Supporting Information

C-C bond cleavage arylation and alkenylation of cyclobutanone

oxime ethers via photoredox/nickel catalysis

Chenglin Peng^a, Yingru Tang^a, Shili Sun^a, Yu Wei^a Weiji Zhou^b, Li-Na Guo^{c*}, Liang Xu^{a*}, and Shuai Liu^{b*}

"School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China. Email: xuliang4423@shzu.edu.cn.

^bBingtuan Energy Development Institute, Shihezi University, Shihezi, 832003, China. Email: liushuai0053@shzu.edu.cn.

•School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China. Email: guoln81@xjtu.edu.cn.

Table of Contents

1. General Information	3
2. Starting Materials	4
3. Optimization of Reaction Conditions	8
5. Scale-up Synthesis	16
6. Procedures for Diverse Derivatizations of 3a and 3ag	17
7. Investigation of the Reaction Mechanism	18
8. Failed Substrates	22
9. Characterizations of Products	23
10. References	36
11. Copies of NMR spectra	38

1. General Information

Unless otherwise noted, all reagents and solvents were obtained from commercial suppliers and were used without further purification. Analytical thin-layer chroma-tography (TLC) was performed on glass plates coated with 0.25 mm 230-400 mesh silica gel containing a fluores-cent indicator. Visualization was accomplished by exposure to a UV lamp. All the products in this article are compatible with standard silica gel chromatography. Column chromatography was performed on silica gel (200-300 mesh). Eluent generally contained ethyl acetate (EA), petroleum ether (PE). NMR spectra were measured on a Bruker Ascend 400 spectrometer and chemical shifts (δ) are reported in parts per million (ppm). ¹H NMR spectra were recorded at 400 MHz in NMR solvents and referenced internally to corresponding solvent resonance, and ¹³C NMR spectra were recorded at 101 MHz and referenced to corre-sponding solvent resonance. Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Infrared spectra were collected on a Thermo Fisher Nicolet 6700 FT-IR spectrometer using ATR (Attenuated Total Reflectance) method. Absorption maxima (v max) are reported in wavenumbers (cm⁻¹). High resolution mass spectra (HRMS) were acquired on Thermo Scientific LTQ Orbitrap XL with an ESI source. Melting points were measured with a micro-melting point apparatus.

2. Starting Materials

2.1 General Procedure A for the Synthesis of Cyclobutanone *O*-benzyl Oxime Ether Derivatives¹

To a 250 mL dried tube was added the mixture of ketone (10 mmol), alkoxyamine hydrochloride (1.5 equiv), NaOAc (1.5 equiv) in MeOH (21 mL) and H₂O (9.0 mL) successively. The mixture was stirred at room temperature for 12 hours under 90 °C. After the reaction was completed, the mixture diluted with H₂O (45 mL), and extracted with EtOAc (3×45 mL). The organic extract was washed with brine and dried over anhydrous MgSO₄. After removal of the EtOAc in vacuum, the crude product was purified by column chromatography on silica gel with hexanes or petroleum ether/ethyl acetate to give oximes.

,OBr

(1a) Cyclobutanone O-benzyl oxime Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.30 (m, 5H), 5.09 (s, 2H), 2.99 – 2.90 (m, 4H), 2.04 – 1.96 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 159.3, 138.3, 128.4, 128.1, 127.7, 75.6, 31.7, 31.3, 14.6. HRMS (APCI) m/z calcd for C₁₁H₁₄ON [M+H]⁺ 176.1075, found 176.1070. IR (cm⁻¹): 3718, 3149, 2933, 2860, 2667, 2522, 2407, 2291, 2246, 2166, 2033, 1809, 1497, 1364, 1165, 1022, 858, 733, 604, 430.

(1b) 3-Phenylcyclobutan-1-one O-benzyl oxime Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.34 (m, 7H), 7.30 – 7.27 (m, 3H), 5.15 (s, 2H), 3.67 – 3.59 (m, 1H), 3.52 – 3.36 (m, 2H), 3.12 – 3.04 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 144.2, 138.2, 128.7, 128.5, 128.2, 127.9, 126.6, 126.5, 75.8, 39.7, 39.0, 33.0. HRMS (APCI) m/z calcd for C₁₇H₁₈ON [M+H]⁺ 252.1388, found 252.1383. IR (cm⁻¹): 3724, 3028, 2926, 2862, 2671, 2522, 2407, 2291, 2245, 2166, 2037, 1807, 1495, 1362, 1180, 1010, 851, 746, 696, 604, 428.

N^{OBn}

(1c) 3-((Benzyloxy)imino)cyclobutane-1-carbonitrile Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.30 (m, 5H), 5.06 (s, 2H), 3.42 – 3.25 (m, 4H), 3.18 – 3.10 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 149.8, 136.4, 127.4, 127.2, 127.0, 120.0, 75.2, 36.2, 35.9, 15.0. HRMS (APCI) m/z calcd for C₁₂H₁₃ON₂ [M+H]⁺ 201.1028, found 201.1022. IR (cm⁻¹): 3719, 3163, 3062, 3036, 2939, 2864, 2716, 2540, 2413, 2243, 2164, 2041, 1813, 1699, 1499, 1454, 1400, 1364, 1180, 1026, 866, 743, 698, 604, 449.

(1d) Tert-butyl (3-((benzyloxy)imino)cyclobutyl)carbamate Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.28 (m, 5H), 5.04 (s, 2H), 4.78 (s, 1H), 4.20 (s, 1H), 3.38 – 3.27 (m, 2H), 2.82 - 2.71 (m, 2H), 1.44 (m, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 155.1, 153.4, 138.0, 128.4, 128.2, 128.1, 127.8, 79.8, 75.8, 40.5, 39.8, 28.4. HRMS (APCI) m/z calcd for C₁₆H₂₃O₃N₂ [M+H]⁺ 291.1709, found 297.1703. IR (cm⁻¹): 3730, 3350, 3146, 2937, 2677, 2521, 2413, 2291, 2247, 2166, 2041, 1933, 1809, 1682, 1526, 1371, 1275, 1165, 991, 862, 750, 652, 600, 426.

(1e) Ethyl 3-((benzyloxy)imino)cyclobutane-1-carboxylate Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 5H), 5.08 (s, 2H), 4.18 (q, *J* = 7.2 Hz, 2H), 3.21 – 3.09 (m, 5H), 1.27 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 154.1, 138.0, 128.4, 128.1, 127.8, 75.8, 61.0, 35.5, 35.2, 31.4, 14.2. HRMS (APCI) m/z calcd for C₁₄H₁₈O₃N [M+H]⁺ 248.1287, found 248.1281. IR (cm⁻¹): 3707, 3148, 3036, 2984, 2939, 2866, 2725, 2523, 2407, 2291, 2243, 2164, 2029, 1728, 1495, 1369, 1346, 1184, 1018, 864, 733, 698, 604, 428.

(1f) Tert-butyl 2-((benzyloxy)imino)-7-azaspiro[3.5]nonane-7-carboxylate Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 5H), 5.05 (s, 2H), 3.40 – 3.28 (m, 4H), 2.66 – 2.61 (m, 4H), 1.57 (t, *J* = 5.6 Hz, 4H), 1.45 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 154.8, 138.0, 128.4, 128.1, 127.8, 79.5, 75.7, 41.8, 41.2, 36.4, 33.2, 28.5. HRMS (APCI) m/z calcd for C₂₀H₂₉O₃N₂ [M+H]⁺ 345.2178, found 345.2173. IR (cm⁻¹): 3718, 3163, 2920, 2849, 2679, 2513, 2411, 2289, 2249, 2164, 2042, 1933, 1838, 1693, 1479, 1425, 1367, 1242, 1171, 1140, 1024, 970, 852, 746, 606, 426.

(1g) Oxetan-3-one O-benzyl oxime Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.31 (m, 5H), 5.31 – 5.29 (m, 2H), 5.27 – 5.25 (m, 2H), 5.07 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 153.0, 137.3, 128.5, 128.3, 128.1, 79.2, 79.0, 76.4. HRMS (APCI) m/z calcd for C₁₀H₁₂O₂N [M+H]⁺ 178.0868, found 178.0863. IR (cm⁻¹): 3724, 3146, 3065, 2935, 2862, 2704, 2521, 2410, 2297, 2249, 2162, 2031, 1807, 1497, 1366, 1205, 1015, 955, 864, 746, 700, 606, 465.

(1h) Tert-butyl 3-((benzyloxy)imino)azetidine-1-carboxylate Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.30 (m, 5H), 5.08 (s, 2H), 4.62 – 4.58 (m, 4H), 1.46 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 156.2, 148.2, 137.4, 128.5, 128.2, 128.1, 80.5, 76.4, 58.3, 28.3. HRMS (APCI) m/z calcd for C₁₅H₂₁O₃N₂ [M+H]⁺ 277.1552, found 277.1547. IR (cm⁻¹): 3717, 3161, 3150, 2980, 2934, 2874, 2718, 2536, 2403, 2295, 2247, 2162, 2039, 1936, 1703, 1477, 1369, 1254, 1151, 1009, 918, 862, 741, 698, 613.

N.OBn

(1i) (1S,4R,E)-Bicyclo[2.2.1]heptan-2-one O-benzyl oxime Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 5H), 5.07 (s, 2H), 2.88 (d, *J* = 3.6 Hz, 1H), 2.50 – 2.48 (m, 1H), 2.33 – 2.23 (m, 1H), 2.14 – 1.98 (m, 1H), 1.78 – 1.61 (m, 2H), 1.51 – 1.27 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 167.7, 138.4, 128.3, 127.9, 127.6, 75.3, 42.4, 39.0, 35.6, 35.5, 27.8, 27.2. HRMS (APCI) m/z calcd for C₁₄H₁₈ON [M+H]⁺ 216.1388, found 216.1383. IR (cm⁻¹): 3716, 3431, 3165, 3087, 3066, 3030, 2964, 2874, 2715, 2536, 2409, 2291, 2245, 2168, 2039, 1942, 1809, 1497, 1452, 1364, 1209, 1159, 1161, 1092, 1026, 903, 864, 825, 737, 698, 613, 470.

2.2 General Procedure B for the Synthesis of Aryl Bromide Derivatives²

To a solution of alcohol or amine (5.0 mmol, 1.0 equiv), DMAP (0.5 mmol, 0.1 equiv) and Et_3N (10 mmol, 2.0 equiv) in DCM (10 mL) was added the solution of 4-bromobenzoylchloride (5.0 mmol, 1.0 equiv) in DCM (10 mL) dropwise using syringe at 0 °C. After stirring for 30 minutes, the mixture was allowed to stir at room temperature overnight. Then the mixture was diluted with saturated NH₄Cl solution (20 mL), and extracted with DCM (3 × 10 mL). The organic layer was washed with brine, dried over MgSO₄ and evaporated. The residue was purified with flash column chromatography to give the desired aryl bromide.

2,4-bromobenzoic acid (1.00 g, 5.0 mmol, 1.0 equiv), methyl *L*-phenylalaninate hydrochloride (0.99 g, 6.0 mmol, 1.2 equiv) and *N*,*N*-diisopropylethylamine (DIPEA) (1.94 g, 15 mmol, 3.0 equiv) were dissolved in DCM (15 mL). Then, 1-hydroxybenzotriazole (HOBt) (0.34 g, 2.5 mmol, 0.5 equiv) and *N*-(3-dimethylaminopropyl)-*N*-ethylcarbodiimide hydrochloride (EDCI) (1.15 g, 6.0 mmol, 1.2 equiv) were added. The reaction was stirred overnight at room temperature. After the reaction was completed, the resulting mixture was diluted with DCM and washed with HCl (2.0 M, 10 mL), water (15 mL), brine (15 mL). The organic phase was dried over MgSO₄, filtered and the solvent was evaporated under reduced pressure. The resulting crude was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1 - 3:1) to give methyl (4-bromobenzoyl) phenylalaninate as a white solid in 89% yield.

2.3 General Procedure C for the Synthesis of Vinyl Bromides³

Step 1: A flame-dried round-bottom flask equipped with a stir bar under argon was charged with the corresponding aldehyde (10 mmol, 1.0 equiv), CBr_4 (15 mmol, 1.5 equiv) and DCM (80 mL). The reaction mixture was cooled at 0 °C, then a solution of PPh₃ (30 mmol, 3 equiv) in DCM (80 mL) was added dropwise over 20 minutes. After another 1 hour at 0 °C, the mixture was concentrated under reduce pressure to half of the volume. Next, pentane was added and triphenylphosphine oxide precipitated out. The mixture was filtered and concentrated under reduced pressure. Pentane was added again to further precipitate the triphenylphosphine oxide. After filtration and evaporation of the solvent, the crude dibromide was used directly in the next step without any further purification.

