Supporting Information

Palladium-catalyzed hydrocarbonylative cross-coupling with two

different alkenes

Yi Chen,^a Jianing Wu,^a Yongzheng Ding,^{*, b} Hanmin Huang^{*, a}

^aKey Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
 ^bHefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
 ^{*}Corresponding author: hanmin@ustc.edu.cn; dingyz@ustc.edu.cn

Table of Contents

1.	General information	S2
2.	Optimization of the reaction conditions	S2
3.	General procedure for the carbonylation reactions	S4
4.	Experimental characterization data for products.	S4
5.	Gram-scale reaction and synthetic applications	S11
6.	References	S14
7.	Spectra of products	S15

1. General information

All non-aqueous reactions and manipulations were performed in a N₂ atmosphere glove box. All solvents before used were dried and degassed by standard methods and stored under nitrogen atmosphere. Purification of products was performed by flash chromatography (FC) using silica gel. NMR spectra were recorded on BRUKER Avence III 400 MHz or 500 MHz NMR spectrometers. Chemical shifts were reported in parts per million (ppm) down field from TMS with the solvent resonance as the internal standard. Coupling constants (*J*) were reported in Hz and referred to apparent peak multiplications. High resolution mass spectra (HRMS) were recorded on Bruker MicroTOF-QII mass (ESI). GC-MS analyses were performed on Agilent 7890B/5975B GC-MS system. All commercially available compounds were purchased from Alfa Aesar, J&K, Adamas and Energy Chemical. Enol ethers such as **1a**, **1b**, **1c**, **1e**, **1l**, **1s** and enamides such as **1h**, **1i**, **1j** were purchased from commercial sources and used as received. **1d**^[1], **1f**^[1], **1g**^[1], **1k**^[2], **1m**^[3], **1n**^[4], **1o**^[5], **1p**^[6], **1q**^[7], **1r**^[7]were prepared according to the literature methods.

2. Optimization of the reaction conditions

2.1 Screening of catalysts^a

	+ CO + CN	[Pd] (5 mol%) CSA (5 mol%), Ruphos (12 mol%) NMP, 100 °C, 12 h	CN CN
1	2		<u>`</u> 0´

Entry	[Pd]	Yield
1	Pd(CH ₃ CN) ₂ Cl ₂	87%
2	PdBr ₂	61%
3	PdI ₂	23%
4	Pd(OAc) ₂	trace
5	$Pd(^{t}Bu_{3}P)_{2}$	trace
6	$Pd_2(dba)_3^b$	trace
7	Pd(acac) ₂	trace

^{*a*}Reaction conditions: **1** (0.5 mmol), **2** (0.6 mmol), CO (40 atm), [Pd] (5 mol%), CSA (camphorsulfonic acid, 5 mol%), Ruphos (12 mol%), NMP (1 mL), 100 °C, 12 h. ${}^{b}Pd_{2}(dba)_{3}$ (2.5 mol%).

2.2 Screening of ligands^a

Entry	Ligand		Yield
1	RuPhos		87%
2	SPhos		84%
3	Davephos		81%
4	XPhos		82%
5	BnPAd ₂		67%
6	"BuPAd ₂		63%
7	L_1		47%
8	L_2		53%
9	L_3		56%
10	L_4		69%
11	Xantphos ^b		21%
PCy ₂	Me ₂ N	P ^t Bu ₂	PCy2
L ₁	L ₂	L_3	L_4

^{*a*}Reaction conditions: **1** (0.5 mmol), **2** (0.6 mmol), CO (40 atm), Pd(CH₃CN)₂Cl₂ (5 mol%), CSA (5 mol%), ligand (12 mol%), NMP (1 mL), 100 °C, 12 h. ^{*b*}Xantphos (6 mol%).

