Supplementary Information

Brønsted Base-Catalyzed Assembly of Sulfochromeno[4,3-

b]Pyrrolidines via Tandem [3+2] Cycloaddition-SuFEx Click Reaction

of Ethenesulfonyl Fluorides and *o*-Hydroxyaryl Azomethines

Fang Zhang,[‡]*a* Qichao Zhang,[‡]*a* Pei Xie, *^a* Lin He,* *^a* Zhihua Cai, *^a* Guangfen Du* *^a*

^a State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, China.

Table of Contents

1.	General information	S2
2.	Synthesis of products	S3
3.	Characterization data of products.	S7
4.	Single-crystal X-ray structure analysis	S27
5.	Computational details	S37
6.	References.	
7.	Copies of NMR spectra.	

1. General information.

Unless otherwise indicated, all reactions were conducted under air atmosphere in oven-dried glassware with magnetic stirring bar. All other chemicals were obtained from commercial supplies and used as received without any further purification. β aryl-substituted ethenesulfonyl fluoride¹, o-hydroxy aromatic aldimine², glycine esters adlmines³, fluorinated phenoxo-imine⁴ and arylideneaminoacetonitriles⁵ were prepared according to literature procedures. Column chromatograph was performed with silica gel (200~300 mesh) and analytical TLC on silica gel 60-F₂₅₄. 1 H, 13 C, 19 F NMR spectras were recorded on a Bruker AVANCE III spectrometer (400 MHz, 100 MHz and 376 MHz, respectively), Chemical shifts are reported parts per million (ppm) referenced to Chloroform-d (δ 7.26 ppm), tetramethylsilane (TMS, δ 0.00 ppm) for ¹H, ¹³C and ¹⁹F NMR. High-resolution mass spectra (HRMS) were obtained on a Q Exactive mass spectrometry and a LTQ Orbitrap XL mass spectrometry equipped with an APCI source from Thermo Scientific. X-Ray diffraction study for product 3a, 3af, 3am, 4a and 9a were carried out on Bruker D8 VENTURE photon II diffractometer with Iµs 3.0 microfocus X-ray source using APEX III program. Melting points were recorded on INESA SGW X-4. Infrared absorption spectrum (IR) was recorded on Bruker vertex 70V using potassium bromide (KBr) as tabletting.

2. Synthesis of products.

2.1 Synthesis of sulfochromeno[4,3-b]pyrrolidines (3).

To a 10 mL reaction tube equipped with a magnetic stir bar was taken the *o*-hydroxyaryl azomethines **1** (0.20 mmol), β -arylethenesulfonyl fluorides **2** (0.20 mmol), 4Å MS (200 mg), MeCN (2.0 mL) and Et₃N (0.04 mmol) were added in turn to the reaction tube. The reaction mixture was stirred at ambient temperature for 24 h. When the reaction was finished (monitored by TLC). The crude products were purified by column chromatography (Petroleum ether / ethyl acetate = 7 : 1 (v / v)) on silica gel to give the desired product **3**.

2.2 Gram-Scale Reaction for the sulfochromeno[4,3-b]pyrrolidines (3a, 3w).

To a 50 mL reaction tube equipped with a magnetic stir bar was taken the *o*-hydroxyaryl azomethines 1a/1w (3.0 mmol), β -phenylethenesulfonyl fluoride 2a (3.0 mmol), 4Å MS (3.0 g), MeCN (10.0 mL) and Et₃N (0.6 mmol) were added in turn to the reaction tube. The reaction mixture was stirred at ambient temperature for 48 h. When the reaction was finished (monitored by TLC). The crude products were purified by column chromatography (Petroleum ether / ethyl acetate = 7 : 1 (v / v)) on silica gel to give the desired product 3a/3w.

2.4 Procedure for compound 4a.

To a 10 mL reaction tube equipped with a magnetic stir bar was taken the **3a** (89.0 mg, 0.2 mmol) and MeOH (2.0 mL), and NaBH₄ (75.6 mg, 2.0 mmol) were added in

portions to the reaction tube. The reaction mixture was stirred 4 h until the complete consumption of **3a**. When the reaction was finished (monitored by TLC). The crude products were purified by column chromatography (Petroleum ether / ethyl acetate = 1 : 1 (v / v)) on silica gel to give the desired product **4a** (White solid, 75%, 60.5 mg).

2.3 Procedure for compound 5w.

To a 10 mL reaction tube equipped with a magnetic stir bar was taken the **3w** (96.0 mg, 0.2 mmol) and DDQ (227.0 mg, 1.0 mmol), 2.0 mL of toluene was added to the tube and heated to 100 °C in a heating block. The reaction mixture was stirred 24 h until the complete consumption of **3w**. When the reaction was finished (monitored by TLC). The crude products were purified by column chromatography (Petroleum ether / ethyl acetate = 5 : 1 (v / v)) on silica gel to give the desired product **5w** (Red solid, 70%, 66.6 mg).

2.5 Procedure for compound 9a.

To a 10 mL reaction tube equipped with a magnetic stir bar was taken the *o*-hydroxyaryl azomethine **8a** (0.20 mmol), β -aryl ethenesulfonyl fluoride **2h** (0.20 mmol), 4Å MS (200 mg), MeCN (2.0 mL) and Et₃N (0.04 mmol) were added in turn to the reaction tube. The reaction mixture was stirred at ambient temperature for 24 h. When the reaction was finished (monitored by TLC). The crude products were purified by column chromatography (Petroleum ether / dichloromethane = 1 : 2 (v / v)) on silica gel to give the desired product **9a**.

2.6 Procedure for "one pot" experiment.

To a solution of salicylaldehyde **10a** (0.4 mmol, 2.0 equiv.) in DCM (2 mL), was added the diethyl aminomalonate **11a** (0.4 mmol, 2.0 equiv.) and MgSO₄ (2.0 mmol, 10.0 equiv.). The β -phenylethenesulfonyl fluoride **2a** (0.2 mmol, 1.0 equiv.), 4Å MS (200 mg) and Et₃N (0.04 mmol) were added after the resulting mixture was stirred 48 h at RT. After the full conversion of the β -phenylethenesulfonyl fluoride **2a** the reaction mixture was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (Petroleum ether / ethyl acetate = 10 : 1 to 5 : 1 (v / v)) to furnish the corresponding products.

2.7 Procedure for compound 12a.

To a 10 mL reaction tube equipped with a magnetic stir bar was taken the salicylaldehyde **10a** (0.20 mmol), β -phenylethenesulfonyl fluoride **2a** (0.20 mmol), 4Å MS (200 mg), MeCN (2.0 mL) and Et₃N (0.04 mmol) were added in turn to the reaction tube. The reaction mixture was stirred at ambient temperature for 24 h. When the reaction was finished (monitored by TLC). The crude products were purified by column chromatography (Petroleum ether / ethyl acetate = 10 : 1 (v / v)) on silica gel to give the desired product **12a**.

2.8 Procedure for compound 13a.

To a 10 mL reaction tube equipped with a magnetic stir bar was taken the salicylaldehyde **10a** (0.20 mmol), 4Å MS (200 mg), MeCN (2.0 mL) and Et₃N (0.04 mmol) were added in turn to the reaction tube, then ethenesulfonyl fluoride **2al** (0.20 mmol, 18 μ L) is added dropwise. The reaction mixture was stirred at ambient

temperature for 24 h. When the reaction was finished (monitored by TLC). The crude products were purified by column chromatography (Petroleum ether / ethyl acetate = 30 : 1 (v / v)) on silica gel to give the desired product **13a**.

2.9 Procedure for intermediates to compound 3h.

To a 10 mL reaction tube equipped with a magnetic stir bar was taken the compound **3h-I** (0.10 mmol), 4Å MS (100 mg), MeCN (1.0 mL) and Et₃N (0.02 mmol) were added in turn to the reaction tube. The reaction mixture was stirred at ambient temperature for 24 h. When the reaction was finished (monitored by TLC). The crude products were purified by column chromatography (Petroleum ether / ethyl acetate = 7 : 1 (v / v)) on silica gel to give the desired product **3h**.

2.10 Procedure for ¹⁹F NMR experiments.

To a 10 mL reaction tube equipped with a magnetic stir bar was taken MeCN (2.0 mL) at 0 °C, *o*-hydroxyaryl azomethine **1a** (0.20 mmol), β -arylethenesulfonyl fluoride **2h** (0.20 mmol), 4Å MS (200 mg) and Et₃N (0.04 mmol) were added in turn to the reaction tube. The reaction mixture was stirred at 0 °C for 5 min, aspirate 0.5 mL of the reaction solution for NMR analysis. When the reaction was stirring for 30 min, aspirate 0.5 mL of the reaction solution for NMR analysis. The reaction mixture was stirred at ambient temperature. When the reaction was finished (monitored by TLC, about 24 h), aspirate 0.5 mL of the reaction solution for NMR analysis.

3. Characterization data of products. diethyl 3-phenyl-1, 3, 3a, 9b-tetrahydro-2H-benzo [5, 6] [1,2] oxathiino [4, 3-*b*] pyrrole-2,2-dicarboxylate 4,4-dioxide (3a)

White solid, 84.6 mg, 95% yield, m.p. 182.1 – 182.4 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.61 – 7.54 (m, 1H), 7.45 – 7.37 (m, 1H), 7.36 – 7.27 (m, 6H), 7.14 (dd, J = 8.4, 0.8 Hz, 1H), 5.00 (d, J = 12.4 Hz, 1H), 4.59 (d, J = 11.6 Hz, 1H), 4.49 – 4.39 (m, 1H), 4.35 – 4.24 (m, 1H), 3.87 – 3.77 (m, 2H), 3.65 (s, 1H), 3.39 – 3.29 (m, 1H), 1.32 (t, J = 7.2 Hz, 3H), 0.73 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 169.5, 168.8, 150.7, 133.9, 130.2, 128.7, 128.6, 128.4, 125.9, 125.8, 123.7, 118.2, 64.7, 62.9, 62.9, 60.7, 51.5, 14.1, 13.3.

IR (KBr, thin film): 3630, 2925, 2360, 2345, 1729, 1700, 1653, 1373, 1163, 764 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₂H₂₄NO₇S [M+H]⁺: 466.1268, found 466.1272.

diethyl 3-(4-fluorophenyl)-1,3,3a,9b-tetrahydro-2H-benzo [5,6] [1,2] oxathiino [4,3-*b*] pyrrole-2,2-dicarboxylate 4,4-dioxide (3b)

White solid, 86.2 mg, 93% yield, m.p. 201.1 – 201.4 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.56 (d, *J* = 7.2 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.36 – 7.31 (m, 2H), 7.30 – 7.25 (m, 1H), 7.13 (d, *J* = 8.2 Hz, 1H), 7.02 (t, *J* = 8.6 Hz, 2H), 4.97 (d, *J* = 12.4 Hz, 1H), 4.57 (d, *J* = 11.6 Hz, 1H), 4.49 – 4.37 (m, 1H), 4.34 – 4.22 (m, 1H), 3.91 – 3.81 (m, 1H), 3.76 (t, *J* = 12.0 Hz, 1H), 3.60 – 3.00 (m, 2H), 1.32 (t, *J* = 7.2 Hz, 3H), 0.80 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 169.5, 168.7, 162.8 (d, *J* = 246.0 Hz), 150.7, 130.3, 130.2, 129.6 (d, *J* = 3.0 Hz), 125.9, 125.81, 123.6, 118.2, 115.6 (d, *J* = 21.0 Hz), 64.6, 62.9, 60.6, 50.7, 14.1, 13.4.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -113.33.

IR (KBr,thin film): 3649, 3546, 2361, 2342, 1734, 1700, 1653, 1457, 1395, 668 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₂H₂₃FNO₇S [M+H]⁺: 464.1174, found 464.1180.

diethyl 3-(4-chlorophenyl)-1,3,3a,9b-tetrahydro-2H-benzo [5,6] [1,2] oxathiino [4,3-*b*] pyrrole-2,2-dicarboxylate 4,4-dioxide (3c)

White solid, 92.1 mg, 96% yield, m.p. 220.1 – 220.4 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.55 (d, *J* = 7.2 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.34 – 7.25 (m, 5H), 7.13 (d, *J* = 8.4 Hz, 1H), 4.95 (d, *J* = 12.4 Hz, 1H), 4.57 (d, *J* = 11.6 Hz, 1H), 4.49 – 4.37 (m, 1H), 4.34 – 4.22 (m, 1H), 3.90 – 3.80 (m, 1H), 3.76 (t, *J* = 12.0 Hz, 1H), 3.59 – 3.26 (m, 2H), 1.32 (t, *J* = 7.2 Hz, 3H), 0.80 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 169.4, 168.6, 150.6, 134.5, 132.4, 130.3, 129.8, 128.8, 125.9, 125.8, 123.5, 118.2, 64.4, 63.0, 60.7, 50.8, 14.0, 13.4.

IR (KBr, thin film): 3732, 2359, 2342, 1700, 1683, 1653, 1558, 1521, 677, 668 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₂H₂₃ClNO₇S [M+H]⁺: 480.0878, found 480.0882.

diethyl 3-(4-bromophenyl)-1,3,3a,9b-tetrahydro-2H-benzo [5,6] [1,2] oxathiino [4,3-b] pyrrole-2,2-dicarboxylate 4,4-dioxide (3d)

White solid, 88.1 mg, 84% yield, m.p. 177.6 – 178.2 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.55 (d, J = 7.2 Hz, 1H), 7.46 (d, J = 8.0 Hz, 2H), 7.40 (t, J = 7.6 Hz, 1H), 7.31 – 7.20 (m, 3H), 7.13 (d, J = 8.0 Hz, 1H), 4.93 (d, J = 12.0 Hz, 1H), 4.57 (d, J = 11.2 Hz, 1H), 4.48 – 4.36 (m, 1H), 4.34 – 4.22 (m, 1H), 3.90 – 3.80 (m, 1H), 3.76 (t, J = 12.0 Hz, 1H), 3.51 – 2.89 (m, 2H), 1.32 (t, J = 7.2 Hz, 3H), 0.80 (t, J = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 169.4, 168.6, 133.0, 131.8, 130.3, 130.1, 125.9, 125.8, 123.5, 122.6, 118.2, 64.3, 63.0, 60.7, 50.8, 14.0.

IR (KBr,thin film): 2984, 2908, 2359, 1729, 1418, 1386, 1303, 1211, 1162, 862 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₂H₂₄BrNO₇S [M+H]⁺: 524.0373, found 524.0378.

diethyl 3-(4-cyanophenyl)-1,3,3a,9b-tetrahydro-2H-benzo [5,6] [1,2] oxathiino [4,3-*b*] pyrrole-2,2-dicarboxylate 4,4-dioxide (3e)

White solid, 91.2 mg, 97% yield, m.p. 260.1 – 260.5 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 7.6 Hz, 1H), 7.50 (d, *J* = 8.4 Hz, 2H), 7.45 – 7.38 (m, 1H), 7.33 – 7.27 (m, 1H), 7.14 (d, *J* = 8.0 Hz, 1H), 5.01 (d, *J* = 12.4 Hz, 1H), 4.59 (d, *J* = 11.6 Hz, 1H), 4.50 – 4.39 (m, 1H), 4.35 – 4.22 (m, 1H), 3.91 – 3.74 (m, 2H), 3.65 (s, 1H), 3.46 – 3.33 (m, 1H), 1.37 – 1.29 (m, 3H), 0.79 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 169.2, 168.3, 150.6, 139.4, 132.3, 130.4, 129.4, 126.0, 125.8, 123.2, 118.2, 112.4, 64.1, 63.2, 60.8, 51.1, 14.0, 13.4.

IR (KBr, thin film): 3676, 3630, 2368, 2344, 1734, 1700, 1653, 1559, 1419, 760 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₃H₂₃N₂O₇S [M+H]⁺: 471.1221, found 471.1224.

diethyl 3-(4-(trifluoromethyl)phenyl)-1,3,3a,9b-tetrahydro-2H-benzo [5,6] [1,2] oxathiino [4,3-*b*] pyrrole-2,2-dicarboxylate 4,4-dioxide (3f)

White solid, 94.4 mg, 92% yield, m.p. 186.2 – 186.8 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.64 – 7.54 (m, 3H), 7.50 (d, J = 8.4 Hz, 2H), 7.41 (t, J = 7.6 Hz, 1H), 7.32 – 7.25 (m, 1H), 7.15 (d, J = 8.0 Hz, 1H), 5.04 (d, J = 12.0 Hz, 1H), 4.60 (d, J = 11.6 Hz, 1H), 4.50 – 4.39 (m, 1H), 4.35 – 4.23 (m, 1H), 3.88 – 3.76 (m, 2H), 3.74 – 3.45 (m, 1H), 3.44 – 3.32 (m, 1H), 1.32 (t, J = 7.2 Hz, 3H), 0.72 (t, J = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 169.3, 168.5, 150.7, 138.1, 130.9 (q, *J* = 33.0 Hz), 130.4, 129.00, 126.0, 125.9, 125.6 (q, *J* = 4.0 Hz), 124.0 (q, *J* = 271.0 Hz), 123.4, 118.3, 64.3, 63.1, 63.1, 60.8, 51.1, 14.1, 13.2.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -62.82.

IR (KBr,thin film): 3823, 3662, 2922, 2391, 1730, 1692, 1125, 1052, 1033, 781 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₃H₂₃F₃NO₇S [M+H]⁺: 514.1142, found 514.1148.

diethyl 3-(p-tolyl)-1,3,3a,9b-tetrahydro-2H-benzo [5,6] [1,2] oxathiino [4,3-*b*] pyrrole-2,2-dicarboxylate 4,4-dioxide (3g)

White solid, 87.3 mg, 95% yield, m.p. 208.6 – 209.1 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.56 (d, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.30 – 7.24 (m, 1H), 7.21 (d, *J* = 7.6 Hz, 2H), 7.12 (d, *J* = 7.6 Hz, 3H), 4.95 (d, *J* = 12.0 Hz, 1H), 4.57 (d, *J* = 11.6 Hz, 1H), 4.49 – 4.37 (m, 1H), 4.33 – 4.21 (m, 1H), 3.88 – 3.74 (m, 2H), 3.65 – 3.15 (m, 2H), 2.31 (s, 3H), 1.31 (t, *J* = 7.2 Hz, 3H), 0.74 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 169.5, 168.8, 150.7, 138.2, 130.7, 130.1, 129.3, 128.2, 125.8, 125.7, 123.7, 118.1, 64.7, 62.8, 60.6, 51.1, 21.1, 14.0, 13.2.

IR (KBr,thin film): 3641, 2391, 2349, 1728, 1532, 1386, 1370, 1213, 1162, 772 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₃H₂₆NO₇S [M+H]⁺: 460.1425, found 460.1431.

diethyl -3-(4- methoxyphenyl)-1, 3, 3a,9b-tetrahydro-2H-benzo[5,6][1,2]oxathiino [4,3-*b*]pyrrole-2,2-dicarboxylate 4,4-dioxide (3h)

White solid, 92.2 mg, 97% yield, m.p. 207.2 – 207.8 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.53 – 7.44 (m, 1H), 7.36 – 7.27 (m, 1H), 7.22 – 7.14 (m, 3H), 7.10 – 7.02 (m, 1H), 6.81 – 6.72 (m, 2H), 4.87 (d, *J* = 12.4 Hz, 1H), 4.49 (d, *J* = 11.6 Hz, 1H), 4.40 – 4.30 (m, 1H), 4.25 – 4.15 (m, 1H), 3.83 – 3.74 (m, 1H), 3.73 – 3.65 (m, 4H), 3.57 – 3.03 (m, 2H), 1.24 (t, *J* = 7.2 Hz, 3H), 0.72 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 169.6, 168.9, 159.7, 150.7, 130.2, 129.5, 125.8, 125.8, 125.7, 123.7, 118.2, 114.1, 64.7, 62.9, 62.8, 60.6, 55.4, 50.9, 14.1, 13.4.

IR (KBr, thin film): 3685, 3642, 2350, 1730, 1694, 1454, 1213, 1164, 1045, 832 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₃H₂₆NO₈S [M+H]⁺: 476.1374, found 476.1381.

diethyl3-([1,1'-biphenyl]-4-yl)-1,3,3a,9b-tetrahydro-2H-benzo[5,6][1,2]oxathiino [4,3-*b*] pyrrole-2,2-dicarboxylate 4,4-dioxide (3i)

White solid, 97.0 mg, 93% yield, m.p. 201.3 – 201.7 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.59 – 7.52 (m, 5H), 7.45 – 7.32 (m, 6H), 7.30 – 7.23 (m, 1H), 7.14 (d, *J* = 8.4 Hz, 1H), 5.05 (d, *J* = 12.4 Hz, 1H), 4.61 (d, *J* = 11.6 Hz, 1H), 4.50 – 4.39 (m, 1H), 4.35 – 4.24 (m, 1H), 3.88 – 3.76 (m, 2H), 3.68 – 3.31 (m, 2H), 1.32 (t, *J* = 7.2 Hz, 3H), 0.72 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 169.5, 168.8, 150.7, 141.4, 140.5, 132.9, 132.9, 130.2, 128.9, 128.8, 127.6, 127.3, 127.1, 125.8, 125.8, 123.6, 118.2, 76.8, 64.6, 62.9, 62.9, 60.8, 51.2, 14.1, 13.3.

IR (KBr,thin film): 3704, 3452, 2360, 2342, 1729, 1487, 1454, 1386, 1163, 776 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₈H₂₈NO₇S [M+H]⁺: 522.1581, found 522.1585.

diethyl 3-(4-((fluorosulfonyl)oxy)phenyl)-1,3,3a,9b-tetrahydro-2H-benzo [5,6] [1,2] oxathiino [4,3-*b*] pyrrole-2,2-dicarboxylate 4,4-dioxide (3j)

White solid, 94.5 mg, 87% yield, m.p. 230.5 – 231.1 °C.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.56 (d, J = 7.6 Hz, 1H), 7.50 (d, J = 8.4 Hz, 2H), 7.42 (t, J = 7.6 Hz, 1H), 7.36 – 7.27 (m, 3H), 7.15 (d, J = 8.0 Hz, 1H), 5.02 (d, J = 12.4 Hz, 1H), 4.59 (d, J = 11.2 Hz, 1H), 4.49 – 4.39 (m, 1H), 4.34 – 4.24 (m, 1H), 3.91 – 3.82 (m, 1H), 3.82 – 3.74 (m, 1H), 3.68 – 3.20 (m, 2H), 1.32 (t, J = 7.2 Hz, 3H), 0.79 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 169.3, 168.5, 150.6, 149.9, 135.0, 130.6, 130.4, 126.0, 125.8, 123.3, 121.3, 118.2, 77.6, 64.2, 63.2, 63.1, 60.8, 50.7, 14.0, 13.3.
¹⁹F NMR (376 MHz, Chloroform-*d*) δ 43.25.

IR (KBr,thin film): 3672, 3504, 2363, 2334, 1772, 1733, 1653, 1558, 1213, 919 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₂H₂₃FNO₁₀S₂ [M+H]⁺: 544.0742, found 544.0749.

diethyl 3-(3-fluorophenyl)-1,3,3a,9b-tetrahydro-2H-benzo [5,6] [1,2] oxathiino [4,3-*b*] pyrrole-2,2-dicarboxylate 4,4-dioxide (3k)

White solid, 83.4 mg, 90% yield, m.p. 165.2 – 165.9 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.56 (d, *J* = 7.6 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.34 – 7.26 (m, 2H), 7.16 – 7.07 (m, 3H), 7.05 – 6.96 (m, 1H), 4.97 (d, *J* = 12.0 Hz, 1H), 4.57 (d, *J* = 11.6 Hz, 1H), 4.49 – 4.39 (m, 1H), 4.34 – 4.24 (m, 1H), 3.91 – 3.81 (m, 1H), 3.76 (t, *J* = 12.0 Hz, 1H), 3.65 – 2.93 (m, 2H), 1.32 (t, *J* = 7.2 Hz, 3H), 0.79 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 169.3, 168.6, 162.8 (d, J = 245.0 Hz), 150.7, 136.4 (d, J = 7.0 Hz), 130.3, 130.3 (d, J = 8.0 Hz), 125.9, 125.8, 123.9 (d, J = 3.0 Hz), 123.5, 118.2, 115.9 (d, J = 23.0 Hz), 115.5 (d, J = 21.0 Hz), 64.6, 63.0, 63.0, 60.7, 51.0, 51.0, 14.1, 13.4.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -112.26.

IR (KBr,thin film): 3657, 2992, 2380, 2320, 1729, 1590, 1551, 1455, 1157, 896 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₂H₂₃FNO₇S [M+H]⁺: 464.1174, found 464.1178.

diethyl 3-(3-chlorophenyl)-1,3,3a,9b-tetrahydro-2H-benzo [5,6] [1,2] oxathiino [4,3-*b*] pyrrole-2,2-dicarboxylate 4,4-dioxide (3l)

White solid, 86.3 mg, 90% yield, m.p. 177.3 – 178.1 °C.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.56 (d, J = 7.6 Hz, 1H), 7.43 – 7.35 (m, 2H), 7.31 – 7.24 (m, 3H), 7.21 (d, J = 7.2 Hz, 1H), 7.14 (d, J = 8.4 Hz, 1H), 4.95 (d, J = 12.0 Hz, 1H), 4.57 (d, J = 11.6 Hz, 1H), 4.49 – 4.39 (m, 1H), 4.34 – 4.24 (m, 1H), 3.91 – 3.81 (m, 1H), 3.76 (t, J = 12.0 Hz, 1H), 3.65 – 2.99 (m, 2H), 1.33 (t, J = 7.2 Hz,

3H), 0.80 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 169.3, 168.5, 150.6, 136.0, 134.6, 130.3, 130.0, 128.9, 128.7, 126.4, 125.9, 125.8, 123.5, 118.2, 64.5, 63.1, 63.0, 60.7, 51.0, 14.1, 13.3. **IR** (KBr, thin film): 3637, 2391, 1729, 1405, 1300, 1200, 1162, 1033, 832, 765 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₂H₂₃ClNO₇S [M+H]⁺: 480.0878, found 480.0883.

diethyl 3-(m-tolyl)-1,3,3a,9b-tetrahydro-2H-benzo [5,6] [1,2] oxathiino [4,3-*b*] pyrrole-2,2-dicarboxylate 4,4-dioxide (3m)

White solid, 88.2 mg, 96% yield, m.p. 150.3 – 151.0 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.57 (d, *J* = 7.2 Hz, 1H), 7.39 (t, *J* = 8.0 Hz, 1H), 7.31 – 7.24 (m, 1H), 7.20 (d, *J* = 7.6 Hz, 1H), 7.16 – 7.04 (m, 4H), 4.96 (d, *J* = 12.4 Hz, 1H), 4.57 (d, *J* = 11.6 Hz, 1H), 4.49 – 4.37 (m, 1H), 4.34 – 4.23 (m, 1H), 3.86 – 3.74 (m, 2H), 3.41 – 3.32 (m, 1H), 2.32 (s, 3H), 1.32 (t, *J* = 7.2 Hz, 3H), 0.73 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 169.5, 168.7, 150.7, 138.3, 133.9, 130.2, 129.3, 129.2, 128.6, 125.8, 125.8, 125.2, 123.7, 118.1, 64.9, 62.9, 62.8, 60.7, 51.4, 21.4, 14.1, 13.3.