Step 2: To a mixture of the above dibromide and diethyl phosphite (30 mmol, 3.0 equiv) in DMF (10 mL) was added Et_3N (30 mmol, 3.0 equiv) at 0 °C. The reaction was then warmed to room temperature and stirred overnight. The mixture was quenched with water. The aqueous layer was extracted with DCM. The combined organics were washed with brine, dried over Na_2SO_4 and concentrated in vacuo. The products were purified by chromatography.

3. Optimization of Reaction Conditions

3.1 General Procedure for Radical Ring-Opening Arylation

To a 25 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added 1-(4bromophenyl)ethan-1-one 2a (0.2 mmol, 1.0 equiv), photocatalyst (0.002 mmol, 1 mol%), catalyst (0.01 mmol, 5 mol%), ligand (0.014 mmol, 7 mol%) and base (0.4 mmol, 2.0 equiv). Then, the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclobutanone *O*benzyl oxime 1a (0.4 mmol, 2.0 equiv) in solvent (2.0 mL) was added by syringe under nitrogen atmosphere. The tube was sealed and was placed on a photocatalytic parallel reactor with the 10 W blue LEDs (at approximately 0.3 cm away from the light source) and the mixture was stirred at room temperature for 12 hours. Then concentrated under vacuum to afford the crude product, which was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to give the target product 3a.

3.2 Optimization of Reaction 1a with 2a^a

Screening of Solvents

N ^{-OBn}	Ir[dF(CF ₃)ppy] ₂ (dtbbpy)PF ₆ (1 mol%) NiCl ₂ ·glyme (5 mol%), dtbbpy (7 mol%)	CN
+ MeOC	Na ₂ HPO ₄ (2.0 equiv), Solvent (0.1 M), Ar, 12 h 455 nm blue LEDs	MeOC
1a 2a		3a
Entry	Solvent	Yield (%)
1	<i>i</i> -PrOAc	49
2	<i>n</i> -Butyl acetate	38
3	MTBE	<20
4	MeCN	<20
5	DCM	NR
6	DMSO	NR
7	EtOH	23
8	DMA	39
9	DMF	24
10 ^b	<i>i</i> -PrOAc +100 μL H ₂ O	22

^{*a*} Reaction conditions: **1a** (0.4 mmol, 2.0 equiv), **2a** (0.2 mmol, 1.0 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (1 mol%), NiCl₂·glyme (5 mol%), dtbbpy (7 mol%), Na₂HPO₄ (2.0 equiv) in Solvent (2.0 mL) were irradiated by 10 W blue LEDs for 12 h under Ar at room temperature.

^bStandard conditions. Isolated yields.

Screening of Catalysts

N OBn	lr[dF(CF ₃)ppy] ₂ (dtbbpy)PF ₆ (1 mol%) Catalyst (5 mol%), dtbbpy (7 mol%)	CN
+ _{MeOC} - 1a 2a	Na ₂ HPO ₄ (2.0 equiv), <i>i</i> -PrOAc (0.1 M), Ar, 12 h 455 nm blue LEDs	MeOC ⁻ 3a
Entry	Catalyst	Yield (%)
1	NiBr ₂ ·glyme	86
2	NiCl ₂ (PCy ₃) ₂	NR
3	NiCl ₂ (dppp)	31
4	NiCl ₂ (dppe)	43
5	NiCl ₂ (dtppe)	67
6	NiCl ₂ (dppf)	<20

^a Reaction conditions: 1a (0.4 mmol, 2.0 equiv), 2a (0.2 mmol, 1.0 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (1 mol%), Catalyst (5 mol%),

dtbbpy (7 mol%), Na₂HPO₄ (2.0 equiv) in *i*-PrOAc (2.0 mL) were irradiated by 10 W blue LEDs for 12 h under Ar at room temperature. Isolated yields.

Screening of Photocatalysts

N ^{OBn}	Photocatalyst (X mol%) NiBr ₂ ·glyme (5 mol%), dtbbpy (7 mol%)	CN
+ MeOC	Na ₂ HPO ₄ (2.0 equiv), <i>i-</i> PrOAc (0.1 M), Ar, 12 h 455 nm blue LEDs	MeOC
1a 2a		3a
Entry	Photocatalyst (X mol%)	Yield (%)
1	Ir[dF(CF ₃)ppy] ₂ (dtbbpy)PF ₆ (1)	86
2	4CzIPN (2)	NR
3	$Ir(ppy)_3(1)$	NR
4	TXO (10)	NR
5	Rhodamine B (5)	NR
6	Rose Bengal (5)	NR
7	EosinY (5)	NR

^a Reaction conditions: 1a (0.4 mmol, 2.0 equiv), 2a (0.2 mmol, 1.0 equiv), Photocatalyst (X mol%), NiBr₂·glyme (5 mol%), dtbbpy (7

mol%), Na₂HPO₄ (2.0 equiv) in *i*-PrOAc (2.0 mL) were irradiated by 10 W blue LEDs for 12 h under Ar at room temperature. Isolated yields.

Screening of Bases

N ^{OBn}	Ir[dF(CF ₃)ppy] ₂ (dtbbpy)PF ₆ (1 mol%) NiBr ₂ ·glyme (5 mol%), dtbbpy (7 mol%)	CN
+ _{MeOC}	Base (2.0 equiv), <i>i-</i> PrOAc (0.1 M), Ar, 12 h 455 nm blue LEDs	MeOC 3a
Entry	Base	Yield (%)
1	Na ₂ HPO ₄	86
2	Na ₂ CO ₃	84
3	Na ₃ PO ₄	50
4	LiOAc	45
5	^t BuOK	26
6	Cs_2CO_3	49

^{*a*} Reaction conditions: **1a** (0.4 mmol, 2.0 equiv), **2a** (0.2 mmol, 1.0 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (1 mol%), NiBr₂·glyme (5 mol%), dtbbpy (7 mol%), base (2.0 equiv) in *i*-PrOAc (2.0 mL) were irradiated by 10 W blue LEDs for 12 h under Ar at room temperature. Isolated yields.

Screening of Time

N ^{OBn}	Ir[dF(CF ₃)ppy]₂(dtbbpy)PF ₆ (1 mol%) NiBr₂·glyme (5 mol%), dtbbpy (7 mol%)	CN
+ _{MeOC}	Na ₂ HPO ₄ (2.0 equiv), <i>i</i> -PrOAc (0.1 M), Ar, X h 455 nm blue LEDs	MeOC 3a
Entry	Time (X h)	Yield (%)
1	12	86
2	3	20
3	6	40
4	9	65
5	15	89

^a Reaction conditions: 1a (0.4 mmol, 2.0 equiv), 2a (0.2 mmol, 1.0 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (1 mol%), NiBr₂·glyme (5 mol%),

dtbbpy (7 mol%), Na₂HPO₄ (2.0 equiv) in *i*-PrOAc (2.0 mL) were irradiated by 10 W blue LEDs for X h under Ar at room temperature. Isolated yields.

3.3 General Procedure for Radical Ring-Opening Alkenylation

To a 25 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added (*E*)-(2bromovinyl)benzene **5a** (0.2 mmol, 1.0 equiv), phtocatalyst (0.002 mmol, 1 mol%), catalyst (0.02 mmol, 10 mol%), ligand (0.02 mmol, 10 mol%) and base (0.4 mmol, 2.0 equiv). Then, the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclobutanone *O*-benzyl oxime **1a** (0.5 mmol, 2.5 equiv) in sovent (2.0 mL) was added by syringe under nitrogen atmosphere. The tube was sealed and was placed on a photocatalytic parallel reactor with the 10 W blue LEDs (at approximately 0.3 cm away from the light source) and the mixture was stirred at room temperature for 12 hours. Then concentrated under vacuum to afford the crude product, which was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to give the target product **6a**.

3.4 Optimization of Reaction 1a with 5a^a

Screening of Catalysts

N ^{OBn}	Ir[dF(CF ₃)ppy] ₂ (dtbbpy)PF ₆ (1 mol%) Catalyst (10 mol%), dtbbpy (10 mol%)	CN
+ 5a	Na ₂ HPO ₄ (2.0 equiv), <i>i</i> -PrOAc (0.1 M), Ar, 12 h 455 nm blue LEDs	6a
Entry	Catalyst	Yield (%)
1	NiCl ₂ (PCy ₃) ₂	28
2	NiBr ₂ ·glyme	17
3	NiCl ₂ (dppp)	12
4	NiCl ₂ (dppe)	17
5	NiCl ₂ (dtppe)	14
6	NiCl ₂ (dppf)	Trace

^a Reaction conditions: 1a (0.4 mmol, 2.0 equiv), 5a (0.2 mmol, 1.0 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (1 mol%), Catalyst (10 mol%),

dtbbpy (10 mol%), Na₂HPO₄ (2.0 equiv) in *i*-PrOAc (2.0 mL) were irradiated by 10 W blue LEDs for 12 h under Ar at room temperature. Isolated yields.

Screening of Solvents

N OBn Br	$Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (1 mol%) NiCl ₂ (PCy ₃) ₂ (10 mol%), dtbbpy (10 mol%)	
↓ ↓	Na ₂ HPO ₄ (2.0 equiv), Solvent (0.1 M), Ar, 12 h 455 nm blue LEDs	
1a 5a		6a
Entry	Solvent	Yield (%)
1	1,4-dioxane	55
2	EA	17
3	DMC	25
4	MeCN	NR
5	<i>i</i> -PrOAc	28
6	MeOH	Trace
7	DCM	Trace
8	TFE	NR
9	DMSO	NR
10	NMP	NR
11	DMF	Trace
12	MTBE	36
13	DME	46
14	THF	Trace

^a Reaction conditions: 1a (0.4 mmol, 2.0 equiv), 5a (0.2 mmol, 1.0 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (1 mol%), NiCl₂(PCy₃)₂ (10 mol%),

dtbbpy (10 mol%), Na_2HPO_4 (2.0 equiv) in Solvent (2.0 mL) were irradiated by 10 W blue LEDs for 12 h under Ar at room temperature. Isolated yields.

Screening of Ligands

N ^{OBn}	Ir[dF(CF ₃)ppy] ₂ (dtbbpy)PF ₆ (1 mol%) NiCl ₂ (PCy ₃) ₂ (10 mol%), Ligand (10 mol%)	
↓ + ↓	Na ₂ HPO ₄ (2.0 equiv), 1,4-dioxane (0.1 M), Ar, 12 h 455 nm blue LEDs	
1a 5a		6a
Entry	Ligand	Yield (%)
1	dtbbpy	55
2	4,4'-dimethoxy-2,2'-bipyridyl	Trace
3	6,6'-dihydroxy-2,2'-bipyridyl	28
4	4,4'-dimethyl-2,2'-bipyridyl	Trace
5	5,5'-dimethyl-2,2'-bipyridyl	35
6	4-bromo-2-(4-bromopyridin-2-yl)pyridine	25
7	bpy	15
8	6,6'-dimethyl-2,2'-dipyridyl	17
9	4,7-diphenyl-1,10-phenanthroline	27
10	4,7-dimethoxy-1,10-phenanthroline	Trace
11	1,10-phenanthroline	Trace
12	2,2'-biquinoline	Trace
13	2,2,6,2-terpyridine	Trace
14	3,4,7,8-tetramethyl-1,10-phenanthroline	Trace

^{*a*} Reaction conditions: **1a** (0.4 mmol, 2.0 equiv), **5a** (0.2 mmol, 1.0 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (1 mol%), NiCl₂(PCy₃)₂ (10 mol%), Ligand (10 mol%), Na₂HPO₄ (2.0 equiv) in 1,4-dioxane (2.0 mL) were irradiated by 10 W blue LEDs for 12 h under Ar at room temperature.

Isolated yields.

