Supporting Information

Ir-Catalyzed Chemo- and Enantioselective Hydrogenation of

Enyne-Conjugated Ketones

Xuejuan Zheng,^{a,b} Fanping Huang,^{a,} Jianfei Yu,^a Qiwei Lang^a, Ya-Nan Duan^d, Gen-Qiang Chen,^{c,*} Xumu Zhang^{a,d*}

^aMedi-X Pingshan, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518000, People's Republic of China; https://orcid.org/0000-0001-5700-0608; Email: zhangxm@sustech.edu.cn ^bShenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518000, People's Republic of China ^cAcademy for Advanced Interdisciplinary Studies and Grubbs Institute, Southern University of Science Technology, Shenzhen 518000. People's Republic China; and of https://orcid.org/0000-0003-2276-6800; Email: chengq@sustech.edu.cn ^d Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China

*Corresponding author. E-mail address: <u>chengq@sustech.edu.cn</u>; <u>zhangxm@sustech.edu.cn</u>

Contents

I. General remarks	S2
II. Synthesis of substrates	S3
III. General procedure for iridium catalyzed hydrogenation	S12
IV. Gram-scale reaction and transformation of products	
V. NMR spectra of all the compounds	S32
VI. References	

I. General remarks

All the reactions dealing with air- or moisture- sensitive compounds were carried out under an atmosphere of argon in a glovebox or using standard Schlenk techniques in a reaction vessel which was dried by a heating gun. Unless otherwise noted, all the reagents were purchased from commercial suppliers without further purification. Solvents for the synthesis of substrates were distilled from sodium/benzophenone (THF, toluene) or calcium hydride (dichloromethane) under a N₂ atmosphere prior to use. Solvents for reaction condition screening were purchased from J&K Chemical and degassed though bubbling argon for 2 hours.

¹H NMR, ¹³C NMR spectra were obtained at room temperature on a Bruker AV400 MHz or Bruker AV600 MHz spectrometer with chemical shifts (d) referred to the residual solvent signal. Chemical shifts were reported upfield to TMS (0.00 ppm) for ¹H NMR and relative to CDCl₃ (77.0 ppm) for ¹³C NMR. Data were reported as: multiplicity (s= singlet, d= doublet, t= triplet, q= quartet, m= multiplet), coupling constant in herz (Hz) and signal area integration in natural numbers. Enantiomeric excess values were determined by Agilent 1290 Series HPLC instrument on a chiral stationary phase. Optical rotations were measured using 1 mL cell with a 1dm path length on a Rudolph Autopol I polarimeter at 589 nm. High resolution mass spectra (HRMS) were obtained on Thermo Scientific Q Exactive hybrid quadrupole-Orbitrap mass spectrometer. A positive ion mass spectrum of sample was acquired on a Thermo LTQ-FT mass spectrometer with an electrospray ionization source. Crystal structure was measured with BRUKER APEX III diffractometer.^[11]

II. Synthesis of substrates

General procedure:

Procedure A: [1]

Step 1: A solution of triphenylphosphine (4.0 eq) and tetrabromomethane (2.0 eq) in DCM (0.15 M) was stirred at 0 °C for 30 minutes. The aldehyde was added and the mixture was stirred at 0 °C for another hour. After petroleum ether was added to the solution, the mixture was loaded on silica and subjected to flash chromatography (silica, petroleum ether), the *gem*-dibromoolefines were given after removing solvent under reduced pressure.

Step 2: Under an atmosphere of argon, *n*BuLi (2.1 eq., 2.5 M in *n*-hexane) was added over a period of 30 minutes *via* syringe pump to a solution of *gem*-dibromoolefine (1 eq.) in dry THF (0.4 M) at -50 °C, and the mixture was stirred at -40 °C for 15 minutes. After addition of DMF (2.0 eq.) at once, the mixture was allowed to warm to room temperature and stirred for one hour. The mixture was added to a stirring solution of NaH₂PO₄ (aq.)/MTBE (1:1). After five minutes, the layers were separated and the aqueous layer was extracted with MTBE. The combined organic layers were dried over MgSO₄, the solvent was removed under reduced pressure and the crude product was subjected to flash chromatography (silica, PE/EA = 90:10). The alkynyl aldehydes were given after removing the solvent under reduced pressure.

Step 3: A solution of aldehyde (1.0 eq.) and phosphine ylide (1.1 eq.) in dichloromethane (0.1 M) was stirred at room temperature for one hour. The solvent was removed under reduced pressure, the crude product was dry-loaded on silica and subjected to flash chromatography (silica, PE/EA = 90:10). The ketones were given after removing the solvent under reduced pressure.

Procedure B:^[2, 3]

Synthesis of the α'-alkylation of 1-triphenylphosphoranylidenepropan-2-one

$$Ph_{3}P \xrightarrow{O} (2) Mel, -78 °C (1.1 eq) (1.1 eq)$$

To a solution of 1-triphenylphosphoranylidenepropan-2-one (1.0 eq) in THF (0.125 M) was added at -78 °C *n*BuLi (1.1 eq., 2.5 M in *n*-hexane). The mixture was stirred at -78 °C for one hour. After iodomethane (1.4 eq) was added, the mixture was allowed to warm to room temperature and stirred overnight. The solvent was removed in vacuo, the residue was taken up in DCM and the mixture was washed three times with H₂O, dried with Na₂SO₄, filtered and concentrated in vacuo. The off-white solid residue was washed with three portions of ice-cold ether and dried in vacuo to give product as slightly brown solid, which was used immediately in the next reaction without further purification.

$$PPh_{3} + Br \xrightarrow{O}_{R} \xrightarrow{Toluene}_{reflux} Ph_{3}P \xrightarrow{O}_{R}$$

$$1wa, R = isopropyl$$

$$1xa, R = cyclohexyl$$

$$1ya, R = cyclopropyl$$

A solution of the 1-bromo-3-methylbutan-2-one (2.0 g, 12.1 mmol) and triphenylphosphine (3.2 g, 12.1 mmol) were refluxed in dry toluene (20 mL) for 4 h. After completion, the reaction mixture was allowed to cool to room temperature and the phosphonium salt was filtered and washed with Et₂O (3×100 mL). The phosphonium salt was then dissolved in H₂O: DCM (3:2) and 2 M NaOH aq. (100 mL) was added. The mixture was stirred for 2 h and then extracted with DCM (3×100 mL). The combined organic phases were washed with brine, dried with Na₂SO₄ and concentrated in vacuo to afford **1wa** as a white solid. Compound **1xa** and **1ya** were prepared according to the same procedure for the synthesis of **1wa**.

A solution of 3-phenylpropioaldehyde (1.0 eq.) and phosphine ylide (1.1 eq.) in dichloromethane (0.1 M) was stirred at room temperature for one hour. The solvent was removed under reduced pressure, the crude product was dry-loaded on silica and subjected to flash chromatography (silica, PE/EA =

90:10). The ketones (1v-1z) were given after removing the solvent under reduced pressure.

A 2-dram, screw-cap vial equipped with a stir bar was charged with Pd(OAc)₂ (22.4 mg, 0.10 mmol, 5 mol %) and tris(2,6-dimethoxyphenyl)phosphine (TDMPP, 44.2 mg, 0.10 mmol, 5 mol %). PhMe (2.0 mL) was added. The mixture was stirred for 15 minutes, generating a homogeneous, or-ange-red solution. To the solution was added 3-hexyn-2-one (328 μ L, 3.0 mmol, 1.5 equivalents) followed by phenylacetylene (220 μ L, 2.0 mmol, 1.0 equivalent). Upon addition of the donor alkyne, the reaction quickly changes in appearance to homogeneous and black. The reaction mixture was stirred for 14 h, at which point it was filtered through a pipette plug of Florisil® (3 cm), which was rinsed with Et₂O (10 mL). The solution was concentrated, and the residue was purified via column chromatography (10:1 hexanes: EtOAc) to afford **1aa** (300.0 mg, 76%) as a clear, orange oil.

(E)-6-Phenylhex-3-en-5-yn-2-one (1a)^[1]

Light yellow solid, 89% yield, 3.8 g. ¹H NMR (600 MHz, CDCl₃): δ 7.50-7.47 (m, 2H), 7.38-7.33 (m, 3H), 6.83 (d, J = 16.0 Hz, 1H), 6.57 (d, J = 16.0 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 197.08, 137.79, 132.00, 129.45, 128.52, 123.83, 122.16, 99.69, 86.71, 27.69.

HRMS (EI) m/z calcd. for $C_{12}H_{11}O$ ([M+H]⁺): 171.0805. Found: 171.0805.

(*E*)-6-(4-Fluorophenyl)hex-3-en-5-yn-2-one (1b)^[1]

Light yellow solid, 60% yield, 1.1 g. ¹H NMR (600 MHz, CDCl₃): δ 7.47 (dd, J = 8.7, 5.4 Hz, 2H), 7.05 (t, J = 8.6 Hz, 2H), 6.81 (d, J =16.1 Hz, 1H), 6.56 (d, J = 16.1 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 196.99, 163.16 (d, J = 250.6 Hz), 137.78, 134.04 (d,

J = 8.5 Hz, 2C), 123.58, 118.28 (d, J = 3.3 Hz), 115.93 (d, J = 22.8 Hz, 2C), 98.51, 86.50, 27.72. ¹⁹F NMR (376 MHz, CDCl₃): δ -108.63- -108.73 (m). HRMS (EI) m/z Calcd. for C₁₂H₁₀FO ([M+H]⁺): 189.0710. Found: 189.0710.

(E)-6-(4-Chlorophenyl)hex-3-en-5-yn-2-one (1c)^[5]

Light brown solid, 36% yield, 0.74 g.¹H NMR (600 MHz, CDCl₃): δ 7.42-7.39 (m, 2H), 7.35-7.32 (m, 2H), 6.81 (d, J = 16.0 Hz, 1H), 6.57 (d, J = 16.0 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 196.94, 138.03, 135.63, 133.18, 128.93, 123.39, 120.63, 98.25, 87.56,

27.77. HRMS (EI) m/z Calcd. for $C_{12}H_{10}ClO$ ([M+H]⁺): 205.0416. Found: 205.0416.

(E)-6-(p-Tolyl)hex-3-en-5-yn-2-one (1d)^[5]

Light yellow solid, 60% yield, 1.1 g. ¹H NMR (600 MHz, CDCl₃): δ 7.37 (d, J = 7.9 Hz, 2H), 7.16 (d, J = 7.7 Hz, 2H), 6.83 (dd, J = 16.1, 2.0 Hz, 1H), 6.54 (dd, J = 16.0, 2.0 Hz, 1H), 2.36 (s, 3H), 2.29 (d, J= 1.9 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 197.13, 139.90,

137.42, 131.95, 129.31, 124.08, 119.09, 100.22, 86.33, 27.64, 21.62. HRMS (EI) m/z Calcd. for $C_{13}H_{13}O([M+H]^+)$: 185.0962. Found: 185.0961.