2.3 Screening of solvents^a

+ co +	Pd(CH ₃ CN) ₂ Cl ₂ (5 mol%) CSA (5 mol%), Ruphos (12 mol%)	O CN
0	solvent, 100 °C, 12 h	
1 2		
Entry	Solvent	Yield
1	NMP	87%
2	THF	15%
3	dioxane	8%
4	toluene	trace
5	PhOMe	25%
6	СрМЕ	11%
7	PhCl	13%

^{*a*}Reaction conditions: **1** (0.5 mmol), **2** (0.6 mmol), CO (40 atm), Pd(CH₃CN)₂Cl₂ (5 mol%), CSA (5 mol%), Ruphos (12 mol%), solvent (1 mL), 100 °C, 12 h.

3. General procedure for the carbonylation reactions

In a N₂ atmosphere glove box, Pd(CH₃CN)₂Cl₂ (6.4 mg, 0.025 mmol), CSA (5.8 mg, 0.025 mmol), Ruphos (28.0 mg, 0.06 mmol), enol ethers (0.5 mmol), acrylonitrile (0.6 mmol), and NMP (1 mL) were added into a glass tube which was placed in an autoclave. Then the autoclave was purged and charged with CO (40 atm). The reaction mixture was stirred at 100 °C for 12 hours. After the reaction finished, the autoclave was cooled to room temperature and the pressure was carefully released in the hood. The d.r. and Z/E values were measured by H NMR. Then the corresponding reaction mixture was purified by flash column chromatography on a silica gel column (petroleum ether/ethyl acetate = 30/1 - 3/1) to give the desired product **3**.

4. Experimental characterization data for products.

3-(3,4-dihydro-2*H***-pyran-5-yl)-2-methyl-3-oxopropanenitrile** (**3a**): (colorless oil, 72.6 mg, yield: 87%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.73 (s, 1H), 4.19 – 4.12 (m, 2H),

o 3.93 (q, J = 7.1 Hz, 1H), 2.33 - 2.30 (m, 2H), 1.95 - 1.90 (m, 2H), 1.53 (d, J = 7.2 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 188.9, 158.8, 119.0, 114.5, 67.6, 31.8, 20.7, 18.6, 15.4. **HRMS** (ESI) calcd. for **3a C**₉H₁₁NNaO₂ [M+Na]⁺: 188.0682, found: 188.0692.

3-(4,5-dihydrofuran-3-yl)-2-methyl-3-oxopropanenitrile (**3b**): (colorless oil, 50.3 mg, yield: 66%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.59 (t, J = 1.6 Hz, 1H), 4.66 – 4.61 (m, 2H), 3.77 (q, J = 7.2 Hz, 1H), 2.94 – 2.89 (m, 2H), 1.55 (d, J = 7.2 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 185.4, 160.2, 119.0, 117.8, 74.0, 34.4, 27.6, 15.4. **HRMS** (ESI) calcd. for

C₈H₁₀NO₂ [M+H]⁺: 152.0706, found: 152.0712.

3-(2-methoxy-3,4-dihydro-2*H***-pyran-5-yl)-2-methyl-3-oxopropanenitrile** (3c): (colorless oil, 50.3 mg, yield: 51%, d.r. = 1.1:1). ¹H NMR (500 MHz, CDCl₃) δ 7.63 (s, 0.53H), 7.61 (s, 0.47H), 5.12 – 5.09 (m, 1H), 3.92 (qd, *J* = 7.2, 2.6 Hz, 1H), 3.52 (s, 3H), 2.41 – 2.28 (m, 2H), 2.04 – 1.98 (dtt, *J* = 13.9, 6.0, 4.0 Hz, 1H), 1.85

- 1.71 (m, 1H), 1.53 (d, J = 3.5 Hz, 1.65H), 1.52 (d, J = 3.5 Hz, 1.41H). ¹³C NMR (126 MHz, CDCl₃) δ 188.9, 188.6, 155.63, 155.57, 118.9, 118.8, 115.4, 115.2, 100.0, 99.9, 56.6, 56.5, 32.1, 31.7, 25.33, 25.30, 15.5, 15.2, 14.93, 14.91. **HRMS** (ESI) calcd. for C₁₀H₁₃NNaO₃ [M+Na]⁺: 218.0788, found: 218.0793.