Screening of Bases

N ^{OBn} Br	$\label{eq:linear} \begin{array}{l} \mbox{Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6 (1 mol\%) \\ \mbox{NiCl}_2(PCy_3)_2 (10 mol\%), dtbbpy (10 mol\%) \\ \end{array}$	CN
	Base (2.0 equiv), 1,4-dioxane (0.1 M), Ar, 12 h 455 nm blue LEDs	
1a 5a		6a
Entry	Base	Yield (%)
1	Na ₂ CO ₃	75
2	Cs_2CO_3	30
3	K_2HPO_4	55
4	NaHCO ₃	42
5	K_2CO_3	40
6	KHCO3	46
7	NH_4CO_3	NR
8	Li ₂ CO ₃	41
9	Na ₃ PO ₄	37
10	'BuOK	NR
11	NaPO ₂	Trace
12	K ₃ PO ₄	30
13	DBU	Trace
14	NaOAc	43
15	Et ₃ N	Trace
16	KOAc	Trace
17	LiOAc	28
18	MeONa	NR

^a Reaction conditions: 1a (0.4 mmol, 2.0 equiv), 5a (0.2 mmol, 1.0 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (1 mol%), NiCl₂(PCy₃)₂ (10 mol%),

dtbbpy (10 mol%), base (2.0 equiv) in 1,4-dioxane (2.0 mL) were irradiated by 10 W blue LEDs for 12 h under Ar at room temperature. Isolated yields.

Screening of Photocatalysts

N ^{COBn}	Photocatalyst (X mol%) NiCl ₂ (PCy ₃) ₂ (10 mol%), dtbbpy (10 mol%)	CN
	Na ₂ CO ₃ (2.0 equiv), 1,4-dioxane (0.1 M), Ar, 12 h 455 nm blue LEDs	
1a 5a		6a
Entry	Photocatalyst (X mol%)	Yield (%)
1	<pre>Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (1)</pre>	75
2	4CzIPN (2)	NR
3	$Ir(ppy)_3(1)$	NR
4	TXO (10)	NR
5	Rhodamine B (5)	NR
6	Rose Bengal (5)	NR
7	EosinY (5)	NR

^{*a*} Reaction conditions: **1a** (0.4 mmol, 2.0 equiv), **5a** (0.2 mmol, 1.0 equiv), Phtotcatalyst (X mol%), NiCl₂(PCy₃)₂ (10 mol%), dtbbpy (10 mol%), Na₂CO₃ (2.0 equiv) in 1,4-dioxane (2.0 mL) were irradiated by 10 W blue LEDs for 12 h under Ar at room temperature. Isolated yields.

Screening of Time

N OBn Br	$Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6 (1 mol%)$ NiCl ₂ (PCy ₃) ₂ (10 mol%), dtbbpy (10 mol%)	CN
↓ ↓	Na ₂ CO ₃ (2.0 equiv), 1,4-dioxane (0.1 M), Ar, X h 455 nm blue LEDs	
1a 5a		6a
Entry	Times (X h)	Yield (%)
1	12	75
2	6	42
3	18	71
4	24	62

^a Reaction conditions: 1a (0.4 mmol, 2.0 equiv), 5a (0.2 mmol, 1.0 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (1 mol%), NiCl₂(PCy₃)₂ (10 mol%),

dtbbpy (10 mol%), Na₂CO₃ (2.0 equiv) in 1,4-dioxane (2.0 mL) were irradiated by 10 W blue LEDs for X h under Ar at room temperature. Isolated yields.

Screening of Substrate Ratio

N ^{OBn} + Br	$Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6 (1 mol%)$ NiCl ₂ (PCy ₃) ₂ (10 mol%), dtbbpy (10 mol%)	CN
	Na ₂ CO ₃ (2.0 equiv), 1,4-dioxane (0.1 M), Ar, 12 h 455 nm blue LEDs	
1a 5a		6a
Entry	Ratio (5a:1a)	Yield (%)
1	1:2.5	88
2	1:2	75
3	1:3	90

^{*a*} Reaction conditions: **1a** (X mmol), **5a** (0.2 mmol, 1.0 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (1 mol%), NiCl₂(PCy₃)₂ (10 mol%), dtbbpy (10 mol%), Na₂CO₃ (2.0 equiv) in 1,4-dioxane (2.0 mL) were irradiated by 10 W blue LEDs for 12 h under Ar at room temperature. Isolated yields.

4. Representative Procedure for Schemes 2, 3 and 4

To a 25 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added **2** (0.2 mmol, 1.0 equiv), $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (0.002 mmol, 1 mol%), $NiBr_2 \cdot glyme$ (0.01 mmol, 5 mol%), dtbbpy (0.014 mmol, 7 mol%) and Na_2HPO_4 (0.4 mmol, 2.0 equiv). Then, the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of **1** (0.4 mmol, 2.0 equiv) in *i*-PrOAc (2.0 mL) was added by syringe under nitrogen atmosphere. The tube was sealed and was placed on a photocatalytic parallel reactor with the 10 W blue LEDs (at approximately 0.3 cm away from the light source) and the mixture was stirred at room temperature for 12 hours. Then concentrated under vacuum to afford the crude product, which was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to give the target product **3** or **4**.

To a 25 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added **2'** (0.2 mmol, 1.0 equiv), $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (0.002 mmol, 1 mol%), $NiBr_2 \cdot glyme$ (0.01 mmol, 5 mol%), dtbbpy (0.014 mmol, 7 mol%) and Na_2HPO_4 (0.4 mmol, 2.0 equiv). Then, the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of **1a** (0.4 mmol, 2.0 equiv) in *i*-PrOAc (2.0 mL) was added by syringe under nitrogen atmosphere. The tube was sealed and was placed on a photocatalytic parallel reactor with the 10 W blue LEDs (at approximately 0.3 cm away from the light source) and the mixture was stirred at room temperature for 12 hours. Then concentrated under vacuum to afford the crude product, which was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to give the target product **3**.

To a 25 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added **5** (0.2 mmol, 1.0 equiv), $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (0.002 mmol, 1 mol%), $NiCl_2(PCy_3)_2$ (0.02 mmol, 10 mol%), dtbbpy (0.02 mmol, 10 mol%) and Na_2CO_3 (0.4 mmol, 2.0 equiv). Then, the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of **1** (0.5 mmol, 2.5 equiv) in 1,4-dioxane (2.0 mL) was added by syringe under nitrogen atmosphere. The tube was sealed and was placed on a photocatalytic parallel reactor with the 10 W blue LEDs (at approximately 0.3 cm away from the light source) and the mixture was stirred at room temperature for 12 hours. Then concentrated under vacuum to afford the crude product, which was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to give the target product **6**.

5. Scale-up Synthesis

A flame-dried 100 mL quartz column reaction tube was placed with a magnetic stirrer was added **2a** (5.0 mmol, 1.0 equiv), $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (0.015 mmol, 0.3 mol%), NiBr₂·glyme (0.25 mmol, 5 mol%), dtbbpy (0.35 mmol, 7 mol%) and Na₂HPO₄ (10 mmol, 2.0 equiv). Then, the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclobutanone *O*-benzyl oxime **1a** (10 mmol, 2.0 equiv) in *i*-PrOAc (50 mL) was added by syringe under nitrogen atmosphere. The reaction tube is placed in the centre of the stirrer and the two kessil lamps are placed perpendicular to the side wall of the reaction tube and then illuminated by a 40 W blue kessil lamp (approx 5 cm away from the light source). The fan is always on to evacuate the heat generated by the kessil lamps and to stabilise the reaction temperature (room temperature) to obtain reproducible results. After stirring for 50 hours at room temperature, concentrated under vacuum to afford the crude product, which was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to give the target products **3a** (0.75 g, 80%).

6. Procedures for Diverse Derivatizations of 3a and 3ag⁴

A 25 mL oven-dried reaction tube equipped with a magnetic stirrer was added a solution of **3a** (0.2 mmol, 1.0 equiv), K_2CO_3 (0.2 mmol, 1.0 equiv) in DMSO (2.0 mL). Then, H_2O_2 (1 mmol, 5.0 equiv) was added slowly at 25 °C for 12 hours. The reaction mixture was stirred until **3a** completely converted. The reaction mixture was diluted with EtOAc (5.0 mL) and H_2O (5.0 mL). The organic layer was separated and the water layer was extracted with EtOAc (3 × 5 mL). The combined organic layer was washed with saturated brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel to give the target product **7** in 82% yield.

A 25 mL oven-dried reaction tube equipped with a magnetic stirrer was added a solution of **3a** (0.2 mmol, 1.0 equiv) in MeOH/HCl (aq.) (1:1, 2.0 mL). The reaction mixture was stirred at 70 °C for 36 hours until **3a** completely converted. After that, 30 mL saturated aqueous NaHCO₃ solution was added and the water layer was extracted with EtOAc (3×5 mL). The combined organic layer was dried over Na₂SO₄ and concentrated in vacuo, which was purified by column chromatography on silica gel to give the target product **8** in 73% yield.

To a solution of compound **3ag** (50.4 mg, 0.15 mmol), NiCl₂ (29.2 mg, 1.5 equiv) and Boc₂O (98.2 mg, 3.0 equiv) in MeOH at 0 °C was added NaBH₄ (56.7 mg, 10 equiv). The mixture was allowed to stir for 4 hours at 50 °C. The reaction mixture was quenched with a saturated aqueous solution of NH₄Cl and diluted with Et₂O. The layers were separated and the aqueous layer was washed with Et₂O. The combined organic layer was dried over Na₂SO₄ and concentrated in vacuo, which was purified by column chromatography on silica gel to give the target product **9** in 63% yield.

7. Investigation of the Reaction Mechanism

To a 25 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added 1-(4bromophenyl)ethan-1-one **2a** (0.2 mmol, 1.0 equiv), $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (0.002 mmol, 1 mol%), NiBr₂·glyme (0.01 mmol, 5 mol%), dtbbpy (0.014 mmol, 7 mol%), Na₂HPO₄ (0.4 mmol, 2.0 equiv) and TEMPO (0.4 mmol, 2.0 equiv). Then, the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclobutanone *O*-benzyl oxime **1a** (0.4 mmol, 2.0 equiv) in *i*-PrOAc (2.0 mL) was added by syringe under nitrogen atmosphere. The tube was sealed and was placed on a photocatalytic parallel reactor with the 10 W blue LEDs (at approximately 0.3 cm away from the light source) and the mixture was stirred at room temperature for 12 hours. At the end of the reaction, the reaction was found to be completely inhibited and the TEMPO adducts **10** were captured by UPLC-TOF-MS. These results indicate that a radical intermediate might be involved in this transformation.

To a 25 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added 1-(4bromophenyl)ethan-1-one **2a** (0.2 mmol, 1.0 equiv), $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (0.002 mmol, 1 mol%), NiBr₂·glyme (0.01 mmol, 5 mol%), dtbbpy (0.014 mmol, 7 mol%), Na₂HPO₄ (0.4 mmol, 2.0 equiv) and BHT (X equiv). Then, the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclobutanone *O*-benzyl oxime **1a** (0.4 mmol, 2.0 equiv) in *i*-PrOAc (2.0 mL) was added by syringe under nitrogen atmosphere. The tube was sealed and was placed on a photocatalytic parallel reactor with the 10 W blue LEDs (at approximately 0.3 cm away from the light source) and the mixture was stirred at room temperature for 12 hours. The yield of **3a** was reduced to 55% yield when 1.0 equiv of BHT was added. When 2.0 equiv of BHT was added, the yield of **3a** was reduced to 35%. This result indicates that the reaction might proceed via a radical pathway.

7.2 Reaction Mechanism Experiments

To a 25 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added aryl halides (0.2 mmol, 1.0 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (0.002 mmol, 1 mol%), NiBr₂·glyme (0.01 mmol, 5 mol%), dtbbpy (0.014 mmol, 7 mol%), Na₂HPO₄ (0.4 mmol, 2.0 equiv). Then, the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclobutanone O-benzyl oxime 1a (0.4 mmol, 2.0 equiv) in *i*-PrOAc (2.0 mL) was added by syringe under nitrogen atmosphere. The tube was sealed and was placed on a photocatalytic parallel reactor with the 10 W blue LEDs (at approximately 0.3 cm away from the light source) and the mixture was stirred at room temperature for 12 hours. Then concentrated under vacuum to afford the crude product, which was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to give the target product **3a**. When 4-chloroacetophenone was used as an electrophilic reagent, the reaction yielded the target product 3a in 57% yield. However, using 4-iodoacetophenone as an electrophilic reagent did not produce the target compound. Under the same conditions, when we added 1.0 equiv of TBAB, the yield of 4chloroacetophenone as an electrophilic reagent did not change significantly. However, when 4iodoacetophenone was used as an electrophilic reagent, the reaction was able to obtain the target compound **3a** in 45% yield. These experiments demonstrate that the iodine anion in the reaction did not promote the reaction process, while the bromine anion significantly enhanced the reaction. This result suggests that the reaction may proceed through the oxidation of bromine anions to bromine radical pathway. When using aryl-OTF or aryl-OT as electrophilic reagents, the reaction cannot occur.

