Multicomponent synthesis of functionalized pyrrolo[3,4-*e*] isoindole-1,3,6,8-tetraones via [2+2+2] cycloaddition of maleimides with nitroenamines

Jia-Ming Yang, Bi-Na Shao, Xing-Mei Hu, Jian-Bo Ma, Jin Liu*, Sheng-Jiao Yan*

Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China

Supporting Information

Table of Contents:

General Information	4
General Procedure for the Preparation of 3	4
The gram-scale experiment	5
Spectroscopic Data of 3a-3k'	6
The proposed mechanism of the cascade reaction	25
Scheme S1. The proposed mechanism of the cascade reaction	25
Verification of reaction mechanisms	25
X-ray Structure and Data of 3n	26
Figure S1. X-Ray crystal structure of 3n	26
Table S1. Crystal data and structure refinement for 3n	27
Table S2. Bond Lengths for 3n	28
Table S3. Bond Angles for 3n	30
Figure S2. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3a	34
Figure S3. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3a	35
Figure S4. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3b	36
Figure S5. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3b	37
Figure S6. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3c	38
Figure S7. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3c	39
Figure S8. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3d	40
Figure S9. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3d	41
Figure S10. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3e	42
Figure S11. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3e	43
Figure S12. ¹⁹ F NMR (564 MHz, CDCl ₃) spectra of compound 3e	44
Figure S13. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3f	45
Figure S14. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3f	46
Figure S15. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3g	47
Figure S16. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3g	48
Figure S17. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3h	49
Figure S18. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3h	50
Figure S19. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3i	51
Figure S20. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3i	52
Figure S21. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3j	53

Figure	s22.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3 j	54
Figure	e S23.	¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) spectra of compound 3k	55
Figure	s24.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 3k	56
Figure	e S25.	¹⁹ F NMR (470 MHz, DMSO- <i>d</i> ₆) spectra of compound 3 k	57
Figure	e S26.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 31	58
Figure	s S27.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 31	59
Figure	s S28.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3m	60
Figure	e S29.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3m	61
Figure	e S30.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3n	62
Figure	s31.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3n	63
Figure	e S32.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 30	.64
Figure	e S33.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 30	65
Figure	e S34.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3p	66
Figure	e S35.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3p	.67
Figure	e S36.	¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 3q	68
Figure	e S37.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 3q	.69
Figure	e S38.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3r	.70
Figure	e S39.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3r	.71
Figure	e S40.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3s	.72
Figure	s41.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3s	.73
Figure	S42.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3t	.74
Figure	e S44.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3u	.76
Figure	e S45.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3u	.77
Figure	e S46.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3v	.78
Figure	e S47.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3v	.79
Figure	e S48.	¹⁹ F NMR (4/0 MHz, CDCl ₃) spectra of compound 3v	.80
Figure	e S49.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3w	.81
Figure	e S50.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3 w	.82
Figure	e S51.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound $3x$.	.83
Figure	e 852.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound $3x$.84
Figure	8 333. 8 5 4	¹ H NMR (500 MHZ, CDCl ₃) spectra of compound $3y$.85
Figure	8554.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound $3y$	80
Figure	855. 850	¹³ C NMR (500 MHZ, CDCl ₃) spectra of compound 32 .	.8/
Figure	857. 857	¹ U NMR (125 MHz, CDCl3) spectra of compound 3 2.	00
Figure	857. 859	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3a	.89
Figure	2 330. 2 850	¹⁴ UNMR (125 MHz, CDCl ₃) spectra of compound 3a	.90
Figure	557.	¹³ C NMR (125 MHz, CDCl ₂) spectra of compound 3b	07
Figure	\$61 \$61	¹⁹ F NMR (470 MHz, CDCl ₃) spectra of compound 3b	03
Figure	S01.	¹ H NMR (600 MHz, DMSO- d_2) spectra of compound 3c '	93
Figure	S63	¹³ C NMR (150 MHz, DMSO- d_0) spectra of compound 3c'	05
Figure	S64	¹ H NMR (500 MHz DMSO- d_0) spectra of compound 3d'	96
Figure	S65	¹³ C NMR (125 MHz, DMSO-d ₂) spectra of compound 3d '	97
Figure	S66	¹ H NMR (500 MHz DMSO- d_s) spectra of compound 3e'	98
Figure	S67	¹³ C NMR (125 MHz, DMSO- <i>ds</i>) spectra of compound 3e '	99
Figure	S68	¹ H NMR (500 MHz, DMSO- d_s) spectra of compound 3f ¹	00
Figure	S69	13 C NMR (125 MHz, DMSO- d_s) spectra of compound of 1	01
Figure	S70	¹ H NMR (600 MHz, DMSO- d_6) spectra of compound $3\sigma'$	02
Figure	S71.	13 C NMR (125 MHz, DMSO- d_6) spectra of compound $2g'$	03
Figure	S72.	¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 3h'	04
Figure	S73.	13 C NMR (150 MHz, DMSO- d_6) spectra of compound 3h'	05
-9		(,,	

Figure S74. ¹⁹ F NMR (564 MHz, DMSO- <i>d</i> ₆) spectra of compound 3h '	106
Figure S75. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 3i'	
Figure S76. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 3i'	
Figure S77. ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) spectra of compound 3 j'	109
Figure S78. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 3j'	
Figure S79. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 3k'	111
Figure S80. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 3k'	
Figure S81. HPLC of the reaction mixture	
Figure S82. HRMS of substrate 1h	114
Figure S83. HRMS of substrate 2b	115
Figure S84. HRMS of intermediate 4n/5n	116
Figure S85. HRMS of intermediate 4n/5n	117
Figure S86. HRMS of intermediate 6n	
Figure S87. HRMS of intermediate 7n	119
Figure S88. HRMS of intermediate 8n	
Figure S89. HRMS of the target compound 3n	
References	

General Information

All compounds were fully characterised by spectroscopic data. The NMR spectra were recorded on a Bruker DRX600 or Bruker DRX500. Chemical shifts (δ) are expressed in ppm, *J* values are given in Hz, and deuterated CDCl₃ or DMSO-*d*₆ were used as solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using a KBr pellet. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on a XT-4A melting point apparatus and are uncorrected. HRMs were performed on an Agilent LC/Msd TOF instrument.

The nitro-enamines **1** were synthesized by known literature procedures.¹ Other materials were purchased from Adamas-beta Corporation Limited. All chemicals and solvents were used as received without further purification unless otherwise stated. Two kinds of reagents which were used in the experiment were commercially available reagents.

General Procedure for the Preparation of 3

A round-bottom flask was charged with 1,1-enediamine **1** (1 mmol, 1.0 equiv.) and maleimide **2** (2.4 mmol, 2.4 equiv.). Then, the flask was supplemented with DMF (6 mL), and the mixture was stirred on an oil bath at 100 °C for approximately 1 h while the reaction was monitored by TLC until the substrate was completely consumed. After the reaction was cooled to room temperature, the mixture was extracted with ethyl acetate (6×15 mL). The organic layer was washed with water and brine, and the combined organic phases were dried over MgSO₄, filtered, and concentrated under reduced pressure to afford the crude product. Finally, the product **3** was purified from the crude mixture by flash column chromatography over silica gel using a mixture of petroleum ether/ethyl acetate (20:1-10:1, v/v) as the eluent.

The gram-scale experiment

A 25 mL round-bottom flask was charged with *N*,*N'*-bis(4-methoxybenzyl)-2nitroethene-1,1-diamine (**1a**) (4 mmol, 1.0 equiv.) and *N*-benzylmaleimide (**2a**) (9.6 mmol, 2.4 equiv.). The flask was then charged with 8 mL of DMF, and the mixture was stirred on an oil bath at 100 °C for 1 hour, monitoring the reaction progress via thinlayer chromatography (TLC) until complete substrate consumption was observed. After cooling the reaction mixture to room temperature, it was extracted with ethyl acetate (6 \times 20 mL). The organic phase was washed with water and brine, after which the combined organic layers were dried over anhydrous sodium sulfate (Na₂SO₄), filtered, and concentrated under reduced pressure to obtain the crude product. The final product, **3i'**, was purified from the crude mixture using flash column chromatography over silica gel, employing a petroleum ether/ethyl acetate mixture (20:1 to 10:1, v/v) as the eluent. The resulting purified product weighed 998 mg, corresponding to a calculated yield of 47%.

Spectroscopic Data of 3a-3k'

2,7-Dibenzyl-4-(butylamino)pyrrolo[3,4-e]isoindole-1,3,6,8(2H,7H)-tetraone(3a)

Yellow solid (58%); Mp: 210.4–215.1 °C; IR (KBr): 3495, 3446, 2989, 1745, 1726, 1620, 1510, cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.39-7.35$ (m, 4H, ArH), 7.20 (m, 5H, ArH), 7.14 (t, 1H, J = 6.2 Hz, NH), 4.79 (s, 2H, CH₂), 4.75 (s, 2H, CH₂), 3.37–3.33 (m, 2H, CH₂), 1.71–1.65 (m, 2H, CH₂), 1.49–1.43 (m, 2H, CH₂), 0.98 (t, 3H, J = 5.6 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃): $\delta = 169.4$, 166.7, 164.2, 164.0, 150.3, 140.1, 134.6, 134.4, 134.0, 133.9,130.4, 130.4, 130.3, 130.4,130.3, 128.9, 128.9, 128.8, 128.8, 113.5, 113.3, 110.1, 42.9, 41.2, 41.0, 31.0, 20.0, 13.7. HRMS KM P[BBB(TOF ES⁺) m/z: [M+Na]⁺ calcd for C₂₈H₂₃N₃O₄Cl₂ 558.0958; found, 558.0964.

2,7-Bis(4-chlorobenzyl)-4-((4-methylbenzyl)amino)pyrrolo[3,4-*e*]isoindole-1,3, 6,8(2*H*,7*H*)-tetraone (3b)

Yellow solid (52%); Mp: 206.1–207.6 °C; IR (KBr): 3475, 3440, 2982, 1745, 1715, 1662, 1515, 806cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.54 (t, *J* = 5.9 Hz, 1H, NH), 7.38–7.35 (m, 6H, ArH), 7.32–7.30 (m, 3H, ArH), 7.27–7.23 (m, 5H, ArH), 4.76 (s, 2H, CH₂), 4.76 (s, 2H, CH₂), 4.57 (d, *J* = 5.9 Hz, 2H, CH₂). ¹³C NMR (125 MHz, CDCl₃): δ = 169.3, 166.5, 164.1, 163.9, 150.1, 140.1, 136.0, 134.5, 134.3, 134.1, 134.0, 130.4, 130.4, 130.4, 130.2, 129.2, 129.2, 128.9, 128.9, 128.8, 128.8, 128.3, 127.1, 127.1, 114.2, 114.1, 110.5, 47.1, 41.3, 41.1. HRMS (TOF ES⁺) m/z: [M+Na]⁺ calcd for C₃₂H₂₃Cl₂N₃O₄ 606.0958; found, 606.0965.

