Supporting Information

Electrochemical synthesis of selenyl imidazo[2,1b]thiazinones via three-component reactions

Yuancheng Yue^{‡a}, Ziren Chen^{‡a}, Fei Xue^a, Bin Wang^a, Yonghong Zhang^a, Yu Xia^a, Shaofeng Wu^a, Weiwei Jin^b, and Chenjiang Liu^{*a}

^a Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, P. R. China.

^b Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, P. R. China.

**E-mail: pxylcj@126.com*

authors	contributed	equally	to	this	work.
Contents	5				
Information					S2
nental Proced	ures				S 3
eral procedur	e for the synthesis	of diselenides	8		S3
eral procedur	e for the synthesis	of products			S 3
mization of r	eaction conditions	5			S3
istic studies					S 6
lic voltamme	try experiments				S 6
ical trapping	experiments				S 7
terium labelii	ng experiment				S 7
cal data					S 8
ces					S23
of NMR spec	tra				S24
erystallograph	nic data for 4a				S57
	authors Contents Information hental Procedur eral procedur mization of r istic studies lic voltamme ical trapping terium labelin cal data ces of NMR spec	authors contributed Contents Information hental Procedures eral procedure for the synthesis eral procedure for the synthesis mization of reaction conditions istic studies lic voltammetry experiments ical trapping experiments terium labeling experiment cal data ces of NMR spectra erystallographic data for 4a	authorscontributedequally'ContentsInformationhental Procedureseral procedure for the synthesis of diselenideseral procedure for the synthesis of productsmization of reaction conditionsistic studieslic voltammetry experimentsical trapping experimentsterium labeling experimentcal datacesof NMR spectracrystallographic data for 4a	authors contributed equally to 'Contents Information nental Procedures eral procedure for the synthesis of diselenides eral procedure for the synthesis of products mization of reaction conditions istic studies lic voltammetry experiments ical trapping experiments terium labeling experiment cal data ces of NMR spectra erystallographic data for 4a	authors contributed equally to this 'Contents Information Information Information nental Procedures Information Information Information nental Procedures Information Information Information nental Procedures Information Information Information nental Procedure for the synthesis of diselenides Information Information irration of reaction conditions Information Information istic studies Information conditions Information Information ical trapping experiments Information Information Information ical data Information Information Information Information ical data Information Information Information Information Information ical data Information Information

1. General Information

The ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Bruker AVANCE NEO-600 (600 MHz, 150 MHz and 565 MHz respectively) NMR spectrometer. ¹H and ¹³C NMR chemical shifts were determined relative to internal standard CDCl₃ (δ (¹H), 7.26 ppm; δ (¹³C), 77.16 ppm). Chemical shifts (δ) were reported as parts per million (ppm) downfield from tetramethylsilane and the following abbreviations were used to identify the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, sept = septet, m = multiplet, dd = doublet of doublets and all combinations thereof can be explained by their integral parts. Coupling constant (*J*) was reported in hertz unit (Hz). Melting point (m.p.) was recorded on BÜCHI (M-560). High-resolution mass spectra (HRMS) were recorded on a Thermo Fisher Scientific Q-Exactive (ESI-Orbitrap). Cyclic voltammetry (CV) was carried out on a CHI660E electrochemical workstation (CH Instruments, INS). Analytical thin layer chromatography (TLC) was performed on 0.25 mm silica gel 60 F254 plates and viewed by UV light (254 nm). Column chromatographic purification was performed using 200-300 mesh silica gel.

Materials. All commercial reagents and solvents were purchased from commercial sources and used as received unless otherwise indicated.

2 Experimental Procedures

2.1 General procedure for the synthesis of diselenides

According to the literature^[1], we have prepared a series of diselenide compounds. To a stirred solution of Se⁰ powder (156 mg, 2.0 mmol) and iodobenzene (204 mg, 1.0 mmol) in dry DMSO (2.0 mL) was added CuO (10 mol%) followed by KOH (112 mg, 2.0 mmol) under nitrogen atmosphere at 90 °C for 2 h. The progress of the reaction was monitored by TLC. After the reaction was complete, the reaction mixture was allowed to cool, which was subjected to column chromatographic separation to give pure diselenide.

2.2 General procedure for the synthesis of products (taking 4a as an example)

A mixture of diphenyl diselenide **1a** (15.6 mg, 0.05 mmol), methacryloyl chloride **2a** (42 μ L, 0.4 mmol), 2-mercaptobenzimidazole **3a** (30.0 mg, 0.2 mmol), TBPB (67.9 mg, 0.2 mmol), Cs₂CO₃ (32.6 mg, 0.1 mmol) and CH₃CN (4.0 mL), were added in an undivided bottle (10 mL). The bottle was equipped with graphite plates as anode and cathode. The resulting mixture was stirred and electrolyzed with constant current 3 mA at room temperature for 4 h. After the reaction finished, the resulting mixture were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 10:1, v/v) to afford the desired product **4a** in 90% yield.

2.3 Optimization of reaction conditions

Table S1 Screening of solvents^a

Se Se Cl +	N N H SH SH SH SH SH SH SH SH SH SH SH SH S	C <u>divent</u> , rt N Se
1a 2a	3a	4a
Entry	Solvent	Yield (%) ^b
1	MeCN	29
2	MeOH	trace
3	DMF	7
4	DMSO	trace
5	DCE	24
6	NMP	N.D.

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), **3a** (0.2 mmol), TBABF₄ (0.2 mmol), solvent (4 mL), C (15 mm×10 mm×1 mm) cathode, C plate (15 mm×10 mm×1 mm) anode, undivided cell, current = 8 mA, rt, 4 h. ^{*b*} Isolated yields. N.D. = not detected

Table S2 Screening of electrolytes^a

Se Se + O	$ \begin{array}{c} CI \\ + \\ M \\ H \\ \end{array} \begin{array}{c} N \\ H \\ H \\ H \\ \end{array} \begin{array}{c} C(+) \mid (-) C \\ \underline{Electrolyte, Me} \\ 8 \text{ mA, 4 h, r} \\ 3a \end{array} $	eCN t t N Se Se Se Se Se Se Se Se Se Se
Entry	Electrolyte	Yield (%) ^b
1	TBAI	26
2	TBAClO ₄	37
3	$TBAPF_6$	32
4	TBAOAc	29
5	Mg(ClO ₄) ₂	16
6	EMImClO ₄	35
7	TBAHSO ₄	11
8	TBPB	46
9	EMImBF ₄	21
10	TBAOH	trace

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), **3a** (0.2 mmol), electroyte (0.2 mmol), MeCN (4 mL), C (15 mm×10 mm×1 mm) cathode, C plate (15 mm×10 mm×1 mm) anode, undivided cell, current = 8 mA, rt, 4 h. ^{*b*} Isolated yields.

Table S3 Screening of electrodes, times and currents^a

\bigcirc	$Se_{Se} + + + + + + + + + + + + + + + + + + +$	N N H 3a	Electrodes, TBPB MeCN X mA, X h, rt	Se
Entry	Electrode	Time (h)	Current (mA)	Yields (%) ^b
1	C (+) C (-)	4	8	46
2	C (+) Ni (-)	4	8	26
3	C (+) Pt (-)	4	8	34
4	Pt (+) Pt (-)	4	8	36
5	Ni (+) Pt (-)	4	8	trace
6	C (+) C (-)	3	8	33
7	C (+) C (-)	5	8	25
8	C (+) C (-)	4	2	47
9	C (+) C (-)	4	3	54
10	C (+) C (-)	4	4	44

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), **3a** (0.2 mmol), TBPB (0.2 mmol), MeCN (4 mL), cathode, anode, undivided cell, constant current, rt. ^{*b*} Isolated yields.