(E)-6-(4-(Trifluoromethyl)phenyl)hex-3-en-5-yn-2-one (1e)^[1]

Dark brown solid, 33% yield, 0.8 g. ¹H NMR (600 MHz, CDCl₃): δ
7.61 (d, J = 8.2 Hz, 2H), 7.58 (d, J = 8.2 Hz, 2H), 6.82 (d, J = 16.1 Hz, 1H), 6.61 (d, J = 16.1 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 196.80, 138.67, 132.18 (s, 2C), 130.96 (dd, J = 32.7

Hz, 32.7 Hz), 125.90, 125.45 (dd, J = 4.3, 3.3 Hz, 2C), 124.64, 122.90, 97.36, 88.57, 27.84. ¹⁹F NMR (376 MHz, CDCl₃): δ -62.98 (s). HRMS (EI) m/z Calcd. for C₁₃H₁₀F₃O ([M+H]⁺): 239.0684. Found: 239.0684.

(E)-6-(4-Methoxylphenyl)hex-3-en-5-yn-2-one (1f)^[5]

Light yellow solid, 61% yield, 1.2 g. ¹H NMR (600 MHz, CDCl₃): δ 7.44-7.40 (m, 2H), 6.88-6.85 (m, 2H), 6.83 (d, *J* = 16.0 Hz, 1H), 6.52 (d, *J* = 16.0 Hz, 1H), 3.82 (s, 3H), 2.29 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 197.16, 160.61, 136.93, 133.72, 124.25,

114.22, 114.20, 100.42, 86.02, 55.37, 27.61. HRMS (EI) m/z Calcd. for C₁₃H₁₃O₂ ([M+H]⁺): 201.0910. Found: 201.0910.

(*E*)-6-(3-Fluorophenyl)hex-3-en-5-yn-2-one (1g)^[6]

Brown oil, 53% yield, 3.8 g. ¹H NMR (600 MHz, CDCl₃): δ 7.32 (td, J = 7.9, 5.8 Hz, 1H), 7.28-7.24 (m, 1H), 7.17 (ddd, J = 9.3, 2.6, 1.4 Hz, 1H), 7.08 (tdd, J = 8.4, 2.6, 1.0 Hz, 1H), 6.81 (d, J = 16.1 Hz, 1H), 6.58 (d, J = 16.1 Hz, 1H), 2.31 (d, J = 1.1 Hz, 3H). ¹³C NMR (151 MHz,

CDCl₃): δ 196.90, 162.34 (d, J = 247.4 Hz), 138.32, 130.15 (d, J = .8 Hz), 127.8 (d, J = 2.8 Hz), 123.94 (d, J = 9.5 Hz), 123.21, 118.68 (d, J = 22.3 Hz), 116.79 (d, J = 21.7 Hz), 97.85 (d, J = 3.3 Hz), 87.32, 27.78. ¹⁹F NMR (376 MHz, CDCl₃): δ -112.36 (td, J = 8.9, 5.8 Hz). HRMS (EI) m/z Calcd. for C₁₂H₁₀FO ([M+H]⁺): 189.0710. Found: 189.0710.

(E)-6-(3-Chlorophenyl)hex-3-en-5-yn-2-one (1h)

Light yellow solid, 37% yield, 0.8 g. ¹H NMR (600 MHz, CDCl₃): δ 7.43 (t, J = 1.9 Hz, 1H), 7.32 (ddt, J = 7.8, 6.3, 1.4 Hz, 2H), 7.27-7.23 (m, 1H), 6.77 (d, J = 16.1 Hz, 1H), 6.54 (d, J = 16.0 Hz, 1H), 2.27 (d, J = 2.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ

196.87, 138.34, 134.39, 131.73, 130.07, 129.75, 129.65, 123.84, 123.16, 119.85, 97.66, 87.59, 27.78. HRMS (EI) m/z Calcd. for C₁₂H₁₀ClO ([M+H]⁺): 205.0416. Found: 205.0416.

(E)-6-(3-(Trifluoromethyl)phenyl)hex-3-en-5-yn-2-one (1i)

Light yellow solid, 15% yield, 0.4 g. ¹H NMR (600 MHz, CDCl₃): δ 7.74 (d, J = 1.8 Hz, 1H), 7.67-7.61 (m, 2H), 7.49 (t, J = 7.8 Hz, 1H), 6.82 (d, J = 16.1 Hz, 1H), 6.61 (d, J = 16.1 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 196.83, 138.54, 134.97, 131.20

(q, J = 32.8 Hz), 129.09, 128.72 (q, J = 3.9 Hz), 125.89 (q, J = 3.7 Hz), 123.56 (d, J = 273.5 Hz), 123.11, 122.95, 97.31, 87.86, 27.84. ¹⁹F NMR (376 MHz, CDCl₃): δ -63.04. HRMS (EI) m/z Calcd. for C₁₃H₁₀F₃O ([M+H]⁺): 239.0684. Found: 239.0684.

(*E*)-6-(3-Methoxylphenyl)hex-3-en-5-yn-2-one (1j)^[1]

3H), 2.30 (d, *J* = 2.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 197.05, 159.40, 137.87, 129.60, 124.56,

123.74, 123.10, 116.66, 116.10, 99.57, 86.48, 55.33, 27.70. HRMS (EI) m/z Calcd. for $C_{13}H_{13}O_2$ ([M+H]⁺): 201.0910. Found: 201.0910.

(E)-6-(2-Fluorophenyl)hex-3-en-5-yn-2-one (1k)

Light yellow solid, 36% yield, 0.7 g. ¹H NMR (600 MHz, CDCl₃): δ 7.46 (td, J = 7.4, 1.8 Hz, 1H), 7.36 (dddd, J = 8.4, 7.2, 5.3, 1.8 Hz, 1H), 7.15-7.07 (m, 2H), 6.84 (d, J = 16.1 Hz, 1H), 6.60 (d, J = 16.1 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 196.94, 162.77 (d, J = 253.4

Hz), 138.27, 133.70, 131.29 (d, J = 7.9 Hz), 124.17 (d, J = 3.8 Hz), 123.27, 115.71 (d, J = 20.7 Hz), 110.91 (d, J = 15.6 Hz), 92.57, 91.42 (d, J = 3.3 Hz), 27.75. ¹⁹F NMR (376 MHz, CDCl₃): δ -108.81 (dt, J = 9.4, 6.0 Hz). HRMS (EI) m/z Calcd. for C₁₂H₁₀FO ([M+H]⁺): 189.0710. Found: 189.0710.

(*E*)-6-(2-Chlorophenyl)hex-3-en-5-yn-2-one (11)^[1]

Light yellow oil, 39% yield, 0.8 g. ¹H NMR (600 MHz, CDCl₃): δ 7.51 (dd, J = 7.7, 1.7 Hz, 1H), 7.45-7.41 (m, 1H), 7.31 (td, J = 7.8, 1.7 Hz, 1H), 7.27-7.23 (m, 1H), 6.87 (d, J = 16.1 Hz, 1H), 6.62 (d, J = 16.2 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 195.91, 137.42, 135.31,

132.64, 129.41, 128.46, 125.59, 122.26, 121.15, 94.77, 90.34, 26.70. HRMS (EI) m/z Calcd. for $C_{12}H_{10}ClO$ ([M+H]⁺): 205.0416. Found: 205.0416.

(E)-6-(2-Methoxylphenyl)hex-3-en-5-yn-2-one (1m)

Light yellow oil, 45% yield, 0.9 g. ¹H NMR (600 MHz, CDCl₃): δ 7.43 (dd, J = 7.6, 1.7 Hz, 1H), 7.38-7.32 (m, 1H), 6.94 (td, J = 7.5, 1.1 Hz, 1H), 6.89 (td, J = 7.5, 1.1 Hz, 1H), 6.88 (d, J = 16.1 Hz, 1H), 6.57 (d, J = 16.1 Hz, 1H), 3.90 (s, 3H), 2.30 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): δ

197.21, 160.32, 137.52, 133.95, 131.13, 124.24, 120.61, 111.37, 110.76, 96.48, 90.76, 55.84, 27.57. HRMS (EI) m/z Calcd. for C₁₃H₁₃O₂ ([M+H]⁺): 201.0910. Found: 201.0910.

(E)-6-(2,3-Dimethoxylphenyl)hex-3-en-5-yn-2-one (1n)

MHz, CDCl₃): δ 197.12, 150.54, 148.77, 137.04, 125.85, 124.07, 114.46, 114.25, 111.07, 100.45, 85.87,

55.95 (s, 2C), 27.66. HRMS (EI) m/z Calcd. for C₁₄H₁₅O₃ ([M+H]⁺): 231.1016. Found: 231.1015.

(*E*)-6-(Benzo[*d*][1,3]dioxol-5-yl)hex-3-en-5-yn-2-one (10)

Light yellow solid, 54% yield, 1.2 g. ¹H NMR (600 MHz, CDCl₃): δ 6.90 (ddt, J = 7.8, 3.0, 1.4 Hz, 1H), 6.86 – 6.81 (m, 2H), 6.79 (tdd, J =7.8, 3.4, 1.3 Hz, 1H), 6.58 (ddd, J = 16.1, 3.5, 1.4 Hz, 1H), 6.03 (dd, J =3.5, 1.4 Hz, 2H), 2.29 (dd, J = 3.3, 1.4 Hz, 3H). ¹³C NMR (151 MHz,

CDCl₃): δ 196.93, 148.95, 147.62, 138.01, 124.88, 123.36, 121.79, 109.80, 103.90, 101.56, 93.39, 90.56, 27.72. HRMS (EI) m/z Calcd. for C₁₃H₁₁O₃ ([M+H]⁺): 215.0702. Found: 215.0703.

