Supporting Information

Well-Defined Chiral Dinuclear Copper-Catalyzed Tandem

Asymmetric Propargylic Amination-Carboxylative Cyclization

Sequence to Chiral 2-Oxazolidinone Derivatives

Yu Lan,^{a,b} Peng Liu,^b Zekai Fang,^b Lili Shao,^b Qilong Cai^{*b} and Xiaoming Wang^{*b,c,d,e}

^a College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China ^b State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.

^c School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China

^d School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.

^e Ningbo Zhongke Creation Center of New Materials, Ningbo 315899, China.

*Correspondence author. Email: caiql@sioc.ac.cn, xiaoming@sioc.ac.cn

Table of Contents

1. General Information and Materials	2
2. Experimental Data	3
2.1 Optimization of the reaction conditions	3
2.2. General procedure for the preparation of racemic products	7
2.3 Representative experimental procedure and Substrate scope	7
2.4 The transformations of products ²⁻⁴	26
3. X-ray Crystallographic Data for the 3ah	27
4. References	29
5. Copies of NMR Spectra	
6. HPLC Chromatograms	62

1. General Information and Materials

Unless otherwise noted below, commercially available reagents were used throughout without further purification, and all reactions were performed using standard Schlenk techniques under an atmosphere of argon or in glovebox. Dry solvents were purchased and stored with molecular sieves in an atmosphere of argon. Flash column chromatography was performed using 200-300 mesh silica gel. Melting points were measured on a RY-I apparatus and uncorrected. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Varian (400 MHz) or Agilent (400 MHz or 600 MHz) spectrometers. Chemical shifts were reported in parts per million (ppm) and refer to the appropriate residual solvent peak: ¹H NMR were referenced to the central peak of CDCl₃ (7.260 ppm); or to the internal standard TMS (0.000 ppm); ¹³C NMR were referenced to the central peak of 77.00 ppm for CDCl₃. Optical rotations were determined using a Perkin Elmer 341 MC polarimeter. HRMS(EI) was determined on a Waters Micromass GCT Premier instrument. HRMS(ESI) was determined on Bruker APEXIII 7.0 TESLA FTMS or Agilent Technologies 6224 TOF LC/MS. Single crystal X-ray diffraction data was collected on Bruker D₈ Venture diffractometer at 293(2) K or 173(0) K. Using Olex₂, the structure was solved with the SHELXT structure solution program using Intrinsic Phasing and refined with the SHELXL refinement package using Least Squares minimisation. HPLC analyses were performed on a JASCO 2089 liquid chromatograph.

2. Experimental Data 2.1 Optimization of the reaction conditions Table S1. Effects of the [Ag] salts^a

OBoc + Bn ⁻¹ 1a'	+ NH ₃ Cl + CO₂ . (1.0 atm) 2a	C ₆ (2 mol%) K ₂ HPO ₄ (2 equiv) [Ag] salt (30 mol%) CF ₃ CH ₂ OH (1 mL), rt, 36 h	O Bn~N Ph 3aa	(Bu) (Bu)
Entry	Cat.	[Ag] salts	Yield [%] ^b	<i>ee</i> [%] ^{<i>c</i>}
1	C6	AgBr	64	83
2	C 6	AgI	39	89
3	C 6	AgF	69	85
4	C 6	AgPF ₆	42	89
5	C6	AgClO ₄	52	85
6	C6	AgOTf	64	85
7	C ₆	AgOTs	72	85
8	C 6	Ag ₂ CO ₃	86	85
9	C6	AgNO ₂	38	71
10	C6	Ag ₂ O	72	85
11	C6	AgSCF ₃	trace	-
12	C 6	Ag ₃ PO ₄	76	85

^{*a*}Unless otherwise noted, reaction conditions are as follows: **1a'** (0.1 mmol), **2a** (0.15 mmol), K₂HPO₄ (2.0 equiv), [Ag] salts (30 mol%) and C₆ (2 mol %) in CF₃CH₂OH (1.0 mL) at room temperature for 36 h. ^{*b*1}H NMR yield using Mesitylene as the internal standard. ^{*c*}The ee value of **3aa** was determined by HPLC on a chiral column IA.

