Supporting Information

Paired electrolysis enables weak Brønsted base-promoted amination of arenes with *N*,*N*-dialkyl formamides as the

amine source

Xiao-Xia Ye,^{+[a]} Min Liu,^{+[a]} Shi-Yan Wang,^[a] Jin-Ming Zheng,^[a] Yi-Fei Li,^[a] Meng-Xiao Yan,^[c] Xiao-Dong Hu,^[b] Yan-Shu Luo,^{*[c]} You-Yun Zeng,^[b] Yun-Rui Cai,^{*[a]} Ren-Hao Li^{*[a]} ^[a]State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China. E-mail: cai_yr@wmu.edu.cn; lirh@wmu.edu.cn.

^[b]School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.

^[c]College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.

E-mail: ysluo@wzu.edu.cn.

Table of Contents

1. General Information	3
2. Experimental Section	4
2.1 Optimization of conditions for 2a	4
2.2 Optimization of conditions for 4a	6
2.3 General procedure for the synthesis of 2	8
2.4 General procedure for the synthesis of 4	8
2.5 Procedure for the synthesis of phenothiazinone 8	
2.6. Large-scale electrochemical reaction of 1a.	
2.7. Electrochemical reaction of 3a using cost-effective and easily accessible	instrument.
3. Control experiments	
3.1 Kinetic isotope effect study	
3.2 1a and 3a with DMF on hydrolysis condition	
3.3 Divided cell experiments	14
3.4 Reaction intermediate investigation	
3.5 Detect CO by GC-FID.	
3.6 Amination of naphthalen-1-ol with anhydrous DMF	
4. Cyclic voltammetry (CV) experiments.	
5. Analytical data for products	
6. NMR spectra for products	
7. DFT calculations	72
7.1 Computational Details	72
7.2 Additional Computational Results	72
7.3 Calculated Energy Values	73
7.4 Cartesian Coordinates for All Species	74
8. References	

1. General Information

Chemicals were received from commercial sources without further purification or prepared by literature methods. Melting points are uncorrected and recorded on Digital Melting Point Apparatus WRS-1B. ¹H NMR and ¹³C NMR spectra were measured on a 400 MHz Bruker spectrometer, using CDCl₃ as the solvent with tetramethylsilane (TMS) as the internal standard at room temperature. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, dd = doublet of doublet, t =triplet, q = quartet, m = multiplet. Chemical shifts were reported in units (ppm) by assigning the residual protonated solvent of CDCl₃ resonance in the ¹H spectrum as 7.26 ppm and CDCl₃ resonance in the ¹³C spectrum as 77.0 ppm. All coupling constants (J values) were reported in Hertz (Hz). Chemical shifts of common trace ¹H NMR impurities (ppm): H₂O: 1.56, CHCl₃: 7.26. High-resolution mass spectrometry (HRMS) was performed with a TOF MS instrument with an ESI source. Column chromatography was performed using EM silica gel 60 (300-400 mesh). Reactions were monitored by thin layer chromatography (TLC). Visualization was achieved under a UV lamp (254 nm and 365 nm). Electrolysis experiments were performed using a MESTEK power supply (DP3005B). Cyclic voltammograms were obtained on a CHI 760E potentiostat.

2. Experimental Section

2.1 Optimization of conditions for 2a

Table S1. Optimization of the reaction conditions for $2a^a$

	\downarrow _	electrodes, ba	ise (0.5 equiv.)	
N	`N´ `H 	electrolyte (0.2 undivio	M), r.t. 7 h, air Ied cell	
1a	(DMF)			2a
entry	electrolyte	electrodes	base	$\text{Yield}(\%)^b$
1	ⁿ Bu ₄ NBF ₄	C(+) Pt(-)	Ca(OAc) ₂	86
2	ⁿ Bu ₄ NBF ₄	C(+) Pt(-)	-	n.d.
3	ⁿ Bu ₄ NBF ₄	C(+) Pt(-)	NaOH	47
4	ⁿ Bu ₄ NBF ₄	C(+) Pt(-)	^t BuOK	32
5	ⁿ Bu ₄ NBF ₄	C(+) Pt(-)	NaOEt	36
6	ⁿ Bu ₄ NBF ₄	C(+) Pt(-)	CF ₃ CO ₂ Na	0
7	ⁿ Bu ₄ NBF ₄	C(+) Pt(-)	K_2CO_3	41
8	ⁿ Bu ₄ NBF ₄	C(+) Pt(-)	K ₂ HPO ₄	0
9	ⁿ Bu ₄ NBF ₄	C(+) Pt(-)	LiOAc ^c	68
10	ⁿ Bu ₄ NBF ₄	C(+) Pt(-)	NaOAc ^c	53
11	ⁿ Bu ₄ NBF ₄	C(+) Pt(-)	KOAc ^c	64
12	"Bu ₄ NBF ₄	C(+) Pt(-)	Mg(OAc) ₂	49
13	ⁿ Bu ₄ NBF ₄	C(+) Pt(-)	$Ca(OAc)^d$	32
14	ⁿ Bu ₄ NBF ₄	C(+) Pt(-)	Ca(OAc) ^c	78
15	ⁿ Bu ₄ NClO ₄	C(+) Pt(-)	Ca(OAc)	n.d.
16	ⁿ Bu ₄ NPF ₄	C(+) Pt(-)	Ca(OAc)	n.d.
17	ⁿ Bu ₄ NI	C(+) Pt(-)	Ca(OAc)	n.d.
18	ⁿ Bu ₄ NHSO ₄	C(+) Pt(-)	Ca(OAc)	n.d.
19	ⁿ Bu ₄ NBF ₄	Pt(+) Pt(-)	Ca(OAc)	73
20	ⁿ Bu ₄ NBF ₄	C(+) C(-)	Ca(OAc)	n.d.
21	ⁿ Bu ₄ NBF ₄	Pt(+) C(-)	Ca(OAc)	n.d.
22	ⁿ Bu ₄ NBF ₄	Cu(+) Pt(-)	Ca(OAc)	n.d.
23	ⁿ Bu ₄ NBF ₄	RVC(+) Pt(-)	Ca(OAc)	n.d.
24	ⁿ Bu ₄ NBF ₄	Ni(+) Pt(-)	Ca(OAc)	n.d.
25	ⁿ Bu ₄ NBF ₄	C(+) Pt(-)	Ca(OAc)	80^e
26	ⁿ Bu ₄ NBF ₄	C(+) Pt(-)	Ca(OAc)	$\mathbf{n.d.}^{f}$
27	ⁿ Bu ₄ NBF ₄	C(+) Pt(-)	Ca(OAc)	n.d. ^g

^{*a*}Reaction conditions: **3a** (0.3 mmol), electrodes, 10 mA, base (1.0 equiv.), electrolyte (0.2 M), and DMF (5 mL), in an undivided cell, rt, 2 h, in air, n.d. = no detected. ^{*b*}Yield of the isolated product **4a**. ^{*c*}1.0 equiv. ^{*d*}0.25 equiv. ^{*e*}15 mA. ^{*f*}5 mA. ^{*g*}no electricity.

Table S2. Optimization of DMF in different solvents for $2a^a$.

L) 1a	°>> + ∕r	O H (DMF)	C(+) Pt(-), 10 mA, Ca(OAc) ₂ (0.5 eq ⁿ Bu ₄ NBF ₄ (0.2 M), r.t., 7 h, air undivided cell	uiv.) N	}_n{
	entr		solvents	yield ^b	
	1		CH ₃ CN	trace	
	2		MeOH	n.d.	
	3		DMSO	trace	
	4		DMA	trace	

^{*a*}Standard conditions: **1a** (0.30 mmol), DMF (3 mmol), C(+)/Pt(-), 10 mA, Ca(OAc)₂ (0.5 equiv.), ^{*n*}Bu₄NBF₄ (0.2 M), solvent (5 mL), in an undivided cell, r.t., 7 h, in air. ^{*b*}n.d. = no detected.

2.2 Optimization of conditions for 4a

Table S3. Optimization of the reaction conditions for $4a^{a}$

O O 3a) + \N_NH_H_ (DMF)	electrodes, base electrolyte (0.2 N undivide	e (1.0 equiv.) /), r.t. 2 h, air d cell	- $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
entry	electrolyte	electrodes	base	$\text{Yield}(\%)^b$
1	ⁿ Bu ₄ NBF ₄	Pt(+) Pt(-)	NaOAc	90
2	ⁿ Bu ₄ NBF ₄	Pt(+) Pt(-)	-	n.d.
3	ⁿ Bu ₄ NBF ₄	Pt(+) Pt(-)	NaOH	0
4	ⁿ Bu ₄ NBF ₄	Pt(+) Pt(-)	^t BuOK	0
5	ⁿ Bu ₄ NBF ₄	Pt(+) Pt(-)	NaOEt	0
6	ⁿ Bu ₄ NBF ₄	Pt(+) Pt(-)	CF ₃ CO ₂ Na	61
7	ⁿ Bu ₄ NBF ₄	Pt(+) Pt(-)	K ₂ CO ₃	32
8	ⁿ Bu ₄ NBF ₄	Pt(+) Pt(-)	K ₂ HPO ₄	0
9	ⁿ Bu ₄ NBF ₄	Pt(+) Pt(-)	LiOAc	16
10	ⁿ Bu ₄ NBF ₄	Pt(+) Pt(-)	KOAc	63
11	"Bu4NBF4	Pt(+) Pt(-)	$Ca(OAc)_2^c$	38
12	ⁿ Bu ₄ NBF ₄	Pt(+) Pt(-)	$Mg(OAc)_2^c$	44
13	ⁿ Bu ₄ NBF ₄	Pt(+) Pt(-)	NaOAc ^c	45
14	ⁿ Bu ₄ NBF ₄	Pt(+) Pt(-)	$NaOAc^d$	74
15	ⁿ Bu ₄ NClO ₄	Pt(+) Pt(-)	NaOAc	n.d.
16	ⁿ Bu ₄ NPF ₄	Pt(+) Pt(-)	NaOAc	n.d.
17	"Bu4NI	Pt(+) Pt(-)	NaOAc	n.d.
18	ⁿ Bu ₄ NHSO ₄	Pt(+) Pt(-)	NaOAc	n.d.
19	ⁿ Bu ₄ NBF ₄	C(+) Pt(-)	NaOAc	trace
20	ⁿ Bu ₄ NBF ₄	Ti(+) Pt(-)	NaOAc	n.d.
21	ⁿ Bu ₄ NBF ₄	Ag(+) Pt(-)	NaOAc	n.d.
22	ⁿ Bu ₄ NBF ₄	Cu(+) Pt(-)	NaOAc	trace
23	ⁿ Bu ₄ NBF ₄	RVC(+) Pt(-)	NaOAc	trace
24	ⁿ Bu ₄ NBF ₄	Al(+) Al(-)	NaOAc	72
25	ⁿ Bu ₄ NBF ₄	Pt(+) Pt(-)	NaOAc	68^e
26	ⁿ Bu ₄ NBF ₄	Pt(+) Pt(-)	NaOAc	61^f
27	ⁿ Bu ₄ NBF ₄	Pt(+) Pt(-)	NaOAc	n.d. ^g

^{*a*}Reaction conditions: **3a** (0.3 mmol), electrodes, 10 mA, base (1.0 equiv.), electrolyte (0.2 M), and DMF (5 mL), in an undivided cell, rt, 2 h, in air, n.d. = no detected. ^{*b*}Yield of the isolated product **4a**. ^{*c*}0.5 equiv. ^{*d*}2.0 equiv. ^{*e*}15 mA. ^{*f*}5 mA. ^{*g*}no electricity.

