Supporting Information

Transition Metal-Free Synthesis of Polyfluoroaryl Sulfides via S-Transfer Reaction

Yuhua Wang^a, Mengqin Liu^a, Heye Zhou^a, Tao Qin^{*a}, Bin Liu^{*a,b} and Xing Lu^{*a}

^a College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, PR China China ^bHubei Three Gorges Laboratory, Yichang 443007 E-mail: qintao@ctgu.edu.cn; liubin1@ctgu.edu.cn; lux@hust.edu.cn.

Table of Contents

1. General Information	S3
2. Detailed Optimization Studies	
3. Experimental Procedures	
4. Analytical data of New Compounds	
4. Mechanistic investigation	
5. References	
6. ¹ H, ¹³ C, ¹⁹ F Spectra of New Compounds	S20

1. General Information

All reactions were monitored by thin layer chromatography (TLC) using Macherey-Nagel 0.20 mm silica gel 60 plates. Flash column chromatography was performed on silica gel 60 (particle size 300-400 mesh ASTM, purchased from Taizhou, China). ¹H, ¹³C spectra were recorded with, Bruker 400 MHz (Avance-400) instrument. All ¹H NMR data are reported in δ units, parts per million (ppm), and were measured relative to the residual proton signal in the deuterated solvent at 7.26 ppm (CDCl₃). All ¹³C NMR spectra are decoupled and reported in ppm relative to the solvent signal at 77.16 ppm (CDCl₃). High-resolution mass spectra HRMS (ESI-TOF) were recorded on Brucker microtof. Compounds were visualized by irradiation with UV light, or stained with iodine/silica gel, or potassium permanganate. Preparatory thin-layer chromatography (Prep-TLC) was performed on silica gel GF with UV 254 (20 × 20 cm, 1000 microns, from Yantai Jiang you Silica Gel Development Co., Ltd.) and visualized with UV light.

Materials. Reaction solvents THF and toluene were distilled over sodium and stored under nitrogen atmosphere. While DCM, DCE and CH₃CN was distilled over CaH₂ and stored under nitrogen atmosphere. Compounds **1a-1i** were known and prepared according to the previously reported procedures^[1]. All other commercial reagents and solvents were purchased from Energy-Chemical Ltd, and used as received unless otherwise noted.

2. Detailed Optimization Studies

Table S1. Screening of base.^a

Entry	Base	Yield 4a (%) ^b		
1	Cs ₂ CO ₃	36		
2	K ₂ CO ₃	22		
3	KHCO ₃	trace		
4	Na ₂ CO ₃	trace		
5	^t BuOK	28		
6	NaOH	25		
7	ⁱ Pr ₂ EtN	n.d.		
8	DMAP	trace		
9	Et_3N	n.d.		

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2** (0.10 mmol), base (1.0 equiv), solvent (0.2 \overline{M}), 12 h. ^{*b* 19}F NMR yields using fluorobenzene as internal standard.

Table S2. Screening of solvent.^a

Entry	Solvent	Yield 4a (%) ^b
1	Toluene	n.d.
2	DCE	n.d.
3	CCl_4	n.d.
4	DMF	34
5	DMSO	30
6	CH ₃ CN	36

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.10 mmol), Cs₂CO₃ (1.0 equiv), solvent (0.2 M), 12 h. ^{*b* 19}F NMR yields using fluorobenzene as internal standard.

Table S3. Screening of sulfur source.^a

F = F $F = F$	+ "S" ·	Cs ₂ CO ₃ (CH ₃ CN, 12	1.0 equiv) → Et ₂ N 2 h, 80 °C	O F F F	FF SFF F	NEt ₂
Ph N Bn H 2a	H ₂ N NH ₂ 2b	O SK 2c	S → O → SK 2d	K ₂ S 2e	Na ₂ S ₂ O ₃ 2f	S ₈ 2g
Entry			2		Yiel	d 4a (%) ^b
1			2a			36
2			2b			43
3°			2c			65
4 ^{c,d}			2d			32
5°			2e			38
6 ^c			2f			trace
7 ^c			2g			n.d.
8 ^{c,e}			2c			91

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2** (0.10 mmol), Cs_2CO_3 (1.0 equiv), CH_3CN (0.2 M), 12 h. ^{*b* 19}F NMR yields using fluorobenzene as internal standard. ^{*c*} Without any base. ^{*d*} Since potassium ethyl xanthogenate **2d** is sensitive to light the experiments were carried out under dark conditions. ^{*e*} **2c** (0.15 mmol).

3. Experimental Procedures

a) General Procedure for 4

Added polyfluoroarene **1** (0.2 mmol), potassium thioacetate **2c** (17.1 mg, 0.15 mmol, 0.75 equiv) in 1.0 mL of acetonitrile and the mixture was allowed to stir for 12 h at 80 °C. Until the reaction was complete as indicated by TLC. The reaction mixture was then quenched with H_2O , extracted with CH_2Cl_2 (3×10 mL) and the combined organic layers were concentrated in vacuo. The resulting crude product was purified by flash column chromatography on silica gel to obtain product **4**.

b) General Procedure for 6

Added *N*,*N*-diethyl-2,3,4,5,6-pentafluorobenzamide **1a** (53.4 mg, 0.2 mmol, 1.0 equiv), thiourea **2b** (22.8 mg, 0.30 mmol, 1.5 equiv), electroophiles **5** (0.8 mmol, 4.0 equiv) and Cs_2CO_3 (260 mg, 0.8 mmol, 4.0 equiv) in 2.0 mL of acetonitrile and the mixture was allowed to stir for 12 h at 80 °C. Until the reaction was complete as indicated by TLC. The reaction mixture was then quenched with H₂O, extracted with CH₂Cl₂ (3×10 mL) and the combined organic layers were concentrated in vacuo. The resulting crude product was purified by flash column chromatography on silica gel to obtain product **6**.

c) A Gram scale synthesis and synthetic applications

Added *N*,*N*-diethyl-2,3,4,5,6-pentafluorobenzamide **1a** (2.67g, 10 mmol, 1.0 equiv), and potassium thioacetate **2c** (0.86 g, 7.5 mmol, 0.75 equiv) in 30 mL of acetonitrile, The solution was warmed up to 80 °C and it was stirred for 12 hours, until the reaction was complete as indicated by TLC. The reaction mixture was then quenched with H₂O, extracted with CH₂Cl₂ (3×30 mL)

and the combined organic layers were concentrated in vacuo. The resulting crude product was purified by flash column chromatography on silica gel to obtain product **4a** (1.93 g, 73%).