To a 25 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added 11 (0.2 mmol, 1.0 equiv), **2a** (0.2 mmol, 1.0 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (0.002 mmol, 1 mol%), NiBr₂·glyme (0.01 mmol, 5 mol%), dtbbpy (0.014 mmol, 7 mol%), Na₂HPO₄ (0.4 mmol, 2.0 equiv). Then, the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclobutanone Obenzyl oxime 1a (0.4 mmol, 2.0 equiv) in i-PrOAc (2.0 mL) was added by syringe under nitrogen atmosphere. The tube was sealed and was placed on a photocatalytic parallel reactor with the 10 W blue LEDs (at approximately 0.3 cm away from the light source) and the mixture was stirred at room temperature for 12 hours. Then concentrated under vacuum to afford the crude product, which was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to give the target product 12 (33%) and 3a (28%). Furthermore, to a 25 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added 11 (0.2 mmol, 1.0 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (0.002 mmol, 1 mol%), dtbbpy (0.014 mmol, 7 mol%), Na₂HPO₄ (0.4 mmol, 2.0 equiv) and TBAB (1.0 equiv). Then, the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclobutanone O-benzyl oxime 1a (0.4 mmol, 2.0 equiv) in i-PrOAc (2.0 mL) was added by syringe under nitrogen atmosphere. Then the reaction mixture was irradiated with the 10 W blue LEDs (at approximately 0.3 cm away from the light source) and the mixture was stirred at room temperature for 12 hours. Then concentrated under vacuum to afford the crude product, which was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to give the target product 12 (57%). This result suggests that the reaction may take place via the oxidation of bromine anions to bromine radical pathway.

7.3 Active Ni(II)-Complex Species Experiments

To a 25 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added $Ni(COD)_2$ (138 mg, 0.5 mmol, 1.0 equiv) and 4,4'-di-tert-butyl-2,2'-bipyridine (134 mg, 0.5 mmol, 1.0 equiv). Then, the tube was evacuated and backfilled with nitrogen for three times. Subsequently, the dry THF (5 mL) added by syringe under nitrogen atmosphere the mixture was stirred at room temperature for 12 hours. 1-(4-bromophenyl)ethan-1-one (10 mmol, 10.0 equiv) was added and stirred for additional 4 h. Dry pentane (30 mL) was added to the deep red colored mixture and filtered. The resulting precipitate was washed with pentane (3 x 10 mL) and dried under vacum to afford Ni(II) complex C1 as a brown solid. The product was used without further purification.

To a 25 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added Ni(II) complex C1 (0.1 mmol), $Ir[dF(CF_3)ppy]_2(dtbby)PF_6$ (1 mol%) and Na_2HPO_4 (0.2 mmol, 2.0 equiv). Then, the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclobutanone *O*-benzyl oxime 1a (0.2 mmol, 2.0 equiv) in *i*-PrOAc (0.1 M) was added by syringe under nitrogen atmosphere. The tube was sealed and was placed on a photocatalytic parallel reactor with the 10 W blue LEDs (at approximately 0.3 cm away from the light source) and the mixture was stirred at room temperature for 12 hours. The crude product was purified by flash column chromatography on silica gel to afford compound **3a** as a colorless oil (9.2 mg, 49% yield).

To a 25 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added Ni(II) complex C1 (0.02 mmol, 20 mol%), $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (1 mol%), 2i (0.1 mmol, 1.0 equiv) and Na₂HPO₄ (0.2 mmol, 2.0 equiv). Then, the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclobutanone *O*-benzyl oxime 1a (0.2 mmol, 2.0 equiv) in *i*-PrOAc (0.1 M) was added by syringe under nitrogen atmosphere. The tube was sealed and was placed on a photocatalytic parallel reactor with the 10 W blue LEDs (at approximately 0.3 cm away from the light source) and the mixture was stirred at room temperature for 12 hours. The crude product was purified by flash column chromatography on silica gel to afford compound 3i (13.2 mg, 59%) and compound 3a (2.5 mg, 13%).

8. Failed Substrates

Failed substrates

9. Characterizations of Products

(3a) 4-(4-Acetylphenyl)butanenitrile⁵ Colorless oil (32.3 mg, 86% or 21.3 mg, 57%). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 2.85 (t, J = 8.0 Hz, 2H), 2.59 (s, 3H), 2.34 (t, J = 6.8 Hz, 2H), 2.05 – 1.97 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 197.7, 145.4, 135.7, 128.8, 128.7, 119.2, 34.3, 26.6, 26.5, 16.5.

(3b) 4-(4-Benzoylphenyl)butanenitrile⁵ Colorless oil (32.9 mg, 66% or 30 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.75 (m, 4H), 7.61 – 7.57 (m, 1H), 7.51 – 7.46 (m, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 2.87 (t, *J* = 7.6 Hz, 2H), 2.37 (t, *J* = 6.8 Hz, 2H), 2.07 – 2.00 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 196.3, 144.7, 137.7, 136.0, 132.4, 130.6, 130.0, 128.4, 128.3, 119.2, 34.4, 26.6, 16.5.

(3c) 4-(4-(Methylsulfonyl)phenyl)butanenitrile⁵ Colorless oil (28.1 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.87 (m, 2H), 7.40 (d, J = 8.4 Hz, 2H), 3.04 (s, 3H), 2.88 (t, J = 7.6 Hz, 2H), 2.36 (t, J = 6.8 Hz, 2H), 2.05 – 1.97 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 146.3, 138.9, 129.4, 127.8, 119.0, 44.5, 34.2, 26.4, 16.5.

(3d) 4-(3-Cyanopropyl)benzonitrile⁶ Colorless oil (20.1 mg, 59%). ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.59 (m, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 2.85 (t, *J* = 7.6 Hz, 2H), 2.36 (t, *J* = 6.8 Hz, 2H), 2.03 – 1.96 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 145.3, 132.5, 129.3, 119.0, 118.8, 110.7, 34.5, 26.4, 16.5.

(3e) 4-(3-Cyanopropyl)benzamide Solid (21.8 mg, 58%). ¹H NMR (400 MHz, DMSO) δ 7.91 (br, 1H), 7.81 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 2.71 (t, J = 8.0 Hz, 2H), 2.51 – 2.47 (m, 2H), 1.91 – 1.84 (m, 2H); ¹³C NMR (101 MHz, DMSO) δ 168.2, 144.3, 132.7, 128.6, 128.2, 120.9, 34.2, 26.6, 16.3. Melting point (°C): 132.9 – 134.4 °C. HRMS (APCI) m/z calcd for C₁₁H₁₃ON₂ [M+H]⁺ 189.1028, found 189.1019. IR (cm⁻¹): 3356, 3182, 2933, 2850, 2756, 2553, 2245, 2168, 2042, 1674, 1614, 1568, 1377, 1190, 1045, 864, 773, 628.

(3f) 4-(4-(Trifluoromethyl)phenyl)butanenitrile⁶ Colorless oil (22.0 mg, 52%). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 2.85 (t, *J* = 7.6 Hz, 2H), 2.35 (t, *J* = 7.2 Hz, 2H), 2.04 – 1.97 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 143.8, 129.0 (q, *J* = 32.5 Hz), 128.8, 125.6 (q,

J = 3.7 Hz) 124.1 (q, J = 273.0 Hz), 119.1, 34.1, 26.6, 16.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.32.

(3g) 4-([1,1'-Biphenyl]-4-yl)butanenitrile⁷ Solid (20.3 mg, 46%). ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.53 (m, 4H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.26 (d, *J* = 7.6 Hz, 2H), 2.82 (t, *J* = 7.6 Hz, 2H), 2.35 (t, *J* = 6.8 Hz, 2H), 2.06 – 1.98 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 140.8, 139.6, 138.8, 128.9, 128.8, 127.4, 127.3, 127.0, 119.5, 34.0, 26.9, 16.5.

(3h) 4-(4-(Methylthio)phenyl)butanenitrile⁸ Colorless oil (12.1 mg, 32%). ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.20 (m, 2H), 7.11 (d, J = 8.4 Hz, 2H), 2.74 (d, J = 7.2 Hz, 2H), 2.48 (s, 3H), 2.31 (t, J = 7.2 Hz, 2H), 2.00 – 1.92 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 136.6, 136.4, 129.0, 127.2, 119.4, 33.8, 26.9, 16.4, 16.1.

(3i) 4-(3-Cyanopropyl)benzenesulfonamide Colorless oil (35.9 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.86 (m, 2H), 7.34 (d, J = 8.4 Hz, 2H), 5.04 (s, 2H), 2.86 (t, J = 8.0 Hz, 2H), 2.36 (t, J = 7.2 Hz, 2H), 2.04 – 1.97 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 145.2, 140.3, 129.2, 126.9, 119.1, 34.2, 26.5, 16.5. HRMS (APCI) m/z calcd for C₁₀H₁₃O₂N₂S [M+H]⁺ 225.0698, found 225.0689. IR (cm⁻¹): 3182, 3047, 2935, 2868, 2690, 2245, 1599, 1495, 1435, 1408, 1335, 1161, 1028, 955, 837, 806, 679, 582, 553.

(3j) Methyl 4-(3-cyanopropyl)benzoate⁹ Colorless oil (32.5 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.97 (m, 2H), 7.28 – 7.26 (m, 2H), 3.91 (s, 3H), 2.84 (t, *J* = 7.6 Hz, 2H), 2.34 (t, *J* = 7.2 Hz, 2H), 2.04 – 1.97 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 145.0, 130.0, 128.5, 128.4, 119.2, 52.0, 34.3, 26.5, 16.4.

(3k) Tert-butyl 4-(3-cyanopropyl)benzoate Colorless oil (37.3 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.92 (m, 2H), 7.23 (d, J = 8.4 Hz, 2H), 2.83 (t, J = 7.6 Hz, 2H), 2.32 (t, J = 7.2 Hz, 2H), 2.03 – 1.96 (m, 2H), 1.59 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 143.5, 129.5, 128.8, 127.3, 118.2, 80.0, 33.3, 27.2, 25.6, 15.4. HRMS (APCI) m/z calcd for C₁₅H₂₀O₂N [M+H]⁺ 246.1494, found 246.1485. IR (cm⁻¹): 2933, 2247, 1711, 1610, 1479, 1458, 1369, 1294, 1256, 1167, 1112, 1018, 982, 851, 768.

(31) 4-(4-Formylphenyl)butanenitrile Colorless oil (24.2 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.85 – 7.82 (m, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 2.88 (t, *J* = 7.6 Hz, 2H), 2.36 (t, *J* = 6.8 Hz, 2H),

2.06 – 1.99 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 191.8, 147.0, 135.1, 130.2, 129.2, 119.1, 34.6, 26.5, 16.5. HRMS (APCI) m/z calcd for C₁₁H₁₂ON [M+H]⁺ 174.0919, found 174.0911. IR (cm⁻¹): 2935, 2854, 2739, 2245, 1699, 1607, 1576, 1306, 1213, 1171, 1057, 1016, 849, 825, 779, 486, 434.

(3m) 4-(4-Vinylphenyl)butanenitrile Colorless oil (12.2 mg, 36%). ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 6.73 – 6.66 (m, 1H), 5.75 – 5.70 (m, 1H), 5.24 – 5.21 (m, 1H), 2.77 (t, J = 7.2 Hz, 2H), 2.32 (t, J = 6.8 Hz, 2H), 2.02 – 1.94 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 139.3, 136.4, 136.0, 128.7, 126.5, 119.5, 113.6, 34.1, 26.9, 16.4. HRMS (APCI) m/z calcd for C₁₂H₁₄N [M+H]⁺ 172.1126, found 172.1118. IR (cm⁻¹): 3433, 2997, 2914, 2243, 1437, 1406, 1057, 955.