Table S4. Optimization of DMF in different solvents for $4a^a$.

$H = \frac{Pt(+) Pt(-), 10 \text{ mA, NaOAc (1.0 equiv.)}}{n^{B}u_{4}NBF_{4} (0.2 \text{ M}), \text{ r.t. 2 h, air}}$	V V V V V V V V V V V V V V V V V V V
entr solvents	yield ^b
1 CH ₃ CN	n.d.
2 MeOH	n.d.
3 DMSO	trace
4 DMA	trace

^{*a*}Standard conditions: **3a** (0.30 mmol), DMF (3 mmol), Pt(+)/Pt(-), 10 mA, NaOAc (1.0 equiv.), ^{*n*}Bu₄NBF₄ (0.2 M), and solvent (5 mL), in an undivided cell, r.t., 2 h, in air. ^{*b*}n.d. = no detected.

2.3 General procedure for the synthesis of 2

An oven-dried 25 mL three-necked round-bottomed flask with a magnetic stir bar was charged with substrate 1 (0.3 mmol), "Bu₄NBF₄ (1.0 mmol, 0.2 M), Ca(OAc)₂ (0.15 mmol, 0.5 equiv.). The flask was equipped with graphite rod as the anode and platinum plate as the cathode (10 mm x 10 mm x 0.1 mm). The electrolysis was carried out at r.t. in DMF (5.0 mL) using a constant current of 10 mA for 7 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes to give the desired products 2.

2.4 General procedure for the synthesis of 4

An oven-dried 25 mL three-necked round-bottomed flask with a magnetic stir bar was charged with substrate **3** (0.3 mmol), "Bu₄NBF₄ (1.0 mmol, 0.2 M), NaOAc (0.3 mmol, 1.0 equiv.). The flask was equipped with platinum plate as the anode (10 mm x 10 mm x 0.1 mm) and platinum plate as the cathode (10 mm x 10 mm x 0.1 mm). The electrolysis was carried out at r.t. in DMF (5.0 mL) using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL × 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes to give the desired products **4**.

An oven-dried 25 mL three-necked round-bottomed flask with a magnetic stir bar was charged with substrate **5** (0.3 mmol), "Bu₄NBF₄ (1.0 mmol, 0.2 M), NaOAc (0.3 mmol, 1.0 equiv.). The flask was equipped with platinum plate as the anode (10 mm x 10 mm x 0.1 mm) and platinum plate as the cathode (10 mm x 10 mm x 0.1 mm). The electrolysis was carried out at r.t. in DMF (5.0 mL) using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL × 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes to give the desired products **4**.

An oven-dried 25 mL three-necked round-bottomed flask with a magnetic stir bar was charged with substrate **6** (0.3 mmol), ^{*n*}Bu₄NBF₄ (1.0 mmol, 0.2 M), NaOAc (0.3 mmol, 1.0 equiv.). The flask was equipped with platinum plate as the anode (10 mm x 10 mm x 0.1 mm) and platinum plate as the cathode (10 mm x 10 mm x 0.1 mm). The electrolysis was carried out at r.t. in DMF (5.0 mL) using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL × 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes to give the desired products **4a**.

2.5 Procedure for the synthesis of phenothiazinone 8

The product **4g** (0.3 mmol), 2-amino-5-chlorobenzenethiol (0.3 mmol) and Na₂CO₃ (0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of MeOH. The reaction was carried out at 65 °C for 24 hours. The organic layers were evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes to afford product **8**.

2.6. Large-scale electrochemical reaction of 1a.

An oven-dried 100 mL flask with a magnetic stir bar was charged with benzo[*d*]oxazole (1.00 g, 8.4 mmol), "Bu₄NBF₄ (10.0 mmol, 0.2 M), Ca(OAc)₂ (4.2 mmol, 0.5 equiv.). The flask was equipped with graphite rod as the anode and platinum plate as the cathode (10 mm x 10 mm x 0.1 mm). The electrolysis was carried out at r.t. in DMF (50.0 mL) using a constant current of 35 mA for 24 hours. The reaction mixture was extracted with EtOAc (50 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes to give the desired products **2** (0.95 g, 70%).

2.7. Electrochemical reaction of 3a using cost-effective and easily accessible instrument.

A 25 mL flask with a magnetic stir bar was charged with substrate **3a** (0.3 mmol), ^{*n*}Bu₄NBF₄ (1.0 mmol, 0.2 M), NaOAc (0.3 mmol, 1.0 equiv.). The flask was equipped with aluminum foil as the anode and aluminum foil as the cathode. The electrolysis was carried out at r.t. in DMF (5.0 mL) using 9V battery as power supply for 2 hours. The reaction mixture was extracted with EtOAc (15 mL × 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes to give the desired products **4a**.

3. Control experiments

3.1 Kinetic isotope effect study

An oven-dried 25 mL three-necked round-bottomed flask with a magnetic stir bar was charged with substrate 1a (0.3 mmol), "Bu₄NBF₄ (1.0 mmol, 0.2 M), Ca(OAc)₂ (0.15 mmol, 0.5 equiv.). The flask was equipped with graphite rod as the anode and platinum plate as the cathode (10 mm x 10 mm x 0.1 mm). The electrolysis was carried out at r.t. in DMF (2.5 mL) and d₆-DMF (2.5 mL) using a constant current of 10 mA for 7 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes to give the desired products 2a and d_6 -2a.

An oven-dried 25 mL three-necked round-bottomed flask with a magnetic stir bar was charged with substrate **3a** (0.3 mmol), "Bu₄NBF₄ (1.0 mmol, 0.2 M), NaOAc (0.3 mmol, 1.0 equiv.). The flask was equipped with platinum plate as the anode (10 mm x 10 mm x 0.1 mm) and platinum plate as the cathode (10 mm x 10 mm x 0.1 mm). The electrolysis was carried out at r.t. in DMF (2.5 mL) and d_6 -DMF (2.5 mL) using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL × 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes to give the desired products **4a** and d_6 -**4a**.

3.2 1a and 3a with DMF on hydrolysis condition

The starting material, benzo[d]oxazole (35.7 mg, 0.3 mmol) and strong base (0.3 mmol, 1.0 equiv.), such as KOH, NaOH and 'BuOK, were dissolved in 5 mL of DMF. The reaction mixture was stirred gently in an oil bath at room temperature or 153 °C for 12 hours. Monitoring reaction progress via thin-layer chromatography (TLC).

The starting material, naphthalene-1,4-dione (47.5 mg, 0.3 mmol) and strong base (0.3 mmol, 1.0 equiv.), such as KOH, NaOH and 'BuOK, were dissolved in 5 mL of DMF. The reaction mixture was stirred gently in an oil bath at room temperature or 153 °C for 12 hours. Monitoring reaction progress via thin-layer chromatography (TLC).

3.3 Divided cell experiments

$$\begin{array}{cccc}
 & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$$

The electrolyses were carried out in a concentric cell with two compartments separated by an anionic membrane and equipped with amagnetic stirrer. The starting material, benzo[*d*]oxazole **1a** (0.3 mmol), ^{*n*}Bu₄NBF₄ (2.0 mmol, 0.2 M), Ca(OAc)₂ (0.15 mmol, 0.5 equiv.) were dissolved in 10 mL of DMF using a constant current of 10 mA for 7 hours. The flask was equipped with graphite rod as the anode and platinum plate as the cathode (10 mm x 10 mm x 0.1 mm). Monitoring reaction progress via thin-layer chromatography (TLC).

+ DMF
$$\xrightarrow{Pt(+)||Pt(-), 10 \text{ mA, NaOAc (1.0 equiv.)}}_{nBu_4NBF_4 (0.2 \text{ M}), r.t. 2 \text{ h, air}}$$
 No Reaction
3a

The electrolyses were carried out in a concentric cell with two compartments separated by an anionic membrane and equipped with amagnetic stirrer. The starting material, naphthalene-1,4-dione **3a** (0.3 mmol), "Bu₄NBF₄ (2.0 mmol, 0.2 M), NaOAc (0.3 mmol, 1.0 equiv.) were dissolved in 10 mL of DMF using a constant current of 10 mA for 2 hours. The flask was equipped with platinum plate as the anode (10 mm x 10 mm x 0.1 mm) and platinum plate as the cathode (10 mm x 10 mm x 0.1 mm). Monitoring reaction progress via thin-layer chromatography (TLC).

3.4 Reaction intermediate investigation

3.5 Detect CO by GC-FID.

3.6 Amination of naphthalen-1-ol with anhydrous DMF

The anhydrous DMF as solvent led to poor reaction performance, delivering product **4a** in 19% yield.

4. Cyclic voltammetry (CV) experiments.

Figure S1. CV tests of DMF with different amount of Ca(OAc)₂.

The cyclic voltammograms were recorded in an electrolyte of "Bu₄NBF₄ (0.2 M) in DMF using a glassy carbon disk working electrode (diameter, 3 mm), a Pt wire auxiliary electrode and a SCE reference electrode. The scan rate is 100 mV/s. (blue line) DMF, "Bu₄NBF₄ (0.2 M); (orange line) DMF, "Bu₄NBF₄ (0.2 M), Ca(OAc)₂ (0.01 M); (gray line) DMF, "Bu₄NBF₄ (0.2 M), Ca(OAc)₂ (0.02 M), Ca(OAc)₂ (0.02 M).

Figure S2. CV tests of DMF with different amount of NaOAc. The cyclic voltammograms were recorded in an electrolyte of *"*Bu₄NBF₄ (0.2 M) in DMF using a glassy carbon disk working electrode (diameter, 3 mm), a Pt wire auxiliary

electrode and a SCE reference electrode. The scan rate is 100 mV/s. (bluish line) DMF, "Bu₄NBF₄ (0.2 M); (gray line) DMF, "Bu₄NBF₄ (0.2 M), NaOAc (0.01 M); (yellow line) DMF, "Bu₄NBF₄ (0.2 M), NaOAc (0.02 M); (blue line) DMF, "Bu₄NBF₄ (0.2 M), NaOAc (0.06 M).