Added **4a** (105.6 mg, 0.2 mmol) and *m*-CPBA (68.8 mg, 0.4 mmol, 2.0 equiv) in 2 mL of DCM and the mixture was allowed to stir for 12 h at 40 °C, until the reaction was complete as indicated by TLC. The reaction mixture was quenched with saturated aq. Na₂SO₃, extracted with CH₂Cl₂ (3×10 mL) and the combined organic layers were concentrated in vacuo. The resulting crude product was purified by flash column chromatography on silica gel to obtain product **7** (94.7 mg, 87%).

A heavy wall pressure vessel was charged with pentafluorophenyl sulfide (105.6 mg, 0.2 mmol, 1.00 equiv.) and *m*-CPBA (137.6 mg, 0.8 mmol, 4.0 equiv). The mixture was suspended in 2 mL of dichloromethane and the tube was sealed with a Teflon cap and the mixture was allowed to stir for 24 h at 110 °C, until the reaction was complete as indicated by TLC. The reaction mixture was quenched with saturated aq. Na₂SO₃, extracted with CH₂Cl₂ (3×10 mL) and the combined organic layers were concentrated in vacuo. The resulting crude product was purified by flash column chromatography on silica gel to obtain product **8** (72.8 mg, 65%).

4. Analytical data of New Compounds

4,4'-Thiobis(*N*,*N*-diethyl-2,3,5,6-tetrafluorobenzamide) (4a)

The crude was purified by flash chromatography using Petroleum NE_{12} ether/ Ethyl acetate 10:1 to afford **4a** as colorless oil (96.1 mg, 91% yield), TLC: $R_f = 0.25$ (Petroleum ether : Ethyl acetate = 10:1) [UV].

¹**H NMR** (400 MHz, CDCl₃) δ 3.60 (q, J = 7.2 Hz, 4H), 3.24 (q, J = 7.2 Hz, 4H), 1.27 (t, J = 7.2 Hz, 6H), 1.16 (t, J = 7.2 Hz, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.0, 147.0 (dm, J = 251.0 Hz), 142.5 (dm, J = 238.0 Hz), 118.9 (t, J = 22.0 Hz), 111.7 (t, J = 22.0 Hz), 43.4, 40.0, 14.3, 12.8. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -130.66 - -130.92 (m, 4F), -140.17 - -140.40 (m, 4F). **HRMS** (ESI-TOF) (m/z): Calcd for C₂₂H₂₁F₈N₂O₂S ([M + H]⁺), 529.1191, found, 529.1180.

4,4'-Thiobis(2,3,5,6-tetrafluoro-N,N-diisopropylbenzamide) (4b)

The crude was purified by flash chromatography using Petroleum $^{N'Pr_2}$ ether/ Ethyl acetate 10:1 to afford **4b** as colorless oil (85.3 mg, 73% yield), TLC: $R_f = 0.26$ (Petroleum ether : Ethyl acetate = 10:1)

[UV]. ¹**H** NMR (400 MHz, CDCl₃) δ 3.73 – 3.64 (m, 2H), 3.61 – 3.52 (m, 2H), 1.54 (d, *J* = 6.8 Hz, 12H), 1.21 (d, *J* = 6.4 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 147.1 (dm, *J* = 253.0 Hz), 142.4 (dm, *J* = 242.0 Hz), 120.1 (t, *J* = 46.0 Hz), 111.7 (t, *J* = 46.0 Hz), 52.1, 47.0, 21.0, 20.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -130.68 – -130.83 (m, 4F), -141.32 – -141.50 (m, 4F). HRMS (ESI-TOF) (m/z): Calcd for C₂₆H₂₉F₈N₂O₂S ([M + H]⁺), 585.1817, found, 585.1813.

(Thiobis(2,3,5,6-tetrafluoro-4,1-phenylene))bis(piperidin-1-ylmethanone) (4c)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 15:1 to afford **4c** as colorless oil (88.3 mg, 80% yield), TLC: $R_f = 0.17$ (Petroleum ether : Ethyl acetate = 15:1)

[UV]. ¹**H NMR** (400 MHz, CDCl₃) δ 3.75 (t, J = 5.2 Hz, 4H), 3.34 – 3.24 (m, 4H), 1.74 – 1.55 (m, 12H). ¹³**C NMR** (100 MHz, CDCl₃) δ 156.9, 147.0 (dm, J = 254.0 Hz), 142.5 (dm, J = 250.0 Hz), 118.4 (t, J = 22.0 Hz), 111.7 (t, J = 22.0 Hz), 48.3, 43.3, 26.6, 25.5, 24.4. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -130.79 – -131.01 (m, 4F), -139.79 – -139.96 (m, 4F). **HRMS** (ESI-TOF) (m/z): Calcd for C₂₄H₂₁F₈N₂O₂**S** ([M + H]⁺), 553.1191, found, 553.1190.

(Thiobis(2,3,5,6-tetrafluoro-4,1-phenylene))bis(morpholinomethanone) (4d)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 10:1 to afford **4d** as colorless oil (85.6 mg, 77% yield), TLC: $R_f = 0.14$ (Petroleum ether : Ethyl

acetate = 10:1) [UV]. ¹**H NMR** (400 MHz, CDCl₃) δ 3.86 – 3.77 (m, 8H), 3.72 – 3.67 (m, 4H), 3.35 (t, *J* = 5.2 Hz, 4H). ¹³**C NMR** (100 MHz, CDCl₃) δ 157.2, 147.0 (dm, *J* = 253.0 Hz), 142.6 (dm, *J* = 240.0 Hz), 117.3 (t, *J* = 22.0 Hz), 112.4 (t, *J* = 20.0 Hz), 66.9, 66.7, 47.4, 42.8. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -130.36 – -130.48 (m, 4F), -139.22 – -19.47 (m, 4F). **HRMS** (ESI-TOF) (m/z): Calcd for C₂₂H₁₇F₈N₂O₄S ([M + H]⁺), 557.0776, found, 557.0769.