(*E*)-6-(Naphthalen-1-yl)hex-3-en-5-yn-2-one (1p)^[1]

Bronw oil, 55% yield, 1.2 g. ¹H NMR (600 MHz, CDCl₃): δ 8.29 (dd, J = 8.2, 1.3 Hz, 1H), 7.91-7.85 (m, 2H), 7.73 (dd, J = 7.2, 1.2 Hz, 1H), 7.61 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.57 – 7.53 (m, 1H), 7.46 (dd, J = 8.3, 7.1 Hz, 1H), 6.99 (d, J = 16.1 Hz, 1H), 6.69 (d, J = 16.0 Hz, 1H),

2.35 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 197.08, 137.81, 133.16, 131.44, 130.13, 128.47, 127.23, 126.73, 126.72, 125.88, 125.27, 123.84, 119.77, 97.90, 91.55, 27.75. HRMS (EI) m/z Calcd. for C₁₆H₁₂O ([M+H]⁺): 221.0960. Found: 221.0960.

(E)-6-(Naphthalen-2-yl)hex-3-en-5-yn-2-one (1q)^[1]

Light yellow solid, 57% yield, 1.3 g. ¹H NMR (600 MHz, CDCl₃): δ 8.03 (d, *J* = 1.6 Hz, 1H), 7.86 – 7.79 (m, 3H), 7.52 (tdd, *J* = 8.4, 6.6, 1.8 Hz, 3H), 6.89 (d, *J* = 16.0 Hz, 1H), 6.62 (d, *J* = 16.0 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 197.09, 137.81, 133.32,

132.86, 132.49, 128.27, 128.17, 128.02, 127.84, 127.36, 126.83, 123.86, 119.41, 100.19, 87.08, 27.73. HRMS (EI) m/z Calcd. for C₁₆H₁₂O ([M+H]⁺): 221.0960. Found: 221.0960.

(*E*)-6-(Thiophen-2-yl)hex-3-en-5-yn-2-one (1r)^[1]

Yellow oil, 2% yield, 0.3 g. ¹H NMR (600 MHz, CDCl₃): δ 7.38 (dt, *J* = 5.1, 0.9 Hz, 1H), 7.31 (dd, *J* = 3.5, 1.1 Hz, 1H), 7.03 (dd, *J* = 5.1, 3.7 Hz, 1H), 6.83 (d, *J* = 16.0 Hz, 1H), 6.55 (d, *J* = 16.0 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 196.87, 137.06, 133.74, 129.38, 127.49, 123.31,

122.11, 93.04, 91.01, 27.80. HRMS (EI) m/z Calcd. for $C_{10}H_9OS$ ([M+H]⁺): 177.0368. Found: 177.0368.

(*E*)-6-Cyclohexylhex-3-en-5-yn-2-one (1s) ^[7]

Yellow oil, 61% yield, 1.0 g. ¹H NMR (600 MHz, CDCl₃): δ 6.62 (dt, J = 16.0, 1.6 Hz, 1H), 6.40 (dd, J = 16.1, 1.2 Hz, 1H), 2.55 (d, J = 10.0 Hz, 1H), 2.24 (d, J = 1.1 Hz, 3H), 1.86-1.79 (m, 2H), 1.72-1.67 (m, 2H), 1.55-1.43 (m, 3H), 1.32 (tt, J = 9.9, 4.0 Hz, 3H). ¹³C NMR (151 MHz,

CDCl₃): δ 197.45, 137.38, 125.11, 106.38, 78.22, 32.21, 30.09, 27.39, 25.75, 24.78. HRMS (EI) m/z Calcd. for C₁₂H₁₇O ([M+H]⁺): 177.1274. Found: 177.1274.

(E)-6-Cyclopentylhex-3-en-5-yn-2-one (1t)^[1]

CDCl₃): δ 197.45, 137.27, 125.15, 106.70, 77.82, 33.61, 31.11, 27.40, 25.07. HRMS (EI) m/z Calcd. for C₁₁H₁₅O ([M+H]⁺): 163.1118. Found: 163.1118.

(E)-Tridec-3-en-5-yn-2-one (1u)

Yellow oil, 52% yield, 1.0 g. ¹H NMR (600 MHz, CDCl₃): δ 6.60 (dt, *J* = 16.0, 2.3 Hz, 1H), 6.40 (d, *J* = 16.0 Hz, 1H), 2.38 (td, *J* = 7.1, 2.3 Hz, 2H), 2.24 (s, 3H), 1.55 (p, *J* = 7.2 Hz, 2H),

1.39 (dd, J = 10.9, 5.0 Hz, 2H), 1.32-1.25 (m, 6H), 0.88 (t, J = 6.7 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 197.45, 137.47, 125.04, 102.57, 78.26, 31.69, 28.84, 28.75, 28.31, 27.40, 22.61, 19.88, 14.07. HRMS (EI) m/z Calcd. for C₁₃H₂₁O ([M+H]⁺): 193.1588. Found: 193.1589.

(*E*)-7-Phenylhept-4-en-6-yn-3-one (1v)

Yellow oil, 89% yield, 1.6 g. ¹H NMR (600 MHz, CDCl₃): δ 7.55 – 7.45 (m, 2H), 7.42-7.31 (m, 3H), 6.87 (d, J = 16.0 Hz, 1H), 6.61 (d, J = 15.9 Hz, 1H), 2.60 (q, J = 7.3 Hz, 2H), 1.14 (t, J = 7.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 199.62, 136.73, 131.99, 129.36, 128.50,

122.75, 122.24, 98.90, 86.99, 34.39, 7.97. HRMS (EI) m/z Calcd. for $C_{13}H_{12}O$ ([M+H]⁺): 185.0961. Found: 185.0961.

(*E*)-2-Methyl-7-phenylhept-4-en-6-yn-3-one (1w)

Yellow oil, 45% yield, 0.5 g. ¹H NMR (400 MHz, CDCl₃): δ 7.41 (dd, J = 7.4, 2.2 Hz, 2H), 7.33-7.23 (m, 3H), 6.85 (d, J = 15.8 Hz, 1H), 6.63 (d, J = 15.8 Hz, 1H), 2.71 (p, J = 6.9 Hz, 1H), 1.08 (d, J = 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 202.33, 135.31, 132.00, 129.33, 128.50,

123.00, 122.29, 98.59, 87.28, 39.60, 18.14. HRMS (EI) m/z Calcd. for $C_{14}H_{15}O$ ([M+H]⁺): 199.1118. Found: 199.1118.

(E)-1-cyclohexyl-5-phenylpent-2-en-4-yn-1-one (1x)

Exact Mass: 239.1430

Light yellow solid, 60% yield, ¹H NMR (600 MHz, Chloroform-*d*) δ 7.48 (d, *J* = 5.6 Hz, 2H), 7.35 (q, *J* = 6.9, 6.4 Hz, 3H), 6.90 (d, *J* = 15.8 Hz, 1H), 6.70 (d, *J* = 15.8 Hz, 1H), 2.52 (tt, *J* = 11.3, 3.4 Hz, 1H), 1.88 (d, *J* = 17.1 Hz, 2H), 1.81 (d, *J* = 12.8 Hz, 2H), 1.69 (d, *J* = 12.6 Hz, 1H), 1.45 – 1.17 (m,

5H).¹³C NMR (151 MHz, Chloroform-*d*) δ 201.71, 135.62, 131.99, 129.30, 128.49, 122.82, 122.32, 98.51, 87.34, 49.52, 28.40, 25.85, 25.66. HRMS (EI) m/z Calcd. for C₁₇H₁₉O ([M+H]⁺): 239.1430. Found: 239.1431.

(*E*)-1-cyclopropyl-5-phenylpent-2-en-4-yn-1-one (1z)

White solid, 52% yield, 1.0 g. ¹H NMR (600 MHz, CDCl₃): δ 7.51-7.47 (m, 2H), 7.37-7.35 (m, 2H), 6.90 (d, J = 15.9 Hz, 1H), 6.73 (d, J = 15.9 Hz, 1H), 2.10 (tt, J = 7.8, 4.5 Hz, 1H), 1.15 (dt, J = 4.5, 3.4 Hz, 2H), 0.98 (dq, J = 7.3, 3.7 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃):

δ 198.92, 137.00, 132.01, 129.34, 128.50, 122.48, 122.30, 98.81, 87.19, 20.02, 11.64. HRMS (EI) m/z Calcd. for C₁₄H₁₃O ([M+H]⁺): 197.0962. Found: 197.0961.

(*E*)-4-ethyl-6-phenylhex-3-en-5-yn-2-one (1aa) ^[4]

Orange oil, 76% yield, 0.3 g. ¹H NMR (600 MHz, CDCl₃) δ 7.50-7.46 (m, 2H), 7.35 (q, J = 3.9 Hz, 3H), 6.50 (s, 1H), 2.81 (q, J = 7.5 Hz, 2H), 2.24 (s, 3H), 1.21 (t, J = 7.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 197.71, 142.90, 131.96, 130.06, 129.07, 128.45, 122.43, 94.81, 90.56, 31.93, 25.83, 12.90. HRMS (EI) m/z Calcd. for C₁₄H₁₅O ([M+H]⁺): 199.1117. Found: 199.1117.

III. General procedure for iridium catalyzed hydrogenation

General procedure for the asymmetric hydrogenation at S/C = 1 000: To a 2.5

mL vial was added the catalyst precursor $[Ir(COD)Cl]_2$ (3.4 mg, 0.005 mmol), ligands (L1-L5, 0.011 mmol) and anhydrous *i*PrOH (1.0 mL) under argon atmosphere. The mixture was stirred for 3 h at 25 °C giving orange red solution in the argon-filled glovebox. The resulting solution (10 µL) transferred by syringe into a 3.0 mL vial charged with fresh distilled substrate (0.1 mmol) and Cs₂CO₃ (0.001 mmol, 0.33 mg) in 1.0 mL *i*PrOH. The vials were transferred to an autoclave, which was then charged with 50 atm of H₂ and stirred at room temperature for 16 h. The hydrogen gas was released slowly in a well-ventilated hood and the solution was concentrated and passed through a short column of silica gel to get the product. The yield was determined by ¹H NMR analysis. The product was analyzed by chiral HPLC for ee values.