Figure S3. Reduction potential of benzoxazole.

The cyclic voltammograms were recorded in an electrolyte of ^{*n*}Bu₄NBF₄ (0.2 M) in acetonitrile using a glassy carbon disk working electrode (diameter, 3 mm), a Pt wire auxiliary electrode and a SCE reference electrode. The scan rate is 100 mV/s. (organe line) acetonitrile, ^{*n*}Bu₄NBF₄ (0.2 M); (blue line) acetonitrile, ^{*n*}Bu₄NBF₄ (0.2 M), benzoxazole (0.006 M).

Figure S4. Reduction potential of 1,4-naphthoquinone. The cyclic voltammograms were recorded in an electrolyte of "Bu₄NBF₄ (0.2 M) in DMF using a glassy carbon disk working electrode (diameter, 3 mm), a Pt wire auxiliary electrode and a SCE reference electrode. The scan rate is 100 mV/s. (organe line) DMF,

^{*n*}Bu₄NBF₄ (0.2 M); (blue line) DMF, ^{*n*}Bu₄NBF₄ (0.2 M), 1,4-naphthoquinone (0.006 M).

The cyclic voltammograms were recorded in an electrolyte of ^{*n*}Bu₄NBF₄ (0.2 M) in DMF using a glassy carbon disk working electrode (diameter, 3 mm), a Pt wire auxiliary electrode and a SCE reference electrode. (purple line) 20 mV/s; (bluish line) 50 mV/s; (gray line) 100 mV/s; (orange line) 150 mV/s;(blue line) 200 mV/s.

Figure S6. linear fit analysis.

5. Analytical data for products

N,*N*-dimethylbenzo[*d*]oxazol-2-amine (2a)

The starting material, benzo[*d*]oxazole (35.7 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), Ca(OAc)₂ (23.7 mg, 0.15 mmol, 0.5 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with graphite rod as the anode and platinum plate as the cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 7 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (10:1) to afford 41.8 mg yellow solid product **2a** in 86% yield.

m.p. 73.3-81.8 °C. ¹H NMR (400MHz, CDCl₃) δ 7.35 (d, *J*=7.8 Hz, 1H), 7.24 (d, *J*=9.6 Hz, 1H), 7.13-7.17 (m, 1H), 6.98-7.02 (m, 1H), 3.20 (s, 6H). ¹³C NMR (100MHz, CDCl₃) δ 163.1, 149.1, 143.6, 123.9, 120.2, 116.0, 108.6, 37.7. The ¹H and ¹³C NMR data match the reported values^[1].

N,*N*,**5-trimethylbenzo**[*d*]oxazol-2-amine (2b)

The starting material, 5-methylbenzo[*d*]oxazole (39.9 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), Ca(OAc)₂ (23.7 mg, 0.15 mmol, 0.5 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with graphite rod as the anode and platinum plate as the cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 7 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (10:1) to afford 39.1 mg yellow liquid product **2b** in 74% yield.

¹H NMR (400MHz, CDCl₃) δ 7.15 (s, 1H), 7.11 (d, J = 8.1 Hz, 1H), 6.79 (d, J = 8.0 Hz, 1H), 3.19 (s, 6H), 2.38 (s, 3H). ¹³C NMR (100MHz, CDCl₃) δ 163.3, 147.2, 143.7, 133.5, 120.8, 116.4, 107.9, 37.7, 21.5. The ¹H and ¹³C NMR data match the reported values^[2].

N,*N*,6-trimethylbenzo[*d*]oxazol-2-amine (2c)

The starting material, 6-methylbenzo[*d*]oxazole (39.9 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), Ca(OAc)₂ (23.7 mg, 0.15 mmol, 0.5 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with graphite rod as the anode and platinum plate as the cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 7 hours. The reaction mixture was extracted with EtOAc (15 mL × 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (10:1) to afford 38.1 mg brown solid product **2c** in 72% yield. m.p. 45.9-54.5 °C. ¹H NMR (400MHz, CDCl₃) δ 7.22 (d, *J*=7.9 Hz, 1H), 7.07 (s, 1H), 6.96 (d, *J*=7.9 Hz, 1H), 3.18 (s, 6H), 2.39 (s, 3H). ¹³C NMR (100MHz, CDCl₃) δ 162.9, 149.3, 141.2, 130.2, 124.6, 115.4, 109.2, 37.7, 21.4. The ¹H and ¹³C NMR data match the reported values^[3].

5-methoxy-*N*,*N*-dimethylbenzo[*d*]oxazol-2-amine (2d)

The starting material, 5-methoxybenzo[*d*]oxazole (44.7 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), Ca(OAc)₂ (23.7 mg, 0.15 mmol, 0.5 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with graphite rod as the anode and platinum plate as the cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 7 hours. The reaction mixture was extracted with EtOAc (15 mL × 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (10:1) to afford 36.9 mg yellow liquid product **2d** in 64% yield.

¹H NMR (400MHz, CDCl₃) δ 7.11 (d, *J*=8.6 Hz, 1H), 6.92 (d, *J*=2.5 Hz, 1H), 6.56 (dd, *J*₁=8.7 Hz, *J*₂=2.6 Hz, 1H), 3.80 (s, 3H), 3.19 (s, 6H). ¹³C NMR (100MHz, CDCl3) δ 163.8, 157.0, 144.5, 143.6, 108.4, 106.6, 101.2, 55.9, 37.7. The ¹H and ¹³C NMR data match the reported values^[1].

6-chloro-*N*,*N*-dimethylbenzo[*d*]oxazol-2-amine (2e)

The starting material, 6-chlorobenzo[*d*]oxazole (46.1 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), Ca(OAc)₂ (23.7 mg, 0.15 mmol, 0.5 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with graphite rod as the anode and platinum plate as the cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 7 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (10:1) to afford 43.6 mg yellow solid product **2e** in 74% yield.

m.p. 71.3-78.9 °C. ¹H NMR (400MHz, CDCl₃) δ 7.29(d, *J*=2.0 Hz, 1H), 7.13 (d, *J*=8.4 Hz, 1H), 6.95 (dd, *J*₁=8.4 Hz, *J*₂=2.0 Hz, 1H), 3.20 (s, 6H). ¹³C NMR (100MHz, CDCl₃) δ 163.8, 147.7, 144.9, 129.2, 120.0, 116.1, 109.1, 37.7. The ¹H and ¹³C NMR data match the reported values^[4].

5-bromo-*N*,*N*-dimethylbenzo[*d*]oxazol-2-amine (2f)

The starting material, 5-bromobenzo[*d*]oxazole (59.4 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), Ca(OAc)₂ (23.7 mg, 0.15 mmol, 0.5 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with graphite rod as the anode and platinum plate as the cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 7 hours. The reaction mixture was extracted with EtOAc (15 mL × 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (10:1) to afford 39.8 mg red liquid product **2f** in 55% yield. ¹H NMR (400MHz, CDCl₃) δ 7.44 (s, 1H), 7.09 (s, 2H), 3.19 (s, 6H). ¹³C NMR (100MHz, CDCl₃) δ 163.5, 148.1, 145.4, 122.7, 118.9, 116.5, 109.6, 37.6. The ¹H and ¹³C NMR data match the reported values^[5].

N,*N*-dimethyl-5-nitrobenzo[*d*]oxazol-2-amine (2g)

The starting material, 5-nitrobenzo[*d*]oxazole (49.2 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), Ca(OAc)₂ (23.7 mg, 0.15 mmol, 0.5 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with graphite rod as the anode and platinum plate as the cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 7 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (10:1) to afford 46.6 mg yellow solid product **2g** in 75% yield.

m.p. 160.1-166.3 °C. ¹H NMR (400MHz, CDCl₃) δ 8.15 (d, J = 2.2 Hz, 1H), 7.98 (d, J_1 = 8.7 Hz, J_2 = 2.2 Hz 1H), 7.30 (d, J=8.7 Hz, 1H), 3.25 (s, 6H). ¹³C NMR (100MHz, CDCl₃) δ 164.5, 153.0, 145.2, 144.6, 116.8, 111.5, 108.2, 37.7. The ¹H and ¹³C NMR data match the reported values^[1].

methyl 2-(dimethylamino)benzo[d]oxazole-4-carboxylate (2h)

The starting material, methyl benzo[*d*]oxazole-4-carboxylate (53.2 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), Ca(OAc)₂ (23.7 mg, 0.15 mmol, 0.5 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with graphite rod as the anode and platinum plate as the cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 7 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (10:1) to afford 42.9 mg brown solid product **2h** in 65% yield.

m.p. 85.7-94.1 °C. ¹H NMR (400MHz, CDCl₃) δ 7.81 (d, *J*=8.0 Hz, 1H), 7.38 (d, *J*=7.8 Hz, 1H), 7.01 (dd, *J*₁=8.0 Hz, *J*₂=7.9 Hz, 1H), 3.98 (s, 3H), 3.27 (s, 6H). ¹³C NMR (100MHz, CDCl₃) δ 166.3, 164.3, 150.0, 144.6, 126.0, 119.2, 117.5, 112.3, 52.1, 37.8. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₁H₁₂N₂O₃ 221.0921; Found 221.0918.

methyl 2-(dimethylamino)benzo[d]oxazole-7-carboxylate (2i)

The starting material, methyl benzo[*d*]oxazole-7-carboxylate (53.2 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), Ca(OAc)₂ (23.7 mg, 0.15 mmol, 0.5 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with graphite rod as the anode and platinum plate as the cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 7 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (10:1) to afford 47.6 mg brown solid product **2i** in 72% yield.

m.p. 102.8-108.1 °C. ¹H NMR (400MHz, CDCl₃) δ 7.59 (d, *J*=7.9, 1H), 7.51 (d, *J*=7.8, 1H), 7.20 (dd, *J*₁=7.9 Hz, *J*₂=7.8 Hz, 1H), 3.97 (s, 3H), 3.26 (s, 6H). ¹³C NMR (100MHz, CDCl₃) δ 165.1, 163.6, 148.3, 145.0, 123.6, 121.8, 120.3, 113.0, 52.1, 37.7. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₁H₁₂N₂O₃ 221.0921; Found 221.0918.

