex-4-enamide (**4e7**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 78% yield (181.5 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil. *Rf* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.48 – 7.39 (m, 4H), 7.32 (d, *J* = 8.0 Hz, 2H), 5.74 – 5.60 (m, 1H), 5.60 – 5.42 (m, 1H), 3.78 – 3.64 (m, 2H), 3.50 (t, *J* = 7.2 Hz, 1H), 2.69 (t, *J* = 7.1 Hz, 2H), 2.44 (s, 3H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.11, 165.94, 144.98, 136.50, 136.47, 135.68, 131.98, 129.89, 128.23, 121.61, 119.65, 117.36, 60.88, 59.81, 33.10, 29.77, 21.65. HRMS (ESI-TOF) Calcd for C₂₁H₂₃BrNO₄S⁺ ([M+H]⁺) 464.0526. Found 464.0524.

(*E*)-2-Acetyl-6-tosyl-*N*-(4-(trifluoromethyl)phenyl)hex-4-enamide (**4e8**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 85% yield (192.8 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow solid, m.p. = 123.4-124.2 °C. *Rf* (petroleum ether/ethyl acetate = 1:1.5, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 7.69 (d, *J* = 8.3 Hz, 4H), 7.56 (d, *J* = 8.6 Hz, 2H), 7.32 (d, *J* = 7.9 Hz, 2H), 5.76 – 5.62 (m, 1H), 5.60 – 5.48 (m, 1H), 3.74 (d, *J* = 7.4 Hz, 2H), 3.57 (t, *J* = 7.2 Hz, 1H), 2.70 (t, *J* = 7.0 Hz, 2H), 2.43 (s, 3H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 205.80, 166.47, 145.11, 140.56, 136.61, 135.57, 129.93, 128.20, 126.40 (q, *J* = 32.9 Hz), 126.22 (q, *J* = 3.6 Hz), 124.05 (q, *J* = 272.7 Hz), 119.71,

119.52. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.16. HRMS (ESI-TOF) Calcd for C₂₂H₂₃F₃NO₄S⁺ ([M+H]⁺) 454.1294. Found 454.1294.

(*E*)-2-Acetyl-*N*-(4-cyanophenyl)-6-tosylhex-4-enamide (**4e9**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 77% yield (157.5 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil. *Rf* (petroleum ether/ethyl acetate = 1:1.5, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H), 7.71 (dd, *J* = 11.3, 4.5 Hz, 4H), 7.65 – 7.58 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 5.71 (dt, *J* = 14.4, 7.1 Hz, 1H), 5.61 – 5.48 (m, 1H), 3.72 (dd, *J* = 7.2, 2.7 Hz, 2H), 3.56 (t, *J* = 7.2 Hz, 1H), 2.71 (t, *J* = 7.1 Hz, 2H), 2.44 (s, 3H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 205.99, 166.53, 145.08, 141.46, 136.39, 135.75, 133.24, 129.94, 128.17, 119.97, 119.76, 118.74, 107.62, 60.78, 59.78, 33.21, 29.89, 21.67. HRMS (ESI-TOF) Calcd for C₂₂H₂₃N₂O4S⁺ ([M+H]⁺) 411.1373. Found 411.1376.

Ethyl (*E*)-4-(2-acetyl-6-tosylhex-4-enamido)benzoate (**4e10**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 74% yield (168.1 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow solid, m.p. = 137.0-137.5 °C. *R_f* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 8.01 (d, *J* = 8.8 Hz, 2H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.63 (d, *J* = 8.8 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 5.73 – 5.61 (m, 1H), 5.61 – 5.48 (m, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.77 – 3.67 (m, 2H), 3.54 (t, *J* = 7.2 Hz, 1H), 2.70 (t, *J* = 7.0 Hz, 2H), 2.43 (s, 3H), 2.29 (s, 3H), 1.39 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.10, 166.14, 166.05, 144.99, 141.46, 136.37, 135.65, 130.76, 129.90, 128.24, 126.43, 119.74, 119.14, 60.95, 59.81, 33.17, 29.83, 21.65, 14.35. HRMS (ESI-TOF) Calcd for C₂₄H₂₈NO₆S⁺ ([M+H]⁺) 458.1632. Found 458.1636.

(*E*)-*N*-([1,1'-Biphenyl]-4-yl)-2-acetyl-6-tosylhex-4-enamide (**4e11**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 3:1, v/v) in 59% yield (135.3 mg), *E/Z* > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow solid, m.p. = 173.3-173.9 °C. *R_f* (petroleum ether/ethyl acetate = 1.5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.73 – 7.67 (m, 2H), 7.64 – 7.59 (m, 2H), 7.59 – 7.53 (m, 4H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.33 (dd, *J* = 10.8, 7.7 Hz, 3H), 5.74 – 5.61 (m, 1H), 5.61 – 5.48 (m, 1H), 3.73 (d, *J* = 7.1 Hz, 2H), 3.52 (t, *J* = 7.3 Hz, 1H), 2.71 (t, *J* = 7.0 Hz, 2H), 2.42 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.17, 165.84, 144.95, 140.37, 137.66, 136.67, 136.53, 135.60, 129.88, 128.83, 128.30, 127.65, 127.25, 126.88, 120.34, 119.66, 61.08, 59.86, 33.10, 29.73, 21.67. HRMS (ESI-TOF) Calcd for C₂₇H₂₈NO4S⁺ ([M+H]⁺) 462.1734. Found 462.1734.

(*E*)-2-Acetyl-*N*-benzyl-6-tosylhex-4-enamide (**4f**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 54% yield (106.9 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. White solid, m.p. = 105.7-106.7 °C. *R_f* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.3 Hz, 2H), 7.35 – 7.24 (m, 7H), 6.46 (s, 1H), 5.51 (tdd, *J* = 22.4, 15.4, 6.9 Hz, 2H), 4.43 (ddd, *J* = 31.5, 14.7, 5.8 Hz, 2H), 3.66 (d, *J* = 6.1 Hz, 2H), 3.34 (t, *J* = 7.3 Hz, 1H), 2.60 (t, *J* = 6.9 Hz, 2H), 2.45 (s, 3H), 2.21 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 205.53, 167.50, 144.86, 137.80, 136.60, 135.69, 129.83, 128.78, 128.33, 127.82, 127.68, 119.46, 99.99, 60.45, 59.86, 43.81, 32.68, 29.42, 21.65. HRMS (ESI-TOF) Calcd for C₂₂H₂₆NO4S⁺ ([M+H]⁺) 400.1577. Found 400.1579.

(*E*)-2-Acetyl-*N*-(2,4-dimethylphenyl)-6-tosylhex-4-enamide (**4g1**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 3:1, v/v) in 69% yield (143.5 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow solid, m.p. = 109.1-110.1 °C. *R_f* (petroleum ether/ethyl acetate = 1.5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.70 (d, *J* = 8.3 Hz, 2H), 7.58 (d, *J* = 8.7 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.00 (s, 2H), 5.68 – 5.47 (m, 2H), 3.72 (d, *J* = 6.8 Hz, 2H), 3.54 (t, *J* = 7.2 Hz, 1H), 2.70 (t, *J* = 6.9 Hz, 2H), 2.43 (s, 3H), 2.29 (s, 6H), 2.20 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 207.23, 165.63, 144.88, 136.10, 135.53, 135.31, 132.52, 131.25,

129.84, 129.43, 128.34, 127.24, 122.96, 119.86, 60.51, 59.83, 33.72, 30.12, 21.66, 20.89, 17.71. HRMS (ESI-TOF) Calcd for $C_{23}H_{28}NO_4S^+$ ([M+H]⁺) 414.1734. Found 414.1737.

(*E*)-2-Acetyl-*N*-(4-chloro-2-methylphenyl)-6-tosylhex-4-enamide (**4g2**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 3:1, v/v) in 64% yield (138.5 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil. *R_f* (petroleum ether/ethyl acetate = 1.5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.75 (d, *J* = 9.0 Hz, 1H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.21 – 7.12 (m, 2H), 5.70 – 5.59 (m, 1H), 5.59 – 5.48 (m, 1H), 3.72 (d, *J* = 7.0 Hz, 2H), 3.57 (t, *J* = 7.2 Hz, 1H), 2.77 – 2.61 (m, 2H), 2.43 (s, 3H), 2.30 (s, 3H), 2.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 207.52, 165.79, 144.92, 135.89, 135.64, 133.89, 130.97, 130.32, 129.86, 128.28, 126.66, 123.81, 119.99, 60.16, 59.77, 33.94, 30.31, 21.65, 17.66. HRMS (ESI-TOF) Calcd for C₂₂H₂₅ClNO₄S⁺ ([M+H]⁺) 434.1187. Found 434.1188.

(*E*)-2-Acetyl-*N*-(4-chloro-2,5-dimethoxyphenyl)-6-tosylhex-4-enamide (**4h**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 3:1, v/v) in 74% yield (178.4 mg), *E*/*Z* > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil. *R_f* (petroleum ether/ethyl acetate = 1.5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 8.15 (s, 1H), 7.75 – 7.64 (m, 2H), 7.31 (d, *J* = 7.9 Hz, 2H), 6.91 (s, 1H), 5.67 – 5.47 (m, 2H), 3.87 (s, 3H), 3.87 (s, 3H), 3.72 (d, *J* = 6.2 Hz, 2H), 3.50 (t, *J* = 7.3 Hz, 1H), 2.74 – 2.63 (m, 2H), 2.43 (s, 3H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 205.29, 165.50, 149.00, 144.85, 142.21, 136.01, 135.57, 129.80, 128.33, 126.31, 119.85, 116.45, 112.38, 105.02, 61.48, 59.82, 56.74, 56.54, 32.91, 29.59, 21.64. HRMS (ESI-TOF) Calcd for C₂₃H₂₇ClNO₆S⁺ ([M+H]⁺) 480.1242. Found 480.1244.

(*E*)-2-Acetyl-*N*-(pyridin-2-yl)-6-tosylhex-4-enamide (**4i**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 67% yield (129.4 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Colourless oil. *R_f* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.83 (s, 1H), 8.37 – 8.24 (m, 1H), 8.14 (d, *J* = 8.3 Hz, 1H), 7.76 – 7.60 (m, 3H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.08 (ddd, *J* = 7.4, 4.9, 0.9 Hz, 1H), 5.67 – 5.40 (m, 2H), 3.72 (d, *J* = 6.2 Hz, 2H), 3.52 (t, *J* = 7.2 Hz, 1H), 2.76 – 2.58 (m, 2H), 2.42 (s, 3H), 2.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 204.40, 166.27, 150.84, 147.98, 144.84, 138.51, 136.05, 135.42, 129.79, 128.38, 120.37, 119.90, 114.21, 61.29, 59.81, 32.50, 29.38, 21.65. HRMS (ESI-TOF) Calcd for C₂₀H₂₃N₂O₄S⁺ ([M+H]⁺) 387.1373. Found 387.1374.

(*E*)-1-(4-Methoxyphenyl)-2-(4-tosylbut-2-en-1-yl)butane-1,3-dione (**4j1**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 6:1, v/v) in 61% yield (121.5 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil. *R_f* (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 9.0 Hz, 2H), 7.68 (d, J = 8.3 Hz, 2H), 7.32 – 7.27 (m, 2H), 6.97 (d, J = 9.0 Hz, 2H), 5.55 – 5.47 (m, 2H), 4.36 (t, J = 7.1 Hz, 1H), 3.89 (s, 3H), 3.72 – 3.64 (m, 2H), 2.76 – 2.59 (m, 2H), 2.42 (s, 3H), 2.08 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.32, 193.49, 164.26, 144.72, 136.95, 135.40, 131.23, 129.72, 129.07, 128.41, 119.21, 114.19, 62.09, 59.89, 55.63, 31.68, 28.04, 21.65. HRMS (ESI-TOF) Calcd for C₂₂H₂₅O₅S⁺ ([M+H]⁺) 401.1417. Found 401.1418.