4-(Benzylamino)-2,7-bis(4-chlorobenzyl)pyrrolo[3,4-e]isoindole-1,3,6,8(2H,7H)-

tetraone (3c)

Yellow solid (46%); Mp: 165.3–166.5°C; IR (KBr): 3477, 3418, 2998, 1743, 1636, 1571, 1374, 831 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.54 (t, *J* = 5.9 Hz, 1H, NH), 7.38–7.35 (m, 6H, ArH), 7.32–7.30 (m, 3H, ArH), 7.27–7.23 (m, 5H, ArH), 4.76 (s, 2H, CH₂), 4.76 (s, 2H, CH₂), 4.57 (d, *J* = 5.9 Hz, 2H, CH₂). ¹³C NMR (125 MHz, CDCl₃): δ = 169.3, 166.5, 164.1, 163.9, 150.1, 140.1, 136.0, 134.5, 134.3, 134.1, 134.0, 130.4, 130.4, 130.4, 130.2, 129.2, 129.2, 128.9, 128.9, 128.8, 128.8, 128.3, 127.1, 127.1, 114.2, 114.1, 110.5, 47.1, 41.3, 41.1. HRMS (TOF ES⁺) m/z: [M+Na]⁺ calcd for C₃₁H₂₁Cl₂N₃O₄ 592.0801; found, 592.0810.

2,7-Bis(4-chlorobenzyl)-4-((4-chlorobenzyl)amino)pyrrolo[3,4-*e*]isoindole-1,3, 6,8(2*H*,7*H*)-tetraone (3d)

Yellow solid (44%); Mp: 135.1–136.7 °C; IR (KBr): 3484, 3365, 2944, 1712, 1634, 1525, 1494, 820 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.53 (t, *J* = 5.8 Hz, 1H, NH), 7.37–7.33 (m, 6H, NH), 7.28–7.24 (m, 6H, ArH), 7.19 (s, 1H, ArH), 4.77 (s, 2H, CH₂), 4.76 (s, 2H, CH₂), 2.55 (t, *J* = 5.8 Hz, 2H, CH₂). ¹³C NMR (125 MHz, CDCl₃): δ =166.4, 163.9, 149.9, 140.1, 134.5, 134.4, 134.2, 134.1, 134.1, 134.0, 130.4, 130.4, 130.4, 129.4, 129.4, 128.9, 128.9, 128.9, 128.9, 128.9, 128.9, 128.4, 128.4, 114.4, 114.4, 110.3, 46.4, 41.3, 41.1. HRMS (TOF ES⁺) m/z: [M+Na]⁺ calcd for C₃₁H₂₀Cl₃N₃O₄ 626.0412; found, 626.0421.

2,7-Bis(4-chlorobenzyl)-4-((4-fluorobenzyl)amino)pyrrolo[3,4-*e*]isoindole-1,3,6,8 (2*H*,7*H*)-tetraone (3e)

Yellow solid (43%); Mp: 184.9–187.8 °C; IR (KBr): 3541, 3430, 2983, 1742, 1714, 1643, 1624, 832 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 7.50 (t, *J* = 4.2 Hz, 1H, NH), 7.37 (s, 2H, ArH), 7.6 (s, 2H, ArH), 7.30–7.21 (m, 7H, ArH), 7.08–7.04 (m, 2H, ArH), 4.77 (s, 2H, CH₂), 4.76 (s, 2H, CH₂), 4.55 (d, *J* = 5.82 Hz, 2H, CH₂); ¹³C NMR (150 MHz, CDCl₃): δ =169.3, 166.4, 164.1, 163.9, 162.5, 149.9, 140.2, 134.4, 134.3, 134.1, 134.0, 131.7, 131.7, 130.4, 130.4, 130.4, 130.2, 128.9, 128.9, 128.9, 128.9, 128.8, 128.8, 116.3, 116.1, 114.3, 114.3, 110.3, 46.4, 41.3, 41.1. ¹⁹F NMR (564 MHz, DMSO-*d*₆): δ = -113.5 ppm.HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₃₁H₂₁Cl₃N₃O₄ 588.0888; found, 588.0885.

2,7-Bis(4-chlorobenzyl)-4-((4-methoxyphenethyl)amino)pyrrolo[3,4-*e*]isoindole-1,3,6,8(2*H*,7*H*)-tetraone (3f)

Yellow solid (58%); Mp: 176.1–179.7 °C; IR (KBr): 3476, 3397, 2926, 1745, 1709, 1636, 1518, 831 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 7.38–7.34 (m, 4H, ArH), 7.27–7.24 (m, 4H, ArH), 7.18 (s, 2H, ArH), 7.14 (s, 1H, NH), 7.13 (s, 1H, ArH), 6.85 (d, 2H, J = 8.4 Hz, ArH), 4.77 (s, 2H, CH₂), 4.73 (s, 2H, CH₂), 3.77 (s, 3H, CH₃), 3.57 (d, 2H, J = 6.18 Hz CH₂), 2.92 (t, 2H, J = 6.96 Hz CH₂). ¹³C NMR (150 MHz, CDCl₃): δ = 169.2, 166.6, 164.2, 163.9, 158.7, 150.1, 140.0, 134.5, 134.4, 134.0, 133.9, 130.4, 130.4, 130.3, 130.3, 130.2, 130.2, 129.7, 129.7, 129.4, 128.9, 128.9, 128.8, 128.8, 114.4, 113.7, 113.5, 110.1, 55.3, 44.7, 41.2, 41.0, 34.5. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₃₃H₂₅Cl₂N₃O₅ 614.1244; found, 614.1249.

2,7-Bis(4-chlorobenzyl)-4-((4-methylphenethyl)amino)pyrrolo[3,4-e]isoindole-1,3,

Yellow solid (52%); Mp: 128.3–134.5°C; IR (KBr): 3477, 3418, 2998, 1743, 1636, 1571, 1374, 831 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.38 (s, 1H, NH), 7.36 (t, *J* = 5.6 Hz, 3H, ArH), 7.26 (t, *J* = 6.7 Hz, 4H, ArH), 7.19 (s, 2H, ArH), 7.12 (t, *J* = 8.3 Hz, 4H, ArH), 4.78 (s, 2H, CH₂), 4.74 (s, 2H, CH₂), 3.61–3.57 (m, 2H, CH₂), 2.94 (t, *J* = 7.0 Hz, 2H, CH₂), 2.32 (d, *J* = 8.4 Hz, 3H, CH₃), ¹³C NMR (125 MHz, CDCl₃): δ = 169.2, 166.6, 164.2, 164.0, 150.1, 140.0, 136.7, 134.5, 134.4, 134.0, 133.9, 130.4, 130.4, 130.3, 130.3, 130.2, 130.2, 129.6, 129.6, 128.9, 128.9, 128.8, 128.8, 128.6, 128.6, 113.7, 113.6, 110.6, 44.6, 41.2, 41.0, 35.0, 21.0. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C_{33H25}Cl₂N₃O₄ 598.1295; found, 598.1298.

2,7-Bis(4-chlorobenzyl)-4-(phenethylamino)pyrrolo[3,4-e]isoindole-1,3,6,8(2*H*,7*H*) -tetraone (3h)

Yellow solid (44%); Mp: 116.1–119.7 °C; IR (KBr): 3496, 3372, 2944, 1712, 1634, 1525, 1494 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.38 (s, 1H, NH), 7.36–7.32 (m, 5H, NH), 7.27–7.24 (m, 7H, ArH), 4.78 (s, 2H, CH₂), 4.73 (s, 2H, CH₂), 3.64–3.60 (m, 2H, CH₂), 2.98 (t, *J* = 9.0 Hz, 2H, CH₂). ¹³C NMR (125 MHz, CDCl₃): δ = 169.2, 166.6, 164.2, 164.0, 150.1, 140.1, 137.5, 134.5, 134.4, 134.0, 133.9, 130.4, 130.4, 130.3, 130.3, 129.0, 120.9, 128.9, 128.9, 128.8, 128.8, 128.7, 128.7, 127.1, 113.8, 113.6, 110.0, 44.5, 41.3, 41.0, 35.4. HRMS (TOF ES⁺) m/z: [M+Na]⁺ calcd for C₃₂H₂₃Cl₂N₃O₄ 606.0958; found, 606.0966.

2,7-Bis(4-chlorobenzyl)-4-((4-chlorophenethyl)amino)pyrrolo[3,4-e]isoindole-1,3,

Yellow solid (41%); Mp: 184.9–187.8 °C; IR (KBr): 3541, 3410, 2993, 1742, 1704, 1636, 1624, 832 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.38 (s, 1H, NH), 7.36 (t, *J* = 5.8 Hz, 3H, ArH), 7.30–7.25 (m, 7H, ArH), 7.16 (d, *J* = 8.1 Hz, 3H, ArH), 4.78 (s,2H, CH₂), 4.74 (s,2H, CH₂), 3.62–3.58 (m, 2H, CH₂), 2.96 (t, *J* = 6.9 Hz, 2H, CH₂); ¹³C NMR (125 MHz, CDCl₃): δ = 169.2, 166.5, 164.1, 163.9, 150.1, 140.1, 135.9, 134.5, 134.3, 134.0, 133.9, 133.0, 130.4, 130.4, 130.4, 130.4, 130.2, 130.1, 130.1, 129.1, 129.1, 128.9, 128.9, 128.8, 128.8, 113.9, 113.8, 109.9, 44.2, 41.3, 41.0, 34.7. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₃₂H₂₂Cl₃N₃O₄ 618.0749; found, 618.0754.