Table S4 Screening of bases^a

Entry	Base (mmol)	Yields (%) ^b
1	TEA	35
2	Ру	24
3	Cs ₂ CO ₃	61
4	DMAP	44
5	DBU	42
6	TBD	37
7	^t BuOK	34
8	'BuONa	26
9	K ₂ CO ₃	53
10	CsCl	52
11	CsF	58

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), **3a** (0.2 mmol), TBPB (0.2 mmol), base (0.2 mmol), MeCN (4 mL), C (15 mm×10 mm×1 mm) cathode, C plate (15 mm×10 mm×1 mm) anode, undivided cell, current = 3 mA, rt, 4 h. ^{*b*} Isolated yields.

Table S5 Screening of reaction ratio^a

	Se Se +		C (+) (-) C → SH <u>TBPB, MeCN, Ba</u> 3 mA, 4 h, rt		
Entry	1a (mmol)	3a (mmol)	^{3a} Cs ₂ CO ₃ (mmol)	TBPB (mmol)	Yields (%) ^b
1	0.1	0.2	0.2	0.2	39
2	0.09	0.2	0.2	0.2	54
3	0.08	0.2	0.2	0.2	57
4	0.07	0.2	0.2	0.2	60
5	0.06	0.2	0.2	0.2	63
6	0.05	0.2	0.2	0.2	85
7	0.05	0.2	0.18	0.2	49
8	0.05	0.2	0.16	0.2	49
9	0.05	0.2	0.14	0.2	81
10	0.05	0.2	0.12	0.2	81
11	0.05	0.2	0.1	0.2	90
12	0.05	0.2	0.08	0.2	73
13	0.05	0.2	0.1	0.15	69
14	0.05	0.2	0.1	0.1	52
15	0.05	0.15	0.1	0.2	76
16	0.05	0.1	0.1	0.2	50

^{*a*} Reaction conditions: **1a** (X mmol), **2a** (0.4 mmol), **3a** (X mmol), TBPB (X mmol), Cs_2CO_3 (X mmol), MeCN (4 mL), C (15 mm×10 mm×1 mm) cathode, C plate (15 mm×10 mm×1 mm) anode, undivided cell, current = 3 mA, rt, 4 h. ^{*b*} Isolated yields.

3 Mechanistic studies

3.1 Cyclic voltammetry experiments

Cyclic voltammograms were recorded with a CHI660E electrochemical workstation at room temperature in MeCN. Scan rate 0.05 V/s, ranging from -1 V-1.7 V, a glassy carbon-disk (R = 5.5 mm, h = 10 mm) was used as the working electrode. The Pt disk (R = 5.5 mm, h = 10 mm) and Ag/AgCl (R = 5.0 mm, h = 10 mm) was used as counter and reference electrode, respectively. A: MeCN (4 mL) + TBPB (0.2 mmol) + Cs₂CO₃ (0.1 mmol); b: MeCN (4 mL) + TBPB (0.2 mmol) + Cs₂CO₃ (0.1 mmol) + **1a** (0.2 mmol).

Fig. S1 Cyclic voltammetry experiments

3.2 Radical trapping experiments^a

Se Se	$+ \int_{O}^{CI} + \int_{H}^{N} SH \frac{C(+) (-C_{S_2CC})}{C_{S_2C}}$ TBPB, Me 3 mA, 4 h	$\begin{array}{ccc} & & & & \\ & & & \\ \hline & & & \\ & & & \\ s, rt \end{array} \xrightarrow{N}_{N} S \end{array} \xrightarrow{N}_{N} S$
Entry	Radical scavenger (mmol)	Yield of 4a (%) ^{<i>b</i>}
1	none	90
2	TEMPO (0.8)	80
3	TEMPO (1.2)	54
4	BHT (0.8)	70
5	BHT (1.2)	65
6	DPE (0.8)	67
7	DPE (1.2)	60

^{*a*} Reaction conditions: **1a** (0.05 mmol), **2a** (0.4 mmol), **3a** (0.2 mmol), TBPB (0.2 mmol), Cs_2CO_3 (0.2 mmol), MeCN (4 mL), C (15 mm×10 mm×1 mm) cathode, C plate (15 mm×10 mm×1 mm) anode, undivided cell, current = 3 mA, rt, 4 h. ^{*b*} Isolated yields.

3.2 Deuterium labeling study

A mixture of D₂O (36 μ L, 2.0 mmol), methacryloyl chloride **2a** (42 μ L, 0.4 mmol), **3a** (30.0 mg, 0.2 mmol), TBPB (67.9 mg, 0.2 mmol), Cs₂CO₃ (32.6 mg, 0.1 mmol) and CH₃CN (4.0 mL), were added in an undivided bottle (10 mL). The bottle was equipped with graphite plates as anode and cathode. The resulting mixture was stirred and electrolyzed with constant current 3 mA at room temperature for 4 h. After the reaction finished, the resulting mixture were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 10:1, v/v) to afford the desired product **6-***d* in 95% yield, D incorporation was determined by ¹H NMR: 96%.

3-Methyl-2,3-dihydro-4*H***-benzo[4,5]imidazo[2,1-***b***][1,3]thiazin-4-one-3-***d* **(6***d***): ¹H NMR (CDCl₃, 600 MHz) δ 8.19-8.18 (m, 1H), 7.59-7.58 (m, 1H), 7.33 (td,** *J* **= 7.5, 1.3 Hz, 1H), 7.28 (td,** *J* **= 8.0, 1.3 Hz, 1H), 3.23 (d,** *J* **= 1.3 Hz, 2.04H), 1.52 (s, 3H).. ¹³C NMR (CDCl₃, 150 MHz) δ 169.9, 150.8, 143.1, 132.8, 125.6, 124.6, 118.6, 115.5, 39.1 (t,** *J* **= 21 Hz), 31.0, 15.3. HRMS (APCI) m/z calcd for C₁₁H₁₀DN₂OS [M+H]⁺: 220.0649; Found: 220.0644.**

4 Analytical data

3-Methyl-3-(phenylselanyl)-2,3-dihydro-4H-benzo[4,5]imidazo[2,1-

b][1,3]thiazin-4-one (4a): New compound, 33.7 mg, 90% yield. White solid, m.p.: 128.3-128.9 °C. ¹H NMR (CDCl₃, 600 MHz) δ 8.21-8.20 (m, 1H), 7.62 (d, *J* = 7.8 Hz, 1H), 7.53-7.51 (m, 2H), 7.41-7.38 (m, 1H), 7.36-7.34 (m, 1H), 7.32-7.28 (m, 3H), 3.79 (d, *J* = 14.0 Hz, 1H), 3.35 (d, *J* = 13.9 Hz, 1H), 1.70 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 168.0, 149.7, 143.1, 138.4, 133.2, 130.1, 129.2, 125.4, 125.4, 124.6, 118.7, 115.6, 47.2, 37.8, 24.3. HRMS (ESI) m/z calcd for C₁₇H₁₅N₂OSSe [M+H]⁺: 375.0065; Found: 375.0058.