N,*N*-dimethyl-5-phenylbenzo[*d*]oxazol-2-amine (2j)

The starting material, 5-phenylbenzo[*d*]oxazole (58.6 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), Ca(OAc)₂ (23.7 mg, 0.15 mmol, 0.5 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with graphite rod as the anode and platinum plate as the cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 7 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (10:1) to afford 20.7 mg yellow solid product **2j** in 29% yield.

m.p. 113.6-118.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.57 (m, 3H), 7.45-7.41 (m, 2H), 7.34-7.28 (m, 2H), 7.22 (dd, J_1 =8.2 Hz, J_2 =1.6 Hz, 1H), 3.23 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 148.7, 144.2, 141.7, 137.7, 128.7, 127.3, 126.8, 119.6, 114.7, 108.5, 37.7. The ¹H and ¹³C NMR data match the reported values^[2].

5-(2-methoxyphenyl)-*N*,*N*-dimethylbenzo[*d*]oxazol-2-amine (2k)

The starting material, 5-(3-methoxyphenyl)benzo[*d*]oxazole (67.6 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), Ca(OAc)₂ (23.7 mg, 0.15 mmol, 0.5 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with graphite rod as the anode and platinum plate as the cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 7 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (10:1) to afford 20.1 mg brown solid product **2k** in 25% yield.

m.p. 120.7-128.3 °C. ¹H NMR (400MHz, CDCl₃) δ 7.54 (s, 1H), 7.34-7.27 (m, 3H), 7.15 (d, J = 6.5 Hz, 1H), 7.04-6.97 (m, 2H), 3.80 (s, 3H), 3.21 (s, 6H). ¹³C NMR (100MHz, CDCl₃) δ 163.3, 156.4, 148.3, 143.3, 134.4, 131.1, 131.1, 128.3, 121.9, 120.8, 117.4, 111.2, 108.0, 55.5, 37.7. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₆H₁₆N₂O₂ 269.1285; Found 269.1288.

5-(3,5-dimethoxyphenyl)-N,N-dimethylbenzo[d]oxazol-2-amine (2l)

The starting material, 5-(3,5-dimethoxyphenyl)benzo[d]oxazole (76.6 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), Ca(OAc)₂ (23.7 mg, 0.15 mmol, 0.5 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with graphite rod as the anode and platinum plate as the cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 7 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (10:1) to afford 22.4 mg brown liquid product **2l** in 25% yield.

¹H NMR (400MHz, CDCl₃) δ 7.56 (s, 1H), 7.27 (d, J = 9.7 Hz, 1H), 7.21 (d, J = 8.2 Hz, 1H), 6.74 (s, 1H), 6.45 (s, 1H), 3.84 (s, 6H), 3.22 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 160.9, 148.9, 144.1, 143.9, 137.6, 119.6, 114.7, 108.5, 105.5, 99.0,

55.4, 37.7. HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{17}H_{18}N_2O_3$ 299.1391; Found 299.1390.

2-(dimethylamino)naphthalene-1,4-dione (4a)

The starting material, naphthalene-1,4-dione (47.5 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (2:1) to afford 54.3 mg red solid product **4a** in 90% yield.

The starting material, naphthalene-1,4-diol (48.1 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (2:1) to afford 45.9 mg red solid product **4a** in 76% yield.

The starting material, naphthalen-1-ol (43.2 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (2:1) to afford 36.8 mg red solid product **4a** in 61% yield.

m.p. 102-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.5 Hz, 1H), 7.99 (d, J = 7.5 Hz, 1H), 7.69 (dd, J_1 = 11.6 Hz, J_2 = 4.2 Hz, 1H), 7.62 (dd, J_1 = 10.8 Hz, J_2 = 4.2 Hz, 1H), 5.85 (s, 1H), 3.22 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 183.4, 182.7, 152.4, 133.8, 132.7, 132.4, 131.9, 126.4, 125.3, 106.8, 42.5. The ¹H and ¹³C NMR data match the reported values^[6].

2-(dimethylamino)-6,7-dimethylnaphthalene-1,4-dione (4b)

The starting material, 6,7-dimethylnaphthalene-1,4-dione (55.8 mg, 0.3 mmol), ⁿBu₄NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (2:1) to afford 44.7 mg red solid product 4b in 65% yield. The starting material, 6,7-dimethylnaphthalene-1,4-diol (56.4 mg, 0.3 mmol), ⁿBu₄NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (2:1) to afford 31.0 mg red solid product 4b in 45% yield. m.p. 153-156 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.71 (s, 1H), 5.76 (s, 1H), 3.19 (s, 6H), 2.36 (s, 3H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.6, 183.3, 152.6, 143.6, 141.3, 130.7, 130.4, 127.5, 126.4, 106.9, 42.5, 20.1, 19.9. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₄H₁₅NO₂ 230.1176; Found 230.1173.

2-(dimethylamino)-6,7-dipropylnaphthalene-1,4-dione (4c)

The starting material, 6,7-dipropylnaphthalene-1,4-dione (72.6 mg, 0.3 mmol), $^{n}Bu_4NBF_4$ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL × 3). The collected

organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (2:1) to afford 29.9 mg red solid product **4c** in 35% yield. m.p. 78-80 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.76 (s, 1H), 5.79 (s, 1H), 3.21 (s, 6H), 2.72-2.66 (m, 4H), 1.72-1.62 (m, 4H), 1.04-0.99 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 183.6, 183.3, 152.7, 147.5, 145.1, 130.5, 130.3, 127.2, 126.1, 106.9, 42.5, 34.9, 34.6, 23.8, 14.1, 14.1. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₈H₂₃NO₂ 286.1802; Found 286.1805.

2-(dimethylamino)-5,8-dimethylnaphthalene-1,4-dione (4d)

The starting material, 5,8-dimethylnaphthalene-1,4-dione (55.8 mg, 0.3 mmol), "Bu4NBF4 (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL × 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (2:1) to afford 26.1 mg red solid product **4d** in 38% yield. m.p. 86-91 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.23 (m, 2H), 5.66 (s, 1H), 3.10 (s, 6H), 2.70 (s, 3H), 2.58 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.5, 185.9, 154.4, 137.8, 137.6, 136.9, 134.8, 132.7, 131.4, 106.4, 41.4, 22.8, 22.1. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₄H₁₅NO₂ 230.1176; Found 230.1175.

2-(dimethylamino)-7-methylnaphthalene-1,4-dione and 2-(dimethylamino)-6methylnaphthalene-1,4-dione (4e)

The starting material, 6-methylnaphthalene-1,4-dione (51.6 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The

reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (2:1) to afford 43.9 mg orange solid product **4e** in 68% yield (isomeric mixture of C6/C5 = 1:1).

m.p. 85-91 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93-7.86 (m, 1H), 7.83-7.76 (m, 1H), 7.48-7.38 (m, 1H), 5.79 (s, 1H), 3.20 (s, 6H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.8, 183.3, 183.0, 182.9, 152.5, 145.0, 142.6, 134.5, 132.7, 132.6, 132.4, 130.5, 130.2, 126.8, 126.7, 1258, 125.5, 107.0, 106.8, 42.5, 42.4, 21.8, 21.5. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₃H₁₃NO₂ 216.1020; Found 216.1018.

2-chloro-3-(dimethylamino)naphthalene-1,4-dione (4f)

The starting material, 2,3-dichloronaphthalene-1,4-dione (68.1 mg, 0.3 mmol), ^{*n*}Bu₄NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL × 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (10:1) to afford 27.6 mg red solid product **4f** in 39% yield. m.p. 73-75 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 7.7 Hz, 1H), 8.00 (d, *J* = 7.5 Hz, 1H), 7.71-7.63 (m, 2H), 3.25 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 182.2, 177.9, 151.0, 134.0, 132.8, 131.7, 131.4, 126.8, 126.4, 120.2, 44.4. The ¹H and ¹³C NMR data match the reported values^[7].

2-bromo-3-(dimethylamino)naphthalene-1,4-dione (4g)

The starting material, 2,3-dibromonaphthalene-1,4-dione (94.8 mg, 0.3 mmol), n Bu₄NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with platinum plates as the anode

and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL × 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (10:1) to afford 39.5 mg red solid product **4g** in 47% yield. m.p. 59-63 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, J_1 = 7.6 Hz, J_2 = 1.2 Hz, 1H), 7.97 (dd, J_1 = 7.6 Hz, J_2 = 1.2 Hz, 1H), 7.69-7.61 (m, 2H), 3.25 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 181.8, 177.9, 153.5, 133.9, 132.7, 131.3, 131.2, 126.7, 126.6, 112.9, 44.7. The ¹H and ¹³C NMR data match the reported values^[8].

2-(dimethylamino)anthracene-1,4-dione (4h)

The starting material, anthracene-1,4-dione (62.5 mg, 0.3 mmol), ^{*n*}Bu₄NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (2:1) to afford 55.8 mg red solid product **4h** in 74% yield.

The starting material, anthracene-1,4-diol (63.1 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (2:1) to afford 35.4 mg red solid product **4h** in 47% yield.

m.p. 81-90 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 11.2 Hz, 2H), 7.99 (d, J = 1.9 Hz, 2H), 7.61 (s, 2H), 5.95 (s, 1H), 3.24 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 183.0, 182.4, 153.4, 135.1, 134.1, 129.8, 129.7, 129.6, 129.2, 129.1, 128.9, 128.4, 126.6, 108.7, 42.5. The ¹H and ¹³C NMR data match the reported values^[9].

2-(dimethylamino)cyclohexa-2,5-diene-1,4-dione (4i)

The starting material, benzoquinone (32.4 mg, 0.3 mmol), ^{*n*}Bu₄NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (4:1) to afford 24.9 mg red solid product **4i** in 55% yield.

The starting material, hydroquinone (33.0 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (4:1) to afford 40.8 mg red solid product **4i** in 90% yield.

m.p. 124-128 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.63 (d, J = 9.9 Hz, 1H), 6.53 (d, J = 9.9 Hz, 1H), 5.61 (s, 1H), 3.17 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 185.3, 185.2, 150.4, 137.9, 134.2, 104.4, 42.3. The ¹H and ¹³C NMR data match the reported values^[10].

The starting material, 2-methylcyclohexa-2,5-diene-1,4-dione (36.6 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (4:1) to afford 49.5 mg red solid product **4j** in 99% yield (C6/C5 = 1:1).

The starting material, 2-methylbenzene-1,4-diol (37.2 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (4:1) to afford 29.7 mg red solid product **4j** in 60% yield (C6/C5 = 1:1).

2-(dimethylamino)-5-methylcyclohexa-2,5-diene-1,4-dione (4j, 6-NMe₂)

m.p. 126-129 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.44 (d, J = 1.6 Hz, 1H), 5.53 (d, J = 2.2 Hz, 1H), 3.11 (s, 6H), 2.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 185.9, 185.6, 151.2, 142.7, 134.5, 104.5, 42.3, 15.8.