Ethyl (*E*)-2-(4-methoxybenzoyl)-6-tosylhex-4-enoate (**4j2**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 6:1, v/v) in 70% yield (151.6 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil. *Rf*

(petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.88 (m, 2H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.32 – 7.24 (m, 2H), 7.01 – 6.88 (m, 2H), 5.65 – 5.40 (m, 2H), 4.23 (t, *J* = 7.2 Hz, 1H), 4.18 – 4.05 (m, 2H), 3.89 (s, 3H), 3.69 (d, *J* = 6.3 Hz, 2H), 2.74 – 2.63 (m, 2H), 2.41 (s, 3H), 1.16 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.23, 169.24, 164.04, 144.67, 137.09, 135.41, 131.08, 129.67, 128.90, 128.45, 119.20, 113.99, 61.59, 59.94, 55.57, 53.26, 31.76, 21.62, 14.01. HRMS (ESI-TOF) Calcd for C₂₃H₂₇O₆S⁺ ([M+H]⁺) 431.1523. Found 431.1524.

(*E*)-1-Phenyl-2-(4-tosylbut-2-en-1-yl)butane-1,3-dione (**4k1**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 4:1, v/v) in 66% yield (121.3 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil. *R_f* (petroleum ether/ethyl acetate = 2:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.80 (m, 2H), 7.60 (d, *J* = 8.3 Hz, 2H), 7.58 – 7.52 (m, 1H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 5.48 – 5.39 (m, 2H), 4.35 (t, *J* = 7.0 Hz, 1H), 3.67 – 3.56 (m, 2H), 2.69 – 2.54 (m, 2H), 2.34 (s, 3H), 2.03 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.90, 194.18, 143.70, 135.70, 135.03, 134.40, 132.98, 128.68, 127.99, 127.72, 127.36, 118.38, 61.22, 58.83, 30.59, 27.26, 20.60. HRMS (ESI-TOF) Calcd for C₂₁H₂₃O4S⁺ ([M+H]⁺) 371.1312. Found 371.1312.

Ethyl (*E*)-2-benzoyl-6-tosylhex-4-enoate (**4k2**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 6:1, v/v) in 65% yield (131.0 mg), *E/Z* = 12:1, which was detected by ¹H NMR spectroscopy. Yellow oil. *R_f* (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (dd, *J* = 8.3, 1.2 Hz, 2H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.64 – 7.58 (m, 1H), 7.49 (t, *J* = 7.7 Hz, 2H), 7.28 (d, *J* = 7.8 Hz, 2H), 5.64 – 5.45 (m, 2H), 4.27 (t, *J* = 7.1 Hz, 1H), 4.12 (qd, *J* = 7.1, 2.9 Hz, 2H), 3.70 (d, *J* = 6.2 Hz, 2H), 2.71 (dd, *J* = 9.3, 4.0 Hz, 2H), 2.40 (s, 3H), 1.15 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 193.87, 169.02, 144.68, 136.87, 135.91, 135.40, 133.75, 129.67, 128.82, 128.64, 128.44, 119.39, 61.66, 59.90, 53.56, 31.66,

21.61, 13.96. HRMS (ESI-TOF) Calcd for $C_{22}H_{25}O_5S^+$ ([M+H]⁺) 401.1417. Found 401.1419.

(*E*)-1,3-Diphenyl-2-(4-tosylbut-2-en-1-yl)propane-1,3-dione (**4k3**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 4:1, v/v) in 85% yield (184.1 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow solid, m.p. = 117.9-118.9 °C. *R_f* (petroleum ether/ethyl acetate = 2:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.87 (m, 2H), 7.67 (d, *J* = 8.2 Hz, 1H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.23 (d, *J* = 8.1 Hz, 1H), 5.70 – 5.47 (m, 1H), 5.15 (t, *J* = 6.6 Hz, 1H), 3.69 (d, *J* = 7.0 Hz, 1H), 2.80 (t, *J* = 6.6 Hz, 1H), 2.33 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 195.07, 144.72, 137.48, 135.63, 135.33, 133.79, 129.67, 129.03, 128.58, 128.40, 119.27, 59.87, 56.38, 32.17, 21.56. HRMS (ESI-TOF) Calcd for C₂₆H₂₅O4S⁺ ([M+H]⁺) 433.1468. Found 433.1469.

(*E*)-2-Benzoyl-*N*-benzyl-6-tosylhex-4-enamide (**4k4**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 1:1, v/v) in 59% yield (136.4 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. White solid, m.p. = 104.5-105.3 °C. *R_f* (petroleum ether/ethyl acetate = 1:2, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.69 – 7.64 (m, 2H), 7.64 – 7.59 (m, 1H), 7.48 (t, *J* = 7.7 Hz, 2H), 7.31 – 7.22 (m, 5H), 7.13 (dd, *J* = 7.4, 2.0 Hz, 2H), 6.67 (s, 1H), 5.60 – 5.39 (m, 2H), 4.45 (dd, *J* = 14.8, 6.1 Hz, 1H), 4.35 – 4.26 (m, 2H), 3.63 (d, *J* = 6.6 Hz, 2H), 2.77 (dt, *J* = 14.1, 7.1 Hz, 1H), 2.71 – 2.60 (m, 1H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.48, 167.84, 144.76, 137.84, 136.53, 136.02, 135.49, 134.10, 129.74, 128.97, 128.68, 128.35, 127.65, 127.53, 119.63, 59.83, 55.24, 43.66, 33.99, 21.65. HRMS (ESI-TOF) Calcd for C₂₇H₂₈NO4S⁺ ([M+H]⁺) 462.1734. Found 462.1738.

(*E*)-2-Benzoyl-*N*-isopropyl-6-tosylhex-4-enamide (**4k5**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 70% yield (144.3 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil. *R_f* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 7.92 (m, 2H), 7.68 (d, *J* = 8.3 Hz, 2H), 7.64 – 7.58 (m, 1H), 7.48 (dd, *J* = 10.6, 4.9 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 6.12 (d, *J* = 7.9 Hz, 1H), 5.52 (q, *J* = 6.0 Hz, 2H), 4.23 (t, *J* = 7.3 Hz, 1H), 4.04 – 3.93 (m, 1H), 3.68 (d, *J* = 6.1 Hz, 2H), 2.80 – 2.68 (m, 1H), 2.62 (dt, *J* = 12.9, 6.2 Hz, 1H), 2.40 (s, 3H), 1.10 (d, *J* = 6.6 Hz, 3H), 1.04 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.76, 166.98, 144.74, 136.70, 136.10, 135.43, 134.01, 129.73, 128.90, 128.61, 128.36, 119.39, 59.85, 55.49, 41.75, 34.06, 22.52, 22.35, 21.64. HRMS (ESI-TOF) Calcd for C₂₃H₂₈NO₄S⁺ ([M+H]⁺) 414.1734. Found 414.1735.

(*E*)-2-(Diphenylphosphoryl)-1-phenyl-6-tosylhex-4-en-1-one (**4**I). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 24% yield (62.5 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow solid, m.p. = 178.4-179.3 °C. *R_f* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, DMSO) δ 8.00 – 7.87 (m, 2H), 7.82 – 7.72 (m, 2H), 7.68 – 7.44 (m, 8H), 7.38 (td, *J* = 7.4, 1.3 Hz, 1H), 7.29 (dt, *J* = 7.3, 5.4 Hz, 4H), 7.22 (d, *J* = 8.0 Hz, 2H), 5.58 – 5.40 (m, 1H), 5.36 – 5.18 (m, 1H), 5.09 (td, *J* = 12.1, 2.5 Hz, 1H), 3.84 (d, *J* = 7.3 Hz, 2H), 2.91 – 2.73 (m, 1H), 2.30 (s, 3H), 2.28 – 2.16 (m, 1H). ¹³C NMR (101 MHz, DMSO) δ 196.07 (d, *J*_{C-P} = 3.7 Hz), 144.47, 138.19, 136.76 (d, *J*_{C-P} = 14.3 Hz), 135.91, 133.44, 132.62 (d, *J*_{C-P} = 2.4 Hz), 132.26 (d, *J*_{C-P} = 2.5 Hz), 131.74 (d, *J*_{C-P} = 9.9 Hz), 131.60 (d, *J*_{C-P} = 98.7 Hz), 131.58 (d, *J*_{C-P} = 98.7 Hz), 131.38 (d, *J*_{C-P} = 9.6 Hz), 129.93, 129.23 (d, *J*_{C-P} = 11.7 Hz), 128.94, 128.73 (d, *J*_{C-P} = 11.9 Hz), 128.61, 128.37, 119.62, 58.77, 48.63 (d, *J*_{C-P} = 55.5 Hz), 30.39, 21.49. ³¹P NMR (162 MHz, DMSO) δ 27.91. HRMS (ESI-TOF) Calcd for C₃₁H₃₀O4PS⁺ ([M+H]⁺) 529.1597. Found 529.1599.

(*E*)-(5-Tosylpent-3-ene-1,1-diyldisulfonyl)dibenzene (**4m**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 1.5:1, v/v) in 46% yield (114.7 mg),

E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Colourless oil. R_f (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.86 (m, 4H), 7.71 (t, J = 8.6 Hz, 4H), 7.57 (dd, J = 11.2, 4.4 Hz, 4H), 7.34 (d, J = 8.0 Hz, 2H), 5.66 (dt, J = 14.1, 6.9 Hz, 1H), 5.46 (dt, J = 14.9, 7.4 Hz, 1H), 4.42 – 4.32 (m, 1H), 3.68 (d, J = 7.3 Hz, 2H), 2.90 (t, J = 6.3 Hz, 2H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.98, 137.62, 135.52, 134.82, 134.45, 129.88, 129.60, 129.24, 128.36, 120.91, 82.83, 59.69, 28.75, 21.68. HRMS (ESI-TOF) Calcd for C₂₄H₂₅O₆S₃⁺ ([M+H]⁺) 505.0808. Found 505.0803.

Ethyl (*E*)-2-acetyl-6-tosylhex-4-enoate (**4n**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 57% yield (106.9 mg), *E/Z* = 13:1, which was detected by ¹H NMR spectroscopy. White solid. m.p. = 105.7-106.7 °C. *R_f* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 8.1 Hz, 2H), 5.50 (td, *J* = 5.8, 3.9 Hz, 2H), 4.27 – 4.09 (m, 2H), 3.75 – 3.67 (m, 2H), 3.44 (t, *J* = 7.3 Hz, 1H), 2.56 (s, 2H), 2.46 (s, 3H), 2.22 (s, 3H), 1.27 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.00, 168.81, 144.79, 136.64, 135.43, 129.76, 128.44, 119.31, 61.70, 59.89, 58.65, 30.83, 29.37, 21.68, 14.10. HRMS (ESI-TOF) Calcd for C₁₇H₂₃O₅S⁺ ([M+H]⁺) 339.1261. Found 339.1262.