IR (KBr, thin film): 3647, 3200, 2952, 2385, 2316, 1728, 1668, 1162, 902, 772 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₃H₂₆NO₇S [M+H]⁺: 460.1425, found 460.1433.

diethyl 3-(3-methoxyphenyl)-1, 3, 3a,9b-tetrahydro-2H-benzo[5, 6][1, 2]oxathiino [4,3-*b*]pyrrole-2,2-dicarboxylate 4,4-dioxide(3n)

White solid, 93.1 mg, 98% yield, m.p. 195.2 – 195.4 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.56 (d, J = 7.6 Hz, 1H), 7.43 – 7.34(m, 1H), 7.31 – 7.18 (m, 2H), 7.13 (d, J = 8.4 Hz, 1H), 6.93 – 6.79 (m, 3H), 4.97 (d, J = 12.0 Hz, 1H), 4.57 (d, J = 11.6 Hz, 1H), 4.48 – 4.37 (m, 1H), 4.34 – 4.21 (m, 1H), 3.89 – 3.73 (m, 5H), 3.66 (s, 1H), 3.46 – 3.35 (m, 1H), 1.36 – 1.29 (m, 3H), 0.77 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 169.4, 168.7, 159.8, 150.7, 135.4, 135.4, 130.2, 129.7, 125.8, 123.6, 120.3, 118.1, 114.2, 64.8, 62.9, 60.7, 55.4, 51.4, 14.1, 13.3. **IR** (KBr, thin film): 3686, 3642, 2355, 1728, 1694, 1454, 1214, 1164, 1045, 762 cm⁻¹. **HRMS** (ESI) m/z calcd for C_{23H26}NO₈S [M+H]⁺: 476.1374, found 476.1381.

diethyl 3-(2-chlorophenyl)-1,3,3a,9b-tetrahydro-2H-benzo [5,6] [1,2] oxathiino [4,3-*b*] pyrrole-2,2-dicarboxylate 4,4-dioxide (30)

White solid, 94.1 mg, 98% yield, m.p. 219.5 – 219.9 °C. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.57 (d, *J* = 7.6 Hz, 1H), 7.47 – 7.36 (m, 2H), 7.30 – 7.19 (m, 3H), 7.16 – 7.07 (m, 2H), 5.67 (d, *J* = 11.6 Hz, 1H), 4.68 (d, *J* = 11.6 Hz, 1H), 4.48 – 4.36 (m, 1H), 4.36 – 4.25 (m, 1H), 3.93 – 3.83 (m, 1H), 3.80 – 3.51 (m, 2H), 3.45 – 3.30 (m, 2H), 1.32 (t, *J* = 7.2 Hz, 3H), 0.81 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 168.6, 168.1, 150.8, 136.0, 133.5, 130.3, 130.3, 129.6, 127.6, 127.0, 125.9, 125.8, 123.6, 118.2, 66.9, 63.0, 62.7, 60.4, 47.1, 14.1, 13.4. **IR** (KBr,thin film): 3676, 3195, 2360, 2341, 1700, 1559, 1539, 1506, 1037, 768 cm⁻¹.

HRMS (ESI) m/z calcd for $C_{22}H_{23}CINO_7S [M+H]^+$: 480.0878, found 480.0884.

diethyl 3-(o-tolyl)-1,3,3a,9b-tetrahydro-2H-benzo [5,6] [1,2] oxathiino [4,3-*b*] pyrrole-2,2-dicarboxylate 4,4-dioxide (3p)

White solid, 90.0 mg, 98% yield, m.p. 200.2 – 200.6 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.57 (d, *J* = 7.2 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.28 (t, *J* = 7.6 Hz, 1H), 7.23 – 7.06 (m, 4H), 6.96 (d, *J* = 7.6 Hz, 1H), 5.37 (d, *J* = 11.6 Hz, 1H), 4.56 (d, *J* = 11.6 Hz, 1H), 4.48 – 4.37 (m, 1H), 4.31 – 4.21 (m, 1H), 3.88 – 3.77 (m, 1H), 3.75 – 3.41 (m, 2H), 3.38 – 3.26 (m, 1H), 2.54 (s, 3H), 1.30 (t, *J* = 7.2 Hz, 3H), 0.74 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 169.4, 168.2, 150.8, 138.3, 133.8, 131.0, 130.2, 128.2, 126.3, 125.9, 125.8, 125.7, 123.9, 118.2, 68.0, 63.0, 62.7, 60.4, 46.6, 20.3, 14.1, 13.3.

IR (KBr,thin film): 3620, 3400, 2945, 2394, 1725, 1638, 1546, 1508, 1163, 805 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₃H₂₆NO₇S [M+H]⁺: 460.1425, found 460.1429.

diethyl 3-(4-bromo-3-methylphenyl)-1,3,3a,9b-tetrahydro-2H-benzo [5,6] [1,2] oxathiino [4,3-*b*] pyrrole-2,2-dicarboxylate 4,4-dioxide (3q)

White solid, 96.9 mg, 90% yield, m.p. 207.1 – 207.8 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.55 (d, J = 7.2 Hz, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.28 (t, J = 7.2 Hz, 1H), 7.22 (s, 1H), 7.13 (d, J = 8.4 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 4.91 (d, J = 12.4 Hz, 1H), 4.56 (d, J = 11.6 Hz, 1H), 4.49 – 4.37 (m, 1H), 4.35 – 4.23 (m, 1H), 3.90 – 3.80 (m, 1H), 3.80 – 3.52 (m, 2H), 3.49 – 3.40 (m, 1H), 2.37 (s, 3H), 1.32 (t, J = 7.2 Hz, 3H), 0.78 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 169.4, 168.6, 150.7, 138.3, 133.2, 132.6, 131.1, 130.3, 127.1, 125.9, 125.8, 125.1, 123.6, 118.2, 64.6, 63.0, 60.7, 50.9, 23.0, 14.1, 13.3. **IR** (KBr,thin film): 3683, 3557, 2399, 1726, 1530, 1513, 1386, 1162, 1033, 950 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₃H₂₅BrNO₇S [M+H]⁺: 538.0530, found 538.0534.

diethyl 3-(2,6-difluoropyridin-4-yl)-1,3,3a,9b-tetrahydro-2H-benzo [5,6] [1,2] oxathiino [4,3-*b*] pyrrole-2,2-dicarboxylate 4,4-dioxide (3r)

White solid, 85.8 mg, 89% yield, 198.2 – 198.4 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.54 (d, J = 7.6 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.15 (d, J = 8.4 Hz, 1H), 6.88 (s, 2H), 4.95 (d, J = 12.0 Hz, 1H), 4.58 (d, J = 11.2 Hz, 1H), 4.50 – 4.41 (m, 1H), 4.37 – 4.27 (m, 1H), 4.01 – 3.91 (m, 1H), 3.79 – 3.59 (m, 3H), 1.34 (t, J = 7.2 Hz, 3H), 0.91 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 169.0, 168.0, 162.0 (dd, J = 246.0, 16.0 Hz), 153.5 (t, J = 8.0 Hz), 150.5, 130.5, 126.2, 125.8, 123.0, 118.3, 106.3 (dd, J = 27.0, 14.0 Hz), 63.7, 63.5, 63.4, 60.9, 50.25, 50.22, 50.2, 14.0, 13.5. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -67.05.

IR (KBr,thin film): 3632, 2951, 2350, 1729, 1626, 1432, 1372, 1164, 1032, 761 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₁H₂₁F₂N₂O₇S [M+H]⁺: 483.1032, found 483.1035.

diethyl 3-(naphthalen-2-yl)-1,3,3a,9b-tetrahydro-2H-benzo [5,6] [1,2] oxathiino [4,3-*b*] pyrrole-2,2-dicarboxylate 4,4-dioxide (3s)

White solid, 98.1 mg, 99% yield, m.p. 221.5 – 221.7 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.86 – 7.74 (m, 4H), 7.59 (d, *J* = 7.6 Hz, 1H), 7.51 – 7.36 (m, 4H), 7.29 (t, *J* = 7.6 Hz, 1H), 7.15 (d, *J* = 8.4 Hz, 1H), 5.17 (d, *J* = 12.0 Hz, 1H), 4.65 (d, *J* = 11.6 Hz, 1H), 4.52 – 4.39 (m, 1H), 4.36 – 4.24 (m, 1H), 3.94 (t, *J* = 12.0 Hz, 1H), 3.84 – 3.46 (m, 2H), 3.21 – 3.09 (m, 1H), 1.33 (t, *J* = 7.2 Hz, 3H), 0.46 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 169.6, 168.8, 150.8, 133.2, 133.2, 131.3, 130.2, 128.4, 128.1, 127.8, 127.6, 126.6, 126.5, 125.9, 125.8, 123.7, 118.2, 64.9, 62.8, 60.8, 51.6, 14.1, 13.1.

IR (KBr, thin film): 3451, 2970, 2363, 2344, 1719, 1685, 1654, 1559, 1165, 768 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₆H₂₆NO₇S [M+H]⁺: 496.1424, found 496.1431.

diethyl 3-(naphthalen-1-yl)-1,3,3a,9b-tetrahydro-2H-benzo [5,6] [1,2] oxathiino [4,3-*b*] pyrrole-2,2-dicarboxylate 4,4-dioxide (3t)

White solid, 84.2 mg, 84% yield, m.p. 253.1 – 253.6 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.53 (d, J = 8.8 Hz, 1H), 7.82 (dd, J = 21.2, 8.0 Hz, 2H), 7.66 – 7.57 (m, 2H), 7.52 (t, J = 7.2 Hz, 1H), 7.40 – 7.35 (m, 2H), 7.32 – 7.24 (m, 2H), 7.15 (d, J = 8.4 Hz, 1H), 5.97 (d, J = 11.6 Hz, 1H), 4.72 (d, J = 11.6 Hz, 1H), 4.49 – 4.38 (m, 1H), 4.35 – 4.23 (m, 1H), 3.96 (t, J = 11.6 Hz, 1H), 3.83 – 3.23 (m, 2H), 2.98 – 2.87 (m, 1H), 1.28 (t, J = 7.2 Hz, 3H), 0.24 (t, J = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 169.4, 168.2, 150.9, 134.0, 132.9, 131.6, 130.3, 129.2, 128.7, 127.0, 126.2, 126.0, 125.8, 124.9, 124.0, 124.0, 123.6, 118.3, 78.2, 67.2, 63.1, 62.4, 60.6, 45.9, 14.1, 12.7.

IR (KBr,thin film): 3851, 3839, 3283, 2360, 2337, 1748, 1717, 1374, 1162, 764 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₆H₂₆NO₇S [M+H]⁺: 496.1424, found 496.1430.

diethyl 3-(thiophen-2-yl)-1,3,3a,9b-tetrahydro-2H-benzo [5,6] [1,2] oxathiino [4,3-*b*] pyrrole-2,2-dicarboxylate 4,4-dioxide (3u)

White solid, 48.7 mg, 54% yield, m.p. 176.3 – 176.8 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.55 (d, *J* = 7.6 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.32 – 7.24 (m, 2H), 7.15 (d, *J* = 8.0 Hz, 1H), 7.04 (d, *J* = 3.6 Hz, 1H), 6.99 – 6.93 (m, 1H), 5.17 (d, *J* = 12.0 Hz, 1H), 4.59 (d, *J* = 11.6 Hz, 1H), 4.50 – 4.39 (m, 1H), 4.38 – 4.28 (m, 1H), 3.98 – 3.86 (m, 1H), 3.76 (t, *J* = 12.0 Hz, 1H), 3.64 – 3.54 (m, 1H), 3.38 (s, 1H), 1.35 (t, *J* = 7.2 Hz, 3H), 0.89 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 169.4, 168.7, 150.6, 136.0, 130.2, 127.1, 127.0, 126.0, 125.9, 125.7, 123.8, 118.2, 66.0, 63.2, 60.6, 47.3, 14.1, 13.5.

IR (KBr, thin film): 3637, 3585, 2360, 2342, 1702, 1457, 1223, 1185, 1092, 784 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₀H₂₂NO₇S₂ [M+H]⁺: 452.0832, found 452.0837.

diethyl 3-(thiophen-3-yl)-1,3,3a,9b-tetrahydro-2H-benzo[5,6][1,2]oxathiino[4,3b]pyrrole-2,2-dicarboxylate 4,4-dioxide(3v)

White solid, 85.6 mg, 95% yield, m.p. 168.2 – 168.8 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.54 (d, J = 7.6 Hz, 1H), 7.43 – 7.36 (m, 1H), 7.31 – 7.27 (m, 3H), 7.14 (d, J = 8.0 Hz, 1H), 7.09 – 7.03 (m, 1H), 5.02 (d, J = 12.4 Hz, 1H), 4.57 (d, J = 11.6 Hz, 1H), 4.45 – 4.38 (m, 1H), 4.36 – 4.25 (m, 1H), 3.95 – 3.85 (m, 1H), 3.80 – 3.71 (m, 1H), 3.62 (s, 1H), 3.54 – 3.45 (m, 1H), 1.34 (t, J = 7.2 Hz, 3H), 0.89 (t, J = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 169.6, 169.0, 150.6, 134.3, 130.1, 127.6, 125.8, 124.0, 123.8, 118.2, 65.1, 62.9, 60.6, 47.2, 14.1, 13.5.

IR (KBr, thin film): 3676, 3363, 2371, 2345, 1830, 1700, 1684, 1653, 1160, 847 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₀H₂₂NO₇S₂ [M+H]⁺: 452.0832, found 452.0835.

diethyl 8-chloro-3-phenyl-1,3,3a,9b-tetrahydro-2H-benzo[5,6][1,2]oxathiino[4,3b]pyrrole-2,2-dicarboxylate 4,4-dioxide(3w)

3w, 94%

White solid, 90.1 mg, 94% yield, m.p. 219.5 – 219.9 °C.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, *J*=1.2, 1H), 7.38 – 7.29 (m, 6H), 7.08 (d, *J* = 8.8 Hz, 1H), 4.97 (d, *J* = 12.4 Hz, 1H), 4.60 – 4.51 (m, 1H), 4.49 – 4.38 (m, 1H), 4.32 – 4.22 (m, 1H), 3.87 – 3.77 (m, 2H), 3.63 (d, *J* = 12.4 Hz, 1H), 3.39 – 3.29 (m, 1H), 1.32 (t, *J* = 7.2 Hz, 3H), 0.73 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 169.3, 168.6, 149.1, 133.6, 131.3, 130.2, 128.8, 128.4, 126.0, 125.2, 119.6, 64.3, 63.0, 62.9, 60.4, 51.4, 14.1, 13.3.

IR (KBr, thin film): 3685, 3664, 2359, 1726, 1712, 1514, 1371, 1211, 1165, 802 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₂H₂₃ClNO₇S [M+H]⁺: 480.0878, found 480.0885.

diethyl 8-bromo-3-phenyl-1,3,3a,9b-tetrahydro-2H-benzo [5,6] [1,2] oxathiino [4,3-*b*] pyrrole-2,2-dicarboxylate 4,4-dioxide (3x)

White solid, 99.4 mg, 95% yield, m.p. 268.1 – 268.8 °C. **¹H NMR** (400 MHz, Chloroform-*d*) δ 7.68 – 7.60 (m, 1H), 7.43 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.24 (s, 5H), 6.94 (d, *J* = 8.4 Hz, 1H), 4.90 (d, *J* = 12.0 Hz, 1H), 4.55 – 4.43 (m, 1H), 4.41– 4.29 (m, 1H), 4.26 – 4.14 (m, 1H), 3.80 – 3.68 (m, 2H), 3.56 (d, J = 11.6 Hz, 1H), 3.32 – 3.19 (m, 1H), 1.24 (t, J = 7.2 Hz, 3H), 0.66 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.3, 168.6, 149.7, 133.6, 133.2, 128.9, 128.8, 128.6, 128.4, 125.5, 119.9, 118.7, 64.3, 63.0, 62.9, 60.4, 51.4, 14.1, 13.3. IR (KBr, thin film): 3729, 3612, 2361, 2341, 1774, 1733, 1652, 1557, 1205, 668 cm⁻¹. HRMS (ESI) m/z calcd for C₂₂H₂₃BrNO₇S [M+H]⁺: 524.0373, found 524.0375.

diethyl 8-methyl-3-phenyl-1,3,3a,9b-tetrahydro-2H-benzo[5,6][1,2]oxathiino[4,3b]pyrrole-2,2-dicarboxylate 4,4-dioxide (3y)

White solid, 87.2 mg, 95% yield, m.p. 170.6 – 171.2 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 – 7.36 (m, 1H), 7.35 – 7.28 (m, 5H), 7.22 – 7.14 (m, 1H), 7.02 (d, *J* = 8.4 Hz, 1H), 4.98 (d, *J* = 12.0 Hz, 1H), 4.59 – 4.50 (m, 1H), 4.48 – 4.38 (m, 1H), 4.34 – 4.23 (m, 1H), 3.86 – 3.73 (m, 2H), 3.64 (s, 1H), 3.39 – 3.27 (m, 1H), 2.37 (s, 3H), 1.32 (t, *J* = 7.2 Hz, 3H), 0.73 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.6, 168.8, 148.7, 135.8, 134.0, 130.6, 128.7, 128.5, 126.1, 123.3, 117.9, 64.8, 62.9, 62.9, 60.8, 51.5, 20.9, 14.1, 13.3. IR (KBr,thin film): 3774, 3642, 2396, 2282, 1726, 1713, 1653, 1547, 1203, 717 cm⁻¹. HRMS (ESI) m/z calcd for C₂₃H₂₆NO₇S [M+H]⁺: 460.1425, found 460.1433.

diethyl 8-methoxy-3-phenyl-1,3,3a,9b-tetrahydro-2H-benzo[5,6][1,2]oxathiino [4, 3-*b*]pyrrole-2,2-dicarboxylate 4,4-dioxide(3z)

White solid, 85.5 mg, 90% yield, m.p. 187.2 – 187.6 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.37 – 7.27 (m, 5H), 7.07 (d, J = 9.2 Hz, 2H), 6.90 (dd, J = 8.8, 2.8 Hz, 1H), 4.98 (d, J = 12.4 Hz, 1H), 4.55 (d, J = 11.4 Hz, 1H), 4.49 – 4.39 (m, 1H), 4.33 – 4.24 (m, 1H), 3.86 – 3.73 (m, 5H), 3.65 (s, 1H), 3.40 – 3.27 (m, 1H), 1.32 (t, J = 7.2 Hz, 3H), 0.79 – 0.66 (m, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 169.5, 168.8, 157.4, 144.3, 134.0, 128.7, 128.6, 128.4, 124.8, 119.3, 115.7, 64.7, 62.9, 60.9, 56.1, 51.5, 14.1, 13.3.

IR (KBr, thin film): 3847, 3642, 2392, 1725, 1711, 1691, 1658, 1584, 1162, 815 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₃H₂₆NO₈S [M+H]⁺: 476.1374, found 476.1374.

diethyl 7-chloro-3-phenyl-1,3,3a,9b-tetrahydro-2H-benzo[5,6][1,2]oxathiino[4,3b]pyrrole-2,2-dicarboxylate 4,4-dioxide (3aa)

White solid, 87.2 mg, 91% yield, m.p. 174.5 – 174.8 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.54 – 7.48 (m, 1H), 7.34 – 7.26 (m, 6H), 7.16 (d, *J* = 2.0 Hz, 1H), 4.98 (d, *J* = 12.4 Hz, 1H), 4.53 (t, *J* = 12.0 Hz, 1H), 4.48 – 4.38 (m, 1H), 4.33 – 4.22 (m, 1H), 3.86 – 3.75 (m, 2H), 3.61 (d, *J* = 12.4 Hz, 1H), 3.41 – 3.24 (m, 1H), 1.31 (t, *J* = 7.2 Hz, 3H), 0.73 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 169.4, 168.7, 150.9, 135.6, 133.7, 128.8, 128.7, 128.4, 126.9, 126.0, 122.0, 118.6, 64.6, 63.0, 60.4, 51.4, 14.1, 13.3.

IR (KBr, thin film): 3855, 3677, 3415, 3273, 2360, 1718, 1701, 1685, 1170, 920 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₂H₂₃ClNO₇S [M+H]⁺: 480.0884, found 480.0883.

diethyl 6,8-dichloro-3-phenyl-1,3,3a,9b-tetrahydro-2H-benzo[5,6][1,2]oxathiino[4, 3-*b*]pyrrole-2,2-dicarboxylate 4,4-dioxide(3ab)

White solid, 93.5 mg, 91% yield, m.p. 168.7 – 168.2 °C.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.51 – 7.45 (m, 2H), 7.32 (s, 5H), 4.97 (d, J = 12.4 Hz, 1H), 4.58 (t, J = 10.8 Hz, 1H), 4.48 – 4.38 (m, 1H), 4.33 – 4.23 (m, 1H), 3.92 – 3.76 (m, 2H), 3.63 (d, J = 10.0 Hz, 1H), 3.41– 3.29 (m, 1H), 1.32 (t, J = 7.2 Hz, 3H), 0.74 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 169.2, 168.5, 145.3, 133.3, 131.3, 130.6, 128.8, 128.8, 128.4, 126.7, 124.5, 124.3, 64.4, 63.1, 63.0, 60.6, 51.4, 27.0, 14.1, 13.3. **IR** (KBr, thin film): 3578, 3555, 1753, 1712, 1630, 1468, 1376, 1215, 1034, 912 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₂H₂₂Cl₂NO₇S [M+H]⁺: 514.0494, found 514.0495.

diethyl 6,8-dibromo-3-phenyl-1,3,3a,9b-tetrahydro-2H-benzo[5,6][1,2]oxathiino [4,3-*b*]pyrrole-2,2-dicarboxylate 4,4-dioxide(3ac)

White solid, 111.6 mg, 93% yield, m.p. 219.5 – 220.1 °C.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.77 (d, J = 1.6 Hz, 1H), 7.67 (s, 1H), 7.32 (s, 5H), 4.96 (d, J = 12.4 Hz, 1H), 4.68 – 4.52 (m, 1H), 4.49 – 4.38 (m, 1H), 4.33 – 4.22 (m, 1H), 3.93 – 3.76 (m, 2H), 3.63 (d, J = 10.0 Hz, 1H), 3.40 – 3.30 (m, 1H), 1.32 (t, J = 7.2 Hz, 3H), 0.74 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 169.2, 168.5, 146.9, 136.3, 133.3, 128.8, 128.8, 128.4, 127.8, 127.0, 118.8, 113.1, 64.5, 63.0, 60.5, 51.3, 14.1, 13.3.
IR (KBr, thin film): 3731, 3395, 2360, 1713, 1656, 1436, 1250, 1210, 1166, 852 cm⁻¹.
HRMS (ESI) m/z calcd for C₂₂H₂₂Br₂NO₇S [M+H]⁺: 601.9484, found 601.9484.

diethyl 8-chloro-3-(4-chlorophenyl)-1,3,3a,9b-tetrahydro-2H-benzo[5,6][1,2]oxathiino [4,3-*b*]pyrrole-2,2-dicarboxylate 4,4-dioxide (3ad)

White solid, 95.6 mg, 93% yield, m.p. 192.4 – 192.9 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.60 – 7.54 (m, 1H), 7.36 (dd, J = 8.8, 2.0 Hz, 1H), 7.34 – 7.26 (m, 4H), 7.08 (d, J = 8.8 Hz, 1H), 4.92 (d, J = 12.4 Hz, 1H), 4.54 (d, J = 10.0 Hz, 1H), 4.48 – 4.38 (m, 1H), 4.33 – 4.23 (m, 1H), 3.92 – 3.82 (m, 1H), 3.81 – 3.72 (m, 1H), 3.61 (s, 1H), 3.51 – 3.41 (m, 1H), 1.32 (t, J = 7.2 Hz, 3H), 0.81 (t, J = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 169.3, 168.5, 149.0, 134.7, 132.1, 131.4, 130.3, 129.8, 128.9, 126.0, 125.0, 119.6, 64.0, 63.1, 60.4, 50.8, 14.1, 13.4.

IR (KBr, thin film): 3660, 3281, 2394, 2282, 1723, 1654, 1542, 1207, 1168, 815 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₂H₂₂Cl₂NO₇S [M+H]⁺: 514.0489, found 514.0490.

diethyl 8-chloro-3-(p-tolyl)-1,3,3a,9b-tetrahydro-2H-benzo[5,6][1,2]oxa-thiino[4, 3-*b*]pyrrole-2,2-dicarboxylate 4,4-dioxide (3ae)

3ae, 99%

White solid, 97.6 mg, 99% yield, m.p. 254.2 – 254.6 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.60 – 7.55 (m, 1H), 7.39 – 7.33 (m, 1H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 7.07 (d, *J* = 8.8 Hz, 1H), 4.93 (d, *J* = 12.4 Hz, 1H), 4.54 (d, *J* = 10.8 Hz, 1H), 4.48 – 4.38 (m, 1H), 4.33 – 4.22 (m, 1H), 3.88 – 3.74 (m, 2H), 3.61 (s, 1H), 3.45 – 3.34 (m, 1H), 2.31 (s, 3H), 1.36 – 1.27 (m, 3H), 0.75 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 169.4, 168.7, 149.1, 138.5, 131.3, 130.5, 130.2, 129.4, 128.3, 126.0, 125.3, 64.4, 60.4, 51.2, 21.2, 14.1, 13.3.