2,7-dibenzyl-4-((3-methylphenethyl)amino)pyrrolo[3,4-*e*]isoindole-1,3,6,8(2H, 7H)-tetraone (3j)

Yellow solid (53%); Mp: 206.1–207.6 °C; IR (KBr): 3482, 3437, 2989, 1745, 1713, 1663, 1518, 983, 806, 751 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.38 (s, 1H, NH), 7.36 (t, *J* = 5.9 Hz, 3H, ArH), 7.26 (m, 4H, ArH), 7.18 (s, 2H, ArH), 7.11 (d, *J* = 8.2 Hz, 4H, ArH), 4.77 (s, 2H, CH₂), 4.73 (s, 2H, CH₂), 3.60–3.56 (m, 2H, CH₂), 2.94 (t, *J* = 7.0 Hz, 2H, CH₂), 2.31 (s, 3H, CH₃). ¹³C NMR (125 MHz, CDCl₃): δ = 169.2, 166.6, 164.2, 164.0, 150.1, 140.0, 136.7, 134.5, 134.4, 134.0, 133.9, 130.4, 130.4, 130.3, 130.3, 130.2, 130.2, 129.6, 129.6, 128.9, 128.9, 128.8, 128.8, 128.6, 128.6, 113.7, 113.5, 110.1, 44.6, 41.2, 41.0, 35.0, 21.0. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₃₃H₂₅Cl₂N₃O₄ 598.1295; found, 598.1298.

2,7-Bis(4-chlorobenzyl)-4-((4-fluorophenethyl)amino)pyrrolo[3,4-*e*]isoindole-1,3,6,8(2*H*,7*H*)-tetraone (3k)

Yellow solid (40%); Mp: 215.1–216.2 °C; IR (KBr): 3467, 3376, 2987, 1748, 1712, 1632, 1525, 848, 790, 741 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 7.54 (t, *J* = 6.1 Hz, 1H, ArH), 7.50 (s, 1H, NH), 7.39 (d, *J* = 8.4 Hz, 4H, ArH), 7.35–7.30 (m, 5H, ArH), 7.19 (d, *J* = 10.1 Hz, 1H, ArH), 7.13 (d, *J* = 7.6 Hz, 1H, ArH), 7.03 (t, *J* = 5.4 Hz, 1H, ArH), 4.74 (s, 2H, CH₂), 4.71 (s, 2H, CH₂), 3.77–3.73 (m, 2H, CH₂), 2.94 (t, *J* = 7.1 Hz, 2H, CH₂); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 169.2, 166.9, 164.4, 164.1, 162.7 (d, *J*₁ = 241.3 Hz), 150.2, 142.1, 142.0, 139.9, 136.1, 135.9, 132.6, 130.7, 130.7, 130.6, 129.9, 129.9, 129.9, 129.9, 129.0, 129.0, 125.5, 116.0 (d, *J*₂ = 21.3 Hz), 113.7, 113.5, 113.5, 113.0, 111.3, 43.6, 40.8, 40.6, 34.7. ¹⁹F NMR (470 MHz, DMSO-*d*₆): δ = -113.5 ppm. HRMS (TOF ES⁺) m/z: [M+Na]⁺ calcd for C₃₂H₂₂Cl₂N₃O₄ 624.0864; found, 624.0867.

2,7-Dibenzyl-4-((4-methoxyphenethyl)amino)pyrrolo[3,4-*e*]isoindole-1,3,6,8(2*H*, 7*H*)-tetraone (3l)

Yellow solid (55%); Mp: 186.8–188.2 °C; IR (KBr): 3468, 3454, 2941, 1746, 1711, 1634, 1517, 830 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 7.44–7.41 (m, 4H, ArH), 7.31–7.24 (m, 4H, ArH), 7.19 (d, *J* = 6.7 Hz, 2H, ArH), 7.15 (s, 1H, ArH), 7.13 (s, 1H, NH), 6.86 (s, 1H, ArH), 6.85 (s, 1H, ArH), 4.82 (s, 2H, CH₂), 4.78 (s, 2H, CH₂), 3.77 (s, 3H, CH₃), 3.58–3.55 (m, 2H, CH₂), 2.91 (t, *J* = 7.0 Hz, 2H, CH₂); ¹³C NMR (150 MHz, CDCl₃): δ = 169.4, 166.7, 164.3, 164.1, 158.7, 150.0, 140.1, 136.1, 136.0, 130.3, 129.7, 129.7, 129.5, 128.9, 128.9, 128.8, 128.8, 128.7, 128.7, 128.7, 128.7, 128.0, 127.9, 114.4,

114.4, 113.8, 113.7, 110.0, 55.3, 44.7, 41.9, 41.7, 34.6; HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₃₃H₂₈N₃O₅ 546.2023; found, 546.2023.

2,7-Dibenzyl-4-((4-methylphenethyl)amino)pyrrolo[3,4-*e*]isoindole-1,3,6,8(2*H*, 7*H*)-tetraone (3m)

Yellow solid (49%); Mp: 203.3–206.1 °C; IR (KBr): 3500, 3468, 2991, 1745, 1718, 1634, 1519, 846 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.42 (t, *J* = 9.2 Hz, 4H, ArH), 7.30–7.18 (m, 11H, ArH), 7.11 (s, 1H, NH), 4.81 (s, 2H, CH₂), 4.77 (s, 2H, CH₂), 3.59–3.55 (m, 2H, CH₂), 2.92 (t, *J* = 7.0 Hz, 2H, CH₂), 2.30 (s, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃): δ = 169.4, 166.7, 164.3, 164.1, 150.0, 140.1, 136.6, 136.2, 136.0, 134.5, 130.3, 129.6, 129.6, 128.9, 128.9, 128.8, 128.8, 128.7, 128.7, 128.6, 128.6, 128.6, 128.6, 128.0, 127.9, 113.9, 113.7, 109.9, 44.6, 41.9, 41.7, 35.0, 21.0. HRMS (TOF ES⁺) m/z: [M+Na]⁺ calcd for C_{33H27N3O4} 552.1894; found, 552.1902.

2,7-Dibenzyl-4-(phenethylamino)pyrrolo[3,4-*e*]isoindole-1,3,6,8(2*H*,7*H*)-tetraone (3n)

Yellow solid (45%); Mp: 199.3–202.5 °C; IR (KBr): 3348, 3376, 2927, 1753, 1712, 1635, 1525 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.43–7.40 (m, 4H, ArH), 7.33–7.21 (m, 12H, ArH), 7.20 (s, 1H, NH), 4.82 (s, 2H, CH₂), 4.77 (s, 2H, CH₂), 3.62–3.58 (m, 2H, CH₂), 2.97 (t, *J* = 7.1 Hz, 2H, CH₃); ¹³C NMR (125 MHz, CDCl₃): δ = 169.4, 166.7, 164.3, 164.0, 150.0, 140.2, 137.6, 136.1, 136.0, 130.3, 128.9, 128.9, 128.9, 128.8, 128.7, 128.7, 128.7, 128.0, 128.0, 127.9, 127.9, 127.1, 127.1, 114.0, 113.8, 109.9,

44.5, 41.9, 41.7, 35.4. HRMS (TOF ES⁺) m/z: $[M+H]^+$ calcd for $C_{32}H_{25}N_3O_4$ 516.1918; found, 516.1909.

2,7-Dibenzyl-4-((4-chlorophenethyl)amino)pyrrolo[3,4-*e*]isoindole-1,3,6,8(2*H*, 7*H*)-tetraone (30)

Yellow solid (42%); Mp: 208.3–212.8 °C; IR (KBr): 3460, 3372, 2940, 1754, 1709, 1634, 1524, 819 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.43–7.39 (m, 4H, ArH), 7.30–7.15 (m, 11H, ArH), 7.13 (s, 1H, NH), 4.86 (s, 2H, CH₂), 4.77 (s, 2H, CH₂), 3.56 (s, *J* = 6.2 Hz, 2H, CH₂), 2.93 (s, *J* = 6.8 Hz, 2H, CH₃); ¹³C NMR (125 MHz, CDCl₃): δ = 169.4, 166.7, 164.2, 164.0, 149.9, 140.2, 136.1, 136.1, 135.9, 133.0, 130.3, 130.1, 130.1, 129.1, 129.1, 128.9, 128.9, 128.8, 128.8, 128.7, 128.7, 128.7, 128.7, 128.0, 128.0, 114.0, 114.0, 109.8, 44.2, 42.0, 41.7, 34.7; HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₃₂H₂₄ClN₃O₄ 550.1528; found, 550.1534.

2,7-Dibenzyl-4-((3-methylphenethyl)amino)pyrrolo[3,4-*e*]isoindole-1,3,6,8(2*H*, 7*H*)-tetraone (3p)

Yellow solid (53%); Mp: 202.6–205.2°C; IR (KBr): 3449, 3366, 2938, 1757, 1710, 1635, 1522, 869, 807, 702 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.42 (t, *J* = 9.2 Hz, 4H, ArH), 7.31–7.24 (m, 5H, ArH), 7.22 (s, 2H, ArH), 7.13 (s, 1H, NH), 7.11 (s, 4H, ArH) , 4.82 (s, 2H, CH₂), 4.78 (s, 2H, CH₂), 3.59–3.55 (m, 2H, CH₂), 2.93 (t, *J* = 7.0 Hz, 2H, CH₂), 2.30 (s, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃): δ = 169.4, 166.7, 164.3, 164.1, 150.0, 140.1, 136.7, 136.1, 136.0, 134.5, 130.3, 129.6, 129.6, 128.9, 128.9, 128.8,

128.8, 128.7, 128.7, 128.7, 128.7, 128.6, 128.6, 128.0, 127.9, 113.8, 113.7, 109.9, 44.6, 41.9, 41.7, 35.0, 21.0; HRMS (TOF ES⁺) m/z: $[M+Na]^+$ calcd for $C_{33}H_{27}N_3O_4$ 552.1894; found, 552.1902.

2,7-Dibenzyl-4-((3-fluorobenzyl)amino)pyrrolo[3,4-*e*]isoindole-1,3,6,8(2*H*,7*H*)-tetraone (3q)

Yellow solid (40%); Mp: 185.6–187.2 °C; IR (KBr): 3462, 3383, 2935, 1751, 1713, 1634, 1524, 864, 783, 691 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 7.54–7.46 (m, 1H, ArH), 7.44 (s, 1H, NH), 7.34–7.25 (m, 11H, ArH), 7.19–7.12 (m, 2H, ArH), 7.03–7.00 (m, 1H, ArH), 4.75 (s, 2H, CH₂), 4.72 (s, 2H, CH₂), 3.75–3.72 (m, 2H, CH₂), 2.94 (t, *J* = 7.1 Hz, 2H , CH₂). ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 169.3, 166.9, 164.5, 164.1, 162.7 (d, *J*₁ = 241.5 Hz), 150.2, 142.1, 142.0, 139.9, 137.0, 136.9, 130.7, 130.7, 130.6, 129.0, 127.9, 127.9, 127.9, 127.9, 125.5, 116.1, 116.0, 113.7, 113.5, 113.5, 113.0, 111.3, 43.6, 41.4, 41.3, 34.7. ¹⁹F NMR (564 MHz, DMSO-*d*₆): δ = –113.51 ppm. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₃₁H₂₂FN₃O₄ 534.1824; found, 534.1824.