3-Methyl-3-(o-tolylselanyl)-2,3-dihydro-4H-benzo[4,5]imidazo[2,1-

b][1,3]thiazin-4-one (4b): New compound, 29.2 mg, 75% yield. Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 8.20 (d, *J* = 7.9 Hz, 1H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.3 Hz, 1H), 7.32-7.28 (m, 3H), 7.10-7.08 (m, 1H), 3.84 (d, *J* = 13.9 Hz, 1H), 3.39 (d, *J* = 13.9 Hz, 1H), 2.37 (s, 3H), 1.69 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 168.2, 149.8, 144.3, 143.2, 140.3, 133.3, 130.8, 130.6, 126.6, 126.5, 125.5, 124.7, 118.8, 115.6, 47.3, 38.1, 24.1, 23.5. HRMS (ESI) m/z calcd for C₁₈H₁₇N₂OSSe [M+H]⁺: 389.0222; Found: 389.0218.

3-Methyl-3-(m-tolylselanyl)-2,3-dihydro-4H-benzo[4,5]imidazo[2,1-

b][1,3]thiazin-4-one (4c): New compound, 31.1 mg, 80% yield. Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 8.20 (d, J = 8.0 Hz, 1H), 7.62 (d, J = 7.7, 1H), 7.37-7.30 (m, 4H), 7.18-7.17 (m, 2H), 3.80 (d, J = 14.0 Hz, 1H), 3.35 (d, J = 14.0 Hz, 1H), 2.27 (s, 3H), 1.74 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 168.1, 149.9, 143.1, 139.1, 139.0, 135.4, 133.2, 131.0, 129.0, 125.5, 125.2, 124.6, 118.7, 115.6, 47.3, 37.9, 24.5, 21.3. HRMS (ESI) m/z calcd for C₁₈H₁₇N₂OSSe [M+H]⁺: 389.0222; Found: 389.0220.

3-Methyl-3-(p-tolylselanyl)-2,3-dihydro-4H-benzo[4,5]imidazo[2,1-

b][1,3]thiazin-4-one (4d): New compound, 37.0 mg, 95% yield. Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 8.21-8.20 (m, 1H), 7.62-7.61 (m, 1H), 7.40-7.39 (m, 2H), 7.36-7.34 (m, 1H), 7.32-7.29 (m, 1H), 7.10 (d, *J* = 7.7 Hz, 2H), 3.79 (d, *J* = 13.9 Hz, 1H), 3.34 (d, *J* = 14.0 Hz, 1H), 2.33 (s, 3H), 1.70 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 168.1, 149.8, 143.1, 140.5, 138.4, 138.3, 133.3, 132.4, 130.1, 125.4, 124.6, 121.9, 118.7, 115.7, 47.1, 37.8, 24.4, 21.4. HRMS (ESI) m/z calcd for C₁₈H₁₇N₂OSSe [M+H]⁺: 389.0222; Found: 389.0218.

3-((4-Ethylphenyl)selanyl)-3-methyl-2,3-dihydro-4*H***-benzo[4,5]imidazo[2,1***b*]**[1,3]thiazin-4-one (4e)**: New compound, 32.2 mg, 80% yield. Pale yellow oil. ¹**H NMR** (CDCl₃, 600 MHz) δ 8.20 (d, *J* = 7.9 Hz, 1H), 7.61 (d, *J* = 7.8 Hz, 1H), 7.43 (d, *J* = 7.9 Hz, 2H), 7.36-7.33 (m, 1H), 7.31-7.29 (m, 1H), 7.11 (d, *J* = 7.9 Hz, 2H), 3.79 (d, *J* = 14.0 Hz, 1H), 3.34 (d, *J* = 13.9 Hz, 1H), 2.62 (q, *J* = 7.6 Hz, 2H), 1.70 (s, 3H), 1.20 (t, *J* = 7.6 Hz, 3H). ¹³**C NMR** (CDCl₃, 150 MHz) δ 168.1, 149.8, 146.7, 143.2, 138.5, 133.3, 128.9, 125.4, 124.6, 122.2, 118.7, 115.7, 47.1, 37.9, 28.7, 24.4, 15.3. **HRMS** (ESI) m/z calcd for C₁₉H₁₉N₂OSSe [M+H]⁺: 403.0378; Found: 403.0378.

3-((4-Isopropylphenyl)selanyl)-3-methyl-2,3-dihydro-4H-

benzo[4,5]imidazo[2,1-*b*][1,3]thiazin-4-one (4f): New compound, 19.1 mg, 46% yield. Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 8.21 (d, *J* = 7.7 Hz, 1H), 7.61 (d, *J* = 7.6 Hz, 1H), 7.45 (d, *J* = 8.1 Hz, 2H), 7.36-7.33 (m, 1H), 7.32-7.29 (m, 1H), 7.13

(d, J = 8.0 Hz, 2H), 3.80 (d, J = 14.0 Hz, 1H), 3.35 (d, J = 13.9 Hz, 1H), 2.87 (sept, J = 6.9 Hz, 1H), 1.72 (s, 3H), 1.21 (dd, J = 7.0, 1.3 Hz, 6H). ¹³C NMR (CDCl₃, 150 MHz) δ 168.2, 151.3, 149.8, 143.2, 138.5, 133.3, 127.5, 125.5, 124.6, 122.3, 118.8, 115.7, 47.2, 38.0, 34.1, 24.5, 23.9, 23.9. HRMS (ESI) m/z calcd for C₂₀H₂₁N₂OSSe [M+H]⁺: 417.0535; Found: 417.0529.

3-((4-(tert-Tutyl)phenyl)selanyl)-3-methyl-2,3-dihydro-4H-

benzo[4,5]imidazo[2,1-*b*][1,3]thiazin-4-one (4g): New compound, 25.4 mg, 59% yield. Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 8.21 (d, *J* = 7.8 Hz, 1H), 7.60 (d, *J* = 7.9 Hz, 1H), 7.45 (d, *J* = 8.2 Hz, 2H), 7.36-7.33 (m, 1H), 7.32-7.27 (m, 3H), 3.80 (d, *J* = 13.9 Hz, 1H), 3.36 (d, *J* = 13.9 Hz, 1H), 1.73 (s, 3H), 1.27 (s, 9H). ¹³C NMR (CDCl₃, 150 MHz) δ 168.2, 153.6, 149.9, 143.0, 138.2, 133.2, 131.5, 130.3, 126.4, 125.5, 124.6, 122.1, 118.7, 115.7, 47.2, 38.1, 34.9, 31.3, 24.5. HRMS (ESI) m/z calcd for C₂₁H₂₃N₂OSSe [M+H]⁺: 431.0691; Found: 431.0687.

3-Methyl-3-((2-(trifluoromethoxy)phenyl)selanyl)-2,3-dihydro-4H-

benzo[4,5]imidazo[2,1-*b*][1,3]thiazin-4-one (4h): New compound, 31.1 mg, 68% yield. Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 8.21-8.20 (m, 1H), 7.64-7.63 (m, 1H), 7.58 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.50-7.47 (m, 1H), 7.38-7.31 (m, 3H), 7.25-7.22 (m, 1H), 3.82 (d, *J* = 14.0 Hz, 1H), 3.44 (d, *J* = 14.0 Hz, 1H), 1.70 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 167.8, 151.5, 149.5, 143.2, 141.2, 133.3, 132.5, 127.3, 125.6, 124.7, 120.7, 120.4 (q, *J* = 258.0 Hz), 119.2, 118.8, 115.7, 48.3, 37.7, 24.0. ¹⁹F NMR

(565 MHz, CDCl₃) δ: 20.9. **HRMS** (ESI) m/z calcd for C₁₈H₁₄F₃N₂O₂SSe [M+H]⁺: 458.9888; Found: 458.9881.