(E)-5-methoxy-2-methyl-3-oxo-4-(tetrahydro-2H-pyran-4-yl)pent-4-enenitrile

(3d): (colorless oil, 75.1 mg, yield: 67%, E/Z=12:1). ¹H NMR (500 MHz, CDCl₃) δ 7.33 (s, 0.92H), 6.66 (s, 0.08H), 4.26 (q, J = 7.2 Hz, 0.07H), 3.99 – 3.97 (m, 2H), 3.96 (s, 2.84H), 3.94 (s, 0.23H), 3.91 (q, J = 7.1 Hz, 0.97H), 3.48 – 3.36 (m, 2H), 3.00 – 2.91 (m, 0.97H), 2.76 – 2.70 (m, 0.11H), 2.19 – 2.11 (m, 2H), 1.51 (d, J = 7.1 Hz, 2.84H), 1.46 (d, J = 7.2 Hz, 0.28H), 1.37 – 1.33 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 190.4, 189.1, 162.7, 158.6, 122.3, 119.8, 119.3, 119.2, 68.65, 68.64, 68.44, 68.41, 62.6, 62.4, 38.3, 34.2, 33.1, 32.8, 32.7, 32.4, 29.4, 15.4, 14.4. HRMS (ESI) calcd. for C₁₂H₁₇NNaO₃ [M+Na]⁺: 246.1101, found: 246.1106.

(*E*)-5-methoxy-2-methyl-3-oxo-4-(1-tosylpiperidin-4-yl)pent-4-enenitrile (3e):

119.1, 62.8, 47.18, 47.16, 32.8, 32.3, 28.0, 27.9, 21.6, 15.4. **HRMS** (ESI) calcd. for C₁₉H₂₄N₂NaO₄S [M+Na]⁺: 399.1349, found: 399.1356.

(E)-4-cyclohexyl-5-methoxy-2-methyl-3-oxopent-4-enenitrile (3f): (colorless oil,

67.4 mg, yield: 61%, *E*/Z>20:1). ¹**H** NMR (500 MHz, CDCl₃) δ 7.25 (s, 1H), 3.93 (s, 3H), 3.91 (q, J = 7.2 Hz, 1H), 2.64 (tt, J = 12.1, 3.4 Hz, 1H), 1.80 – 1.71 (m, 4H), 1.67 – 1.62 (m, 1H), 1.50 (d, J = 7.2Hz, 3H), 1.47 – 1.44 (m, 2H), 1.31 – 1.15 (m, 3H). ¹³**C** NMR (126 MHz, CDCl₃) δ 189.6, 162.1, 124.1, 119.3, 62.4, 35.6, 32.6, 29.64,

29.62, 27.0, 26.0, 15.6. **HRMS** (ESI) calcd. for C₁₃H₁₉NNaO₂ [M+Na]⁺: 244.1308, found: 244.1313.

(*E*)-4-benzyl-5-methoxy-2-methyl-3-oxopent-4-enenitrile (3g): (colorless oil, 75.9 mg, yield: 66%, *E*/Z>20:1). ¹H NMR (500 MHz, CDCl₃) δ 7.48 (s, 1H), 7.28 – 7.19 (m, 4H), 7.18 – 7.14 (m, 1H), 3.98 (s, 3H), 3.82 (q, *J* = 7.1 Hz, 1H), 3.68 – 3.61 (m, 2H), 1.45 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 189.1, 162.3, 139.8, 128.5, 126.2,

119.1, 119.0, 62.5, 32.4, 29.2, 15.2. **HRMS** (ESI) calcd. for C₁₄H₁₆NO₂ [M+H]⁺: 230.1176, found: 230.1174.

(E)-2-methyl-3-oxo-5-(2-oxopyrrolidin-1-yl)pent-4-enenitrile (3h): (colorless oil,

53.4 mg, yield: 55%, E/Z>20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 13.9, 1H), 5.81 (d, J = 13.9 Hz, 1H), 3.70 – 3.64 (m, 3H), 2.62 – 2.58 (m, 2H), 2.28 – 2.20 (m, 2H), 1.54 (d, J = 7.3Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 189.5, 174.9, 139.0, 118.9, 103.9, 45.1, 36.7, 30.9, 17.4, 14.8. **HRMS** (ESI) calcd. for C₁₀H₁₂N₂NaO₂ [M+Na]⁺: 215.0791, found: 215.0795.