Table S2. Effects of leaving groups in propargylic^a

"Unless otherwise noted, reaction conditions are as follows: **1** (0.1 mmol), **2a** (0.15 mmol), K₂HPO₄ (2.0 equiv), Ag₂CO₃ (30 mol%) and C₆ (2 mol %) in CF₃CH₂OH (1.0 mL) at room temperature for 36 h. ^{*b*1}H NMR yield using mesitylene as the internal standard. ^{*c*}The *ee* value of **3aa** was determined by HPLC on a chiral column IA.

 Table S3. Effects of the Base^a

^{*a*}Unless otherwise noted, reaction conditions are as follows: **1a** (0.1 mmol), **2a** (0.15 mmol), Base (2.0 equiv), Ag₂CO₃ (30 mol%) and C₆ (2 mol %) in CF₃CH₂OH (1.0 mL) at room temperature for 36 h. ^{*b*1}H NMR yield using mesitylene as the internal standard. ^{*c*}The *ee* value of **3aa** was determined by HPLC on a chiral column IA.

Table S4. Investigation of dinuclear copper-catalyzed asymmetric propargylic amination-carboxylative cyclization sequence^a

Entry	Cat.	Yield $[\%]^b$	<i>ee</i> [%] ^{<i>c</i>}
1	C1	51	73
2	C ₂	54	70
3	Сз	49	79
4	C 4	64	85
5	C5	59	87
6	C ₆	70 (64) ^d	91

7	C 7	54	65
8	C 8	47	70
9 ^e	C 6	74	88

^{*a*}Unless otherwise noted, reaction conditions are as follows: **1a** (0.1 mmol), **2a** (0.15 mmol), ^{*b*}BuONa (2.0 equiv), Ag₂CO₃ (30 mol%) and C_x (2 mol%) in CF₃CH₂OH (1.0 mL) at room temperature for 36 h. ^{*b*}¹H NMR yield using mesitylene as the internal standard. ^{*c*}The *ee* value of **3aa** was determined by HPLC on a chiral column IA. ^{*d*}Isolated yield. ^{*e*}**2a** was replaced by BnNH₂.

2.2. General procedure for the preparation of racemic products

A typical experimental procedure for the preparation of (*rac*)-3-benzyl-5-methylene-4phenyloxazolidin-2-one (*rac*-**3aa**) is described below. **1a** (32.6 mg, 0.1 mmol, 1.0 equiv), **2a** (21.46 mg, 0.15mmol, 1.5 equiv), ^{*t*}BuONa (19.22 mg, 0.2 mmol, 2.0 equiv), CuI (0.95mg, 0.005 mmol, 5 mol%) and L (2.45mg, 0.01 mmol, 10 mol%) was added in a 10 mL Schlenk flask and a dry CO₂ atmosphere was established by a balloon filled with CO₂. Then, CF₃CH₂OH (1.0 mL) was added. After stirring at room temperature for 36 h, the mixture was concentrated under reduced pressure. The residue was purified by silica gel chromatography with n-hexane and EtOAc (n-hexane/EtOAc = 10/1-5/1) as eluent to give *rac*-**3aa** as a yellow solid.

2.3 Representative experimental procedure and Substrate scope

A typical experimental procedure for the preparation of (*R*)-3-benzyl-5-methylene-4phenyloxazolidin-2-one (**3aa**) is described below. **1a** (32.6 mg, 0.1 mmol, 1.0 equiv), **2a** (21.46 mg, 0.15mmol, 1.5 equiv), ^{*i*}BuONa (19.22 mg, 0.2 mmol, 2.0 equiv), Ag₂CO₃ (8.27 mg, 0.03 mmol, 30 mol%) and C₆ (2.30 mg, 0.002 mmol, 2 mol%) was added in a 10 mL Schlenk flask and a dry CO₂ atmosphere was established by a balloon filled with CO₂. Then, CF₃CH₂OH (1.0 mL) was added. After stirring at room temperature for 36 h, the mixture was concentrated under reduced pressure. The residue was purified by silica gel chromatography with n-hexane and EtOAc (n-hexane/EtOAc = 10/1-5/1) as eluent to give **3aa** as a yellow solid.

Spectroscopic datas are as follows.

Preparations of chiral dinuclear copper complexes are in accordance with the literature¹.