(3n) 4-(3-(Trifluoromethyl)phenyl)butanenitrile Colorless oil (23.8 mg, 56%). ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.38 (m, 4H), 2.85 (t, *J* = 8.0 Hz, 2H), 2.36 (t, *J* = 7.2 Hz, 2H), 2.05 – 1.98 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 140.7, 131.9, 131.0 (q, *J* = 32.2 Hz), 129.2, 125.1 (q, *J* = 3.8 Hz), 124.1 (q, *J* = 273.4 Hz), 123.5 (q, *J* = 3.7 Hz), 119.1, 34.2, 26.7, 16.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.64. HRMS (APCI) m/z calcd for C₁₁H₁₁NF₃ [M+H]⁺ 214.0844, found 214.0834. IR (cm⁻¹): 2937, 2862, 2768, 2247, 2154, 2041, 1595, 1493, 1454, 1333, 1201, 1163, 1124, 984, 800.

(30) Methyl 3-(3-cyanopropyl)benzoate Colorless oil (20.5 mg, 50% or 19.5 mg, 48%). ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.89 (m, 1H), 7.87 (s, 1H), 7.39 – 7.35 (m, 2H), 3.91 (s, 3H), 2.83 (t, *J* = 7.6 Hz, 2H), 2.33 (t, *J* = 6.8 Hz, 2H), 2.04 – 1.97 (m, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 140.1, 133.1, 130.6, 129.4, 128.8, 127.9, 119.3, 52.2, 34.2, 26.8, 16.5. HRMS (ESI) m/z calcd for C₁₂H₁₄NO₂ [M+H]⁺ 204.1025, found 204.1021. IR (cm⁻¹): 3431, 3034, 2949, 2866, 2245, 1720, 1589, 1435, 1286, 1203, 1109, 1059, 951, 752, 696.

(**3p**) **4-(3-Acetylphenyl)butanenitrile** Colorless oil (17.5 mg, 47%). ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.79 (m, 2H), 7.44 – 7.39 (m, 2H), 2.85 (t, *J* = 8.0 Hz, 2H), 2.60 (s, 3H), 2.34 (t, *J* = 7.2 Hz, 2H), 2.05 – 1.98 (m, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ 198.1, 140.4, 137.6, 133.3, 129.0, 128.0, 126.8, 119.3, 34.3, 26.8, 26.7, 16.5. HRMS (APCI) m/z calcd for C₁₂H₁₄ON [M+H]⁺ 188.1075, found 188.1068. IR (cm⁻¹): 3348, 3049, 2937, 2868, 2243, 1684, 1603, 1585, 1485, 1435, 1360, 1271, 1190, 1059, 912, 802, 694, 590.

(3q) 4-(3-(Methylsulfonyl)phenyl)butanenitrile Colorless oil (20.8 mg, 47%). ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.77 (m, 2H), 7.55 – 7.48 (m, 2H), 3.05 (s, 3H), 2.88 (t, *J* = 8.0 Hz, 2H), 2.37 (t, *J* = 6.8 Hz, 2H), 2.06 – 1.98 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 141.1, 133.9, 129.8, 127.0, 125.6,

119.0, 44.5, 34.2, 26.6, 16.6. HRMS (APCI) m/z calcd for $C_{11}H_{14}O_2NS$ [M+H]⁺ 224.0745, found 224.0736. IR (cm⁻¹): 3447, 3005, 2920, 2866, 2245, 1713, 1659, 1601, 1479, 1433, 1298, 1215, 1146, 1057, 955, 930, 802, 760, 698, 536, 484.

(3r) 4-(3-Methoxyphenyl)butanenitrile¹⁰ Colorless oil (10.2 mg, 30%). ¹H NMR (400 MHz, CDCl₃) δ 7.23 (t, J = 8.0 Hz, 1H), 6.79 – 6.76 (m, 2H), 6.73 – 6.72 (m, 1H), 3.81 (s, 3H), 2.76 (t, J = 7.6 Hz, 2H), 2.32 (t, J = 7.2 Hz, 2H), 2.02 – 1.95 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 159.9, 141.3, 129.7, 120.8, 119.5, 114.3, 111.7, 55.2, 34.4, 26.8, 16.4.

(3s) 4-(4-(Benzo[d]thiazol-2-yl)phenyl)butanenitrile Solid (38.8 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.0 Hz, 1H), 8.03 (d, J = 8.4 Hz, 2H), 7.90 (d, J = 7.6 Hz, 1H), 7.51 – 7.47 (m, 1H), 7.40 – 7.36 (m, 1H), 7.31 (d, J = 8.4 Hz, 2H), 2.84 (t, J = 7.6 Hz, 2H), 2.35 (t, J = 6.8 Hz, 2H), 2.05 – 1.98 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.7, 154.2, 143.0, 135.0, 132.1, 129.2, 127.9, 126.4, 125.2, 123.2, 121.7, 119.3, 34.3, 26.7, 16.5. Melting point (°C): 107.5 – 112.0 °C. HRMS (APCI) m/z calcd for C₁₇H₁₅N₂S [M+H]⁺ 279.0956, found 279.0947. IR (cm⁻¹): 3446, 2999, 2914, 2243, 1680, 1485, 1437, 1414, 1312, 1252, 1045, 953, 818, 760.

CN CN

(3t) 2-(3-Cyanopropyl)benzonitrile Colorless oil (21.5 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.63 (m, 1H), 7.58 – 7.54 (m, 1H), 7.37 – 7.33 (m, 2H), 3.00 (t, *J* = 7.6 Hz, 2H), 2.40 (t, *J* = 7.2 Hz, 2H), 2.10 – 2.03 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 133.2, 133.2, 129.8, 127.4, 119.0, 117.7, 112.4, 33.3, 26.3, 16.7. HRMS (APCI) m/z calcd for C₁₁H₁₁N₂ [M+H]⁺ 171.0922, found 171.0914. IR (cm⁻¹): 3429, 3062, 2933, 2866, 2761, 2229, 1668, 1597, 1487, 1454, 1365, 1049, 767.

(3u) 4-(Naphthalen-2-yl)butanenitrile⁶ Colorless oil (19.6 mg, 50%). ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.79 (m, 3H), 7.64 (s, 1H), 7.51 – 7.43 (m, 2H), 7.33 – 7.31 (m, 1H), 2.96 (t, J = 7.6 Hz, 2H), 2.35 (t, J = 7.2 Hz, 2H), 2.12 – 2.05 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 137.1, 133.6, 132.3, 128.4, 127.7, 127.5, 126.9, 126.8, 126.2, 125.6, 119.5, 34.5, 26.8, 16.4.

(3v) 4-(Phenanthren-9-yl)butanenitrile Solid (19.8 mg, 40%). ¹H NMR (400 MHz, CDCl₃) δ 8.77 – 8.75 (m, 1H), 8.67 (d, J = 8.0 Hz, 1H), 8.07 – 8.04 (m, 1H), 7.86 – 7.84 (m, 1H), 7.71 – 7.59 (m, 5H), 3.29 (t, J = 7.6 Hz, 2H), 2.41 (t, J = 7.2 Hz, 2H), 2.22 – 2.14 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 133.8, 131.6, 130.9, 130.7, 129.9, 128.2, 127.0, 126.9, 126.9, 126.5, 126.5, 124.0, 123.5, 122.5, 119.6, 32.0, 25.6, 16.8. Melting point (°C): 85.1 – 88.1 °C. HRMS (APCI) m/z calcd for C₁₈H₁₆N [M+H]⁺ 246.1283, found 246.1274. IR (cm⁻¹): 3074, 2937, 2868, 2750, 2245, 2164, 2039, 1682, 1607, 1497, 1427, 1362, 1250, 1211, 1057, 980, 750, 617.

(3w) 4-(Fluoranthen-3-yl)butanenitrile Colorless oil (22.8 mg, 42%). ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.94 (m, 2H), 7.91 – 7.84 (m, 3H), 7.68 – 7.65 (m, 1H), 7.44 (d, J = 7.2 Hz, 1H), 7.40 – 7.35 (m, 2H), 3.32 (t, J = 7.6 Hz, 2H), 2.39 (t, J = 7.2 Hz, 2H), 2.20 – 2.13 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 139.4, 139.2, 137.6, 136.9, 136.1, 132.9, 129.0, 128.1, 128.1, 127.7, 127.5, 123.1, 121.5, 121.4, 120.1, 120.1, 119.5, 30.8, 27.3, 16.7. HRMS (APCI) m/z calcd for C₂₀H₁₆N [M+H]⁺ 270.1283, found 270.1273. IR (cm⁻¹): 3651, 3142, 3059, 2932, 2864, 2770, 2241, 2168, 2035, 1736, 1495, 1452, 1371, 1236, 1153, 1057, 991, 831, 781, 758, 685, 584, 521, 457, 428.

(3x) 4-(1-Oxo-2,3-dihydro-1*H*-inden-5-yl)butanenitrile¹¹ Colorless oil (21.8 mg, 55%). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.0 Hz, 1H), 7.30 (s, 1H), 7.19 (d, J = 8.0 Hz, 1H), 3.11 (t, J = 6.0 Hz, 2H), 2.86 (t, J = 7.6 Hz, 2H), 2.70 – 2.67 (m, 2H), 2.37 – 2.33 (m, 2H), 2.05 – 1.98 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 206.5, 156.0, 147.3, 135.8, 127.9, 126.6, 124.1, 119.2, 36.4, 34.7, 26.7, 25.7, 16.5.

(3y) 4-(Benzofuran-5-yl)butanenitrile Colorless oil (12.2 mg, 33%). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 2.0 Hz, 1H), 7.45 – 7.41 (m, 2H), 7.12 – 7.10 (m, 1H), 6.73 – 6.72 (m, 1H), 2.88 (t, J = 7.6 Hz, 2H), 2.32 (t, J = 6.8 Hz, 2H), 2.06 – 1.98 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 153.9, 145.4, 134.1, 127.8, 124.8, 120.8, 119.6, 111.5, 106.4, 34.3, 27.4, 16.3. HRMS (ESI) m/z calcd for C₁₂H₁₁NONa [M+Na]⁺ 208.0738, found 208.0734. IR (cm⁻¹): 3113, 2932, 2864, 2245, 1537, 1468, 1445, 1329, 1263, 1200, 1126, 1030, 947, 881, 769, 737, 424.

(3z) 4-(Benzo[b]thiophen-5-yl)butanenitrile¹² Colorless oil (17.2 mg, 43%). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.4 Hz, 1H), 7.56 (d, *J* = 0.8 Hz, 1H), 7.45 (d, *J* = 5.6 Hz, 1H), 7.30 (d, *J* = 5.6 Hz, 1H), 7.19 – 7.17 (m, 1H), 2.91 (t, *J* = 7.6 Hz, 2H), 2.33 (t, *J* = 6.8 Hz, 2H), 2.08 – 2.01 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 140.1, 138.0, 135.8, 127.0, 125.0, 123.6, 123.3, 122.7, 119.5, 34.3, 27.2, 16.4.

см

(3aa) 4-(Benzo[d]thiazol-2-yl)butanenitrile¹³ Colorless oil (30.3 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.0 Hz, 1H), 7.87 – 7.85 (m, 1H), 7.50 – 7.45 (m, 1H), 7.40 – 7.36 (m, 1H), 3.28 (t, J = 7.2 Hz, 2H), 2.56 (t, J = 7.2 Hz, 2H), 2.33 – 2.26 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 153.2, 135.1, 126.2, 125.1, 122.7, 121.6, 119.0, 32.5, 24.8, 16.6.

(3ab) 4-(3-Cyanopropyl)picolinonitrile Colorless oil (27.5 mg, 80% or 12 mg, 35%). ¹H NMR (400

MHz, CDCl₃) δ 8.62 (d, J = 5.2 Hz, 1H), 7.55 (s, 1H), 7.38 – 7.37 (m, 1H), 2.86 (t, J = 8.0 Hz, 2H), 2.41 (t, J = 6.8 Hz, 2H), 2.06 – 1.98 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 151.3, 150.6, 134.3, 128.5, 127.1, 118.6, 117.2, 33.4, 25.5, 16.7. HRMS (APCI) m/z calcd for C₁₀H₁₀N₃ [M+H]⁺ 172.0875, found 172.0866. IR (cm⁻¹): 3433, 3051, 2925, 2872, 2239, 1659, 1600, 1554, 1461, 1434, 1558, 1462, 1406, 1053, 951, 870, 835, 739, 480.