(E)-2,4-dimethyl-3-oxo-5-(2-oxopyrrolidin-1-yl)pent-4-enenitrile (3i): (colorless oil,

192.0, 175.9, 135.9, 118.8, 115.7, 48.0, 32.4, 29.8, 18.6, 16.0, 11.3. **HRMS** (ESI) calcd. for C₁₁H₁₄N₂NaO₂ [M+Na]⁺: 229.0947, found: 229.0954.

tert-butyl 5-(2-cyanopropanoyl)-3,4-dihydropyridine-1(2H)-carboxylate (3j):

31.5, 28.0, 20.2, 20.0, 15.6. **HRMS** (ESI) calcd. for C₁₄H₂₀N₂NaO₃ [M+Na]⁺: 287.1366, found: 287.1370.

(*E*)-8-chloro-4-(methoxymethylene)-2-methyl-3-oxooctanenitrile (3k): (colorless oil, 95.6 mg, yield: 83%, *E*/Z>20:1). ¹H NMR (500 MHz, Cl MeO 3k $CDCl_3$) δ 7.38 (s, 1H), 3.96 (s, 3H), 3.87 (q, *J* = 7.1 Hz, 1H), 3.54 (t, *J* = 6.8 Hz, 2H), 2.32 – 2.29 (m, 2H), 1.75 (dq, *J* = 8.4, 6.8 Hz, 2H), 1.53 (s, 3H), 1.52 – 1.46 (m, 2H). ¹³C

NMR (126 MHz, CDCl₃) δ 189.1, 162.1, 119.7, 119.2, 62.4, 45.0, 32.3, 32.2, 25.6, 22.6, 15.3. **HRMS** (ESI) calcd. for C₁₁H₁₆ClNNaO₂ [M+Na]⁺: 252.0762, found: 252.0761.

(E)-6-cyano-4-(methoxymethylene)-5-oxoheptyl benzoate (3l): (colorless oil, 94.6

2H), 1.52 (d, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.8, 162.4, 133.0,

130.5, 129.7, 128.5, 119.1, 119.0, 64.5, 62.4, 32.2, 27.3, 20.0, 15.3. **HRMS** (ESI) calcd. for C₁₇H₁₉NNaO₄ [M+Na]⁺: 324.1207, found: 324.1212.

(E)-6-(1,3-dioxoisoindolin-2-yl)-4-(methoxymethylene)-2-methyl-3-

oxohexanenitrile (3m): (colorless oil, 108.5 mg, yield: 69%, PhthN MeO CN E/Z>20:1). ¹H NMR (500 MHz, CDCl₃) δ 7.84 – 7.79 (m, 2H), 7.74 – 7.68 (m, 2H), 7.34 (s, 1H), 3.86 (q, J = 7.1 Hz, 1H), 3.80 – 3.75 (m, 2H), 3.68 (s, 3H), 2.71 – 2.66 (m, 2H), 1.50 (d, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 189.1, 168.5, 163.1, 133.9, 132.2, 123.2, 119.0, 117.1, 62.3, 36.5, 32.2, 22.6, 15.5. HRMS (ESI) calcd. for C₁₇H₁₆N₂NaO₄ [M+Na]⁺: 335.1002, found: 335.1007.

(*E*)-4-(methoxymethylene)-2,6,10-trimethyl-3-oxoundec-9-enenitrile (3n):

(colorless oil, 96.9 mg, yield: 73%, *E*/Z>20:1; d.r.=1.1:1). ¹H NMR (500 MHz, CDCl₃) δ 7.394 (s, 0.48H), 7.392 (s, 0.52H), 5.08 (tdt, *J* = 7.1, 3.0, 1.4 Hz, 1H), 3.93 (s, 3H), 3.92 (q, *J* = 7.3, 1.0 Hz, 1H), 2.28 (dt,