IR (KBr, thin film): 3802, 3650, 2362, 2342, 1733, 1684, 1558, 1507, 1165, 901 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₃H₂₅ClNO₇S [M+H]⁺: 494.1035, found 494.1044. ethyl 3-phenyl-2,3,3a,9b-tetrahydro-1H-benzo[5,6][1,2]oxathiino[4,3-*b*]pyrrole-2-carboxylate 4,4-dioxide (3af)

White solid, 59.7 mg, 80% yield, m.p. 254.3 – 254.7 °C.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.56 (d, *J* = 7.6 Hz, 1H), 7.43 – 7.38 (m, 1H), 7.35 – 7.27 (m, 4H), 7.21 (d, *J* = 7.6 Hz, 2H), 7.14 (d, *J* = 8.4 Hz, 1H), 4.60 (d, *J* = 11.2 Hz, 1H), 4.47 (d, *J* = 10.0 Hz, 1H), 4.24 (t, *J* = 10.8 Hz, 1H), 3.82 – 3.62 (m, 2H), 3.49 – 3.37 (m, 1H), 2.90 (s, 1H), 0.74 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 171.2, 150.8, 134.8, 130.2, 128.9, 128.4, 128.0, 125.8, 124.0, 118.2, 65.8, 65.3, 62.0, 61.8, 50.0, 13.5.

IR (KBr, thin film): 3849, 3730, 3267, 2359, 1716, 1558, 1540, 1455, 1274, 970 cm⁻¹. **HRMS** (ESI) m/z calcd for C₁₉H₂₀NO₅S [M+H]⁺: 374.1057, found 374.1061.

ethyl 3-(p-tolyl)-2,3,3a,9b-tetrahydro-1H-benzo[5,6][1,2]oxathiino[4,3-*b*] pyrrole -2-carboxylate 4,4-dioxide (3ag)

White solid, 58.0 mg, 75% yield, m.p. 196.7 – 197.2 °C.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.55 (d, J = 7.6 Hz, 1H), 7.43 – 7.36 (m, 1H), 7.31 – 7.25 (m, 1H), 7.16 – 7.06 (m, 5H), 4.58 (d, J = 11.2 Hz, 1H), 4.44 (d, J = 10.0 Hz, 1H), 4.26 – 4.16 (m, 1H), 3.81 – 3.71 (m, 1H), 3.66 (t, J = 11.6 Hz, 1H), 3.52 – 3.41 (m, 1H), 2.91 (s, 1H), 2.31 (s, 3H), 0.75 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 171.3, 138.1, 131.6, 130.1, 129.5, 127.9, 125.8, 125.8, 124.0, 118.1, 65.8, 65.3, 61.9, 49.6, 21.2, 13.4.

IR (KBr,thin film): 3778, 3652, 2394, 1762, 1726, 1725, 1653, 1547, 1203, 1015 cm⁻¹. **HRMS** (ESI) m/z calcd for C₂₀H₂₂NO₅S [M+H]⁺: 388.1213, found 388.1215.

ethyl 3-(4-chlorophenyl)-2,3,3a,9b-tetrahydro-1H-benzo[5,6][1,2]oxathiino[4,3b]pyrrole-2-carboxylate 4,4-dioxide (3ah)

White solid, 63.5 mg, 78% yield, m.p. 196.0 – 196.4 °C. **¹H NMR** (400 MHz, Chloroform-*d*) δ 7.54 (d, *J* = 7.6 Hz, 1H), 7.43 – 7.36 (m, 1H), 7.33 – 7.26 (m, 3H), 7.20 – 7.11 (m, 3H), 4.57 (d, *J* = 11.6 Hz, 1H), 4.45 (d, *J* = 10.4 Hz, 1H), 4.18 (s, 1H), 3.83 – 3.73 (m, 1H), 3.63 (t, *J* = 11.6 Hz, 1H), 3.54 – 3.44 (m, 1H), 2.92 (s, 1H), 0.80 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 171.0, 150.8, 134.4, 133.4, 130.2, 129.4, 129.0, 125.9, 125.9, 123.8, 118.1, 65.6, 65.2, 62.0, 49.2, 13.6.

IR (KBr, thin film): 3849, 3730, 2359, 1830, 1732, 1716, 1653, 1568, 1212, 760 cm⁻¹. **HRMS** (ESI) m/z calcd for C₁₉H₁₉ClNO₅S [M+H]⁺: 408.0673, found 408.0675.

ethyl 8-chloro-3-phenyl-2,3,3a,9b-tetrahydro-1H-benzo[5,6][1,2]oxathiino[4,3-*b*] pyrrole-2-carboxylate 4,4-dioxide (3ai)

White solid, 66.7 mg, 82% yield, m.p. 203.1 – 203.5 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.58 – 7.52 (m, 1H), 7.39 – 7.26 (m, 4H), 7.24 – 7.17 (m, 2H), 7.08 (d, *J* = 8.8 Hz, 1H), 4.57 (d, *J* = 11.6 Hz, 1H), 4.45 (d, *J* = 10.4 Hz, 1H), 4.29 – 4.17 (m, 1H), 3.81 – 3.61 (m, 2H), 3.48 – 3.36 (m, 1H), 2.90 (s, 1H), 0.78 – 0.69 (m, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 171.1, 149.2, 134.4, 131.3, 130.1, 128.9, 128.5, 128.0, 126.0, 125.6, 119.5, 65.7, 64.9, 61.8, 49.9, 13.5.

IR (KBr, thin film): 3850, 3731, 2924, 2361, 1713, 1587, 1470, 1212, 1165, 795 cm⁻¹. **HRMS** (ESI) m/z calcd for C₁₉H₁₉ClNO₅S [M+H]⁺: 408.0673, found 408.0671.

ethyl 8-bromo-3-phenyl-2,3,3a,9b-tetrahydro-1H-benzo[5,6][1,2]oxathiino[4,3-*b*] pyrrole-2-carboxylate 4,4-dioxide (3aj)

White solid, 74.0 mg, 82% yield, m.p. 212.2 – 212.7 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.78 – 7.64 (m, 1H), 7.51 (dd, J = 9.6, 2.4 Hz, 1H), 7.37 – 7.27 (m, 3H), 7.23 – 7.14 (m, 2H), 7.02 (d, J = 8.8 Hz, 1H), 4.67 – 4.51 (m, 1H), 4.49 – 4.37 (m, 1H), 4.28 – 4.17 (m, 1H), 3.83 – 3.59 (m, 2H), 3.50 – 3.35 (m, 1H), 3.00 – 2.78 (m, 1H), 0.74 (t, J = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 171.1, 149.8, 134.4, 133.1, 129.0, 128.9, 128.5, 128.0, 126.0, 119.9, 118.7, 65.7, 64.9, 61.9, 61.7, 49.9, 13.5.

IR (KBr, thin film): 3792, 3685, 3395, 1723, 1693, 1639, 1615, 1384, 1164, 712 cm⁻¹. **HRMS** (ESI) m/z calcd for C₁₉H₁₉BrNO₅S [M+H]⁺: 452.0167, found 452.0167.

diethyl 1, 3, 3a, 9b-tetrahydro-2H-benzo[5, 6][1, 2]oxathiino[4, 3-*b*]pyrrole-2,2dicarboxylate 4,4-dioxide (3am)

White solid, 45.8 mg, 62% yield, m.p. 115.3 – 116.0 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.50 (d, J = 7.2 Hz, 1H), 7.39 – 7.31 (m, 1H), 7.29 – 7.23 (m, 1H), 7.10 (d, J = 8.0 Hz, 1H), 4.88 (d, J = 7.6 Hz, 1H), 4.37 – 4.24 (m, 2H), 4.24 – 4.15 (m, 2H), 4.15 – 4.07 (m, 1H), 3.52 (s, 1H), 3.17 (dd, J = 14.8, 8.4 Hz, 1H), 2.98 (dd, J = 15.2, 6.4 Hz, 1H), 1.30 (t, J = 7.2 Hz, 3H), 1.23 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 170.3, 168.7, 150.0, 130.4, 130.3, 126.5, 123.0, 119.5, 72.0, 62.9, 62.7, 60.9, 58.8, 34.7, 14.1, 14.0.

IR (KBr, thin film): 3687, 3397, 1730, 1697, 1625, 1615, 1384, 1164, 1128, 712 cm⁻¹. **HRMS** (**APCI**) m/z: Calcd for C₁₆H₂₀NO₇S [M+H]⁺: 370.0955; Found: 370.0958.

diethyl 8-chloro-1,3,3a,9b-tetrahydro-2H-benzo[5,6][1,2]oxathiino[4,3-*b*]pyrrole -2,2-dicarboxylate 4,4-dioxide (3an)

White solid, 56.4 mg, 70% yield, m.p. 116.7 – 117.2 °C. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.51 (d, *J* = 2.4 Hz, 1H), 7.32 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.05 (d, *J* = 8.8 Hz, 1H), 4.90 – 4.82 (m, 1H), 4.34 – 4.24 (m, 2H), 4.24 – 4.16 (m, 2H), 4.09 (dd, *J* = 15.6, 7.2 Hz, 1H), 3.57 (d, *J* = 8.8 Hz, 1H), 3.13 (dd, *J* = 14.8, 8.8 Hz, 1H), 3.03 – 2.93 (m, 1H), 1.31 (t, *J* = 7.2 Hz, 3H), 1.23 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 170.2, 168.5, 148.4, 131.9, 130.4, 130.2, 124.9, 120.9, 71.9, 63.0, 62.8, 60.5, 58.4, 34.5, 14.1, 14.0. **IR** (KBr, thin film): 3837, 3650, 2995, 2361, 1734, 1700, 1559, 1473, 1163, 848 cm⁻¹.

IR (KBr, thin film): 3837, 3650, 2995, 2361, 1734, 1700, 1559, 1473, 1163, 848 cm⁻¹. **HRMS** (ESI) m/z calcd for C₁₆H₁₉ClNO₇S [M+H]⁺: 404.0571, found 404.0570.

diethyl 8-bromo-1,3,3a,9b-tetrahydro-2H-benzo[5,6][1,2]oxathiino[4,3-*b*]pyrrole -2,2-dicarboxylate 4,4-dioxide (3ao)

White solid, 60.0 mg, 67% yield, m.p. 121.8 - 122.3 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.66 (d, J = 2.0 Hz, 1H), 7.50 – 7.42 (m, 1H), 6.99 (d, J = 8.8 Hz, 1H), 4.89 – 4.82 (m, 1H), 4.35 – 4.24 (m, 2H), 4.24 – 4.16 (m, 2H), 4.09 (q, J = 7.6 Hz, 1H), 3.57 (d, J = 8.8 Hz, 1H), 3.18 – 3.08 (m, 1H), 2.98 (dd, J = 14.8, 6.8 Hz, 1H), 1.31 (t, J = 7.2 Hz, 3H), 1.24 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 170.2, 168.5, 149.0, 133.3, 133.2, 125.2, 121.2, 119.4, 71.9, 63.0, 62.8, 60.5, 58.5, 34.5, 14.1, 14.0.
IR (KBr, thin film): 3673, 3649, 2394, 1733, 1557, 1475, 1376, 1163, 1114, 795 cm⁻¹.
HRMS (ESI) m/z calcd for C₁₆H₁₉BrNO₇S [M+H]⁺: 448.0066, found 448.0067.

diethyl 6, 8-dichloro-1, 3, 3a, 9b-tetrahydro-2H-benzo[5, 6][1, 2]oxathiino[4, 3-*b*] pyrrole-2,2-dicarboxylate 4,4-dioxide (3ap)

White solid, 54.2 mg, 62% yield, m.p. 125.3 – 125.8 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.73 (d, J = 2.0 Hz, 1H), 7.60 (d, J = 2.0 Hz, 1H), 4.88 (t, J = 8.0 Hz, 1H), 4.36 – 4.25 (m, 2H), 4.25 – 4.19 (m, 2H), 4.12 (q, J = 7.6 Hz, 1H), 3.55 (d, J = 8.4 Hz, 1H), 3.12 (dd, J = 14.8, 8.4 Hz, 1H), 3.03 – 2.93 (m, 1H), 1.31 (t, J = 7.2 Hz, 3H), 1.26 – 1.22 (m, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 170.2, 168.4, 146.2, 136.3, 132.1, 127.0, 119.5, 114.3, 71.8, 63.1, 62.9, 60.6, 58.8, 34.5, 14.1, 14.0.

IR (KBr, thin film): 3854, 3638, 2392, 1734, 1446, 1383, 1278, 1156, 1045, 791 cm⁻¹. **HRMS** (ESI) m/z calcd for C₁₆H₁₈Cl₂NO₇S [M+H]⁺: 438.0181, found 438.0180.

diethyl 6, 8-dibromo-1, 3, 3a, 9b-tetrahydro-2H-benzo[5, 6][1, 2]oxathiino[4, 3-*b*] pyrrole-2,2-dicarboxylate 4,4-dioxide (3aq)

White solid, 65.0 mg, 62% yield, m.p. 140.7 – 141.2 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.74 (d, J = 2.4 Hz, 1H), 7.60 (d, J = 2.0 Hz, 1H), 4.88 (t, J = 6.8 Hz, 1H), 4.38 – 4.17 (m, 4H), 4.16 – 4.06 (m, 1H), 3.55 (d, J = 6.4 Hz, 1H), 3.19 – 3.07 (m, 1H), 2.97 (dd, J = 15.2, 7.2 Hz, 1H), 1.31 (t, J = 7.2 Hz, 3H), 1.25 (t, J = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 170.2, 168.4, 146.3, 136.3, 132.1, 127.0, 119.5, 114.4, 71.8, 63.1, 62.9, 60.7, 58.8, 34.5, 14.1, 14.0.

IR (KBr, thin film): 3731, 3626, 2985, 2360, 1732, 1556, 1537, 1188, 1158, 832 cm⁻¹. **HRMS** (ESI) m/z calcd for C₁₆H₁₈Br₂NO₇S [M+H]⁺: 525.9171, found 525.9164. diethyl-2-(2-(fluorosulfonyl)-1-(4-methoxyphenyl)ethyl)-2-((2-hydroxybenzy lidene)amino)malonate (3h-I)

White solid, 39.6 mg, 40% yield, m.p. 160.7 – 161.2 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 12.43 (s, 1H), 8.49 (s, 1H), 7.47 – 7.22 (m, 2H), 7.19 – 7.11 (m, 2H), 6.99 – 6.83 (m, 2H), 6.82 – 6.68 (m, 2H), 4.35 – 4.13 (m, 4H), 4.08 – 3.86 (m, 3H), 3.69 (s, 3H), 1.24 (t, *J* = 7.2 Hz, 3H), 1.12 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.2, 167.3, 166.4, 161.1, 159.9, 134.3, 133.3, 130.5, 126.6, 119.5, 118.8, 117.5, 114.3, 63.4, 62.9, 55.3, 45.7, 14.1, 14.0. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ 59.89. HRMS (ESI) m/z calcd for C₂₃H₂₇FNO₈S [M+H]⁺: 496.1436, found 496.1440.

ethyl - 2 -(hydroxymethyl)- 3-phenyl-2, 3, 3a, 9b- tetrahydro- 1H- benzo [5,6] [1,2] oxathiino[4,3-*b*]pyrrole-2-carboxylate 4,4-dioxide (4a)

White solid, 60.5 mg, 75% yield, m.p. 183.4 – 183.9 °C.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.53 – 7.48 (m, 1H), 7.38 – 7.31 (m, 1H), 7.30 – 7.22 (m, 4H), 7.15 – 7.10 (m, 2H), 7.08 (d, *J* = 8.0 Hz, 1H), 4.53 (d, *J* = 9.6 Hz, 1H), 4.02 (d, *J* = 11.2 Hz, 1H), 3.79 – 3.70 (m, 4H), 3.52 – 3.23 (m, 2H), 2.61 (s, 1H), 1.54 (s, 1H), 0.67 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 171.6, 150.8, 134.3, 130.3, 129.0, 128.6, 127.9, 125.9, 125.8, 123.6, 118.3, 65.3, 65.2, 62.6, 60.3, 52.6, 13.4.

HRMS (ESI) m/z calcd for C₂₀H₂₂NO₆S [M+H]⁺: 404.1162, found 404.1168.

diethyl 3-phenyl- 2H- benzo [5,6] [1,2] oxathiino [4,3-*b*] pyrrole-2, 2-dicarboxylate 4,4-dioxide (5w)

Red solid, 61.7 mg, 70% yield, m.p. 163.3 – 163.8 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 2.2 Hz, 1H), 7.57 (dd, *J* = 8.8, 2.2 Hz, 1H), 7.51 – 7.46 (m, 2H), 7.45 – 7.36 (m, 3H), 7.28 – 7.24 (m, 1H), 4.63 (q, *J* = 7.2 Hz, 2H), 4.16 (q, *J* = 7.2 Hz, 2H), 1.50 (t, *J* = 7.2 Hz, 3H), 1.05 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 159.8, 150.4, 148.5, 134.0, 130.1, 129.4, 129.1, 129.0, 128.2, 128.0, 127.2, 123.6, 121.9, 119.3, 119.1, 116.7, 67.3, 62.0, 13.8, 13.7. HRMS (ESI) m/z calcd for C₂₂H₂₀NO₇S [M+H]⁺: 442.0955, found 442.0958.

3-(4-methoxyphenyl)-2-(4-nitrophenyl)-2, 3, 3a, 9b-tetrahydro-1H-benzo[5, 6][1, 2] oxathiino[4,3-*b*]pyrrole 4,4-dioxide (9a)

White solid, 50.7 mg, 90% yield, m.p. 235.2 – 235.8 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.87 (m, 2H), 7.54 – 7.49 (m, 1H), 7.46 – 7.39 (m, 1H), 7.39 – 7.31 (m, 1H), 7.19 (d, *J* = 8.8 Hz, 3H), 6.73 (d, *J* = 8.4 Hz, 2H), 6.58 (d, *J* = 8.8 Hz, 2H), 5.16 (d, *J* = 9.6 Hz, 1H), 4.97 (d, *J* = 11.2 Hz, 1H), 4.41 (dd, *J* = 11.6, 10.0 Hz, 1H), 3.75 (t, *J* = 11.6 Hz, 1H), 3.67 (s, 3H), 2.96 (s, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 159.2, 150.7, 148.1, 147.0, 129.7, 129.6, 128.8, 127.3, 126.1, 126.0, 124.9, 122.9, 118.3, 114.0, 64.7, 63.6, 59.1, 55.2, 49.7. IR (KBr, thin film): 3612, 2820, 1734, 1653, 1541, 1344, 1254, 1156, 1031, 756 cm⁻¹. HRMS (ESI) m/z calcd for C₂₃H₂₁N₂O₆S [M+H]⁺: 453.1115, found 453.1112.

4-bromo-2-formylphenyl-2-phenylethene-1-sulfonate (12a)(known compound)⁶

White solid, 69.7 mg, 95% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 10.26 (s, 1H), 8.03 (d, J = 2.8 Hz, 1H), 7.72 (dd, J = 8.4, 2.4 Hz, 1H), 7.60 (d, J = 15.6 Hz, 1H), 7.53 – 7.47 (m, 3H), 7.47 – 7.41 (m, 2H), 7.30 (d, J = 8.8 Hz, 1H), 6.93 (d, J = 15.6 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 186.6, 149.6, 148.1, 138.2, 132.5, 132.2, 131.2, 130.7, 129.5, 129.0, 125.7, 121.5, 119.5.

6-bromo-2H-chromene (13a) (known compound)⁷

Colorless liquid, 28.7 mg, 68% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.17 (dd, J = 8.6, 2.2 Hz, 1H), 7.06 (d, J = 2.4 Hz, 1H), 6.64 (d, J = 8.8 Hz, 1H), 6.34 (d, J = 9.6 Hz, 1H), 5.80 (dt, J = 9.8, 3.4 Hz, 1H), 4.81 (s, 2H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 153.2, 131.7, 129.1, 124.3, 123.7, 123.3, 117.6, 113.4, 65.8.

4. Single-crystal X-ray structure analysis.

Figure S1. Crystal structure of **3a** at 30% probability level. **Table S1.** Crystal data and structure refinement for **3a**.

Identification code	3a	
Empirical formula	C ₂₂ H ₂₃ NO ₇ S	
Formula weight	445.47	
Temperature	173.15 K	
Wavelength	1.54178 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 9.6166(3) Å	$\alpha = 73.3600(10)^{\circ}.$
	b = 10.0879(3) Å	$\beta = 77.3780(10)^{\circ}.$
	c = 11.7837(4) Å	$\gamma = 84.3940(10)^{\circ}.$
Volume	1068.06(6) Å ³	
Z	2	
Density (calculated)	1.385 Mg/m ³	
Absorption coefficient	1.735 mm ⁻¹	
F(000)	468	
Crystal size	0.25 x 0.23 x 0.21 mm ³	
Theta range for data collection	4.578 to 72.225°.	
Index ranges	-10<=h<=11, -12<=k<=12, -	
	14<=1<=14	
Reflections collected	25182	
Independent reflections	4164 [R(int) = 0.0298]	
Completeness to theta = 67.679°	99.1 %	
Absorption correction	Semi-empirical from	
	equivalents	
Max. and min. transmission	0.7536 and 0.6429	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4164 / 10 / 305	

Goodness-of-fit on F ²	1.064
Final R indices [I>2sigma(I)]	R1 = 0.0356, $wR2 = 0.0893$
R indices (all data)	R1 = 0.0365, wR2 = 0.0899
Extinction coefficient	n/a
Largest diff. peak and hole	0.363 and -0.437 e.Å ⁻³

The CCDC number of product **3a** is 2218888.

Figure S23. Crystal structure of 3af at 30% probability level. Table S2. Crystal data and structure refinement for 3af.

-

Identification code	3af	
Empirical formula	C ₁₉ H ₁₉ NO ₅ S	
Formula weight	373.41	
Temperature	298.0 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C 1 2/c 1	
Unit cell dimensions	a = 12.3087(3) Å	$\alpha = 90^{\circ}$.
	b = 18.9005(5) Å	$\beta = 102.4740(10)^{\circ}.$
	c = 16.1113(4) Å	$\gamma = 90^{\circ}$.
Volume	3659.66(16) Å ³	
Ζ	8	
Density (calculated)	1.355 Mg/m ³	
Absorption coefficient	0.206 mm ⁻¹	
F(000)	1568	
Crystal size	0.25 x 0.23 x 0.22 mm ³	
Theta range for data collection	2.514 to 26.737°.	
Index ranges	-15<=h<=15, -23<=k<=23, -20<=l<=20	
Reflections collected	22145	
Independent reflections	3884 [R(int) = 0.0375]	
Completeness to theta = 25.242°	99.6 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7454 and 0.6685	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3884 / 7 / 227	
Goodness-of-fit on F ²	1.047	
Final R indices [I>2sigma(I)]	R1 = 0.0453, $wR2 = 0.1182$	
R indices (all data)	R1 = 0.0572, wR2 = 0.1279	

Extinction coefficient n/a

Largest diff. peak and hole 0.358 and -0.248 e.Å⁻³

The CCDC number of product **3af** is 2347754.

Figure S3. Crystal structure of **3am** at 30% probability level. **Table S3.** Crystal data and structure refinement for **3am**.

Identification code	3am	
Empirical formula	$C_{16}H_{18}NO_7S$	
Formula weight	368.37	
Temperature	173.0 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 1 21 1	
Unit cell dimensions	a = 6.9700(2) Å	$\alpha = 90^{\circ}$.
	b = 20.0713(4) Å	$\beta = 91.7350(10)^{\circ}$.
	c = 12.4232(3) Å	$\gamma = 90^{\circ}$.
Volume	1737.17(7) Å ³	
Ζ	4	
Density (calculated)	1.408 Mg/m ³	
Absorption coefficient	0.224 mm ⁻¹	
F(000)	772	
Crystal size	0.24 x 0.17 x 0.11 mm ³	
Theta range for data collection	2.610 to 26.748°.	
Index ranges	-8<=h<=7, -25<=k<=25, -15<=l<=15	
Reflections collected	21863	
Independent reflections	7359 [R(int) = 0.0336]	
Completeness to theta = 25.242°	99.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7454 and 0.6809	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	7359 / 1 / 456	
Goodness-of-fit on F ²	1.027	

Final R indices [I>2sigma(I)]	R1 = 0.0372, $wR2 = 0.0913$	
R indices (all data)	R1 = 0.0413, $wR2 = 0.0956$	
Absolute structure parameter	0.49(8)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.507 and -0.377 e.Å ⁻³	
The CCDC number of product 3am is 2218887.		

S32

Figure S4. Crystal structure of **4a** at 30% probability level. **Table S4.** Crystal data and structure refinement for **4a**.

Identification code	4a	
Empirical formula	$C_{20}H_{21}NO_6S$	
Formula weight	403.44	
Temperature	173.0 K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	a = 10.0053(2) Å	$\alpha = 90^{\circ}$.
	b = 13.4636(3) Å	$\beta = 107.2020(10)^{\circ}.$
	c = 15.1329(3) Å	$\gamma = 90^{\circ}$.
Volume	1947.33(7) Å ³	
Z	4	
Density (calculated)	1.376 Mg/m ³	
Absorption coefficient	1.803 mm ⁻¹	
F(000)	848	
Crystal size	0.17 x 0.16 x 0.14 mm ³	
Theta range for data collection	4.488 to 72.138°.	
Index ranges	-12<=h<=12, -15<=k<=16, -	
	15<=l<=18	
Reflections collected	14602	
Independent reflections	3807 [R(int) = 0.0457]	
Completeness to theta = 67.679°	99.5 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7536 and 0.6674	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	3807 / 0 / 258	
Goodness-of-fit on F ²	1.036	

Final R indices [I>2sigma(I)]	R1 = 0.0418, $wR2 = 0.0968$
R indices (all data)	R1 = 0.0552, wR2 = 0.1051
Extinction coefficient	n/a
Largest diff. peak and hole	0.272 and -0.437 e.Å ⁻³

The CCDC number of product **4a** is 2378446.