4,4'-Thiobis(2,3,5,6-tetrafluoro-*N*,*N*-diphenylbenzamide) (4e)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 15:1 to afford **4e** as colorless oil (129.6 mg, 90% yield), TLC: $R_f = 0.13$ (Petroleum ether : Ethyl

acetate = 15:1) [UV]. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.37 (m, 8H), 7.31 – 7.20 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 146.0 (dm, *J* = 253.0 Hz), 142.0 (dm, *J* = 244.0 Hz), 119.4 (t, *J* = 21.0 Hz), 112.2 (t, *J* = 20.0 Hz), 126.0, 119.6, 119.4, 112.4, 112.2, 112.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -132.27 – -132.40 (m, 4F), -139.10 – -139.29 (m, 4F). HRMS (ESI-TOF) (m/z): Calcd for C₃₈H₂₁F₈N₂O₂S ([M + H]⁺), 721.1191, found, 721.1187.

Dimethyl 4,4'-thiobis(2,3,5,6-tetrafluorobenzoate) (4f)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 15:1 to afford **4f** as colorless oil (82.9 mg, 93% yield), TLC: $R_f = 0.16$ (Petroleum ether : Ethyl

acetate = 15:1) [UV]. ¹**H** NMR (400 MHz, CDCl₃) δ 3.98 (s, 6H). ¹³**C** NMR (100 MHz, CDCl₃) δ 159.6, 146.6 (dm, *J* = 253.0 Hz), 144.7 (dm, *J* = 259.0 Hz), 114.2 (t, *J* = 20.0 Hz), 114.1 (t, *J* = 16.0 Hz), 53.6. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -131.90 - -132.08 (m, 4F), -137.63 - -137.79 (m, 4F). **HRMS** (ESI-TOF) (m/z): Calcd for C₁₆H₆F₈O₆S ([M]⁺), 445.9859, found, 445.9866.

Diethyl 4,4'-thiobis(2,3,5,6-tetrafluorobenzoate) (4g)

The crude was purified by flash chromatography using Petroleum OEt ether/ Ethyl acetate 15:1 to afford **4g** as colorless oil (76.8 mg, 81% vield), TLC: $R_f = 0.14$ (Petroleum ether : Ethyl acetate = 15:1)

[UV]. ¹**H** NMR (400 MHz, CDCl₃) δ 4.45 (q, J = 7.2 Hz, 4H), 1.40 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 146.6 (dm, J = 250.5 Hz), 144.6 (dm, J = 258.0 Hz), 114.6 (t, J = 16.5 Hz), 114.0 (t, J = 18.0 Hz), 63.3, 14.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -131.87 – -132.08 (m, 4F), -137.85 – -138.13 (m, 4F). **HRMS** (ESI-TOF) (m/z): Calcd for C₁₈H₁₀F₈O₄S ([M]⁺), 474.0172, found, 474.0178.

Diisopropyl 4,4'-thiobis(2,3,5,6-tetrafluorobenzoate) (4h)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 15:1 to afford **4h** as colorless oil (89.4 mg, 89% yield), TLC: $R_f = 0.15$ (Petroleum ether : Ethyl acetate = 15:1)

[UV]. ¹**H** NMR (400 MHz, CDCl₃) δ 5.32 – 5.28 (m, 2H), 1.37 (d, J = 6.4 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 146.8 (dm, J = 248.0 Hz), 144.4 (dm, J = 257.0 Hz), 115.1 (t, J = 16.5 Hz), 113.7 (t, J = 20.0 Hz), 71.6, 21.8. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -132.02 – -132.19 (m, 4F), -138.42 – -138.58 (m, 4F). **HRMS** (ESI-TOF) (m/z): Calcd for C₂₀H₁₄F₈O₄S ([M]⁺), 502.0485, found, 502.0492.

Dicyclohexyl 4,4'-thiobis(2,3,5,6-tetrafluorobenzoate) (4i)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 15:1 to afford **4i** as colorless oil (84.9 mg, 73% yield), TLC: $R_f = 0.17$ (Petroleum ether : Ethyl acetate = 15:1)

[UV]. ¹**H** NMR (400 MHz, CDCl₃) δ 5.15 – 5.07 (m, 2H), 2.01 – 1.90 (m, 4H), 1.82 – 1.73 (m, 4H), 1.67 – 1.53 (m, 6H), 1.48 – 1.30 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 146.6 (dm, J = 250.0 Hz), 144.5 (dm, J = 257.5 Hz), 115.1 (t, J = 17.0 Hz), 113.7 (t, J = 19.5 Hz), 76.1, 31.4, 25.3, 23.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -132.04 – -132.26 (m, 4F), -138.29 – -138.47 (m, 4F). HRMS (ESI-TOF) (m/z): Calcd for C₂₆H₂₂F₈O₄S ([M]⁺), 582.1111, found, 582.1105.

1,1'-(Thiobis(2,3,5,6-tetrafluoro-4,1-phenylene))bis(ethan-1-one) (4j)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 15:1 to afford **4j** as colorless oil (51.5 mg, 62% yield), TLC: $R_f = 0.15$ (Petroleum ether : Ethyl acetate = 15:1) [UV].

¹**H** NMR (400 MHz, CDCl₃) δ 2.64 (s, 6H). ¹³**C** NMR (100 MHz, CDCl₃) δ 191.5, 146.7 (dm, *J* = 250.0 Hz), 143.9 (dm, *J* = 241.0 Hz), 121.0 (t, *J* = 17.5 Hz), 113.8 (t, *J* = 20.0 Hz), 32.5. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -131.48 – -131.84 (m, 4F), -140.00 – -140.16 (m, 4F). **HRMS** (ESI-TOF) (m/z): Calcd for C₁₆H₅F₈O₂S ([M - H]^{*}), 412.9888, found, 412.9886.

Bis(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)sulfane (4k)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 50:1 to afford **4k** as colorless oil (55.0 mg, 59% yield), TLC: $R_f = 0.14$ (Petroleum ether : Ethyl acetate = 50:1) [UV].