J = 13.1, 5.8 Hz, 1H), 2.13 (ddd, J = 13.1, 8.4, 3.7 Hz, 1H), 2.08 – 1.90 (m, 2H), 1.68 (s, 3H), 1.60 (s, 3H), 1.58 – 1.55 (m, 1H), 1.51 (d, J = 7.1 Hz, 3H), 1.33 – 1.25 (m, 1H), 1.17 – 1.10 (m, 1H), 0.81 (d, J = 1.9 Hz, 1.56H), 0.80 (d, J = 1.9 Hz, 1.48H). ¹³C NMR (126 MHz, CDCl₃) δ 189.68, 189.67, 162.20, 162.19, 131.17, 131.15, 124.9, 119.24, 119.23, 119.22, 62.16, 62.15, 37.1, 37.0, 32.3, 32.1, 32.0, 30.6, 25.8, 25.7, 19.3, 17.7, 15.5. **HRMS** (ESI) calcd. for C₁₆H₂₅NNaO₂ [M+Na]⁺: 286.1778, found: 286.1786.

(E)-4-(methoxymethylene)-2-methyl-3-oxooct-7-enenitrile (30): (colorless oil,

114.1 mg, yield: 82%, E/Z>20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (s, 1H), 5.86 – 5.76 (m, 1H), 4.99 (dq, J = 17.2, 1.8 Hz, 1H), 4.94 – 4.90 (m, 1H), 3.94 (s, 3H), 3.90 (q, J = 7.2 Hz, 1H), 2.27

-2.24 (m, 2H), 2.06 -2.00 (m, 2H), 1.51 (d, J = 7.1 Hz, 3H), 1.38 -1.30 (m, 4H), 1.27 -1.25 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 189.5, 161.8, 139.3, 120.3, 119.3, 114.2,

62.2, 33.9, 32.2, 29.6, 29.5, 29.4, 29.2, 29.0, 28.4, 23.4, 15.5. **HRMS** (ESI) calcd. for C₁₇H₂₇NNaO₂ [M+Na]⁺: 300.1934, found: 300.1938.

(*E*)-4-(cyclohex-2-en-1-yl)-5-methoxy-2-methyl-3-oxopent-4-enenitrile (3p): (colorless oil, 65.6 mg, yield: 59%, *E*/Z>20:1; d.r.=1.0:1). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (s, 1H), 5.70 – 5.64 (m, 2H), 3.97 (td, *J* = 7.1, 1.3 Hz, 1H), 3.94 (s, 3H), 2.97 – 2.89 (m, 1H), 2.44 – 2.34 (m, 1H), 2.14 – 2.02 (m, 3H), 1.92 – 1.83 (m, 1H), 1.57 – 1.52 (m, 1H), 1.52 (d, *J* = 7.3 Hz, 1.49H), 1.50 (d, *J* = 7.2 Hz, 1.50H). ¹³C NMR (101 MHz, CDCl₃) δ 189.61, 189.57, 162.5, 126.81, 126.78, 126.63, 126.59, 123.3, 119.3, 62.4, 32.6, 32.6, 31.4, 28.50, 28.49, 26.0, 25.9, 15.7, 15.6. HRMS (ESI) calcd. for C_{13H17}NNaO₂ [M+Na]⁺: 242.1151, found: 242.1158.

(E)-6-(4-(tert-butyl)phenyl)-4-(methoxymethylene)-2,5-dimethyl-3-

oxohexanenitrile (3q): (colorless oil, 101.7 mg, yield:
65%, *E*/Z>20:1; d.r.=1.1:1). ¹H NMR (500 MHz, CDCl₃)
δ 7.26 - 7.22 (m, 2H), 7.16 (s, 0.45H), 7.12 (s, 0.58H),
7.04 - 7.02 (m, 2H), 3.85 (s, 1.76H), 3.84 (s, 1.24H),
3.75 (q, *J* = 7.2 Hz, 0.58H), 3.70 (q, *J* = 7.1 Hz, 0.46H),