(E)-6-(3-Methoxylphenyl)hex-3-en-5-yn-2-ol (2a) [8]

Brown oil, 99% yield, 93% ee; $[\alpha]_D^{25} = +13.50$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on OJ-H column, hexane: isopropanol = 95:5; flow rate = 0.9 mL/min; UV detection at 220 nm; t_R = 40.67 min (minor), 42.88 min (major). ¹H NMR (600 MHz, CDCl₃) δ 7.43

(dd, J = 6.4, 3.0 Hz, 2H), 7.31 (dd, J = 5.2, 2.0 Hz, 3H), 6.27 (dd, J = 15.9, 5.7 Hz, 1H), 5.93 (dd, J = 15.9, 1.6 Hz, 1H), 4.49-4.36 (m, 1H), 1.60 (br, 1H), 1.33 (d, J = 6.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 146.62, 131.52, 128.32, 128.22, 123.24, 109.24, 90.14, 87.26, 68.35, 23.08. HRMS (EI) m/z Calcd. for C₁₂H₁₁ ([M+H-H₂O]⁺): 155.0855. Found: 155.0855.

(E)-6-(4-Fluorophenyl)hex-3-en-5-yn-2-ol (2b) [9]

Brown oil, 90% yield, 91% ee; $[\alpha]_D^{25} = +3.00$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on OJ-H column, hexane: isopropanol = 95:5; flow rate = 0.9 mL/min; UV detection at 254 nm; t_R = 29.24 min (minor), 32.17 min (major). ¹H NMR (600 MHz,

CDCl₃): δ 7.43-7.39 (m, 2H), 7.03-6.98 (m, 2H), 6.27 (dd, J = 15.9, 5.8 Hz, 1H), 5.91 (dd, J = 15.9, 1.5 Hz, 1H), 4.42 (t, J = 6.6 Hz, 1H), 1.80 (br, 1H), 1.33 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 162.46 (J = 249.2 Hz), 146.71, 133.37 (J = 8.0 Hz), 119.35 (J = 3.7 Hz), 115.61 (J = 22.0 Hz), 109.04, 89.04, 86.96, 68.30, 23.08. ¹⁹F NMR (376 MHz, CDCl₃): δ -111.01 (dd, J = 9.8, 4.9 Hz). HRMS (EI) m/z Calcd. for C₁₂H₁₀F ([M+H-H₂O]⁺): 173.0761. Found: 173.0761.

Signal 1: DAD1 B, Sig=254,4 Ref=360,100

Signal 1: DAD1 B, Sig=254,4 Ref=360,100

eak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	31.819	BB	0.5433	1.48398e4	412.93991	49.8630	1	29.239	BB	0.5506	126.26639	3.37378	4.7576
2	34.184	BB	0.5982	1.49213e4	378.25098	50.1370	2	31.672	BB	0.6240	2527.74023	61.95370	95.2424

(E)-6-(4-Chlorophenyl)hex-3-en-5-yn-2-ol (2c)

Light yellow solid, 95% yield, 90% ee; $[\alpha]_D^{25} = +6.40$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on OJ-H column, hexane: isopropanol = 95:5; flow rate = 0.9 mL/min; UV detection at 254 nm; t_R = 28.45 min (minor), 30.85 min (major). ¹H

NMR (400 MHz, CDCl₃): δ 7.38-7.33 (m, 2H), 7.30-7.26 (m, 2H), 6.27 (dd, J = 15.9, 5.7 Hz, 1H), 5.91 (dd, J = 15.9, 1.4 Hz, 1H), 4.41 (pd, J = 6.4, 1.5 Hz, 1H), 1.68 (br, 1H), 1.33 (d, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 147.08, 134.22, 132.71, 128.74, 128.67, 121.75, 108.92, 88.97, 88.25, 68.27, 23.08. HRMS (EI) m/z Calcd. for C₁₂H₁₀Cl ([M+H-H₂O]⁺): 189.0466. Found: 189.0466.

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	26.066	BB	0.5276	4511.02100	131.03139	50.4353	1	28.450	BB	0.5063	134.82475	3.98901	4.9893
2	28.394	MM	0.6133	4433.14697	120.46500	49.5647	2	30.851	BB	0.6277	2567.45679	62.96851	95.0107

(E)-6-(p-Tolyl)hex-3-en-5-yn-2-ol (2d)

Light yellow oil, 99% yield, 93% ee; $[\alpha]_D^{25} = +13.10$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on OJ-H column, hexane: isopropanol = 95:5; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 51.38 min (minor), 56.48 min (major). ¹H

NMR (400 MHz, CDCl₃): δ 7.37-7.29 (m, 3H), 7.12 (dd, J = 7.9, 5.8 Hz, 3H), 6.25 (dd, J = 15.9, 5.9 Hz, 1H), 5.91 (dd, J = 15.8, 1.4 Hz, 1H), 4.41 (pd, J = 6.4, 1.5 Hz, 1H), 2.35 (s, 3H), 1.75 (br, 1H), 1.32 (d, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 146.12, 138.27, 131.31, 128.99, 120.04, 109.30, 90.24, 86.53, 68.26, 22.96, 21.39. HRMS (EI) m/z Calcd. for C₁₃H₁₃ ([M+H-H₂O]⁺): 169.1012. Found: 169.1011.

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	52.097	BB	1.1529	9623.35938	131.32373	49.7889	1	51.384	BB	0.8819	452.05243	6.32434	3.6475
2	57.498	BBA	1.4544	9704.97266	101.05866	50.2111	2	56.479	BBA	1.4816	1.19416e4	125.55444	96.3525

(E)-6-(4-(Trifluoromethyl)phenyl)hex-3-en-5-yn-2-ol (2e)

Brown oil, 89% yield, 90% ee; $[\alpha]_D^{25} = +14.70$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on OJ-H column, hexane: isopropanol = 97:3; flow rate = 0.9 mL/min; UV detection at 220 nm; t_R = 34.11 min (minor), 38.19 min (major). ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J* = 8.4

Hz, 2H), 7.52 (d, J = 8.2 Hz, 2H), 6.33 (dd, J = 15.9, 5.6 Hz, 1H), 5.94 (dd, J = 15.9, 1.5 Hz, 1H), 4.44 (pd, J = 6.4, 1.5 Hz, 1H), 1.83 (br, 1H), 1.34 (d, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 147.87, 131.70, 129.84 (q, J = 34.2 Hz), 127.10, 125.24 (q, J = 3.6

Hz), 122.72, 108.62, 89.69, 88.65, 68.20, 23.05. ¹⁹F NMR (377 MHz, CDCl₃): δ -62.82. HRMS (EI) m/z Calcd. for C₁₃H₁₀F₃ ([M+H-H₂O]⁺): 223.0729. Found: 223.0728.

(*E*)-6-(4-Methoxylphenyl)hex-3-en-5-yn-2-ol (2f) ^[9]

Light yellow oil, 99% yield, 92% ee; $[\alpha]_D^{25} = +53.30$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on OD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 17.00 min (minor), 33.63

min (major). ¹H NMR (600 MHz, CDCl₃): δ 7.37 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.3 Hz, 2H), 6.23 (dd, J = 15.9, 5.8 Hz, 1H), 5.97-5.87 (m, 1H), 4.41 (p, J = 6.2 Hz, 1H), 3.81 (s, 3H), 1.70 (br, 1H), 1.33 (d, J = 6.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 159.58, 145.82, 132.97, 115.35, 113.99, 109.49, 90.17, 85.99, 68.39, 55.29, 23.08. HRMS (EI) m/z Calcd. for C₁₃H₁₃O ([M+H-H₂O]⁺): 185.0961. Found: 185.0958.

Signa	1 1: DAD1 B,	Sig=210	,4 Ref=off			Signa	al 1: DAU	D1 B,	Sig=210	,4 Ref=off			
Peak I #	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1	16.957 BV R	0.4341	1.24732e4	443.46393	49.8112	1	16.997	VV R	0.3250	566.77216	21.40012	4.1412	
2	33.814 VV R	0.6900	1.25677e4	215.00420	50.1888	2	33.631	VB R	0.6797	1.31196e4	226.53383	95.8588	

(E)-6-(3-Fluorophenyl)hex-3-en-5-yn-2-ol (2g)

Brown oil, 89% yield, 90% ee; $[\alpha]_D^{25} = +23.20$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on OD-H column, hexane: isopropanol = 95:5; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 10.96 min (minor), 13.95 min (major). ¹H NMR (600 MHz,

CDCl₃): δ 7.27 (q, J = 7.8 Hz, 1H), 7.20 (dd, J = 7.6, 1.4 Hz, 1H), 7.13-7.10 (m, 1H), 7.01 (td, J = 8.5, 2.7 Hz, 1H), 6.29 (dd, J = 15.9, 5.7 Hz, 1H), 5.91 (dd, J = 16.0, 1.5 Hz, 1H), 4.55-4.35 (m, 1H), 1.89 (br, 1H), 1.33 (d, J = 6.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 162.36 (d, J = 246.3 Hz), 147.36, 129.87 (d, J = 8.7 Hz), 127.39 (d, J = 2.8 Hz), 125.10 (d, J = 9.4 Hz), 118.26 (d, J = 22.6 Hz), 115.54 (d, J = 21.2 Hz), 108.80, 88.81 (d, J = 3.6 Hz), 88.19, 68.25, 23.05. ¹⁹F NMR (376 MHz, CDCl₃): δ -113.03 (td, J = 9.2, 5.9 Hz). HRMS (EI) m/z Calcd. for C₁₄H₁₅O ([M+H-H₂O]⁺): 173.0761. Found: 173.0761.

(E)-6-(3-Chlorophenyl)hex-3-en-5-yn-2-ol (2h)

MHz, CDCl₃): δ 7.41 (d, J = 1.9 Hz, 1H), 7.31-7.26 (m, 2H), 7.23 (t, J = 7.8 Hz, 1H), 6.29 (dd, J =

15.9, 5.7 Hz, 1H), 5.91 (dd, J = 15.9, 1.6 Hz, 1H), 4.42 (p, J = 6.2 Hz, 1H), 1.80 (br, 1H), 1.33 (d, J = 6.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 147.42, 134.14, 131.34, 129.75, 129.62, 129.54, 128.45, 124.98, 108.78, 88.63, 88.49, 68.24, 23.06. HRMS (EI) m/z Calcd. for C₁₂H₁₀Cl ([M+H-H₂O]⁺): 189.0466. Found: 189.0466.