(R)-3-benzyl-5-methylene-4-phenyloxazolidin-2-one (3aa)

Yellow solid, 17.0 mg, 64% yield, 91% *ee*. M. P. 77-79 °C. $[\alpha]_D^{20} = -21.50$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.39 (m, 3H), 7.36 – 7.28 (m, 3H), 7.24 – 7.19 (m, 2H), 7.18 – 7.12 (m, 2H), 5.02 (t, J = 2.4 Hz, 1H), 4.90 (d, J = 14.9 Hz, 1H), 4.75 (t, J = 3.0 Hz, 1H), 4.02 (t, J = 2.2 Hz, 1H), 3.64 (d, J = 14.9 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.23, 154.78, 136.80, 134.90, 129.38, 129.34, 128.95, 128.65, 128.26, 127.90, 88.43, 61.94, 45.57 ppm. IR (neat) v 3061, 3028, 2959, 2925, 2126, 1953 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₇H₁₅NO₂Na⁺ [M+Na]⁺: 288.0995, Found: 288.0994. The enantiomeric excess was determined by HPLC on Chiralcel IA column, *n*-hexane : isopropanol = 95 : 5, flow rate = 1.0 mL/min, UV detection at $\lambda = 214$ nm, t_R = 9.3 min (minor), t_R = 9.9 min (major).

(R)-3-benzyl-4-(4-(tert-butyl)phenyl)-5-methyleneoxazolidin-2-one (3ba)

White solid, 13.7 mg, 42% yield, 91% *ee*. M. P. 83-85 °C. $[\alpha]_D^{20} = -27.60$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 7.9 Hz, 2H), 7.37 – 7.28 (m, 3H), 7.15 (t, J = 8.7 Hz, 4H), 5.00 (s, 1H), 4.86 (d, J = 15.0 Hz, 1H), 4.75 (s, 1H), 4.03 (s, 1H), 3.66 (d, J = 14.9 Hz, 1H), 1.34 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.32, 154.97, 152.51, 135.15, 133.71, 128.95, 128.73, 128.23, 127.66, 126.26, 88.35, 61.73, 45.54, 34.85, 31.42.ppm. IR (neat) v 3062, 3032, 2960, 2929, 2866, 2117, 1950, 1782 cm⁻¹; HRMS (ESI) m/z: calcd. for C₂₁H₂₃NO₂Na⁺ [M+Na]⁺: 344.1621, Found: 344.1613. The enantiomeric excess was determined by HPLC on Chiralcel IA column, n-hexane : isopropanol = 95 : 5, flow rate = 1.0 mL/min, UV detection at λ = 214 nm, t_R = 6.9 min (minor), t_R = 7.6 min (major).

(R)-3-benzyl-4-(4-fluorophenyl)-5-methyleneoxazolidin-2-one (3ca)

Yellow solid, 17.43 mg, 61% yield, 91% *ee.* M. P. 79-81 °C. $[\alpha]_D^{20} = -11.70$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.28 (m, 3H), 7.24 – 7.16 (m, 2H), 7.16 – 7.05 (m, 4H), 5.01 (s, 1H), 4.88 (d, *J* = 15.0 Hz, 1H), 4.78 (s, 1H), 4.01 (s, 1H), 3.63 (d, *J* = 15.0 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 163.28 (d, *J* = 250.0 Hz), 155.13, 154.67, 134.77, 132.68 (d, *J* = 3.4 Hz), 129.86 (d, *J* = 8.5 Hz), 129.05, 128.67, 128.40, 116.43 (d, *J* = 22.0 Hz), 88.74, 61.32, 45.69 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.83 ppm. IR (neat) v 3300, 3065, 3030, 2962, 2926, 2854, 2445, 2351, 1950, 1884 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₇H₁₄NO₂FNa⁺ [M+Na]⁺: 306.0901, Found: 306.0894. The enantiomeric excess was determined by HPLC on Chiralcel IA column, n-hexane : isopropanol = 95 : 5, flow rate = 1.0 mL/min, UV detection at λ = 214 nm, t_R = 9.8 min (minor), t_R = 10.7 min (major).