(*E*)-2-Acetyl-6-((2-fluorophenyl)sulfonyl)-*N*-phenylhex-4-enamide (**40**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 3:1, v/v) in 89% yield (173.8 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil. *R_f* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.87 – 7.76 (m, 1H), 7.66 – 7.57 (m, 1H), 7.51 (dd, *J* = 8.5, 0.9 Hz, 2H), 7.31 (ddd, *J* = 11.6, 7.6, 1.4 Hz, 3H), 7.25 – 7.18 (m, 1H), 7.14 (t, *J* = 7.4 Hz, 1H), 5.74 (dt, *J* = 14.3, 7.1 Hz, 1H), 5.56 (dt, *J* = 14.8, 7.4 Hz, 1H), 3.96 (d, *J* = 7.4 Hz, 2H), 3.44 (t, *J* = 7.3 Hz, 1H), 2.66 (t, *J* = 7.1 Hz, 2H), 2.24 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.02, 165.59, 159.42 (d, *J* = 256.4 Hz), 137.31, 137.03, 136.34 (d, *J* = 8.9 Hz), 130.81, 129.04, 126.33 (d, *J* = 14.9 Hz), 124.82 (d, *J* = 3.0 Hz), 120.01, 118.90, 117.05 (d, *J* =

30.6 Hz), 61.03, 59.11, 59.08, 32.93, 29.54. HRMS (ESI-TOF) Calcd for $C_{20}H_{21}FNO_4S^+([M+H]^+)$ 390.1170. Found 390.1172.

(*E*)-2-Acetyl-*N*-phenyl-6-(phenylsulfonyl)hex-4-enamide (**4p1**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 78% yield (145.4 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil. *R_f* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.87 – 7.76 (m, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 4H), 7.32 (t, *J* = 7.9 Hz, 2H), 7.12 (t, *J* = 7.4 Hz, 1H), 5.70 – 5.59 (m, 1H), 5.59 – 5.47 (m, 1H), 3.74 (d, *J* = 7.1 Hz, 2H), 3.49 (t, *J* = 7.3 Hz, 1H), 2.67 (t, *J* = 7.0 Hz, 2H), 2.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 205.89, 165.84, 138.48, 137.42, 136.78, 133.88, 129.24, 129.04, 128.28, 124.80, 120.05, 119.32, 61.05, 59.78, 32.87, 29.51. HRMS (ESI-TOF) Calcd for C₂₀H₂₂NO₄S⁺ ([M+H]⁺) 372.1264. Found 372.1266.

(*E*)-2-Acetyl-6-((4-methoxyphenyl)sulfonyl)-*N*-phenylhex-4-enamide (**4p2**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 77% yield (154.1 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Colourless oil. *R_f* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.73 (d, *J* = 8.9 Hz, 2H), 7.57 – 7.48 (m, 2H), 7.33 (dd, *J* = 10.8, 5.1 Hz, 2H), 7.13 (t, *J* = 7.4 Hz, 1H), 6.97 (d, *J* = 8.9 Hz, 2H), 5.58 (dtd, *J* = 22.5, 15.3, 7.0 Hz, 2H), 3.86 (s, 3H), 3.71 (d, *J* = 6.8 Hz, 2H), 3.48 (t, *J* = 7.3 Hz, 1H), 2.68 (t, *J* = 7.0 Hz, 2H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.07, 165.77, 163.84, 137.39, 136.38, 130.49, 130.04, 129.05, 124.79, 120.03, 119.83, 114.40, 61.11, 60.07, 55.70, 33.01, 29.62. HRMS (ESI-TOF) Calcd for C₂₁H₂₄NO₅S⁺ ([M+H]⁺) 402.1370. Found 402.1371.

(*E*)-2-Acetyl-6-((4-fluorophenyl)sulfonyl)-*N*-phenylhex-4-enamide (**4p3**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 80% yield (156.5 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil. *R*/ (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.87 – 7.76 (m, 2H), 7.56 – 7.47 (m, 2H), 7.34 (dd, *J* = 10.8, 5.1 Hz, 2H), 7.23 – 7.16 (m, 2H), 7.14 (t, *J* = 7.4 Hz, 1H), 5.73 – 5.60 (m, 1H), 5.59 – 5.45 (m, 1H), 3.74 (d, *J* = 7.2 Hz, 2H), 3.50 (t, *J* = 7.2 Hz, 1H), 2.69 (t, *J* = 7.1 Hz, 2H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.07, 165.90 (d, *J* = 257.8 Hz), 165.61, 137.32, 136.79, 134.50 (d, *J* = 3.1 Hz), 131.22 (d, *J* = 9.7 Hz), 129.09, 124.87, 120.01, 119.36, 116.58 (d, *J* = 22.7 Hz), 60.98, 59.91, 32.98, 29.59. ¹⁹F NMR (376 MHz, CDCl₃) δ -103.01. HRMS (ESI-TOF) Calcd for C₂₀H₂₁FNO4S⁺ ([M+H]⁺) 390.1170. Found 390.1171.

(*E*)-2-Acetyl-6-((4-methoxyphenyl)sulfonyl)-*N*-phenylhex-4-enamide (**4p4**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 69% yield (140.3 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil. *R_f* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.78 – 7.69 (m, 2H), 7.52 (d, *J* = 7.6 Hz, 2H), 7.51 – 7.47 (m, 2H), 7.33 (t, *J* = 7.9 Hz, 2H), 7.14 (t, *J* = 7.4 Hz, 1H), 5.74 – 5.59 (m, 1H), 5.59 – 5.47 (m, 1H), 3.74 (d, *J* = 7.2 Hz, 2H), 3.49 (t, *J* = 7.2 Hz, 1H), 2.70 (d, *J* = 7.2 Hz, 2H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.09, 165.56, 140.68, 137.29, 136.90, 136.86, 129.82, 129.57, 129.09, 124.87, 120.00, 119.26, 60.95, 59.81, 33.00, 29.60. HRMS (ESI-TOF) Calcd for C₂₀H₂₁ClNO4S⁺ ([M+H]⁺) 406.0874. Found 406.0877.

(*E*)-2-Acetyl-6-((4-bromophenyl)sulfonyl)-*N*-phenylhex-4-enamide (**4p5**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 3:1, v/v) in 75% yield (168.5 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil. *R_f* (petroleum ether/ethyl acetate = 1.5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.71 – 7.61 (m, 4H), 7.56 – 7.48 (m, 2H), 7.33 (t, *J* = 8.0 Hz, 2H), 7.14 (t, *J* = 7.4 Hz, 1H), 5.73 – 5.59 (m, 1H), 5.59 – 5.42 (m, 1H), 3.73 (d, *J* = 7.2 Hz, 2H), 3.49 (t, *J* = 7.2 Hz, 1H), 2.69 (t, *J* = 7.1 Hz, 2H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.00, 165.65, 137.43, 137.33, 136.95, 132.58, 129.88, 129.30, 129.10, 124.88, 120.04, 119.18, 60.95, 59.79, 32.94, 29.56. HRMS (ESI-TOF) Calcd for C₂₀H₂₁BrNO4S⁺ ([M+H]⁺) 450.0369. Found 450.0371.

(*E*)-2-Acetyl-*N*-phenyl-6-((4-(trifluoromethyl)phenyl)sulfonyl)hex-4-enamide (**4p6**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 72% yield (158.8 mg), *E/Z* > 20:1, which was detected by ¹H NMR spectroscopy. White solid, m.p. = 141.2-141.4 °C. *R_f* (petroleum ether/ethyl acetate = 1:1.2, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.96 (d, *J* = 8.2 Hz, 2H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.52 (dd, *J* = 8.6, 1.0 Hz, 2H), 7.34 (t, *J* = 8.0 Hz, 2H), 7.18 – 7.08 (m, 1H), 5.77 – 5.62 (m, 1H), 5.61 – 5.48 (m, 1H), 3.77 (d, *J* = 7.2 Hz, 2H), 3.50 (t, *J* = 7.2 Hz, 1H), 2.71 (t, *J* = 7.1 Hz, 2H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.17, 165.42, 141.96, 137.23, 137.11, 135.58 (q, *J* = 33.3 Hz), 129.10, 129.01, 126.38 (q, *J* = 3.6 Hz), 124.90, 123.09 (q, *J* = 274.2 Hz), 119.96, 118.97, 60.87, 59.66, 33.08, 29.67. HRMS (ESI-TOF) Calcd for C₂₁H₂₁F₃NO4S⁺ ([M+H]⁺) 440.1138. Found 440.1139.

Ethyl (*E*)-4-((6-oxo-5-(phenylcarbamoyl)hept-2-en-1-yl)sulfonyl)benzoate (**4p7**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 69% yield (153.4 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow solid, m.p. = 109.1-109.9 °C. R_f (petroleum ether/ethyl acetate = 1:1.5, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 8.21 – 8.12 (m, 2H), 7.94 – 7.83 (m, 2H),

7.52 (d, J = 7.7 Hz, 2H), 7.31 (t, J = 7.9 Hz, 2H), 7.12 (t, J = 7.4 Hz, 1H), 5.72 – 5.58 (m, 1H), 5.58 – 5.43 (m, 1H), 4.42 (q, J = 7.1 Hz, 2H), 3.76 (d, J = 7.2 Hz, 2H), 3.48 (t, J = 7.2 Hz, 1H), 2.67 (dd, J = 11.3, 4.6 Hz, 2H), 2.26 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 205.64, 165.85, 165.02, 142.07, 137.41, 137.25, 135.37, 130.30, 129.04, 128.42, 124.83, 120.08, 118.85, 61.91, 60.96, 59.68, 32.70, 29.31, 14.26. HRMS (ESI-TOF) Calcd for C₂₃H₂₆NO₆S⁺ ([M+H]⁺) 444.1475. Found 444.1478.

(*E*)-2-Acetyl-6-((4-cyanophenyl)sulfonyl)-*N*-phenylhex-4-enamide (**4p8**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 81% yield (161.1 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow solid, m.p. = 111.4-112.3 °C. *Rf* (petroleum ether/ethyl acetate = 1:1.5, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.98 – 7.87 (m, 2H), 7.83 – 7.71 (m, 2H), 7.59 – 7.46 (m, 2H), 7.34 (dd, *J* = 10.8, 5.1 Hz, 2H), 7.15 (t, *J* = 7.4 Hz, 1H), 5.79 – 5.60 (m, 1H), 5.59 – 5.44 (m, 1H), 3.77 (d, *J* = 7.3 Hz, 2H), 3.51 (t, *J* = 7.2 Hz, 1H), 2.81 – 2.56 (m, 2H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 205.81, 165.58, 142.44, 137.44, 137.31, 133.00, 129.15, 129.11, 124.99, 120.05, 118.63, 117.66, 117.08, 60.81, 59.59, 32.75, 29.40. HRMS (ESI-TOF) Calcd for C₂₁H₂₁N₂O₄S⁺ ([M+H]⁺) 397.1217. Found 397.1217.

(*E*)-2-Isobutyryl-6-((4-methoxyphenyl)sulfonyl)-*N*-phenylhex-4-enamide (4**q**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 88% yield (189.6 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil. *R_f* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.77 – 7.71 (m, 2H), 7.56 – 7.47 (m, 2H), 7.32 (t, *J* = 8.0 Hz, 2H), 7.12 (t, *J* = 7.4 Hz, 1H), 6.97 (d, *J* = 8.9 Hz, 2H), 5.69 – 5.42 (m, 2H), 3.86 (s, 3H), 3.69 (t, *J* = 6.7 Hz, 3H), 2.77 (dt, *J* = 13.8, 6.9 Hz, 1H), 2.65 (t, *J* = 6.8 Hz, 2H), 1.13 (d, *J* = 6.9 Hz, 3H), 1.10 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 212.77, 165.86, 163.83, 137.41, 136.19, 130.50, 130.07, 129.03, 124.69, 119.99, 119.90, 114.38, 60.04, 58.75, 55.70, 41.59, 34.37, 17.94, 17.71. HRMS (ESI-TOF) Calcd for C₂₃H₂₈NO₅S⁺ ([M+H]⁺) 430.1683. Found 430.1683.