¹³**C NMR** (100 MHz, CDCl₃) δ 146.9 (dm, J = 250.0 Hz), 144.0 (dm, J = 211.0 Hz), 120.6 (d, J = 275.0 Hz), 115.4 (t, J = 17.5 Hz), 111.3 (t, J = 20.0 Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -56.48 (t, J = 21.8 Hz, 6F), -130.63 – -130.72 (m, 4F), -138.10 – -138.28 (m, 4F). **HRMS** (ESI-TOF) (m/z): Calcd for C₁₄F₁₄S ([M]⁺), 465.9497, found, 465.9496.

4,4'-Thiobis(2,3,5,6-tetrafluorobenzonitrile) (4l)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 40:1 to afford **4l** as colorless oil (46.3 mg, 61% yield), TLC: $R_f = 0.15$ (Petroleum ether : Ethyl acetate = 40:1) [UV]. ¹³C

NMR (100 MHz, CDCl₃) δ 147.2 (dm, J = 263.3 Hz), 146.4 (dm, J = 250.0 Hz), 117.5 (t, J = 19.4 Hz), 106.8, 96.2 (t, J = 17.1 Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -129.30 – -129.45 (m, 4F), -129.86 – -130.02 (m, 4F). **HRMS** (ESI-TOF) (m/z): Calcd for C₁₄F₈N₂S ([M]⁺), 379.9654, found, 379.9658.

Bis(perfluoropyridin-4-yl)sulfane (4m)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 30:1 to afford **4m** as colorless oil (29.9 mg, 45% yield), TLC: $R_f = 0.14$ (Petroleum ether : Ethyl acetate = 30:1) [UV]. ¹³C NMR (100 MHz, CDCl₃) δ 143.6 (dm, J = 246.0 Hz), 141.3 (dm, J = 261.0 Hz), 123.9 (t, J = 17.5 Hz). ¹⁹F **NMR** (376 MHz, CDCl₃) δ -87.54 - -87.71 (m, 4F), -134.75 - -135.00 (m, 4F). **HRMS** (ESI-TOF) (m/z): Calcd for C₁₀F₈N₂S ([M]⁺), 331.9654, found, 331.9659.

Bis(perfluoro-[1,1'-biphenyl]-4-yl)sulfane (4n)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 50:1 to afford **4n** as colorless oil (70.0 mg, 56% yield), TLC: $R_f = 0.21$ (Petroleum ether : Ethyl acetate = 50:1) [UV]. ¹³C NMR (100 MHz, CDCl₃) δ

147.0 (dm, J = 250.0 Hz), 144.5 (dm, J = 253.0 Hz), 144.1 (m), 141.6 (m), 138.1 (dm, J = 249.0 Hz), 113.3 (t, J = 20.5 Hz), 108.3 (t, J = 18.0 Hz), 102.0 (t, J = 19.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -131.54 - -131.68 (m, 4F), -136.10 - -136.29 (m, 4F), -136.77 - -136.98 (m, 4F), -149.14 - -149.28 (m, 2F), -159.95 - -160.13 (m, 4F). HRMS (ESI-TOF) (m/z): Calcd for C₂₄F₁₈S ([M + H]⁺), 661.9433, found, 661.9430.

Bis(2-fluoro-4-nitrophenyl)sulfane (40)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 70:1 to afford **4o** as colorless oil (28.1 mg, 45% yield), TLC: $R_f = 0.15$ (Petroleum ether : Ethyl acetate = 70:1) [UV].

¹**H** NMR (400 MHz, CDCl₃) δ 8.10 – 7.98 (m, 4H), 7.49 – 7.42 (m, 2H). ¹³**C** NMR (100 MHz, CDCl₃) δ 160.4 (d, J = 252.0 Hz), 148.7 (d, J = 8.0 Hz), 133.0, 128.5 (d, J = 18.0 Hz), 120.1 (d, J = 3.0 Hz), 112.2 (d, J = 27.0 Hz). ¹⁹**F** NMR (376 MHz, CDCl₃) δ -103.16 (s, 2F). HRMS (ESI-TOF) (m/z): Calcd for C₁₂H₆F₂N₂O₄S ([M + H]⁺), 312.0016, found, 312.0011.

Bis(3-fluoro-4-nitrophenyl)sulfane (4p)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 70:1 to afford **4p** as colorless oil (25.6 mg, 41% yield), TLC: $R_f = 0.16$ (Petroleum ether : Ethyl acetate = 70:1) [UV].

¹**H NMR** (400 MHz, CDCl₃) δ 8.24 (dd, J = 9.2, 5.2 Hz, 2H), 7.21 (ddd, J = 9.2, 7.2, 2.8 Hz, 2H), 6.99 (dd, J = 8.4, 2.8 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 164.8 (d, J = 259.0 Hz), 145.5 (d, J = 2.0 Hz), 134.5 (d, J = 9.0 Hz), 128.6 (d, J = 10.0 Hz), 120.5 (d, J = 25.0 Hz), 116.5 (d, J = 23.0 Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -101.49 (s, 2F). **HRMS** (ESI-TOF) (m/z): Calcd for C₁₂H₆F₂N₂O₄**S** ([M + H]⁺), 312.0016, found, 312.0010.

Dimethyl 4,4'-thiobis(3,5-difluorobenzoate) (4q)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 60:1 to afford **4q** as colorless oil (33.0 mg, 37% yield), TLC: $R_f = 0.16$ (Petroleum ether : Ethyl

acetate = 60:1) [UV]. ¹**H** NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.2 Hz, 4H), 3.93 (s, 6H). ¹³**C** NMR (100 MHz, CDCl₃) δ 164.6, 162.0 (dm, *J* = 247.0 Hz), 132.6 (t, *J* = 10.0 Hz), 113.6, 112.8, 53.0. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -103.73 (s, 4F). **HRMS** (ESI-TOF) (m/z): Calcd for C₁₆H₆F₈O₄S ([M]⁺), 445.9859, found, 445.9850.

Bis(2,3,5,6-tetrafluorophenyl)sulfane (4r)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 100:1 to afford **4r** as colorless oil (25.0 mg, 38% yield), TLC: $R_f = 0.31$ (Petroleum ether : Ethyl acetate = 100:1) [UV]. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.21 – 7.05 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 146.8 (dm, J = 244.7 Hz), 146.1 (dm, J = 245.5 Hz), 112.1 (t, J = 21.9 Hz), 107.7 (t, J = 22.8 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -133.16 – -133.26 (m, 4F), -137.13 – -137.24 (m, 4F). HRMS (ESI-TOF) (m/z): Calcd for C₁₂H₂F₈S ([M]⁺), 329.9749, found, 329.9738.