Figure S5. Crystal structure of **9a** at 30% probability level. **Table S5.** Crystal data and structure refinement for **9a**.

Identification code	9a	
Empirical formula	$C_{23}H_{20}N_2O_6S$	
Formula weight	452.47	
Temperature	173.0 K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P 1 21/c 1	
Unit cell dimensions	a = 7.3391(6) Å	$\alpha = 90^{\circ}$.
	b = 27.293(2) Å	$\beta = 105.174(3)^{\circ}.$
	c = 10.5772(9) Å	$\gamma = 90^{\circ}$.
Volume	2044.8(3) Å ³	
Z	4	
Density (calculated)	1.470 Mg/m ³	
Absorption coefficient	1.804 mm ⁻¹	
F(000)	944	
Crystal size	0.22 x 0.21 x 0.2 mm ³	
Theta range for data collection	4.624 to 71.984°.	
Index ranges	-9<=h<=8, -33<=k<=31, -12<=l<=13	
Reflections collected	15630	
Independent reflections	3926 [R(int) = 0.0434]	
Completeness to theta = 67.679°	99.4 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7536 and 0.6662	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3926 / 1 / 293	
Goodness-of-fit on F ²	1.044	

Final R indices [I>2sigma(I)]	R1 = 0.0421, $wR2 = 0.0988$	
R indices (all data)	R1 = 0.0515, wR2 = 0.1053	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.516 and -0.384 e.Å ⁻³	
The CCDC number of product 9a is 2353272.		
5. Computational details

We performed the DFT calculation on the template reaction and the structures **1a**, **2a**, **2am**, **3a** and **3am** are not simplified. All theoretical calculations were performed with Gaussian 16⁹. All structures were completely optimized by using the M062X-D3¹⁰ method and the def2-SVP¹¹ basis set in solvent of MeCN, which employs the integral equation formalism polarizable continuum model (IEFPCM)¹². Frequency calculations were carried out at the same level to confirm all the optimized structures as minima (no imaginary frequency) or transition states (only one imaginary frequency), and provided the thermal relative Gibbs free energy correction. For all transition states (TSs), intrinsic reaction coordinate (IRC)¹³ calculations were employed to verify the TS led to its relevant intermediates. The single-point energies (SPE) by using a higher computational level of the M062X-D3 method and the ma-def2-TZVPP basis set in solvent of MeCN, which employs the integral equation formalism polarizable continuum model (SMD)¹⁴. All thermodynamic data were corrected by Shermo¹⁵ software at 298.15 K, 1.0 atm. Images of the 3D structures of molecules were generated using CYLview¹⁶.

Figure S6. Potential energy surfaces of TS1 and TS2

	2.10		
(<i>R</i> , <i>S</i> , <i>S</i>)-TS1	(<i>S</i> , <i>R</i> , <i>S</i>)-TS1	(<i>S</i> , <i>R</i> , <i>R</i>)-TS1	(<i>R</i> , <i>S</i> , <i>R</i>)-TS1
- Alexandre	and the second s	and the second s	1.03 (56) 1.66/225
(<i>R</i> , <i>S</i> , <i>S</i>)-TS2	(S, R, S)-TS2	(S, R, R)-TS2	(<i>R</i> , <i>S</i> , <i>R</i>)-TS2
A A A A A A A A A A A A A A A A A A A	X SZ P		
(<i>S</i> , <i>S</i>)-TS2-3am	(<i>R</i> , <i>S</i>)-TS2-3am	(<i>R</i> , <i>R</i>)-TS2-3am	(<i>S</i> , <i>R</i>)-TS2-3am

Table S6. Configuration of TS1, TS2 and TS2-3am

Figure S7. DFT calculations for the (*R*, *S*, *R*) reaction pathway, and the free energy profile obtained at SMD_(MeCN)/M062X-D3/ma-def2-TZVPP//def2-SVP level

S40

Charge = -1 Multiplicity = 1

С	-2.99385 -1.19949 0.07683
С	-4.32589 -1.63358 0.14256
Н	-4.50836 -2.70464 0.24636
С	-5.37835 -0.72359 0.07673
Н	-6.40657 -1.08638 0.12998
С	-5.12169 0.64404 -0.05642
Н	-5.94303 1.35971 -0.10826
С	-3.80125 1.08202 -0.12149
Η	-3.58277 2.14843 -0.22508
С	-2.7206 0.19004 -0.05792
С	-1.34287 0.69162 -0.12947
Н	-1.21207 1.77516 -0.23172
С	1.00224 -0.02239 -0.10488
С	1.7378 1.21936 -0.22675
С	1.49807 3.57775 -0.41583
Н	0.72379 4.22317 -0.85147
С	1.94226 4.10315 0.93653
Н	2.33763 5.12379 0.83695
Н	2.73051 3.46127 1.35082
С	1.65521 -1.31876 -0.00073
С	3.6533 -2.55749 0.07581
Η	3.31941 -3.2154 -0.74122
Н	3.35994 -3.04577 1.01802
С	5.1442 -2.31198 0.01842
Н	5.68911 -3.26225 0.09606
Η	5.46007 -1.6599 0.84438
Н	5.4191 -1.82814 -0.92897
Ν	-0.36325 -0.14146 -0.07001
0	-2.01184 -2.10098 0.14224
0	0.8971 2.29319 -0.31145
0	2.9446 1.38872 -0.26168
0	3.00441 -1.29841 -0.03089
0	1.06056 -2.383 0.10783
Н	2.34778 3.52807 -1.11018
Н	1.09581 4.12585 1.63734
Η	-1.13772 -1.59316 0.07821

2a

Charge = 0 Multiplicity = 1С -3.42811 -1.32454 0.00655 С -4.29008 -0.22321 0.02094 С -3.77094 1.07083 0.01415 С -2.39139 1.26422 -0.00682 С -1.51825 0.16619 -0.02099 С -2.05181 -1.13385 -0.01449 С -0.07705 0.42709 -0.04067 С 0.89474 -0.49551 -0.06098 S 2.54948 0.02714 -0.1257 0 2.65902 1.46246 -0.1613 Ο 3.31376 -0.80734 -1.01409 F 3.02664 -0.3971 1.34506 Η -3.83467 -2.33642 0.01168 Η -5.36983 -0.37802 0.03736 Η -4.44063 1.93138 0.02502 -1.98041 2.27558 -0.01211 Η -1.39026 -2.0013 -0.02604 Η Η 0.22356 1.47963 -0.04087 Η 0.77587 -1.57941 -0.0724

(*R*, *S*, *S*)-INT1

Charge = -1 Multiplicity = 1					
С	-1.91525	-2.25846	-1.36681		
С	-2.70166	-3.41773	-1.42623		
Н	-2.19151	-4.37611	-1.53726		
С	-4.09018	-3.34256	-1.34336		
Н	-4.68186	-4.25853	-1.3932		
С	-4.72288	-2.10454	-1.19585		
Н	-5.80966	-2.0427	-1.12825		
С	-3.94642	-0.95027	-1.13202		
Н	-4.42299	0.02553	-1.00259		
С	-2.5476	-0.99453	-1.21736		

С	-1.76091	0.23583	-1.08713	Н	0.35846	-2.
Н	-2.30769	1.15727	-0.85126			
С	0.52605	1.09292	-1.0447	(R , S	, <i>S</i>)-TS1	
С	0.34812	2.47418	-0.63909		×.	2
С	-1.2648	4.16096	-0.25295			
Н	-0.70421	4.90653	-0.83751		~3=3:	
С	-2.75859	4.35216	-0.389			
Н	-3.04854	5.35243	-0.04039			(لى ا
Н	-3.2979	3.60239	0.20778			
С	1.83133	0.5111	-1.29335	Charg	ge = -1 Mult	tiplic
С	4.14662	0.8248	-1.5905	Imag	inary freque	ncy=
Н	4.14751	0.57758	-2.66481	С	-2.33123	-2.5
Н	4.31853	-0.10477	-1.03431	С	-3.26314	-3.5
С	5.18779	1.87075	-1.26263	Н	-2.88729	-4.6
Н	6.1881	1.51135	-1.53902	С	-4.62116	-3.3
Н	5.18093	2.08852	-0.18537	Н	-5.32597	-4.1
Н	4.98941	2.80461	-1.80671	С	-5.09048	-2.0
Ν	-0.48085	0.17926	-1.21002	Н	-6.15617	-1.8
0	-0.58393	-2.37034	-1.43609	С	-4.17576	-0.9
0	-0.95307	2.85828	-0.7215	Н	-4.51639	0.
0	1.18937	3.2604	-0.23817	С	-2.80027	-1.2
0	2.87576	1.35996	-1.23598	С	-1.86125	-0.0
0	2.0078	-0.67329	-1.55839	Н	-2.28015	0.9
Н	-0.93439	4.26279	0.79339	С	0.49298	0.
Н	-3.06622	4.2457	-1.43859	С	0.41615	2.
Н	-0.20434	-1.42803	-1.40425	С	-1.04822	3.8
С	-2.98754	-0.17827	2.23701	Н	-0.56811	4.
С	-3.1692	1.18814	2.46299	С	-2.54168	4.0
С	-2.07267	2.05172	2.43351	Н	-2.75823	5.
С	-0.79901	1.55128	2.17468	Н	-2.98491	3.
С	-0.60845	0.18202	1.93773	С	1.69426	-0.
С	-1.7162	-0.67835	1.97476	С	3.92668	-0.0
С	0.74447	-0.30088	1.64793	Н	3.75829	-0.
С	1.05083	-1.52281	1.18728	Н	4.12404	-0.3
S	2.7202	-1.94967	1.00331	С	5.04454	1.
0	3.5905	-0.80268	1.1126	Н	5.97757	0.
Ο	2.92823	-2.9788	0.02037	Н	5.19901	1.
F	2.93671	-2.72353	2.40692	Н	4.81077	1.
Н	-3.8419	-0.85622	2.25822	Ν	-0.61162	-0.3
Н	-4.16694	1.57998	2.66758	0	-1.03648	-2.8
Н	-2.21217	3.11895	2.61424	0	-0.82607	2.4
Η	0.06115	2.22456	2.13487	0	1.3356	2.
Η	-1.585	-1.74786	1.79817	0	2.73612	0.
Н	1.56321	0.40296	1.82918	0	1.72732	-1.

35	Cha	rge = -1 Mult	tiplicity $= 1$	
5	Imag	ginary freque	ncy = -367.7	$7035{\rm cm}^{-1}$
81	С	-2.33123	-2.54586	-0.97105
31	С	-3.26314	-3.59672	-0.94909
63	Н	-2.88729	-4.61636	-1.04525
02	С	-4.62116	-3.33654	-0.80653
37	Η	-5.32597	-4.17002	-0.79313
71	С	-5.09048	-2.02322	-0.67829
02	Η	-6.15617	-1.82469	-0.56306
)9	С	-4.17576	-0.97735	-0.69742
5	Η	-4.51639	0.05629	-0.59239
17	С	-2.80027	-1.21041	-0.84753
98	С	-1.86125	-0.08653	-0.82369
39	Η	-2.28015	0.91053	-0.64126
39	С	0.49298	0.52524	-0.86355
59	С	0.41615	2.00925	-0.98571
25	С	-1.04822	3.8516	-1.19785
01	Н	-0.56811	4.31029	-2.07533
99	С	-2.54168	4.07813	-1.18257
51	Η	-2.75823	5.15457	-1.18236
68	Н	-2.98491	3.63251	-0.28015
73	С	1.69426	-0.15883	-1.43094
76	С	3.92668	-0.00944	-2.13455
93	Η	3.75829	-0.36373	-3.16368
28	Н	4.12404	-0.87875	-1.49631
31	С	5.04454	1.00321	-2.06075
6	Η	5.97757	0.56234	-2.43608
37	Η	5.19901	1.31509	-1.01878
92	Η	4.81077	1.89171	-2.66334
22	Ν	-0.61162	-0.31018	-1.0024
58	0	-1.03648	-2.82814	-1.09979
24	0	-0.82607	2.44043	-1.23502
87	0	1.3356	2.7736	-0.80596
17	0	2.73612	0.63089	-1.6704
918	0	1.72732	-1.35747	-1.60696

Н	-0.56379	4.2633	-0.30079	С	0.30697	1.80408	1.12384
Н	-3.01328	3.62747	-2.06663	С	-0.36838	4.00862	1.60653
Н	-0.53636	-1.94806	-1.11329	Н	0.6468	4.28015	1.92931
С	-2.57083	0.88456	2.54704	С	-1.06831	5.14568	0.90381
С	-2.57568	2.26823	2.71884	Н	-1.15714	6.00258	1.58393
С	-1.43547	3.00716	2.39327	Н	-2.07617	4.84397	0.58866
С	-0.30765	2.36647	1.88627	С	1.34857	1.25252	-1.04932
С	-0.29511	0.97558	1.69034	С	3.62913	1.71676	-1.35585
С	-1.43959	0.24379	2.04093	Н	3.41028	2.52715	-2.06568
С	0.90736	0.31757	1.11093	Н	3.74008	0.77954	-1.92415
С	1.16137	-1.04189	1.41386	С	4.84213	2.00162	-0.50588
S	2.70883	-1.6304	1.38634	Н	5.72154	2.14066	-1.14862
0	3.66868	-0.69358	0.81598	Н	5.01899	1.15222	0.16574
0	2.80413	-3.04665	1.07959	Н	4.69573	2.91532	0.08653
F	3.18731	-1.63522	2.9678	Ν	-0.89473	0.49642	-0.63597
Н	-3.45252	0.29601	2.80615	0	-2.08967	-0.63789	-2.59473
Н	-3.46021	2.76961	3.1147	0	-0.27197	2.9147	0.68105
Н	-1.42369	4.08899	2.53797	0	0.75398	1.67756	2.23163
Н	0.58067	2.94638	1.62892	0	2.50706	1.55394	-0.47831
Н	-1.4533	-0.83974	1.91601	0	1.11501	1.35122	-2.22161
Н	1.78898	0.96658	1.07106	Н	-0.92052	3.66521	2.49311
Н	0.40571	-1.79233	1.63092	Н	-0.50129	5.46039	0.01763

(*R*, *S*, *S*)-INT2

Charge = -1 Multiplicity = 1					
С	-3.22773	-0.4491	-1.92919		
С	-4.43485	-0.89601	-2.48995		
Н	-4.40013	-1.38401	-3.46458		
С	-5.63309	-0.71509	-1.81144		
Н	-6.56033	-1.06854	-2.266		
С	-5.66763	-0.08982	-0.55715		
Н	-6.61317	0.04448	-0.03226		
С	-4.47926	0.35101	0.00691		
Н	-4.47741	0.83452	0.98677		
С	-3.25491	0.18545	-0.66		
С	-2.01184	0.61993	-0.03059		
Н	-2.09182	1.0273	0.99283		
С	0.36122	0.74223	0.01221		

С	-1.06831	5.14568	0.90381
Η	-1.15714	6.00258	1.58393
Н	-2.07617	4.84397	0.58866
С	1.34857	1.25252	-1.04932
С	3.62913	1.71676	-1.35585
Н	3.41028	2.52715	-2.06568
Н	3.74008	0.77954	-1.92415
С	4.84213	2.00162	-0.50588
Н	5.72154	2.14066	-1.14862
Н	5.01899	1.15222	0.16574
Н	4.69573	2.91532	0.08653
N	-0.89473	0.49642	-0.63597
0	-2.08967	-0.63789	-2.59473
0	-0.27197	2.9147	0.68105
0	0.75398	1.67756	2.23163
0	2.50706	1.55394	-0.47831
0	1.11501	1.35122	-2.22161
Н	-0.92052	3.66521	2.49311
Н	-0.50129	5.46039	0.01763
Н	-1.35464	-0.22442	-2.04635
С	-1.95121	-2.86479	1.57637
С	-1.92876	-2.7432	2.96775
С	-0.96224	-1.93996	3.57116
С	-0.02874	-1.25556	2.78929
С	-0.04011	-1.36935	1.39464
С	-1.01169	-2.18869	0.80103
С	0.96932	-0.61584	0.54272
С	1.54579	-1.38457	-0.60912
S	3.09861	-1.83936	-0.61768
0	3.9556	-1.08079	0.29815
0	3.6125	-2.16579	-1.94866
F	3.24527	-3.35955	0.09375
Η	-2.70372	-3.48999	1.09241
Η	-2.66089	-3.27528	3.5774
Η	-0.93224	-1.8433	4.65791
Η	0.71619	-0.61388	3.26194
Η	-1.03996	-2.28188	-0.28719
Η	1.80286	-0.30663	1.18681
Η	0.9484	-1.79411	-1.42193

(*R*, *S*, *S*)-INT3

Charge = -1 Multiplicity = 1					
С	3.37408	0.58021	1.33375		
С	4.70425	0.47241	1.76994		
Η	4.91114	0.61426	2.83137		
С	5.71988	0.18807	0.86539		
Η	6.74689	0.10753	1.22642		
С	5.44414	0.00025	-0.49561		
Η	6.24703	-0.22803	-1.19636		
С	4.13167	0.10551	-0.93562		
Η	3.8879	-0.04601	-1.98999		
С	3.0888	0.39864	-0.04421		
С	1.71256	0.46248	-0.52434		
Η	1.55059	0.24728	-1.59228		
С	-0.60743	0.59201	-0.16703		
С	-0.82898	1.04894	-1.61734		
С	-0.46909	2.82652	-3.11469		
Н	-1.54259	2.88502	-3.34553		
С	0.18657	4.18589	-3.10625		
Η	0.08563	4.6534	-4.09424		
Η	1.25534	4.09837	-2.86888		
С	-1.52576	1.45131	0.69946		
С	-2.05654	2.07464	2.91063		
Н	-1.89044	1.57554	3.8722		
Η	-3.10246	1.93157	2.60625		
С	-1.69084	3.54259	2.97386		
Н	-2.30302	4.04412	3.73536		
Н	-1.87249	4.02793	2.00605		
Η	-0.63262	3.66321	3.24255		
Ν	0.75101	0.74501	0.27165		
0	2.41725	0.85163	2.21766		
0	-0.31574	2.25911	-1.80729		
0	-1.38151	0.41865	-2.47813		
0	-1.21269	1.37065	1.98504		
0	-2.45933	2.07336	0.26075		
Η	-0.00754	2.14826	-3.84695		
Η	-0.28723	4.83849	-2.36082		
Н	1.54754	0.86694	1.71334		

С	-4.59457	-1.72069	-1.02633
С	-5.27461	-1.59402	0.18652
С	-4.56236	-1.27041	1.34041
С	-3.18288	-1.06954	1.27463
С	-2.49148	-1.17911	0.06052
С	-3.21662	-1.51712	-1.08845
С	-0.98637	-0.9486	0.04302
С	-0.1895	-1.81058	-0.87211
S	0.99534	-2.75882	-0.29388
0	1.49368	-2.36045	1.02441
0	1.95275	-3.19586	-1.30833
F	0.34418	-4.25691	0.11425
Η	-5.14225	-1.98314	-1.93327
Η	-6.35287	-1.75513	0.23206
Η	-5.07805	-1.1821	2.29823
Н	-2.62805	-0.82941	2.18523
Η	-2.69307	-1.61239	-2.03888
Н	-0.62805	-1.1297	1.06615
Н	-0.41631	-1.95081	-1.92561

(*R*, *S*, *S*)-TS2

Cha	rge = -1 Mult	tiplicity = 1	
Imag	ginary freque	ncy = -231.6	$5978{\rm cm}^{-1}$
С	3.43672	0.7184	-0.52797
С	4.82468	0.70398	-0.30481
Н	5.32425	1.65653	-0.12155
С	5.53243	-0.4926	-0.32236
Η	6.61009	-0.47883	-0.14705
С	4.87992	-1.70736	-0.56256
Η	5.43798	-2.6439	-0.57382
С	3.50632	-1.69946	-0.78191
Н	2.97152	-2.637	-0.95678
С	2.76935	-0.51005	-0.7714
С	1.30261	-0.5423	-0.95926
Η	0.92572	-1.48158	-1.37614
С	-0.70248	0.6393	-0.87603
С	-1.65451	-0.16274	-1.7679
С	-2.06862	-2.27817	-2.71757

Η	-2.25352	-1.85635	-3.71591	
С	-1.39528	-3.62789	-2.78412	
Η	-2.03279	-4.33627	-3.32888	
Н	-1.21954	-4.02394	-1.77406	
С	-1.0811	2.12482	-0.9776	
С	-1.03792	4.19103	0.16639	
Н	-1.30975	4.48051	1.18802	
Н	-1.83396	4.50483	-0.52103	
С	0.30558	4.76208	-0.23819	Ch
Η	0.2739	5.85938	-0.20359	С
Н	0.56138	4.45344	-1.26102	С
Η	1.09237	4.41107	0.44327	Н
Ν	0.68537	0.62153	-1.16239	С
0	2.78065	1.87431	-0.52836	Н
0	-1.1997	-1.39402	-1.99865	С
0	-2.72602	0.2224	-2.15528	Н
0	-0.98361	2.75815	0.19104	С
0	-1.31839	2.68325	-2.01483	Н
Η	-3.0334	-2.32049	-2.18993	С
Η	-0.43063	-3.55511	-3.30448	С
Η	1.80301	1.62354	-0.74652	Н
С	-4.15886	-1.86702	0.96677	С
С	-4.98969	-0.87355	1.48661	С
С	-4.46333	0.39093	1.74976	С
С	-3.11955	0.65993	1.48872	Н
С	-2.27578	-0.32849	0.96581	С
С	-2.81486	-1.5969	0.71139	Н
С	-0.84141	0.0198	0.63038	Н
С	0.16767	-1.06953	0.77397	С
S	1.24974	-0.91589	2.04585	С
0	1.77903	0.42999	2.17978	Н
0	2.14122	-2.05493	2.15587	Η
F	0.33864	-1.05231	3.41545	С
Н	-4.55732	-2.86213	0.76137	Н
Н	-6.04044	-1.08597	1.68935	Η
Н	-5.10136	1.17447	2.16203	Н
Н	-2.71095	1.65227	1.6897	Ν
Н	-2.18021	-2.38746	0.30629	0
Н	-0.53253	0.86494	1.2556	0
Н	-0.12196	-2.11611	0.66384	0
				0
(R , ,	S, S)-INT4			0

Charge = -1 Multiplicity = 1			
С	-2.91686	0.82203	0.10264
С	-4.28473	1.0661	-0.26412
Н	-4.49048	2.00872	-0.77795
С	-5.30616	0.16672	-0.00468
Н	-6.32544	0.41053	-0.31776
С	-5.05208	-1.04448	0.65457
Η	-5.85423	-1.75165	0.86771
С	-3.73955	-1.31187	1.04188
Η	-3.51389	-2.24708	1.56448
С	-2.68549	-0.43264	0.78275
С	-1.29649	-0.81908	1.2524
Η	-1.41154	-1.66461	1.94837
С	0.50578	0.77913	1.04555
С	1.87922	0.55133	1.68805
С	3.28642	-1.05389	2.67293
Н	3.52003	-0.38977	3.51706
С	3.21725	-2.50284	3.09025
Н	4.18225	-2.81514	3.50978
Н	2.98871	-3.14742	2.22989
С	0.34664	2.29231	0.87313
С	0.72471	4.11988	-0.56885
Н	1.59613	4.36641	-1.18784
Η	0.77915	4.68813	0.36815
С	-0.57995	4.36846	-1.29726
Н	-0.72587	5.44587	-1.45496
Н	-1.41373	3.95422	-0.71543
Η	-0.57467	3.86889	-2.27642
Ν	-0.5487	0.26269	1.90464
0	-1.99192	1.65652	-0.15942
0	2.0034	-0.68913	2.14615
0	2.75266	1.37814	1.74683
0	0.85858	2.72461	-0.26801
0	-0.11753	2.9954	1.73206
Η	4.04338	-0.88117	1.89237
Н	2.44055	-2.64855	3.8528

Н	-1.17209	1.03045	2.14247
С	3.81363	-1.30691	-1.53388
С	4.05803	-0.45201	-2.60851
С	3.11714	0.52411	-2.93661
С	1.9486	0.65035	-2.1867
С	1.69723	-0.19181	-1.0963
С	2.64178	-1.1804	-0.78834
С	0.41845	-0.00595	-0.30751
С	-0.29071	-1.27479	0.15847
S	-1.10595	-2.14813	-1.15844
0	-1.67924	-1.27851	-2.15192
0	-1.82347	-3.29049	-0.65258
F	0.20576	-2.76637	-1.86005
Н	4.5348	-2.08423	-1.2761
Н	4.97369	-0.55237	-3.19325
Н	3.29155	1.1909	-3.78252
Н	1.21578	1.41794	-2.43949
Н	2.46377	-1.87398	0.03462
Н	-0.30317	0.56679	-0.90291
Н	0.40249	-2.01907	0.57563

(*S*, *R*, *S*)-INT1

-phan-state	
Jan Sana P	

Charge = -1 Multiplicity = 1			
С	1.6565	2.9549	-0.94979
С	2.46694	4.08797	-0.78539
Н	1.99	5.06831	-0.83636
С	3.83564	3.96037	-0.56148
Н	4.4451	4.85722	-0.43583
С	4.42644	2.6947	-0.49403
Н	5.49715	2.59205	-0.31393
С	3.62899	1.56567	-0.65893
Н	4.0704	0.56649	-0.6039
С	2.24837	1.66307	-0.89154
С	1.44338	0.44784	-1.0445
Н	1.96888	-0.51078	-0.99171
С	-0.84052	-0.36687	-1.23904
С	-0.67124	-1.81046	-1.25303
С	0.90879	-3.54625	-1.59966
Н	0.16928	-3.98109	-2.28753