(R)-3-benzyl-4-(4-chlorophenyl)-5-methyleneoxazolidin-2-one (3da)

Yellow oil, 17.6 mg, 58% yield, 92% *ee*. $[\alpha]_D^{20} = -35.10$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.36 (m, 2H), 7.36 – 7.27 (m, 3H), 7.18 – 7.09 (m, 4H), 4.98 (t, J = 2.4 Hz, 1H), 4.89 (d, J = 15.0 Hz, 1H), 4.77 (dd, J = 3.3, 2.6 Hz, 1H), 4.00 (dd, J = 3.4, 2.1 Hz, 1H), 3.63 (d, J = 15.0 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.13, 154.40, 135.46, 135.40, 134.69, 129.66, 129.36, 129.08, 128.68, 128.44, 88.83, 61.34, 45.75 ppm. IR (neat) v 3047, 3031, 2962, 2835, 2350, 1948 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₇H₁₄NO₂NaCl⁺ [M+Na]⁺: 322.0605, Found: 322.0607. The enantiomeric excess was determined by HPLC on Chiralcel IA column, n-hexane : isopropanol = 95 : 5, flow rate = 0.5 mL/min, UV detection at $\lambda = 214$ nm, t_R = 19.9 min (minor), t_R = 22.0 min (major).

(R)-3-benzyl-4-(4-bromophenyl)-5-methyleneoxazolidin-2-one (3ea)

Yellow oil, 16.2 mg, 47% yield, 92% *ee*. $[\alpha]_D^{20} = -49.00$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.52 (m, 2H), 7.37 – 7.30 (m, 3H), 7.16 – 7.06 (m, 4H), 4.97 (t, J = 2.4 Hz, 1H), 4.89 (d, J = 15.0 Hz, 1H), 4.77 (dd, J = 3.4, 2.6 Hz, 1H), 4.00 (dd, J = 3.4, 2.1 Hz, 1H), 3.63 (d, J = 15.0 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.13, 154.30, 135.93, 134.67, 132.62, 129.64, 129.08, 128.68, 128.45, 123.61, 88.86, 61.41, 45.75 ppm. IR (neat) v 3027, 2924, 2347, 2128, 2070, 1954, 1910, 1887 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₇H₁₄NO₂NaBr⁺ [M+Na]⁺: 366.0100, Found: 366.0101. The

enantiomeric excess was determined by HPLC on Chiralcel IA column, n-hexane : isopropanol = 95 : 5, flow rate = 0.5 mL/min, UV detection at λ = 214 nm, t_R = 20.7 min (minor), t_R = 23.2 min (major).

(R)-3-benzyl-5-methylene-4-(4-(trifluoromethyl)phenyl)oxazolidin-2-one (3fa)

Yellow solid, 19.6 mg, 59% yield, 91% *ee*. M. P. 89-91 °C. $[\alpha]_D^{20} = -32.20$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.1 Hz, 2H), 7.38 – 7.29 (m, 5H), 7.16 – 7.09 (m, 2H), 5.07 (t, J = 2.4 Hz, 1H), 4.90 (d, J = 15.0 Hz, 1H), 4.80 (t, J = 2.6 Hz, 1H), 4.01 (dd, J = 3.5, 2.2 Hz, 1H), 3.66 (d, J = 15.0 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.14, 153.92, 140.90 (q, J = 1.4 Hz), 134.53, 131.70 (q, J = 32.9 Hz), 129.13, 128.67, 128.51, 128.35, 126.43 (q, J = 3.8 Hz),123.85(q, J = 273.3 Hz) 89.14, 61.49, 45.95 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.80 ppm. IR (neat) v 3031, 2959, 2925, 2853, 2642, 2350, 2090, 1932 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₈H₁₄NO₂F₃Na⁺ [M+Na]⁺: 356.0869, Found: 356.0876. The enantiomeric excess was determined by HPLC on Chiralcel IA column, n-hexane : isopropanol = 95 : 5, flow rate = 1.0 mL/min, UV detection at $\lambda = 214$ nm, t_R = 9.2 min (minor), t_R = 10.4 min (major).