(E)-6-(3-(Trifluoromethyl)phenyl)hex-3-en-5-yn-2-ol (2i)

(600 MHz, CDCl₃): δ 7.68 (s, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.43 (t, J = 7.8 Hz, 1H), 6.32 (dd, J = 16.0, 5.6 Hz, 1H), 5.93 (dd, J = 16.0, 1.5 Hz, 1H), 4.51-4.32 (m, 1H), 1.84 (br, 1H), 1.34 (d, J = 6.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 147.70, 134.53, 130.94 (d, J = 32.5 Hz), 128.84, 128.29 (q, J = 3.9 Hz), 124.71 (q, J = 3.7 Hz), 124.22, 122.80, 108.62, 88.83, 88.47, 68.22, 23.06. ¹⁹F NMR (376 MHz, CDCl₃): δ -63.00. HRMS (EI) m/z Calcd. for C₁₃H₁₀F₃ ([M+H-H₂O]⁺): 223.0729. Found: 223.0728.

Signal	1:	DAD1	Α,	Sig=220,4	Ref=off
--------	----	------	----	-----------	---------

Signal 1: DAD1 A, Sig=220,4 Ref=off

Peak #	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.133 BV	0.2314	2.29455e4	1580.34155	49.6816	1	8.158	BV	0.2217	645.11975	45.42713	4.9148
2	8.926 VB	0.2437	2.32396e4	1492.36121	50.3184	2	8.954	VB	0.2389	1.24808e4	814.13019	95.0852

(E)-6-(3-Methoxylphenyl)hex-3-en-5-yn-2-ol (2j)

Light yellow oil, 98% yield, 93% ee; $[\alpha]_D^{25} = +12.30$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on OD-H column, hexane: isopropanol = 95:5; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 10.56 min (minor), 13.29 min (major).

¹H NMR (400 MHz, CDCl₃): δ 7.14 (t, *J* = 7.9 Hz, 1H), 6.95 (dt, *J* = 7.6, 1.2 Hz, 1H), 6.89 (dd, *J* = 2.7, 1.4 Hz, 1H), 6.79 (ddd, *J* = 8.3, 2.6, 1.0 Hz, 1H), 6.20 (dd, *J* = 15.9, 5.8 Hz, 1H), 5.84 (dd, *J* = 15.9, 1.5 Hz, 1H), 4.33 (pd, *J* = 6.4, 1.5 Hz, 1H), 3.73 (s, 1H), 3.72 (s, 3H), 1.71 (br, 1H), 1.25 (zd, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 159.31, 146.80, 129.39, 124.23, 124.10, 116.28, 114.89, 109.13, 90.05, 87.14, 68.30, 55.27, 23.06. HRMS (EI) m/z Calcd. for C₁₃H₁₃O ([M+H-H₂O]⁺): 185.0961. Found: 185.0958.

(E)-6-(2-Fluorophenyl)hex-3-en-5-yn-2-ol (2k)

Brown oil, 89% yield, 93% ee; $[\alpha]_D^{25} = +18.20$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on OD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 7.08 min (minor), 8.39 min (major). ¹H NMR (600 MHz, Chloroform-*d*) δ

7.42 (td, *J* = 7.4, 1.8 Hz, 1H), 7.28 (dddd, *J* = 8.4, 7.3, 5.3, 1.8 Hz, 1H), 7.11-7.05 (m, 2H), 6.32 (dd, *J* = 15.9, 5.7 Hz, 1H), 5.96 (dd, *J* = 15.9, 1.5 Hz, 1H), 4.58-4.20 (m, 1H), 1.89 (br, 1H), 1.33 (d, *J* = 6.5

Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 162.56 (d, J = 251.5 Hz), 147.36, 133.38, 129.92 (d, J = 8.1 Hz), 123.94 (d, J = 3.8 Hz), 115.49 (d, J = 21.0 Hz), 111.87 (d, J = 15.4 Hz), 108.93, 92.32 (d, J = 3.2 Hz), 83.32, 68.29, 23.02. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -110.13 (m). HRMS (EI) m/z Calcd. for C₁₄H₁₅O ([M+H-H₂O]⁺): 173.0761. Found: 173.0761.

(*E*)-6-(2-Chlorophenyl)hex-3-en-5-yn-2-ol (2l)

Light yellow oil, 93% yield, 92% ee; $[\alpha]_D^{25} = +13.80$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on OD-H column, hexane: isopropanol = 95:5; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 10.56 min (minor), 13.29 min (major). ¹H NMR (600 MHz, CDCl₃): δ

7.47-7.44 (m, 1H), 7.40-7.37 (m, 1H), 7.24-7.18 (m, 2H), 6.34 (dd, J = 15.9, 5.7 Hz, 1H), 5.98 (dd, J = 15.9, 1.5 Hz, 1H), 4.51-4.27 (m, 1H), 1.75 (s, 1H), 1.33 (d, J = 6.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 147.55, 135.75, 133.24, 129.26, 129.21, 126.44, 123.18, 108.92, 92.44, 86.77, 68.27, 23.01. HRMS (EI) m/z Calcd. for C₁₂H₁₀Cl ([M+H-H₂O]⁺): 189.0466. Found: 189.0466.

(E)-6-(2-Methoxylphenyl)hex-3-en-5-yn-2-ol (2m)

Light yellow oil, 99% yield, 91% ee; $[\alpha]_D^{25} = +12.10$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on OD-H column, hexane: isopropanol = 80:20; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 17.30 min (minor), 32.48 min (major). ¹H NMR (600 MHz, CDCl₃): δ 7.40

 $(dd, J = 7.6, 1.7 Hz, 1H), 7.30-7.26 (m, 1H), 6.91 (t, J = 7.5 Hz, 1H), 6.87 (d, J = 8.4 Hz, 1H), 6.29 (dd, J = 15.9, 5.9 Hz, 1H), 5.98 (dd, J = 15.9, 1.4 Hz, 1H), 4.41 (pd, J = 6.4, 1.4 Hz, 1H), 3.89 (s, 3H), 1.60 (br, 1H), 1.32 (d, J = 6.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): <math>\delta$ 159.82, 146.35, 133.52, 129.74, 120.49, 112.37, 110.60, 109.59, 91.30, 86.44, 68.44, 55.82, 23.03. HRMS (EI) m/z Calcd. for C₁₃H₁₃O ([M+H-H₂O]⁺): 185.0961. Found: 185.0958.

(E)-6-(2,3-Dimethoxylphenyl)hex-3-en-5-yn-2-ol (2n)

Light yellow oil, 96% yield, 91% ee; $[\alpha]_D^{25} = +21.70$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on OD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 18.84 min (minor), 29.06

min (major). ¹H NMR (600 MHz, CDCl₃): δ 7.04 (dd, J = 8.3, 1.9 Hz, 1H), 6.94 (d, J = 1.9 Hz, 1H), 6.80 (d, J = 8.3 Hz, 1H), 6.24 (dd, J = 15.9, 5.9 Hz, 1H), 5.91 (dd, J = 15.9, 1.5 Hz, 1H), 4.57-4.33 (m, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 1.59 (br, 1H), 1.33 (d, J = 6.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 149.48, 148.62, 146.03, 124.82, 115.41, 114.19, 111.01, 109.35, 90.28, 85.88, 68.39, 55.89, 23.11. HRMS (EI) m/z Calcd. for C₁₄H₁₅O₂ ([M+H-H₂O]⁺): 215.1067. Found: 215.1067.

(E)-6-(Benzo[d][1,3]dioxol-5-yl)hex-3-en-5-yn-2-ol (20)

Light yellow oil, 98% yield, 91% ee; $[\alpha]_D^{25} = +21.00$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on OD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 17.30 min (minor), 32.48 min (major). ¹H NMR (600

MHz, CDCl₃): δ 6.87 (dd, J = 6.1, 3.1 Hz, 1H), 6.77 (q, J = 3.9, 3.1 Hz, 2H), 6.30 (dd, J = 15.9, 5.7 Hz, 1H), 6.01 (s, 2H), 5.95 (dd, J = 15.9, 1.6 Hz, 1H), 4.41 (pd, J = 6.5, 1.5 Hz, 1H), 1.66 (br, 1H), 1.32 (d, J = 6.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 148.30, 147.41, 147.21, 124.77, 121.60, 108.90, 108.74, 105.02, 101.29, 91.36, 83.85, 68.29, 23.02. HRMS (EI) m/z Calcd. for C₁₃H₁₁O₂ ([M+H-H₂O]⁺): 199.0754. Found: 199.0753.

Light yellow oil, 96% yield, 92% ee; $[\alpha]_D^{25} = +11.60$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on OJ-H column, hexane: isopropanol = 95:5; flow rate = 0.9 mL/min; UV detection at 220 nm; $t_R = 51.42 \text{ min}$ (minor), 60.18 min (major). ¹H NMR (400 MHz, CDCl₃): δ 8.36-8.28 (m, 1H), 7.83 (ddt, J = 12.9, 8.3, 1.0 Hz, 2H), 7.70-7.64 (m, 1H), 7.55 (dddd, J = 22.2, 8.1, 6.8, 1.4 Hz, 3H), 7.43 (dt, J = 8.3, 6.2 Hz, 1H), 6.39 (dd, J = 15.9, 5.8 Hz, 1H), 6.15-5.99 (m, 1H), 4.47 (pd, J = 6.5, 1.5 Hz, 1H), 1.72 (br, 1H), 1.38 (d, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 146.75, 133.22, 133.19, 130.33, 128.73, 128.29, 126.75, 126.43, 126.18, 125.27, 120.92, 109.40, 92.22, 88.26, 68.40, 23.12. HRMS (EI) m/z Calcd. for C₁₆H₁₃ ([M+H-H₂O]⁺): 205.1012. Found: 205.1012.

#.	[min]	[min]	[mAU*s]	[mAU]	%	. #	[min]		[min]	[mAU*s]	[mAU]	%
1	49.428 E	3B 1.2038	3.61690e4	444.25500	50.3582	1	51.420	MM	1.4060	378.96301	4.49229	3.7349
2	57.886 E	3B 1.4825	3.56545e4	344.76144	49.6418	2	60.178	BB	1.5551	9767.70703	92.56463	96.2651

(E)-6-(Naphthalen-2-yl)hex-3-en-5-yn-2-ol (2q)

Light yellow oil, 94% yield, 90% ee; $[\alpha]_D^{25} = +27.10$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on OD-H column, hexane: isopropanol = 92:8; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 16.75 min (minor), 23.37 min (major).