2-(dimethylamino)-6-methylcyclohexa-2,5-diene-1,4-dione (4j, 5-NMe₂) m.p. 130-132 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.35 (s, 1H), 5.56 (s, 1H), 3.12 (s, 6H), 2.02 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 185.4, 185.4, 150.7, 147.4, 131.1, 104.33, 42.33, 15.7. The ¹H and ¹³C NMR data match the reported values^[11].

The starting material, 2-(tert-butyl)cyclohexa-2,5-diene-1,4-dione (49.3 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL × 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (4:1) to afford 37.3 mg orange solid product **4k** in 60% yield (C6/C5 = 7:1).

The starting material, 2-(tert-butyl)benzene-1,4-diol (49.9 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers

were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (10:1) to afford 53.5 mg orange solid product 4k in 86% yield (C6/C5 = 7:1).

2-(tert-butyl)-5-(dimethylamino)cyclohexa-2,5-diene-1,4-dione (4k, 6-NMe₂)

m.p. 99-102 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.43 (d, J = 2.4 Hz, 1H), 5.50 (d, J = 1.9 Hz, 1H), 3.07 (s, 6H), 1.27 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 186.0, 185.7, 153.6, 153.5, 132.8, 103.1, 42.1, 35.0, 29.2. The ¹H and ¹³C NMR data match the reported values^[12].

2-(tert-butyl)-6-(dimethylamino)cyclohexa-2,5-diene-1,4-dione (4k, 5-NMe₂) m.p. 100-102 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.33 (s, 1H), 5.50 (s, 1H), 3.09 (s, 6H), 1.29 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 186.4, 185.6, 157.0, 149.5, 129.6, 106.7, 41.9, 35.1, 29.5. The ¹H and ¹³C NMR data match the reported values^[7].

The starting material, [1,1'-biphenyl]-2,5-dione (55.3 mg, 0.3 mmol), "Bu4NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL × 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (4:1) to afford 50.5 mg red solid product **4I** in 74% yield (C6/C5 = 3:1). The starting material, [1,1'-biphenyl]-2,5-diol (55.9 mg, 0.3 mmol), "Bu4NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL × 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (4:1) to afford 28.6 mg red solid product **4I** in 42% yield (C6/C5 = 3:1). **2-(dimethylamino)-5-methylcyclohexa-2,5-diene-1,4-dione (4I, 6-NMe2)**

m.p. 98-100 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (s, 5H), 6.71 (d, J = 2.6 Hz, 1H), 5.65 (d, J = 2.4 Hz, 1H), 3.15 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 185.1, 151.8,

144.1, 134.1, 133.5, 129.4, 128.9, 128.4, 104.2, 42.4. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₄H₁₃NO₂ 228.1020; Found 228.1022.

2-(dimethylamino)-6-methylcyclohexa-2,5-diene-1,4-dione (4l, 5-NMe₂)

m.p. 103-105 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (dd, J_1 = 6.7 Hz, J_2 = 3.0 Hz, 2H), 7.42-7.41 (m, 3H), 6.61 (s, 1H), 5.69 (s, 1H), 3.18 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 185.5, 184.2, 150.3, 146.6, 133.5, 130.9, 129.7, 129.6, 129.5, 128.2, 104.8, 42.3. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₄H₁₃NO₂ 228.1020; Found 228.1022.

2-(pyrrolidin-1-yl)naphthalene-1,4-dione (4m)

The starting material, naphthalene-1,4-dione (47.5 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of pyrrolidine-1-carbaldehyde. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (2:1) to afford 27.3 mg orange solid product **4m** in 40% yield.

m.p. 143-146 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 7.6 Hz, 1H), 8.01 (d, J = 7.7 Hz, 1H), 7.69 (dd, J_1 = 7.6 Hz, J_2 = 7.2 Hz, 1H), 7.60 (dd, J_1 = 7.6 Hz, J_2 = 7.2 Hz, 1H), 5.75 (s, 1H), 3.90-3.47 (m, 4H), 2.02-1.98 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 183.3, 182.4, 149.0, 134.0, 133.2, 131.8, 131.6, 126.3, 125.4, 104.7, 51.0, 29.7. The ¹H and ¹³C NMR data match the reported values^[13].

6,7-dimethyl-2-(pyrrolidin-1-yl)naphthalene-1,4-dione (4n)

The starting material, 6,7-dimethylnaphthalene-1,4-dione (55.8 mg, 0.3 mmol), n Bu₄NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of pyrrolidine-1-carbaldehyde. The flask was equipped with platinum

plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (2:1) to afford 25.3 mg red solid product **4n** in 33% yield.

m.p. 70-77 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.74 (s, 1H), 5.67 (s, 1H), 3.92-3.43 (m, 4H), 2.37 (s, 3H), 2.35 (s, 3H), 2.00-1.97 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 183.4, 182.9, 149.1, 143.8, 140.9, 131.1, 129.7, 127.4, 126.5, 104.5, 50.8, 29.7, 20.1, 19.9. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₆H₁₇NO₂ 256.1333; Found 256.1329.

2-(piperidin-1-yl)naphthalene-1,4-dione (40)

The starting material, naphthalene-1,4-dione (47.5 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of piperidine-1-carbaldehyde. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL × 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (2:1) to afford 15.2 mg red solid product **40** in 21% yield. m.p. 98-105 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.3 Hz, 1H), 7.98 (d, *J* = 7.1 Hz, 1H), 7.68 (dd, *J*₁ = 8.0 Hz, *J*₂ = 6.9 Hz, 1H), 7.62 (dd, J = 8.0, 7.0 Hz, 1H), 6.02 (s, 1H), 3.50-3.48 (m, 4H), 1.74-1.72 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 183.5, 183.4, 154.1, 133.7, 133.0, 132.6, 132.2, 126.6, 125.4, 110.4, 50.4, 25.7, 24.3. The ¹H and ¹³C NMR data match the reported values^[13].

The starting material, 2-(tert-butyl)cyclohexa-2,5-diene-1,4-dione (49.3 mg, 0.3 mmol), ⁿBu₄NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were
dissolved in 5 mL of pyrrolidine-1-carbaldehyde. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (2:1) to afford 50.4 mg red liquid product **4p** in 72% yield (C6/C5 = 3:1).

The starting material, 2-(tert-butyl)benzene-1,4-diol (49.9 mg, 0.3 mmol), "Bu₄NBF₄ (322.4 mg, 1.0 mmol), NaOAc (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of DMF. The flask was equipped with platinum plates as the anode and cathode. The electrolysis was carried out at r.t. using a constant current of 10 mA for 2 hours. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes (2:1) to afford 39.9 mg red liquid product **4p** in 57% yield (C6/C5 = 3:1).

2-(tert-butyl)-6-(pyrrolidin-1-yl)cyclohexa-2,5-diene-1,4-dione (4p, 6-NMe₂)

¹H NMR (400 MHz, CDCl₃) δ 6.47 (d, J = 1.6 Hz, 1H), 5.42 (d, J = 1.8 Hz, 1H), 3.67-3.39 (m, 4H), 1.98-1.94 (m, 4H), 1.27 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ . 185.4, 151.8, 149.3, 133.7, 100.9, 50.8, 34.9, 29.4, 29.22. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₄H₁₉NO₂ 234.1489; Found 234.1486.

2-(tert-butyl)-5-(pyrrolidin-1-yl)cyclohexa-2,5-diene-1,4-dione (4p, 5-NMe₂) ¹H NMR (400 MHz, CDCl₃) δ 6.33 (s, 1H), 5.40 (s, 1H), 3.48-3.43 (m, 4H), 1.96-1.93 (m, 4H), 1.30 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 186.3, 185.1, 157.8, 146.3, 128.5, 104.3, 50.3, 35.3, 29.6, 29.1. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₄H₁₉NO₂ 234.1489; Found 234.1490.

9-chloro-6-(methylamino)-5H-benzo[a]phenothiazin-5-one(8)

The starting material, 2-bromo-3-(dimethylamino)naphthalene-1,4-dione (84.0 mg, 0.3 mmol), 2-amino-5-chlorobenzenethiol (47.9 mg, 0.3 mmol), Na_2CO_3 (24.6 mg, 0.3 mmol, 1.0 equiv.) were dissolved in 5 mL of MeOH. The reaction was carried out at 65 °C. for 24 hours. The organic layers were evaporated and chromatographed through

silica gel eluting with ethyl acetate/hexanes (10:1) to afford 65.7 mg red solid product **8** in 67% yield.

m.p. 185-189°C. ¹H NMR (400MHz, CDCl₃) δ 8.80-8.78 (m, 1H), 8.30-8.27 (m, 1H), 7.78-7.70 (m, 3H), 7.40 (d, J = 8.4 Hz, 1H), 7.36 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.0$ Hz, 1H), 4.20 (s, 3H). ¹³C NMR (100MHz, CDCl₃) δ 175.4, 145.6, 145.5, 137.5, 135.2, 133.9, 133.5, 132.3, 131.6, 131.4, 128.0, 125.9, 125.4, 125.0, 124.9, 123.0, 60.2. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₇H₁₁ClN₂OS 327.0354, 329.0324; Found 327.0355, 329.0326.

6. NMR spectra for products

¹H NMR of **2a** (400 MHz, CDCl₃) and ¹³C NMR of **2a** (100 MHz, CDCl₃)

 ^1H NMR of 2b (400 MHz, CDCl_3) and ^{13}C NMR of 2b (100 MHz, CDCl_3)

 ^1H NMR of 2c (400 MHz, CDCl_3) and ^{13}C NMR of 2c (100 MHz, CDCl_3)

¹H NMR of 2d (400 MHz, CDCl₃) and ¹³C NMR of 2d (100 MHz, CDCl₃)

¹H NMR of 2e (400 MHz, CDCl₃) and ¹³C NMR of 2e (100 MHz, CDCl₃)

¹H NMR of **2f** (400 MHz, CDCl₃) and ¹³C NMR of **2f** (100 MHz, CDCl₃)

 ^1H NMR of 2g (400 MHz, CDCl_3) and ^{13}C NMR of 2g (100 MHz, CDCl_3)

¹H NMR of **2h** (400 MHz, CDCl₃) and ¹³C NMR of **2h** (100 MHz, CDCl₃)

¹H NMR of 2i (400 MHz, CDCl₃) and ¹³C NMR of 2i (100 MHz, CDCl₃)

¹H NMR of **2j** (400 MHz, CDCl₃) and ¹³C NMR of **2j** (100 MHz, CDCl₃)

¹H NMR of **2k** (400 MHz, CDCl₃) and ¹³C NMR of **2k** (100 MHz, CDCl₃)

¹H NMR of **2l** (400 MHz, CDCl₃) and ¹³C NMR of **2l** (100 MHz, CDCl₃)

¹H NMR of 4a (400 MHz, CDCl₃) and ¹³C NMR of 4a (100 MHz, CDCl₃)