(*E*)-2-Acetyl-6-((3,4-dimethylphenyl)sulfonyl)-*N*-phenylhex-4-enamide (4r1). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 64% yield (127.9 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil. *R_f* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.58 (d, *J* = 1.5 Hz, 1H), 7.57 – 7.45 (m, 3H), 7.33 (dd, *J* = 10.8, 5.1 Hz, 2H), 7.26 (d, *J* = 7.4 Hz, 1H), 7.13 (t, *J* = 7.4 Hz, 1H), 5.73 – 5.61 (m, 1H), 5.60 – 5.45 (m, 1H), 3.78 – 3.64 (m, 2H), 3.49 (t, *J* = 7.3 Hz, 1H), 2.69 (t, *J* = 7.0 Hz, 2H), 2.33 (s, 6H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.18, 165.79, 143.61, 138.13, 137.35, 136.43, 135.80, 130.30, 129.04, 128.89, 125.81, 124.78, 120.04, 119.67, 61.10, 59.85, 33.13, 29.73, 20.04, 19.79. HRMS (ESI-TOF) Calcd for C₂₂H₂₆NO4S⁺ ([M+H]⁺) 400.1577. Found 400.1578.

(*E*)-6-((3,4-Dimethylphenyl)sulfonyl)-2-isobutyryl-*N*-phenylhex-4-enamide (4r2). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 3:1, v/v) in 62% yield (132.3 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil. *R_f* (petroleum ether/ethyl acetate = 1.5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.58 (s, 1H), 7.56 – 7.46 (m, 3H), 7.32 (t, *J* = 7.9 Hz, 2H), 7.26 (d, *J* = 7.4 Hz, 1H), 7.12 (t, *J* = 7.4 Hz, 1H), 5.70 – 5.57 (m, 1H), 5.57 – 5.44 (m, 1H), 3.69 (t, *J* = 7.1 Hz, 3H), 2.76 (dt, *J* = 13.8, 6.9 Hz, 1H), 2.65 (dd, *J* = 12.0, 6.8 Hz, 2H), 2.33 (d, *J* = 1.3 Hz, 6H), 1.13 (d, *J* = 6.9 Hz, 3H), 1.10 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 212.90, 165.86, 143.57, 138.10, 137.38, 136.21, 135.84, 130.29, 129.02, 128.93, 125.85, 124.68, 119.99, 119.79, 59.83, 58.77, 41.72, 34.50, 20.04, 19.79, 17.92, 17.64. HRMS (ESI-TOF) Calcd for C₂₄H₃₀NO4S⁺ ([M+H]⁺) 428.1890.

(*E*)-2-Acetyl-*N*-phenyl-6-(*m*-tolylsulfonyl)hex-4-enamide (**4s1**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 72% yield (138.1 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil. *R_f* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.64 (s, 1H), 7.63 – 7.58 (m, 1H), 7.56 – 7.48 (m, 2H), 7.46 – 7.37 (m, 2H), 7.33 (dd, *J* = 10.8, 5.1 Hz, 2H), 7.13 (t, *J* = 7.4 Hz, 1H), 5.75 – 5.61 (m, 1H), 5.61 – 5.46 (m, 1H), 3.73 (d, *J* = 6.9 Hz, 2H), 3.49 (t, *J* = 7.3 Hz, 1H), 2.69 (t, *J* = 7.0 Hz, 2H), 2.43 (s, 3H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.06, 165.81, 139.62, 138.43, 137.37, 136.67, 134.67, 129.08, 129.04, 128.48, 125.43, 124.80, 120.06, 119.42, 61.08, 59.77, 33.03, 29.66, 21.32. HRMS (ESI-TOF) Calcd for C₂₁H₂₄NO4S⁺ ([M+H]⁺) 386.1421. Found 386.1423.

(*E*)-2-Isobutyryl-*N*-phenyl-6-(*m*-tolylsulfonyl)hex-4-enamide (**4s1**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 3:1, v/v) in 72% yield (149.5 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil. *Rf* (petroleum ether/ethyl acetate = 1.5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.64 (s, 1H), 7.62 (d, *J* = 7.1 Hz, 1H), 7.51 (d, *J* = 7.7 Hz, 2H), 7.46 – 7.37 (m, 2H), 7.31 (t, *J* = 7.9 Hz, 2H), 7.11 (t, *J* = 7.4 Hz, 1H), 5.70 – 5.57 (m, 1H), 5.57 – 5.45 (m, 1H), 3.70 (dd, *J* = 14.1, 7.1 Hz, 3H), 2.76 (dt, *J* = 13.8, 6.9 Hz, 1H), 2.72 – 2.56 (m, 2H), 2.43 (s, 3H), 1.12 (d, *J* = 6.9 Hz, 3H), 1.10 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 212.69, 165.88, 139.58, 138.45, 137.40, 136.47, 134.65, 129.05, 129.01, 128.51, 125.44, 124.69, 120.01, 119.51, 59.74, 58.73, 41.58, 34.34, 21.32, 17.95, 17.72. HRMS (ESI-TOF) Calcd for C₂₃H₂₈NO₄S⁺ ([M+H]⁺) 414.1734. Found 414.1736.

(*E*)-2-Acetyl-6-((3-chlorophenyl)sulfonyl)-*N*-phenylhex-4-enamide (**4t1**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2.5:1, v/v) in 78% yield (157.3 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil. *R_f* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.84 (t, *J* = 1.8 Hz, 1H), 7.73 – 7.67 (m, 1H), 7.59 (ddd, *J* = 8.0, 2.0, 1.0 Hz, 1H), 7.52 (dd, *J* = 8.5, 0.9 Hz, 2H), 7.46 (t, *J* = 7.9 Hz, 1H), 7.34 (dd, *J* = 10.8, 5.2 Hz, 2H), 7.14 (t, *J* = 7.4 Hz, 1H), 5.71 – 5.61 (m, 1H), 5.59 – 5.49 (m, 1H), 3.75 (d, *J* = 6.8 Hz, 2H), 3.48 (t, *J* = 7.3 Hz, 1H), 2.70 (t, *J* = 7.1 Hz, 2H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.08, 165.52, 140.16, 137.28, 137.10, 135.48, 134.05, 130.59, 129.08, 128.41, 126.52, 124.87, 120.00, 119.09, 61.02, 59.75, 33.03, 29.61. HRMS (ESI-TOF) Calcd for C₂₀H₂₁CINO4S⁺ ([M+H]⁺) 406.0874. Found 406.0875.

(*E*)-6-((3-Chlorophenyl)sulfonyl)-2-isobutyryl-*N*-phenylhex-4-enamide (**4t2**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 87% yield (189.3 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil. *Rf* (petroleum ether/ethyl acetate = 1:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (s, 1H), 7.84 (t, *J* = 1.8 Hz, 1H), 7.71 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.60 (ddd, *J* = 8.0, 1.9, 1.0 Hz, 1H), 7.48 (dd, *J* = 16.6, 8.3 Hz, 3H), 7.32 (t, *J* = 7.9 Hz, 2H), 7.13 (t, *J* = 7.4 Hz, 1H), 5.70 – 5.58 (m, 1H), 5.58 – 5.48 (m, 1H), 3.74 (d, *J* = 7.0 Hz, 2H), 3.69 (t, *J* = 7.4 Hz, 1H), 2.76 (dq, *J* = 14.0, 7.0 Hz, 1H), 2.67 (dd, *J* = 14.5, 8.4 Hz, 2H), 1.14 (d, *J* = 6.9 Hz, 3H), 1.11 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 212.93, 165.63, 140.20, 137.31, 136.92, 135.48, 134.03, 130.56, 129.06, 128.42, 126.54, 124.75, 119.96, 119.14, 59.72, 58.64, 41.71, 34.46, 17.93, 17.66. HRMS (ESI-TOF) Calcd for C₂₂H₂₅ClNO4S⁺ ([M+H]⁺) 434.1187. Found 434.1188.

(*E*)-2-Acetyl-6-(naphthalen-1-ylsulfonyl)-*N*-phenylhex-4-enamide (**4u1**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 81% yield (171.4 mg), E/Z = 20:1, which was detected by ¹H NMR spectroscopy. Pale yellow oil. *R_f* (petroleum ether/ethyl acetate = 1:1.5, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, J = 8.7 Hz, 1H), 8.19 (dd, J = 7.3, 1.2 Hz, 1H), 8.11 (d, J = 8.0 Hz, 2H), 7.96 (d, J = 7.5 Hz, 1H), 7.69 (ddd, J = 8.5, 6.9, 1.4 Hz, 1H), 7.65 – 7.59 (m, 1H), 7.59 – 7.53 (m, 1H), 7.53 – 7.47 (m, 2H), 7.33 (dd, J = 10.7, 5.2 Hz, 2H), 7.13 (t, J = 7.4 Hz, 1H), 5.54 (td, J = 5.9, 4.1 Hz, 2H), 3.95 (dd, J = 5.5, 2.8 Hz, 2H), 3.36 (t, J = 7.3 Hz, 1H), 2.65 – 2.54 (m, 2H), 2.22 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.00, 165.69, 137.33, 136.63, 135.38, 134.14, 133.55, 131.14, 129.36, 129.05, 128.89, 128.82, 127.11, 124.80, 124.40, 124.03, 120.03, 119.39, 61.10, 59.38, 32.96, 29.60. HRMS (ESI-TOF) Calcd for C₂₄H₂₄NO₄S⁺ ([M+H]⁺) 422.1421. Found 422.1421.

(*E*)-2-Isobutyryl-6-(naphthalen-1-ylsulfonyl)-*N*-phenylhex-4-enamide (**4u2**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 3:1, v/v) in 81% yield (182.5 mg), E/Z = 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil. *R_f* (petroleum ether/ethyl acetate = 1.5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, J = 8.5 Hz, 1H), 8.20 (dd, J = 7.3, 1.0 Hz, 2H), 8.10 (d, J = 8.2 Hz, 1H), 7.95 (d, J = 7.9 Hz, 1H), 7.69 (ddd, J = 8.5, 7.0, 1.3 Hz, 1H), 7.65 – 7.59 (m, 1H), 7.59 – 7.52 (m, 1H), 7.48 (d, J = 7.7 Hz, 2H), 7.30 (t, J = 7.9 Hz, 2H), 7.11 (t, J = 7.4 Hz, 1H), 5.57 – 5.43 (m, 2H), 3.99 – 3.87 (m, 2H), 3.58 (t, J = 7.4 Hz, 1H), 2.67 (dd, J = 13.8, 6.9 Hz, 1H), 2.61 – 2.49 (m, 2H), 1.09 (d, J = 6.9 Hz, 3H), 1.04 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 212.70, 165.79, 137.37, 136.41, 135.35, 134.15, 133.61, 131.15, 129.34, 129.01, 128.92, 128.79, 127.08, 124.68, 124.38, 124.06, 120.00, 119.47, 59.38, 58.74, 41.56, 34.33, 17.92, 17.65. HRMS (ESI-TOF) Calcd for C₂₆H₂₈NO₄S⁺ ([M+H]⁺) 450.1734. Found 450.1734.

(*E*)-2-Acetyl-*N*-phenyl-6-(thiophen-2-ylsulfonyl)hex-4-enamide (**4v1**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 82% yield (155.8 mg), E/Z = 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil. *R_f* (petroleum ether/ethyl acetate = 1:1.5, v/v) 0.33.¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.66 (dd, J = 5.0, 1.3 Hz, 1H), 7.60 (dd, J = 3.8, 1.3 Hz, 1H), 7.53 (dd, J = 8.5, 0.9 Hz, 2H), 7.32 (dd, J = 10.8, 5.1 Hz, 2H), 7.17 – 7.07 (m, 2H), 5.75 – 5.64 (m, 1H), 5.64 – 5.52 (m, 1H), 3.83 (d, J = 7.0 Hz, 2H), 3.52 (t, J = 7.3 Hz, 1H), 2.70 (td, J = 7.0, 3.4 Hz, 2H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 205.82, 165.86, 139.16, 137.44, 137.10, 134.59, 134.32, 129.05, 127.96, 124.81, 120.07, 119.36, 61.06, 61.02, 32.80, 29.47. HRMS (ESI-TOF) Calcd for C₁₈H₂₀NO₄S₂⁺ ([M+H]⁺) 378.0828. Found 378.0830.