3-((4-Fluorophenyl)selanyl)-3-methyl-2,3-dihydro-4H-

benzo[4,5]**imidazo**[2,1-*b*][1,3]**thiazin-4-one (4i**): New compound, 31.4 mg, 80% yield. Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 8.20 (d, *J* = 7.9 Hz, 1H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.50-7.48 (m, 2H), 7.38-7.35 (m, 1H), 7.33-7.31 (m, 1H), 7.00-6.97 (m, 2H), 3.83 (d, *J* = 14.0 Hz, 1H), 3.35 (d, *J* = 14.0 Hz, 1H), 1.70 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 167.9, 164.3 (d, *J* = 250.5 Hz), 149.7, 143.1, 140.5 (d, *J* = 7.5 Hz), 133.2, 125.6, 124.8, 120.3 (d, *J* = 3.0 Hz), 118.8, 116.7, 116.6, 115.7, 47.4, 37.7, 24.4. ¹⁹F NMR (565 MHz, CDCl₃) δ : -32.1. HRMS (ESI) m/z calcd for C₁₇H₁₄FN₂OSSe [M+H]⁺: 392.9971; Found: 392.9970.

3-((2-Chlorophenyl)selanyl)-3-methyl-2,3-dihydro-4H-

benzo[4,5]**imidazo**[2,1-*b*][1,3]**thiazin-4-one (4j**): New compound, 21.6 mg, 53% yield. White solid, m.p.: 150.8-151.4 °C. ¹H NMR (CDCl₃, 600 MHz) δ 8.22 (d, *J* = 7.9 Hz, 1H), 7.63 (d, *J* = 7.7 Hz, 1H), 7.57 (dd, *J* = 7.6, 1.1 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 1H), 7.37-7.35 (m, 2H), 7.33-7.31 (m, 1H), 7.20-7.17 (m, 1H), 3.84 (d, *J* = 14.0 Hz, 1H), 3.47 (d, *J* = 14.0 Hz, 1H), 1.74 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 167.8, 149.5, 143.2, 141.4, 141.2, 133.3, 132.0, 130.1, 127.4, 126.0, 125.5, 124.7, 118.8, 115.8, 48.5, 37.8, 23.8. **HRMS** (ESI) m/z calcd for C₁₇H₁₄ClN₂OSSe [M+H]⁺: 408.9675; Found: 408.9669.

3-((4-Chlorophenyl)selanyl)-3-methyl-2,3-dihydro-4H-

benzo[4,5]imidazo[2,1-*b*][1,3]thiazin-4-one (4k): New compound, 29.4 mg, 72% yield. White solid, m.p.: 93.2-93.8 °C. ¹H NMR (CDCl₃, 600 MHz) δ 8.20 (d, *J* = 7.7 Hz, 1H), 7.63 (d, *J* = 7.7 Hz, 1H), 7.44-7.43 (m, 2H), 7.38-7.35 (m, 1H), 7.33-7.31 (m, 1H), 7.28-7.25 (m, 2H), 3.83 (d, *J* = 14.0 Hz, 1H), 3.35 (d, *J* = 14.0 Hz, 1H), 1.70 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 167.9, 149.5, 143.2, 139.7, 137.0, 133.2, 129.6, 125.6, 124.8, 123.6, 118.8, 115.7, 47.6, 37.8, 24.4. HRMS (ESI) m/z calcd for C₁₇H₁₄ClN₂OSSe [M+H]⁺: 408.9675; Found: 408.9674.

3-((3-Bromophenyl)selanyl)-3-methyl-2,3-dihydro-4H-

benzo[4,5]**imidazo**[2,1-*b*][1,3]**thiazin-4-one (4l**): New compound, 27.1 mg, 60% yield. Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 8.21 (d, *J* = 7.9 Hz, 1H), 7.69 (s, 1H), 7.63 (d, *J* = 7.7 Hz, 1H), 7.52 (d, *J* = 7.9 Hz, 1H), 7.44 (d, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.1 Hz, 1H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.17 (t, *J* = 7.9 Hz, 1H), 3.83 (d, *J* = 14.0 Hz, 1H), 3.37 (d, *J* = 14.0 Hz, 1H), 1.74 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 167.8, 149.5, 143.1, 140.7, 136.9, 133.3, 133.2, 130.6, 127.1, 125.7, 124.8, 122.7, 118.8, 115.7, 47.9, 37.8, 24.5. **HRMS** (ESI) m/z calcd for C₁₇H₁₄BrN₂OSSe [M+H]⁺: 452.9170; Found: 452.9160.

3-((4-Bromophenyl)selanyl)-3-methyl-2,3-dihydro-4H-

benzo[4,5]**imidazo**[2,1-*b*][1,3]**thiazin-4-one (4m)**: New compound, 33.9 mg, 75% yield. Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 8.20 (d, *J* = 7.9 Hz, 1H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.43-7.35 (m, 5H), 7.32 (t, *J* = 7.7 Hz, 1H), 3.83 (d, *J* = 14.0 Hz, 1H), 3.35 (d, *J* = 14.0 Hz, 1H), 1.70 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 167.8, 149.5, 143.1, 139.9, 133.2, 132.5, 125.6, 125.4, 124.8, 124.2, 118.8, 115.6, 47.6, 37.8, 24.4. HRMS (ESI) m/z calcd for C₁₇H₁₄BrN₂OSSe [M+H]⁺: 452.9170; Found: 452.9163.

3-Methyl-3-((4-(trifluoromethyl)phenyl)selanyl)-2,3-dihydro-4H-

benzo[4,5]**imidazo**[2,1-*b*][1,3]**thiazin-4-one (4n)**: New compound, 37.1 mg, 84% yield. Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 8.20-8.17 (m, 1H), 7.63-7.61 (m, 1H), 7.42-7.40 (m, 2H), 7.37-7.34 (m, 3H), 7.33-7.30 (m, 1H), 3.82 (dd, *J* = 14.1, 3.0 Hz, 1H), 3.34 (dd, *J* = 14.0, 4.6 Hz, 1H), 1.69 (d, *J* = 4.0 Hz, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 167.8, 149.4, 143.1, 138.6, 133.1, 132.2 (q, *J* = 31.5 Hz), 130.0, 125.9 (q, *J* = 3.0 Hz), 125.7, 124.9, 123.9 (q, *J* = 271.5 Hz), 118.9, 115.7, 48.0, 37.9, 24.5. ¹⁹F NMR (565 MHz, CDCl₃) δ : 14.9. HRMS (ESI) m/z calcd for C₁₈H₁₄F₃N₂OSSe [M+H]⁺: 442.9939; Found: 442.9933.

3-((3-Methyl-4-oxo-3,4-dihydro-2*H***-benzo[4,5]imidazo[2,1-***b***][1,3]thiazin-3yl)selanyl)benzonitrile (4o): New compound, 22.7 mg, 57% yield. Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) \delta 8.19-8.18 (m, 1H), 7.81-7.81 (m, 1H), 7.74-7.73 (m, 1H), 7.67-7.65 (m, 1H), 7.62-7.61 (m, 1H), 7.41-7.38 (m, 1H), 7.37-7.35 (m, 1H), 7.35-7.32 (m, 1H), 3.88 (d,** *J* **= 14.1 Hz, 1H), 3.38 (d,** *J* **= 14.1 Hz, 1H), 1.71 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) \delta 167.6, 149.2, 143.1, 142.6, 141.3, 133.5, 133.1, 129.8, 126.9, 125.8, 125.0, 118.9, 117.8, 115.6, 113.4, 48.3, 37.7, 24.5. HRMS (ESI) m/z calcd for C₁₈H₁₄N₃OSSe [M+H]⁺: 400.0018; Found: 400.0017.**