С	2.3141	-3.67996	-2.14383
Н	2.5529	-4.73962	-2.30825
Н	3.04405	-3.26323	-1.43788
С	-2.15	0.27648	-1.28067
С	-4.49001	0.05361	-1.20776
Н	-4.64081	0.48055	-2.21224
Н	-4.54021	0.88708	-0.49179
С	-5.51467	-1.01361	-0.89662
Н	-6.5289	-0.59696	-0.95746
Н	-5.36071	-1.40972	0.11719
Н	-5.43527	-1.84668	-1.60865
Ν	0.16687	0.55165	-1.20572
Ο	0.34691	3.11359	-1.15445
Ο	0.63009	-2.15972	-1.4341
Ο	-1.52707	-2.6713	-1.14726
Ο	-3.20558	-0.55061	-1.1391
Ο	-2.31696	1.47787	-1.41609
Н	0.79873	-4.05391	-0.63047
Н	2.4086	-3.14996	-3.10201
Н	-0.06351	2.18755	-1.21207
С	-1.59366	2.97396	1.6415
С	-2.9623	2.82248	1.87017
С	-3.51157	1.5449	1.99516
С	-2.69273	0.42365	1.89757
С	-1.31219	0.56917	1.68935
С	-0.77058	1.85607	1.55237
С	-0.48129	-0.63419	1.62121
С	0.86069	-0.64305	1.72519
S	1.67883	-2.15836	1.8554
0	0.79992	-3.27408	1.60365
0	2.56858	-2.16488	2.98947
F	2.67831	-2.10138	0.59428
Н	-1.16473	3.96921	1.51825
Η	-3.6042	3.70193	1.94183
Н	-4.58242	1.42262	2.1664
Η	-3.11872	-0.57811	1.9838
Η	0.29613	1.98296	1.35534
Η	-1.00479	-1.59162	1.53535
Н	1.50726	0.22076	1.88278

(*S*, *R*, *S*)-TS1

Charge = -1 Multiplicity = 1			
Imagin	nary freque	ncy = -322.9	$305 \mathrm{cm}^{-1}$
С	-2.19296	-2.70825	-0.89209
С	-3.13677	-3.74363	-0.79499
Н	-2.7987	-4.76366	-0.98376
С	-4.45956	-3.46851	-0.4662
Н	-5.17525	-4.28986	-0.39676
С	-4.87799	-2.15451	-0.22348
Н	-5.91545	-1.94287	0.03629
С	-3.95042	-1.12373	-0.31818
Н	-4.25178	-0.0901	-0.12826
С	-2.60948	-1.37094	-0.65028
С	-1.65623	-0.26002	-0.71996
Н	-2.03257	0.74223	-0.49741
С	0.66152	0.3261	-0.96958
С	0.60105	1.79054	-1.22584
С	-0.85153	3.61746	-1.56336
Н	-0.18488	3.98525	-2.35665
С	-2.30663	3.84765	-1.89772
Н	-2.48984	4.92053	-2.04481
Н	-2.94496	3.49103	-1.07894
С	1.89175	-0.40506	-1.38508
С	4.23159	-0.38907	-1.55865
Н	4.20665	-0.70563	-2.61212
Н	4.28828	-1.29894	-0.94237
С	5.378	0.55461	-1.28185
Н	6.33167	0.06815	-1.52527
Н	5.39587	0.84378	-0.22183
Н	5.28461	1.46532	-1.8889
Ν	-0.43417	-0.50786	-1.0461
0	-0.93148	-3.0034	-1.20415
0	-0.65538	2.20954	-1.41345
0	1.54021	2.55233	-1.23487
0	3.01899	0.29845	-1.25078
0	1.89591	-1.56336	-1.74121
Н	-0.56029	4.10318	-0.62095
Н	-2.581	3.3189	-2.82113
Н	-0.42074	-2.12589	-1.23245

С	1.41466	-3.25381	1.64343
С	2.79814	-3.31237	1.82224
С	3.54939	-2.13694	1.78524
С	2.92127	-0.91251	1.5607
С	1.53311	-0.84448	1.37987
С	0.78498	-2.03014	1.42858
С	0.88808	0.46611	1.116
С	-0.36488	0.70229	1.70524
S	-0.90334	2.26181	1.98496
0	0.05572	3.2673	1.5617
Ο	-1.58237	2.39903	3.25861
F	-2.15778	2.50826	0.94731
Н	0.82042	-4.16881	1.66435
Н	3.28906	-4.27201	1.99107
Н	4.63079	-2.17228	1.92902
Н	3.51004	0.00631	1.52154
Н	-0.29545	-1.99717	1.27475
Н	1.5749	1.31419	1.03422
Н	-0.98409	-0.06362	2.16699

(*S*, *R*, *S*)-INT2

Charge = -1 Multiplicity = 1			
С	-2.61519	-2.67826	-0.60117
С	-3.65019	-3.61956	-0.48092
Н	-3.47202	-4.63082	-0.84866
С	-4.86367	-3.26046	0.09311
Н	-5.65478	-4.00794	0.17694
С	-5.08362	-1.95869	0.5631
Н	-6.03877	-1.68671	1.01215
С	-4.06525	-1.02206	0.44782
Н	-4.20731	-0.00005	0.80829
С	-2.82947	-1.35787	-0.1265
С	-1.77441	-0.3482	-0.22188
Н	-1.99383	0.64824	0.17508
С	0.49839	0.18238	-0.81088
С	0.29153	1.57172	-1.45093
С	-1.25115	3.3136	-1.77597

Н	-0.80115	3.53254	-2.75442	
С	-2.75005	3.48799	-1.78024	
Н	-3.00149	4.5228	-2.0484	
Н	-3.15019	3.27259	-0.78141	
С	1.55849	-0.58281	-1.62569	
С	3.84883	-0.76747	-2.09359	
Н	3.67505	-0.90463	-3.17049	Cha
Н	3.85959	-1.76488	-1.62718	С
С	5.11559	0.00361	-1.81274	С
Н	5.97828	-0.53217	-2.22951	Н
Н	5.26377	0.11745	-0.73015	С
Н	5.06934	1.00154	-2.26904	Н
Ν	-0.6535	-0.66343	-0.7579	С
0	-1.45843	-3.04355	-1.15229	Н
0	-0.97282	1.94627	-1.44028	С
0	1.19315	2.24826	-1.87055	Н
0	2.75652	-0.02694	-1.53873	С
0	1.34052	-1.60558	-2.22222	С
Н	-0.76169	3.93632	-1.01346	Н
Н	-3.21898	2.81587	-2.51215	С
Н	-0.87289	-2.21615	-1.17965	С
С	2.21716	-3.07984	1.62059	С
С	3.47474	-2.8348	2.16887	Н
С	3.96203	-1.52657	2.21027	С
С	3.19332	-0.47931	1.70689	Н
С	1.92798	-0.71372	1.15345	Н
С	1.44652	-2.02802	1.11786	С
С	1.12061	0.47152	0.64517	С
С	0.15212	0.88921	1.70145	Н
S	-0.34898	2.42392	1.8678	Н
0	0.44352	3.37479	1.08477	С
0	-0.77183	2.78227	3.21737	Η
F	-1.85699	2.63202	1.09849	Η
Н	1.82725	-4.0983	1.57935	Η
Н	4.07486	-3.65801	2.55954	Ν
Н	4.94706	-1.3216	2.63314	Ο
Н	3.57924	0.5426	1.73657	0
Н	0.47341	-2.24193	0.6732	Ο
Η	1.82875	1.29066	0.45826	Ο
Н	-0.32333	0.1771	2.37308	Ο
				Н
(S, K	R, S)-INT3			Н
				II

			-
Char	ge = -1 Mult	tiplicity = 1	
С	-2.82002	-2.56273	-0.63317
С	-3.96322	-3.36301	-0.48051
Η	-3.85822	-4.44141	-0.60528
С	-5.18917	-2.78463	-0.17449
Н	-6.06533	-3.42527	-0.05871
С	-5.31461	-1.39843	-0.0096
Н	-6.27972	-0.95598	0.23664
С	-4.18987	-0.59935	-0.16145
Н	-4.25121	0.48347	-0.02648
С	-2.94136	-1.15793	-0.47669
С	-1.77223	-0.29227	-0.60886
Н	-1.92066	0.78527	-0.45329
С	0.56075	0.00511	-0.8621
С	0.40509	1.23461	-1.76688
С	-0.35652	3.44341	-1.95097
Η	-0.87712	3.16451	-2.87797
С	-1.12692	4.45509	-1.13885
Η	-1.16007	5.40565	-1.6882
Н	-0.64098	4.59925	-0.166
С	1.70056	-0.81555	-1.47212
С	4.02756	-0.83572	-1.78974
Η	3.9358	-1.1858	-2.8279
Η	4.10323	-1.72223	-1.14078
С	5.19644	0.10088	-1.60464
Η	6.12898	-0.40973	-1.87788
Η	5.26908	0.42355	-0.55701
Η	5.08529	0.9893	-2.24081
Ν	-0.62643	-0.8005	-0.88359
0	-1.6511	-3.13799	-0.91659
0	-0.17145	2.25497	-1.16127
0	0.74046	1.23639	-2.92507
0	2.83573	-0.12665	-1.43457
0	1.60731	-1.94005	-1.88417
Η	0.64042	3.81401	-2.23172
Н	-2.15075	4.10986	-0.95247
Н	-0.97113	-2.39837	-1.00901
С	2.16879	-2.99186	1.93127

C	3.44749	-2.68351	2.39731
С	3.92158	-1.37526	2.28926
С	3.12062	-0.38575	1.71883
С	1.83643	-0.68386	1.25088
С	1.369	-1.99982	1.36349
С	0.96305	0.40538	0.64615
С	-0.17302	0.67356	1.57266
S	-0.73245	2.14908	1.94873
0	0.18839	3.24532	1.64883
0	-1.47321	2.17815	3.20806
F	-2.0218	2.55549	0.91872
Η	1.79033	-4.01262	2.00745
Η	4.07278	-3.4599	2.84081
Η	4.92123	-1.12336	2.64782
Η	3.49766	0.6359	1.62956
Н	0.37627	-2.25401	0.98344
Η	1.56685	1.31855	0.55515
Η	-0.74394	-0.13316	2.02918
Н	-0./4394	-0.13316	2.02

(*S*, *R*, *S*)-TS2

Charg	e = -1 Mult	iplicity $= 1$	
Imagi	nary freque	ncy = -314.1	367 cm ⁻¹
С	-2.50231	-2.36614	-1.12626
С	-3.60721	-3.22908	-1.03577
Н	-3.46176	-4.27871	-1.29572
С	-4.8462	-2.75068	-0.62234
Н	-5.69057	-3.43968	-0.55741
С	-5.01829	-1.40228	-0.28889
Н	-5.98988	-1.03327	0.04073
С	-3.9298	-0.54052	-0.38136
Η	-4.02728	0.5137	-0.10871
С	-2.67438	-0.99756	-0.79979
С	-1.5226	-0.07248	-0.8429
Н	-1.78709	0.99045	-0.85129
С	0.73943	0.23109	-0.99517
С	0.71775	1.65773	-1.55719
С	-0.1081	3.84484	-1.29671
Н	-0.44671	3.82489	-2.34213

С	-1.05964	4.59736	-0.39854
Η	-1.05618	5.66042	-0.67385
Н	-0.75554	4.48821	0.65059
С	2.0224	-0.4286	-1.48667
С	4.36092	-0.36068	-1.26929
Н	4.52464	-0.50343	-2.34723
Н	4.33518	-1.35621	-0.79878
С	5.40906	0.52966	-0.64709
Н	6.4047	0.09018	-0.79101
Н	5.22877	0.64036	0.43101
Н	5.39655	1.52528	-1.11083
Ν	-0.39146	-0.52129	-1.38052
0	-1.31898	-2.84387	-1.51791
0	-0.00828	2.49253	-0.82272
0	1.25186	1.97271	-2.59134
0	3.08578	0.25698	-1.07211
0	2.08904	-1.45633	-2.10531
Н	0.90162	4.28101	-1.28503
Н	-2.08018	4.20707	-0.49609
Н	-0.68602	-2.02105	-1.55584
С	1.95686	-3.25796	1.44904
С	3.12159	-2.9973	2.17274
С	3.50462	-1.67585	2.40652
С	2.72666	-0.62574	1.91834
С	1.55544	-0.87617	1.19451
С	1.17883	-2.20653	0.96438
С	0.73049	0.26803	0.64599
С	-0.69581	0.1919	1.08808
S	-1.34448	1.48777	1.95811
0	-0.42321	2.57527	2.24187
0	-2.26259	1.04027	2.98982
F	-2.3866	2.20504	0.90238
Н	1.65172	-4.28805	1.25704
Н	3.7285	-3.82075	2.55247
Н	4.41383	-1.46012	2.97061
Н	3.03326	0.40776	2.09607
Н	0.28127	-2.41798	0.37792
Η	1.18755	1.2158	0.95511
Н	-1.04232	-0.72511	1.56653

(*S*, *R*, *S*)-INT4

	- <u>}</u>		
	•	15/2	► ►
Charg	ge = -1 Mult	tiplicity = 1	
С	-2.58758	-2.03768	-1.0003
С	-3.77061	-2.80847	-1.23764
Н	-3.641	-3.8837	-1.38539
С	-5.03357	-2.23247	-1.28052
Н	-5.90359	-2.86884	-1.46566
С	-5.21164	-0.85566	-1.09115
Н	-6.20526	-0.4075	-1.12325
С	-4.07941	-0.07107	-0.85859
Н	-4.18795	1.00684	-0.70087
С	-2.80264	-0.62444	-0.81284
С	-1.59576	0.22867	-0.54311
Н	-1.88821	1.28747	-0.4654
С	0.6959	0.50355	-1.00676
С	0.83922	1.99564	-1.32705
С	0.12621	4.16033	-0.73408
Н	-0.31098	4.30252	-1.73265
С	-0.69972	4.80955	0.34916
Н	-0.74907	5.89238	0.17573
Н	-0.25312	4.63048	1.33617
С	1.85191	-0.23728	-1.66732
С	4.17683	-0.54883	-1.54867
Н	4.26016	-0.65923	-2.63893
Н	4.02425	-1.55002	-1.11394
С	5.37216	0.15158	-0.95064
Н	6.2823	-0.42621	-1.1576
Н	5.25612	0.24427	0.13786
Н	5.48952	1.15479	-1.38214
N	-0.57063	0.08622	-1.58071
0	-1.41669	-2.54967	-0.95655
0	0.18155	2.75245	-0.46064
0	1.40507	2.42041	-2.29976
0	3.01447	0.23678	-1.25023
0	1.71903	-1.17417	-2.40838
Н	1.15471	4.54744	-0.76126
Н	-1.72108	4.40642	0.35206
Н	-0.50459	-0.91891	-1.78351
С	2.33279	-3.19206	1.0115

С	3.44584	-2.85169	1.78147
С	3.63449	-1.52558	2.17345
С	2.71667	-0.54805	1.79077
С	1.60224	-0.8814	1.01455
С	1.41195	-2.21546	0.62807
С	0.65152	0.20287	0.55337
С	-0.82997	-0.16762	0.7539
S	-1.4879	0.54336	2.23062
0	-0.59685	0.3485	3.34761
0	-2.90116	0.30228	2.36416
F	-1.35709	2.10423	1.8591
Η	2.17745	-4.22791	0.70519
Η	4.16263	-3.61857	2.07927
Η	4.49936	-1.25032	2.77942
Η	2.87053	0.49111	2.09079
Η	0.53932	-2.48588	0.0231
Η	0.89294	1.12902	1.08959
Η	-0.95422	-1.25021	0.90958

(*S*, *R*, *R*)-INT1

Charge = -1 Multiplicity = 1				
С	1.91522	-2.25858	-1.36705	
С	2.70163	-3.41784	-1.42654	
Η	2.19147	-4.37621	-1.53771	
С	4.09014	-3.34269	-1.34358	
Η	4.68182	-4.25866	-1.39347	
С	4.72283	-2.10469	-1.19589	
Н	5.80962	-2.04286	-1.12822	
С	3.94638	-0.95042	-1.13199	
Н	4.42295	0.02537	-1.00242	
С	2.54756	-0.99466	-1.21741	
С	1.76087	0.23568	-1.08714	
Η	2.30766	1.15714	-0.85134	
С	-0.52608	1.09279	-1.04467	
С	-0.34813	2.47409	-0.6392	
С	1.26481	4.16089	-0.25326	
Η	0.9344	4.26285	0.79306	
С	2.75861	4.35204	-0.38933	
Н	3.04858	5.35236	-0.04088	

Н	3.06623	4.2454	-1.43891	Cha	arge = -1 Mult	tiplicity $= 1$	
С	-1.83137	0.51096	-1.29325	Ima	aginary freque	ncy = -367.6	5950 cm ⁻¹
С	-4.14663	0.82465	-1.59054	С	2.33143	-2.54572	-0.97126
Н	-4.31885	-0.10458	-1.03387	С	3.2634	-3.59653	-0.9494
Н	-4.14728	0.57683	-2.66471	Н	2.88762	-4.61617	-1.04582
С	-5.18774	1.87092	-1.26349	С	4.62139	-3.33631	-0.80661
Н	-6.18803	1.51147	-1.53987	Н	5.32625	-4.16975	-0.7933
Н	-4.98913	2.80444	-1.80808	С	5.09062	-2.02299	-0.67804
Н	-5.18106	2.08932	-0.18637	Н	6.15629	-1.82442	-0.56263
Ν	0.48081	0.17911	-1.20999	С	4.17585	-0.97716	-0.69707
0	0.58391	-2.37043	-1.43642	Н	4.51641	0.05647	-0.59178
0	0.95306	2.85816	-0.72164	С	2.80039	-1.21027	-0.8474
0	-1.18938	3.26036	-0.23838	С	1.8613	-0.08645	-0.82347
0	-2.87579	1.35982	-1.23596	Η	2.28014	0.91061	-0.64081
0	-2.00785	-0.67345	-1.55819	С	-0.49291	0.52527	-0.86352
Н	0.70424	4.90639	-0.83791	С	-0.41609	2.00929	-0.98563
Н	3.2979	3.60236	0.20757	С	1.04821	3.85167	-1.19777
Н	0.20433	-1.42812	-1.4044	Η	0.56396	4.26334	-0.30059
С	2.98754	-0.17782	2.23741	С	2.54166	4.07828	-1.18281
С	3.16907	1.18862	2.4633	Η	2.75815	5.15473	-1.18259
С	2.07247	2.05211	2.43361	Η	3.01309	3.62769	-2.067
С	0.79888	1.55154	2.17469	С	-1.69417	-0.15878	-1.43101
С	0.60845	0.18225	1.93786	С	-3.92661	-0.00936	-2.13458
С	1.71627	-0.67803	1.97508	Н	-4.12387	-0.8788	-1.49649
С	-0.74442	-0.30079	1.64804	Н	-3.7583	-0.36342	-3.1638
С	-1.05073	-1.52276	1.18748	С	-5.04451	1.00322	-2.06044
S	-2.7201	-1.9497	1.00357	Н	-5.97756	0.56239	-2.4358
0	-2.92814	-2.97896	0.02077	Η	-4.81085	1.89187	-2.66284
0	-3.5904	-0.8027	1.11274	Н	-5.19889	1.31483	-1.01838
F	-2.93655	-2.72338	2.40729	Ν	0.61171	-0.31011	-1.00237
Н	3.84195	-0.8557	2.25878	Ο	1.03672	-2.82804	-1.10021
Н	4.16676	1.58056	2.66796	Ο	0.82612	2.44049	-1.23491
Н	2.21187	3.11938	2.61426	Ο	-1.33555	2.77363	-0.80589
Н	-0.06133	2.22476	2.13476	Ο	-2.73604	0.63094	-1.67041
Н	1.58517	-1.74757	1.79861	Ο	-1.72719	-1.35741	-1.60711
Н	-1.56321	0.40302	1.82921	Η	0.5679	4.31035	-2.07514
Н	-0.35833	-2.30817	0.88311	Н	2.98513	3.63264	-0.28052
				Н	0.53655	-1.94799	-1.1136
(S, R	, <i>R</i>)-TS1			С	2.5707	0.88399	2.54737
	2 9		2	С	2.57574	2.26767	2.71914
	- How		2	С	1.43567	3.00676	2.39346

С

С

С

0.3078

0.29507

1.43942

2.39346

1.88636

1.69045

2.04116

2.36622

0.97533

0.24338

С	-0.90744	0.31748	1.11095	
С	-1.16161	-1.04197	1.41378	
S	-2.70914	-1.63031	1.38614	
0	-2.80458	-3.04652	1.07922	
0	-3.66886	-0.69334	0.81586	
F	-3.18765	-1.63528	2.96758	
Н	3.45228	0.29531	2.80657	
Н	3.4603	2.76892	3.11509	
Н	1.42404	4.08859	2.53813	
Н	-0.58041	2.94626	1.62893	
Н	1.45299	-0.84016	1.91624	
Н	-1.78899	0.96659	1.07107	
Н	-0.40604	-1.79252	1.63076	

(*S*, *R*, *R*)-INT2

Charge = -1 Multiplicity = 1

	0	1 2	
С	3.22771	-0.44869	-1.92941
С	4.43482	-0.89545	-2.49031
Η	4.40012	-1.383	-3.46516
С	5.63304	-0.71494	-1.81165
Η	6.56027	-1.06828	-2.26632
С	5.66757	-0.09025	-0.55708
Η	6.6131	0.04372	-0.03208
С	4.47921	0.35044	0.00712
Η	4.47736	0.83352	0.98718
С	3.25489	0.1853	-0.65994
С	2.01182	0.61964	-0.03042
Η	2.09178	1.02663	0.99315
С	-0.36121	0.74219	0.01228
С	-0.30695	1.80399	1.12397
С	0.36856	4.00845	1.60682
Η	0.92061	3.66495	2.49342
С	1.06863	5.14548	0.9042
Η	1.15746	6.00235	1.58435
Η	0.5017	5.46026	0.01799
С	-1.34856	1.25255	-1.04923

С	-3.62911	1.7168	-1.3558
Η	-3.74009	0.77955	-1.92407
Η	-3.4102	2.52715	-2.06565
С	-4.84211	2.00175	-0.50587
Η	-5.72151	2.14075	-1.14863
Η	-4.69571	2.91549	0.08647
Η	-5.01901	1.1524	0.16582
Ν	0.89474	0.49645	-0.63591
0	2.08968	-0.63708	-2.5951
0	0.27214	2.91458	0.68128
0	-0.75406	1.67747	2.23172
0	-2.50706	1.55394	-0.47824
0	-1.11497	1.35129	-2.22151
Η	-0.64662	4.28004	1.92954
Η	2.07649	4.84371	0.58912
Η	1.35464	-0.22381	-2.04657
С	1.95114	-2.86498	1.57628
С	1.92873	-2.74339	2.96766
С	0.96226	-1.94012	3.5711
С	0.02876	-1.25568	2.78926
С	0.04009	-1.36947	1.39461
С	1.01162	-2.18884	0.80097
С	-0.96933	-0.6159	0.54273
С	-1.54581	-1.38456	-0.60916
S	-3.09866	-1.83923	-0.61777
0	-3.61257	-2.16553	-1.94878
0	-3.95561	-1.08065	0.2981
F	-3.24546	-3.35946	0.09354
Η	2.70361	-3.49021	1.0923
Η	2.66087	-3.27549	3.57729
Η	0.93229	-1.84346	4.65785
Η	-0.71615	-0.61399	3.26193
Н	1.03985	-2.28204	-0.28725
Н	-1.80286	-0.30671	1.18683
Η	-0.94844	-1.79402	-1.42202

(*S*, *R*, *R*)-INT3

Charge = -1 Multiplicity = 1 C 3.76127 1.49517 -0.7419

С	5.11186	1.64669	-1.09508	0
Н	5.34984	2.25001	-1.97201	0
С	6.10841	1.03779	-0.34223	F
Н	7.15186	1.16858	-0.63504	Η
С	5.79241	0.2602	0.77964	Н
Н	6.58047	-0.21744	1.36162	Η
С	4.45919	0.10472	1.13516	Η
Н	4.18511	-0.50423	2.0002	Н
С	3.43411	0.71294	0.39584	Η
С	2.03827	0.50676	0.77453	Η
Н	1.84492	-0.15813	1.62748	
С	-0.28284	0.76267	0.34728	(S
С	-0.61742	0.61722	1.84033	
С	-2.1069	-0.27086	3.42107	
Н	-2.39601	0.72998	3.77425	
С	-3.26375	-1.24012	3.45632	
Н	-3.65023	-1.31705	4.48091	
Н	-2.94491	-2.24044	3.13182	
С	-1.09429	1.93206	-0.22966	C
С	-3.01845	3.27773	0.0812	In
Н	-2.3869	4.11582	-0.24214	С
Н	-3.56269	3.56751	0.98716	С
С	-3.96034	2.83618	-1.01748	Н
Н	-4.67963	3.63903	-1.22963	С
Н	-4.51392	1.93673	-0.71241	Н
Н	-3.4053	2.60773	-1.93625	С
Ν	1.10038	1.07655	0.11819	Η
0	2.82368	2.0856	-1.47969	С
0	-1.66643	-0.15763	2.0621	Η
0	-0.00417	1.17446	2.71344	С
0	-2.165	2.20215	0.50536	С
0	-0.78982	2.51649	-1.23485	Η
Н	-1.26291	-0.61101	4.0376	С
Н	-4.07622	-0.89829	2.80052	С
Н	1.93495	1.85623	-1.06361	С
С	-4.28146	-1.58608	-0.72531	Η
С	-4.65275	-0.99482	-1.93554	С
С	-3.70807	-0.27247	-2.66146	Н
С	-2.40844	-0.13232	-2.17158	Н
С	-2.02622	-0.71065	-0.9546	С
С	-2.97997	-1.45153	-0.24552	С
С	-0.58171	-0.56544	-0.49127	Η
С	0.01761	-1.73696	0.21115	Η
S	1.25029	-2.55936	-0.45519	С