4-(Benzylthio)-N,N-diethyl-2,3,5,6-tetrafluorobenzamide (6a)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 50:1 to afford **6a** as colorless oil (60.8 mg, 82% yield), TLC: $R_f = 0.15$ (Petroleum ether : Ethyl acetate = 50:1) [UV]. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.14 (m, 5H), 4.14 (s, 2H), 3.57 (q, *J* = 8.0

Hz, 2H), 3.15 (q, J = 8.0 Hz, 2H), 1.25 (t, J = 8.0 Hz, 3H), 1.09 (t, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 147.0 (dm, J = 246.5 Hz), 142.2 (dm, J = 248.0 Hz), 136.2, 128.9, 128.7, 127.9, 116.9 (t, J = 22.5 Hz), 114.9 (t, J = 20.5 Hz), 43.3, 39.8, 38.8, 14.1, 12.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -131.65 – -131.88 (m, 2F), -141.73 – -142.04 (m, 2F). HRMS (ESI-TOF) (m/z): Calcd for C₁₈H₁₈F₄NOS ([M+H]⁺), 372.1040, found, 372.1049.

4-((4-Bromobenzyl)thio)-N,N-diethyl-2,3,5,6-tetrafluorobenzamide (6b)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 50:1 to afford **6b** as colorless oil (70.9 mg, 79% yield), TLC: $R_f = 0.14$ (Petroleum ether : Ethyl acetate = 50:1) [UV]. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 8.4 Hz, 2H), 7.06 (d, *J* =

8.4 Hz, 2H), 4.02 (s, 2H), 3.50 (q, J = 7.2 Hz, 2H), 3.07 (q, J = 7.2 Hz, 2H), 1.18 (t, J = 7.2 Hz, 3H), 1.03 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.3, 147.0 (dm, J = 260.0 Hz), 142.3 (dm, J = 237.0 Hz), 135.4, 131.8, 130.6, 121.9, 117.1 (t, J = 23.0 Hz), 114.5 (t, J = 21.0 Hz), 43.3, 39.9, 38.1, 14.1, 12.8. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -131.55 – -131.87 (m, 2F), -141.33 – -141.64 (m, 2F). **HRMS** (ESI-TOF) (m/z): Calcd for C₁₈H₁₇BrF₄NOS ([M+H]⁺), 450.0145, found, 450.0146.

N,*N*-diethyl-2,3,5,6-tetrafluoro-4-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)thi o)benzamide (6c)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 15:1 to afford **6c** as colorless oil (70.6 mg, 71% yield), TLC: $R_f = 0.15$ (Petroleum ether : Ethyl acetate = 30:1) [UV]. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 7.6 Hz, 2H), 7.18

(d, J = 7.6 Hz, 2H), 4.07 (s, 2H), 3.50 (q, J = 6.8 Hz, 2H), 3.05 (q, J = 7.2 Hz, 2H), 1.26 (s, 12H), 1.17 (t, J = 6.8 Hz, 4H), 1.02 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 147.0 (dm, J = 261.0 Hz), 142.3 (dm, J = 261.0 Hz), 139.4, 135.2, 128.3, 116.9 (t, J = 22.5 Hz), 114.8 (t, J = 20.0 Hz), 84.0, 43.3, 39.9, 38.8, 25.0, 14.1, 12.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -131.53 – -131.84 (m, 2F), -141.63 – -142.00 (m, 2F). HRMS (ESI-TOF) (m/z): Calcd for C₂₄H₂₉BF₄NO₃S ([M+H]⁺), 498.1892, found, 498.1890.

N,*N*-diethyl-2,3,5,6-tetrafluoro-4-(methylthio)benzamide (6d)

4-(Butylthio)-N,N-diethyl-2,3,5,6-tetrafluorobenzamide (6e)

N,N-diethyl-2,3,5,6-tetrafluoro-4-(hexylthio)benzamide (6f)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 50:1 to afford **6f** as colorless oil (60.6 mg, 83% yield), TLC: $R_f = 0.15$ (Petroleum ether : Ethyl acetate = 50:1)

[UV]. ¹**H** NMR (400 MHz, CDCl₃) δ 3.58 (q, J = 7.2 Hz, 2H), 3.23 (q, J = 7.2 Hz, 2H), 2.93 (t, J = 7.4 Hz, 2H), 1.63 – 1.50 (m, 2H), 1.45 – 1.33 (m, 2H), 1.30 – 1.19 (m, 7H), 1.12 (t, J = 7.2 Hz, 3H), 0.87 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 147.0 (dm, J = 246.0 Hz), 142.3 (dm, J = 263.0 Hz), 116.4 (t, J = 22.0 Hz), 116.1 (t, J = 20.5 Hz), 43.4, 39.8, 34.8, 31.3, 29.9, 28.2, 22.6, 14.1, 14.1, 12.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -132.33 – -132.71 (m, 2F), -141.76 – -142.09 (m, 2F). HRMS (ESI-TOF) (m/z): Calcd for C₁₇H₂₄F₄NOS ([M+H]⁺), 366.1509, found, 366.1510.

N,N-diethyl-2,3,5,6-tetrafluoro-4-(octylthio)benzamide (6g)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 60:1 to afford **6g** as colorless oil (70.7 mg, 90% yield), TLC: $R_f = 0.15$ (Petroleum ether : Ethyl

acetate = 60:1) [UV]. ¹**H NMR** (400 MHz, CDCl₃) δ 3.57 (q, J = 7.2 Hz, 2H), 3.22 (q, J = 7.2 Hz,

2H), 2.92 (t, J = 7.4 Hz, 2H), 1.61 – 1.49 (m, 2H), 1.44 – 1.32 (m, 2H), 1.28 – 1.21 (m, 11H), 1.12 (t, J = 7.2 Hz, 3H), 0.85 (t, J = 6.8 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 158.5, 146.9 (dm, J = 245.5 Hz), 142.2 (dm, J = 249.0 Hz), 116.3 (t, J = 22.0 Hz), 116.0 (t, J = 20.5 Hz), 43.2, 39.7, 34.7, 31.7, 29.8, 29.1, 29.0, 28.4, 22.6, 14.1, 14.0, 12.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -132.38 – -132.68 (m, 2F), -141.80 – -142.08 (m, 2F). **HRMS** (ESI-TOF) (m/z): Calcd for C₁₉H₂₈F₄NOS ([M+H]⁺), 394.1822, found, 394.1824.