3-Methyl-3-((3-nitrophenyl)selanyl)-2,3-dihydro-4*H***-benzo[4,5]imidazo[2,1***b***][1,3]thiazin-4-one (4p): New compound, 15.1 mg, 36% yield. Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) \delta 8.40 (t,** *J* **= 1.9 Hz, 1H), 8.24-8.23 (m, 1H), 8.20-8.19 (m, 1H), 7.84-7.82 (m, 1H), 7.64-7.62 (m, 1H), 7.48 (t,** *J* **= 7.9 Hz, 1H), 7.39-7.36 (m, 1H), 7.35-7.32 (m, 1H), 3.90 (d,** *J* **= 14.1 Hz, 1H), 3.41 (d,** *J* **= 14.1 Hz, 1H), 1.75 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) \delta 167.6, 149.2, 148.1, 144.1, 143.1, 133.1, 132.9, 130.0, 127.1, 125.8, 125.0, 125.0, 119.0, 115.7, 48.6, 37.8, 24.6. HRMS (ESI) m/z calcd for C₁₇H₁₄N₃O₃SSe [M+H]⁺: 419.9916; Found: 419.9918.**

3-((2,6-Dimethylphenyl)selanyl)-3-methyl-2,3-dihydro-4H-

benzo[4,5]**imidazo**[2,1-*b*][1,3]**thiazin-4-one (4q)**: New compound, 28.9 mg, 72% yield. Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 8.18 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 7.9 Hz, 1H), 7.35 (t, *J* = 7.4 Hz, 1H), 7.30 (t, *J* = 7.9 Hz, 1H), 7.27 (s, 1H), 7.15 (d, *J* = 7.7 Hz, 1H), 7.07 (d, *J* = 7.6 Hz, 1H), 3.83 (d, *J* = 13.9 Hz, 1H), 3.37 (d, *J* = 13.9 Hz, 1H), 2.33 (s, 3H), 2.20 (s, 3H), 1.72 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 168.0, 149.9, 143.1, 141.0, 140.6, 136.1, 133.2, 131.5, 130.2, 126.2, 125.5, 124.6, 118.7, 115.6, 47.3, 38.0, 24.2, 23.0, 20.6. HRMS (ESI) m/z calcd for C₁₉H₁₉N₂OSSe [M+H]⁺: 403.0378; Found: 403.0378.

3-((3,5-Dimethylphenyl)selanyl)-3-methyl-2,3-dihydro-4H-

benzo[4,5]imidazo[2,1-*b*][1,3]thiazin-4-one (4r): New compound, 25.3 mg, 63%. Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 8.18 (d, *J* = 7.9 Hz, 1H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.35-7.33 (m, 1H), 7.31-7.28 (m, 1H), 7.12 (s, 2H), 6.96 (s, 1H), 3.77 (d, *J* = 14.0 Hz, 1H), 3.33 (d, *J* = 14.0 Hz, 1H), 2.23 (s, 6H), 1.75 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 168.0, 149.9, 143.2, 138.8, 136.0, 133.2, 131.9, 129.1, 125.4, 124.9, 124.5, 118.7, 115.5, 47.3, 37.9, 24.5, 21.1. HRMS (ESI) m/z calcd for C₁₉H₁₉N₂OSSe [M+H]⁺: 403.0378; Found: 403.0378.

3-((3,5-Dibromophenyl)selanyl)-3-methyl-2,3-dihydro-4H-

benzo[4,5]imidazo[2,1-*b*][1,3]thiazin-4-one (4s): New compound, 37.1 mg, 70% yield. Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 8.21-8.19 (m, 1H), 7.64 (t, *J* = 1.7 Hz, 1H), 7.62-7.61 (m, 1H), 7.59 (d, *J* = 1.7 Hz, 2H), 7.37-7.35 (m, 1H), 7.34-7.31 (m, 1H), 3.84 (d, *J* = 14.1 Hz, 1H), 3.36 (d, *J* = 14.1 Hz, 1H), 1.75 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 167.5, 149.2, 143.1, 139.2, 135.7, 133.0, 128.2, 125.7, 124.9, 122.9, 118.9, 115.7, 48.7, 37.7, 24.5. HRMS (ESI) m/z calcd for C₁₇H₁₃Br₂N₂OSSe [M+H]⁺: 532.8255; Found: 532.8255.

3-Methyl-3-(thiophen-2-ylselanyl)-2,3-dihydro-4*H***-benzo**[**4,5**]**imidazo**[**2,1***b*][**1,3**]**thiazin-4-one (4t)**: New compound, 32.3 mg, 85% yield. Pale yellow oil. ¹**H NMR** (CDCl₃, 600 MHz) δ 8.21 (d, *J* = 7.8 Hz, 1H), 7.63 (d, *J* = 7.6 Hz, 1H), 7.52-7.51 (m, 1H), 7.37-7.34 (m, 1H), 7.33-7.30 (m, 1H), 7.22-7.21 (m, 1H), 7.06-7.04 (m, 1H), 3.72 (d, *J* = 14.1 Hz, 1H), 3.38 (d, *J* = 14.0 Hz, 1H), 1.77 (s, 3H). ¹³**C NMR** (CDCl₃, 150 MHz) δ 167.9, 149.5, 143.1, 140.1, 134.4, 133.2, 128.7, 125.6, 124.8, 119.3, 118.8, 115.7, 49.0, 37.3, 24.1. **HRMS** (ESI) m/z calcd for C₁₅H₁₃N₂OS₂Se [M+H]⁺: 380.9629; Found: 380.9628.

3-Methyl-3-(naphthalen-2-ylselanyl)-2,3-dihydro-4*H***-benzo**[**4,5**]**imidazo**[**2,1***b*][**1,3**]**thiazin-4-one (4u)**: New compound, 33.9 mg, 80% yield. Pale yellow oil. ¹**H NMR** (CDCl₃, 600 MHz) δ 8.21 (d, *J* = 7.9 Hz, 1H), 8.05 (s, 1H), 7.82 (d, *J* = 7.5 Hz, 1H), 7.75 (t, *J* = 8.0 Hz, 2H), 7.61 (d, *J* = 7.7 Hz, 1H), 7.56-7.49 (m, 3H), 7.36-7.34 (m, 1H), 7.32-7.30 (m, 1H), 3.79 (d, *J* = 13.9 Hz, 1H), 3.38 (d, *J* = 13.9 Hz, 1H), 1.73 (s, 3H). ¹³**C NMR** (CDCl₃, 150 MHz) δ 168.1, 149.7, 143.2, 138.9, 134.3, 133.6, 133.6, 133.3, 128.7, 128.1, 127.9, 127.5, 126.7, 125.5, 124.6, 122.8, 118.7, 115.6, 47.6, 37.8, 24.5. **HRMS** (ESI) m/z calcd for C₂₁H₁₇N₂OSSe [M+H]⁺: 425.0222; Found: 425.0216.

3-(Benzylselanyl)-3-methyl-2,3-dihydro-4H-benzo[4,5]imidazo[2,1-

b][1,3]thiazin-4-one (4v): New compound, 32.2 mg, 83% yield. Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 8.27 (d, *J* = 7.4 Hz, 1H), 7.63 (d, *J* = 8.1 Hz, 1H), 7.38-7.32 (m, 2H), 7.25-7.21 (m, 4H), 7.19-7.18 (m, 1H), 4.07 (d, *J* = 10.6 Hz, 1H), 3.99 (d, *J* = 10.8 Hz, 1H), 3.79 (d, *J* = 14.0 Hz, 1H), 3.25 (d, *J* = 14.0 Hz, 1H), 2.01 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 168.0, 149.7, 143.2, 136.4, 133.4, 129.4, 129.2, 128.8, 127.4, 125.5, 124.9, 124.7, 118.9, 115.8, 45.0, 37.7, 27.8, 24.5. HRMS (ESI) m/z calcd for C₁₈H₁₇N₂OSSe [M+H]⁺: 389.0222; Found: 389.0218.