(3ac) 6-(3-Cyanopropyl)nicotinonitrile Colorless oil (23.9 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 8.80 (s, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 3.02 (t, J = 7.2 Hz, 2H), 2.43 (t, J = 6.8 Hz, 2H), 2.18 – 2.11 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.1, 152.2, 139.7, 123.3, 119.1, 116.7, 107.9, 36.5, 24.2, 16.7. HRMS (APCI) m/z calcd for C₁₀H₁₀N₃ [M+H]⁺ 172.0875, found 172.0866. IR (cm⁻¹): 3425, 3140, 2933, 2847, 2766, 2542, 2233, 2154, 2040, 1595, 1485, 1371, 1203, 1028, 982, 916, 756, 646.

(3ad) 4-(Pyrimidin-5-yl)butanenitrile Colorless oil (13.9 mg, 47%). ¹H NMR (400 MHz, CDCl₃) δ 9.12 (s, 1H), 8.62 (s, 2H), 2.81 (t, *J* = 8.0 Hz, 2H), 2.42 (t, *J* = 6.8 Hz, 2H), 2.05 – 1.98 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 157.4, 156.7, 133.0, 118.6, 29.1, 26.3, 16.7. HRMS (ESI) m/z calcd for C₈H₁₀N₃ [M+H]⁺ 148.0875, found 148.0870. IR (cm⁻¹): 3045, 2935, 2858, 2771, 2245, 2156, 2035, 1682, 1562, 1462, 1412, 1358, 1171, 980, 729, 633.

(3ae) 4-(Quinolin-3-yl)butanenitrile Solid (16.5 mg, 42% or 10.6 mg, 27%). ¹H NMR (400 MHz, CDCl₃) δ 8.79 (d, J = 2.0 Hz, 1H), 8.10 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 1.2 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.72 – 7.68 (m, 1H), 7.57 – 7.54 (m, 1H), 2.99 (t, J = 7.6 Hz, 2H), 2.40 (t, J = 7.2 Hz, 2H), 2.13 – 2.06 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 151.3, 147.1, 134.8, 132.4, 129.2, 129.2, 128.0, 127.4, 127.0, 119.1, 31.8, 26.6, 16.6. Melting point (°C): 46.6 – 52.0 °C. HRMS (APCI) m/z calcd for C₁₃H₁₃N₂ [M+H]⁺ 197.1079, found 197.1071. IR (cm⁻¹): 3437, 3267, 3063, 2935, 2864, 2766, 2243, 1607, 1570, 1495, 1126, 1057, 789, 756, 685, 611, 480.

(3af) Methyl (4-(3-cyanopropyl)benzoyl)phenylalaninate Colorless oil (47.6 mg, 68%). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.0 Hz, 2H), 7.31 – 7.23 (m, 5H), 7.13 (d, J = 7.2 Hz, 2H), 6.59 (d, J = 7.2 Hz, 1H), 5.10 – 5.06 (m, 1H), 3.76 (s, 3H), 3.31 – 3.19 (m, 2H), 2.82 (t, J = 7.6 Hz, 2H), 2.32 (t, J = 6.8 Hz, 2H), 2.02 – 1.95 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 166.5, 143.9, 135.9, 132.3, 129.3, 128.7, 128.7, 127.5, 127.2, 119.3, 53.5, 52.5, 37.9, 34.2, 26.6, 16.4. HRMS (ESI) m/z calcd for C₂₁H₂₂N₂O₃Na [M+Na]⁺ 373.1528, found 373.1523. IR (cm⁻¹): 3254, 3061, 3030, 2947, 2862, 2766, 2249, 1743, 1647, 1537, 1500, 1454, 1273, 1219, 1099, 1030, 982, 862, 760, 702.

(3ag) Methyl 2-(4-(3-cyanopropyl)benzamido)-2-phenylacetate Colorless oil (48.3 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 8.4 Hz, 2H), 7.45 – 7.43 (m, 2H), 7.40 – 7.32 (m, 3H), 7.27 – 7.25 (m, 2H), 7.14 (d, J = 6.4 Hz, 1H), 5.77 (d, J = 6.8 Hz, 1H), 3.77 (s, 3H), 2.83 (t, J = 7.2 Hz, 2H), 2.32 (t, J = 6.8 Hz, 2H), 2.04 – 1.95 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 166.2, 144.0, 136.6, 132.0, 129.1, 128.7, 128.6, 127.6, 127.4, 119.2, 56.8, 53.0, 34.2, 26.6, 16.4. HRMS (ESI) m/z calcd for C₂₀H₂₀N₂O₃Na [M+Na]⁺ 359.1372, found 359.1365. IR (cm⁻¹): 3254, 3063, 3034, 2953, 2858, 2245, 1745, 1647, 1610, 1535, 1500, 1456, 1335, 1267, 1215, 1175, 1057, 982, 951, 860, 760, 698, 600, 544.

(3ah) 2-Isopropyl-5-methylcyclohexyl 4-(3-cyanopropyl)benzoate Colorless oil (49.1 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.0 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 4.96 – 4.89 (m, 1H), 2.84 (t, J = 7.6 Hz, 2H), 2.33 (t, J = 6.8 Hz, 2H), 2.12 (d, J = 11.6 Hz, 1H), 2.04 – 1.92 (m, 3H), 1.75 – 1.71 (m, 2H), 1.59 – 1.52 (m, 2H), 1.19 – 1.05 (m, 2H), 0.97 – 0.89 (m, 7H), 0.79 (d, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 144.9, 130.0, 129.3, 128.5, 119.2, 74.8, 47.3, 41.0, 34.3, 34.3, 31.5, 26.6, 26.5, 23.7, 22.1, 20.8, 16.6, 16.4. HRMS (APCI) m/z calcd for C₂₁H₃₀O₂N [M+H]⁺ 328.2277, found 328.2262. IR (cm⁻¹): 2954, 2870, 2247, 1707, 1612, 1462, 1367, 1277, 1178, 1113, 982, 862, 764.

(3ai) 5-(2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl 4-(3-cyanopropyl)benzoate Colorless oil (60.5 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 5.90 (d, J = 4.0 Hz, 1H), 5.09 – 5.06 (m, 1H), 4.97 (t, J = 4.8 Hz, 1H), 4.39 – 4.32 (m, 2H), 4.14 – 4.10 (m, 1H), 4.00 – 3.96 (m, 1H), 2.86 (t, J = 7.6 Hz, 2H), 2.35 (t, J = 6.8 Hz, 2H), 2.05 – 1.97 (m, 2H), 1.55 (s, 3H), 1.41 (s, 3H), 1.33 (d, J = 2.8 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.5, 143.8, 128.4, 126.7, 126.0, 117.3, 111.3, 108.1, 102.4, 76.0, 76.0, 73.3, 71.3, 63.9, 32.5, 24.9, 24.8, 24.7, 24.5, 23.1, 14.6. HRMS (ESI) m/z calcd for C₂₃H₂₉NO₇Na [M+Na]⁺ 454.1842, found 454.1837. IR (cm⁻¹): 2989, 2937, 2872, 2245, 1726, 1610, 1458, 1375, 1275, 1215, 1105, 1059, 1020, 868, 766, 609, 513.

(4b) 4-(4-Acetylphenyl)-3-phenylbutanenitrile Colorless oil (46.4 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.0 Hz, 2H), 7.34 – 7.28 (m, 3H), 7.17 (t, J = 8.0 Hz, 4H), 3.29 – 3.07 (m, 3H), 2.62 – 2.60 (m, 2H), 2.56 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.7, 144.0, 140.6, 135.7, 129.3, 129.0, 128.6, 127.7, 127.2, 118.2, 43.6, 41.1, 26.6, 23.9. HRMS (APCI) m/z calcd for C₁₈H₁₈ON [M+H]⁺

264.1388, found 264.1378. IR (cm⁻¹): 3346, 3031, 2930, 2860, 2245, 1678, 1605, 1572, 1497, 1454, 1416, 1362, 1267, 1182, 1059, 953, 820, 764, 704, 609.

(4c) 2-(4-Acetylbenzyl)succinonitrile Colorless oil (28.0 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 3.25 – 3.18 (m, 1H), 3.15 – 3.14 (m, 2H), 2.70 (d, J = 6.0 Hz, 2H), 2.60 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.5, 139.7, 136.9, 129.5, 129.2, 118.2, 115.4, 36.9, 29.9, 26.7, 20.3. HRMS (APCI) m/z calcd for C₁₃H₁₃ON₂ [M+H]⁺ 213.1028, found 213.1018. IR (cm⁻¹): 3346, 2932, 2862, 2245, 1682, 1610, 1572, 1416, 1360, 1269, 1186, 1115, 1055, 955, 849, 820, 694, 598, 496.

(4d) Tert-butyl (1-(4-acetylphenyl)-3-cyanopropan-2-yl)carbamate Solid (38.5 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 4.84 (d, J = 7.6 Hz, 1H), 4.11 – 4.10 (m, 1H), 3.08 – 2.91 (m, 2H), 2.71 (dd, J = 16.4 Hz, 4.4 Hz, 1H), 2.58 (s, 3 H), 2.43 (dd, J = 16.8 Hz, 4.4 Hz, 1H), 1.40 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 197.6, 154.8, 141.8, 136.2, 129.4, 129.0, 117.1, 80.5, 48.3, 39.4, 28.3, 26.6, 22.8. Melting point (°C): 123.6 – 126.8 °C. HRMS (APCI) m/z calcd for C₁₇H₂₃O₃N₂ [M+H]⁺ 303.1709, found 303.1698. IR (cm⁻¹): 3641, 3219, 2932, 2854, 2766, 2247, 2164, 2040, 1684, 1608, 1526, 1363, 1267, 1169, 1045, 980, 818, 679, 600.

(4e) Ethyl 2-(4-acetylbenzyl)-3-cyanopropanoate Colorless oil (30.9 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 4.21 – 4.14 (m, 2H), 3.23 – 3.17 (m, 1H), 3.05 – 2.98 (m, 2H), 2.58 (s, 3H), 2.53 (d, J = 6.0 Hz, 2H), 1.23 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.6, 171.5, 142.4, 136.2, 129.3, 128.9, 117.4, 61.7, 42.9, 36.7, 26.6, 18.7, 14.1. HRMS (APCI) m/z calcd for C₁₅H₁₈O₃N [M+H]⁺ 260.1287, found 260.1276. IR (cm⁻¹): 3346, 2937, 2870, 2249, 1734, 1682, 1607, 1570, 1448, 1416, 1362, 1269, 1186, 1117, 1039, 957, 854, 600, 580.

(4f) Tert-butyl 4-(4-acetylbenzyl)-4-(cyanomethyl)piperidine-1-carboxylate⁵ Colorless oil (64.8 mg, 91%). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 3.67 – 3.61 (m, 2H), 3.32 – 3.26 (m, 2H), 2.87 (s, 2H), 2.59 (s, 3H), 2.23 (s, 2H), 1.64 – 1.57 (m, 2H), 1.54 – 1.49 (m, 2H), 1.45 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 197.6, 154.7, 141.5, 136.0, 130.6, 128.5, 117.6, 80.0, 43.2, 39.3, 35.7, 34.1, 28.4, 26.6, 24.9.

(4g) 2-((4-Acetylbenzyl)oxy)acetonitrile Colorless oil (16.2 mg, 43%). ¹H NMR (400 MHz, DMSO) δ

7.97 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.0 Hz, 2H), 4.69 (s, 2H), 4.57 (s, 2H), 2.59 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 198.1, 142.3, 136.9, 128.8, 128.2, 117.7, 72.3, 56.3, 27.2. HRMS (ESI) m/z calcd for C₁₁H₁₂NO₂ [M+H]⁺ 190.0868, found 190.0864. IR (cm⁻¹): 3344, 2930, 2854, 2752, 2546, 2249, 2125, 2042, 1684, 1609, 1356, 1269, 1097, 1057, 822, 758, 594.

(**4h**) **Tert-butyl (4-acetylbenzyl)(cyanomethyl)carbamate** Colorless oil (25.2 mg, 40%). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 7.6 Hz, 2H), 4.60 (s, 2H), 4.15 – 4.01 (m, 2H), 2.60 (s, 3H), 1.51 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 197.5, 141.4, 136.9, 129.0, 128.0, 115.5, 82.5, 50.3, 34.8, 29.7, 28.2, 26.7. HRMS (APCI) m/z calcd for C₁₆H₂₁O₃N₂ [M+H]⁺ 289.1552, found 289.1542. IR (cm⁻¹): 2978, 2932, 2872, 1686, 1610, 1454, 1402, 1367, 1267, 1254, 1163, 1059, 943, 876, 814, 771, 683, 607.