 ^1H NMR of 4b (400 MHz, CDCl₃) and ^{13}C NMR of 4b (100 MHz, CDCl₃)

 ^1H NMR of 4c (400 MHz, CDCl₃) and ^{13}C NMR of 4c (100 MHz, CDCl₃)

 ^1H NMR of 4d (400 MHz, CDCl₃) and ^{13}C NMR of 4d (100 MHz, CDCl₃)

¹H NMR of 4e (400 MHz, CDCl₃) and ¹³C NMR of 4e (100 MHz, CDCl₃)

¹H NMR of 4f (400 MHz, CDCl₃) and ¹³C NMR of 4f (100 MHz, CDCl₃)

 ^1H NMR of 4g (400 MHz, CDCl₃) and ^{13}C NMR of 4g (100 MHz, CDCl₃)

 ^1H NMR of 4h (400 MHz, CDCl₃) and ^{13}C NMR of 4h (100 MHz, CDCl₃)

¹H NMR of 4i (400 MHz, CDCl₃) and ¹³C NMR of 4i (100 MHz, CDCl₃)

¹H NMR of 4j (6-NMe₂) (400 MHz, CDCl₃) and ¹³C NMR of 4j (6-NMe₂) (100 MHz, CDCl₃)

¹H NMR of 4j (5-NMe₂) (400 MHz, CDCl₃) and ¹³C NMR of 4j (5-NMe₂) (100 MHz, CDCl₃)

¹H NMR of 4k (6-NMe₂) (400 MHz, CDCl₃) and ¹³C NMR of 4k (6-NMe₂) (100 MHz, CDCl₃)

¹H NMR of 4k (5-NMe₂) (400 MHz, CDCl₃) and ¹³C NMR of 4k (5-NMe₂) (100 MHz, CDCl₃)

¹H NMR of 4l (6-NMe₂) (400 MHz, CDCl₃) and ¹³C NMR of 4l (6-NMe₂) (100 MHz, CDCl₃)

¹H NMR of 4l (5-NMe₂) (400 MHz, CDCl₃) and ¹³C NMR of 4l (5-NMe₂) (100 MHz, CDCl₃)

 $^1\mathrm{H}$ NMR of 4m (400 MHz, CDCl₃) and $^{13}\mathrm{C}$ NMR of 4m (100 MHz, CDCl₃)

 ^1H NMR of 4n (400 MHz, CDCl₃) and ^{13}C NMR of 4n (100 MHz, CDCl₃)

¹H NMR of 40 (400 MHz, CDCl₃) and ¹³C NMR of 40 (100 MHz, CDCl₃)

¹H NMR of 4p (6-NMe₂) (400 MHz, CDCl₃) and ¹³C NMR of 4p (6-NMe₂) (100 MHz, CDCl₃)

H NMR of 4p (5-NMe₂) (400 MHz, CDCl₃) and ¹³C NMR of 4p (5-NMe₂) (100 MHz, CDCl₃)

¹H NMR of 8 (400 MHz, CDCl₃) and ¹³C NMR of 8 (100 MHz, CDCl₃)

7. DFT calculations

7.1 Computational Details

All the DFT calculations were carried out with the Gaussian 09 suite of computational programs.^[14] The geometries of all stationary points were optimized using the B3LYP hybrid functional^[15] and D3 version of Grimme's dispersion corrections^[16] with Becke-Johnson damping^[17] in DMF, at 6-31g(d)^[18] basis set by using the Solvation Model based on Density (SMD)^[19] with keyword in the Gaussian code route section "SCRF = (SMD, Solvent = DMF)". Frequencies were analytically computed at the same level of theory to obtain the Gibbs free energies and to confirm whether the structures are minima (no imaginary frequency) or transition states (only one imaginary frequency). The M06L functional^[20,21] in combination with the 6-311+g(d,p) basis set^[18] was used to calculate the solvation single point energies to give more accurate energy information. The solvent effects were considered with an SMD solvation model in the DMF solvent. All transition state structures were confirmed to connect the proposed reactants and products by intrinsic reaction coordinate (IRC) calculations. All the energies given in the text are relative free energies corrected with solvation effects.

7.2 Additional Computational Results

HCOOH

CBS-QB3/M052X/6-31G* 4.33 (experimental value 3.76) //M052X/6-311+G(d,p)/SMD:

Figure S7 Calculated pKa values of different C–H bonds (CBS-QB3/M052X/6-31G*//M052X/6-311+G(d,p)/SMD)

The data were calculated for the standard state of 298 K and 1 atm in the solvent DMF.

The calculation result is calibrated by formic acid.

Figure S8 Energy profile for the electrooxidative amination using 4a as arene (M06L/6-311+G(d,p)-SMD(DMF)//B3LYP-D3(BJ)/6-31G(d)-SMD(DMF))

7.3 Calculated Energy Values

Table S5. Energies (in Hartree) calculated by M06L/6-311+G(d,p)-SMD(DMF)//B3LYP-D3(BJ)/6-31G(d)-SMD(DMF) level.

Species	G_{298}^{a}	E298 ^b	E _{sol} ^c	Imaginary Frequency
INT1	-248.237277	-248.3071426	-248.324571669	
AcONa	-390.846577	-390.8672767	-390.896382669	
INT2	-639.104153	-639.2117033	-639.251223896	
TS1	-639.098111	-639.2061086	-639.250154153	-234.4332
AcOHNa	-391.287702	-391.3185937	-391.348775304	
INT3	-247.8147160	-247.8749760	-247.898098881	
TS2	-247.774111	-247.8281301	-247.852182093	-374.6619
СО	-113.319634	-113.3055241	-113.325592813	
INT4	-134.471024	-134.5216060	-134.528793453	
INT5	-535.191725	-535.2888828	-535.335776221	
TS3	-669.648522	-669.8218838	-669.872656833	-170.0418
INT6	-669.654142	-669.8296757	-669.879910835	
TS4	-669.649035	-669.8215984	-669.873564721	-94.0919
INT7	-669.671813	-669.8475015	-669.895461850	
АсОН	-229.063235	-229.0979480	-229.138666891	
AcO ⁻	-228.574318	-228.5969248	-228.654520666	
INT8	-670.160163	-670.3502693	-670.385275542	
INT9	-670.183024	-670.3732338	-670.404908621	
TS5	-782.988482	-783.1697411	-783.238462493	-247.8498
INT10	-782.996543	-783.1799835	-783.250186534	
TS6	-782.945306	-783.1269078	-783.193300703	-295.9557

^{*a*}Sum of electronic and thermal free energies. ^{*b*}Sum of electronic energies. ^{*c*}Single point energies calculated in DMF solution.

7.4 Cartesian Coordinates for All Species

INT1

N	-2.58381700	1.17392000	-0.01717700
С	-2.76266900	1.86816700	1.22158400
Н	-2.75517600	1.20549600	2.09408500
0	-2.89497500	3.06855800	1.23850800
С	-2.54029700	1.90540000	-1.25547700
Н	-1.47780200	2.05251500	-1.51330900
Н	-2.99879500	1.30032400	-2.04150500
Н	-3.01904500	2.87572700	-1.13532900
С	-2.41760100	-0.25269400	-0.01658300
Н	-2.25699700	-0.62069300	0.99605500
Н	-3.33450100	-0.69604300	-0.43968300
Н	-1.59162400	-0.51483500	-0.68748600

AcONa

N	-2.58381700	1.17392000	-0.01717700
С	-2.76266900	1.86816700	1.22158400
Н	-2.75517600	1.20549600	2.09408500
0	-2.89497500	3.06855800	1.23850800
С	-2.54029700	1.90540000	-1.25547700
Н	-1.47780200	2.05251500	-1.51330900
Н	-2.99879500	1.30032400	-2.04150500
Н	-3.01904500	2.87572700	-1.13532900
С	-2.41760100	-0.25269400	-0.01658300
Н	-2.25699700	-0.62069300	0.99605500
Н	-3.33450100	-0.69604300	-0.43968300
Н	-1.59162400	-0.51483500	-0.68748600

N	-2.44423500	1.09120300	-0.36922900
С	-3.11243300	1.40967200	0.73972800
Н	-3.05714000	0.64466800	1.52586900
0	-3.75166100	2.46746000	0.90860800
С	-2.41717100	1.97586700	-1.52617500
Н	-1.38127200	2.23643300	-1.76821800
Н	-2.86419000	1.47089500	-2.38948600
Н	-2.97977300	2.88046100	-1.29873900
С	-1.72986500	-0.17259800	-0.48759700
Н	-1.82334000	-0.73834300	0.44165800
Н	-2.14589800	-0.76242500	-1.31170600
Н	-0.66974200	0.01546200	-0.68866800
С	-6.27372000	1.14531200	6.06681200
Н	-7.16830500	0.64675500	5.67653300

Н	-6.58970600	1.87601700	6.81990300
Н	-5.60209600	0.41039200	6.51689600
С	-5.60162000	1.85760300	4.96139300
0	-4.40504500	1.65812500	4.58161200
0	-6.11770100	2.76585900	4.24157700
Na	-4.91275300	3.48751400	2.39545000

TS1

N	-2.84354000	1.28410300	0.15357300
С	-3.63001900	2.01465000	0.91255100
Н	-3.95448000	1.46682700	1.94200800
0	-4.07103700	3.15004100	0.72114300
С	-2.36132900	1.78862600	-1.13771500
Н	-1.26779200	1.80793500	-1.12492000
Н	-2.70376800	1.11755500	-1.93066000
Н	-2.74961900	2.79212800	-1.30638600
С	-2.40917100	-0.06050400	0.53534900
Н	-2.81255700	-0.32606800	1.51149500
Н	-2.76097900	-0.77712400	-0.21228600
Н	-1.31644700	-0.08477100	0.57319200
С	-5.45933300	0.81503700	5.17251000
Н	-6.54713500	0.68763200	5.13783700
Н	-5.21275600	1.46779300	6.01585400
Н	-4.98374100	-0.15847600	5.30252100
С	-5.02809100	1.50356000	3.89706600
0	-4.29771300	0.74212200	3.12884300
0	-5.35849400	2.66389400	3.63056100
Na	-5.28386600	4.32437200	2.22288300

AcOHNa

Н	-3.88498900	0.50534600	2.69612800
С	-5.66116900	1.15975400	5.28400000
Н	-6.54290600	0.53062700	5.11373000
Н	-5.97985600	2.11704300	5.70011400
Н	-5.01012000	0.63769100	5.99044400
С	-4.96219400	1.36588800	3.97820100
0	-4.28570100	0.29582500	3.56670300
0	-4.99896100	2.39407700	3.30480800
Na	-5.91837000	4.36579000	3.36975400