4-((4-Methoxyphenethyl)amino)-2,7-bis(2-methylbenzyl)pyrrolo[3,4-*e*]isoindole-1,3,6,8(2*H*,7*H*)-tetraone (3r)

Yellow solid (54%); Mp: 104.5–107.8 °C; IR (KBr): 3523, 3461, 2991, 1744, 1633, 1564, 1514, 835 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.29 (d, *J* = 4.1 Hz, 2H, ArH), 7.23–7.21 (m, 2H, ArH), 7.15 (s, 1H, NH), 7.13–7.10 (m, 6H, ArH), 6.85 (d, *J* = 8.4 Hz, 2H, ArH), 4.84 (s, 2H, CH₂), 4.81 (s, 2H, CH₂), 3.76 (s, 3H, CH₃), 3.59–3.56 (m, 2H,

CH₂), 2.92 (t, J = 6.9 Hz, 2H, CH₂), 2.48 (d, J = 3.3 Hz, 6H, CH₃). ¹³C NMR (125 MHz, CDCl₃): $\delta = 169.7$, 167.0, 164.4, 164.2,158.7, 150.1, 140.1, 136.3, 136.3, 134.1, 133.9, 130.5, 130.5, 130.3, 129.7, 129.7, 129.6, 128.9, 128.8, 127.9, 127.8, 126.2, 126.2, 114.3, 114.3, 113.9, 113.7, 109.9, 55.3, 44.7, 39.4, 39.2, 34.6, 19.5, 19.5. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₃₅H₃₁N₃O₅ 574.2336; found, 574.2327.

2,7-Bis(2-methylbenzyl)-4-(phenethylamino)pyrrolo[3,4-*e*]isoindole-1,3,6,8(2*H*, 7*H*)-tetraone (3s)

Yellow solid (47%); Mp: 147.6–155.8 °C; IR (KBr): 3447, 3373, 2937, 1748, 1711, 1635, 1525, cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.33–7.28 (m, 4H, ArH), 7.26–7.22(m, 5H, ArH), 7.16 (s, 1H, NH), 7.14–7.09 (m, 5H, ArH), 4.85 (s, 2H, CH₂), 4.80 (s, 2H, CH₂), 3.64–3.60 (m, 2H, CH₂), 2.98 (t, *J* = 7.1 Hz, 2H, CH₂), 2.48 (t, *J* = 4.3 Hz, 6H, CH₃). ¹³C NMR (125 MHz, CDCl₃): δ = 169.7, 167.0, 164.4, 164.2, 150.0, 140.1, 137.4, 136.3, 136.3, 134.1, 133.9, 130.5, 130.5, 130.3, 128.9, 128.9, 128.9, 128.8, 128.8, 128.7, 127.9, 127.8, 127.1, 126.2, 126.2, 113.9, 113.7, 109.9, 44.5, 39.4, 39.2, 35.5, 19.5, 19.5. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₃₄H₂₉N₃O₄ 544.2231; found, 544.2237.

4-((4-Chlorophenethyl)amino)-2,7-bis(2-methylbenzyl)pyrrolo[3,4-*e*]Nisoindole-1,3,6,8(2*H*,7*H*)-tetraone (3t)

Yellow solid (41%); Mp: 214.2–214.8 °C; IR (KBr): 3449, 3426, 2935, 1750, 1712,

1635, 1525, 835 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.29–7.22 (m, 5H, ArH), 7.20– 7.15(m, 2H, ArH), 7.14 (s, 1H, NH), 7.11 (d, *J* = 3.8 Hz, 2H, ArH), 4.85 (s, 2H, CH₂), 4.81 (s, 2H, CH₂), 3.62–3.58 (m, 2H, CH₂), 2.95 (t, *J* = 6.9 Hz, 2H, CH₂), 2.48 (t, *J* = 1.2 Hz, 6H, CH₃). ¹³C NMR (125 MHz, CDCl₃): δ = 169.7, 166.9, 164.4, 164.2, 149.9, 140.2, 136.3, 136.0, 134.0, 133.8, 133.0, 130.5, 130.3, 130.1, 130.1, 129.1, 129.1, 128.9, 128.9, 128.8, 128.0, 127.8, 126.2, 126.2, 114.1, 113.9, 109.8, 44.3, 39.4, 39.2, 34.8, 19.5, 19.5. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₃₄H₂₈ClN₃O₄ 578.1841; found, 578.1847.

2,7-Bis(2-methylbenzyl)-4-((3-methylphenethyl)amino)pyrrolo[3,4-*e*]isoindole-1,3,6,8(2*H*,7*H*)-tetraone (3u)

Yellow solid (49%); Mp: 194.4–197.1 °C; IR (KBr): 3451, 3373, 2932, 1751, 1712, 1635, 1521, 855, 791, 744 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.29 (d, *J* = 6.9 Hz, 2H, ArH), 7.23 (t, *J* = 8.3 Hz, 1H, ArH), 7.16 (s, 1H, NH), 7.13 (t, *J* = 7.0 Hz, 1H, ArH), 4.85 (s, 2H, CH₂), 4.81 (s, 2H, CH₂), 3.61–3.57 (m, 2H, CH₂), 2.94 (t, *J* = 7.0 Hz, 2H, CH₂), 2.48 (t, *J* = 6.6 Hz, 6H, CH₃), 2.31 (s, 3H, CH₃). ¹³C NMR (125 MHz, CDCl₃): δ = 169.7, 167.0, 164.4, 164.2, 150.1, 140.1, 136.7, 136.3, 136.3, 134.5, 134.1, 133.9, 130.5, 130.5, 130.3, 129.6, 129.6, 128.9, 128.8, 128.8, 128.6, 127.9, 127.8, 126.2, 126.2, 113.9, 113.7, 109.9, 44.6, 39.4, 39.2, 35.0, 21.1, 19.5, 19.5. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₃₅H₃₁N₃O₄ 558.2387; found, 558.2390.

4-((3-Fluorophenethyl)amino)-2,7-bis(2-methylbenzyl)pyrrolo[3,4-*e*]isoindole-1,3,6,8(2*H*,7*H*)-tetraone (3v)

Yellow solid (38%); Mp: 213.0–216.3 °C; IR (KBr): 3448, 3417, 2934, 1745, 1709, 1634, 1526, 1050, 831, 747 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.31–7.21 (m, 6H, ArH), 7.16–7.09 (m, 5H, ArH), 7.01 (d, *J* = 8.8 Hz, 1H, NH), 6.95 (t, *J* = 8.6 Hz, 2H, ArH), 4.85 (s, 2H, CH₂), 4.81 (s, 2H, CH₂), 3.65–3.61 (m, 2H, CH₂), 2.98 (t, *J* = 7.0 Hz, 2H, CH₂), 2.98 (t, *J* = 4.8 Hz, 6H, CH₃); ¹³C NMR (125 MHz, CDCl₃): δ = 169.7, 166.9, 164.4, 164.2, 163.1 (d, *J*₁ = 245.1 Hz), 149.9, 140.2, 140.0 (d, *J*₃ = 7.5 Hz), 136.3, 133.9 (d, *J*₂ = 21.3 Hz), 134.0, 133.8, 130.4, 130.3, 128.9, 128.8, 127.9, 127.8, 126.2, 126.2, 124.4, 124.4, 115.6 (d, *J*₂ = 21.3 Hz), 114.2, 114.1, 114.0, 113.9, 109.8, 44.1, 39.4, 39.2, 35.1, 19.5, 19.5. ¹⁹F NMR (470 MHz, CDCl₃): δ = -112.5 ppm. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₃₄H₂₈FN₃O₄ 562.2137; found, 562.2137.

2,7-Dicyclohexyl-4-((4-methoxyphenethyl)amino)pyrrolo[3,4-*e*]isoindole-1,3,6, 8(2*H*,7*H*)-tetraone (3w)

Yellow solid (49%); Mp: 260.5–262.3 °C; IR (KBr): 3471, 3453, 2935, 1745, 1710, 1636, 1517, 843 cm⁻¹; ¹H NMR (500 MHz, CDCl3): δ = 7.22 (t, *J* = 5.3 Hz, 1H, NH), 7.17 (d, *J* = 8.3 Hz, 3H, ArH), 6.88 (d, *J* = 8.5 Hz, 2H, ArH), 4.13–4.02 (m, 2H, CH), 3.80 (s, 3H, CH₃), 3.61–3.57 (m, 2H, CH₂), 2.95 (d, *J* = 7.0 Hz, 2H, CH₂), 2.22–2.14 (m, 4H, CH₂), 1.86 (d, *J* = 12.8 Hz, 4H, CH₂), 1.69 (d, *J* = 11.4 Hz, 6H, CH₂), 1.39–1.24 (m, 6H, CH₂); ¹³C NMR (125 MHz, CDCl₃): δ = 170.1, 167.3, 164.8, 164.7, 158.6, 149.8, 140.0, 130.1, 129.7, 129.7, 114.3, 114.3, 114.3, 113.8, 113.7, 109.4, 55.3, 51.3, 51.0, 44.6, 34.6, 29.8, 29.8, 29.7, 29.7, 26.0, 26.0, 26.0, 26.0, 25.1, 25.1. HRMS (TOF ES⁺) m/z: [M+Na]⁺ calcd for C₃₁H₃₅N₃O₅ 552.2469; found, 552.2469.

2,7-Dicyclohexyl-4-((4-methylphenethyl)amino)pyrrolo[3,4-*e*]isoindole-1,3,6,8 (2*H*,7*H*)-tetraone (3x)

Yellow solid (44%); Mp: 267.4–268.3 °C; IR (KBr): 3462, 3441, 2941, 1746, 1710, 1627, 1518, 848 cm⁻¹; ¹H NMR (500 MHz, CDCl3): δ = 7.23 (t, *J* = 5.1 Hz, 1H, NH), 7.18 (s, 1H, ArH), 7.15 (s, 4H, ArH), 4.13–4.02 (m, 2H, CH), 3.62–3.59 (m, 2H, CH₂), 2.96 (t, *J* = 7.0 Hz, 2H, CH₂), 2.33 (s, 3H, CH₃), 2.25–2.14 (m, 4H, CH₂), 1.86 (d, *J* = 12.2 Hz, 4H, CH₂), 1.69 (d, *J* = 11.0 Hz, 6H, CH₂), 1.39–1.24 (m, 6H, CH₂); ¹³C NMR (125 MHz, CDCl₃): δ = 170.1, 167.3, 164.8, 164.7, 149.8, 140.0, 136.6, 134.6, 130.1, 129.6, 129.6, 128.6, 128.6, 113.8, 113.7, 109.4, 51.2, 51.0, 44.6, 35.0, 29.8, 29.8, 29.7, 29.7, 26.0, 26.0, 26.0, 25.1, 25.1, 21.1. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₃₁H₃₅N₃O₄ 514.2700; found,514.2704.