(R)-3-benzyl-5-methylene-4-(4-(trifluoromethoxy)phenyl)oxazolidin-2-one (3ga)

Yellow oil, 23.0 mg, 66% yield, 90% *ee*. $[\alpha]_D^{20} = -19.70$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (t, J = 8.0 Hz, 1H), 7.25 (dd, J = 4.9, 2.0 Hz, 3H), 7.21 – 7.17 (m, 1H), 7.12 – 7.08 (m, 1H), 7.07 – 7.03 (m, 2H), 6.99 – 6.97 (m, 1H), 4.94 (t, J = 2.3 Hz, 1H), 4.83 (d, J = 14.9 Hz, 1H), 4.73 (dd, J = 3.4, 2.6 Hz, 1H), 3.96 (dd, J = 3.4, 2.1 Hz, 1H), 3.60 (d, J = 14.9 Hz, 1H) ppm.¹³C NMR (101 MHz, CDCl₃) δ 155.10, 153.97, 149.88 (q, J = 1.9 Hz), 139.27, 134.53, 130.97, 129.10, 128.70, 128.51, 126.21,121.84, 120.66,120.5 (q, J = 259.0 Hz) 89.11, 61.48, 45.95 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.90 ppm. IR (neat) v 3066, 3032, 2927, 2859, 2470, 1958 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₈H₁₄NO₃F₃Na⁺ [M+Na]⁺: 372.0818, Found: 372.0811. The enantiomeric excess was determined by HPLC on Chiralcel IA column, n-hexane : isopropanol = 95 : 5, flow rate = 1.0 mL/min, UV detection at $\lambda = 214$ nm, t_R = 7.7 min (minor), t_R = 8.7 min (major).

(R)-3-benzyl-5-methylene-4-(4-(pyridin-2-yl)phenyl)oxazolidin-2-one (3ha)

Yellow oil, 18.5 mg, 54% yield, 90% *ee*. $[\alpha]_D^{20} = -88.50$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.72 (dd, J = 4.7, 1.6 Hz, 1H), 8.07 – 7.98 (m, 2H), 7.83 – 7.72 (m, 2H), 7.36 – 7.23 (m, 6H), 7.18 – 7.12 (m, 2H), 5.06 (d, J = 2.4 Hz, 1H), 4.93 (d, J = 14.9 Hz, 1H), 4.78 (t, J = 2.9 Hz, 1H), 4.05 (dd, J = 3.3, 2.1 Hz, 1H), 3.67 (d, J = 15.0 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 156.58, 155.22, 154.59, 149.92, 140.59, 137.37, 137.06, 134.80, 128.99, 128.71, 128.38, 128.32, 127.92, 122.68, 120.77, 88.61, 61.63, 45.63 ppm. IR (neat) v 3297, 3062, 3030, 3011, 2925, 2111, 1956, 1924 cm⁻¹; HRMS (ESI) m/z: calcd. for C₂₂H₁₉N₂O₂⁺ [M+H]⁺: 343.1441, Found: 343.1441.The enantiomeric excess was determined by HPLC on Chiralcel IA column, n-hexane :

isopropanol = 90 : 10, flow rate = 1.0 mL/min, UV detection at λ = 254 nm, t_R = 18.1 min (minor), t_R = 20.7 min (major).

(R)-3-benzyl-5-methylene-4-(m-tolyl)oxazolidin-2-one (3ia)

White solid, 15.4 mg, 55% yield, 89% *ee*. M. P. 82-84 °C. $[\alpha]_D^{20} = -16.10$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.30 (m, 3H), 7.30 – 7.27 (m, 1H), 7.20 (d, J =7.6 Hz, 1H), 7.17 – 7.13 (m, 2H), 7.00 (d, J = 8.0 Hz, 2H), 4.98 (t, J = 2.3 Hz, 1H), 4.88 (d, J = 14.9 Hz, 1H), 4.75 (t, J = 2.9 Hz, 1H), 4.02 (dd, J = 3.2, 2.1 Hz, 1H), 3.65 (d, J =15.0 Hz, 1H), 2.37 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.33, 154.90, 139.31, 136.83, 135.07, 130.18, 129.18, 128.97, 128.72, 128.34, 128.28, 125.11, 88.36, 62.01, 45.63, 21.53 ppm. IR (neat) v 3024, 2923, 2854, 2738, 2632, 2459, 1957, 1902 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₈H₁₇NO₂Na⁺ [M+Na]⁺: 302.1152, Found: 302.1154. The enantiomeric excess was determined by HPLC on Chiralcel IA column, n-hexane : isopropanol = 95 : 5, flow rate = 1.0 mL/min, UV detection at $\lambda = 214$ nm, t_R = 8.0 min (minor), t_R = 9.0 min (major).