3-Methyl-3-(methylselanyl)-2,3-dihydro-4H-benzo[4,5]imidazo[2,1-

b][1,3]thiazin-4-one (4w): New compound, 25.0 mg, 80% yield. Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 8.21-8.20 (m, 1H), 7.60-7.59 (m, 1H), 7.34-7.31 (m, 1H), 7.30-7.27 (m, 1H), 3.78 (d, *J* = 14.0 Hz, 1H), 3.21 (d, *J* = 14.0 Hz, 1H), 2.10 (s, 3H), 1.88 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 167.5, 149.7, 143.1, 133.3, 125.4, 124.5, 118.7, 115.7, 42.5, 37.6, 23.5, 3.6. HRMS (ESI) m/z calcd for C₁₂H₁₃N₂OSSe [M+H]⁺: 312.9909; Found: 312.9903.

3-(Phenylselanyl)-2,3-dihydro-4*H***-benzo[4,5]imidazo[2,1-***b***][1,3]thiazin-4one (5a): New compound, 7.2 mg, 20% yield. Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) \delta 8.21-8.19 (m, 1H), 7.69-7.68 (m, 2H), 7.63-7.61 (m, 1H), 7.38-7.31 (m, 5H), 4.47 (dd,** *J* **= 5.9, 3.1 Hz, 1H), 3.83 (dd,** *J* **= 13.7, 3.1 Hz, 1H), 3.48 (dd,** *J* **= 13.7, 5.9 Hz, 1H). ¹³C NMR (CDCl₃, 150 MHz) \delta 166.3, 143.0, 136.1, 132.9, 129.7, 129.5, 126.7, 125.8, 124.9, 118.9, 115.8, 43.5, 31.8. HRMS (ESI) m/z calcd for C₁₆H₁₃N₂OSSe [M+H]⁺: 360.9909; Found: 360.9906.**

3,7-Dimethyl-3-(phenylselanyl)-2,3-dihydro-4H-benzo[4,5]imidazo[2,1-

b][1,3]thiazin-4-one and 3,8-dimethyl-3-(phenylselanyl)-2,3-dihydro-4*H*-benzo[4,5]imidazo[2,1-*b*][1,3]thiazin-4-one (5b): New compound, 26.7 mg, 69% yield. Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 8.06 (d, *J* = 8.2 Hz, 1H), 8.05 (s, 1H), 7.74 (d, *J* = 1.7 Hz, 1H), 7.55-7.52 (m, 4H), 7.49 (d, *J* = 8.1 Hz, 1H), 7.43-7.39 (m, 3H), 7.33-7.29 (m, 4H), 7.18-7.16 (m, 1H), 7.13-7.12 (m, 1H), 3.79-3.77 (m, 2H), 3.36-3.33 (m, 2H), 2.49 (s, 3H), 2.47 (s, 3H), 1.70 (s, 3H), 1.69 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 168.3, 168.0, 149.6, 148.8, 143.5, 141.2, 138.5, 135.5, 134.9, 133.4, 131.2, 130.1, 129.2, 126.6, 125.7, 125.6, 125.5, 118.8, 118.2, 116.0, 115.1, 47.3, 47.2, 37.9, 37.9, 24.4, 24.4, 21.9, 21.7. HRMS (ESI) m/z calcd for C₁₈H₁₇N₂OSSe [M+H]⁺: 389.0222; Found: 389.0218.

7-Bromo-3-methyl-3-(phenylselanyl)-2,3-dihydro-4*H*-benzo[4,5]imidazo[2,1*b*][1,3]thiazin-4-one and 8-bromo-3-methyl-3-(phenylselanyl)-2,3-dihydro-4*H*benzo[4,5]imidazo[2,1-*b*][1,3]thiazin-4-one (5c): New compound, 34.8 mg, 80% yield. Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 8.39-8.39 (m, 1H), 8.05 (d, *J* = 8.6 Hz, 1H), 7.74 (d, *J* = 1.7 Hz, 1H), 7.52-7.49 (m, 4H), 7.46-7.46 (m, 2H), 7.43-7.39 (m, 3H), 7.33-7.28 (m, 4H), 3.83-3.81 (m, 2H), 3.36-3.34 (m, 2H), 1.70 (s, 3H), 1.69 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 167.9, 167.8, 151.3, 150.0, 144.4, 142.2, 138.4, 134.1, 132.2, 130.3, 129.3, 129.3, 128.7, 127.5, 125.3, 125.3, 121.7, 119.8, 118.7, 118.6, 118.0, 116.7, 47.1, 47.0, 37.8, 37.8, 24.3, 24.3. HRMS (ESI) m/z calcd for C₁₇H₁₄BrN₂OSSe [M+H]⁺: 452.9170; Found: 452.9163.

3,7,8-Trimethyl-3-(phenylselanyl)-2,3-dihydro-4*H***-benzo[4,5]imidazo[2,1***b***][1,3]thiazin-4-one (5d)**: New compound, 27.3 mg, 68% yield. Pale yellow oil. ¹**H NMR** (CDCl₃, 600 MHz) δ 8.00 (s, 1H), 7.55-7.53 (m, 2H), 7.43-7.40 (m, 1H), 7.37 (s, 1H), 7.33-7.30 (m, 2H), 3.77 (d, *J* = 13.9 Hz, 1H), 3.34 (d, *J* = 13.9 Hz, 1H), 2.38 (s, 3H), 2.36 (s, 3H), 1.68 (s, 3H). ¹³**C NMR** (CDCl₃, 150 MHz) δ 168.2, 148.5, 141.6, 138.5, 134.3, 133.7, 131.6, 130.1, 129.2, 125.6, 119.1, 116.1, 47.2, 38.0, 24.4, 20.5, 20.4. **HRMS** (ESI) m/z calcd for C₁₉H₁₉N₂OSSe [M+H]⁺: 403,0378; Found: 403.0375.

7,8-Difluoro-3-methyl-3-(phenylselanyl)-2,3-dihydro-4H-

benzo[4,5]**imidazo**[2,1-*b*][1,3]**thiazin-4-one** (5e): New compound, 27.5 mg, 67% yield. Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 8.08-8.05 (m, 1H), 7.52-7.50 (m, 2H), 7.43-7.38 (m, 2H), 7.33-7.30 (m, 2H), 3.84 (d, *J* = 14.0 Hz, 1H), 3.37 (d, *J* = 14.0 Hz, 1H), 1.70 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 167.8, 151.0 (d, *J* = 3.0 Hz), 150.1 (d, *J* = 15.0 Hz), 149.3 (d, *J* = 13.5 Hz), 148.4 (d, *J* = 13.5 Hz), 147.7 (d, *J* = 15.0 Hz), 138.9, 138.8 (d, *J* = 1.5 Hz), 138.5, 130.4, 129.4, 128.5 (d, *J* = 12.0 Hz), 125.2, 106.7 (d, *J* = 19.5 Hz), 104.7 (d, *J* = 25.5 Hz), 47.0, 37.9, 24.3. ¹⁹F NMR (565 MHz, CDCl₃) δ : -61.4 (d, *J* = 22.6 Hz), -62.0 (d, *J* = 22.6 Hz). HRMS (ESI) m/z calcd for C₁₇H₁₃F₂N₂OSSe [M+H]⁺: 410.9877; Found: 410.9874.