3.26 – 3.15 (m, 1H), 2.87 – 2.76 (m, 2H), 1.32 (d, J = 7.2 Hz, 1.53H), 1.28 (s, 4.28H), 1.27 (s, 4.71H), 1.25 (d, J = 7.2 Hz, 1.65H), 1.18 (d, J = 7.0 Hz, 1.46H), 1.17 (d, J = 7.0 Hz, 1.58H). ¹³C NMR (126 MHz, CDCl₃) δ 189.8, 189.5, 162.1, 161.9, 148.62, 148.59, 138.19, 138.16, 128.7, 128.6, 124.9, 123.1, 123.0, 119.13, 119.06, 62.31, 62.28, 39.8, 39.7, 34.4, 32.8, 32.7, 32.4, 32.3, 31.5, 18.1, 17.9, 15.9, 15.4. HRMS (ESI) calcd. for C₂₀H₂₇NNaO₂ [M+Na]⁺: 336.1934, found: 336.1939.

(E)-6-(4-isopropylphenyl)-4-(methoxymethylene)-2,5-dimethyl-3-

7.1 Hz, 0.45H), 3.28 - 3.15 (m, 1H), 2.87 - 2.78 (m, 3H), 1.33 (d, J = 7.2 Hz, 1.43H), 1.29 (d, J = 7.2 Hz, 1.61H), 1.21 - 1.16 (m, 9H). ¹³**C** NMR (126 MHz, CDCl₃) δ 189.6, 189.3, 162.0, 161.9, 146.4, 146.4, 138.6, 138.6, 129.0, 129.0, 126.1, 123.3, 123.1, 119.1, 119.1, 62.4, 62.3, 39.9, 39.9, 33.8, 32.7, 32.6, 32.5, 32.4, 24.2, 24.2, 18.1, 18.0, 15.8, 15.4. **HRMS** (ESI) calcd. for C₁₉H₂₅NNaO₂ [M+Na]⁺: 322.1778, found: 322.1782.

(E)-5-(benzyloxy)-2-methyl-3-oxopent-4-enenitrile (3s): (colorless oil, 59.9 mg,

yield: 55%, E/Z>20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, JBnO CN = 12.2 Hz, 1H), 7.44 – 7.38 (m, 3H), 7.36 – 7.33 (m, 2H), 6.01 (d, J = 12.2 Hz, 1H), 5.01 (s, 2H), 3.48 (q, J = 7.3 Hz, 1H), 1.51 (d, J = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 189.7, 164.9,

134.6, 129.1, 129.0, 128.0, 119.0, 102.2, 74.4, 37.4, 14.7. **HRMS** (ESI) calcd. for C₁₃H₁₃NNaO₂ [M+Na]⁺: 238.0838, found: 238.0845.

dimethyl 2-(3,4-dihydro-2H-pyran-5-carbonyl)succinate (3t): (colorless oil, 49.7

 $\begin{array}{c} \mathbf{O} \\ \mathbf$

191.7, 172.1, 169.7, 159.3, 116.1, 67.4, 52.9, 52.1, 47.9, 33.1, 20.9, 18.6. **HRMS** (ESI) calcd. for C₁₂H₁₆NaO₆ [M+Na]⁺: 279.0839, found: 279.0847.

diethyl 2-(3,4-dihydro-2H-pyran-5-carbonyl)succinate (3u): (colorless oil, 57.4 mg,

171.6, 169.1, 159.1, 116.0, 67.3, 61.6, 60.9, 48.2, 33.2, 20.9, 18.5, 14.1, 14.0. **HRMS** (ESI) calcd. for C₁₄H₂₀NaO₆ [M+Na]⁺: 307.1152, found: 307.1158.

ethyl 3-(3,4-dihydro-2H-pyran-5-yl)-2-methyl-3-oxopropanoate (3v): (colorless oil,

$$\begin{array}{c} \textbf{0} \quad \textbf{0} \\ \textbf{$$

(126 MHz, CDCl₃) δ 194.3, 171.3, 158.0, 116.1, 77.4, 77.2, 76.9, 67.3, 61.3, 46.8, 21.1, 18.7, 14.24, 14.22. **HRMS** (ESI) calcd. for C₁₁H₁₆NaO₄ [M+Na]⁺: 235.0941, found: 235.0943.