(*E*)-2-Isobutyryl-*N*-phenyl-6-(thiophen-2-ylsulfonyl)hex-4-enamide (**4v2**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 3:1, v/v) in 87% yield (176.7 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil. *R_f* (petroleum ether/ethyl acetate = 1.5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.59 (dd, J = 5.0, 1.2 Hz, 1H), 7.54 (dd, J = 3.7, 1.2 Hz, 1H), 7.44 (d, J = 7.8 Hz, 2H), 7.24 (t, J = 7.9 Hz, 2H), 7.09 – 6.99 (m, 2H), 5.65 – 5.44 (m, 2H), 3.75 (d, J = 6.9 Hz, 2H), 3.65 (t, J = 7.4 Hz, 1H), 2.72 (dt, J = 13.8, 6.9 Hz, 1H), 2.60 (t, J = 6.9 Hz, 2H), 1.06 (d, J = 7.0 Hz, 3H), 1.03 (d, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 212.65, 165.82, 139.25, 137.41, 136.83, 134.57, 134.28, 129.04, 127.93, 124.72, 120.01, 119.53, 60.99, 58.71, 41.53, 34.28, 17.97, 17.77. HRMS (ESI-TOF) Calcd for C₂₀H₂₄NO₄S₂⁺ ([M+H]⁺) 406.1141. Found 406.1142.

(*E*)-2-Acetyl-6-(ethylsulfonyl)-*N*-phenylhex-4-enamide (**4w1**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) in 66% yield (106.8 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil. *R_f* (petroleum ether/ethyl acetate = 1:1.5, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 7.61 – 7.48 (m, 2H), 7.32 (t, *J* = 8.0 Hz, 2H), 7.13 (t, *J* = 7.4 Hz, 1H), 5.86 (dt, *J* = 14.3, 7.1 Hz, 1H), 5.74 – 5.53 (m, 1H), 3.63 (d, *J* = 7.3 Hz, 2H), 3.58 (t, *J* = 7.3 Hz, 1H), 2.89 (q, *J* = 7.5 Hz, 2H), 2.75 (t, *J* = 7.1 Hz, 2H), 2.31 (s, 3H), 1.28 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 205.86, 166.00, 137.40, 136.36, 129.07, 124.84, 120.03, 119.72, 60.91, 55.62, 45.84, 32.84, 29.47, 6.32. HRMS (ESI-TOF) Calcd for C₁₆H₂₂NO4S⁺ ([M+H]⁺) 324.1264. Found 324.1265.

(*E*)-6-(Ethylsulfonyl)-2-isobutyryl-*N*-phenylhex-4-enamide (**4w2**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 3:1, v/v) in 73% yield (128.1 mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil. *R_f* (petroleum ether/ethyl acetate = 1.5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 7.51 (d, J = 7.6 Hz, 2H), 7.33 (t, J = 7.9 Hz, 2H), 7.13 (t, J = 7.4 Hz, 1H), 5.84 (dt, J = 14.4, 7.1 Hz, 1H), 5.76 – 5.54 (m, 1H), 3.77 (dd, J = 7.9, 6.9 Hz, 1H), 3.62 (d, J = 7.3 Hz, 2H), 2.90 (q, J = 7.5 Hz, 2H), 2.82 (dt, J = 13.8, 6.9 Hz, 1H), 2.72 (dd, J = 11.6, 6.9 Hz, 2H), 1.30 (t, J = 7.5 Hz, 3H), 1.16 (d, J = 7.0 Hz, 3H), 1.14 (d, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 213.09, 165.77, 137.29, 135.83, 129.08, 124.79, 120.20, 119.96, 58.51, 55.62, 45.70, 41.71, 34.54, 17.98, 17.68, 6.34. HRMS (ESI-TOF) Calcd for C₁₈H₂₆NO4S⁺ ([M+H]⁺) 352.1577. Found 352.1577.

(*E*)-2-Acetyl-6-(methylsulfonyl)-*N*-phenylhex-4-enamide (**4x**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 1:1, v/v) in 83% yield (128.1

mg), E/Z > 20:1, which was detected by ¹H NMR spectroscopy. Yellow oil. *R_f* (petroleum ether/ethyl acetate = 1:2, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.53 (d, J = 7.7 Hz, 2H), 7.32 (t, J = 7.9 Hz, 2H), 7.13 (t, J = 7.4 Hz, 1H), 5.88 (dt, J = 14.4, 7.1 Hz, 1H), 5.77 – 5.59 (m, 1H), 3.65 (d, J = 7.4 Hz, 2H), 3.58 (t, J = 7.3 Hz, 1H), 2.78 (s, 3H), 2.75 (d, J = 7.1 Hz, 2H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 205.91, 165.95, 137.35, 136.64, 129.08, 124.89, 120.08, 119.92, 60.87, 58.25, 39.27, 32.85, 29.46. HRMS (ESI-TOF) Calcd for C₁₅H₂₀NO4S⁺ ([M+H]⁺) 310.1108. Found 310.1109.

2-Methyl-*N*-phenyl-3-tosylpropanamide (**4y**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 24:1, v/v) in 75% yield (113.1 mg). White solid, m.p. = 15.4-154.1 °C. *R_f* (petroleum ether/ethyl acetate = 8:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.81 (d, *J* = 8.2 Hz, 2H), 7.43 (d, *J* = 7.8 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.25 (dd, *J* = 9.9, 5.9 Hz, 2H), 7.07 (t, *J* = 7.4 Hz, 1H), 3.63 – 3.39 (m, 2H), 3.02 – 2.80 (m, 2H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.20, 145.34, 137.72, 135.55, 130.15, 128.94, 128.07, 124.43, 119.87, 52.04, 29.96, 21.67. HRMS (ESI-TOF) Calcd for C₁₆H₁₈NO₃S⁺ ([M+H]⁺) 304.1002. Found 304.1003. Spectra are consistent with literature report.¹

N-Benzyl-2-methyl-*N*-phenyl-3-tosylpropanamide (**4z**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 15:1, v/v) in 45% yield (91.0 mg). White solid, m.p. = 89.1-90.0 °C. *R_f* (petroleum ether/ethyl acetate = 6:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.2 Hz, 2H), 7.43 – 7.29 (m, 5H), 7.25 (dd, *J* = 6.9, 3.5 Hz, 3H), 7.18 – 7.07 (m, 2H), 6.95 (dd, *J* = 6.3, 3.0 Hz, 2H), 4.82 (s, 2H), 3.60 – 3.31 (m, 2H), 2.66 – 2.50 (m, 2H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.87, 144.81, 141.24, 136.91, 136.07, 129.93, 129.89, 128.83, 128.56, 128.44, 128.30, 128.00, 127.56, 53.37, 52.21, 27.60, 21.70. HRMS (ESI-TOF) Calcd for C₂₃H₂₄NO₃S⁺ ([M+Na]⁺) 416.1291. Found 416.1296.

(*E*)-6-Methoxy-4-methyl-3-(4-tosylbut-2-en-1-yl)quinolin-2(1*H*)-one (**5a**). Isolated by flash column chromatography (petroleum ether/ethyl acetate/Et₃N = 50:100:1, v/v) in 55% yield (43.8 mg), which was detected by ¹H NMR spectroscopy. Brown solid, m.p. = 210.0-210.4 °C. *R_f* (petroleum ether/ethyl acetate = 1:3, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 11.55 (s, 1H), 7.62 (d, *J* = 8.2 Hz, 2H), 7.29 (s, 1H), 7.18 – 7.12 (m, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 5.73 – 5.59 (m, 1H), 5.49 (dd, *J* = 15.2, 7.6 Hz, 1H), 3.90 (s, 3H), 3.72 (d, *J* = 7.3 Hz, 2H), 3.52 (d, *J* = 6.1 Hz, 2H), 2.42 (s, 3H), 2.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.48, 155.17, 144.45, 144.00, 137.83, 135.13, 131.45, 129.44, 128.42, 128.10, 121.47, 118.56, 117.16, 117.09, 106.81, 60.00, 55.79, 30.00, 21.41, 15.35. HRMS (ESI-TOF) Calcd for C₂₂H₂₄NO₄S⁺ ([M+H]⁺) 398.1421. Found 398.1423.

(*E*)-4,6-Dimethyl-3-(4-tosylbut-2-en-1-yl)quinolin-2(1*H*)-one (**5b**). Isolated by flash column chromatography (petroleum ether/ethyl acetate/Et₃N = 50:50:1, v/v) in 61% yield (46.3 mg), which was detected by ¹H NMR spectroscopy. Brown solid, m.p. = 221.3-221.9 °C. *R_f* (petroleum ether/ethyl acetate = 1:2, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 11.74 (s, 1H), 7.60 (d, *J* = 8.3 Hz, 2H), 7.50 (s, 1H), 7.32 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.24 (d, *J* = 8.3 Hz, 1H), 7.06 (d, *J* = 8.0 Hz, 2H), 5.64 (dt, *J* = 15.4, 6.2 Hz, 1H), 5.54 – 5.41 (m, 1H), 3.72 (d, *J* = 7.3 Hz, 2H), 3.51 (d, *J* = 6.1 Hz, 2H), 2.46 (s, 3H), 2.43 (s, 3H), 2.19 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.94, 144.42, 144.38, 137.94, 135.01, 134.88, 131.98, 131.12, 129.42, 128.42, 127.52, 124.22, 120.72, 117.05, 115.93, 60.00, 29.91, 21.37, 21.35, 15.20. HRMS (ESI-TOF) Calcd for C₂₂H₂₄NO₃S⁺ ([M+H]⁺) 382.1471. Found 382.1474.

(*E*)-2-Chloro-*N*-phenyl-6-tosylhex-4-enamide (6). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 4:1, v/v) in 57% yield (43.3 mg). White solid, m.p. = 118.4-119.2 °C. *R_f* (petroleum ether/ethyl acetate = 1.5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.73 (d, *J* = 8.2 Hz, 2H), 7.54 (d, *J* = 7.7 Hz, 2H), 7.41 – 7.28 (m, 4H), 7.17 (t, *J* = 7.4 Hz, 1H), 5.62 (td, *J* = 5.9, 3.5 Hz, 2H), 4.43 (dd, *J* = 7.4, 4.5 Hz, 1H), 3.83 – 3.73 (m, 2H), 2.96 – 2.72 (m, 2H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.82, 144.86, 136.76, 135.45, 134.43, 129.78, 129.13,

128.45, 125.25, 121.46, 120.17, 59.93, 59.73, 38.23, 21.65. HRMS (ESI-TOF) Calcd for C₁₉H₂₁ClNO₃S⁺ ([M+H]⁺) 378.0925. Found 378.0925.