¹H NMR (600 MHz, CDCl₃): δ 7.96 (d, J = 1.6 Hz, 1H), 7.82-7.76 (m, 3H), 7.49 (ddd, J = 7.2, 3.4, 2.0 Hz, 3H), 6.33 (dd, J = 15.9, 5.8 Hz, 1H), 5.98 (dd, J = 15.8, 1.5 Hz, 1H), 4.44 (pd, J = 6.5, 1.5 Hz, 1H), 1.73 (br, 1H), 1.35 (d, J = 6.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 146.80, 133.01, 132.79, 131.37, 128.34, 128.00, 127.77 (d, 2 C), 126.68, 126.56, 120.56, 109.27, 90.57, 87.69, 68.36, 23.10. HRMS (EI) m/z Calcd. for C₁₆H₁₃ ([M+H-H₂O]⁺): 205.1012. Found: 205.1012.

Signal 1: DAD1 A, Sig=220,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16.216	BB	0.4100	8552.31934	317.76370	49.9427	1	16.757	VB R	0.4192	2259.26221	75.34460	4.9310
2	23.320	BB	0.6359	8571.95703	204.97488	50.0573	2	23.370	BB	0.6340	4.35587e4	955.30060	95.0690

(*E*)-6-(Thiophen-2-yl)hex-3-en-5-yn-2-ol (2r)

Brown oil, 78% yield, 60% ee; $[\alpha]_D^{25} = +2.00$ (c = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on OD-H column, hexane: isopropanol = 90:110; flow rate = 1.0 mL/min; UV detection at 254 nm; $t_R = 8.19$ min (minor), 10.06 min (major). ¹H NMR (600 MHz, CDCl₃): δ

7.25 (d, J = 3.7 Hz, 1H), 7.19 (d, J = 3.7 Hz, 1H), 6.97 (dd, J = 5.2, 3.7 Hz, 1H), 6.26 (dd, J = 15.9, 5.7 Hz, 1H), 5.93 (dd, J = 15.9, 1.5 Hz, 1H), 4.42 (pd, J = 6.3, 1.5 Hz, 1H), 1.57 (br, 1H), 1.33 (d, J = 6.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 146.68, 131.79, 127.22, 127.07, 123.30, 108.90, 91.10, 83.30, 68.30, 23.08. HRMS (EI) m/z Calcd. for C₁₀H₉S ([M+H-H₂O]⁺): 161.0420. Found: 161.0420.

(E)-6-Cyclohexylhex-3-en-5-yn-2-ol (2s)

Light yellow oil, 99% yield, 99% ee; $[\alpha]_D^{25} = +13.90$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on OD-H column, hexane: isopropanol = 98:2; flow rate = 0.5 mL/min; UV detection at 220 nm; t_R = 20.57 min (minor), 21.61 min (major). ¹H NMR (600 MHz, CDCl₃): δ 6.07

(ddd, J = 15.8, 6.2, 0.6 Hz, 1H), 5.69 (ddd, J = 15.8, 2.1, 1.4 Hz, 1H), 4.37-4.26 (m, 1H), 2.61-2.37 (m, 1H), 1.83-1.78 (m, 2H), 1.73-1.67 (m, 2H), 1.55-1.49 (m, 1H), 1.43 (dtd, J = 15.3, 8.6, 7.7, 3.3 Hz, 2H), 1.35-1.26 (m, 4H). 1.27 (d, J = 6.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 144.96, 109.96, 96.21, 78.13, 68.43, 32.66, 29.69, 25.86, 24.92, 23.00. HRMS (EI) m/z Calcd. for C₁₂H₁₇ ([M+H-H₂O]⁺): 161.1325. Found: 161.1326.

Signal 1: DAD1 C, Sig=220,4 Ref=360,100

Signal 1: DAD1 C, Sig=220,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	20.153	MF	0.7679	1.93701e4	420.43927	49.7875	1	20.573	MM	0.4428	100.88435	3.79688	0.1791
2	21.267	FM	0.7667	1.95354e4	424.66470	50.2125	2	21.614	FM	0.6677	5.62281e4	1403.56348	99.8209

(E)-6-Cyclopentylhex-3-en-5-yn-2-ol (2t)

Light yellow oil, 97% yield, 95% ee; $[\alpha]_D^{25} = +10.40$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on OD-H column, hexane: isopropanol = 98:2; flow rate = 0.8 mL/min; UV detection at 220 nm; t_R = 11.21 min (minor), 11.97 min (major). ¹H NMR (600 MHz,

CDCl₃): δ 6.08 (ddd, J = 15.8, 6.4, 0.6 Hz, 1H), 5.70 (ddd, J = 15.8, 2.1, 1.4 Hz, 1H), 4.34 (pd, J = 6.4, 1.4 Hz, 1H), 2.73 (pd, J = 7.6, 2.1 Hz, 1H), 2.00-1.90 (m, 2H), 1.80-1.70 (m, 2H), 1.69-1.50 (m, 6H), 1.29 (d, J = 6.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 144.91, 109.98, 95.57, 77.76, 68.43, 33.82, 30.76, 24.99, 23.01. HRMS (EI) m/z Calcd. for C₁₁H₁₅ ([M+H-H₂O]⁺): 147.1168. Found: 147.1169.

#	[min]		[min]	[mAU*s]	[mAU]	%	#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.207	BV	0.3228	8564.08301	418.37183	50.0252	1	11.759	MF	0.2414	405.48688	27.98990	2.7391
2	11.966	VB	0.3424	8555.45996	395.38840	49.9748	2	12.163	FM	0.3797	1.43983e4	631.99536	97.2609

Light yellow oil, 99% yield, 93% ee; $[\alpha]_D^{25} = +8.10$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on AS-H column, hexane: isopropanol = 97:3; flow rate = 0.6 mL/min; UV detection at 210 nm; t_R = 8.92 min (major), 9.56 min (minor). ¹H NMR (600 MHz, CDCl₃): δ 6.07 (dd, J = 15.8, 6.1 Hz, 1H), 5.68 (dq, J = 15.8, 1.9 Hz, 1H), 4.33 (pd, J = 6.1, 1.3 Hz, 1H), 2.29 (td, J = 7.2, 2.1 Hz, 2H), 1.52 (p, J = 7.2 Hz, 3H), 1.33-1.24 (m, 11H), 0.88 (t, J = 6.8 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 145.04, 109.92, 91.48, 78.23, 68.42, 31.74, 28.87, 28.82, 28.72, 23.03, 22.63, 19.39, 14.09. HRMS (EI) m/z Calcd. for C13H21 ([M+H-H2O]+): 177.1638. Found: 177.1639.

(E)-7-Phenylhept-4-en-6-yn-3-ol (2v)

Light yellow oil, 98% yield, 93% ee; $[\alpha]_D^{25} = +15.60$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on OJ-H column, hexane: isopropanol = 95:5; flow rate = 0.9 mL/min; UV detection at 220 nm; t_R = 27.15 min (minor), 30.79 min (major). ¹H NMR (600 MHz, CDCl₃): δ 7.43 (m, 2H), 7.31 (m, 3H), 6.24 (dd, *J* = 15.9, 6.1 Hz, 1H), 5.94 (dd, *J* = 15.9, 1.4 Hz, 1H),

4.15 (qd, J = 6.3, 1.4 Hz, 1H), 1.71 (br, 1H), 1.61 (q, J = 7.2 Hz, 2H), 0.97 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 145.47, 131.52, 128.32, 128.21, 123.26, 110.07, 90.04, 87.40, 73.68, 29.91, 9.58. HRMS (EI) m/z Calcd. for C₁₃H₁₃O ([M+H-H₂O]⁺): 169.1012. Found: 169.1013.

Signal 1: DAD1 A, Sig=220,4 Ref=off

Signal 1: DAD1 A, Sig=220,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	27.163	VB	0.5847	5.41548e4	1325.30591	50.0939	1	27.153	BV R	0.3895	278.92084	8.52983	3.4318
2	30.889	MM	0.8160	5.39518e4	1101.90552	49.9061	2	30.793	BB	0.6014	7848.70605	197.59824	96.5682

(E)-2-Methyl-7-phenylhept-4-en-6-yn-3-ol (2w)

Light yellow oil, 98% yield, 93% ee; $[\alpha]_D^{25} = +5.80$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on OJ-H column, hexane: isopropanol = 95:5; flow rate = 0.9 mL/min; UV detection at 220 nm; t_R = 22.47 min (minor), 26.41 min (major). ¹H NMR (600

MHz, CDCl₃): δ 7.46-7.41 (m, 2H), 7.30 (dd, J = 5.1, 2.0 Hz, 3H), 6.24 (dd, J = 15.9, 6.3 Hz, 1H), 5.93 (dd, J = 15.9, 1.4 Hz, 1H), 3.98 (td, J = 6.3, 1.4 Hz, 1H), 1.86-1.73 (m, 1H), 1.60 (s, 1H), 0.95 (dd, J = 10.7, 6.8 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 144.19, 131.52, 128.32, 128.20, 123.27, 110.81, 89.93, 87.49, 77.38, 33.88, 18.20, 17.78. HRMS (EI) m/z Calcd. for C₁₄H₁₅ ([M+H-H₂O]⁺): 183.1168. Found: 183.1169.

(*R*,*E*)-1-cyclohexyl-5-phenylpent-2-en-4-yn-1-ol (2x)

95% yield, 90% ee. $[\alpha]_D^{26} = -16.10$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on Chiral OJ-3 column, 254 nm, 25 °C, "Hexane: 'PrOH = 95: 5; flow 1.0 mL/min; t_R (major) = 32.8 min; t_R (minor) = 28.6 min. ¹H NMR (400 MHz, Chloroform-*d*)

δ 7.60 (dd, *J* = 7.8, 1.8 Hz, 2H), 7.18 – 7.00 (m, 3H), 6.29 (dd, *J* = 15.9, 6.1 Hz, 1H), 6.01 (dd, *J* = 15.9, 1.5 Hz, 1H), 3.73 – 3.59 (m, 1H), 1.87 – 1.59 (m, 5H), 1.34 – 0.93 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.33, 131.55, 128.40, 123.92, 110.15, 90.14, 88.34, 43.68, 28.74, 28.07, 26.49, 26.19, 26.15.

(E)-1-cyclopropyl-5-phenylpent-2-en-4-yn-1-ol (2y)

Light yellow oil, 97% yield, 53% ee; $[\alpha]_D^{25} = +9.80$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on OD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 10.79 min (minor), 13.97 min (major). ¹H NMR (600

MHz, CDCl₃): δ 7.46-7.41 (m, 2H), 7.31 (qd, J = 4.1, 1.3 Hz, 3H), 6.32 (dd, J = 15.9, 5.6 Hz, 1H), 5.98 (dd, J = 15.9, 1.5 Hz, 1H), 3.58 (ddd, J = 8.2, 5.6, 1.5 Hz, 1H), 1.61 (br, 1H), 1.03 (qt, J = 8.2, 4.9 Hz, 1H), 0.64-0.54 (m, 2H), 0.43-0.38 (m, 1H), 0.34-0.29 (m, 1H). ¹³C NMR (151 MHz, CDCl₃): δ 141.90, 129.33, 126.12, 126.00, 121.09, 107.63, 87.91, 85.25, 74.18, 15.18, 1.02. HRMS (EI) m/z Calcd. for C₁₄H₁₃ ([M+H-H₂O]⁺): 181.1012. Found: 181.1011.