2,3,5,6-Tetrafluoro-4-(pentan-3-ylthio)-N,N-diphenylbenzamide (6h)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 60:1 to afford **6h** as colorless oil (51.9 mg, 74% yield), TLC: $R_f = 0.17$ (Petroleum ether : Ethyl acetate = 60:1) [UV]. ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.22 (m, 10H), 3.14 – 3.03 (m, 1H), 1.59 – 1.38(m, 4H), 0.94 (t, J =7.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 147.0 (dm, J = 245.0 Hz), 141.9 (dm, J =248.0 Hz), 141.3, 141.3, 129.6, 129.4, 128.7, 127.9, 127.3, 126.1, 117.7 (t, J = 21.0 Hz), 116.2 (t, J = 21.0 Hz), 53.3, 27.1, 10.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -131.69 – -132.04 (m, 2F), -140.40 – -140.76 (m, 2F). HRMS (ESI-TOF) (m/z): Calcd for C₂₄H₂₂F₄NOS ([M+H]⁺), 448.1353, found, 448.1350.

4-(Allylthio)-N,N-diethyl-2,3,5,6-tetrafluorobenzamide (6i)

4-((2-Chloroethyl)thio)-N,N-diethyl-2,3,5,6-tetrafluorobenzamide (6j)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 60:1 to afford **6j** as colorless oil (42.5 mg, 62% yield), TLC: $R_f = 0.19$ (Petroleum ether : Ethyl acetate = 60:1) [UV]. ¹H NMR (400 MHz, Chloroform-*d*) δ 3.68 – 3.55 (m, 4H), 3.30 – 3.18 (m, 4H), 1.27 (t,

J = 7.2 Hz, 3H), 1.15 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 147.1 (dm, J = 257.5 Hz), 142.4 (dm, J = 252.7 Hz), 117.6 (t, J = 27.5 Hz), 114.2 (t, J = 21.2 Hz), 43.4, 42.7, 39.9, 36.5, 14.2, 12.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -131.51 – -131.61(m, 2F), -140.87 – -140.97 (m, 2F). HRMS (ESI-TOF) (m/z): Calcd for C₁₃H₁₅ClF₄NOS ([M+H]⁺), 344.0494, found, 344.0485.

4-(Cycloheptylthio)-*N*,*N*-diethyl-2,3,5,6-tetrafluorobenzamide (6k)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 60:1 to afford **6j** as colorless oil (63.3 mg, 84% yield), TLC: $R_f = 0.18$ (Petroleum ether : Ethyl acetate = 60:1) [UV]. ¹H NMR

(400 MHz, CDCl₃) δ 3.59 (q, J = 7.2 Hz, 2H), 3.53 – 3.40 (m, 1H), 3.23 (q, J = 7.2 Hz, 2H), 1.98 – 1.87 (m, 2H), 1.80 – 1.68 (m, 2H), 1.62 – 1.50 (m, 6H), 1.48 – 1.38 (m, 2H), 1.26 (t, J = 7.0 Hz, 3H), 1.13 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 147.3 (dm, J = 245.5 Hz), 142.4 (dm, J = 266.0 Hz), 116.7 (t, J = 22.0 Hz), 115.7 (t, J = 20.5 Hz), 49.0, 43.4, 39.8, 35.1, 28.2, 25.6, 14.1, 12.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -131.45 – -131.88 (m, 2F), -141.58 – -141.94 (m, 2F). HRMS (ESI-TOF) (m/z): Calcd for C₁₈H₂₄F₄NOS ([M+H]⁺), 378.1509, found, 378.1510.

N,N-diethyl-2,3,5,6-tetrafluoro-4-(phenylthio)benzamide (6l)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 30:1 to afford **61** as colorless oil (51.4 mg, 72% yield), TLC: $R_f = 0.16$ (Petroleum ether : Ethyl acetate = 30:1) [UV]. ¹H NMR (400

MHz, Chloroform-*d*) δ 7.41 – 7.37 (m, 2H), 7.34 – 7.28 (m, 3H), 3.59 (q, J = 7.2 Hz, 2H), 3.24 (q, J = 7.2 Hz, 2H), 1.26 (t, J = 7.2 Hz, 3H), 1.14 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 158.3, 147.0 (dm, J = 247.0 Hz), 142.4 (dm, J = 251.0 Hz), 132.4, 131.0, 129.4, 128.1, 117.6 (t, J = 22.0 Hz), 115.2 (t, J = 20.0 Hz), 43.3, 39.7, 14.0, 12.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -131.05 – -131.21 (m, 2F), -140.91 – -141.15 (m, 2F). HRMS (ESI-TOF) (m/z): Calcd for C₁₇H₁₆F₄NOS ([M + H]⁺), 358.0883, found, 358.0880.

4-((3,4-Dibromophenyl)thio)-*N*,*N*-diethyl-2,3,5,6-tetrafluorobenzamide (6m)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 15:1 to afford **6m** as colorless oil (44.0 mg, 43% yield), TLC: $R_f = 0.19$ (Petroleum ether : Ethyl acetate = 15:1) [UV]. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (d, *J* = 8.8 Hz, 1H), 7.28 (d,

J = 2.8 Hz, 1H), 6.83 (dd, J = 8.8, 3.2 Hz, 1H), 3.61 (q, J = 7.2 Hz, 2H), 3.27 (q, J = 7.2 Hz, 2H), 1.28 (t, J = 7.2 Hz, 3H), 1.17 (t, J = 7.2 Hz, 3H). ¹³C **NMR** (100 MHz, Chloroform-*d*) δ 158.1, 156.2, 143.1 (dm, J = 253.6 Hz), 141.5 (dm, J = 253.3 Hz), 134.4, 125.7, 121.2, 119.6, 116.3, 43.5, 40.0, 14.2, 12.9. ¹⁹F **NMR** (376 MHz, Chloroform-*d*) δ -141.03 – -141.13 (m, 2F), -152.00 – -152.09 (m, 2F). **HRMS** (ESI-TOF) (m/z): Calcd for C₁₇H₁₄Br₂F₄NOS ([M + H]⁺), 513.9093, found, 513.9088.