2,6-Di-*tert*-butyl-4-methyl-4-tosylcyclohexa-2,5-dien-1-one (7). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.1 Hz, 2H), 7.19 (d, J = 7.9 Hz, 2H), 6.64 (s, 2H), 2.37 (s, 3H), 1.82 (s, 3H), 1.10 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 183.70, 151.22, 145.32, 135.71, 130.59, 130.26, 128.81, 65.82, 35.20, 28.98, 21.63, 18.53. HRMS (ESI-TOF) Calcd for C₂₂H₃₀O₃SNa⁺ ([M+Na]⁺) 397.1808. Found 397.1814. Spectra are consistent with literature report.²

(*E*)-2-Acetyl-2-(3,5-di-*tert*-butyl-1-methyl-4-oxocyclohexa-2,5-dien-1-yl)-*N*-phenyl-6-tosylhex-4-enamide (**8**). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 10:1, v/v) in 27% yield (81.2 mg). *R_f* (petroleum ether/ethyl acetate = 3:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 7.64 (d, *J* = 8.3 Hz, 2H), 7.54 (d, *J* = 7.6 Hz, 2H), 7.38 – 7.33 (m, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.16 (t, *J* = 7.4 Hz, 1H), 6.61 (d, *J* = 3.0 Hz, 1H), 6.25 (d, *J* = 3.0 Hz, 1H), 5.55 (dd, *J* = 15.0, 7.1 Hz, 1H), 5.49 – 5.39 (m, 1H), 3.70 (td, *J* = 14.1, 6.3 Hz, 2H), 3.20 (d, *J* = 13.7 Hz, 1H), 2.42 (t, *J* = 5.3 Hz, 1H), 2.34 (s, 3H), 2.28 (s, 3H), 1.31 (s, 3H), 1.24 (s, 9H), 1.23 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 212.30, 185.77, 165.44, 148.37, 148.19, 144.86, 141.56, 140.54, 137.25, 136.61, 135.62, 129.83, 129.11, 128.06, 124.83, 120.35, 120.16, 67.53, 59.89, 44.76, 35.20, 35.11, 34.33, 31.96, 29.34, 29.30, 22.09, 21.52. HRMS (ESI-TOF) Calcd for C₃₆H₄₆NO5S⁺ ([M+H]⁺) 604.3091. Found 604.3091.

(2-Tosylethene-1,1-diyl)dibenzene (**9**). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.3 Hz, 2H), 7.39 – 7.33 (m, 2H), 7.33 – 7.26 (m, 4H), 7.23 – 7.17 (m, 2H), 7.14 (d, J = 8.1 Hz, 2H), 7.09 (dd, J = 5.2, 3.3 Hz, 2H), 6.99 (s, 1H), 2.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.74, 143.79, 139.24, 138.62, 135.60, 130.26, 129.79, 129.36, 128.97, 128.87, 128.60, 128.23, 127.83, 127.71, 21.59. HRMS (ESI-TOF) Calcd for

 $C_{21}H_{18}NaO_2S^+$ ([M+Na⁺) 357.0925. Found 357.0916. Spectra are consistent with literature report.³

(3-Methyl-4-(tosylmethyl)cyclopentane-1,1-diyl)bis(phenylmethanone) (10). Isolated by flash column chromatography (petroleum ether/ethyl acetate = 15:1, v/v) in 72% yield (162.9 mg). Pale yellow solid, m.p. = 119-120 °C. R_f (petroleum ether/ethyl acetate = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.2 Hz, 2H), 7.75 – 7.68 (m, 4H), 7.38 (t, J = 7.1 Hz, 2H), 7.33 – 7.23 (m, 6H), 3.21 – 3.08 (m, 2H), 2.73 (ddd, J = 13.1, 9.3, 6.8 Hz, 2H), 2.62 – 2.45 (m, 2H), 2.41 (d, J = 2.8 Hz, 3H), 2.33 (ddd, J = 13.4, 10.1, 5.7 Hz, 2H), 0.90 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.36, 197.54, 144.64, 136.69, 135.63, 135.30, 133.13, 133.07, 129.92, 129.30, 129.26, 129.21, 128.54, 128.53, 128.10, 68.56, 56.72, 41.26, 38.13, 37.70, 37.11, 21.64, 15.01. HRMS (ESI-TOF) Calcd for C₂₈H₂₉O4S⁺ ([M+H]⁺) 461.1781. Found 461.1781.

VII. General procedure for the synthesis of vinylcyclopropane substrates 1

The substrate vinylcyclopropane **1** or **1**' was synthesized according to the literature procedure,⁴ but some adjustments were made.

A mixture of dicarbonyl compound (10.0 mmol), 1,4-dibromo-2-butene (10.0 mmol, 1 equiv) and K₂CO₃ (30 mmol, 3 equiv) in acetone (30 mL) was stirred at 56 °C for 12 h, Then, it was quenched with water (50.0 mL) and extracted with CH₂Cl₂ (25.0 mL \times 4). The residue obtained after evaporation of the solvent was purified on silica gel (petroleum ether–ethyl acetate) to afford the vinylcyclopropane 1 or 1'.

Some of the vinylcyclopropane **1** or **1**' are known, and their NMR spectra data match those previously reported in the literature.³ The other vinylcyclopropanes listed below are all new compounds.

Methyl 1-(phenylcarbamoyl)-2-vinylcyclopropane-1-carboxylate (**1a1**), isolated by flash column chromatography (petroleum ether/ethyl acetate = 30:1). Major diasteroisomer: colourless oil, ¹H NMR (400 MHz, CDCl₃) δ 10.56 (s, 1H), 7.64 – 7.49 (m, 2H), 7.37 – 7.27 (m, 2H), 7.15 – 7.02 (m, 1H), 5.66 (ddd, *J* = 17.1, 10.2, 8.8 Hz, 1H), 5.37 (ddd, *J* = 17.1, 1.4, 0.6 Hz, 1H), 5.26 – 5.13 (m, 1H), 3.76 (s, 3H), 2.64 (dd, *J* = 17.3, 8.8 Hz, 1H), 2.20 (dd, *J* = 9.2, 4.4 Hz, 1H), 1.97 (dd, *J* = 8.1, 4.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 172.25, 165.91, 138.06, 133.04, 128.96, 124.20, 120.21, 120.08, 52.36, 38.26, 34.90, 21.74. HRMS (ESI-TOF) Calcd for C₁₄H₁₆NO₃⁺ ([M+H]⁺) 246.1125. Found 246.1125.

1-Benzoyl-*N*-phenyl-2-vinylcyclopropane-1-carboxamide (**1a3**), isolated by flash column chromatography (petroleum ether/ethyl acetate = 24:1). Major diasteroisomer : minor diasteroisomer = 3:1. Major diasteroisomer: white solid, m. p.= 107-108 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.3 Hz, 2H), 7.63 (s, 1H), 7.58 (d, *J* = 7.4 Hz, 1H), 7.47 (dd, *J* = 10.6, 4.6 Hz, 2H), 7.32 (d, *J* = 7.8 Hz, 2H), 7.29 – 7.21 (m, 2H), 7.07 (t, *J* = 7.3 Hz, 1H), 5.33 (dd, *J* = 16.9, 1.6 Hz, 1H), 5.27 – 5.15 (m, 1H), 5.03 (dd, *J* = 10.0, 1.5 Hz, 1H), 2.97 (dd, *J* = 16.0, 8.5 Hz, 1H), 1.89 (dd, *J* = 7.1, 4.9 Hz, 1H), 1.84 (dd, *J* = 8.8, 4.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.93, 196.43, 166.63, 165.05, 137.60, 137.45, 136.53, 135.91, 134.00, 133.73, 133.52, 133.41, 129.27, 128.92, 128.90, 128.81, 124.60, 119.99, 118.67, 118.61, 43.78, 42.85, 32.08, 29.84, 20.38, 19.26. HRMS (ESI-TOF) Calcd for C₁₉H₁₈NO₂⁺ ([M+H]⁺) 292.1332. Found 292.1330.

1-Acetyl-*N*-(4-bromophenyl)-2-vinylcyclopropane-1-carboxamide (**1b5**), isolated by flash column chromatography (petroleum ether/ethyl acetate = 20:1). Major diasteroisomer : minor diasteroisomer = 3:2. Major diasteroisomer: pale yellow solid.

m. p.= 142-143 °C, ¹H NMR (400 MHz, CDCl₃) δ 10.32 (s, 1H), 7.48 (d, J = 8.9 Hz, 2H), 7.42 (d, J = 8.9 Hz, 2H), 5.74 (ddd, J = 17.1, 10.2, 7.0 Hz, 1H), 5.41 (d, J = 17.0 Hz, 1H), 5.32 (d, J = 10.2 Hz, 1H), 2.63 (d, J = 8.0 Hz, 1H), 2.31 (dd, J = 9.1, 5.3 Hz, 1H), 2.21 (s, 3H), 1.90 (dd, J = 7.9, 5.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 207.59, 166.32, 137.07, 132.10, 131.92, 121.65, 121.15, 116.75, 42.37, 37.04, 30.99, 21.21. HRMS (ESI-TOF) Calcd for C₁₄H₁₅BrNO₂⁺ ([M+H]⁺) 308.0281. Found 308.0278.

N-([1,1'-Biphenyl]-4-yl)-1-acetyl-2-vinylcyclopropane-1-carboxamide (**1b6**), isolated by flash column chromatography (petroleum ether/ethyl acetate = 24:1). Major diasteroisomer: colourless oil, ¹H NMR (400 MHz, CDCl₃) δ 10.19 (s, 1H), 7.65 (d, *J* = 8.5 Hz, 2H), 7.57 (t, *J* = 7.0 Hz, 4H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.3 Hz, 1H), 5.73 (ddd, *J* = 17.1, 10.1, 7.2 Hz, 1H), 5.41 (d, *J* = 17.0 Hz, 1H), 5.31 (d, *J* = 10.2 Hz, 1H), 2.65 (dd, *J* = 16.0, 8.0 Hz, 1H), 2.30 (dd, *J* = 9.0, 5.3 Hz, 1H), 2.23 (s, 3H), 1.90 (dd, *J* = 7.8, 5.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 207.35, 166.28, 140.52, 137.28, 137.07, 132.29, 128.82, 127.61, 127.13, 126.87, 120.90, 120.41, 42.67, 36.63, 30.99, 21.05. HRMS (ESI-TOF) Calcd for C₂₀H₂₀NO₂⁺ ([M+H]⁺) 306.1489. Found 306.1488.

1-Acetyl-*N*-(4-(trifluoromethyl)phenyl)-2-vinylcyclopropane-1-carboxamide (1b7), isolated by flash column chromatography (petroleum ether/ethyl acetate = 20:1), Major diasteroisomer: pale yellow solid, m. p.= 101-102 °C, ¹H NMR (400 MHz, CDCl₃) δ 10.53 (s, 1H), 7.69 (d, *J* = 8.5 Hz, 2H), 7.57 (d, *J* = 8.6 Hz, 2H), 5.76 (ddd, *J* = 17.0, 10.2, 6.9 Hz, 1H), 5.42 (dt, *J* = 17.0, 1.2 Hz, 1H), 5.33 (dt, *J* = 10.2, 1.1 Hz, 1H), 2.72 – 2.59 (m, 1H), 2.35 (dd, *J* = 9.1, 5.3 Hz, 1H), 2.21 (s, 3H), 1.92 (dd, *J* = 8.0, 5.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 207.58, 166.62, 141.02, 132.00, 126.22 (q, *J* = 3.1 Hz), 125.93 (q, *J* = 32.3 Hz), 124.12 (q, *J* = 272.7 Hz), 121.26, 119.73, 42.34, 37.32, 30.88, 21.35. HRMS (ESI-TOF) Calcd for C₁₅H₁₅F₃NO₂⁺ ([M+H]⁺) 298.1049. Found 298.1051.