(E)-1,5-diphenyl-1 λ^{3} -pent-2-en-4-yn-1-ol $(2z)^{[10]}$

55% yield, 63% ee, $[\alpha]_D^{26} = 17.50$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on Chiral IF column, 254 nm, 25 °C, "Hexane: 'PrOH = 95: 5; flow 1.0 mL/min; t_R (major) = 14.1 min; t_R (minor) = 16.4 min. ¹H NMR (400 MHz,

Chloroform-*d*) δ 7.54 (dd, *J* = 7.6, 2.1 Hz, 2H), 7.29 – 7.27 (m, 1H), 7.25 – 7.13 (m, 4H), 7.07 (q, *J* = 5.3 Hz, 3H), 6.38 (dd, *J* = 15.8, 5.7 Hz, 1H), 6.12 (dd, *J* = 15.7, 1.6 Hz, 1H), 4.90 (d, *J* = 5.7 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 94.40, 91.63, 80.84, 77.73, 76.90, 75.71, 73.05, 58.95, 40.07, 37.31, 23.32.

(E)-4-ethyl-6-phenylhex-3-en-5-yn-2-ol (2aa)

Light yellow oil, 90% yield, 96% ee; $[\alpha]_D^{25} = +40.00$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on OD-H column, hexane: isopropanol = 95:5; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 8.89 min (minor), 10.80 min (major). ¹H NMR (600 MHz, CDCl₃): δ

7.48-7.41 (m, 2H), 7.30 (qd, J = 4.8, 1.7 Hz, 3H), 5.91 (d, J = 8.9 Hz, 1H), 4.68 (dq, J = 8.9, 6.3 Hz, 1H), 2.29 (q, J = 7.6 Hz, 2H), 1.57 (br, 1H), 1.31 (d, J = 6.3 Hz, 3H), 1.18 (t, J = 7.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 139.80, 131.56, 128.29, 128.09, 126.17, 123.36, 90.35, 88.54, 64.32, 24.52, 23.44, 13.54. HRMS (EI) m/z Calcd. for C₁₄H₁₅ ([M+H-H₂O]⁺): 183.1168. Found: 183.1168.

Area

[mAU*s]

Height

[mAU]

0.2655 4671.00391 293.24487 55.6950

0.2420 3715.75684 238.25311 44.3050

Area

%

Signal 1: DAD1 B, Sig=210,4 Ref=off

Peak RetTime Type

2 11.022 BB

----|----|-

9.060 MM

[min]

Width

[min]

50		
40		
30		
20		
10		
		<u> </u>
	7 75 8 85 9 95 10 105	11 11.5 min

10.002

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.894	BV	0.1831	164.63252	13.42265	1.8242
2	10.802	BB	0.2367	8860.26074	584.98914	98.1758

IV. Gram-scale reaction and transformation of products

Asymmetric hydrogenation of (*E*)-6-phenylhex-3-en-5-yn-2-one at S/C = 1000: To a 2.5 mL vial was added the catalyst precursor $[Ir(COD)Cl]_2$ (3.4 mg, 0.005 mmol), ligands (L3, 0.011 mmol) and anhydrous *i*PrOH (1.0 mL) under argon atmosphere. The mixture was stirred for 3 h at 25 °C giving orange red solution in the argon-filled glovebox. An aliquot of the catalyst solution (580 µL, 0.0058mmol) was transferred into a 50 mL hydrogenation vessel, then Cs₂CO₃ (1.9 mg, 0.06 mmol), ketone (5.8 mmol, 1.0 g) and anhydrous *i*PrOH (10 mL) was added. The vessel was placed in an autoclave which was then charged with 50 atm of H₂ and stirred at 25-30 °C for 16 h. The work-up was identical to that described for the asymmetric hydrogenation at S/C = 1 000. (*R*)-(*E*)-6-phenylhex-3-en-5-yn-2-ol (2a): 95% yield, 90% ee.

Hydrogenation of (*R*)-(*E*)-6-phenylhex-3-en-5-yn-2-ol (2a): In a 2.5 mL vial was added the (*R*)-(*E*)-6-phenylhex-3-en-5-yn-2-ol (2a) (17.0 mg, 0.1 mmol) and 5% wt Pd/C (1 mg) and 1mL MeOH, Then the vial was placed in an autoclave which was then charged with 20 atm of H₂ and stirred at 25-30 °C for 12 h. The hydrogen gas was released slowly in a well-ventilated hood and the solution was concentrated and passed through a short column of silica gel to get the product in almost quantitative yield (16.9 mg, 99% yield).^[11] The yield was determined by ¹H NMR analysis. The product was analyzed by chiral HPLC for determination of ee values (85% ee).

Oxidation of (R)-(E)-6-phenylhex-3-en-5-yn-2-ol (2a): To a solution of 2a (0.10 mmol, 1.00 eq.) in DCM (2 mL) at 0 °C was added mchloroperbenzoic acid (0.20 mmol, 2.00 eq.). After 0.5 h, the resulting solution was stirred at room temperature for 24 h until complete consumption of starting

material (verified by TLC). The mixture was washed with 10% solution of Na₂CO₃ (2 mL) and then extracted with DCM (2 mL). The organic layer was dried with Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography on silica to afford product **4** as mixtures of two diastereomers (**4a**, 57% yield, 90% ee; **4b**, 38% yield, 90% ee).^[6,7] Mixture of two diastereoisomers that could not be separated by flash cromatography.

(*R*)-6-phenylhexan-2-ol (3)^[11]

Colorless oil, 16.9 mg, 99% yield, 85% ee; $[\alpha]_D^{25} = -5.50$ (c = 1.0, CHCl₃). The enantiomeric excess was determined by HPLC on OD-H column, hexane: isopropanol = 90:10; flow rate = 0.9 mL/min; UV de-

tection at 210 nm; $t_R = 6.22 \text{ min}$ (minor), 6.77 min (major). ¹H NMR (600 MHz, CDCl₃) δ : 7.29-7.26 (m, 2H), 7.20-7.15 (m, 3H), 3.82-3.74 (m, 1H), 2.62 (t, J = 7.7 Hz, 2H), 1.71-1.58 (m, 2H), 1.52-1.42 (m, 3H), 1.35 (m, 2H), 1.18 (d, J = 6.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ : 142.59, 128.39, 128.28, 125.66, 68.09, 39.18, 35.92, 31.48, 25.44, 23.53.

Light yellow oil (17.0 mg, 95% total yield), 57% yield, 90% ee for the major diastereoisomer (**4a**): ¹H NMR (600 MHz, CDCl₃) δ 7.45 (m, 2H), 7.32 (m, 3H), 3.81 (m, 1H), 3.61 (d, *J* = 2.2 Hz, 1H),

3.26 (dd, J = 2.2 Hz, 1H), 1.88 (s, 1H), 1.36 (d, J = 6.5 Hz, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 131.91, 128.89, 128.35, 121.85, 84.90, 84.22, 66.42, 64.03, 44.03, 20.04. The enantiomeric excess was determined by HPLC on OD-H column, hexane: isopropanol = 95:5; flow rate = 1.0 mL/min; UV detection

at 210 nm; t_R = 33.65 min (minor), 37.08 min (major).

2H), 7.32 (m, 3H), 4.06 (m, 1H), 3.68 (d, J = 2.5 Hz, 1H), 3.30 (t, J = 2.5 Hz, 1H), 1.94 (s, 1H), 1.33 (d, J = 6.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 131.89, 128.87, 128.41, 121.89, 85.17, 84.20, 64.17, 63.52, 42.30, 18.56. The enantiomeric excess was determined by HPLC on OD-H column, hexane: isopropanol = 95:5; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 27.62 min (minor), 47.89 min (major).

Signal 1: DAD1 B, Sig=210,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	25.840	MM	0.6469	3076.36108	79.26109	49.7761
2	46.525	MM	1.1725	3104.03516	44.12152	50.2239

Signal 1: DAD1 B, Sig=210,4 Ref=off

Peak #	RetTime	Туре	Width [min]	Area [mall*s]	Height	Area %
				[[/~
1	27.623	MM	0.7632	332.03229	7.25124	5.1439
2	47.885	MM	1.1230	6122.85742	90.86827	94.8561