0	1.94216	-3.44055	0.48272
0	2.04241	-1.78189	-1.41038
F	0.63263	-3.71831	-1.50694
Η	-5.00945	-2.16567	-0.15447
Η	-5.67025	-1.10749	-2.31342
Η	-3.97987	0.1856	-3.61419
Η	-1.67258	0.43557	-2.74604
Η	-2.69505	-1.92989	0.69035
Η	0.0097	-0.38792	-1.40045
Η	-0.45759	-2.2389	1.05105

(*S*, *R*, *R*)-TS2

Charge = -1 Multiplicity = 1						
Imaginary frequency = -236.7922 cm ⁻¹						
С	-3.41527	1.5448	-0.09349			
С	-4.76816	1.73189	0.24274			
Н	-5.0602	2.69088	0.67361			
С	-5.69896	0.72164	0.02953			
Н	-6.74314	0.89132	0.30014			
С	-5.3128	-0.50359	-0.52661			
Н	-6.04554	-1.29412	-0.69031			
С	-3.97681	-0.69595	-0.86269			
Н	-3.64675	-1.64908	-1.28477			
С	-3.01965	0.30401	-0.65926			
С	-1.59851	0.05638	-0.98113			
Н	-1.42802	-0.80576	-1.63913			
С	0.5885	0.78261	-0.82163			
С	1.12167	0.09976	-2.08435			
С	1.11933	-1.89137	-3.34851			
Н	2.21529	-1.9042	-3.44298			
С	0.53941	-3.28169	-3.24484			
Н	0.7794	-3.85264	-4.15116			
Н	-0.55338	-3.23829	-3.1396			
С	1.39052	2.06091	-0.56795			
С	3.5647	2.97048	-0.42371			
Н	3.12618	3.83827	-0.934			
Н	4.50013	2.69681	-0.92572			
С	3.79049	3.25902	1.0461			

Н	4.45856	4.12473	1.15246	Н	4.49055	2.00856	-0.77839
Н	4.2554	2.39826	1.54515	С	5.30618	0.1667	-0.00473
Н	2.83935	3.49282	1.54351	Н	6.32546	0.41043	-0.31788
Ν	-0.78177	1.10834	-0.95984	С	5.05209	-1.04435	0.65477
0	-2.54651	2.52881	0.1051	Н	5.85422	-1.75149	0.86804
0	0.77691	-1.18525	-2.14885	С	3.73955	-1.31162	1.04218
0	1.68358	0.67376	-2.98171	Н	3.51388	-2.24672	1.56498
0	2.7003	1.84359	-0.61851	С	2.68553	-0.43241	0.78288
0	0.89732	3.12579	-0.30225	С	1.29649	-0.81873	1.2525
Н	0.71716	-1.33776	-4.2085	Н	1.41144	-1.66414	1.94863
Н	0.95419	-3.81748	-2.37977	С	-0.50593	0.77933	1.04539
Н	-1.6397	2.17183	-0.25273	С	-1.87939	0.55136	1.68778
С	3.71655	-2.44009	0.59067	С	-3.2862	-1.05399	2.67308
С	4.51976	-1.79301	1.53026	Н	-4.04313	-0.88142	1.89247
С	4.05436	-0.62814	2.14045	С	-3.21673	-2.50293	3.09037
С	2.80311	-0.11537	1.80126	Н	-4.18168	-2.81549	3.50981
С	1.993	-0.7447	0.84781	Н	-2.44005	-2.64849	3.85296
С	2.46449	-1.92424	0.25563	С	-0.34704	2.29252	0.87287
С	0.64617	-0.13758	0.51757	С	-0.72528	4.11991	-0.56919
С	-0.51593	-1.07619	0.46892	Н	-0.78057	4.68831	0.36767
S	-1.50045	-1.12274	1.82695	Н	-1.59628	4.36617	-1.18889
0	-2.55151	-2.11615	1.71208	С	0.57989	4.36866	-1.29665
0	-1.80954	0.19663	2.34966	Н	0.72564	5.44608	-1.45443
F	-0.56128	-1.7481	3.03106	Н	0.57544	3.86892	-2.27572
Н	4.06344	-3.35967	0.11615	Н	1.41333	3.9547	-0.71413
Н	5.49795	-2.19936	1.79188	Ν	0.5486	0.26309	1.90453
Η	4.66539	-0.11655	2.88651	0	1.99194	1.65647	-0.15978
Н	2.44339	0.79651	2.28447	0	-2.00322	-0.68893	2.14641
Н	1.84427	-2.44905	-0.47022	0	-2.75316	1.37788	1.74593
Н	0.42414	0.61119	1.29336	0	-0.85917	2.72466	-0.26824
Н	-0.3767	-2.08541	0.07495	0	0.11709	2.99576	1.7317
				Н	-3.52001	-0.38994	3.51721
(S, F	R, R)-INT4			Н	-2.98796	-3.14742	2.23

Charge = -1 Multiplicity = 1				
С	2.91691	0.82208	0.10247	
С	4.28477	1.06605	-0.26435	

п	1.41555	5.954/	-0./1413
Ν	0.5486	0.26309	1.90453
0	1.99194	1.65647	-0.15978
0	-2.00322	-0.68893	2.14641
0	-2.75316	1.37788	1.74593
0	-0.85917	2.72466	-0.26824
0	0.11709	2.99576	1.7317
Н	-3.52001	-0.38994	3.51721
Н	-2.98796	-3.14742	2.23
Н	1.1719	1.03098	2.14217
С	-3.81348	-1.30766	-1.53349
С	-4.05817	-0.45293	-2.6082
С	-3.11753	0.52333	-2.93652
С	-1.94892	0.64992	-2.18676
С	-1.69726	-0.19207	-1.09629
С	-2.64157	-1.18082	-0.78811
С	-0.41846	-0.00588	-0.30761
С	0.29087	-1.27459	0.15848
S	1.10631	-2.14792	-1.15832
0	1.82381	-3.29022	-0.65234

Ο	1.67966	-1.27831	-2.15178
F	-0.20529	-2.76627	-1.86005
Н	-4.53446	-2.0851	-1.27555
Η	-4.97388	-0.55356	-3.19283
Н	-3.29217	1.18999	-3.78249
Н	-1.21628	1.41761	-2.43974
Н	-2.46333	-1.87428	0.0349
Н	0.30306	0.56691	-0.90311
Н	-0.40226	-2.01895	0.57561

(*R*, *S*, *R*)-SUB

Charo	e=-1 Multiplicity=1
Charge	2 06674 -2 67332 -1 04769
C C	3 0247 -3 69117 -0 928
н	2 68202 -4 72513 -0 99643
C	4 3684 -3 38654 -0 7254
н	5.0949 -4.19629 -0.63534
n C	4 78613 -2 05509 -0 63388
н	5 83706 -1 81/37 -0./6967
n C	3 8/18 1 03020 0 75387
с u	4 14552 0 00854 0 67777
п	4.14332 0.00834 -0.07777
C	2.48211 -1.31334 -0.90028
U U	1.5197 -0.21412 -1.06962
H	1.91823 0.80265 -0.99025
C	0.88186 0.71295 1.67247
H	1.64548 -0.06526 1.68572
С	-0.86433 0.27759 -1.21885
С	-0.45085 0.5397 1.69121
Н	-1.08832 1.42933 1.70321
С	-0.9133 1.72685 -1.20503
С	0.44137 3.68018 -1.32723
Н	1.41356 3.94494 -0.89222
Н	0.25369 -2.14024 -1.26037
С	0.36236 4.06352 -2.79225
Н	0.50479 5.14701 -2.90896
Н	-0.62077 3.79656 -3.20271
С	-2.06512 -0.55514 -1.25232
С	-4.40605 -0.69702 -1.06967

Н	-4.2751 -1.57766 -0.42425
Н	-4.56632 -1.06656 -2.09544
С	-5.55406 0.17059 -0.60631
Н	-6.49572 -0.39334 -0.64325
Н	-5.65303 1.05848 -1.24592
Η	-5.389 0.5057 0.42768
С	-1.13032 -0.75585 1.73929
С	-2.5107 -0.78201 1.99369
Н	-3.04486 0.15881 2.14185
С	-3.1928 -1.99344 2.05682
Н	-4.26474 -2.00373 2.26164
С	-2.50544 -3.19153 1.85255
Н	-3.04 -4.1418 1.8961
С	-1.13646 -3.17237 1.58051
Н	-0.60039 -4.10395 1.39475
С	-0.4497 -1.96396 1.52482
Н	0.61742 -1.95893 1.29288
Ν	0.26584 -0.48498 -1.2115
0	0.48895 3.32297 1.64904
0	0.78617 -3.00255 -1.23157
0	2.67889 2.43423 0.7875
0	0.33906 2.26912 -1.15774
0	-1.89229 2.45118 -1.24753
0	-3.22552 0.09401 -1.03327
0	-2.05119 -1.76237 -1.42876
S	1.52316 2.31815 1.6434
Η	-0.34617 4.17302 -0.74424
Η	1.14111 3.54648 -3.37035
F	2.14785 2.37307 3.12758
(\mathbf{R}, \mathbf{S})	R)-TS1

Charge = -1 Multiplicity = 1 Imaginary frequency = -283.7705 cm⁻¹ C 2.67788 -2.02995 -1.37125 C 3.79125 -2.87549 -1.48758 H 3.62938 -3.8895 -1.85614 C 5.06006 -2.42626 -1.13551 H 5.91228 -3.10147 -1.23268 C 5.25063 -1.12466 -0.65736

Η	6.24569 -0.77902 -0.37614	
С	4.15259 -0.27951 -0.54217	
Н	4.27145 0.73519 -0.15485	
С	2.86382 -0.70445 -0.89695	
С	1.72148 0.19588 -0.73471	
Н	1.92889 1.2073 -0.36484	
С	0.52178 -0.02587 1.7841	
Н	1.06033 -0.94703 1.9967	
С	-0.63273 0.44715 -0.79637	
С	-0.78153 0.03782 1.26115	
Η	-1.36284 0.94801 1.43413	
С	-0.74645 1.94308 -0.7495	
С	0.36305 3.97131 -1.21915	
Η	1.42555 4.21071 -1.35397	
Η	0.81817 -1.7204 -1.57453	
С	-0.49148 4.66394 -2.26175	
Η	-0.35867 5.75232 -2.19074	
Η	-1.55243 4.43032 -2.1042	
С	-1.79939 -0.28712 -1.36363	
С	-4.1347 -0.42839 -1.53391	
Η	-4.0864 -1.4456 -1.11696	
Н	-4.12233 -0.5175 -2.63064	
С	-5.34833 0.32401 -1.04257	
Н	-6.26392 -0.1859 -1.36999	
Н	-5.35716 1.34806 -1.44018	
Н	-5.35162 0.37555 0.05517	
С	-1.5719 -1.21895 1.26529	
С	-2.93184 -1.19196 1.60034	
Н	-3.39851 -0.23943 1.86014	
С	-3.68564 -2.3654 1.60607	
Н	-4.74286 -2.32871 1.87517	
С	-3.09033 -3.58086 1.26566	
Η	-3.67931 -4.49934 1.26689	
С	-1.73851 -3.6141 0.91586	
Η	-1.27083 -4.55828 0.63192	
С	-0.98468 -2.44319 0.9136	
Η	0.0588 -2.46694 0.5911	
Ν	0.54576 -0.19043 -1.10292	
0	0.83562 2.54739 1.56699	
Ο	1.46841 -2.4901 -1.70149	
Ο	2.77203 1.15133 2.35584	
0	0.28968 2.5487 -1.34099	
Ο	-1.66172 2.55424 -0.25212	
0	-2.97623 0.29231 -1.11272	

O -1.71107 -1.34354 -1.94863 S 1.34101 1.35599 2.23209 H 0.06483 4.24657 -0.19951 H -0.20164 4.34502 -3.27253 F 0.90361 1.63471 3.78676 (*R***, S, R)-INT2**

Charg	e = -1 Multiplicity $= 1$
С	3.18563 -1.53211 -1.15783
С	4.46282 -2.09697 -1.31316
Н	4.53238 -3.10588 -1.72174
С	5.59764 -1.38129 -0.95305
Н	6.57975 -1.83982 -1.08296
С	5.49851 -0.08563 -0.42762
Н	6.39466 0.46748 -0.14666
С	4.24074 0.48005 -0.26896
Н	4.13397 1.48667 0.14279
С	3.07746 -0.21962 -0.62544
С	1.76377 0.39241 -0.427
Н	1.72482 1.39768 0.01335
С	0.0159 0.37831 2.05703
Н	0.18483 -0.22775 2.94607
С	-0.60689 0.19573 -0.47587
С	-0.98387 -0.11399 1.04708
Н	-1.96893 0.36567 1.15455
С	-0.93127 1.67896 -0.75851
С	-0.22918 3.63491 -1.84865
Н	0.75716 3.96878 -2.19217
Н	1.30511 -1.64465 -1.33578
С	-1.2965 3.9021 -2.88973
Н	-1.34471 4.9786 -3.10327
Н	-2.27926 3.574 -2.52726
С	-1.55743 -0.65379 -1.34549
С	-3.80409 -1.12332 -1.83645
Н	-3.68078 -2.16037 -1.48857
Н	-3.60088 -1.1058 -2.91655
С	-5.16697 -0.56741 -1.5035
Н	-5.94257 -1.15931 -2.00643
Н	-5.25045 0.47528 -1.83819

Η	-5.34821 -0.60364 -0.42065
С	-1.17463 -1.61115 1.21292
С	-2.46211 -2.15302 1.29079
Н	-3.32452 -1.48236 1.27433
С	-2.65262 -3.53334 1.38249
Н	-3.66438 -3.93779 1.44469
С	-1.55294 -4.39032 1.39644
Н	-1.69859 -5.46956 1.46443
С	-0.26338 -3.85852 1.32784
Η	0.60278 -4.5224 1.34034
С	-0.07519 -2.4803 1.24052
Η	0.93351 -2.06651 1.18616
Ν	0.71369 -0.24969 -0.77814
0	0.52993 2.79985 1.2068
0	2.11259 -2.23601 -1.50817
0	1.15872 2.14713 3.53935
0	-0.07345 2.22971 -1.60482
0	-1.89417 2.23574 -0.3047
0	-2.82695 -0.31095 -1.17282
0	-1.19859 -1.55051 -2.06021
S	0.29081 1.95207 2.38306
Н	-0.45801 4.1186 -0.89017
Н	-1.06448 3.3735 -3.82449
F	-1.12768 2.66051 2.92662

(*R*, *S*, *R*)-INT3

Charge=-1 Multiplicity=1				
3.53115	-1.13044	-0.74539		
4.87734	-1.52467	-0.65899		
5.13805	-2.5345	-0.97832		
5.8394	-0.6449 ·	-0.18028		
6.87919	-0.97236	-0.12329		
5.49411	0.65055	0.22936		
6.256	1.33354	0.60478		
4.16669	1.04792	0.15077		
3.86966	2.0508	0.46737		
3.17309	0.18073	-0.33118		
1.77823	0.62232	-0.37491		
1.54865	1.62005	0.01362		
-0.52755	0.02095	-0.77812		
	= -1 Mult 3.53115 4.87734 5.13805 5.8394 6.87919 5.49411 6.256 4.16669 3.86966 3.17309 1.77823 1.54865 -0.52755	=-1 Multiplicity=1 3.53115 -1.13044 4.87734 -1.52467 5.13805 -2.5345 5.8394 -0.6449 6.87919 -0.97236 5.49411 0.65055 6.256 1.33354 4.16669 1.04792 3.86966 2.0508 3.17309 0.18073 1.77823 0.62232 1.54865 1.62005 -0.52755 0.02095		

С	-1.03721 1.35647	-1.3478
С	-0.68188 3.68975	-1.36423
Н	-0.19376 4.33287	-0.62172
Н	1.73668 -1.51011	-1.20452
С	-0.29216 4.05689	-2.78021
Н	-0.58595 5.0946	-2.98884
Н	-0.79909 3.40073	-3.5002
С	-1.16206 -1.13192	-1.57333
С	-3.15187 -2.29351	-2.01829
Н	-2.75754 -3.2192	-1.57073
Н	-2.91352 -2.31332	-3.09112
С	-4.63126 -2.12575	-1.76922
Н	-5.18252 -2.95463	-2.23179
Н	-4.989 -1.18202 -	-2.20219
Н	-4.8497 -2.12181	-0.69253
Ν	0.8868 -0.17605	-0.83316
0	2.62876 -1.99075	-1.20742
0	-0.23922 2.36531	-1.03459
0	-2.03906 1.47114	-2.00456
0	-2.47761 -1.18312	-1.417
0	-0.53731 -1.93861	-2.21169
Н	-1.76592 3.73479	-1.20745
Н	0.7939 3.9688 -	2.92021
С	0.5709 -3.42936	1.8506
С	-0.54004 -4.27026	1.9341
С	-1.80802 -3.76074	1.65721
С	-1.95873 -2.42338	1.2872
С	-0.85148 -1.57184	1.18996
С	0.41669 -2.09224	1.48728
С	-1.03806 -0.12699	0.75688
С	-0.38275 0.84153	1.67361
S	-1.06983 2.27787	1.98012
0	-2.17242 2.59534	1.06727
0	-0.13699 3.33538	2.36599
F	-1.93489 2.16454	3.41361
Н	1.56733 -3.81559	2.07185
Н	-0.41749 -5.31631	2.21909
Н	-2.68636 -4.40458	1.7287
Н	-2.95251 -2.02896	1.06499
Н	1.29706 -1.4492	1.43611
Н	-2.11534 0.07604	0.69302
Н	0.52948 0.63186	2.22692

(*R*, *S*, *R*)-TS2

Charge = -1 Multiplicity = 1			
Imagir	hary frequency = -254.0264 cm ⁻¹		
С	2.49319 -2.30901 -1.20834		
С	3.59326 -3.18121 -1.17118		
Н	3.44546 -4.20937 -1.50488		
С	4.831 -2.7377 -0.71725		
Н	5.6724 -3.43302 -0.6951		
С	5.00534 -1.41645 -0.28877		
Н	5.97602 -1.0761 0.07291		
С	3.92187 -0.54489 -0.329		
Н	4.01619 0.48633 0.02132		
С	2.66651 -0.96671 -0.78621		
С	1.52783 -0.03117 -0.7856		
Н	1.79909 1.025 -0.67515		
С	-0.73847 0.31211 -0.91438		
С	-0.63727 1.77264 -1.36866		
С	0.33824 3.87369 -0.80576		
Н	0.41338 4.36826 0.16998		
Н	0.67811 -1.94309 -1.61343		
С	1.64387 3.94029 -1.56993		
Н	1.90015 4.98627 -1.78639		
Н	1.56242 3.39859 -2.52268		
С	-2.01844 -0.2747 -1.48719		
С	-4.36111 -0.08983 -1.40731		
Н	-4.42531 -1.10743 -0.99175		
Н	-4.45489 -0.16763 -2.50011		
С	-5.39919 0.83003 -0.81169		
Н	-6.40513 0.45855 -1.0465		
Н	-5.29744 1.84455 -1.22009		
Н	-5.29156 0.87802 0.28057		
Ν	0.38685 -0.43807 -1.30964		
0	1.31114 -2.75551 -1.64021		
0	0.01836 2.51489 -0.487		
0	-1.03795 2.17572 -2.43119		
0	-3.07039 0.44084 -1.0916		
0	-2.10047 -1.27397 -2.14944		
Н	-0.4935 4.30798 -1.37578		
Н	2.44918 3.49631 -0.96843		

С	-1.85589	-3.4054	1.2416
С	-3.10074	-3.25553	1.85519
С	-3.58904	-1.97448	2.11473
С	-2.83565	-0.85441	1.76151
С	-1.58442	-0.99332	1.14917
С	-1.10337	-2.28457	0.89177
С	-0.79152	0.22784	0.74381
С	0.60426	0.21125	1.24656
S	1.21882	1.59617	1.98895
0	0.23647	2.61718	2.31263
0	2.49292	2.05844	1.45081
F	1.68399	1.01252	3.44621
Н	-1.46805	-4.40327	1.02943
Н	-3.68785	-4.13356	2.12893
Н	-4.56114	-1.84473	2.5939
Н	-3.22375	0.14753	1.95968
Н	-0.1437	-2.41202	0.3862
Н	-1.32401	1.12732	1.07652
Н	1.03668	-0.69095	1.67878

(*R*, *S*, *R*)-INT4

Charg	e = -1 Multiplicity $= 1$
С	2.49295 -1.90311 -1.29959
С	3.68131 -2.63357 -1.62321
Н	3.5556 -3.67146 -1.94213
С	4.94588 -2.06514 -1.5377
Н	5.81993 -2.66976 -1.79585
С	5.12154 -0.73712 -1.1275
Н	6.11644 -0.29593 -1.06029
С	3.98377 0.00814 -0.80738
Н	4.08808 1.04752 -0.47824
С	2.7058 -0.53889 -0.88728
С	1.5006 0.26635 -0.49753
Н	1.80616 1.30093 -0.2824
С	-0.76779 0.68576 -0.83279
С	-0.76914 2.22004 -0.82852
С	0.12554 4.10444 0.30069
Н	0.18374 4.34743 1.36752

(R , S,	<i>R</i>)-TS3
Н	0.90948 -1.36669 0.8429
H	-1.00755 0.87441 1.34124
H	-0.5367 -2.46901 -0.37919
H	-2.98695 0.05189 2.11629
H	-4.61008 -1.80125 2.41141
H	-4.21146 -3.99546 1.29633
Н	-2.17205 -4.31923 -0.0936
F	2.7469 -0.55711 2.3775
0	1.93886 1.71519 2.14772
0	0.61788 0.0009 3.4047
S	1.43934 0.36867 2.27778
С	0.77063 -0.27977 0.7658
С	-0.72491 0.08608 0.63411
С	-1.43496 -2.32114 0.23086
С	-1.65905 -1.0851 0.85194
С	-2.80612 -0.91197 1.63455
С	-3.7212 -1.95143 1.79632
С	-3.4975 -3.17965 1.17242
С	-2.35364 -3.35981 0.39382
Η	2.24821 3.80499 0.07899
Η	-0.70364 4.66064 -0.15496
0	-1.96321 -0.59779 -2.48786
0	-3.1003 0.68898 -1.05083
0	-1.17567 2.8868 -1.74245
0	-0.18251 2.7035 0.2593
0	1.3207 -2.40713 -1.36614
Ν	0.44818 0.28596 -1.51448
Η	-5.30945 0.55588 0.39166
Η	-5.47399 1.82746 -0.85283
Η	-6.41526 0.31944 -0.9871
С	-5.4496 0.74282 -0.68184
Н	-4.45222 0.26464 -2.55842
Н	-4.27548 -0.98248 -1.29999
С	-4.33867 0.10283 -1.47725
С	-1.99434 0.19356 -1.5845
Н	1.37586 4.07451 -1.46176
Н	1.68062 5.43932 -0.35793
С	1.43879 4.36902 -0.40475
Η	0.3369 -0.68179 -1.8418

Charge	e=-1 Mult	iplicity=1	
Imagir	nary freque	ency = -41.	$9997{\rm cm}^{-1}$
С	-3.52639	0.22212	1.24084
С	-4.7905	0.67287	1.7606
Н	-5.14994	0.16475	2.65945
С	-5.53411	1.68735	1.17953
Н	-6.48679	1.97802	1.6317
С	-5.08541	2.33833	0.02181
Н	-5.66879	3.13309	-0.44409
С	-3.86651	1.92995	-0.51962
Н	-3.49106	2.41661	-1.42646
С	-3.09123	0.91635	0.0468
С	-1.76242	0.63156	-0.60641
Н	-1.88054	0.69714	-1.70364
С	-1.07699	-0.70317	-0.27788
Н	-1.19973	-0.88634	0.80047
С	0.5848	0.97953	-0.22427
С	0.36349	-0.48564	-0.73309
Н	0.38485	-0.41834	-1.82921
С	1.53116	1.74303	-1.15561
С	2.70359	3.77856	-1.38931
Н	2.46811	4.8046	-1.08528
Н	-0.93471	1.9127	0.75376
С	4.12301	3.39747	-1.02334
Н	4.83134	4.06697	-1.52953
Н	4.33782	2.36579	-1.33343
С	1.19667	0.94406	1.17875
С	3.19636	0.55269	2.36496
Н	2.6432	-0.22554	2.91041
Н	3.17624	1.47242	2.96722
С	4.59869	0.11432	2.0225
Н	5.15834	-0.09144	2.94417
Н	5.12629	0.89681	1.46052
Н	4.56866	-0.80203	1.41608
С	1.39135	-1.50288	-0.29697
С	2.46184	-1.79979	-1.14644
Н	2.51632	-1.30951	-2.12034
С	3.45565	-2.69522	-0.75102

Н	4.28337 -2.9186 -1.42592
С	3.39163 -3.30177 0.50349
Η	4.16782 -4.00239 0.8151
С	2.32652 -3.01035 1.35765
Η	2.26597 -3.48349 2.33899
С	1.33081 -2.1198 0.9588
Η	0.50149 -1.90777 1.63718
Ν	-0.72993 1.6092 -0.19759
0	-3.281 -1.93445 -1.19611
0	-2.87928 -0.72128 1.79662
0	-1.37137 -3.34297 -0.404
0	1.76239 2.95872 -0.6797
0	1.98508 1.31295 -2.18363
0	2.50877 0.80587 1.12952
Ο	0.54331 0.98271 2.18849
S	-1.86972 -2.12137 -0.98312
Η	2.52176 3.67225 -2.46659
Η	4.27569 3.48208 0.06128
F	-1.22954 -2.06334 -2.46656