2,7-Dicyclohexyl-4-(phenethylamino)pyrrolo[3,4-*e*]isoindole-1,3,6,8(2*H*,7*H*)-tetraone (3y)

Yellow solid (43%); Mp: 285.6–288.4 °C; IR (KBr): 3498, 3468, 2934, 1746, 1704, 1634, 1520 cm⁻¹; ¹H NMR (500 MHz, CDCl3): δ = 7.35 (t, *J* = 7.4 Hz, 2H, ArH), 7.28–7.20 (m, 4H, ArH), 4.13–4.02 (m, 2H, CH), 3.01 (m, *J* = 7.0 Hz, 2H, CH₂), 2.25–2.14 (m, 4H, CH₂), 1.86 (d, *J* = 12.7 Hz, 4H, CH₂), 1.69 (d, *J* = 11.6 Hz, 6H, CH₂), 1.39–1.18 (m, 6H, CH₂); ¹³C NMR (125 MHz, CDCl₃): δ = 170.1, 167.3, 164.8, 164.7, 149.8, 140.0, 137.7, 130.1, 128.9, 128.9, 128.7, 128.7, 127.0, 113.9, 113.8, 109.3, 51.3, 51.0, 44.4, 35.5, 29.8, 29.8, 29.7, 29.7, 26.0, 26.0, 26.0, 26.0, 25.1, 25.1. HRMS (TOF ES⁺)

m/z: $[M+H]^+$ calcd for C₃₀H₃₃N₃O₄ 500.2544; found, 500.2545.

4-((4-Chlorophenethyl)amino)-2,7-dicyclohexylpyrrolo[3,4-*e*]isoindole-1,3,6,8 (2*H*,7*H*)-tetraone (3*z*)

Yellow solid (40%); Mp: 260.5–262.3 °C; IR (KBr): 3430, 3397, 2987, 1745, 1711, 1635, 1520, 834 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.32 (d, *J* = 8.1 Hz, 3H, ArH), 7.19 (d, *J* = 8.1 Hz, 2H, ArH), 7.01 (s, 1H, NH), 4.14–4.02 (m, 2H, CH), 3.64–3.60 (m, 2H, CH₂), 2.98 (t, *J* = 6.8 Hz, 2H, CH₂), 2.22–2.04 (m, 4H, CH₂), 1.86 (d, *J* = 12.4 Hz, 4H, CH₂), 1.69 (d, *J* = 11.3 Hz, 6H, CH₂), 1.50–0.86 (m, 6H, CH₂); ¹³C NMR (125 MHz, CDCl₃): δ = 170.1, 167.2, 164.7, 164.7, 149.7, 140.0, 136.2, 133.0, 130.1, 130.1, 130.1, 130.1, 129.1, 114.0, 114.0, 109.2, 51.3, 51.1, 44.2, 34.8, 29.8, 29.8, 29.7, 29.7, 26.0, 26.0, 26.0, 25.1, 25.1. HRMS (TOF ES⁺) m/z: [M+Na]⁺ calcd for C₃₀H₃₂N₃O₄ 556.1974; found, 556.1976.

2,7-Dicyclohexyl-4-((3-methylphenethyl)amino)pyrrolo[3,4-*e*]isoindole-1,3,6,8(2*H*, 7*H*)-tetraone (3a')

Yellow solid (47%); Mp: 269.5–270.4 °C; IR (KBr): 3465, 3439, 2939, 1744, 1714, 1630, 1515, 892, 780, 685 cm⁻¹; ¹H NMR (500 MHz, CDCl3): δ = 7.23 (t, *J* = 5.3 Hz, 1H, NH), 7.18 (s, 1H, ArH), 7.15 (s, 4H, ArH), 4.13–4.02 (m, 2H, CH), 3.63–3.57 (m, 2H, CH₂), 2.96 (t, *J* = 7.0 Hz, 2H, CH₂), 2.33 (s, 3H, CH₃), 2.25–2.14 (m, 4H, CH₂), 1.86 (d, *J* = 12.1 Hz, 4H, CH₂), 1.69 (d, *J* = 10.8 Hz, 6H, CH₂), 1.39–1.24 (m, 6H, CH₂); ¹³C NMR (125 MHz, CDCl₃): δ = 170.1, 167.3, 164.8, 164.7, 149.8, 140.0, 136.6, 134.6,

130.1, 129.6, 129.6, 128.6, 128.6, 113.8, 113.7, 109.4, 51.2, 51.0, 44.6, 35.0, 29.8, 29.8, 29.7, 29.7, 26.0, 26.0, 26.0, 26.0, 25.1, 25.1, 21.1. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₃₁H₃₅N₃O₄ 514.2700; found,514.2704.

2,7-Dicyclohexyl-4-((3-fluorophenethyl)amino)pyrrolo[3,4-*e*]isoindole-1,3,6,8(2*H*, 7*H*)-tetraone (3b')

Yellow solid (37%); Mp: 281.6–288.4 °C; IR (KBr): 3495, 3481, 2940, 1745, 1708, 1635, 1520, 834, 866, 781, 679 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.34–7.30 (m, 1H, ArH), 7.21 (t, *J* = 5.0 Hz, 2H, ArH), 7.04 (d, *J* = 3.8 Hz, 1H, NH), 7.97 (t, *J* = 8.3 Hz, 2H, ArH), 4.14–4.02 (m, 2H, CH), 3.66–3.62 (m, 2H, CH₂), 3.01 (t, *J* = 7.0 Hz, 2H, CH₂), 2.25–2.13 (m, 4H, CH₂), 1.86 (d, *J* = 14.8 Hz, 4H, CH₂), 1.69 (d, *J* = 11.4 Hz, 6H, CH₂), 1.40–1.24 (m, 6H, CH₂); ¹³C NMR (125 MHz, CDCl₃): δ = 170.1, 167.2, 164.7, 163.1 (d, *J*₁ = 246.3 Hz), 149.7, 140.2,130.4 (d, *J*₃ = 7.5 Hz), 130.1, 124.4 (d, *J*₄ = 2.5 Hz), 115.6 (d, *J*₂ = 21.3 Hz), 114.0 (d, *J*₂ = 21.3 Hz), 114.1, 114.0, 109.2, 51.3, 51.1, 44.1, 35.1, 29.8, 29.8, 29.7, 29.7, 26.0, 26.0, 26.0, 26.0, 25.1, 25.1. ¹⁹F NMR (470 MHz, CDCl₃): δ = -112.6 ppm. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₃₀H₃₂FN₃O₄ 518.2450; found, 518.2440.

4-((4-Methoxyphenethyl)amino)pyrrolo[3,4-*e*]isoindole-1,3,6,8(2*H*,7*H*)-tetraone (3c')

Yellow solid (52%); Mp: 293.1–301.5 °C; IR (KBr): 3515, 3430, 2996, 1743, 1635, 1529, 1448, 835 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 11.32$ (s, 1H, NH), 11.30 (s, 1H, NH), 7.41 (s, 1H, NH), 7.27 (s, 1H, ArH), 7.21 (s, 1H, ArH), 7.21 (d, J = 8.4 Hz,

2H, ArH), 6.86 (d, J = 8.5 Hz, 2H, ArH), 3.71 (s, 3H, CH₃), 3.65 (d, J = 6.6 Hz, 2H, CH₂), 2.85 (t, J = 7.0 Hz, 2H, CH₂); ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 171.3$, 168.5, 166.1, 165.8, 158.4, 150.3, 141.3, 131.6, 130.9, 130.3, 130.3, 114.9, 114.4, 114.4, 114.1, 110.1, 55.5, 44.2, 34.3. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₁₉H₁₅N₃O₅ 366.1084; found, 366.1075.

4-((4-Methylphenethyl)amino)pyrrolo[3,4-*e*]isoindole-1,3,6,8(2*H*,7*H*)-tetraone (3d')

Yellow solid (48%); Mp: 339.0–340.0 °C; IR (KBr): 3457, 3434, 2994, 1742, 1701, 1638, 1529, 832 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 11.33 (s, 1H, NH), 11.31 (s, 1H, NH), 7.41 (t, *J* = 6.0 Hz, 1H, NH), 7.29 (s, 1H, ArH), 7.18 (t, *J* = 7.9 Hz, 1H, ArH), 7.11 (t, *J* = 7.8 Hz, 2H, ArH), 3.68–3.64 (m, 2H, CH₂), 2.86 (t, *J* = 7.1 Hz, 2H, CH₂), 2.26 (s, 3H, CH₃); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 171.3, 168.5, 166.1, 165.8, 150.2, 141.3, 136.0, 135.8, 131.5, 129.5, 129.5, 129.2, 129.2, 114.9, 114.1, 110.1, 44.0, 34.7, 21.1. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₁₉H₁₅N₃O₄ 350.1135; found, 350.1127.

4-(Phenethylamino)pyrrolo[3,4-e]isoindole-1,3,6,8(2H,7H)-tetraone (3e')

Yellow solid (44%); Mp: 325.8–332.6 °C; IR (KBr): 3517, 3442, 2994, 1744, 1631, 1532, 1455 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): δ = 11.31 (s, 2H, NH), 7.43 (t, J = 5.9 Hz, 1H, NH), 7.30 (m, J = 4.1 Hz, 5H, ArH), 7.23–7.19 (m, 1H, ArH), 3.71–3.67 (m, 2H, CH₂), 2.91 (t, J = 7.1 Hz, 2H, CH₂); ¹³C NMR (125 MHz, DMSO- d_6): δ =

171.3, 168.5, 166.1, 165.8, 150.2, 141.3, 139.1, 131.5, 129.3, 129.3, 128.9, 128.9, 126.8, 114.9, 114.1, 110.1, 43.9, 35.1. HRMS (TOF ES⁺) m/z: $[M+Na]^+$ calcd for $C_{18}H_{13}N_3O_4$ 358.0798; found, 358.0792.