5. Gram-scale reaction and synthetic applications

5.1 Gram-scale reaction

In a N₂ atmosphere glove box, Pd(CH₃CN)₂Cl₂ (131.0 mg, 0.505 mmol), CSA (117.3 mg, 0.505 mmol), Ruphos (565.5 mg, 1.21 mmol), enol ethers (1.5 g, 10.1 mmol), acrylonitrile (1.3 mL, 20.2 mmol), and NMP (20 mL) were added into a teflon reaction tube which was placed in an autoclave. Then the autoclave was purged and charged with CO (40 atm). The reaction mixture was stirred at 100 °C for 12 hours. After the reaction finished, the autoclave was cooled to room temperature and the pressure was carefully released in the hood. Then NMP was removed under reduced pressure and the residual reaction mixture was purified by flash column chromatography on a silica gel column (petroleum ether/ethyl acetate = 30/1 - 3/1) to give the desired product **3g** (1.7 g, 74% yield).

5.2 Synthetic applications

To a 25 mL dry Schlenk tube were added **3g** (229.3 mg, 1.0 mmol), PhNHNH₂ (295 uL, 3.0 mmol) and HOAc (3 mL), then the mixture was stirred and heated to 80 °C for 16 h. The reaction mixture was then cooled down to room temperature and quenched by 15 mL saturated Na₂CO₃ aqueous solution carefully and extracted by EtOAc (10 mL×3). The organic layer was dried over anhydrous Na₂SO₄ and then concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate = 10/1 - 3/1 as the eluent to give the desired product **4** as colorless oil (233.3 mg, 81% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.54 – 7.45 (m, 3H), 7.44 (s, 1H), 7.41 – 7.37 (m, 2H), 7.35 – 7.32 (m, 2H), 7.31 – 7.28 (m, 2H), 7.27 – 7.21 (m, 1H), 4.10 – 4.00 (m, 3H), 1.39 (d, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 141.5, 139.8, 138.9, 133.8, 129.7, 129.2, 128.8, 128.7, 126.5, 126.2, 119.8, 119.1, 30.1, 22.3, 18.9. HRMS (ESI) calcd. for C₁₉H₁₇N₃Na [M+Na]⁺: 310.1315, found: 310.1306.

To a 25 mL dry Schlenk tube were added **3g** (229.3 mg, 1.0 mmol), NH₂NH₂ H₂O (156 uL, 3.0 mmol) and HOAc (3 mL), then the mixture was stirred and heated to 80 °C for 16 h. The reaction mixture was then cooled down to room temperature and quenched by 15 mL saturated Na₂CO₃ aqueous solution carefully and extracted by EtOAc (10 mL×3). The organic layer was dried over anhydrous Na₂SO₄ and then concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate = 3/1 - 1/1 as the eluent to give the desired product **5** as colorless oil (177.6 mg, 84% yield). ¹H NMR (500 MHz, CDCl₃) δ 12.12 (s, 1H), 7.45 (s, 1H), 7.28 (dd, *J* = 8.1, 6.8 Hz, 2H), 7.24 – 7.19 (m, 1H), 7.19 – 7.14 (m, 2H), 3.87 – 3.83 (m, 3H), 1.50 (d, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 139.8, 128.7, 128.5, 126.5, 120.9, 117.0, 29.6, 23.9, 18.9. HRMS (ESI) calcd. for C₁₃H₁₃N₃Na [M+Na]⁺: 234.1002, found: 234.0987.

To a 25 mL dry Schlenk tube were added **3g** (229.3 mg, 1.0 mmol), NH₂OH HCl (208.5 mg, 3.0 mmol), EtOH (2 mL) and H₂O (1 mL), then the mixture was stirred and heated to 80 °C for 16 h. The reaction mixture was then cooled down to room temperature and quenched by 15 mL saturated Na₂CO₃ aqueous solution carefully and extracted by EtOAc (10 mL×3). The organic layer was dried over anhydrous Na₂SO₄ and then concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate = 15/1 - 5/1 as the eluent to give the desired product **6** as colorless oil (135.8 mg, 64% yield). **¹H NMR** (500 MHz, CDCl₃) δ 8.07 (s, 1H), 7.37 – 7.32 (m, 2H), 7.30 – 7.25 (m, 1H), 7.20 – 7.16 (m, 2H), 4.04 (q, *J* = 7.3 Hz, 1H), 3.87 (s, 2H), 1.65 (d, *J* = 7.4 Hz, 3H). **¹³C NMR** (126 MHz, CDCl₃) δ 160.3, 152.4, 137.8, 129.1, 128.4, 127.2, 117.7, 115.1, 28.4, 23.1, 17.5. **HRMS** (ESI) calcd. for C₁₃H₁₃N₂O [M+H]⁺: 213.1022, found: 213.1030.