7,8-Dichloro-3-methyl-3-(phenylselanyl)-2,3-dihydro-4H-

benzo[4,5]imidazo[2,1-*b*][1,3]thiazin-4-one (5f): New compound, 38.4 mg, 87% yield. White solid, m.p.: 147.2-147.9 °C. ¹H NMR (CDCl₃, 600 MHz) δ 8.31 (s, 1H),

7.66 (s, 1H), 7.51-7.49 (m, 2H), 7.43-7.40 (m, 1H), 7.32-7.30 (m, 2H), 3.85 (d, J = 14.0 Hz, 1H), 3.36 (d, J = 14.0 Hz, 1H), 1.69 (s, 3H). ¹³**C** NMR (CDCl₃, 150 MHz) δ 167.6, 152.0, 142.5, 138.4, 132.2, 130.4, 129.6, 129.4, 128.5, 125.2, 119.8, 117.0, 46.8, 37.8, 24.3. HRMS (ESI) m/z calcd for C₁₇H₁₃Cl₂N₂OSSe [M+H]⁺: 442.9286; Found: 442.9279.

6-Methyl-6-(phenylselanyl)-6,7-dihydro-5*H*-imidazo[2,1-*b*][1,3]thiazin-5-one (5g): New compound, 15.6 mg, 48% yield. Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 7.64 (d, J = 1.7 Hz, 1H), 7.53 (d, J = 7.0 Hz, 2H), 7.44 (t, J = 7.4 Hz, 1H), 7.34 (t, J = 7.6 Hz, 2H), 7.02 (d, J = 1.7 Hz, 1H), 3.72 (d, J = 14.0 Hz, 1H), 3.28 (d, J = 14.0Hz, 1H), 1.63 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 166.7, 143.0, 138.5, 130.8, 130.3, 129.3, 125.3, 117.1, 46.7, 38.3, 24.2. HRMS (ESI) m/z calcd for C₁₃H₁₃N₂OSSe [M+H]⁺: 324.9909; Found: 324.9906.

6-Methyl-2,3-diphenyl-6-(phenylselanyl)-6,7-dihydro-5H-imidazo[2,1-

b][1,3]thiazin-5-one (5h): New compound, 19.0 mg, 40% yield. White solid. m.p.: 189.4-189.9 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.53-7.52 (m, 2H), 7.43-7.38 (m, 6H), 7.35-7,34 (m, 2H), 7.28 (t, *J* = 7.7 Hz, 2H), 7.21-7.18 (m, 3H), 3.72 (d, *J* = 13.9 Hz, 1H), 3.36 (d, *J* = 13.9 Hz, 1H), 1.58 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 167.4, 143.4, 140.0, 138.5, 132.7, 132.5, 131.8, 130.6, 130.1, 129.9, 129.3, 129.3, 128.7, 128.6, 128.5, 128.3, 127.6, 127.5, 125.5, 48.0, 37.8, 24.5. HRMS (ESI) m/z calcd for C₂₅H₂₁N₂OSSe [M+H]⁺: 477.0535; Found: 477.0533.

5. References

[1] Zhou, J.; Li, W.; Zheng, H.; Pei, Y.; Liu, X. and Cao, H. Visible Light-induced Cascade Cyclization of 3-Aminoindazoles, Ynals, and Chalcogens: Access to Chalcogen-Containing Pyrimido[1,2-*b*]-indazoles. Org. Lett., 2021, **23**, 2754–2759.

6. Copies of NMR spectra

¹H NMR of product 4b in CDCl₃ (600 MHz)

22042 6357 6357 6357 6327 55145 5344 55145 5357 3357 55145 2357 22549 22549 22560 0000 8000 0000 22560 0000 22560 0000 22500 0000 22500 0000 22500 0000 22500 0000 22500 0000 22500 0000 22500 0000 22500 0000 22500000000	8475 8243	3984 3752	3651	6871
	e. e.	e e	-2.	Ę.

¹³C NMR of product 4b in CDCl₃ (150 MHz)

-168.15	14, 33 14, 33 14, 34 14, 34	77.37 77.16 76.95	-47.25	-38.05	24.12
1		\checkmark			10

¹H NMR of product 4c in CDCl₃ (600 MHz)

¹³C NMR of product 4c in CDCl₃ (150 MHz)

20	8868868865886282	N (0 10	(0	0	$\sim \infty$
^{co}	000000000000000000	$c_{1} \neq c_{2}$	2	6	40
0	4400000000000 <u>6</u>	7777777	47	37	24
<u>)</u>	1 11111	\checkmark	1	1	11

¹H NMR of product 4d in CDCl₃ (600 MHz)

¹³C NMR of product 4d in CDCl₃ (150 MHz)

- 168.07 - 178.03 - 178.	77.37 77.16 76.95	-47.09	-37.75	-24.35
--	-------------------------	--------	--------	--------

¹H NMR of product 4e in CDCl₃ (600 MHz)

1050 1050 1050 1050 1050 1050 1050 1050	7985 7752	3490	6426 6299 6172 6045	7047	2165 2038 1910
	e e e	e e	5555	Ť.	$\overline{\nabla}$

¹³C NMR of product 4e in CDCl₃ (150 MHz)

- 168 - 178 - 178	77.37 77.16 76.95	-47.13	-37.87	—28.72 —24.41	-15.31
---	-------------------------	--------	--------	------------------	--------

¹H NMR of product 4f in CDCl₃ (600 MHz)

121040 (2014) (2	
WOLLING CONTRACTOR	

¹³C NMR of product 4f in CDCl₃ (150 MHz)

33	23268823808222	20-1	9	0 10	041-
88	2 2 2 2 2 2 2 3 8 2 6 0	7.1.3	1.7	0.0	40.00
Ť	757777227777		4	5 5	0,0,0
1		$\mathbf{\gamma}$		4. 0.4.8	JF.

¹H NMR of product 4g in CDCl₃ (600 MHz)

¹H NMR of product 4h in CDCl₃ (600 MHz)

¹³C NMR of product 4i in CDCl₃ (150 MHz)

/167.91 /165.13 /163.46	-149.66 143.05 140.56 140.51	-133.20 124.77 124.77 120.35 120.35 116.71 116.57 116.57 116.57	77.37 76.95	-47.43	-37.74	-24.39
-------------------------------	---------------------------------------	---	----------------	--------	--------	--------

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 fl (ppm)

¹H NMR of product 4j in CDCl₃ (600 MHz)

¹H NMR of product 4k in CDCl₃ (600 MHz)

¹H NMR of product 4l in CDCl₃ (600 MHz)

-040404000000000000000	00	-1-	0
-007-0000-0700-000000	00	-1-	10
	40	00 10	0
0000000777000000000000000	00 00	00	-
000000000000000000000000000000000000000	ni ni	mimi	
	444	47 C7	5
	X	X	

¹H NMR of product 4m in CDCl₃ (600 MHz)

0	0.0.00	10
20000000000000000000000000000000000000	84 28	55
000000000000000000000000000000000000000	336 333	0
	000 000	12
	စိုမှ စိုမှ	5- -
	N 11	4

¹³C NMR of product 4m in CDCl₃ (150 MHz)

-167.83	149.53 149.53 139.86 133.16 132.49 125.62	1124.75 1124.75 118.81 115.63	77.37 77.16 76.95	-47.58	-37.75	-24.41
---------	--	--	-------------------------	--------	--------	--------

¹H NMR of product 4n in CDCl₃ (600 MHz)

570750057005700500000050000050	NN MM MNN	10 0
064404040666666666666666666666666666666	40707000	10
000000000000000000000000000000000000000	00000000000	000
000000000000000000000000000000000000000	000000000	
	St Ve	V
	2010 2010	