(4i) 3-(4-Acetylbenzyl)cyclopentane-1-carbonitrile Colorless oil (13.8 mg, 30%, dr = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.2 Hz, 2H), 7.31 (t, J = 7.8 Hz, 2H), 3.33 – 3.24 (m, 0.5H), 3.23 – 3.14 (m, 0.5H), 2.59 (s, 3H), 2.49 – 2.43 (m, 2H), 2.39 – 2.33(m, 1H), 2.25– 2.06 (m, 2H), 2.02 – 1.93 (m, 1H), 1.87 – 1.60 (m, 2H), 1.54 – 1.43 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 197.8, 151.0, 150.5, 135.4, 128.6, 127.2, 127.2, 118.9, 45.7, 44.4, 40.9, 39.3, 36.2, 35.5, 34.6, 33.0, 32.6, 31.1, 26.6, 23.4, 23.0. HRMS (ESI) m/z calcd for C₁₅H₁₇NONa [M+Na]⁺ 250.1208, found 250.1202. IR (cm⁻¹): 3466, 2999, 2955, 2916, 2864, 2243, 1680, 1607, 1419, 1358, 1308, 1271, 1184, 1055, 951, 831, 698, 600.

CN

(6a) (*E*)-6-Phenylhex-5-enenitrile¹⁴ Colorless oil (30.1 mg, 88%, *E*/*Z* = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.30 (m, 4H), 7.27 – 7.22 (m, 1H), 6.53 (d, *J* = 11.6 Hz, 0.2H), 6.47 (d, *J* = 15.6 Hz, 0.8H), 6.17 – 6.10 (m, 0.8H), 5.63 – 5.56 (m, 0.2H), 2.51 – 2.32 (m, 4H), 1.89 – 1.79 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 137.1, 132.1, 128.6, 127.6, 127.3, 126.1, 119.5, 31.6, 25.0, 16.4.

CN

(6b) (*E*)-3,6-Diphenylhex-5-enenitrile¹⁴ Colorless oil (23.7 mg, 48%, *E*/*Z* = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.35 (m, 2H), 7.31 – 7.23 (m, 7H), 7.22 – 7.18 (m, 1H), 6.68 (d, *J* = 15.6 Hz, 0.2H), 6.48 (d, *J* = 15.6 Hz, 0.8H), 6.11 – 6.00 (m, 0.94H), 5.57 – 5.47 (m, 0.15H), 4.27 – 4.23 (m, 0.2H), 3.90 – 3.63 (m, 1.2H), 3.45 – 3. 39 (m, 0.2H), 3.16 – 3.06 (m, 0.87H), 2.72 – 2.58 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 141.2, 137.0, 133.2, 128.9, 128.5, 127.5, 127.4, 127.1, 126.1, 126.1, 118.4, 42.1, 38.4, 23.9.

(6c) (*E*)-2-Cinnamylsuccinonitrile¹⁷ Colorless oil (16.5 mg, 42%, *E*/*Z* = 15:1). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.22 (m, 5H), 6.78 (d, *J* = 12.0 Hz, 0.06H), 6.65 (d, *J* = 16.0 Hz, 0.93H), 6.18 – 6.11

(m, 0.92H), 5.70 – 5.64 (m, 0.06H), 3.10 – 3.03 (m, 1H), 2.82 – 2.66 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 136.2, 135.9, 128.7, 128.3, 126.5, 121.4, 118.4, 115.4, 34.5, 28.4, 20.2.

CN

(6d) Tert-butyl (*E*)-(1-cyano-5-phenylpent-4-en-2-yl)carbamate¹⁵ Colorless oil (52.5 mg, 92%, *E/Z* = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.28 (m, 4H), 7.26 – 7.23 (m, 1H), 6.64 (d, *J* = 11.6 Hz, 0.2H), 6.54 (d *J* = 16.0 Hz, 0.5H), 6.14 – 6.06 (m, 0.5H), 5.63 – 5.57 (m, 0.2H), 4.86 – 4.69 (m, 1H), 3.96 (s, 1H), 3.37 – 3.24 (m, 0.5H), 2.82 – 2.71 (m, 1H), 2.67 – 2.62 (m, 0.7H), 2.60 – 2.49 (m, 1.5H), 1.44 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 155.0, 136.6, 134.4, 128.7, 127.8, 126.3, 123.7, 117.3, 80.3, 47.1, 37.0, 28.3, 23.0.

(6e) Ethyl (*E*)-2-(cyanomethyl)-5-phenylpent-4-enoate¹⁴ Colorless oil (34.0 mg, 70%, *E*/*Z* = 15:1). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.29 (m, 4H), 7.25 – 7.22 (m, 1H), 6.61 (d, *J* = 11.6 Hz, 0.06H), 6.52 (d, *J* = 16.0 Hz, 0.90H), 6.10 – 6.02 (m, 0.91H), 5.59 – 5.55 (m, 0.07H), 4.26 – 4.16 (m, 2H), 2.92 – 2.85 (m, 1H), 2.75 – 2.58 (m, 4H), 1.29 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 136.6, 134.2, 128.6, 127.7, 126.3, 124.1 117.8, 61.6, 41.4, 34.5, 18.6, 14.2.

(6f) (*E*)-Tert-butyl 4-cinnamyl-4-(cyanomethyl)piperidine-1-carboxylate¹⁴ Colorless oil (64.6 mg, 95%, E/Z = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.30 (m, 5H), 6.68 (d, J = 11.6 Hz, 0.2H), 6.54 (d, J = 15.6 Hz, 0.8H), 6.17 – 6.09 (m, 0.8H), 5.67 – 5.60 (m, 0.2H), 3.48 – 3.39 (m, 3H), 3.26 – 3.18 (m, 1H), 2.81 (s, 0.4H), 2.43 – 2.29 (m, 3.9H), 1.64 – 1.56 (m, 4H), 1.46 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 154.7, 136.7, 134.9, 128.6, 127.6, 126.2, 123.1, 117.5, 79.8, 40.0, 35.9, 35.2, 34.1, 28.4, 26.0.

C CN

(6g) (*E*)-2-(Cinnamyloxy)acetonitrile¹⁴ Colorless oil (15.9 mg, 46%, *E/Z* = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.20 (m, 5H), 6.75 – 6.68 (m, 0.94H), 6.27 – 6.20 (m, 0.67H), 5.84 – 5.78 (m, 0.30H), 5.30 – 5.26 (m, 0.15H), 4.40 – 4.26 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 135.3, 128.7, 128.4, 128.3, 126.7, 123.0, 115.9, 71.7, 54.6.

N CN Boc

(6h) (*E*)-Tert-butyl cinnamyl(cyanomethyl)carbamate¹⁴ Colorless oil (27.2 mg, 50%, E/Z = 9:1). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.35 (m, 2H), 7.32 – 7.29 (m, 2H), 7.25 – 7.22 (m, 1H), 6.71 – 6.68 (m, 0.1H), 6.57 – 6.53 (m, 0.9H), 6.13 – 6.05 (m, 0.9H), 5.65 – 5.59 (m, 0.1H), 4.12 – 4.09 (m, 4H), 1.49 (s, 8H), 1.46 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 136.0, 128.7, 128.1, 126.5, 123.2, 116.0, 82.0, 49.2, 34.3, 28.2.

`CN

(6i) (E)-6-(4-Methoxyphenyl)hex-5-enenitrile¹⁵ Colorless oil (19.3 mg, 55%, E/Z = 5:1). ¹H NMR (400

MHz, CDCl₃) δ 7.30 – 7.18 (m, 2H), 6.89 – 6.84 (m, 2H), 6.47 – 6.38 (m, 1H), 6.02 – 5.94 (m, 0.91H), 5.52 – 5.46 (m, 0.2H), 3.82 (s, 0.5H), 3.81 (s, 2.5H), 2.51 – 2.33 (m, 4H), 1.87 – 1.79 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 159.0, 131.4, 129.9, 129.9, 127.2, 125.3, 114.0, 55.3, 31.6, 25.1, 16.4.

(6j) (*E*)-4-(5-Cyanopent-1-en-1-yl)benzonitrile¹⁶ Colorless oil (16.3 mg, 48%, E/Z = 1.5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.58 (m, 2H), 7.43 – 7.41 (m, 1H), 7.34 (d, J = 8.0 Hz, 1H), 6.72 – 6.66 (m, 0.08H), 6.54 – 6.66 (m, 0.98H), 6.32 – 6.18 (m, 0.67H), 5.78 – 5.68 (m, 0.44H), 2.50 – 2.34 (m, 4H), 1.91-1.79 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 141.5, 132.5, 131.9, 130.6, 126.6, 119.3, 119.0, 110.6, 31.8, 24.7, 16.6.

F₃C CN

(6k) (E)-6-(3-(Trifluoromethyl)phenyl)hex-5-enenitrile²² Colorless oil (27.7 mg, 58%, E/Z = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.59 (s, 1H), 7.52 – 7.40 (m, 3H), 6.56 – 6.48 (m, 0.98H), 6.26 – 6.14 (m, 0.79H), 5.73 – 5.66 (m, 0.26H), 2.49 – 2.33 (m, 4H), 1.90 – 1.79 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 138.0, 131.1 (q, J = 32.3 Hz), 130.9, 129.9, 129.5, 129.2, 127.0 (q, J = 273.6 Hz), 124.0 (q, J = 3.8 Hz), 122.8 (q, J = 3.7 Hz), 119.6, 31.8, 25.0, 16.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.78.

(61) (E)-6-([1,1'-Biphenyl]-2-yl)hex-5-enenitrile Colorless oil (21.3 mg, 43%, E/Z = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.56 (m, 1H), 7.45 – 7.27 (m, 8H), 6.46 – 6.40 (m, 0.98H), 6.09 – 6.01 (m, 0.84H), 5.54 – 5.47 (m, 0.18H), 2.35 – 2.26 (m, 4H), 1.83 – 1.65 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 141.0, 140.5, 135.3, 131.0, 130.2, 129.7, 128.6, 128.1, 127.5, 127.3, 127.1, 126.0, 119.5, 31.8, 25.0, 16.4. HRMS (APCI) m/z calcd for C₁₈H₁₈N [M+H]⁺ 248.1439, found 248.1434. IR (cm⁻¹): 3718, 3142, 2935, 2845, 2677, 2540, 2411, 2289, 2245, 2166, 2030, 1807, 1691, 1560, 1475, 1367, 1169, 968, 746, 615, 432.

(6m) 5,6,6-Triphenylhex-5-enenitrile Colorless oil (22.6 mg, 35%). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (t, J = 7.6 Hz, 2H), 7.30 (d, J = 7.2 Hz, 1H), 7.24 – 7.10 (m, 7H), 7.05 – 7.01 (m, 3H), 6.90 – 6.88 (m, 2H), 2.60 – 2.56 (m, 2H), 2.19 (t, J = 7.2 Hz, 2H), 1.73 – 1.65 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 142.9, 142.3, 141.3, 141.0, 138.4, 130.5, 129.5, 129.1, 128.5, 128.2, 127.5, 127.0, 126.7, 126.1, 34.9, 24.8, 17.1. HRMS (ESI) m/z calcd for C₂₄H₂₁NNa [M+Na]⁺ 346.1572, found 346.1566. IR (cm⁻¹): 3466, 2993, 2908, 2851, 2586, 2334, 2243, 2083, 1990, 1491, 1435, 1406, 1315, 1057, 947, 762, 698.

(6n) 6,6-Diphenylhex-5-enenitrile²¹ Colorless oil (11.5 mg, 23%). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.37 (m, 2H), 7.35 – 7.31 (m, 1H), 7.30 – 7.22 (m, 5H), 7.17 – 7.15 (m, 2H), 6.02 (t, *J* = 7.6 Hz, 1H),

2.33 – 2.24 (m, 4H), 1.84 – 1.77 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 143.8, 142.1, 139.6, 129.6, 128.3, 128.1, 127.2, 127.1, 126.6, 119.5, 28.7, 25.7, 16.6.