(*R*, *S*, *R*)-INT5

Charge=-1 Multiplicity=1			
С	-3.77516	0.0882	0.79658
С	-4.98292	0.57536	1.39724
Н	-5.55879	-0.14355	1.98553
С	-5.42164	1.88246	1.24932
Н	-6.35396	2.19144	1.73015
С	-4.68915	2.80607	0.492
Н	-5.03249	3.83373	0.36861
С	-3.50309	2.37285	-0.10152
Н	-2.90855	3.07437	-0.69494
С	-3.03441	1.06441	0.03941
С	-1.72927	0.70241	-0.62617
Н	-1.85791	0.69211	-1.72489
С	-1.0944	-0.63879	-0.23009
Н	-1.17848	-0.79911	0.84873
С	0.62432	0.99167	-0.25038

С	0.3502 -0.47771 -0.70279
Н	0.36593 -0.4489 -1.79959
С	1.62284 1.68227 -1.18277
С	2.88305 3.65938 -1.45875
Н	2.68612 4.70286 -1.18853
Н	-0.86506 2.06847 0.62324
С	4.28155 3.23237 -1.06419
Η	5.02233 3.853 -1.58598
Н	4.45503 2.18223 -1.33583
С	1.19127 0.97603 1.17083
С	3.13541 0.53049 2.42814
Н	2.5333 -0.21357 2.96941
Н	3.13542 1.46163 3.01292
С	4.52796 0.02749 2.13863
Η	5.05005 -0.18191 3.08128
Η	5.10471 0.77582 1.57838
Н	4.47796 -0.89924 1.54952
С	1.34389 -1.51731 -0.2395
С	2.43127 -1.83552 -1.06126
Н	2.52289 -1.34052 -2.0298
С	3.3904 -2.75779 -0.64669
Η	4.23071 -2.99642 -1.30057
С	3.27659 -3.37453 0.60042
Η	4.02613 -4.09714 0.9267
С	2.19576 -3.06448 1.4255
Η	2.09452 -3.54452 2.40011
С	1.23357 -2.14391 1.0073
Η	0.39351 -1.92038 1.66777
Ν	-0.6646 1.6726 -0.29434
0	-3.09312 -1.71428 -1.75557
0	-3.396 -1.1234 0.93238
0	-1.91786 -3.22401 -0.08768
0	1.90113 2.8999 -0.73715
0	2.071 1.20444 -2.19197
0	2.49804 0.78797 1.16691
0	0.5083 1.06074 2.15826
S	-1.96055 -2.05448 -0.92808
Н	2.70925 3.52772 -2.53456
Н	4.42808 3.34873 0.01831
F	-0.84222 -2.42032 -2.06947

(*R*, *S*, *R*)-TS4

Charge=-1 Multiplicity=1			
Imagir	nary freque	ency = -65.	1767 cm ⁻¹
С	-3.78265	0.10291	0.7044
С	-4.99003	0.54988	1.32227
Н	-5.59036	-0.20653	1.83299
С	-5.39688	1.87619	1.28631
Н	-6.33122	2.16263	1.77617
С	-4.62854	2.84534	0.62994
Н	-4.94687	3.88777	0.59597
С	-3.44055	2.44324	0.01913
Н	-2.81982	3.18116	-0.49737
С	-3.00651	1.11595	0.05044
С	-1.70589	0.75195	-0.6179
Н	-1.83715	0.73905	-1.71612
С	-1.10445	-0.60218	-0.21788
Н	-1.18199	-0.75087	0.86349
С	0.64813	0.99214	-0.25074
С	0.34025	-0.47456	-0.69494
Н	0.35253	-0.45395	-1.79153
С	1.65549	1.65857	-1.19111
С	2.95863	3.60585	-1.47888
Н	2.78635	4.65464	-1.21241
Н	-0.81332	2.09423	0.635
С	4.34816	3.14853	-1.08651
Н	5.10149	3.74842	-1.61456
Н	4.49591	2.09296	-1.35243
С	1.22289	0.9712	1.16716
С	3.16212	0.48975	2.41765
Н	2.54944	-0.24338	2.962
Н	3.17904	1.42189	3.00059
С	4.54546	-0.03657	2.1255
Н	5.06638	-0.25256	3.06732
Н	5.13301	0.70111	1.56238
Н	4.47891	-0.96359	1.53856
С	1.31485	-1.5303	-0.22833
С	2.39928	-1.86658	-1.04689

Η	2.50103	-1.37357	-2.0154
С	3.34203	-2.80445	-0.63015
Η	4.17985	-3.05697	-1.28207
С	3.21529	-3.41925	0.61679
Η	3.95202	-4.15409	0.94498
С	2.13761	-3.09128	1.43884
Η	2.02585	-3.56959	2.41319
С	1.19159	-2.1549	1.0181
Η	0.35372	-1.91832	1.67673
Ν	-0.62658	1.70266	-0.2876
0	-3.09678	-1.62132	-1.82767
0	-3.42235	-1.13113	0.75093
0	-2.04358	-3.17851	-0.09143
0	1.96195	2.87172	-0.75135
0	2.08914	1.16782	-2.20039
0	2.52515	0.75506	1.15779
0	0.54728	1.07555	2.15796
S	-2.04306	-1.98342	-0.90248
Η	2.77879	3.47385	-2.55365
Η	4.50131	3.26784	-0.00525
F	-0.87601	-2.40089	-2.00684

(*R*, *S*, *R*)-INT6

Charge	=-1 Multiplicity=1
С	3.7665 -0.11719 0.62212
С	4.99305 -0.48472 1.22756
Н	5.60238 0.31657 1.64985
С	5.40643 -1.80998 1.29007
Н	6.35796 -2.05245 1.76867
С	4.61939 -2.82915 0.74437
Н	4.94285 -3.86959 0.78885
С	3.4097 -2.48923 0.14044
Н	2.77648 -3.26847 -0.29165
С	2.97281 -1.16377 0.07743
С	1.663 -0.82194 -0.57661
Н	1.785 -0.82822 -1.67552
С	1.10471 0.55122 -0.19183

Н	1.16113 0.68534 0.89427
С	-0.68513 -0.99794 -0.22273
С	-0.33231 0.4575 -0.68619
Н	-0.32711 0.42554 -1.78184
С	-1.68885 -1.65951 -1.16985
С	-3.03457 -3.57982 -1.44402
Н	-2.89079 -4.62791 -1.15843
Н	0.74085 -2.09077 0.72739
С	-4.41864 -3.08435 -1.07929
Н	-5.1782 -3.67462 -1.60925
Н	-4.53791 -2.02982 -1.36319
С	-1.28592 -0.93853 1.18273
С	-3.23172 -0.38432 2.39028
Н	-2.61212 0.34837 2.92742
Н	-3.27598 -1.30271 2.99328
С	-4.59967 0.16319 2.06643
Н	-5.12819 0.41303 2.99558
Н	-5.19537 -0.57554 1.51334
Н	-4.50545 1.07388 1.45819
С	-1.28778 1.54175 -0.24853
С	-2.36906 1.87245 -1.07394
Н	-2.48094 1.35344 -2.02767
С	-3.29489 2.83784 -0.68336
Н	-4.12977 3.08543 -1.34105
С	-3.1554 3.48657 0.54508
Н	-3.87896 4.24293 0.85314
С	-2.08101 3.16484 1.37364
Н	-1.95809 3.67035 2.33286
С	-1.15149 2.20084 0.97834
Н	-0.31319 1.97352 1.63942
Ν	0.57333 -1.74418 -0.21718
0	3.14256 1.45342 -1.85748
0	3.39251 1.13857 0.60815
0	2.17993 3.12425 -0.12765
0	-2.0318 -2.8572 -0.71367
0	-2.09371 -1.17826 -2.19544
0	-2.58176 -0.68992 1.14626
0	-0.63176 -1.04263 2.1882
S	2.17398 1.85945 -0.84389
Н	-2.83653 -3.4696 -2.51803
Н	-4.59013 -3.18325 0.00128
F	0.97246 2.3069 -1.96823

Charge=-1 Multiplicity=1			
Imaginary frequency = $-87.6252 \mathrm{cm}^{-1}$			
С	3.614530	-0.251681	-0.481302
С	4.997200	-0.151399	-0.310462
Η	5.541157	0.579128	-0.909901
С	5.645643	-0.962542	0.616816
Η	6.725008	-0.871950	0.746899
С	4.921220	-1.884888	1.374047
Η	5.427480	-2.520379	2.101157
С	3.543993	-1.991282	1.192787
Η	2.959365	-2.708561	1.771644
С	2.874109	-1.181654	0.272194
С	1.396537	-1.303298	0.038064
Η	1.220918	-2.065059	-0.742617
С	0.778221	0.003460	-0.483407
Η	1.142427	0.870257	0.088686
С	-0.783867	-1.363232	0.757205
С	-0.720274	-0.199636	-0.337320
Η	-1.048022	-0.589492	-1.312339
С	-1.356403	-2.587423	0.006119
С	-2.982288	-3.124843	-1.654937
Η	-3.885677	-3.641472	-1.301818
Η	0.801340	-1.075573	1.987681
С	-3.257695	-2.217880	-2.836177
Η	-3.571649	-2.818688	-3.701451
Η	-2.353320	-1.636630	-3.084528
С	-1.620444	-0.989415	1.978993
С	-3.737431	-0.195839	2.658787
Η	-3.145857	0.561146	3.192412
Η	-4.059317	-0.955437	3.385903
С	-4.895801	0.418332	1.909840
Η	-5.574253	0.918041	2.613708
Η	-5.459644	-0.351562	1.366009
Η	-4.520999	1.160460	1.189364
С	-1.483699	1.082359	-0.105076
С	-2.253110	1.574179	-1.166608
Η	-2.195209	1.017767	-2.106766

(*R*, *S*, *R*)-TS5

-2.981078	2.755951	-1.021147
-3.579629	3.130963	-1.853565
-2.938827	3.464285	0.180792
-3.511672	4.385953	0.296320
-2.144623	2.997765	1.230600
-2.090329	3.556431	2.166717
-1.413276	1.818923	1.084683
-0.789133	1.472769	1.912851
0.575756	-1.659134	1.180629
1.842048	-0.931792	-2.828103
3.037588	0.628722	-1.359255
1.281802	1.558909	-2.717624
-2.508995	-2.300479	-0.577297
-0.770390	-3.630877	-0.102933
-2.893275	-0.826685	1.684662
-1.138858	-0.803602	3.068188
1.539482	0.282610	-2.098281
-2.217881	-3.878663	-1.881062
-4.067360	-1.513818	-2.594269
-0.706786	-0.269787	-2.992041
	-2.981078 -3.579629 -2.938827 -3.511672 -2.144623 -2.090329 -1.413276 -0.789133 0.575756 1.842048 3.037588 1.281802 -2.508995 -0.770390 -2.893275 -1.138858 1.539482 -2.217881 -4.067360 -0.706786	-2.9810782.755951-3.5796293.130963-2.9388273.464285-3.5116724.385953-2.1446232.997765-2.0903293.556431-1.4132761.818923-0.7891331.4727690.575756-1.6591341.842048-0.9317923.0375880.6287221.2818021.558909-2.508995-2.300479-0.770390-3.630877-2.893275-0.826685-1.138858-0.8036021.5394820.282610-2.217881-3.878663-4.067360-1.513818-0.706786-0.269787

3a

Charge = 0 Multiplicity = 1					
С	3.9621	0.11111	0.25872		
С	5.27426	-0.04521	0.69704		
Н	5.92403	0.82939	0.72675		
С	5.71744	-1.30315	1.09647		
Н	6.74384	-1.42405	1.44438		
С	4.85443	-2.39915	1.05386		
Н	5.20039	-3.38406	1.3678		
С	3.54732	-2.23277	0.60332		
Н	2.86442	-3.08254	0.55417		
С	3.07919	-0.97823	0.2028		
С	1.69544	-0.78316	-0.34357		
Н	1.73674	-0.92618	-1.43822		

С	1.15275	0.62921	-0.10348
Н	1.20033	0.88734	0.96531
С	-0.62042	-0.94532	-0.0643
С	-0.2688	0.49324	-0.62633
Н	-0.22415	0.37883	-1.7192
С	-1.48678	-1.71668	-1.06637
С	-2.72446	-3.70604	-1.34244
Н	-2.56363	-4.72879	-0.98426
Н	0.7599	-1.72405	1.2047
С	-4.15088	-3.24962	-1.11874
Н	-4.84115	-3.90643	-1.66479
Н	-4.28976	-2.222	-1.48116
С	-1.40141	-0.79217	1.24385
С	-3.50906	-0.23473	2.13877
Н	-2.9849	0.54801	2.7056
Н	-3.61592	-1.11603	2.78715
С	-4.82927	0.24832	1.59247
Н	-5.48861	0.53598	2.42155
Н	-5.32345	-0.54112	1.01036
Н	-4.67221	1.12367	0.94679
С	-1.24525	1.59772	-0.30159
С	-2.24434	1.91145	-1.22958
Н	-2.27681	1.36909	-2.17654
С	-3.19366	2.89158	-0.94508
Н	-3.96499	3.12798	-1.67951
С	-3.15854	3.56612	0.27608
Н	-3.90111	4.33305	0.50096
С	-2.16685	3.25739	1.20751
Н	-2.12967	3.78218	2.16321
С	-1.21332	2.28055	0.9199
Н	-0.44785	2.05406	1.66483
Ν	0.64521	-1.63741	0.19279
0	2.4355	1.3458	-2.28336
0	3.58677	1.41409	-0.05439
0	1.96768	3.14868	-0.60003
0	-1.81228	-2.90127	-0.57617
0	-1.82145	-1.29818	-2.14304
0	-2.68373	-0.59946	1.01788
0	-0.87426	-0.78689	2.3256
S	2.2386	1.76852	-0.91287
Н	-2.44111	-3.64643	-2.40114
Н	-4.40349	-3.28737	-0.05029

S63

Charge = 0 Multiplicity = 1					
С	-2.26308	0.04458	-0.00579		
С	-1.17049	-0.70942	-0.04091		
S	0.39574	0.0654	-0.12876		
0	0.27917	1.49901	-0.11057		
0	1.24618	-0.61193	-1.06936		
F	0.96049	-0.34101	1.31307		
Н	-2.19569	1.13465	-0.00389		
Н	-1.13165	-1.79989	-0.05304		
Н	-3.25025	-0.41969	0.0191		

(S, S)-INT3-3am

Charge = -1 Multiplicity = 1					
С	-1.97137	1.72825	-1.29201		
С	-3.12167	2.42631	-1.69425		
Н	-3.28173	2.58229	-2.76182		
С	-4.02478	2.89874	-0.74994		
Н	-4.91202	3.43916	-1.08523		
С	-3.8144	2.68792	0.61924		
Н	-4.53091	3.05751	1.35266		
С	-2.68036	1.99732	1.02562		
Н	-2.49688	1.81198	2.08686		
С	-1.74891	1.51683	0.09357		
С	-0.58443	0.7591	0.54227		
Н	-0.50703	0.56323	1.62333		
С	1.29163	-0.58601	0.12174		
С	1.88119	-0.31396	1.51415		
С	2.78174	1.34727	2.91312		
Н	3.70985	0.77238	3.04437		
С	3.03384	2.83467	2.8716		
Н	3.49431	3.16004	3.81339		
Н	2.09193	3.38298	2.73581		
С	2.47119	-0.57434	-0.84643		
С	3.11642	-0.44028	-3.11092		

Н	2.58883	-0.68689	-4.03906
Н	3.82372	-1.24579	-2.8738
С	3.81428	0.90019	-3.20547
Н	4.54557	0.88008	-4.02466
Н	4.34519	1.1265	-2.27141
Η	3.08734	1.69859	-3.40697
Ν	0.29094	0.34657	-0.29541
0	-1.11905	1.28938	-2.21319
0	2.18628	0.96922	1.66462
0	2.06554	-1.15022	2.35733
0	2.09101	-0.41738	-2.10485
0	3.60962	-0.76119	-0.49468
Η	2.09767	1.06505	3.72644
Η	3.71129	3.08871	2.0454
Η	-0.38815	0.8001	-1.72292
С	0.67412	-2.0389	0.09426
С	-0.50218	-2.18345	0.98805
S	-2.00841	-2.20186	0.38123
0	-2.11925	-1.61353	-0.95485
0	-3.05477	-1.93359	1.36651
F	-2.41377	-3.79314	-0.00117
Η	0.40427	-2.2292	-0.95361
Н	-0.42486	-2.42084	2.04618
Н	1.49069	-2.72327	0.36908

(*S*, *S*)-TS2-3am

Charge = -1 Multiplicity = 1Imaginary frequency = -273.41 cm⁻¹ С 2.0433 1.00891 1.72574 С 3.22468 1.41757 2.37111 Η 3.35107 1.15132 3.42178 С 4.19504 2.14126 1.68709 Η 5.10296 2.44673 2.21128 С 4.01846 2.48085 0.341 Η 4.7816 3.04734 -0.19331 С 2.8536 2.07853 -0.30524 Η 2.69964 2.31851 -1.36091

С	1.86183	1.35011	0.359
С	0.65022	0.89227	-0.3581
Н	0.45626	1.43587	-1.29793
С	-1.25339	-0.35346	-0.38062
С	-1.9561	0.50255	-1.4403
С	-3.58202	2.17093	-1.77689
Н	-4.02379	1.59356	-2.60188
С	-4.62912	2.89602	-0.96674
Н	-5.17447	3.60083	-1.60767
Н	-4.1622	3.45843	-0.14708
С	-2.31625	-1.07247	0.43372
С	-2.95915	-1.85992	2.55784
Н	-2.38201	-2.14182	3.44586
Н	-3.28356	-2.76967	2.0356
С	-4.13846	-0.9798	2.91771
Н	-4.80646	-1.51519	3.60585
Н	-4.70802	-0.71146	2.01807
Н	-3.79513	-0.06009	3.41053
Ν	-0.35135	0.41655	0.38958
0	1.1211	0.33721	2.40414
0	-2.89905	1.26742	-0.89978
0	-1.64316	0.55368	-2.60335
0	-2.0275	-1.15566	1.72439
0	-3.28569	-1.57727	-0.07842
Н	-2.84515	2.86146	-2.2125
Н	-5.34803	2.1839	-0.53952
Н	0.34099	0.18848	1.72907
С	-0.37345	-1.45756	-1.11718
С	0.90034	-0.81078	-1.5495
S	2.32981	-1.51796	-1.01217
0	2.28312	-1.87545	0.39346
0	3.50808	-0.8689	-1.55304
F	2.37856	-2.9973	-1.73669
Н	-0.1833	-2.24426	-0.37326
Н	1.00815	-0.48927	-2.58738
Н	-0.94553	-1.88558	-1.94967

Char	ge = -1 Mult	tiplicity $= 1$	
С	2.14542	1.13497	-0.45887
С	3.49403	1.63017	-0.52055
Η	3.67445	2.6079	-0.06613
С	4.53152	0.92122	-1.10455
Η	5.53654	1.35312	-1.11083
С	4.31148	-0.33544	-1.68658
Η	5.12425	-0.89378	-2.15201
С	3.01313	-0.84494	-1.66189
Н	2.81095	-1.82147	-2.11437
С	1.94808	-0.159	-1.07451
С	0.57864	-0.80725	-1.09575
Н	0.63561	-1.66401	-1.78503
С	-1.33031	0.47708	-0.34764
С	-2.76805	-0.00278	-0.58346
С	-4.12572	-1.9158	-0.809
Η	-4.459	-1.59856	-1.80761
С	-3.97328	-3.41417	-0.7097
Η	-4.93825	-3.9001	-0.90355
Η	-3.63329	-3.70254	0.29419
С	-1.38898	1.99948	-0.23881
С	-1.74781	3.80125	1.2306
Η	-2.41315	3.92271	2.09372
Η	-2.20263	4.28662	0.35742
С	-0.35862	4.34017	1.50306
Η	-0.39243	5.43261	1.61444
Η	0.3136	4.06743	0.67907
Η	0.04794	3.9054	2.4268
Ν	-0.52497	0.07604	-1.4992
0	1.21096	1.79318	0.0962
0	-2.84366	-1.32862	-0.5495
0	-3.71128	0.71561	-0.79445
0	-1.69418	2.38817	0.9929
0	-1.26841	2.7349	-1.18219
Η	-4.84543	-1.52341	-0.07643
Η	-3.24486	-3.77832	-1.44667
Η	-0.16871	0.91616	-1.95033

(*S*, *S*)-INT4-3am

С	-0.72827	-0.21078	0.89602
С	0.05127	-1.35214	0.26078
S	1.35798	-1.9744	1.28611
0	2.0648	-0.95627	2.01767
0	2.05908	-3.05159	0.63444
F	0.41716	-2.68696	2.38641
Η	-0.03582	0.49033	1.37121
Η	-0.58335	-2.23339	0.09393
Н	-1.48722	-0.56116	1.60562

(*R*, *S*)-INT3-3am

Charge = -1 Multiplicity = 1					
С	3.00931	-2.19139	-0.05533		
С	4.35491	-2.59315	-0.0719		
Н	4.57727	-3.64301	-0.26684		
С	5.36721	-1.66758	0.15118		
Η	6.40638	-2.00124	0.13107		
С	5.07467	-0.31902	0.39717		
Η	5.87695	0.39924	0.56546		
С	3.74705	0.08584	0.42154		
Η	3.48253	1.13099	0.6021		
С	2.70622	-0.82986	0.20263		
С	1.32028	-0.36766	0.23771		
Η	1.15004	0.688	0.48608		
С	-1.00061	-0.72726	-0.066		
С	-1.40424	-0.05626	1.25191		
С	-1.33084	1.91633	2.52192		
Η	-0.98015	1.33329	3.38546		
С	-0.69879	3.28462	2.45287		
Η	-1.02846	3.87865	3.31594		
Н	-0.9911	3.78071	1.51921		
С	-1.89636	-1.9614	-0.19724		
С	-4.12785	-2.65931	-0.45399		
Η	-4.04957	-3.29306	0.44128		
Η	-3.87282	-3.28036	-1.32479		
С	-5.49346	-2.03003	-0.58595		
Н	-6.25785	-2.81365	-0.66697		
Н	-5.54391	-1.39924	-1.48361		

Η	-5.71945	-1.41075	0.29242
Ν	0.36295	-1.18298	-0.01326
Ο	2.05366	-3.09133	-0.27753
Ο	-0.99749	1.19705	1.32328
Ο	-1.99727	-0.62788	2.13273
0	-3.16669	-1.6027	-0.34749
Ο	-1.51686	-3.10161	-0.19818
Η	-2.42771	1.97223	2.5848
Η	0.39552	3.20949	2.46384
Η	1.17172	-2.60572	-0.23762
С	-1.26905	0.21231	-1.32054
С	-0.18096	1.11479	-1.77879
S	-0.03643	2.67109	-1.34504
0	-1.26912	3.28044	-0.84461
0	0.81334	3.44621	-2.24748
F	0.93915	2.80754	0.04778
Η	-2.18288	0.78233	-1.10384
Η	0.67656	0.74969	-2.34096
Η	-1.51479	-0.46932	-2.14865

(*R*, *S*)-TS2-3am

Charge = -1 Multiplicity = 1					
Imaginary frequency = -348.50 cm ⁻¹					
С	-2.60917	-2.34489	-0.18841		
С	-3.92266	-2.83793	-0.09031		
Η	-4.05724	-3.90173	0.11203		
С	-5.0127	-1.98802	-0.24472		
Η	-6.02285	-2.3942	-0.1623		
С	-4.82764	-0.62445	-0.50114		
Η	-5.68515	0.03939	-0.61467		
С	-3.5312	-0.12912	-0.60564		
Η	-3.3528	0.93444	-0.78542		
С	-2.41855	-0.96584	-0.4616		
С	-1.05046	-0.40668	-0.52787		
Η	-0.98408	0.57106	-1.01882		
С	1.19156	-0.67227	-0.17027		
С	1.70326	0.31403	-1.22454		
С	1.53248	2.504	-2.07327		

Н	1.36875	2.09434	-3.0801	С	-4.98332	-0.52617	-1.43112
С	0.7207	3.75151	-1.8207	Н	-5.69536	-0.16225	-2.17257
Н	1.08346	4.56237	-2.46626	С	-3.65528	-0.08891	-1.43733
Η	0.80939	4.05145	-0.7683	Н	-3.32269	0.63154	-2.19178
С	2.2729	-1.72605	0.02942	С	-2.73609	-0.54452	-0.49779
С	4.51509	-2.03096	0.68107	С	-1.31218	-0.07264	-0.48897
Н	4.72645	-2.59724	-0.23765	Н	-1.16176	0.66785	-1.29113
Н	4.2275	-2.75471	1.4576	С	0.88073	-0.74479	-0.05663
С	5.68867	-1.18133	1.10504	С	1.64733	0.20867	-0.98632
Н	6.55981	-1.81984	1.30104	С	3.14564	2.02529	-1.04194
Н	5.45152	-0.62371	2.0211	Н	2.4429	2.46605	-1.76226
Η	5.95124	-0.46463	0.31536	С	3.64514	3.04433	-0.04617
Ν	-0.03467	-1.27164	-0.54948	Н	4.17498	3.8516	-0.56821
0	-1.57727	-3.17003	-0.03339	Н	4.33374	2.58216	0.67394
0	1.14768	1.51511	-1.10709	С	1.72778	-1.98279	0.24163
0	2.47463	0.01915	-2.10362	С	3.89771	-2.8914	0.31113
0	3.40791	-1.15794	0.43493	Н	3.5947	-3.74771	-0.30758
0	2.13241	-2.91224	-0.10114	Н	3.76402	-3.17391	1.3648
Η	2.61183	2.68454	-1.96167	С	5.30621	-2.43953	0.01409
Η	-0.34129	3.5752	-2.03209	Н	6.00899	-3.25511	0.22749
Н	-0.72912	-2.58399	-0.18724	Н	5.57368	-1.57553	0.63698
С	0.91917	0.06987	1.22812	Н	5.40785	-2.15841	-1.04262
С	-0.51554	0.47641	1.28966	Ν	-0.35557	-1.16904	-0.68308
S	-0.87986	2.1269	1.39837	0	-2.25089	-1.89391	1.38721
0	0.26602	3.0158	1.49034	0	2.45781	1.00776	-0.30657
0	-2.04299	2.37125	2.2321	0	1.51564	0.23349	-2.18
F	-1.4734	2.51067	-0.08929	0	3.01778	-1.7917	0.02379
Н	1.61077	0.91275	1.34692	0	1.24948	-3.00789	0.64828
Н	-1.18517	-0.04713	1.9726	Н	3.96417	1.55653	-1.60851
Н	1.13548	-0.6619	2.01796	Н	2.79649	3.47562	0.50254