С	-4.22754300	1.30181700	0.16757400
Н	-4.40651600	2.36584200	0.33351000
Н	-4.90551400	0.93743600	-0.61320900

Н	-4.43454400	0.75193900	1.09339000
С	-2.39958600	-0.26332700	-0.48880500
Н	-3.02142600	-0.71711500	-1.26856500
Н	-1.35925000	-0.24753600	-0.81532000
Н	-2.48800200	-0.86070600	0.42593200
Ν	-2.84155000	1.11063600	-0.23595700
С	-2.01699900	2.15005600	-0.34130400
0	-0.84431900	2.20408000	-0.65041000
TS2			
С	-4.07036600	1.20430200	0.44528400
Н	-4.33480700	2.26176600	0.54059300
Н	-4.97144500	0.64919700	0.14288000
Н	-3.76037500	0.81293900	1.42598600
С	-2.56226900	-0.32575200	-0.65325400
Н	-1.67679700	-0.36383100	-1.29465700
Н	-2.31779600	-0.75162900	0.33120700
Н	-3.34368400	-0.95769100	-1.10069500
Ν	-3.06581900	1.03237700	-0.58888200
С	-1.56287100	2.19111400	-0.10602800
0	-1.70896600	3.32642300	-0.27165200
CO			
С	-1.88033000	2.45307200	-0.64556100
0	-1.12257400	2.48166400	-1.49368900
INT4			
С	-4.17838600	1.28237500	0.15083700
Н	-4.42739600	2.32331600	0.38230600
Н	-4.84822100	0.93403100	-0.65486700
Н	-4.40418200	0.65711400	1.03179600
С	-2.42519300	-0.20811400	-0.46740500
Н	-3.07863800	-0.68963800	-1.21546000
Н	-1.38738200	-0.27629200	-0.80996000
Н	-2.52953900	-0.79775500	0.46002600
Ν	-2.79756300	1.16714300	-0.24716500
INT5			
С	0.22636800	-2.55277400	-0.72628600
С	-1.06429300	-1.91985400	-0.69826700
С	-1.06842900	-0.50354200	-0.28150800
С	0.13665900	0.16850800	0.06324400
С	1.44015600	-0.52313900	0.02067500
С	1.39687800	-1.90015900	-0.39040200

Н	-3.19248500	-0.32901800	-0.49408500
Н	0.24727500	-3.59754200	-1.03202200
С	-2.28576100	0.20434800	-0.22467200
С	0.07779500	1.52091700	0.45510300
Н	2.34950900	-2.42589900	-0.42832800
С	-1.12934700	2.19964000	0.50635500
С	-2.32341300	1.53457900	0.16226300
Н	1.01150700	2.01110600	0.71480900
Н	-1.15775500	3.24294700	0.81128600
Н	-3.27109600	2.06620700	0.20143000
0	2.51393200	0.06856900	0.32691900
0	-2.13091100	-2.52383900	-1.00573800

TS3

С	-1.31825800	6.06702300	-1.94300900
С	-2.62477800	5.73996900	-1.32902300
С	-3.05757300	6.71616100	-0.26430500
С	-2.24974800	7.80571300	0.11478600
С	-0.92530300	8.04443800	-0.53407400
С	-0.52981800	7.10886300	-1.57995700
Н	-4.91893900	5.71418300	0.02267000
Н	-1.00833000	5.39591600	-2.74153300
С	-4.30527600	6.54873000	0.34745700
С	-2.69728500	8.69605300	1.10527400
Н	0.43347800	7.29033200	-2.05167000
С	-3.93141000	8.51142400	1.71553200
С	-4.73957900	7.42993500	1.33180700
Н	-2.05423800	9.52756600	1.37721200
Н	-4.27196100	9.20203200	2.48249600
Н	-5.70861700	7.28492800	1.80334000
0	-0.20693100	8.99714300	-0.19580600
0	-3.50514600	5.13250100	-2.01041700
С	-1.55475600	3.25118000	-0.91093500
Н	-2.31626100	3.21306200	-1.70221600
Н	-0.55132200	3.22067900	-1.38668600
Н	-1.64410800	2.32191700	-0.31625800
С	-0.67766500	4.80277600	0.68783800
Н	0.27413400	4.92189800	0.12687100
Н	-0.87242700	5.75352000	1.20022100
Н	-0.47785200	4.05384700	1.47749700
Ν	-1.81123400	4.41895500	-0.10816200

C -1.78871000 5.2	3300400 -1.57706700
-------------------	---------------------

С	-3.03834200	5.27904000	-0.71824000
С	-3.06270900	6.55563900	0.14502500
С	-2.11241400	7.58430900	0.01296500
С	-0.95384200	7.44900700	-0.92166000
С	-0.88549400	6.22893500	-1.71951000
Н	-4.86700000	5.94915000	1.12118600
Н	-1.71436000	4.34363100	-2.20030400
С	-4.13507700	6.74523700	1.02692300
С	-2.24520700	8.76977500	0.75672700
Н	-0.07795000	6.18179600	-2.44858600
С	-3.30926000	8.94076000	1.63279100
С	-4.26014400	7.91725400	1.76617300
Н	-1.49289000	9.54244800	0.62997400
Н	-3.40667400	9.85769900	2.20805600
Н	-5.09765800	8.04196700	2.44877000
0	-0.10691300	8.34735900	-1.02633800
0	-4.05723300	5.25736200	-1.57855700
С	-3.35187800	2.84688100	-0.40614400
Н	-4.12930400	3.04322200	-1.14820900
Н	-2.47886900	2.39867600	-0.92388700
Н	-3.71170300	2.10384600	0.31957000
С	-1.88339300	4.00124900	1.10467100
Н	-1.69038500	4.95979600	1.59855400
Н	-2.04482400	3.24853000	1.88849200
Н	-0.96173600	3.71323300	0.56097900
Ν	-3.06089800	4.10218000	0.26043400
TS4			
C	-2.33409700	5.40417900	-1.29526500
C	-3.63471800	5.98597400	-0.96005800
С	-3.56990100	7.23983500	-0.14634400
С	-2.33548500	7.87634500	0.09721600
С	-1.04499500	7.31261600	-0.42216900
С	-1.13495600	6.05480700	-1.11400800
Н	-5.69029600	7.31374700	0.11714300
Н	-2.37288700	4.47600400	-1.85936800
С	-4.75198800	7.81500700	0.33435900
С	-2.31382700	9.07299400	0.82933400
Н	-0.20121000	5.60137300	-1.43782600
С	-3.49094400	9.62783900	1.31966900
С	-4.71722600	8.99444100	1.07158900
Н	-1.35324400	9.54883100	1.00028700
Н	-3.46184100	10.55223400	1.89073400
Н	-5.63898100	9.42643700	1.45288400

0	0.02688100	7.92391600	-0.23550800
0	-4.70235600	5.61295500	-1.48418000
С	-3.64963400	3.26797500	0.18549100
Н	-4.39616200	3.42209800	-0.60689600
Н	-2.83171500	2.63634000	-0.22248100
Н	-4.14027200	2.66398300	0.97561200
С	-2.01247000	4.50328300	1.42780600
Н	-1.21051200	3.88054100	0.97688300
Н	-1.60452900	5.51620800	1.55371600
Н	-2.18003200	4.10704300	2.44897300
Ν	-3.23371100	4.54832000	0.68324000

INT7

С	-2.33491400	4.32089400	-0.04902200
С	-3.57967300	5.02235000	0.48114600
С	-3.54983900	6.50909700	0.40697700
С	-2.30236100	7.16094200	0.46333800
С	-1.01258200	6.38055400	0.65047600
С	-1.11486200	5.00141300	0.49682200
Н	-5.68503000	6.71314100	0.31800100
Н	-2.38098500	3.27028200	0.29334200
С	-4.73721500	7.24368000	0.33733200
С	-2.27675600	8.55690800	0.43758700
Н	-0.21634200	4.40178800	0.63277600
С	-3.45993000	9.29199300	0.33024200
С	-4.69503900	8.63778500	0.27964200
Н	-1.31030000	9.04426800	0.52031300
Н	-3.42231400	10.37837800	0.29727300
Н	-5.61583400	9.20964800	0.20231700
0	0.02154100	7.04441400	0.97157600
0	-4.55159800	4.41727900	0.92283300
С	-1.20087800	3.95988600	-2.19886100
Н	-0.40111700	4.63440100	-1.88551600
Н	-0.88488200	2.92259500	-1.96696700
Н	-1.32000100	4.03690300	-3.28593600
С	-3.52806700	3.46946500	-2.00998800
Н	-4.48314600	3.77792200	-1.57597000
Н	-3.61442900	3.53314800	-3.10080800
Н	-3.36632700	2.40533700	-1.74441800
Ν	-2.44918400	4.33609100	-1.55094200

AcOH

С	-3.46812700	0.41974300	0.03338500
Н	-3.07329400	-0.47558900	0.52503800

Н	-3.17252100	1.30953000	0.59053100
Н	-3.04007200	0.45787400	-0.97442300
С	-4.96722500	0.34558000	-0.05191800
0	-5.74966400	1.16539000	0.38413400
0	-5.37664200	-0.77204800	-0.69645300
Н	-6.35463500	-0.74262000	-0.71500900

AcO⁻

С	-3.47176400	0.41045300	0.04112900
Н	-3.00929300	-0.52084600	0.39187600
Н	-3.18918300	1.23062600	0.71205900
Н	-3.04082000	0.62635000	-0.94786900
С	-5.01799800	0.26405000	-0.08465600
0	-5.69766200	1.28318900	0.20619400
0	-5.42432000	-0.85230300	-0.50317600

С	1.37337000	-0.82209500	-0.52890300
С	0.12609200	-1.65559000	-0.20190700
С	-1.14912100	-0.94616000	0.06480800
С	-1.28055800	0.42580000	-0.24619800
С	-0.13166600	1.15330500	-0.80478000
С	1.08065900	0.59024200	-0.93985800
Н	-2.10233800	-2.70235400	0.82968100
Н	1.87732000	-1.34121800	-1.35346800
С	-2.23177300	-1.64885200	0.60401300
С	-2.50562200	1.06237500	-0.01165000
Н	1.91773800	1.17025600	-1.32287000
С	-3.57572400	0.35078700	0.53060700
С	-3.44312400	-1.00580400	0.84234000
Н	-2.61718800	2.11318900	-0.25206500
Н	-4.51898200	0.85893200	0.70992100
Н	-4.27960100	-1.55449300	1.26472000
0	-0.42143000	2.44163400	-1.15461200
0	0.21371600	-2.87663900	-0.10995100
Ν	2.33760200	-0.83268300	0.59809800
Н	0.39236300	2.86198700	-1.48598000
С	1.79051700	-0.33411800	1.85618600
Н	1.08702200	-1.03535500	2.34012700
Н	2.61443500	-0.15446400	2.55595100
Н	1.27198600	0.61373300	1.68721300
С	3.02202900	-2.10578500	0.78512700
Н	2.37380200	-2.90462800	1.18067500
Н	3.43660800	-2.44588700	-0.16974800