(7) 4-(4-Acetylphenyl)butanamide Colorless oil (33.6 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 5.50 (d, J = 40.0 Hz, 2H), 2.74 (t, J = 7.6 Hz, 2H), 2.59 (s, 3H), 2.24 (t, J = 7.6 Hz, 2H), 2.04 – 1.97 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 197.9, 174.7, 147.3, 135.3, 128.7, 128.6, 35.1, 34.8, 26.6, 26.4. HRMS (ESI) m/z calcd for C₁₂H₁₅NO₂Na [M+Na]⁺ 228.1000, found 228.0995. IR (cm⁻¹): 3391, 3200, 2955, 2918, 2872, 1670, 1605, 1425, 1360, 1269, 1184, 960, 835, 661, 598, 461.

(8) Methyl 4-(4-acetylphenyl)butanoate¹⁸ Colorless oil (32.1 mg, 73%). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 3.67 (s, 3H), 2.72 (t, J = 7.6 Hz, 2H), 2.59 (s, 3H), 2.34 (t, J = 7.6 Hz, 2H), 2.02 – 1.94 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 173.7, 147.2, 135.3, 128.7, 128.6, 51.6, 35.1, 33.3, 26.6, 26.1.

(9) Methyl (*R*)-2-(4-(4-((tert-butoxycarbonyl)amino)butyl)benzamido)-2-phenylacetate Colorless oil (55.5 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.0 Hz, 2H), 7.46 – 7.43 (m, 2H), 7.40 – 7.31 (m, 3H), 7.26 – 7.22 (m, 2H), 7.11 (d, *J* = 6.8 Hz, 1H), 5.78 (d, *J* = 6.8 Hz, 1H), 4.50 (s, 1H), 3.77 (s, 3H), 3.13 (d, *J* = 6.0 Hz, 2H), 2.67 (t, *J* = 7.6 Hz, 2H), 1.66 – 1.61 (m, 3H), 1.51 – 1.44 (m, 10H); ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 166.5, 156.0, 146.6, 136.7, 131.2, 129.0, 129.0, 128.6, 128.6, 127.3, 127.3, 56.8, 52.9, 40.3, 35.4, 29.7, 28.4, 28.3. HRMS (ESI) m/z calcd for C₂₅H₃₂N₂O₅Na [M+Na]⁺ 463.2209, found 463.2204. IR (cm⁻¹): 3294, 2978, 2926, 2858, 1745, 1703, 1649, 1537, 1497, 1435, 1364, 1248, 1169, 1047, 947, 864, 766, 702.

(12) 6-([1,1'-Biphenyl]-4-yl)-7,7-difluorohept-6-enenitrile¹⁹ Colorless oil (33.9 mg, 57%). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.0 Hz, 4H), 7.45 (t, J = 8.0 Hz, 2H), 7.39 – 7.34 (m, 3H), 2.52 – 2.48 (m, 2H), 2.33 (t, J = 7.2 Hz, 2H), 1.73 – 1.66 (m, 2H), 1.61 – 1.54 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 153.8 (t, J = 289.5 Hz), 140.4, 140.3, 132.0, 128.8, 128.5 (t, J = 3,2 Hz), 127.5, 127.3, 127.0, 119.4, 91.3 (dd, J = 19.3 Hz, 15.9 Hz), 26.8, 26.7, 24.7, 16.9.

(13) 1-(4-Benzoylphenyl)ethan-1-one²⁰ Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.0

Hz, 2H), 7.87 (d, J = 8.4 Hz, 2H), 7.81 (d, J = 6.8 Hz, 2H), 7.63 (t, J = 7.2 Hz, 1H), 7.51 (t, J = 7.6 Hz, 2H), 2.67 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.6, 196.0, 141.4, 139.6, 137.0, 133.0, 130.1, 130.1, 128.5, 128.2, 26.9.

10. References

(1) Y. Xia, S. Wang, R. Miao, J. Liao, L. Ouyang and R. Luo, Synthesis of *N*-alkoxy amines and hydroxylamines via the iridium-catalyzed transfer hydrogenation of oximes, *Org. Biomol. Chem.*, 2022, **20**, 6394–6399.

(2) (a) L. Wang, T. Wang, G. J. Cheng, X. Li, J. J. Wei, B. Guo, C. Zheng, G. Chen, C. Ran and C. Zheng, Direct C–H Arylation of Aldehydes by Merging Photocatalyzed Hydrogen Atom Transfer with Palladium Catalysis, ACS. Catal., 2020, 10, 7543–7551. (b) Y. Shen, Y. Gu, R. Martin, sp³ C–H Arylation and Alkylation Enabled by the Synergy of Triplet Excited Ketones and Nickel Catalysts, J. Am. Chem. Soc., 2018, 140, 12200–12209. (c) X. Ning, Y. Chen, Q. Ye, F. Hu and Y. Xia, Cross-Coupling of Cyclobutenone N-Tosylhydrazones with Organohalides: Access to Conjugated Enynes and Enallenes via a Strained Allylpalladium Intermediate, Org. Lett., 2022, 24, 9151–9156.

(3) L. Huang, M. Rueping, Direct Cross-Coupling of Allylic C(sp³)–H Bonds with Aryl- and Vinylbromides by Combined Nickel and Visible-Light Catalysis, *Angew. Chem. Int. Ed.*, 2018, **57**, 10333–10337.

(4) (a) S. Liu, L. Zhang, L. Xu, P. Gao, X. H. Duan and L. N. Guo, Fe-Catalyzed Alkylazidation of alpha-Trifluoromethylalkenes: An Access to Quaternary Stereocenters Containing CF₃ and N₃ Groups, *Org. Lett.*, 2023, **25**, 1336–1341. (b) R. Yu, S. Rajasekar, X. Fang, Enantioselective Nickel-Catalyzed Migratory Hydrocyanation of Nonconjugated Dienes, *Angew. Chem. Int. Ed.*, 2020, **59**, 21436–21441.

(5) E. M. Dauncey, S. U. Dighe, J. J. Douglas and D. Leonori, Correction: A dual photoredox-nickel strategy for remote functionalization via iminyl radicals: radical ring-opening-arylation, -vinylation and -alkylation cascades, *Chem. Sci.*, 2019, **10**, 9380–9381.

(6) T. Suga, S. Shimazu, Y. Ukaji, Low-Valent Titanium-Mediated Radical Conjugate Addition Using Benzyl Alcohols as Benzyl Radical Sources, *Org. Lett.*, 2018, **20**, 5389–5392.

(7) Q. Chen, J. You, T. Tian, Z. Li, M. Kashihara, H. Mori and Y. Nishihara, Nickel-Catalyzed Decarbonylative Reductive Alkylation of Aroyl Fluorides with Alkyl Bromides, *Org. Lett.*, 2022, 24, 9259–9263.

(8) B. Shuai, Z. M. Li, H. Qiu, P. Fang and T. S. Mei, Nickel-Catalyzed Negishi Coupling of Cyclobutanone Oxime Esters with Aryl Zinc Reagents, *Chin. J. Org. Chem.*, 2020, **40**, 651–662.

(9) Shohei Sase, Milica Jaric, Albrecht Metzger, V. Malakhov and P. Knochel, One-Pot Negishi Cross-Coupling Reactions of In Situ Generated Zinc Reagents with Aryl Chlorides, Bromides, and Triflates, *J. Org. Chem.*, 2008, **73**, 7380–7382.

(10) Y. Kumar, Y. Jaiswal, A. Kumar, Visible-Light-Mediated Remote gamma-C(sp³)–H Functionalization of Alkylimidates: Synthesis of 4-Iodo-3,4-dihydropyrrole Derivatives, *Org. Lett.*, 2018, **20**, 4964–4969.

(11) R. S. Senaiar, J. A. Teske, D. D. Young and A. Deiters, Synthesis of Indanones via Solid-Supported [2+2+2] Cyclotrimerization, *J. Org. Chem.*, 2007, **72**, 7801–7804.

(12) Y. Hu, X. Li, G. Jin and B. H. Lipshutz, Simplified Preparation of ppm Pd-Containing Nanoparticles as Catalysts for Chemistry in Water, *ACS. Catal.*, 2023, **13**, 3179–3186.

(13) W. Zhou, Y. Long, H. Xiang, B. Xu and X. Zhou, Iron-Catalyzed C-C Bond Cleavage of Oximes for Direct Coupling of Benzothiazole in Water, *J. Org. Chem.*, 2023, **88**, 4875–4879.

(14) J. L. Tu, W. Tang, W. Xu and F. Liu, Iminyl-Radical-Promoted C–C Bond Cleavage/Heck-Like Coupling via Dual Cobaloxime and Photoredox Catalysis, *J. Org. Chem.*, 2021, **86**, 2929–2940.

(15) J. Gao, Z. P. Ye, Y. F. Liu, X. C. He, J. P. Guan, F. Liu, K. Chen, H. Y. Xiang, X. Q. Chen and H.
Yang, Visible-Light-Promoted Cross-Coupling of *O*-Aryl Oximes and Nitrostyrenes to Access Cyanoalkylated Alkenes, *Org. Lett.*, 2022, **24**, 4640–4644.

(16) D. Shi, X. Xia, B. Zhao and Y. Yuan, Diboron-promoted iron-catalyzed denitrative vinylation of beta-nitrostyrenes with cycloketoximes, *Org. Biomol. Chem.*, 2023, **21**, 6298–6301.

(17) J. F. Zhao, X. H. Duan, Y. R. Gu, P. Gao and L. N. Guo, Iron-Catalyzed Decarboxylative Olefination of Cycloketone Oxime Esters with α , β -Unsaturated Carboxylic Acids via C–C Bond Cleavage, *Org. Lett.*, 2018, **20**, 4614–4617.

(18) T. Koyanagi, A. Herath, A. Chong, M. Ratnikov, A. Valiere, J. Chang, V. Molteni and J. Loren, One-Pot Electrochemical Nickel-Catalyzed Decarboxylative Sp²-Sp³ Cross-Coupling, *Org. Lett.*, 2019, 21, 816–820.

(19) Y. He, D. Anand, Z. Sun and L. Zhou, Visible-Light-Promoted Redox Neutral gamma, gamma-Difluoroallylation of Cycloketone Oxime Ethers with Trifluoromethyl Alkenes via C–C and C–F Bond Cleavage, *Org. Lett.*, 2019, **21**, 3769–3773.

(20) S. Yang, X. Yu, Y. Liu, M. Tomasini, L. Caporaso, A. Poater, L. Cavallo, C. S. J. Cazin, S. P. Nolan and M. Szostak, Suzuki-Miyaura Cross-Coupling of Amides by N–C Cleavage Mediated by Air-Stable, Well-Defined [Pd(NHC)(sulfide)Cl₂] Catalysts: Reaction Development, Scope, and Mechanism, *J. Org. Chem.*, 2023, **88**, 10858–10868.

(21) B. L. Zhao, Z. Z. Shi, Copper-Catalyzed Intermolecular Heck-Like Coupling of Cyclobutanone Oximes Initiated by Selective C-C Bond Cleavage, *Angew. Chem. Int. Ed.*, 2017, **56**, 12727–12731.

(22) J. G. Long, S. M. Xia, T. Wang, G. J. Cheng and X. J. Fang, Nickel-Catalyzed Regiodivergent Cyanation of Allylic Alcohols: Scope, Mechanism, and Application to the Synthesis of 1,n-Dinitriles, *ACS. Catal.*, 2021, **11**, 13880–13890.

11. Copies of NMR spectra

3f, 376 MHz, CDCl₃

1	
k	

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

3n, 376 MHz, CDCl₃

 •	

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

3v, 400 MHz, CDCI₃

 $\begin{array}{c} 3.333\\ 3.315\\ 3.3296\\ 3.3296\\ 2.2376\\ 2.2376\\ 2.201\\ 2.129\\ 2.129\end{array}$

 $\begin{array}{c} 2.896 \\ \hline 2.878 \\ 2.879 \\ 2.320 \\ 2.332 \\ 2.037 \\ 2.037 \\ 2.019 \\ 1.983 \\ 1.983 \\ \end{array}$

3ah, 400 MHz, CDCl₃

6a, 400 MHz, CDCI₃

6b, 400 MHz, CDCl₃

6c, 400 MHz, CDCI₃

6e, 400 MHz, CDCl₃

6g, 400 MHz, CDCl₃

$$\begin{array}{c} & 7.373 \\ & 7.373 \\ & 7.381 \\ & 7.387 \\ & 7.238 \\ & 7.238 \\ & 7.234$$

6j, 400 MHz, CDCl₃

6k, 376 MHz, CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

6I, 400 MHz, CDCI₃

`CN

6n, 400 MHz, CDCI₃