4,4'-Sulfinylbis(*N*,*N*-diethyl-2,3,5,6-tetrafluorobenzamide) (7)

 $F_{Et_2N} \xrightarrow{F}_{G} F_{F} \xrightarrow{F}_{F} \xrightarrow{NEt_2} F_{F} \xrightarrow{NEt_2}$ The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 10:1 to afford **7** as colorless oil (94.6 mg, 87% yield), TLC: $R_f = 0.11$ (Petroleum ether : Ethyl acetate = 10:1) [UV]. ¹H NMR (400 MHz, CDCl₃) δ 3.59 (q, J = 7.2 Hz, 4H), 3.24 (q, J = 7.0 Hz,

4H), 1.27 (t, J = 7.0 Hz, 6H), 1.17 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 144.2 (dm, J = 262.0 Hz), 142.5 (dm, J = 253.0 Hz), 121.4 (t, J = 22.0 Hz), 112.5 (t, J = 26.0 Hz), 43.5, 40.0, 14.2, 12.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -137.77 - -137.98 (m, 2F), -138.00 - -138.15 (m, 2F), -138.25 (dd, J = 22.9, 12.0 Hz, 2F), -138.62 (dd, J = 22.6, 11.3 Hz, 2F). HRMS (ESI-TOF) (m/z): Calcd for C₂₂H₂₀F₈N₂O₃S ([M + H]⁺), 544.1067, found, 544.1060.

4,4'-Sulfonylbis(N,N-diethyl-2,3,5,6-tetrafluorobenzamide) (8)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 10:1 to afford **8** as colorless oil (72.8 mg, 65% yield), TLC: $R_f = 0.12$ (Petroleum ether : Ethyl acetate = 10:1) [UV]. ¹H NMR (400 MHz, CDCl₃) δ 3.59 (q, J = 7.2 Hz, 4H), 3.23 (q, J = 7.2 Hz, 4H), 1.26 (t, J = 7.2 Hz, 6H), 1.16 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 156.8, 144.5 (dm, J = 266.5 Hz), 142.6 (dm, J = 254.5 Hz), 123.6 (t, J = 22.5 Hz), 120.6 (t, J = 22.0 Hz), 43.4, 40.0, 14.2, 12.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -133.95 – -134.27 (m, 4F), -137.51 – -137.79 (m, 4F). HRMS (ESI-TOF) (m/z): Calcd for C₂₂H₂₀F₈N₂O₄S ([M + H]⁺), 560.1016, found, 560.1011.

Bis((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl) 4,4'-thiobis(2,3,5,6-tetrafluorobenzoate) (9)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 50:1 to afford **9** as colorless oil (95.8 mg, 69% yield), TLC: $R_f = 0.15$ (Petroleum ether : Ethyl acetate = 50:1) [UV]. ¹H NMR (400 MHz,

CDCl₃) δ 5.05 – 4.94 (m, 2H), 2.19 – 2.13 (m, 2H), 2.03 – 1.94 (m, 2H), 1.78 – 1.70 (m, 4H), 1.59 – 1.45 (m, 4H), 1.19 – 1.07 (m, 4H), 0.93 (m, 14H), 0.81 (d, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 146.6 (dm, *J* = 249.0 Hz), 144.3 (dm, *J* = 254.5 Hz), 115.3 (t, *J* = 17.5 Hz), 113.6 (t, *J* = 20.0 Hz), 78.1, 47.0, 40.7, 34.2, 31.7, 26.1, 23.2, 22.1, 20.9, 16.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -131.85 – -132.05 (m, 4F), -138.25 – -138.51 (m, 4F). HRMS (ESI-TOF) (m/z): Calcd for C₃₄H₃₈F₈O₄S ([M]⁺), 694.2363, found, 694.2366.

Bis((1R,2S,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl) 4,4'-thiobis (2,3,5,6-tetrAfluoroben zoate) (10)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 50:1 to afford **10** as colorless oil (85.6 mg, 62% yield), TLC: $R_f = 0.17$ (Petroleum ether : Ethyl acetate = 50:1) [UV]. ¹H NMR

(400 MHz, CDCl₃) δ 5.22 – 5.15 (m, 2H), 2.55 – 2.43 (m, 2H), 2.00 – 1.92 (m, 2H), 1.80 – 1.72 (m, 4H), 1.40 – 1.23 (m, 6H), 1.16 (d, J = 3.6 Hz, 1H), 1.13 (d, J = 3.6 Hz, 1H), 0.95 (s, 6H), 0.91 (s, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 146.7 (dm, J = 251.0 Hz), 144.6 (dm, J = 258.0 Hz), 131.0, 129.0, 114.9 (t, J = 16.0 Hz), 113.9 (t, J = 20.0 Hz), 83.8, 49.2, 48.1, 45.0, 36.8, 28.1, 27.2, 19.8, 19.0, 13.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -131.85 – -132.16 (m, 4F), -137.79 – -138.08 (m, 4F). HRMS (ESI-TOF) (m/z): Calcd for C₃₄H₃₄F₈O₄S ([M]⁺), 690.2050, found,

690.2052.

Bis((3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10, 11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl) 4,4'-thiobis(2,3,5,6-tetrafluorobenzoate) (11)

hy using Petroleum ether/ Ethyl acetate 50:1 to afford **11** as colorless oil (131.6 mg, 57% yield), TLC: $R_f = 0.17$ (Petroleum ether : Ethyl acetate = 50:1) [UV]. ¹H NMR (400 MHz, CDCl₃) δ 5.45 – 5.42 (m, 2H), 4.97 – 4.87 (m, 2H), 2.50 – 2.43 (m, 4H), 2.02 – 1.04 (m, 58H), 0.92 (d, J =6.8 Hz, 6H), 0.87 (dd, J = 6.4, 2.0 Hz, 12H), 0.68 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 146.6 (dm, J = 250.0 Hz), 144.4 (dm, J = 257.5 Hz), 139.1, 123.5, 115.0 (t, J = 16.5 Hz), 113.8 (t, J = 20.0 Hz), 56.8, 56.1, 50.1, 42.5, 39.9, 39.7, 38.0, 37.0, 36.7, 36.3, 35.9, 32.1, 32.0, 28.4, 28.2, 27.8, 24.4, 24.0, 23.0, 22.7, 21.2, 19.4, 18.9, 12.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -131.86 – -132.13 (m, 4F), -138.08 – -138.30 (m, 4F). HRMS (ESI-TOF) (m/z): Calcd for C₆₈H₉₀F₈O₄S ([M]⁺), 1154.6432, found, 1154.6449.