1-Acetyl-*N*-(2,4-dimethylphenyl)-2-vinylcyclopropane-1-carboxamide (1e), isolated by flash column chromatography (petroleum ether/ethyl acetate = 20:1), Major diasteroisomer: pale yellow solid, m. p.= 226-227 °C, ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 6.96 (d, *J* = 7.7 Hz, 2H), 5.70 (ddd, *J* = 17.2, 10.2, 7.2 Hz, 1H), 5.45 – 5.32 (m, 1H), 5.26 (d, *J* = 10.2 Hz, 1H), 2.61 (dd, *J* = 16.1, 7.9 Hz, 1H), 2.27 (s, 3H), 2.27 (s, 3H), 2.23 – 2.15 (m, 4H), 1.84 (dd, *J* = 7.9, 5.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 207.13, 166.26, 134.27, 133.65, 132.53, 131.09, 128.74, 127.09, 122.31, 120.49, 42.74, 36.14, 30.74, 20.98, 20.87, 17.94. HRMS (ESI-TOF) Calcd for C₁₆H₂₀NO₂⁺ ([M+H]⁺) 258.1489. Found 258.1492.

1-Acetyl-*N*-(4-(iodo- λ^2 -methyl)-2,5-dimethoxyphenyl)-2-vinylcyclopropane-1carboxamide (**1g**), isolated by flash column chromatography (petroleum ether/ethyl acetate = 20:1), Major diasteroisomer : minor diasteroisomer = 3:2. Major diasteroisomer: white solid, m. p.= 116-117 °C, ¹H NMR (400 MHz, CDCl₃) δ 10.36 (s, 1H), 8.21 (s, 1H), 6.89 (s, 1H), 5.70 (ddd, *J* = 17.2, 10.2, 7.3 Hz, 1H), 5.40 (dt, *J* = 17.0, 1.1 Hz, 1H), 5.29 (d, *J* = 10.2 Hz, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 2.62 (dd, *J* = 16.2, 7.9 Hz, 1H), 2.24 (s, 3H), 2.22 – 2.17 (m, 1H), 1.90 (dd, *J* = 7.9, 5.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 206.25, 166.23, 148.78, 142.38, 132.25, 127.10, 120.67, 115.51, 112.20, 104.87, 56.52, 43.03, 36.19, 30.77, 20.82. HRMS (ESI-TOF) Calcd for C₁₆H₁₉ClNO₄⁺ ([M+H]⁺) 324.0997. Found 324.0999.

1-Benzoyl-*N*-isopropyl-2-vinylcyclopropane-1-carboxamide (**1h**), isolated by flash column chromatography (petroleum ether/ethyl acetate = 10:1), pale yellow oil. Major diasteroisomer: white solid, m. p.= 220-221 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.88 (m, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 5.60 – 5.47 (m, 1H),

5.39 (s, 1H), 5.36 – 5.31 (m, 1H), 5.14 (dd, J = 10.2, 1.5 Hz, 1H), 4.08 – 3.85 (m, 1H), 2.67 (dd, J = 16.2, 8.9 Hz, 1H), 2.05 (dd, J = 7.1, 4.7 Hz, 1H), 1.45 (dd, J = 8.9, 4.7 Hz, 1H), 1.00 (d, J = 6.6 Hz, 3H), 0.78 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.09, 165.98, 136.35, 134.08, 133.38, 128.78, 128.62, 117.84, 43.10, 42.02, 29.01, 22.70, 21.97, 20.65. HRMS (ESI-TOF) Calcd for C₁₆H₂₀NO₂⁺ ([M+H]⁺) 258.1489. Found 258.1489.

1-Cyano-*N*-phenyl-2-vinylcyclopropane-1-carboxamide (**1'a5**), isolated by flash column chromatography (petroleum ether/ethyl acetate = 30:1), Major diasteroisomer: yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.55 – 7.45 (m, 2H), 7.39 – 7.31 (m, 2H), 7.21 – 7.11 (m, 1H), 5.68 (ddd, *J* = 17.0, 10.2, 8.3 Hz, 1H), 5.50 – 5.45 (m, 1H), 5.45 – 5.37 (m, 1H), 2.67 (dd, *J* = 16.7, 8.2 Hz, 1H), 2.10 (dd, *J* = 8.9, 4.9 Hz, 1H), 1.72 – 1.59 (m, 1H). Diasteroisomer *Mixture* spectrum: ¹³C NMR (101 MHz, CDCl₃) δ 162.73, 160.81, 136.91, 136.80, 132.37, 130.78, 129.14, 129.11, 125.35, 125.30, 121.12, 120.78, 120.44, 119.86, 118.25, 35.77, 33.30, 23.19, 22.35, 21.32, 21.25. HRMS (ESI-TOF) Calcd for C₁₃H₁₃N₂O⁺ ([M+H]⁺) 213.1022. Found 213.1020.

N-(4-chlorophenyl)-1-(thiophene-2-carbonyl)-2-vinylcyclopropane-1-carboxamide (**1'b**), isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1), Major diasteroisomer : minor diasteroisomer = 3:2. Major diasteroisomer: yellow solid, m. p.= 132.0-133.0 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.97 (dd, *J* = 3.9, 0.9 Hz, 1H), 7.67 (dd, *J* = 4.9, 0.9 Hz, 1H), 7.42 (d, *J* = 8.8 Hz, 2H), 7.26 – 7.20 (m, 2H), 7.12 (dd, *J* = 4.8, 3.9 Hz, 1H), 5.58 (ddd, *J* = 17.0, 10.1, 8.9 Hz, 1H), 5.38 (dd, *J* = 17.0, 1.0 Hz, 1H), 5.18 (dd, *J* = 10.2, 1.2 Hz, 1H), 2.09 (dd, *J* = 7.2, 5.1 Hz, 1H), 1.89 – 1.81 (m, 1H), 1.62 (dd, *J* = 8.9, 5.0 Hz, 1H). Diasteroisomer *Mixture* spectrum ¹³C NMR (101 MHz, CDCl₃) δ 188.49, 188.21, 166.37, 164.93, 143.28, 142.33, 136.42, 136.29, 135.62, 135.33, 135.05, 134.45, 133.53, 133.38, 129.61, 128.97, 128.76, 128.72, 121.26, 121.19, 118.72, 118.47, 44.12, 43.20, 31.26, 29.63, 20.26, 19.09. HRMS (ESI-TOF) Calcd for C₁₇H₁₅CINO₂S⁺ ([M+H]⁺) 332.0507. Found 332.0511.

1-Acetyl-*N*-(4-(tert-butyl)phenyl)-2-vinylcyclopropane-1-carboxamide (**1'e4**), isolated by flash column chromatography (petroleum ether/ethyl acetate = 20:1), Major diasteroisomer : minor diasteroisomer = 4:1. Major diasteroisomer: pale yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 9.77 (s, 1H), 7.47 (d, *J* = 8.7 Hz, 2H), 7.33 (d, *J* = 8.7 Hz, 2H), 5.73 – 5.62 (m, 1H), 5.37 (dt, *J* = 17.0, 1.2 Hz, 1H), 5.28 – 5.23 (m, 1H), 2.62 (dd, *J* = 16.3, 7.8 Hz, 1H), 2.22 (s, 3H), 2.18 – 2.13 (m, 1H), 1.84 (dd, *J* = 7.8, 5.2 Hz, 1H), 1.30 (s, 10H). ¹³C NMR (101 MHz, CDCl₃) δ 206.64, 166.18, 147.31, 135.34, 132.46, 125.78, 120.40, 119.93, 43.11, 35.69, 34.39, 31.38, 30.74, 20.69. HRMS (ESI-TOF) Calcd for C₁₈H₂₄NO₂⁺ ([M+H]⁺) 286.1802. Found 286.1806.

1-Benzoyl-*N*-benzyl-2-vinylcyclopropane-1-carboxamide (**1'f**), isolated by flash column chromatography (petroleum ether/ethyl acetate = 10:1), Major diasteroisomer: white solid, m. p.= 132.0-133.0 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.91 (m, 2H), 7.63 – 7.56 (m, 1H), 7.46 (dd, *J* = 10.6, 4.8 Hz, 2H), 7.21 – 7.11 (m, 3H), 6.92 – 6.82 (m, 2H), 5.89 (s, 1H), 5.65 – 5.50 (m, 1H), 5.36 (dd, *J* = 17.1, 1.4 Hz, 1H), 5.16 (dd, *J* = 10.2, 1.5 Hz, 1H), 4.33 (qd, *J* = 15.0, 5.7 Hz, 2H), 2.71 (dd, *J* = 16.3, 9.0 Hz, 1H), 2.12 (dd, *J* = 7.2, 4.8 Hz, 1H), 1.50 (dd, *J* = 8.9, 4.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.70, 166.95, 137.52, 136.26, 134.07, 133.51, 128.88, 128.81, 128.53, 127.41, 127.38, 118.18, 44.08, 43.05, 29.14, 20.68. HRMS (ESI-TOF) Calcd for C₂₀H₂₀NO₂⁺ ([M+H]⁺) 306.1489. Found 306.1490.

1-Acetyl-*N*-(4-chloro-2-methylphenyl)-2-vinylcyclopropane-1-carboxamide (1'g2), isolated by flash column chromatography (petroleum ether/ethyl acetate = 30:1), Major diasteroisomer: white solid, m. p.= 96-97 °C, ¹H NMR (400 MHz, CDCl₃) δ 10.29 (s,

1H), 7.95 (d, J = 8.3 Hz, 1H), 7.16 – 7.08 (m, 2H), 5.75 (ddd, J = 17.0, 10.2, 6.9 Hz, 1H), 5.40 (dt, J = 17.0, 1.3 Hz, 1H), 5.31 (dt, J = 10.2, 1.2 Hz, 1H), 2.71 – 2.54 (m, 1H), 2.31 (s, 4H), 2.19 (s, 3H), 1.89 (dd, J = 8.0, 5.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 207.72, 166.31, 135.04, 132.21, 130.07, 130.03, 129.14, 126.46, 122.87, 121.03, 42.31, 37.07, 30.79, 21.38, 17.90. HRMS (ESI-TOF) Calcd for C₁₅H₁₇ClNO₂⁺ ([M+H]⁺) 278.0942. Found 278.0942.

1-Acetyl-*N*-(pyridin-2-yl)-2-vinylcyclopropane-1-carboxamide (**1'i**), isolated by flash column chromatography (petroleum ether/ethyl acetate = 30:1). Major diasteroisomer: colourless oil, m. p.= 101-102 °C, ¹H NMR (400 MHz, CDCl₃) δ 9.83 (s, 1H), 8.31 (dd, J = 4.9, 1.0 Hz, 1H), 8.18 (d, J = 8.4 Hz, 1H), 7.80 – 7.63 (m, 1H), 7.05 (ddd, J = 7.3, 4.9, 1.0 Hz, 1H), 5.62 (ddd, J = 17.1, 10.1, 8.9 Hz, 1H), 5.35 (d, J = 16.5 Hz, 1H), 5.19 (d, J = 10.2 Hz, 1H), 2.53 (dd, J = 16.7, 8.8 Hz, 1H), 2.22 (s, 3H), 2.12 (dd, J = 7.6, 5.3 Hz, 1H), 1.84 (dd, J = 9.1, 5.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 203.86, 165.22, 151.26, 148.10, 138.27, 133.04, 119.99, 119.58, 114.28, 44.39, 34.97, 26.77, 21.33. HRMS (ESI-TOF) Calcd for C₁₃H₁₅N₂O₂⁺ ([M+H]⁺) 231.1128. Found 231.1127.