4-((4-Chlorophenethyl)amino)pyrrolo[3,4-*e*]isoindole-1,3,6,8(2*H*,7*H*)-tetraone (3f')

Yellow solid (41%); Mp: 315.6–320.6 °C; IR (KBr): 3452, 3427, 2927, 1713, 1630, 1527, 1374, 836 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 11.23 (s, 1H, NH), 11.31 (s, 1H, NH), 7.41 (t, *J* = 6.0 Hz, 1H, NH), 7.35–7.31 (m, 4H, ArH), 7.29 (s, 1H, ArH), 3.70–3.66 (m, 2H, CH₂), 2.91 (t, *J* = 7.1 Hz, 2H, CH₂); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 171.2, 168.5, 166.0, 165.8, 150.2, 141.3, 138.2, 131.5, 131.2, 131.2, 128.8, 128.8, 115.0, 114.2, 110.1, 43.7, 34.0. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₁₈H₁₂ClN₃O₄ 370.0589; found, 370.0593.

4-((3-Methylphenethyl)amino)pyrrolo[3,4-*e*]isoindole-1,3,6,8(2*H*,7*H*)-tetraone (3g')

Yellow solid (50%); Mp: 302.5–308.6 °C; IR (KBr): 3348, 3309, 2996, 1743, 1635, 1530, 1452, 831, 781, 725 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 11.32 (s, 1H, NH), 11.30 (s, 1H, NH), 7.40 (t, *J* = 4.9 Hz, 1H, NH), 7.28 (s, 1H, ArH), 7.18 (d, *J* = 6.5 Hz, 2H, ArH), 7.10 (d, *J* = 6.5 Hz, 2H, ArH), 3.67–3.64 (m, 2H, CH₂), 2.86 (t, *J* = 5.8 Hz, 2H, CH₂), 2.26 (s, 3H, CH₃); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 171.3, 168.5, 166.0, 165.8, 150.3, 141.3, 136.0, 135.8, 131.5, 129.5, 129.5, 129.2, 129.2, 115.0, 114.1, 110.1, 44.0, 34.7, 21.1. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₁₉H₁₅N₃O₄ 350.1135; found,

350.1127.

4-((3-fluorophenethyl)amino)pyrrolo[3,4-e]isoindole-1,3,6,8(2H,7H)-tetraone (3h')

Yellow solid (40%); Mp: 328.6–335.9 °C; IR (KBr): 3347, 3308, 2995, 1742, 1634, 1529, 1452, 831, 780, 724 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 11.25 (s, 1H, NH), 11.22 (s, 1H, NH), 7.37 (s, 1H, NH), 7.30 (d, *J* = 6.3Hz, 2H, ArH), 7.01–7.05 (m, 2H, ArH), 6.95 (s, 1H, ArH), 3.73–3.69 (m, 2H, CH₂), 3.99 (t, *J* = 7.0 Hz, 2H, CH₂). ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 171.1, 168.2, 166.1, 165.9, 162.8 (d, *J*₁ = 243.8 Hz), 150.2, 141.4, 141.2 (d, *J*₃ = 8.8 Hz), 131.4, 130.4 (d, *J*₃ = 8.8 Hz), 124.9 (d, *J*₄ = 2.5 Hz), 115.8 (d, *J*₂ = 21.3 Hz), 115.2, 114.4, 113.5 (d, *J*₂ = 21.3 Hz), 109.6, 43.7, 34.9. ¹⁹F NMR (564 MHz, DMSO-*d*₆): δ = –113.1 ppm. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₁₈H₁₂FN₃O₄ 354.0885; found, 354.0876.

2,7-dibenzyl-4-((4-methoxybenzyl)amino)pyrrolo[3,4-e]isoindole-1,3,6,8(2H,7H)-tetraone (3i')

Yellow solid (53%); Mp: 213.5–214.8 °C; IR (KBr): 3449, 3376, 2984, 1746, 1711, 1634, 1517, 830 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 8.10 (t, 1H, *J* = 6.2 Hz, NH), 7.35–7.24 (m, 13H, ArH), 6.90 (d, *J* = 8.6 Hz, 2H, ArH), 4.78 (s, 2H, CH₂), 4.72 (s, 2H, CH), 4.64 (d, *J* = 6.2 Hz, 2H, CH₂), 3.71 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ =169.2, 167.0, 164.5, 164.1, 159.0, 150.1, 139.8, 137.0, 137.0, 130.7, 130.2, 129.0, 129.0, 129.0, 128.9, 128.9, 128.0, 128.0, 127.9, 127.9, 127.9, 127.9, 114.6, 114.6, 114.0, 113.3, 111.2, 55.5, 45.6, 41.5, 41.3. HRMS (TOF ES⁺) m/z: [M+Na]⁺ calcd for C₃₂H₂₅N₃O₅ 554.1686; found, 554.1694.

4-((4-methylbenzyl)amino)-2,7-bis(thiophen-2-ylmethyl)pyrrolo[3,4-e]isoindole-1,3,6,8(2*H*,7*H*)-tetraone (3j')

Yellow solid (43%); Mp: 204.6–208.2 °C; IR (KBr): 3447, 3358, 2965, 1748, 1644, 1526, 1432, 851, 782, 683 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 8.18 (t, *J* = 6.3 Hz, 1H, NH), 7.42 (ddd, *J* = 19.2, 5.1, 1.3 Hz, 2H, ArH), 7.25 (d, *J* = 8.6 Hz, 3H, ArH), 7.15 – 7.10 (m, 3H, ArH), 7.05 (d, *J* = 3.5 Hz, 1H, ArH), 6.95 (ddd, *J* = 16.8, 5.1, 3.4 Hz, 2H, ArH), 4.88 (d, *J* = 18.4 Hz, 4H, CH₂), 4.67 (d, *J* = 6.3 Hz, 2H, CH₂), 2.24 (s, 3H, CH₃). ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 168.67, 166.43, 164.01, 163.59, 150.13, 139.63, 138.84, 138.80, 136.87, 135.33, 130.60, 129.71, 127.71, 127.58, 127.43, 127.37, 126.67, 113.85, 113.03, 111.39, 45.82, 36.16, 35.96, 21.12. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₈H₂₁N₃O₄S₂ 528.1047; found, 528.1046.

2,7-Dibenzyl-4-((4-methoxyphenyl)amino)pyrrolo[3,4-*e*]isoindole-1,3,6,8(2*H*,7*H*)-tetraone (3k')

Yellow solid (55%); Mp: 220.4–222.1 °C; IR (KBr): 3483, 3445, 2989, 1745, 1714, 1636, 1517, 831 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 9.13 (s, 1H, NH), 7.35–7.24 (m, 12H, ArH), 7.20 (s, 1H, ArH), 7.06–7.03 (m, 2H, ArH), 4.78 (s, 2H, CH₂), 4.73 (s, 2H, CH₂), 3.80 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 168.8, 166.8, 164.4, 164.0, 158.2, 148.8, 139.6, 136.9, 131.0, 130.8, 129.1, 129.1, 129.1, 129.0, 129.0, 129.0, 128.0, 128.0, 128.0, 127.9, 127.9, 127.9, 127.1, 115.4, 114.7, 114.7, 111.6, 55.8, 41.5, 41.4. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₃₁H₂₃N₃O₅ 518.1710; found, 518.1700.

The proposed mechanism of the cascade reaction

The proposed mechanism is shown in Scheme 2. First, the α -C of the substrate **1h** attacks the double bond of the maleimide derivative **2b** promoted by the base *via* Michael addition to form the intermediate **4n**, which undergoes an imine–enamine tautomerism to obtain the intermediate **5n**. Then, the intermediate **5n** with substrate **2b** enters a bis-Michael addition promoted by the base **2b** to form the intermediate **6n**. The key intermediate **6n** loses HNO₂ to generate the intermediate **7n**, followed by dehydrogenation and then the loss of an alkyl amine to generate the final product **3n**.

Scheme S1. The proposed mechanism of the cascade reaction.

Verification of reaction mechanisms

To verify the rationality of the mechanism, we packed 1,1-enediamine (1h) (0.1 mmol) and maleimide (2b) (0.2 mmol) into a round bottom flask. The reaction was carried out in DMF solvent at 100 °C for 20 minutes, with continuous sampling. After the reaction, the obtained intermediate samples were detected by the high-pressure liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) system. HRMS (TOF ES⁺): m/z calcd. for

 $C_{18}H_{22}N_3O_2$ [M+H]⁺, 312.1707; found, 312.1701, which is the HRMS spectrum of substrate 1h (SI, Figure S82); HRMS (TOF ES⁺): m/z calcd. for C₁₁H₉NO₂ $[M+H]^+$, 210.0525; found, 210.0522, which is the HRMS spectra of substrate **2b** (SI, Figure S83); HRMS (TOF ES⁺): m/z calcd. for C₂₉H₃₁N₄O₄ [M+H]⁺, 499.2340; found, 499.2346. HRMS (TOF ES⁺): *m/z* calcd. for C₂₉H₃₁N₄O₄ [M+H]⁺, 499.2340; found, 499.2344. There are the HRMS spectra of intermediates 4n-5n (SI, Figure S84-S85). HRMS (TOF ES⁺): m/z calcd. for $C_{40}H_{38}N_5O_6 [M+H]^+$, 684.2817; found, 684.2809. Which is the HRMS spectra of intermediates **6n** (SI, Figure S86); HRMS (TOF ES⁺): m/z calcd. for C₄₀H₃₉N₄O₄ [M+H]⁺, 639.2966; found, 639.2969. That is the HRMS spectra of intermediates **7n** (SI, Figure S87); HRMS (TOF ES⁺): m/z calcd. for C₄₀H₃₇N₄O₄ $[M+H]^+$, 637.2809; found, 637.2812. Which is the HRMS spectra of intermediates 8n (SI, Figure S88); HRMS (TOF ES⁺): m/z calcd. for C₃₂H₂₆N₃O₄ [M+H]⁺, 516.1918; found, 516.1914. Which is the HRMS spectra of target compound 3n (SI, Figure S89). In high-resolution mass spectrometry, the molecular ion peaks of intermediates 4n-8n, and the target compound were detected. Based on the experimental results, we believe that the proposed reaction mechanism is reasonable.

X-ray Structure and Data of 3n.