(*R*, *S*)-INT4-3am

Char	Charge = -1 Multiplicity = 1					
С	-3.10329	-1.48819	0.53059			
С	-4.47236	-1.91097	0.50427			
Н	-4.78864	-2.6248	1.26945			
С	-5.37203	-1.44325	-0.44547			
Η	-6.40572	-1.80015	-0.42012			

0	2.45781	1.00776	-0.30657
0	1.51564	0.23349	-2.18
0	3.01778	-1.7917	0.02379
0	1.24948	-3.00789	0.64828
Н	3.96417	1.55653	-1.60851
Н	2.79649	3.47562	0.50254
Н	-0.70764	-1.9418	-0.10821
С	0.44815	-0.0507	1.26396
С	-0.89381	0.57615	0.88323
S	-0.84701	2.34587	0.77683
0	-0.16699	2.95251	1.89404
0	-2.10508	2.86469	0.30425
F	0.17068	2.52342	-0.47102
Н	1.1861	0.64872	1.67143
Н	-1.65865	0.39331	1.64998
Н	0.23376	-0.83801	1.99678

(*R*, *R*)-INT3-3am

		•		U
	•	4	~ ~~	S
	8		T	0
				0
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	° IX	Κ	F
			•	Η
Cha	rge = -1 Mult	tiplicity $= 1$		Η
С	2.96789	-1.74412	-0.10417	Η
С	4.33587	-2.06074	-0.07985	
Η	4.66501	-2.87071	0.57231	()
С	5.23648	-1.35218	-0.86583	
Η	6.29549	-1.6148	-0.83044	
С	4.80562	-0.30824	-1.69502	
Η	5.52006	0.24602	-2.30355	
С	3.45441	0.01098	-1.72522	
Η	3.09318	0.82725	-2.35569	
С	2.52344	-0.69325	-0.94796	
С	1.11435	-0.30973	-0.96568	С
Η	0.84256	0.55282	-1.59061	Ir
С	-1.07388	-0.46489	-0.1002	С
С	-1.6881	0.10678	-1.38837	С
С	-3.22957	1.62913	-2.29456	Η
Η	-3.77527	0.81902	-2.79997	С
С	-4.15313	2.71685	-1.80274	Η
Н	-4.69102	3.15954	-2.65098	С
Η	-3.58381	3.50944	-1.29863	Η
С	-1.94107	-1.62092	0.40496	С
С	-4.16492	-2.39842	0.60622	Η
Н	-3.73792	-3.40443	0.50279	С
Η	-5.03698	-2.30892	-0.05118	С
С	-4.51599	-2.08949	2.04641	Η
Η	-5.28249	-2.79198	2.40031	С
Η	-4.91123	-1.06846	2.13585	С
Η	-3.63122	-2.18884	2.68917	С
Ν	0.25613	-0.95781	-0.27239	Η
0	2.12431	-2.43368	0.65834	С
0	-2.55586	1.08006	-1.15486	Η
0	-1.4191	-0.29816	-2.48957	Η
0	-3.22119	-1.44485	0.09235	С
0	-1.52021	-2.53847	1.05617	С
Н	-2.47497	2.01105	-2.99694	Н
Н	-4.88902	2.30877	-1.09695	Н
Н	1.20731	-2.04181	0.50727	С
С	-1.05629	0.62116	1.05026	Н

С	-0.24526	1.81078	0.68821
S	1.22937	2.04722	1.32669
0	2.075	2.9591	0.55773
0	1.82679	0.84495	1.91005
F	1.06707	2.96788	2.72859
Η	-0.63839	0.11052	1.92902
Н	-0.62969	2.6378	0.09514
Н	-2.10519	0.87216	1.26478

# (*R*, *R*)-TS2-3am



Charge = $-1$ Multiplicity = $1$					
Imagi	inary freque	ncy = -274.8	33 cm ⁻¹		
С	2.48761	-1.07038	-1.4942		
С	3.82735	-1.41734	-1.74734		
Н	4.03423	-2.42507	-2.11131		
С	4.85065	-0.49875	-1.54206		
Н	5.88223	-0.79287	-1.74632		
С	4.5714	0.79284	-1.08103		
Н	5.37594	1.51108	-0.92098		
С	3.24896	1.14288	-0.82664		
Н	3.00667	2.14156	-0.45258		
С	2.20089	0.23784	-1.02276		
С	0.80599	0.62002	-0.70525		
Н	0.64905	1.70756	-0.63909		
С	-1.38219	0.00545	-0.45001		
С	-2.02109	1.34326	-0.83741		
С	-2.06424	3.66295	-0.4255		
Н	-3.1632	3.68071	-0.39922		
С	-1.45551	4.63967	0.55123		
Н	-1.77812	5.66012	0.30707		
Н	-0.35855	4.60059	0.50531		
С	-2.38231	-1.09644	-0.77631		
С	-4.55576	-1.87628	-0.26351		
Н	-4.59913	-2.20087	-1.31161		
Н	-5.48699	-1.35557	-0.01205		
С	-4.30415	-3.04595	0.66581		
Н	-5.13137	-3.765	0.59389		

Н	-4.23172	-2.70183	1.70668
Н	-3.37267	-3.55998	0.39384
Ν	-0.15858	-0.20228	-1.12917
0	1.52448	-1.95593	-1.71867
0	-1.62188	2.34822	-0.06198
0	-2.7433	1.48851	-1.79132
0	-3.53023	-0.88393	-0.13058
0	-2.16719	-2.05546	-1.46718
Н	-1.75303	3.86279	-1.46088
Н	-1.77297	4.40982	1.57728
Н	0.63866	-1.45817	-1.49416
С	-1.04321	-0.05681	1.10908
С	0.29572	0.56722	1.32713
S	1.46967	-0.40028	2.04447
0	2.70518	0.31591	2.29525
0	1.51103	-1.73734	1.48154
F	0.91831	-0.69403	3.57056
Н	-1.02707	-1.12336	1.37603
Н	0.35465	1.58462	1.71915
Н	-1.8416	0.42957	1.68268

# (*R*, *R*)-INT4-3am



Charge = $-1$ Multiplicity = $1$				
С	-2.14541	1.13487	-0.45897	
С	-3.49408	1.62993	-0.52054	
Н	-3.67456	2.60765	-0.06613	
С	-4.53155	0.92086	-1.10443	
Н	-5.53661	1.35266	-1.11064	
С	-4.31144	-0.33579	-1.68646	
Н	-5.12418	-0.89422	-2.15181	
С	-3.01303	-0.84516	-1.66186	
Н	-2.8108	-1.8217	-2.11432	
С	-1.948	-0.15911	-1.07457	
С	-0.57853	-0.80728	-1.09581	
Н	-0.63544	-1.66403	-1.7851	
С	1.33032	0.47715	-0.34764	
С	2.76809	-0.00267	-0.58338	
С	4.12584	-1.91562	-0.80889	

Н	4.84547	-1.52321	-0.07625
С	3.97345	-3.41401	-0.70963
Н	4.93846	-3.89989	-0.90337
Η	3.24513	-3.77818	-1.44668
С	1.38893	1.99955	-0.23878
С	1.7474	3.80132	1.2307
Η	2.20244	4.28673	0.35766
Н	2.41248	3.92283	2.09401
С	0.35807	4.34009	1.50276
Н	0.39174	5.43252	1.61429
Н	-0.04873	3.90518	2.42634
Н	-0.3139	4.06733	0.67857
Ν	0.52504	0.07608	-1.49923
0	-1.21095	1.79319	0.09598
0	2.84373	-1.32851	-0.5495
0	3.71133	0.71575	-0.79424
0	1.69398	2.38823	0.99297
0	1.26838	2.73498	-1.18215
Н	4.45919	-1.59836	-1.80746
Н	3.63336	-3.7024	0.29422
Н	0.16874	0.91618	-1.95038
С	0.72824	-0.2107	0.89599
С	-0.05116	-1.35215	0.26074
S	-1.35788	-1.9744	1.28606
0	-2.05892	-3.05168	0.6345
0	-2.06475	-0.95619	2.01749
F	-0.41706	-2.68681	2.38647
Н	0.03564	0.49038	1.371
Н	0.58352	-2.23335	0.09391
Н	1.48712	-0.56095	1.60572

### (*S*, *R*)-INT3-3am



Chai	ge = -1 Mul	tiplicity = 1	
С	-3.63888	-1.31474	-0.24527
С	-5.03428	-1.42147	-0.36707
Н	-5.46757	-2.41818	-0.45927
С	-5.82976	-0.28253	-0.3694

Η	-6.91179	-0.389	-0.46682		
С	-5.26391	0.99371	-0.24759		
Н	-5.89586	1.88171	-0.24904		
С	-3.8858	1.10808	-0.12367		
Η	-3.41901	2.09133	-0.02506		
С	-3.05761	-0.02517	-0.12336		<u> </u>
С	-1.60805	0.13164	0.01376	Charg	ge = .
Η	-1.21957	1.147	0.14797	Imag	inary
С	0.58184	-0.87452	0.05	С	-2.5
С	1.16165	-0.17907	1.29303	С	-3.8
С	1.06118	1.73964	2.65015	Н	-3.8
Η	2.13901	1.81227	2.46189	С	-4.9
С	0.3858	3.08642	2.55577	Н	-5.9
Η	0.78839	3.76071	3.32346	С	-4.8
Η	-0.69862	2.99335	2.70911	Н	-5.7
С	1.03152	-2.34297	0.15301	С	-3.5
С	2.80958	-3.84801	-0.1351	Н	-3.4
Η	2.17529	-4.53874	-0.70899	С	-2.4
Η	2.7534	-4.14593	0.92201	С	-1.(
С	4.23053	-3.82376	-0.64343	Н	-1.0
Η	4.67308	-4.82464	-0.55804	С	1.
Н	4.83796	-3.12175	-0.05672	С	1.
Η	4.25959	-3.51822	-1.69797	С	1.
Ν	-0.85346	-0.90257	-0.02135	Н	2.
0	-2.89784	-2.41947	-0.2418	С	0.
0	0.49295	0.90644	1.62892	Н	0.
0	2.13075	-0.58966	1.88039	Н	-0.7
0	2.27672	-2.52423	-0.26158	С	2.2
0	0.33075	-3.2319	0.5616	С	4.:
Η	0.90124	1.25296	3.62385	Н	4.
Η	0.57178	3.52024	1.56338	Н	4.
Н	-1.93607	-2.12568	-0.14616	С	5.
С	1.21447	-0.20979	-1.23915	Н	6.
C	0.75207	1.17377	-1.52816	Н	5.
S	1.60253	2.45374	-1.02223	H	5.
0	2.55837	2.13678	0.04474	N	-0.0
0	0.84032	3.70224	-0.94944	0	-1.4
F	2.6981	2.90122	-2.22022	0	0.
H	2.30304	-0.26268	-1.1055	0	2.
H	-0.08335	1.407/47	-2.18369	0	3.
Н	0.96166	-0.88407	-2.07111	0	2.
				H	1.
(S, 1	K)-TS2-3am			Н	-0.0

• • • •
---------

Charge = -1 Multiplicity = 1				
Imag	inary freque	ncy = -282.7	75 cm ⁻¹	
С	-2.52846	-2.4123	0.12851	
С	-3.81567	-2.95842	-0.0214	
Н	-3.89744	-4.02087	-0.2564	
С	-4.94563	-2.16121	0.12624	
Н	-5.93442	-2.60798	0.00389	
С	-4.82704	-0.79932	0.42724	
Н	-5.71596	-0.17728	0.53642	
С	-3.55725	-0.25119	0.58211	
Н	-3.42814	0.8139	0.7904	
С	-2.40428	-1.03317	0.44184	
С	-1.06702	-0.41524	0.56384	
Н	-1.06583	0.56568	1.05217	
С	1.20694	-0.6218	0.21407	
С	1.70434	0.37347	1.265	
С	1.2767	2.48933	2.24164	
Н	2.21579	2.97386	1.93492	
С	0.12214	3.46298	2.27125	
Н	0.35182	4.29302	2.95249	
Н	-0.79196	2.96456	2.62342	
С	2.29458	-1.67269	0.02949	
С	4.51905	-1.98997	-0.67059	
Н	4.22403	-2.76676	-1.39113	
Н	4.76223	-2.4925	0.27695	
С	5.66836	-1.15324	-1.17862	
Н	6.54455	-1.79054	-1.35513	
Н	5.93862	-0.38299	-0.44384	
Н	5.40013	-0.65963	-2.12243	
Ν	-0.0181	-1.23074	0.57057	
0	-1.45885	-3.1899	-0.0146	
0	0.96411	1.47462	1.28005	
0	2.6131	0.16662	2.03068	
0	3.40537	-1.11846	-0.45257	
0	2.17599	-2.8506	0.23845	
Н	1.44812	2.01201	3.21644	
Η	-0.06208	3.85719	1.26391	
Н	-0.64407	-2.57092	0.17659	

С	0.9487	0.11943	-1.20508
С	-0.46779	0.55846	-1.26731
S	-0.7942	2.21294	-1.22112
0	0.37721	3.05729	-1.06074
0	-1.9854	2.54524	-0.45392
F	-1.2947	2.54916	-2.74829
Η	1.66243	0.94499	-1.31901
Η	-1.18644	0.04984	-1.91112
Η	1.16652	-0.6292	-1.97818

### (*S*, *R*)-INT4-3am



Charge = -1 Multiplicity = 1					
С	2.51769	-2.06784	0.26507		
С	3.80198	-2.70308	0.2466		
Н	3.91834	-3.60979	0.84617		
С	4.86428	-2.19973	-0.49428		
Н	5.82392	-2.72436	-0.47236		
С	4.73203	-1.03686	-1.2647		
Н	5.57116	-0.64647	-1.84151		
С	3.49255	-0.38917	-1.27349		
Н	3.35887	0.5253	-1.8605		
С	2.41366	-0.87545	-0.54219		
С	1.08643	-0.17442	-0.52623		
Н	1.13666	0.72407	-1.1556		
С	-1.21784	-0.59228	-0.3309		
С	-1.81718	0.5463	-1.15614		
С	-1.65699	2.83569	-1.67891		
Н	-2.72761	2.97434	-1.47237		
С	-0.83971	4.03889	-1.279		
Н	-1.20968	4.92237	-1.8158		
Н	0.21958	3.89053	-1.52292		
С	-2.23659	-1.7201	-0.25969		
С	-4.39354	-2.28378	0.49143		
Н	-4.0021	-3.12896	1.07542		
Н	-4.66488	-2.66197	-0.50456		
С	-5.55356	-1.60546	1.17791		
Н	-6.37552	-2.32065	1.31053		
Н	-5.91797	-0.76153	0.57711		
Н	-5.25339	-1.23153	2.16591		

Ν	-0.00591	-1.03353	-1.00077
0	1.52277	-2.4969	0.93713
0	-1.20367	1.70175	-0.91598
0	-2.69641	0.40868	-1.96435
0	-3.3474	-1.31346	0.33797
0	-2.04007	-2.84189	-0.64273
Н	-1.55165	2.59554	-2.74622
Н	-0.92055	4.21599	-0.19838
Н	0.19148	-1.97159	-0.63866
С	-0.7995	-0.146	1.0948
С	0.66275	0.26108	0.92193
S	0.94443	2.02018	1.19279
0	-0.18995	2.70273	1.76802
0	1.70684	2.6318	0.13075
F	1.99344	1.89559	2.40901
Н	-1.43971	0.63924	1.51307
Η	1.3017	-0.22604	1.66557
Н	-0.82477	-1.02136	1.75511

#### 6. References.

1. G. F. Zha, Q. Zheng, J. Leng, P. Wu, H. L. Qin and K. B. Sharpless, Palladium-Catalyzed Fluorosulfonylvinylation of Organic Iodides, *Angew. Chem. Int. Ed.* **2017**, *56*, 4849-4852.

2. L. Tian, G.-Q. Xu, Y.-H. Li, Y.-M. Liang and P.-F. Xu, An efficient strategy for the synthesis of polysubstituted chromeno[4,3-*b*]pyrrolidine derivatives, *Chem. Commun.*, **2014**, *50*, 2428-2430.

3. Ayerbe, M.; Arrieta, A.; Cossío, F. P.; Linden, A. Stereocontrolled Synthesis of Highly Substituted Proline Esters via [3+2] Cycloaddition between *N*-Metalated Azomethine Ylides and Nitroalkenes. Origins of the Metal Effect on the Stereochemical Outcome. *J. Org. Chem.* **1998**, *63* (6), 1795-1805.

4. García-Valle, F. M.; Tabernero, V.; Cuenca, T.; Mosquera, M. E. G.; Cano, J., Intramolecular C–F Activation in Schiff-Base Alkali Metal Complexes. *Organometallics* **2019**, *38*, 894-904.

5. Costa, M.; Proença, F., 2-Aryl-1,9-dihydrochromeno[3,2-*d*]imidazoles: a facile synthesis from salicylaldehydes and arylideneaminoacetonitrile. *Tetrahedron* **2011**, *67*, 1799-1804.

6. Ghandi, M.; Bozcheloei, A. H.; Nazari, S. H.; Sadeghzadeh, M. Solvent-Dependent Reactions for the Synthesis of  $\beta$ -Keto-Benzo- $\delta$ -Sultone Scaffolds via DBU-Catalyzed O-Sulfonylation/Intramolecular Baylis–Hillman/1,3-H Shift or Dehydration Tandem Sequences. J. Org. Chem. **2011**, 76 (24), 9975-9982.

7. Zhang, Y.; Jermaks, J.; MacMillan, S. N.; Lambert, T. H. Synthesis of 2H-Chromenes via Hydrazine-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis. *ACS Catal.* **2019**, *9* (10), 9259-9264.

8. Hajra, S.; Sinha, D. Catalytic Enantioselective Aziridoarylation of Aryl Cinnamyl Ethers toward Synthesis of trans-3-Amino-4-arylchromans. *J. Org. Chem.* **2011**, *76* (18), 7334-7340.

Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

10. (a) Y. Zhao and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, *Theor. Chem. Acc.* **2008**, *120*, 215-241; (b) Y.
Zhao and D. G. Truhlar, Density Functionals with Broad Applicability in Chemistry, *Acc. Chem. Res.* **2008**, *41*, 157-167.

11. (a) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **2005**, 7 (18), 3297-3305.; (b) Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. *Phys. Chem. Chem. Phys.* **2006**, 8 (9), 1057-1065.

12. (a) Mennucci, B.; Tomasi, J. Continuum solvation models: A new approach to the problem of solute's charge distribution and cavity boundaries. *J. Chem. Phys.* **1997**, *106* (*12*), 5151-5158; (b) Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. *J. Phys. Chem. A* **1998**, *102* (*11*), 1995-2001.

13. (a) Fukui, K. Formulation of the reaction coordinate. *J. Phys. Chem.* **2002**, *74* (23), 4161-4163.; (b) Fukui, K. The path of chemical reactions - the IRC approach. Acc. Chem. Res. **2002**, *14* (12), 363-368.

14. (a) A. V. Marenich, C. J. Cramer and D. G. Truhlar, Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, *J. Phys. Chem. B* 2009, *113*, 6378-6396; (b) E. Engelage, N. Schulz, F. Heinen, S. M. Huber, D. G. Truhlar and C. J. Cramer, Refined SMD Parameters for Bromine and Iodine Accurately Model Halogen-Bonding Interactions in Solution, *Chem. Eur. J.* 2018, *24*, 15983-15987.

15. T. Lu and Q. Chen, Shermo: A general code for calculating molecular thermochemistry properties, *Comput. Theor. Chem.* **2021**, *1200*, 113249.

16. CYLview, 1.0b; Legault, C. Y., Université de Sherbrooke, 2009; (http://www.cylview.org).

7. Copies of NMR spectra.







f1 (ppm)











10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)























EtO2C CO2Et HHN 3f ¹⁹F NMR (376 MHz, Chloroform-d)







## 



















- 43.250

EtO₂C HN CO₂Et OSO2F 0 ¹⁹F NMR (376 MHz, Chloroform-d)

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 f1 (ppm)













10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)







f1 (ppm)







210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

































- -67.054



## 7.816 7.805 7.583 7.583 7.583 7.583 7.583 7.583 7.453 7.455 7.453 7.455 7.455 7.455 7.455 7.455 7.455 7.455 7.455 7.455 7.140 7.140 7.140 7.140 7.140 7.140 7.140 7.140 7.140 7.140 7.140 7.140 7.140 7.140 7.140 7.140 7.140 7.140 7.140 7.140 7.140 7.140 7.140 7.140 7.140 7.140 7.140 7.140 7.140</























210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)



















5.01년 2.01년 1.00년 1.02 0.99 1.00 1.02 4.95¹ 0.85¹ 1.00₁ 3.10H 3.00H 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm) 169.50 168.78 - 157.37 144.33 133.98 128.75 128.75 128.66 128.64 128.64 128.84 124.81 115.71 115.71 77.48 77.16 64.72 64.72 62.92 60.90 56.07 14.11 1 EtO2C CO2Et Ph MeO SO2 -0-3z 13C NMR (100 MHz, Chloroform-d) 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 0 -10 20 İ0 f1 (ppm)











S107





3ad ¹³C NMR (100 MHz, Chloroform-d)

1.00₁ 4.07₫ 1.01₁ 1.00H 1.00 0.98 1.02 1.02 3.00H 0.99 1.01 1.02 3.03∃ 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm) 169.26 168.50 149.02 134.68 132.12 131.43 131.43 130.27 129.84 129.84 125.05 1125.05 77.48 77.16 77.16 64.05 63.12 63.12 60.39 14.07 EtO₂C HHN CO₂Et CI \$O 0








EtO2C CO2Et CI Me 0 3ae

13C NMR (100 MHz, Chloroform-d)



















3.07_H 1.01 1.06 3.07 3.06 1.00∃ 0.99[∄] 1.03∃ .034 140.03 140.03 0.84 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -Ó.5 f1 (ppm) - 150.76 134.37 133.37 133.37 129.42 129.41 125.89 1125.89 1125.83 118.15 - 171.03 77.48 77.16 76.84 65.65 65.19 61.99 49.24 - 13.56

CO2Et CI 3ah

13C NMR (100 MHz, Chloroform-d)







2.93H 0.97 ⊾ 3.97 ⊾ 1.94 ± 0.96 ⊥ 0.97 1.004 1.004 1.98 -66.0 0.85 4.5 4.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm) 171.10 149.19 134.45 131.30 130.13 128.59 128.53 128.60 128.60 128.62 125.62 119.53 77.48 77.16 76.84 65.66 64.88 61.75 49.90 - 13.50 CO2Et CI 0 3ai 13C NMR (100 MHz, Chloroform-d) 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)





0.98 0.99 1.00 1.00 2.00 1.00-1 2.99 0.984 1.004 2.994 1.974 0.994 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -Ó.5 f1 (ppm) 171.09 149.79 134.44 133.12 128.97 128.91 128.65 128.02 128.02 1128.65 118.74 77.48 77.16 65.67 65.67 64.92 64.92 61.87 61.69 - 13.51 CO₂Et 3aj ¹³C NMR (100 MHz, Chloroform-d) 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

f1 (ppm)











1.004 1.014 1.004 1.00H 1.00_H 1.02 1.01 2.02 1.98 1.02 3.05_₹ 3.01[∡] 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm) 170.25 131.93 130.39 130.21 124.86 120.86 - 148.39 77.48 77.16 76.84 71.87 63.02 62.78 60.52 60.52 34.54 14.09 14.00 EtO2C CO2Et HHN-CI \$O n 3an 13C NMR (100 MHz, Chloroform-d) 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 0 -10 20 10 f1 (ppm)













13C NMR (100 MHz, Chloroform-d)





S119

## $\begin{array}{c} 8.490\\ 7.321\\ 7.324\\ 7.324\\ 7.324\\ 7.324\\ 7.325\\ 7.324\\ 7.157\\ 7.157\\ 7.157\\ 7.157\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.152\\ 7.$



0.9H 4.07 3.03 3.00₹ н 3.04⊾ 3.03[∄] 0.94 2:07 2:07 2:03 1 2:03 13.5 12.5 11.5 10.5 9.5 8.5 7.5 6.5 5.5 4.5 3.5 2.5 1.5 0.5 -0.5 f1 (ppm) 171.22 167.28 166.43 161.07 159.93 134.25 133.27 133.27 130.53 126.65 119.49 1117.47 1117.47 114.28 77.48 77.45 76.84 - 63.38 - 62.86 - 55.30 45.73 14.08 14.01 1-OMe SO₂F OH 3h-13C NMR (100 MHz, Chloroform-d) 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 0 -10 20 10 f1 (ppm)





- 59.892

## 









**2**.97H **2.97**H 1.00 2.05 2.05 1.07 2.00 1.98 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm)  $\begin{array}{c} \textbf{159.83} \\ \textbf{159.83} \\ \textbf{150.42} \\ \textbf{134.04} \\ \textbf{134.04} \\ \textbf{134.04} \\ \textbf{132.014} \\ \textbf{133.05} \\ \textbf{129.10} \\ \textbf{128.26} \\ \textbf{128.26} \\ \textbf{128.26} \\ \textbf{128.35} \\ \textbf{128.35} \\ \textbf{119.33} \\ \textbf{127.48}  13.79



5w ¹³C NMR (100 MHz, Chloroform-d)





S124

## 

Br Ph 12a ¹H NMR (400 MHz, Chloroform-d)





- 0.000