Ethyl 1-(4-methoxybenzoyl)-2-vinylcyclopropane-1-carboxylate (**1'j2**), isolated by flash column chromatography (petroleum ether/ethyl acetate = 24:1), Major diasteroisomer : minor diasteroisomer = 4:1. Major diasteroisomer: colourless oil, ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.9 Hz, 2H), 6.92 (d, *J* = 8.9 Hz, 2H), 5.78 (ddd, *J* = 17.1, 10.2, 8.9 Hz, 1H), 5.38 (dd, *J* = 17.1, 1.1 Hz, 1H), 5.20 (dd, *J* = 10.3, 1.4 Hz, 1H), 4.04 (q, *J* = 7.1 Hz, 2H), 3.87 (s, 3H), 2.68 (d, *J* = 7.7 Hz, 1H), 1.89 (dt, *J* = 7.0, 3.5 Hz, 1H), 1.63 – 1.54 (m, 5H), 0.98 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.63, 169.61, 163.39, 133.35, 130.73, 129.82, 118.55, 113.71, 61.36, 55.48, 40.34, 30.14, 21.15, 13.92. HRMS (ESI-TOF) Calcd for C₁₆H₁₉O₄⁺ ([M+H]⁺) 275.1278. Found 275.1279.

VI. Copies of ¹H, ¹⁹F, ¹³C and DEPT NMR spectra

3a, ¹³C NMR

3a1, ¹H NMR

3a1, DEPT 90 and DEPT 135

3a2, ¹³C NMR

S73

3a3, ¹H NMR

3a3 DEPT 90 and DEPT 135

3a4, ¹³C NMR

3b1, ¹H NMR

3b1 DEPT 90 and DEPT 135

3b2, ¹³C NMR

3b2, ¹H NMR

3b3, ¹H NMR

3b2 DEPT 90 and DEPT 135

3b3 DEPT 90 and DEPT 135

3b4, ¹³C NMR

S82

3b4 ¹⁹F NMR

S83

3b5, ¹³C NMR

3b6, ¹H NMR

S85

3b6 DEPT 90 and DEPT 135

3b7, ¹³C NMR

3b7 ¹⁹F NMR

3b8, ¹³C NMR

3b9, ¹H NMR

3b8 DEPT 90 and DEPT 135

3b9 DEPT 90 and DEPT 135

3c, ¹³C NMR

3d1, ¹H NMR

S93

3d1 DEPT 90 and DEPT 135

3d2, ¹³C NMR

S95

3d3, ¹H NMR

3d3 DEPT 90 and DEPT 135

S97

3e, ¹³C NMR

3f1, ¹H NMR

S99

3f1, DEPT 90 and DEPT 135

S100

3f2, ¹³C NMR

3g, ¹H NMR

3g, DEPT 90 and DEPT 135

 $\mathbf{3h}$, ¹H NMR

3h, ¹³C NMR

3i1, ¹H NMR

3i1, DEPT 90 and DEPT 135

S106

3i2, ¹³C NMR

3j1, ¹H NMR

3j1, DEPT 90 and DEPT 135

S109

3j2, ¹H NMR

3j2 DEPT 90 and DEPT 135

3j3, ¹³C NMR

3j3 ¹⁹F NMR

3j4, ¹H NMR

3j4, ¹³C NMR

3j5, ¹H NMR

S115

3j5, DEPT 90 and DEPT 135

3k, ¹H NMR

3k, ¹³C NMR

3k¹⁹F NMR

S118

3l1, ¹³C NMR

S119

3l1, DEPT 90 and DEPT 135

3l2, ¹H NMR

3l2 DEPT 90 and DEPT 135

3m, ¹³C NMR

S122

3n, ¹H NMR

3n, DEPT 90 and DEPT 135

S124

30, ¹³C NMR

30 DEPT 90 and DEPT 135

3p, ¹H NMR

3p, DEPT 90 and DEPT 135

4a, ¹³C NMR

4a1, ¹H NMR

4a1, DEPT 90 and DEPT 135

4a2, ¹³C NMR

S131

4a3, ¹H NMR

4a3, DEPT 90 and DEPT 135

S133

4a4, ¹³C NMR

4a5, ¹H NMR

S135

4a5, DEPT 90 and DEPT 135

4b, ¹³C NMR

4c1, ¹H NMR

4c1, DEPT 90 and DEPT 135

4c2, ¹H NMR

4c2, ¹³C NMR

4c2, DEPT 90 and DEPT 135

4c3, ¹H NMR

4c3, DEPT 90 and DEPT 135

4d1, ¹³C NMR

S143

4d1, DEPT 90 and DEPT 135

4d2, ¹H NMR

4d2, DEPT 90 and DEPT 135

4e1, ¹³C NMR

4e2, ¹H NMR

4e2, DEPT 90 and DEPT 135

4e3, ¹H NMR

4e3, ¹³C NMR

4e4, ¹H NMR

4e3, DEPT 90 and DEPT 135

4e4, DEPT 90 and DEPT 135

4e5, ¹³C NMR

4e5, DEPT 90 and DEPT 135

4e5, ¹⁹F NMR

4e6, ¹³C NMR

4e6, ¹H NMR

4e6, DEPT 90 and DEPT 135

4e7, ¹H NMR

4e7, DEPT 90 and DEPT 135

4e8, ¹H NMR

4e8, ¹³C NMR

4e8, DEPT 90 and DEPT 135

4e8, ¹⁹F NMR

4e9, ¹H NMR

4e9, ¹³C NMR

4e9, DEPT 90 and DEPT 135

4e10, ¹H NMR

4e10, DEPT 90 and DEPT 135

4e11, ¹³C NMR

4e11, DEPT 90 and DEPT 135

4f, ¹H NMR

4f, DEPT 90 and DEPT 135

4g1, ¹³C NMR

4g1, DEPT 90 and DEPT 135

4g2, ¹H NMR

4g2, DEPT 90 and DEPT 135

4h, ¹³C NMR

4h, DEPT 90 and DEPT 135

4i, ¹H NMR

4i, DEPT 90 and DEPT 135

4j1, ¹³C NMR

4j1, DEPT 90 and DEPT 135

4j2, ¹H NMR

4j2, DEPT 90 and DEPT 135

4k1, ¹³C NMR

S174

4k2, ¹H NMR

4k1, DEPT 90 and DEPT 135

4k2, DEPT 90 and DEPT 135

4k3, ¹³C NMR

4k3, ¹H NMR

4k4, ¹H NMR

4k4, DEPT 90 and DEPT 135

4k5, ¹³C NMR

4I, ¹H NMR

4I, DEPT 90 and DEPT 135

4m, ¹H NMR

4m, DEPT 90 and DEPT 135

4n, ¹³C NMR

4n, DEPT 90 and DEPT 135

40, ¹H NMR

40, DEPT 90 and DEPT 135

4p1, ¹H NMR

4p1, DEPT 90 and DEPT 135

4p2, ¹H NMR

4p2, ¹³C NMR

4p3, ¹H NMR

4p3, DEPT 90 and DEPT 135

4p4, ¹H NMR

4p4, DEPT 90 and DEPT 135

4p5, ¹³C NMR

4p6, ¹H NMR

S196

4p6, DEPT 90 and DEPT 135

S197

4p7, ¹H NMR

4p7, DEPT 90 and DEPT 135

4p8, ¹³C NMR

4p8, DEPT 90 and DEPT 135

4q, ¹H NMR

4q, DEPT 90 and DEPT 135

4q, ¹³C NMR

4r1, ¹³C NMR

S203

4r2, ¹H NMR

4r1, DEPT 90 and DEPT 135

4r2, DEPT 90 and DEPT 135

4s1, ¹³C NMR

S206

4s2, ¹H NMR

4s2, DEPT 90 and DEPT 135

4t1, ¹H NMR

4t1, ¹³C NMR

4t2, ¹H NMR

S210

4t2, DEPT 90 and DEPT 135

4u1, ¹³C NMR

4u2, ¹H NMR

S213

4u2, DEPT 90 and DEPT 135

S214

4v1, ¹H NMR

4v1, ¹³C NMR

4v2, ¹H NMR

S216

4v2, DEPT 90 and DEPT 135

4v2, ¹³C NMR

4w1, ¹³C NMR

S218

ZX 6-74 (2) C 90 -136.362 129.066 124.844 7120.029 719.721 -60.905 (H) (I) 0 NHPh Et ò 110 § f1 (ppm) 210 190 170 150 130 90 80 70 60 50 40 30 20 10 0 ZX 6-74 (2) C 135 -136.362 -129.066 -124.844 -120.029 -119.721 --60.904 --55.615 -45.835 -- 32.839 -- 29.465 -6.315 110 90 80 70 60 50 40 30 20 10 f1 (ppm) 170 150 210 190 130 0

4w1, DEPT 90 and DEPT 135

4w2, ¹H NMR

4w2, DEPT 90 and DEPT 135

4x, ¹³C NMR

4y, DEPT 90 and DEPT 135

4z, ¹³C NMR

5a, ¹H NMR

5a, DEPT 90 and DEPT 135

5a, ¹³C NMR

5b, ¹³C NMR

S227

5b, DEPT 90 and DEPT 135

6, ¹H NMR

6, DEPT 90 and DEPT 135

7, ¹³C NMR

8, ¹H NMR

7, DEPT 90 and DEPT 135

8, DEPT 90 and DEPT 135

9, ¹³C NMR

10, ¹H NMR

9, DEPT 90 and DEPT 135

10, DEPT 90 and DEPT 135

1a1, ¹H NMR

1a1, ¹³C NMR

1a1, DEPT 90 and DEPT 135

1a3, ¹H NMR

1a3, DEPT 90 and DEPT 135

1b5, ¹³C NMR

1b6, ¹H NMR

1b6, DEPT 90 and DEPT 135

1b7, ¹³C NMR

1b7, DEPT 90 and DEPT 135

1e, ¹H NMR

1e, DEPT 90 and DEPT 135

1g, ¹³C NMR

S245

1h, ¹H NMR

1h, DEPT 90 and DEPT 135

S247

1'a5, ¹³C NMR

1'a5, ¹H NMR

1'a5, DEPT 90 and DEPT 135

1'b, ¹H NMR

1'b, DEPT 90 and DEPT 135

1'e4, ¹³C NMR

1'e4, DEPT 90 and DEPT 135

1'f, ¹H NMR

1'f, DEPT 90 and DEPT 135

1'f, ¹³C NMR

1'g2, ¹³C NMR

1'g2, DEPT 90 and DEPT 135

1'i, ¹H NMR

1'i, DEPT 90 and DEPT 135

1'j2, ¹³C NMR

VIII. References

1. Y. Yang, L. Tang, S. Zhang, X. Guo, Z. Zha, Z. Wang, *Green Chem.*, **2014**, *16*, 4106–4109.

2. H. Zhu, H. Zheng, J. Zhang, J. Feng, L. Kong, F. Zhang, X.-S. Xue, G. Zhu, *Chem. Sci.*, **2021**, *12*, 11420–11426.

3. Q. Ma, M. Li, Z. Chen, S.-F. Ni, J. S. Wright, L.-R. Wen, L.-B. Zhang, *Green Chem.*, **2022**, *24*, 4425–4431.

4. a) Y. Wei, G. Wang, Z. Zhang, M. Li, N. Ma, H. Wu, G. Zhang, *The Journal of Organic Chemistry*, 2024, 89, 1127–1139; b) G. Zhang, L. Chen, Z. Hu, Z. Zhang, J. Bi, M. Li, X. Zhang, *J. Org. Chem.*, 2023, 88, 1003–1017; c) X. Yang, J. Zhu, Y. Bao, Z. Ding, F. Yang, Q. Zhou, M. Chen, *Eur. J. Org. Chem.*, 2020, 2020, 3856–3859; d) J. M. Ryss, A. K. Turek, S. J. Miller, *Org. Lett.*, 2018, 20, 1621–1625; e) J. Zhang, Y. Tang, W. Wei, Y. Wu, Y. Li, J. Zhang, Y. Zheng, S. Xu, *Org. Lett.*, 2017, 19, 3043–3046.