Figure S1. X-Ray crystal structure of 3n

i abit 51. Ciystal data a	
Identification code	mo_230801B_0m
Empirical formula	$C_{32}H_{25}N_{3}O_{4}$
Formula weight	515.55
Temperature	100.00 K
Wavelength	0.71073 Å
Crystal system, space group	monoclinic, P 1 21/n 1
Space group	P 1 21/n 1
Unit cell dimensions	a = 10.1041 (6) Å $\alpha = 90^{\circ}$.
	b = 16.5967 (12) Å β = 95.114 (2)°.
	$c = 30.366 (16) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume Z, Calculated density Density (calculated)	5071.9(6) Å ³ 8, 1.350 Mg/m^3
Absorption coefficient F(000)	1.350 g/cm 0.090 mm^{-1} 2160
Theta range for data collection	2.08 to 28.36°. -10- k -13 -22- k -22 -40- k -40
Reflections collected / unique	147402 / 12653 [R(int) = 0.0852]
Max. and min. transmission Independent reflections	0.7457 and $0.0.685112653 [R(int) = 0.0852]$
Refinement method Data / restraints / parameters	Full-matrix least-squares on F^2 12653 / 166 / 795
Goodness-of-fit on F^2	1.159 $B_{\rm r} = 0.0028 \text{ wBs} = 0.1804$
Final R indexes [1>=2sigma(1)] Final R indexes (all data)	$R_1 = 0.0928$, $WR_2 = 0.1804$ $R_1 = 0.1241$, $WR_2 = 0.1931$
Extinction coefficient	n/a
Largest diff. peak and hole	0.607 /-0.567e.Å ⁻³

Table S1. Crystal data and structure refinement for 3n

_

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C11	1.209(4)	O2	C64	1.210(4)
O3	C63	1.219(4)	O4	C8	1.212(4)
N1	C7	1.461(4)	N1	C8	1.381(4)
N1	C11	1.408(4)	N2	C24	1.463(4)
N2	C63	1.399(4)	N2	C64	1.399(4)
N3	H3	0.88	N3	C14	1.349(4)
N3	C16	1.465(4)	C1	H1	0.95
C1	C2	1.405(7)	C1	C6	1.375(6)
C2	H2	0.95	C2	C3	1.383(9)
C3	H3A	0.95	C3	C4	1.385(9)
C4	H4	0.95	C4	C5	1.382(6)
C5	H5	0.95	C5	C6	1.392(6)
C6	C7	1.513(5)	C7	H7A	0.99
C7	H7B	0.99	C8	C9	1.490(4)
C9	C10	1.412(4)	C9	C15	1.368(4)
C10	C11	1.489(5)	C10	C12	1.377(4)
C12	C13	1.394(4)	C12	C64	1.504(4)
C13	C14	1.408(4)	C13	C63	1.467(4)
C14	C15	1.423(4)	C15	H15	0.95
C16	H16A	0.99	C16	H16B	0.99
C16	C17	1.522(5)	C17	H17A	0.99
C17	H17B	0.99	C17	C18	1.504(5)
C18	C19	1.400(5)	C18	C23	1.390(5)
C19	H19	0.95	C19	C20	1.381(6)
C20	H20	0.95	C20	C21	1.385(7)
C21	H21	0.95	C21	C22	1.382(7)
C22	H22	0.95	C22	C23	1.388(6)
C23	H23	0.95	C24	H24A	0.99
C24	H24B	0.99	C24	C25	1.509(5)
C25	C26	1.457(6)	C25	C26A	1.303(10)
C25	C30	1.348(6)	C25	C30A	1.462(10)
C26	H26	0.95	C26	C27	1.396(7)
C26A	H26A	0.95	C26A	C27A	1.400(12)
C27	H27	0.95	C27	C28	1.382(8)
C27A	H27A	0.95	C27A	C28A	1.391(13)
C28	H28	0.95	C28	C29	1.372(9)
C28A	H28A	0.95	C28A	C29A	1.356(12)
C29	H29	0.95	C29	C30	1.396(7)
C29A	H29A	0.95	C29A	C30A	1.392(11)
C30	H30	0.95	C30A	H30A	0.95
O5	C41	1.217(4)	O6	C38	1.206(4)

Table S2. Bond Lengths for 3n

07	C46	1.211(4)	08	C47	1.210(4)
N4	C37	1.451(4)	N4	C38	1.413(4)
N4	C41	1.381(4)	N5	C46	1.394(4)
N5	C47	1.402(4)	N5	C48	1.459(4)
N6	H6	0.88	N6	C43	1.347(4)
N6	C55	1.464(4)	C3	H31	0.95
C31	C32	1.386(6)	C3	l C36	1.377(5)
C32	H32	0.95	C32	2 C33	1.371(7)
C33	H33	0.95	C33	3 C34	1.360(7)
C34	H34	0.95	C34	4 C35	1.392(6)
C35	H35	0.95	C3:	5 C36	1.385(5)
C36	C37	1.515(5)	C3′	7 H37A	0.99
C37	H37B	0.99	C38	3 C39	1.479(5)
C39	C40	1.403(4)	C39	e C45	1.385(4)
C40	C41	1.494(4)	C40) C42	1.362(4)
C42	H42	0.95	C42	2 C43	1.428(4)
C43	C44	1.414(4)	C44	4 C45	1.388(4)
C44	C47	1.478(4)	C4:	5 C46	1.504(4)
C48	H48A	0.99	C48	8 H48B	0.99
C48	C49	1.507(5)	C49	9 C50	1.397(6)
C49	C50A	1.357(11)	C49	9 C54	1.362(6)
C49	C54A	1.498(11)	C50) H50	0.95
C50	C51	1.388(7)	C50	A H50A	0.95
C50A	C51A	1.394(13)	C5	H51	0.95
C51	C52	1.362(7)	C51	A H51A	0.95
C52	C53	1.409(8)	C52	A H52A	0.95
C52A	C53A	1.377(14)	C53	3 H53	0.95
C53	C54	1.391(7)	C53	A H53A	0.95
C53A	C54A	1.392(14)	C54	4 H54	0.95
C54A	H54A	0.95	C5:	5 H55A	0.99
C55	H55B	0.99	C5:	5 C56	1.521(5)
C56	H56A	0.99	C50	6 H56B	0.99
C56	C57	1.509(5)	C5′	7 C58	1.389(5)
C57	C62	1.399(5)	C58	B H58	0.95
C58	C59	1.389(5)	C59	9 H59	0.95
C59	C61	1.387(5)	C60) H60	0.95
C60	C61	1.381(6)	C60) C62	1.384(5)
C61	H61	0.95	C62	2 H62	0.95

Table S3. Bond Angles for 3n

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C8	N1	C7	123.6(3)	C8	N1	C11	112.5(3)
C11	N1	C7	123.3(3)	C63	N2	C24	123.7(3)
C64	N2	C24	124.6(3)	C64	N2	C63	111.6(2)
C14	N3	H3	118.2	C14	N3	C16	123.5(3)
C16	N3	Н3	118.2	C2	C1	H1	119.8
C6	C1	H1	119.8	C6	C1	C2	120.4(5)
C1	C2	H2	119.6	C3	C2	C1	120.7(5)
C3	C2	H2	119.6	C2	C3	H3A	120.7
C2	C3	C4	118.6(5)	C4	C3	H3A	120.7
C3	C4	H4	119.7	C5	C4	C3	120.6(6)
C5	C4	H4	119.7	C4	C5	H5	119.4
C4	C5	C6	121.2(5)	C6	C5	H5	119.4
C1	C6	C5	118.4(4)	C1	C6	C7	118.4(4)
C5	C6	C7	123.1(4)	N1	C7	C6	114.5(3)
N1	C7	H7A	108.6	N1	C7	H7B	108.6
C6	C7	H7A	108.6	C6	C7	H7B	108.6
H7A	C7	H7B	107.6	O4	C8	N1	125.6(3)
O4	C8	C9	128.2(3)	N1	C8	C9	106.2(3)
C10	C9	C8	107.8(3)	C15	C9	C8	127.1(3)
C15	C9	C10	124.9(3)	C9	C10	C11	107.6(3)
C12	C10	C9	116.9(3)	C12	C10	C11	135.1(3)
01	C11	N1	124.3(3)	01	C11	C10	130.1(3)
N1	C11	C10	105.7(3)	C10	C12	C13	119.6(3)
C10	C12	C64	132.9(3)	C13	C12	C64	107.5(3)
C12	C13	C14	123.6(3)	C12	C13	C63	108.6(3)
C14	C13	C63	127.7(3)	N3	C14	C13	120.9(3)
N3	C14	C15	122.3(3)	C13	C14	C15	116.7(3)
C9	C15	C14	118.2(3)	C9	C15	H15	120.9
C14	C15	H15	120.9	N3	C16	H16A	109.8
N3	C16	H16B	109.8	N3	C16	C17	109.4(3)
H16A	C16	H16B	108.2	C17	C16	H16A	109.8
C17	C16	H16B	109.8	C16	C17	H17A	109
C16	C17	H17B	109	H17A	C17	H17B	107.8
C18	C17	C16	112.9(3)	C18	C17	H17A	109
C18	C17	H17B	109	C19	C18	C17	119.4(3)
C23	C18	C17	122.1(3)	C23	C18	C19	118.4(4)
C18	C19	H19	119.6	C20	C19	C18	120.8(4)
C20	C19	H19	119.6	C19	C20	H20	119.9
C19	C20	C21	120.2(4)	C21	C20	H20	119.9
C20	C21	H21	120.1	C22	C21	C20	119.7(4)
C22	C21	H21	120.1	C21	C22	H22	119.9