V. NMR spectra of all the compounds

¹H NMR spectra (600 MHz, CDCl₃) of **1a**

¹³C NMR spectra (151 MHz, CDCl₃) of **1a**

¹H NMR spectra (600 MHz, CDCl₃) of **1b**

¹³C NMR spectra (151 MHz, CDCl₃) of **1b**

¹³F NMR spectra (376 MHz, CDCl₃) of **1b**

¹H NMR spectra (600 MHz, CDCl₃) of **1c**

¹³C NMR spectra (151 MHz, CDCl₃) of 1c

¹H NMR spectra (600 MHz, CDCl₃) of 1d

¹³C NMR spectra (151 MHz, CDCl₃) of 1d

¹H NMR spectra (600 MHz, CDCl₃) of **1e**

¹³C NMR spectra (151 MHz, CDCl₃) of 1e

¹⁹F NMR spectra (376 MHz, CDCl₃) of 1e

¹H NMR spectra (600 MHz, CDCl₃) of **1f**

¹³C NMR spectra (151 MHz, CDCl₃) of **1f**

¹H NMR spectra (600 MHz, CDCl₃) of **1g**

¹³C NMR spectra (151 MHz, CDCl₃) of **1g**

 ^{19}F NMR spectra (376 MHz, CDCl₃) of 1g

¹H NMR spectra (600 MHz, CDCl₃) of 1h

 ^{13}C NMR spectra (151 MHz, CDCl₃) of 1h

¹H NMR spectra (600 MHz, CDCl₃) of 1i

¹³C NMR spectra (151 MHz, CDCl₃) of **1i**

¹⁹F NMR spectra (376 MHz, CDCl₃) of 1i

¹H NMR spectra (600 MHz, CDCl₃) of 1j

¹³C NMR spectra (151 MHz, CDCl₃) of 1j

¹H NMR spectra (600 MHz, CDCl₃) of **1**k

¹³C NMR spectra (151 MHz, CDCl₃) of 1k

 ^{19}F NMR spectra (376 MHz, CDCl₃) of 1k

¹H NMR spectra (600 MHz, CDCl₃) of **11**

¹³C NMR spectra (151 MHz, CDCl₃) of **11**

¹H NMR spectra (600 MHz, CDCl₃) of 1m

¹³C NMR spectra (151 MHz, CDCl₃) of 1m

¹H NMR spectra (600 MHz, CDCl₃) of **1n**

¹³C NMR spectra (151 MHz, CDCl₃) of 1n

¹H NMR spectra (600 MHz, CDCl₃) of **10**

¹³C NMR spectra (151 MHz, CDCl₃) of **10**

¹H NMR spectra (600 MHz, CDCl₃) of **1p**

¹³C NMR spectra (151 MHz, CDCl₃) of **1p**

¹H NMR spectra (600 MHz, CDCl₃) of **1q**

¹³C NMR spectra (151 MHz, CDCl₃) of 1q

¹H NMR spectra (600 MHz, CDCl₃) of 1r

¹³C NMR spectra (151 MHz, CDCl₃) of 1r

¹H NMR spectra (600 MHz, CDCl₃) of 1s

¹³C NMR spectra (151 MHz, CDCl₃) of 1s

¹H NMR spectra (600 MHz, CDCl₃) of **1t**

¹³C NMR spectra (151 MHz, CDCl₃) of 1t

¹H NMR spectra (600 MHz, CDCl₃) of **1u**

¹³C NMR spectra (151 MHz, CDCl₃) of **1u**

¹H NMR spectra (600 MHz, CDCl₃) of **1v**

 ^{13}C NMR spectra (151 MHz, CDCl₃) of 1v

¹H NMR spectra (400 MHz, CDCl₃) of **1w**

 ^{13}C NMR spectra (101 MHz, CDCl₃) of 1w

¹H NMR spectra (600 MHz, CDCl₃) of **1**x

¹³C NMR spectra (151 MHz, CDCl₃) of **1**x

 ^{13}C NMR spectra (151 MHz, CDCl₃) of 1aa

¹H NMR spectra (600 MHz, CDCl₃) of **2a**

¹³C NMR spectra (151 MHz, CDCl₃) of 2a

¹H NMR spectra (600 MHz, CDCl₃) of **2b**

¹³C NMR spectra (151 MHz, CDCl₃) of **2b**

¹⁹F NMR spectra (376 MHz, CDCl₃) of **2b**

¹H NMR spectra (400 MHz, CDCl₃) of 2c

¹³C NMR spectra (101 MHz, CDCl₃) of **2c**

¹H NMR spectra (400 MHz, CDCl₃) of 2d

¹³C NMR spectra (101 MHz, CDCl₃) of 2d

¹H NMR spectra (400 MHz, CDCl₃) of **2e**

¹³C NMR spectra (101 MHz, CDCl₃) of 2e

¹⁹F NMR spectra (377 MHz, CDCl₃) of **2e**

¹H NMR spectra (600 MHz, CDCl₃) of **2f**

¹³C NMR spectra (151 MHz, CDCl₃) of **2f**

¹H NMR spectra (600 MHz, CDCl₃) of 2g

¹³C NMR spectra (151 MHz, CDCl₃) of **2g**

 ^{19}F NMR spectra (376 MHz, CDCl₃) of 2g

¹H NMR spectra (600 MHz, CDCl₃) of **2h**

¹³C NMR spectra (151 MHz, CDCl₃) of **2h**

¹H NMR spectra (600 MHz, CDCl₃) of 2i

¹³C NMR spectra (151 MHz, CDCl₃) of 2i

¹⁹F NMR spectra (376 MHz, CDCl₃) of **2i**

¹H NMR spectra (400 MHz, CDCl₃) of **2j**

¹³C NMR spectra (101 MHz, CDCl₃) of **2j**

 ^1H NMR spectra (600 MHz, CDCl₃) of 2k

¹³C NMR spectra (151 MHz, CDCl₃) of 2k

 ^{19}F NMR spectra (376 MHz, CDCl₃) of 2k

¹H NMR spectra (600 MHz, CDCl₃) of **2l**

¹³C NMR spectra (151 MHz, CDCl₃) of **2l**

¹H NMR spectra (600 MHz, CDCl₃) of **2m**

¹³C NMR spectra (151 MHz, CDCl₃) of **2m**

¹H NMR spectra (600 MHz, CDCl₃) of **2n**

¹³C NMR spectra (151 MHz, CDCl₃) of **2n**

¹H NMR spectra (600 MHz, CDCl₃) of **20**

¹³C NMR spectra (151 MHz, CDCl₃) of **20**

¹H NMR spectra (400 MHz, CDCl₃) of **2p**

¹³C NMR spectra (101 MHz, CDCl₃) of **2p**

¹H NMR spectra (600 MHz, CDCl₃) of **2q**

¹³C NMR spectra (151 MHz, CDCl₃) of 2q

¹H NMR spectra (600 MHz, CDCl₃) of **2r**

¹³C NMR spectra (151 MHz, CDCl₃) of **2r**

¹H NMR spectra (600 MHz, CDCl₃) of 2s

¹³C NMR spectra (151 MHz, CDCl₃) of 2s

¹H NMR spectra (600 MHz, CDCl₃) of 2t

¹³C NMR spectra (151 MHz, CDCl₃) of 2t

¹H NMR spectra (600 MHz, CDCl₃) of **2u**

¹³C NMR spectra (151 MHz, CDCl₃) of **2u**

¹H NMR spectra (600 MHz, CDCl₃) of **2v**

¹³C NMR spectra (151 MHz, CDCl₃) of 2v

¹H NMR spectra (600 MHz, CDCl₃) of **2w**

¹³C NMR spectra (151 MHz, CDCl₃) of **2w**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 f1 (ppm) ¹H NMR spectra (600 MHz, CDCl₃) of **2z**

¹³C NMR spectra (151 MHz, CDCl₃) of **2z**

¹H NMR spectra (600 MHz, CDCl₃) of 2aa

¹³C NMR spectra (151 MHz, CDCl₃) of 2aa

¹H NMR spectra (600 MHz, CDCl₃) of **3**

¹³C NMR spectra (151 MHz, CDCl₃) of **3**

¹H NMR spectra (600 MHz, CDCl₃) of 4

¹³C NMR spectra (151 MHz, CDCl₃) of 4

VI. Reference:

1. "Combining silver catalysis and organocatalysis: a sequential Michael addition/hydroalkoxylation one-pot approach to annulated coumarins" Hack, D.; Chauhan, P.; Deckers, K.; Hermann, G. N.; Mertens, L.; Raabe, G.; Enders, D., *Org. Lett.* **2014**, *16*, 5188-91.

2. "Highly substituted tetrahydropyrones from hetero-Diels-Alder reactions of 2-alkenals with stereochemical induction from chiral dienes" Ruijter, E.; Schultingkemper, H.; Wessjohann, L. A., *J. Org. Chem.* **2005**, *70*, 2820-2823.

3. "Synthesis of Polysubstituted Pyridines via a One-Pot Metal-Free Strategy" Wei, H.; Li, Y.; Xiao, K.; Cheng, B.; Wang, H.; Hu, L.; Zhai, H., *Org. Lett.* **2015**, *17*, 5974-5977.

4. "Asymmetric synthesis of chiral beta-alkynyl carbonyl and sulfonyl derivatives via sequential palladium and copper catalysis" Trost, B. M.; Masters, J. T.; Taft, B. R.; Lumb, J. P., *Chem. Sci.* **2016**, *7*, 6217-6231.

5. "Synthesis of 4H-cyclopenta[c]furan-5(6H)-one derivatives" Tu, X.; Peng, H.; Deng, G., *Tetrahedron* **2020**, *76*, 131421.

6. "Multicomponent and Metal-Free Diels-Alder/Aromatization Approach to the Stereospecific Synthesis of E-(Hetero)Stilbenes and Diarylacetylenes" Ballarotto, M.; Cerra, B.; Temperini, A., *Eur. J. Org. Chem.* **2023**, *26*, e202300552.

7. "Conjugate addition-elimination in the reaction of β -1-alkynyl-9-borabicyclo[3.3.1]nonanes with 4-methoxy-3-buten-2-one and related derivatives. A convenient new route to conjugated enynones" Molander, G. A.; Brown, H. C., *J. Org. Chem.* **1977**, *42*, 3106.

8. ""Remote stereocontrol" in organocopper chemistry: highly enantioselective synthesis of vinylallenes by 1,5-substitution of enyne acetates" Krause, N.; Purpura, M., *Angew. Chem., Int. Ed.* **2000**, *39*, 4355-4356.

9. "Rhodium-catalysed tetradehydro-Diels-Alder reactions of enediynes via a rhodium-stabilized cyclic allene" Thadkapally, S.; Farshadfar, K.; Drew, M. A.; Richardson, C.; Ariafard, A.; Pyne, S. G.; Hyland, C. J. T., *Chem. Sci.* **2020**, *11*, 10945-10950.

10. "Modular Regiodivergent Synthesis of Benzo-Fused Isocoumarins by a Cyclopropane Aromatization Strategy" Bi, H.; Wang, S. R., *Org. Lett.* **2022**, *24*, 6316-6320.

11. "Thermostable Enzymes in Organic Synthesis, 4. Tbadh-Catalyzed Preparation of Bifunctional Chirons. Total Synthesis of S-(+)-Z-Tetradec-5-En-13-Olide" Keinan, E.; Seth, K. K.; Lamed, R.; Ghirlando, R.; Singh, S. P., *Biocatalysis* **2009**, *3*, 57-71.

12. "RuPHOX-Ru-Catalyzed Selective Asymmetric Hydrogenation of Exocyclic α,β -Unsaturated Pentanones" Li, J.; Zhu, Y.; Lu, Y.; Wang, Y.; Liu, Y.; Liu, D.; Zhang, W., *Organometallics* **2019**, *38*, 3970-3978.

13. "Iridium-catalyzed chemoselective asymmetric hydrogenation of conjugated enones with ferrocene-based multidentate phosphine ligands" Ma, J.; Li, W.; He, L.; Lv, H., *Chem. Commun.* **2022**, *58*, 5841-5844.