Methyl 2,3,5,6-tetrafluoro-4-((2,3,5,6-tetrafluoro-4-(morpholine-4-carbonyl)phenyl)thio) benzoate (12)

The crude was purified by flash chromatography using Petroleum ether/ Ethyl acetate 20:1 to afford **12** as colorless oil (18.0 mg, 18% yield), TLC: $R_f = 0.16$ (Petroleum ether : Ethyl

acetate = 20:1) [UV]. ¹**H** NMR (400 MHz, CDCl₃) δ 3.99 (s, 3H), 3.84 – 3.78 (m, 4H), 3.70 – 3.67 (m, 2H), 3.35 – 3.32 (m, 2H). ¹³**C** NMR (100 MHz, CDCl₃) δ 157.2, 146.7 (dm, *J* = 252.0 Hz), 144.6 (dm, *J* = 258.0 Hz), 117.2 (t, *J* = 21.0 Hz), 114.1 (t, *J* = 17.0 Hz), 66.9, 66.7, 53.7, 47.4, 42.8. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -130.59 – -130.76 (m, 2F), -131.66 – -131.85 (m, 4F), -137.47 – -137.65 (m, 2F), -139.22 – -139.43 (m, 2F). **HRMS** (ESI-TOF) (m/z): Calcd for C₁₉H₁₁F₈NO₄S ([M + H]⁺), 502.0354, found, 502.0353.

S17

4. Mechanistic investigation

4.1 Cross-over experiment

To gain deeper insights into the aforementioned transformation, a cross-over experiment was performed, where **1d** (28.1 mg, 0.1 mmol, 1.0 equiv) and **1f** (22.6 mg, 0.1 mmol, 1.0 equiv) were subjected to the same reaction conditions in one pot manner in the presence of potassium thioacetate **2c** (17.1 mg, 0.15 mmol, 0.75 equiv). The cross-over product **12** was detected in 18% yield, most of the symmetric sulfide **4d** and **4f** were generated, and the yields were 26% and 32%, respectively.

4.2 Intermediate capture experiment

To confirm the formation of thiolate intermediate during the reaction, an intermediate capture experiment was performed, where **1a** (53.4 mg, 0.2 mmol, 1.0 equiv.) and H₂O (36.0 mg, 4.0 mmol, 20 equiv.) were subjected to the same reaction conditions in one pot manner in the presence of potassium thioacetate **2c** (25.1 mg, 0.22 mmol, 1.1 equiv.). The arylthiophenol **13** was detected in 21% yield, indicating that a polyfluoroarene-substituted sulfur anion may serve as a key intermediate in this reaction.

¹H NMR of **13** S18

¹H NMR of **13 (Deuterium exchange experiment)**

4.3 Controlled experiment

To confirm the special use of fluorine atom in the reaction, a controlled experiment was performed, where brominated polyfluoroarenes 1t (59.2 mg, 0.2 mmol, 1.0 equiv) was subjected to the same reaction conditions. The product 4k was detected in 23% yield. Compared with the use of polyfluoroarene 1k, the yield of product 4k was significantly reduced. This indicates that compared with fluorine ion, bromine ion has poor leaving ability or nucleophilic property in the reaction process.

4.4 Radical inhibition experiments

To investigate if the sulfane formation proceeds through the radical pathway, we conducted a couple of reactions in the presence of trapping reagent TEMPO and BHT. Under the standard conditions, two equivalent of radical scavengers (TEMPO, BHT) were added to the reaction. To our delight, standard product **4a** was afforded in 89% and 90% yield. No significant decrease of yield was observed. Hence, it can be concluded that the reaction is not passing through radical pathway.

5. References

[1] Zhao, Y.; Fu, B.; Wang, S.; Li, Y.; Yuan, X.; Yin, J.; Xiong, T.; Zhang, Q. Org. Lett. **2023**, 25, 2492.

6. ¹H, ¹³C, ¹⁹F Spectra of New Compounds

7,426 7,415 7,404 7,398 7,398 7,390 7,390 7,290 7,290 7,270 7,270 7,270 7,224 17,224 17,224 17,224 17,224 17,224 Ph₂N NPh₂ 4e 22 8.02 ⁴ 12.16 6.5 6.0 f1 (ppm) 10.5 10.0 9.5 9.0 8.5 7.0 5.5 5.0 4.5 4.0 3.5 2.5 2.0 8.0 3.0 $\begin{array}{c} 158.51\\ 147.37\\ 147.37\\ 147.23\\ 144.71\\ 144.84\\ 144.71\\ 144.84\\ 144.08\\ 144.08\\ 144.08\\ 144.08\\ 144.08\\ 144.08\\ 144.08\\ 144.08\\ 1140.82\\ 129.67\\ 129.67\\ 129.35\\ 129.35\\ 129.35\\ 129.35\\ 119.34\\ 110.13\\ 112.37$ - 77.48 - 77.16 - 76.84 Ph₂N NPh₂ 4e

120 115 fl (ppm)

110 105

100

95

90

85

75

80

125

130

135

160

155

150

145

140

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

5.1435.1225.1225.1225.1015.1225.0805.0801.9461.9461.9271.92671.92671.92671.926461.92761.926461.92761.92761.92671.13761

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

8.053 8.046 8.046 8.042 8.037 8.037 8.037 8.028 8.028 8.028 8.020 8.020 14.7.476 7.457 7.453 7.453

---0.000

S40

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-102.95 -103.05 -103.15 -103.25 -103.35 -103.45 -103.55 -103.65 -103.75 -103.85 -103.95 -104.05 -104. f1 (ppm)

1.89 3.21 2.00 1.99 1.98 7.5 3.5 8.0 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm)

f1 (ppm)

f1 (ppm)

S58

S63

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)