(R)-3-benzyl-4-(3-chlorophenyl)-5-methyleneoxazolidin-2-one (3ja)

Yellow solid, 12.1 mg, 40% yield, 91% *ee*. M. P. 77-79 °C. $[\alpha]_D^{20} = -33.80$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.30 (m, 5H), 7.20 (t, *J* = 1.9 Hz, 1H),

7.16 – 7.08 (m, 3H), 4.98 (t, J = 2.4 Hz, 1H), 4.90 (d, J = 15.0 Hz, 1H), 4.78 (dd, J = 3.4, 2.5 Hz, 1H), 4.03 (dd, J = 3.4, 2.1 Hz, 1H), 3.67 (d, J = 14.9 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.12, 154.05, 138.95, 135.37, 134.65, 130.69, 129.68, 129.08, 128.68, 128.46, 128.01, 126.07, 88.99, 61.45, 45.85 ppm. IR (neat) v 3542, 3186, 3030, 2959, 2923, 2853, 2636, 2457, 2328, 1956, 1891 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₇H₁₄NO₂ClNa⁺ [M+Na]⁺: 322.0605, Found: 322.0599. The enantiomeric excess was determined by HPLC on Chiralcel IA column, n-hexane : isopropanol = 90 : 10, flow rate = 1.0 mL/min, UV detection at $\lambda = 214$ nm, t_R = 9.3 min (minor), t_R = 9.9 min (major).

(R)-3-benzyl-5-methylene-4-(3,4,5-trimethoxyphenyl)oxazolidin-2-one (3ka)

Red oil, 25.6 mg, 72% yield, 80% *ee*. $[\alpha]_D^{20} = -4.70$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.30 (m, 3H), 7.19 – 7.14 (m, 2H), 6.37 (s, 2H), 4.95 (t, J = 2.4 Hz, 1H), 4.84 (d, J = 15.0 Hz, 1H), 4.80 – 4.76 (m, 1H), 4.09 (dd, J = 3.2, 2.1 Hz, 1H), 3.87 (s, 3H), 3.83 (s, 6H), 3.77 (d, J = 14.9 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.19, 154.47, 153.85, 138.60, 135.02, 132.11, 128.86, 128.67, 128.26, 104.78, 88.50, 62.45, 60.94, 56.31, 45.81 ppm. IR (neat) v 3508, 3290, 3065, 3011, 2937, 2837, 2329, 2116, 1959 cm⁻¹; HRMS (ESI) m/z: calcd. for C₂₀H₂₁NO₅Na⁺ [M+Na]⁺: 378.1312, Found: 378.1311. The enantiomeric excess was determined by HPLC on Chiralcel IA column, n-hexane : isopropanol = 90 : 10, flow rate = 1.0 mL/min, UV detection at $\lambda = 254$ nm, t_R = 16.0 min (minor), t_R = 13.3 min (major).

(R)-3-(4-methylbenzyl)-5-methylene-4-phenyloxazolidin-2-one (3ab)

Yellow oil, 14.1 mg, 50% yield, 92% *ee*. $[\alpha]_D^{20} = -49.50$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, J = 5.1, 1.9 Hz, 3H), 7.24 – 7.20 (m, 2H), 7.13 (d, J = 7.8 Hz, 2H), 7.03 (d, J = 8.0 Hz, 2H), 4.99 (t, J = 2.4 Hz, 1H), 4.87 (d, J = 14.9 Hz, 1H), 4.74 (t, J = 2.9 Hz, 1H), 4.00 (dd, J = 3.2, 2.1 Hz, 1H), 3.58 (d, J = 14.8 Hz, 1H), 2.35 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.27, 154.90, 138.12, 136.95, 131.87, 129.66, 129.38, 128.73, 127.97, 88.39, 61.87, 45.33, 21.29 ppm. IR (neat) v 3028, 2922, 2859, 2332, 2118, 1911, 1778 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₈H₁₇NO₂Na⁺ [M+Na]⁺: 302.1152, Found: 302.1148. The enantiomeric excess was determined by HPLC on Chiralcel IA column, n-hexane : isopropanol = 99 : 1, flow rate = 1.0 mL/min, UV detection at $\lambda = 214$ nm, t_R = 21.0 min (minor), t_R = 22.5 min (major).