INT9

Н

С	-1.86886600	4.67972700	-1.07836400
С	-3.16091900	5.49789100	-1.15514500
С	-3.23612300	6.65829500	-0.22318500
С	-2.06280500	7.18156000	0.36008400
С	-0.72342900	6.63555900	-0.01226300
С	-0.70486500	5.67767200	-1.18659200
Н	-5.37131200	6.80727900	-0.36738300
Н	-1.85993500	3.98588400	-1.93543300
С	-4.47745300	7.22076700	0.08801300
С	-2.15349800	8.24782200	1.25859500
Н	-0.83117400	6.26399900	-2.10727900
С	-3.39594600	8.79470200	1.57372400
С	-4.55808200	8.28282500	0.98660200
Н	-1.24211300	8.64392700	1.69415300
Н	-3.46109900	9.62301600	2.27309200
Н	-5.52494000	8.71132100	1.23335300
0	0.29608400	6.97377900	0.57232300
0	-4.06694600	5.21771700	-1.92511600
С	-2.97656200	3.07245600	0.35692900
Н	-3.91185800	3.63930500	0.33896100
Н	-3.02510500	2.30400500	-0.43614000
Н	-2.91156600	2.56376100	1.32331400
С	-0.58356100	3.22141700	0.39384000
Н	-0.39341600	2.49390000	-0.41627600
Н	0.27192700	3.89737400	0.45967400
Н	-0.64248400	2.67184300	1.33811700
Ν	-1.82869800	3.96638500	0.20884600
Н	0.26670900	5.18532700	-1.24707300

TS5

С	0.25022500	-0.78528300	-0.37606000
С	-1.20267300	-0.97453800	-0.12199500
С	-1.77807000	0.06008000	0.81605300
С	-1.01248500	1.14102100	1.30518200
С	0.43237300	1.27092900	0.96759400
С	1.00052700	0.23179000	0.11610900
Н	-3.72454700	-0.81245200	0.71150400
Н	0.68599600	-1.51270700	-1.05975700
С	-3.14279400	-0.00063100	1.13788600
С	-1.61181900	2.10522800	2.13643700
Н	2.05927000	0.32799800	-0.11668300

С	-2.95483700	2.01308500	2.47203600
С	-3.72445500	0.95110100	1.96488300
Н	-0.99425900	2.91881700	2.50514300
Н	-3.41224200	2.75901800	3.11667400
Н	-4.78020000	0.88120000	2.21627700
0	1.11526100	2.21495800	1.39756000
0	-1.94370200	-1.37858100	-1.08390200
С	0.33797900	-1.54918700	2.93022700
Н	-0.14421000	-0.61350400	2.66769200
Н	0.20784400	-1.70331600	4.00836800
Н	1.41570900	-1.46976400	2.72780700
С	-0.06266500	-3.96803800	2.81911400
Н	-0.58907000	-4.04897800	3.78015200
Н	-0.44005100	-4.72978200	2.13756400
Н	1.00705800	-4.13592500	3.00182500
Ν	-0.27228100	-2.65411200	2.21710300
С	-0.95547100	-2.53800700	1.03648300
0	-1.48004500	-3.50683200	0.50437500

С	0.53091000	-0.72093800	-0.08797600
С	-0.89684500	-1.08638100	0.19519500
С	-1.60873600	-0.01056600	1.02957400
С	-1.03390200	1.25690800	1.24548300
С	0.35407600	1.57404500	0.77143200
С	1.06870600	0.51865100	0.08366700
Н	-3.35635400	-1.22349400	1.32176500
Н	1.09022800	-1.49431600	-0.60935800
С	-2.90790600	-0.24859700	1.49530000
С	-1.75919700	2.24880100	1.92194400
Н	2.04619100	0.77783200	-0.31819900
С	-3.04798000	1.99954500	2.38289100
С	-3.62356800	0.74116000	2.16627800
Н	-1.28440200	3.21282000	2.07705200
Н	-3.60287000	2.77312200	2.90704300
Н	-4.63046700	0.53505300	2.52123100
0	0.84008400	2.70249600	0.95640800
0	-1.34999900	-1.12195500	-1.07921600
С	0.47879900	-1.75119200	2.79971900
Н	0.30475900	-0.73366500	2.46415700
Н	0.27595400	-1.79094800	3.87713700
Н	1.53933400	-1.99543600	2.64529600
С	-0.47433600	-4.00151500	2.75355400
Н	-0.89790300	-3.91490100	3.76315000

Η	-1.11039400	-4.64469900	2.14704900
Н	0.52432600	-4.45114000	2.84217600
Ν	-0.39165500	-2.69520400	2.12011600
С	-1.05065500	-2.47358800	0.93403900
0	-1.77553000	-3.33920900	0.44074500

TS6

С	0.47443000	-1.11790300	0.93649800
С	-1.01726900	-1.01460600	0.44437300
С	-1.85939600	-0.09236600	1.30694700
С	-1.25006400	0.90988000	2.08344900
С	0.25515900	1.09664800	2.13790400
С	1.02842200	0.11485500	1.51266700
Н	-3.70322900	-0.94698100	0.62305300
Н	1.05138900	-1.49779800	0.08916900
С	-3.25377400	-0.18064500	1.25028800
С	-2.06543300	1.79433500	2.80533400
Н	2.11079600	0.24152100	1.51738500
С	-3.45377100	1.68569600	2.76976800
С	-4.05436000	0.69125900	1.98734900
Н	-1.56938000	2.56826000	3.38328100
Н	-4.07108100	2.37337100	3.34347800
Н	-5.13744300	0.60154000	1.95193100
0	0.69602500	2.13563100	2.71527900
0	-1.26714900	-1.04910800	-0.79432900
С	1.40763400	-3.39608600	1.64140100
Н	1.43946800	-3.64112400	0.57799200
Н	2.38602500	-3.01948000	1.95858200
Н	1.16508700	-4.29745100	2.21014400
С	0.21592900	-2.07425600	3.30630000
Н	1.11526900	-1.58938500	3.69337500
Н	-0.63640600	-1.40878500	3.44439300
Н	0.03621700	-3.01086700	3.84055600
Ν	0.37661300	-2.37649400	1.87429500
С	-1.14924400	-2.71854200	1.21088800
0	-1.39820800	-3.84564600	0.93899400

8. References

- [1] S. H. Cho, J. Y. Kim, S. Y. Lee, S. Chang, Angew. Chem., Int. Ed, 2009, 48, 9127.
- [2] G. Li, H. Li, Z. Lu, B. Yu, Org. Biomol. Chem., 2022, 20, 5125.
- [3] G. Lahm, T. Opatz, Org. Lett. 2014, 16, 4201.
- [4] L. P. Long, X. Li, Y. Wang, X. Su, L. Qiao, W. J. Luo, Z. Chen, J. Org. Chem., 2023, 88, 7571.
- [5] J. Wang, J. T. Hou, J. Wen, J. Zhang, X. Q. Yu, Chem. Commun., 2011, 47, 3652.
- [6] Jha, R. K.; Batabyal, M.; Kumar S. Blue Light Irradiated Metal-, Oxidant-, and Base-Free Cross-Dehydrogenative Coupling of C(*sp*²)–H and N–H Bonds: Amination of Naphthoquinones with Amines. J. Org. Chem. 2023, 88, 7401-7424.
- [7] Varricchio, C.; Pascale Aeschlimann, K. B.; Heard, C.; Rozanowska, M.; Votruba, M.; Brancale,
 A. Discovery of Novel 2-Aniline-1,4-naphthoquinones as Potential New Drug Treatment for
 Leber's Hereditary Optic Neuropathy (LHON). J. Med. Chem. 2020, 63, 13638-13655.
- [8] Ueda, K.; Yamashita, M.; Sakaguchi, K.; Tokuda, H.; Iida, A. Concise Synthesis of Heterocycle-Fused Naphthoquinones by Employing Sonogashira Coupling and Tandem Addition-Elimination/Intramolecular Cyclization. *Chem. Pharm. Bull.* 2013, *61*, 648-654.
- [9] Dong, Y.; Peng, Z.; Chen, Y.; Lin, Y.; Lan, M.; Wu, C.; Shi, Z.; Deng, G.; He, B. Coppercatalyzed direct oxidative amination of maleimides and quinones with formamides in the presence of an oxidant KIO₃. *Tetrahedron*. 2024, 155, 133916.
- [10] Wunderer, H. Darstellung und Eigenschaften von Jodamino-p-benzochinonen. Chemische Berichte. 1972, 105, 3479-3490.
- [11] Johnson-Ajinwo, O. R.; Imran Ullah, I.;Mbye, H.; Richardson, A.;Horrocks, P.; Li, W.The synthesis and evaluation of thymoquinone analogues as anti-ovarian cancer and antimalarial agents. *Bioorg. Med. Chem. Lett.* 2018, 28, 1219-1222.
- [12] Hewgill, F. R.; Mullings, L. R. Nucleophilic substitution of Bromo-p-benzoquinones by dimethylamine. Aust. J. Chem. 1975, 28, 2561-2566.
- [13] Koharazawa, R.; Hayakawa, M.; Takeda, K.; Miyazaki, K.; Tode, C.; Hirota, Y.; Suhara, Y. Exploring 2-methyl-substituted vitamin K₃ derivatives with potent inhibitory activity against the 3CL protease of SARS-CoV-2. *Bioorg. Med. Chem. Lett.* 2024, *100*, 129642.
- [14] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, **2009**.
- [15] (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Becke, A. D. J. Chem. Phys. 1993, 98, 1372. (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (d) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.
- [16] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- [17] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.

- [18] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Phys. Chem. 1980, 72, 650-654.
- [19] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
- [20] (a) Y. Zhao, D. G. Truhlar, *Theor. Chem. Acc.* 2008, 120, 215. (b) Y. Zhao, D. G. Truhlar, *Acc. Chem. Res.* 2008, 41, 157.
- [21] (a) L. Szentpály, P. Fuentealba, H. Preuss, H. Stoll, *Chem. Phys. Lett.* 1982, 93, 555. (b) M. Dolg, U. Wedig, H. Stoll, H. Preuss, *J. Chem. Phys.* 1987, 86, 866. (c) P. Schwerdtfeger, M. Dolg, W. H. E. Schwarz, G. A. Bowmaker, P. D. W. Boyd, *J. Chem. Phys.* 1989, 91, 1762.