C21	C22	C23	120.3(4)	C23	C22	H22	119.9
C18	C23	H23	119.7	C22	C23	C18	120.6(4)
C22	C23	H23	119.7	N2	C24	H24A	109
N2	C24	H24B	109	N2	C24	C25	113.0(3)
H24A	C24	H24B	107.8	C25	C24	H24A	109
C25	C24	H24B	109	C26	C25	C24	117.9(3)
C26A	C25	C24	124.4(6)	C26A	C25	C30A	119.1(7)
C30	C25	C24	124.9(4)	C30	C25	C26	117.2(4)
C30A	C25	C24	115.1(5)	C25	C26	H26	120.2
C27	C26	C25	119.6(5)	C27	C26	H26	120.2
C25	C26A	H26A	119.3	C25	C26A	C27A	121.4(10)
C27A	C26A	H26A	119.3	C26	C27	H27	119.9
C28	C27	C26	120.2(5)	C28	C27	H27	119.9
C26A	C27A	H27A	119.8	C28A	C27A	C26A	120.4(10)
C28A	C27A	H27A	119.8	C27	C28	H28	119.9
C29	C28	C27	120.2(5)	C29	C28	H28	119.9
C27A	C28A	H28A	120.2	C29A	C28A	C27A	119.5(10)
C29A	C28A	H28A	120.2	C28	C29	H29	120
C28	C29	C30	119.9(6)	C30	C29	H29	120
C28A	C29A	H29A	119.8	C28A	C29A	C30A	120.4(9)
C30A	C29A	H29A	119.8	C25	C30	C29	122.8(5)
C25	C30	H30	118.6	C29	C30	H30	118.6
C25	C30A	H30A	120.6	C29A	C30A	C25	118.7(8)
C29A	C30A	H30A	120.6	O3	C63	N2	124.6(3)
O3	C63	C13	128.7(3)	N2	C63	C13	106.6(3)
O2	C64	N2	124.9(3)	O2	C64	C12	129.5(3)
N2	C64	C12	105.6(3)	C38	N4	C37	123.6(3)
C41	N4	C37	123.5(3)	C41	N4	C38	112.1(3)
C46	N5	C47	111.9(2)	C46	N5	C48	124.7(3)
C47	N5	C48	123.2(3)	C43	N6	H6	118.4
C43	N6	C55	123.2(3)	C55	N6	H6	118.4
C32	C31	H31	120.1	C36	C31	H31	120.1
C36	C31	C32	119.7(4)	C31	C32	H32	119.3
C33	C32	C31	121.5(4)	C33	C32	H32	119.3
C32	C33	H33	120.4	C34	C33	C32	119.3(4)
C34	C33	H33	120.4	C33	C34	H34	120
C33	C34	C35	119.9(4)	C35	C34	H34	120
C34	C35	H35	119.5	C36	C35	C34	121.0(4)
C36	C35	H35	119.5	C31	C36	C35	118.5(4)
C31	C36	C37	123.2(3)	C35	C36	C37	118.2(3)
N4	C37	C36	115.1(3)	N4	C37	H37A	108.5
N4	C37	H37B	108.5	C36	C37	H37A	108.5
C36	C37	H37B	108.5	H37A	C37	H37B	107.5

O6	C38	N4	123.5(3)	O6	C38	C39	130.8(3)
N4	C38	C39	105.6(3)	C40	C39	C38	108.3(3)
C45	C39	C38	134.9(3)	C45	C39	C40	116.5(3)
C39	C40	C41	107.5(3)	C42	C40	C39	125.8(3)
C42	C40	C41	126.6(3)	O5	C41	N4	125.6(3)
05	C41	C40	128.1(3)	N4	C41	C40	106.3(3)
C40	C42	H42	121	C40	C42	C43	118.0(3)
C43	C42	H42	121	N6	C43	C42	122.4(3)
N6	C43	C44	121.4(3)	C44	C43	C42	116.2(3)
C43	C44	C47	127.2(3)	C45	C44	C43	123.8(3)
C45	C44	C47	108.9(3)	C39	C45	C44	119.5(3)
C39	C45	C46	133.1(3)	C44	C45	C46	107.4(3)
O7	C46	N5	125.0(3)	07	C46	C45	129.2(3)
N5	C46	C45	105.8(3)	08	C47	N5	125.4(3)
08	C47	C44	128.7(3)	N5	C47	C44	105.9(3)
N5	C48	H48A	108.7	N5	C48	H48B	108.7
N5	C48	C49	114.2(3)	H48A	C48	H48B	107.6
C49	C48	H48A	108.7	C49	C48	H48B	108.7
C50	C49	C48	120.2(4)	C50A	C49	C48	130.7(6)
C50A	C49	C54A	111.6(8)	C54	C49	C48	118.2(4)
C54	C49	C50	120.9(4)	C54A	C49	C48	117.0(5)
C49	C50	H50	120.6	C51	C50	C49	118.8(5)
C51	C50	H50	120.6	C49	C50A	H50A	117.9
C49	C50A	C51A	124.2(11)	C51A	C50A	H50A	117.9
C50	C51	H51	119.5	C52	C51	C50	121.0(5)
C52	C51	H51	119.5	C50A	C51A	H51A	118.7
C52A	C51A	C50A	122.6(12)	C52A	C51A	H51A	118.7
C51	C52	H52	120.1	C51	C52	C53	119.7(5)
C53	C52	H52	120.1	C51A	C52A	H52A	120.9
C51A	C52A	C53A	118.2(12)	C53A	C52A	H52A	120.9
C52	C53	H53	120.3	C54	C53	C52	119.4(5)
C54	C53	H53	120.3	C52A	C53A	H53A	120.3
C52A	C53A	C54A	119.5(12)	C54A	C53A	H53A	120.3
C49	C54	C53	119.9(5)	C49	C54	H54	120
C53	C54	H54	120	C49	C54A	H54A	118.5
C53A	C54A	C49	122.9(10)	C53A	C54A	H54A	118.5
N6	C55	H55A	109.8	N6	C55	H55B	109.8
N6	C55	C56	109.4(3)	H55A	C55	H55B	108.2
C56	C55	H55A	109.8	C56	C55	H55B	109.8
C55	C56	H56A	109.1	C55	C56	H56B	109.1
H56A	C56	H56B	107.8	C57	C56	C55	112.6(3)
C57	C56	H56A	109.1	C57	C56	H56B	109.1
C58	C57	C56	121.1(3)	C58	C57	C62	118.6(3)

C62	2 C57	C56	120.3(3)	C57	C58	H58	119.8
C57	C58	C59	120.4(3)	C59	C58	H58	119.8
C58	S C59	H59	120	C61	C59	C58	120.0(4)
C61	C59	H59	120	C61	C60	H60	120.3
C61	C60	C62	119.4(4)	C62	C60	H60	120.3
C59	C61	H61	119.8	C60	C61	C59	120.4(4)
C60) C61	H61	119.8	C57	C62	H62	119.4
C60) C62	C57	121.1(3)	C60	C62	H62	119.4

YunNan University AVANCEHDIII 500M Y-1-a Apr16-2024-yangjiaming PROTON CDC13

Figure S2. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3a

YunNan University AVANCEHDIII 500M Y-1-c Apr16-2024-yangjiaming PROTON CDC13

YunNan University AVANCEHDIII 500M Y-1-d Apr16-2024-yangjiaming PROTON CDC13

YunNan University AVANCEHDIII 500M Y-1-e Apr16-2024-yangjiaming PROTON CDC13

Figure S10. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3e

Figure S11. ¹³C NMR (150 MHz, CDCl₃) spectra of compound 3e

YUNNAN UNIVERSITY ASCEND AVIIIHD600 y-1-f Jun11-2024-yangjiaming F19CPD CDCl3

Figure S12. ¹⁹F NMR (564 MHz, CDCl₃) spectra of compound 3e

Figure S13. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3f

Figure S14. ¹³C NMR (150 MHz, CDCl₃) spectra of compound 3f

YunNan University AVANCEHDIII 500M y-1-29 Aug22-2023-yangjiaming PROTON CDC13

YunNan University AVANCEHDIII 500M y-1-31 Aug23-2023-yangjiaming PROTON CDC13

YunNan University AVANCEHDIII 500M y-1-27 Jul31-2023-yangjiaming PROTON DMSO

YunNan University AVANCEHDIII 500M y-1-27 Jul31-2023-yangjiaming F19CPD DMSO

Figure S25. ¹⁹F NMR (470 MHz, DMSO-*d*₆) spectra of compound 3k

Figure S26. ¹H NMR (600 MHz, CDCl₃) spectra of compound 31

YunNan University AVANCEHDIII 500M y-1-4 Jul21-2023-yangjiaming PROTON CDC13

YunNan University AVANCEHDIII 500M y-1-5 Jul22-2023-yangjiaming PROTON CDC13

Figure S36. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3q

Figure S38. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3r

Figure S40. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3s

YunNan University AVANCEHDIII 500M y-1-34 Aug22-2023-yangjiaming PROTON CDC13

Figure S42. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3t

Figure S44. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3u

Figure S46. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3v

YunNan University AVANCEHDIII 500M y-1-33 Aug22-2023-yangjiaming F19CPD CDCl3

Figure S48. ¹⁹F NMR (470 MHz, CDCl₃) spectra of compound 3v

YunNan University AVANCEHDIII 500M y-1-14 Jul26-2023-yangjiaming PROTON CDCl3

YunNan University AVANCEHDIII 500M y-1-12 Jul26-2023-yangjiaming PROTON CDCl3

Figure S52. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 3x

YunNan University AVANCEHDIII 500M y-1-11 Jul24-2023-yangjiaming PROTON CDCl3

Figure S53. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3y

YunNan University AVANCEHDIII 500M y-1-10 Jul25-2023-yangjiaming PROTON CDCl3

YunNan University AVANCEHDIII 500M y-1-13 Jul26-2023-yangjiaming PROTON CDCl3

Figure S57. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3a'

Figure S58. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 3a'

YunNan University AVANCEHDIII 500M y-1-9 Jul25-2023-yangjiaming PROTON CDCl3

YunNan University AVANCEHDIII 500M y-1-9 Jul25-2023-yangjiaming F19CPD CDCl3

YUNNAN UNIVERSITY ASCEND AVIIIHD600 y-1-26 Sep01-2023-yangjiaming PROTON DMSO

YunNan University AVANCEHDIII 500M y-1-24 Jul28-2023-yangjiaming PROTON DMSO

S97

Figure S68. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 3f'

S103

YUNNAN UNIVERSITY ASCEND AVIIIHD600 y-1-21 Sep01-2023-yangjiaming PROTON DMSO

Figure S72. ¹H NMR (600 MHz, DMSO- d_6) spectra of compound 3h'

YunNan University AVANCEHDIII 500M y-1-21 Jul29-2023-yangjiaming F19CPD DMSO

Figure S74. ¹⁹F NMR (564 MHz, DMSO-*d*₆) spectra of compound **3h'**

YUNNAN UNIVERSITY ASCEND AVIIIHD600 y-1-1 Jun25-2023-yangjiaming PROTON DMSO

Figure S75. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3i'

Figure S76. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 3i'
YunNan University AVANCEHDIII 500M 6g' Aug15-2024-shaobina PROTON DMSO

Figure S77. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 3j'

Figure S79. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound **3k'**

Figure S85. HRMS of intermediate 4n/5n

M #95 RT: 1.78 AV: 1 NL: 1.34E4 T: FTMS + c ESI Full ms [100.00-800.00]

References

1. X.-M. Hu, D.-Y.Luo, Q.-X. Zi, J. Lin, S.-J. Yan, Diastereoselective Synthesis of Morphan Derivatives by Michael and Hetero-Michael Addition of 1,1-Enediamines to Quinone Monoketals, *ACS Omega*, 2018, **3**, 8.

2. CCDC2371133 contain the supplementary crystallographic data for compound **3n**. These data can be obtained free of charge from The Cambridge Crystallographic Data Center *via* <u>www.ccdc.cam.ac.uk/data_request/cif</u>