(R)-3-(4-(tert-butyl)benzyl)-5-methylene-4-phenyloxazolidin-2-one (3ac)

Yellow oil, 15.1 mg, 47% yield, 87% *ee*. $[\alpha]_D^{20} = -58.80$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.39 (m, 3H), 7.36 – 7.31 (m, 2H), 7.25 – 7.22 (m, 2H), 7.10 – 7.05 (m, 2H), 5.04 (t, *J* = 2.4 Hz, 1H), 4.85 (d, *J* = 14.9 Hz, 1H), 4.75 (t, *J* = 2.9 Hz, 1H), 4.01 (dd, *J* = 3.2, 2.1 Hz, 1H), 3.61 (d, *J* = 14.9 Hz, 1H), 1.32 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.28, 154.93, 151.34, 137.02, 131.90, 129.36, 128.51, 127.98, 125.89, 88.38, 61.97, 45.24, 34.72, 31.44 ppm. IR (neat) v 3061, 3030, 2960, 2867, 2332, 2118, 1916, 1781 cm⁻¹; HRMS (ESI) m/z: calcd. for C₂₁H₂₃NO₂Na⁺

 $[M+Na]^+$: 344.1621, Found: 344.1616. The enantiomeric excess was determined by HPLC on Chiralcel IA column, n-hexane : isopropanol = 95 : 5, flow rate = 1.0 mL/min, UV detection at $\lambda = 214$ nm, t_R = 8.8 min (minor), t_R = 7.7 min (major).

(R)-3-(4-fluorobenzyl)-5-methylene-4-phenyloxazolidin-2-one (3ad)

White solid, 18.9 mg, 67% yield, 91% *ee*. M. P. 99-101 °C. $[\alpha]_D^{20} = -19.50$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.38 (m, 3H), 7.25 – 7.16 (m, 2H), 7.16 – 7.07 (m, 2H), 7.04 – 6.96 (m, 2H), 5.00 (t, J = 2.4 Hz, 1H), 4.82 (d, J = 15.0 Hz, 1H), 4.77 (t, J = 2.9 Hz, 1H), 4.03 (dd, J = 3.3, 2.2 Hz, 1H), 3.66 (d, J = 15.0 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 162.7 (d, J = 247.0 Hz), 155.23, 154.70, 136.72, 130.83 (d, J = 3.3 Hz), 130.5 (d, J = 8.2 Hz), 129.51, 129.44, 127.95, 115.92 (d, J = 21.6 Hz), 88.69, 62.10, 44.99 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.72 ppm. IR (neat) v 3189, 3067, 3031, 2961, 2926, 2852, 2667, 1953 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₇H₁₄NO₂NaF⁺ [M+Na]⁺: 306.0901, Found: 306.0902. The enantiomeric excess was determined by HPLC on Chiralcel IA column, n-hexane : isopropanol = 95 : 5, flow rate = 1.0 mL/min, UV detection at $\lambda = 214$ nm, t_R = 9.7 min (minor), t_R = 10.4 min (major).

(R)-3-(4-bromobenzyl)-5-methylene-4-phenyloxazolidin-2-one (3ae)

Yellow oil, 21.0 mg, 61% yield, 96% *ee*. $[\alpha]_D^{20} = -76.30$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.38 (m, 5H), 7.23 – 7.17 (m, 2H), 7.01 (d, J = 8.3 Hz, 2H), 4.99 (t, J = 2.4 Hz, 1H), 4.83 – 4.75 (m, 2H), 4.03 (dd, J = 3.3, 2.2 Hz, 1H), 3.63 (d, J = 15.1 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.24, 154.61, 136.62, 134.02, 132.16, 130.41, 129.56, 129.47, 127.96, 122.41, 88.80, 62.12, 45.09 ppm. IR (neat) v 3063, 3031, 2924, 2855, 2120, 1905 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₇H₁₄NO₂NaBr⁺ [M+Na]⁺: 366.0100, Found: 366.0099. The enantiomeric excess was determined by HPLC on Chiralcel IA column, n-hexane : isopropanol = 95 : 5, flow rate = 1.0 mL/min, UV detection at λ = 214 nm, t_R = 12.8 min (minor), t_R = 13.8 min (major).