To a 25 mL dry Schlenk tube were added **3g** (229.3 mg, 1.0 mmol), benzamidine hydrochloride (313.2 mg, 2.0 mmol), MeOH (3 mL) and NaOMe (135 mg, 2.5 mmol), then the mixture was stirred and heated to 80 °C for 16 h. The reaction mixture was then cooled down to room temperature and quenched by 15 mL H₂O carefully and extracted by EtOAc (10 mL×3). The organic layer was dried over anhydrous Na₂SO₄ and then concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate = 15/1 - 5/1 as the eluent to give the desired product **7** as colorless oil (188.9 mg, 63% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.62 (s, 1H), 8.53 – 8.49 (m, 2H), 7.52 – 7.48

(m, 3H), 7.35 - 7.32 (m, 2H), 7.30 - 7.26 (m, 1H), 7.13 (dt, J = 6.4, 1.3 Hz, 2H), 4.10 - 4.04 (m, 3H), 1.57 (d, J = 7.1 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 163.6, 162.4, 159.5, 137.5, 136.8, 131.1, 129.3, 128.8, 128.6, 128.3, 127.4, 119.8, 35.3, 30.4, 17.9. **HRMS** (ESI) calcd. for C₂₀H₁₈N₃ [M+H]⁺: 300.1495, found: 300.1494.

6. References

- [1]. Romano, C.; Mazet, C. J. Am. Chem. Soc. 2018, 140, 4743-4750.
- [2]. Ambade, A. V.; Yang, S. K.; Weck, M. Angew. Chem. Int. Ed. 2009, 48, 2894–2898.
- [3]. Schammel, A. W.; Chiou, G.; Garg, N. K. Org. Lett. 2012, 14, 4556–4559.
- [4]. Lauer, M. G.; Henderson, W. H.; Awad, A.; Stambuli, J. P. Org. Lett. 2012, 14, 6000–6003.
- [5]. Yoshimitsu, T.; Nakatani, R.; Kobayashi, A.; Tanaka, T. Org. Lett. **2011**, *13*, 908–911.
- [6]. Paquette, L. A.; Zon, G. J. Am. Chem. Soc. 1974, 96, 203-215.
- [7]. Zhu, Q.; Luo, Y.; Guo, Y.; Zhang, Y.; Tao, Y. J. Org. Chem. 2021, 86, 5463-5476.

7. Spectra of products.

¹H NMR (500 MHz, CDCl₃) spectrum for 3a

¹H NMR (500 MHz, CDCl₃) spectrum for 3c

¹H NMR (500 MHz, CDCl₃) spectrum for 3e

¹H NMR (500 MHz, CDCl₃) spectrum for 3f

 $\begin{array}{c} & 2.22 \\ & 2.33 \\ & 3.39 \\ & 3.$

¹H NMR (500 MHz, CDCl₃) spectrum for 3g

¹H NMR (400 MHz, CDCl₃) spectrum for 3j

¹H NMR (500 MHz, CDCl₃) spectrum for 3k

NOESY (500 MHz, CDCl₃) spectrum for 3k

S28

S29

¹H NMR (400 MHz, CDCl₃) spectrum for 3p

¹H NMR (500 MHz, CDCl₃) spectrum for 3q

¹H NMR (500 MHz, CDCl₃) spectrum for 3r

NOESY (500 MHz, CDCl₃) spectrum for 3r

S34

¹H NMR (500 MHz, CDCl₃) spectrum for 3u

S38