¹³C NMR of product 4n in CDCl₃ (150 MHz)

145 145 145 145 145 145 145 145	77.37 77.16 76.95	48.01	-37.92	-24.53
--	-------------------------	-------	--------	--------

¹⁹F NMR of product 4n in CDCl₃ (565 MHz)

¹³C NMR of product 40 in CDCl₃ (150 MHz)

22	48358897197858882	16	4	4	5
67	444488888884 <u>6</u> 66	0.1.0	00	7.7	4
1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4	e S	Ň

¹³C NMR of product 4p in CDCl₃ (150 MHz)

1.57	9.21 9.22 9.25 9.23 9.23 9.23 9.23 9.23 9.23 9.23 9.23	37 95	21	80	57
9	4444 88888888888	77.	00	37.	4
ù –	VIL VILLE		2	Ĩ	- T

¹³C NMR of product 4q in CDCl₃ (150 MHz)

¹³C NMR of product 4r in CDCl₃ (150 MHz)

-108.04		77.37 77.16 77.16 76.95	-47.27	-37.85	-24.49
-108	- 149. 1333. 1259. 115. 115. 115. 115.	77.11 76.9	-47.2	-37.8	-24.4

¹³C NMR of product 4s in CDCl₃ (150 MHz)

	The 10 pl pl 10 pl 10 pl 10 pl 10				
4	000000000000000000000000000000000000000	N-0-10	9	Ø	0
~	0 0 0 0 0 0 0 to 0 0 0	0-0	0	6	40
0	440000000000	NN 0	00	~	4
-	~~~~~~~~~~	~~~	4	ŝ	^N
		\checkmark			

¹H NMR of product 4t in CDCl₃ (600 MHz)

¹³C NMR of product 4t in CDCl₃ (150 MHz)

- 167.86	 77.37 77.16 76.95	49.04	-37.34	-24.09
8	$\mathbf{+}$	1.0	11	

¹H NMR of product 4u in CDCl₃ (600 MHz)

00285714450000000000000000000000000000000000	817 811 811 817 879	326
	36.36	1.75
		Ĩ.

¹³C NMR of product 4u in CDCl₃ (150 MHz)

168.14 143.16 143.16 143.16 143.16 143.16 143.16 143.16 143.16 143.16 154.17 143.15 155.17 145.15 155.17 145.15 155.17 145.15 155.15 155.17 145.15 155.17 145.15 15	77.37 77.37 76.95	-47.56	-37.83	-24.49
---	-------------------------	--------	--------	--------

	stands and	And the second	the production of the	and the set	in the second	and the second	Constant of the	and the set	and the state	5005	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	the section of	the section of		1.		the second second second	and the second sec		a - 1
30	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	- 10 -
										fl (ppm)										

¹H NMR of product 4v in CDCl₃ (600 MHz)

<pre>282/05 822/05 82643 82643 773622 773622 773622 773622 773622 773622 77362 77362 77362 77362 77362 77362 77362 77362 772645 77275 772645 77775 772645 77775 772645 7777575 77775 77775 7777575 77775 7777575 777757575 77775757575 7777575757575757575757575757575757575757</pre>	4.0824 3.9984 3.39884 3.37003 3.7769 3.7769 3.2346	-2.0052
A - Autom		

¹³C NMR of product 4v in CDCl₃ (150 MHz)

¹³C NMR of product 4w in CDCl₃ (150 MHz)

¹³C NMR of product 5a in CDCl₃ (150 MHz)

¹³C NMR of product 5b in CDCl₃ (150 MHz)

(16) 28 (16) 2	77.37 77.16 76.95	47.26 47.23	<37.93<37.90	L24.43 L24.42 T21.91 C21.68
---	-------------------------	----------------	--------------	--------------------------------------

¹³C NMR of product 5c in CDCl₃ (150 MHz)

¹³C NMR of product 5d in CDCl₃ (150 MHz)

	77.37 77.16 76.95	-47,23	-37.98	24.41 20.52 20.39
--	-------------------------	--------	--------	-------------------------

¹³C NMR of product 5e in CDCl₃ (150 MHz)

¹⁹F NMR of product 5e in CDCl₃ (565 MHz)

¹H NMR of product 5f in CDCl₃ (600 MHz)

8.3080 7.5586 7.5059 7.5059 7.5059 7.4905 7.4905 7.4902 7.4022 7.4022 7.3010 7.3010 7.3010 7.3010 7.2984 7.2000	3.8587 3.8353	3.3695 3.3461	1,6916
	$\langle \varphi \rangle$	$\langle \mathbf{v} \rangle$	1

¹³C NMR of product 5f in CDCl₃ (150 MHz)

-167.64	-151.97	142.47 132.15 132.15 132.15 129.57 128.55 128.55 128.55 116.97 116.97 116.97	77.37 77.16 76.95	-46.84	-37.82	-24.25
---------	---------	--	-------------------------	--------	--------	--------

¹H NMR of product 5g in CDCl₃ (600 MHz)

7,0379 7,0379 7,0351 7,0351 7,0358 7,04515 7,04515 7,04515 7,0450 7,0190	-3.7366 -3.7133	3.2919	-1.6265
	Y	\mathbf{Y}	1

¹H NMR of product 5h in CDCl₃ (600 MHz)

5267 15160 15160 15160 15160 15160 15160 15160 15160 15115 15160 15115 1	7361 7361 7129 8713 8713 83713	8673
	29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1

¹H NMR of product 6-*d* in CDCl₃ (600 MHz)

7. X-Ray crystallographic data for 4a (CCDC 2321470)

The suitable crystals were selected on a **XtaLAB Synergy**, **Dualflex**, **HyPix** diffractometer. The crystals were kept at 100.03(10) K during data collection. Using Olex2^[1], the structures were solved with the ShelXT^[2] structure solution program using Intrinsic Phasing and refined with the ShelXL^[3] refinement package using Least Squares minimisation.

[1] Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H.

(2009), J. Appl. Cryst. 42, 339-341.

[2] Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.

[3] Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Single-crystals suitable for X-ray diffraction analysis were grown from the recrystallization in EA and petroleum ether (1/1, v/v) at 25 °C. Thermal ellipsoids of the crystal structures of **4a** was set at 50%.

Identification code	CCDC 2321470
Empirical formula	$C_{17}H_{14}N_2OSSe$
Formula weight	373.32
Temperature/K	296.15
Crystal system	orthorhombic
Space group	$P2_12_12_1$
a/Å	6.5195(10)
b/Å	8.3597(13)
c/Å	29.903(5)
a/°	90
β/°	90

$\gamma/^{\circ}$	90	
Volume/Å ³	1629.8(4)	
Z	4	
$\rho_{calc}g/cm^3$	1.521	
µ/mm ⁻¹	2.434	
F(000)	752.0	
Crystal size/mm ³	0.2 imes 0.15 imes 0.1	
Radiation	MoKa ($\lambda = 0.71073$)	
2Θ range for data collection/ ^c	5.06 to 55.134	
Index ranges	$-6 \le h \le 8, -8 \le k \le 10, -35 \le l \le 37$	
Reflections collected	9718	
Independent reflections	$3689 [R_{int} = 0.0392, R_{sigma} = 0.0584]$	
Data/restraints/parameters	3689/0/200	
Goodness-of-fit on F ²	1.121	
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0429, wR_2 = 0.0794$	
Final R indexes [all data]	$R_1 = 0.0564, wR_2 = 0.0822$	
Largest diff. peak/hole / e Å ⁻³ 0.45/-0.77		