(R)-3-(4-iodobenzyl)-5-methylene-4-phenyloxazolidin-2-one (3af)

Colorless oil, 19.1 mg, 48% yield, 96% *ee*. $[\alpha]_D^{20} = -66.50$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.62 (m, 2H), 7.44 – 7.37 (m, 3H), 7.20 (dd, J = 6.5, 2.9 Hz, 2H), 6.88 (d, J = 8.0 Hz, 2H), 4.99 (t, J = 2.4 Hz, 1H), 4.84 – 4.74 (m, 2H), 4.03 (dd, J = 3.3, 2.1 Hz, 1H), 3.61 (d, J = 15.1 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.24, 154.60, 138.13, 136.61, 134.66, 130.61, 129.55, 129.46, 127.95, 94.00, 88.81, 62.11, 45.19 ppm. IR (neat) v 3031, 2922, 2853, 2333, 2118, 1908, 1777 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₇H₁₄NO₂NaI⁺ [M+Na]⁺: 413.9961, Found: 413.9966. The enantiomeric excess was determined by HPLC on Chiralcel IA column, n-hexane : isopropanol = 99 : 1, flow rate = 1.0 mL/min, UV detection at $\lambda = 214$ nm, t_R = 29.4 min (minor), t_R = 31.2 min (major).

(R)-4-((5-methylene-2-oxo-4-phenyloxazolidin-3-yl)methyl)benzonitrile (3ag)

White solid, 12.7 mg, 44% yield, 90% *ee*. M. P. 94-96 °C. $[\alpha]_D^{20} = -68.40$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.51 (m, 2H), 7.36 – 7.31 (m, 3H), 7.21 – 7.15 (m, 2H), 7.15 – 7.10 (m, 2H), 4.96 (t, J = 2.4 Hz, 1H), 4.78 – 4.69 (m, 2H), 4.01 (dd, J = 3.4, 2.1 Hz, 1H), 3.76 (d, J = 15.4 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.26, 154.33, 140.52, 136.32, 132.76, 129.74, 129.52, 129.20, 127.96, 118.49, 112.29, 89.21, 62.60, 45.44 ppm. IR (neat) v 3065, 3030, 2861, 2923, 2853, 2351, 2229, 2089, 1923 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₈H₁₄N₂O₂Na⁺ [M+Na]⁺: 313.0948, Found: 313.0942. The enantiomeric excess was determined by HPLC on Chiralcel IA column, n-hexane : isopropanol = 95 : 5, flow rate = 1.0 mL/min, UV detection at $\lambda = 214$ nm, t_R = 27.9 min (minor), t_R = 32.0 min (major).

(R)-3-(3-bromobenzyl)-5-methylene-4-phenyloxazolidin-2-one (3ah)

White solid, 20.0 mg, 58% yield, 92% *ee*. M. P. 72-74 °C. $[\alpha]_D^{20} = -30.50$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.35 (m, 4H), 7.29 – 7.15 (m, 4H), 7.08 (d, J =7.6 Hz, 1H), 5.03 (s, 1H), 4.86 – 4.72 (m, 2H), 4.06 (t, J = 2.8 Hz, 1H), 3.66 (d, J =15.1 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.21, 154.58, 137.30, 136.57, 131.64, 131.49, 130.58, 129.61, 129.48, 127.98, 127.27, 123.01, 88.88, 62.25, 45.14 ppm. IR (neat) v 3061, 3028, 2960, 2924, 2852, 2132, 1944, 1877 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₇H₁₄NO₂NaBr⁺ [M+Na]⁺: 366.0100, Found: 366.0099. The enantiomeric excess was determined by HPLC on Chiralcel IC column, n-hexane : isopropanol = 95 : 5, flow rate = 1.0 mL/min, UV detection at λ = 214 nm, t_R = 22.6 min (minor), t_R = 20.1 min (major).

(R)-3-(3-iodobenzyl)-5-methylene-4-phenyloxazolidin-2-one (3ai)

Yellow solid, 20.8 mg, 53% yield, 92% *ee*. M. P. 94-96 °C. $[\alpha]_D^{20} = -33.30$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 7.8 Hz, 1H), 7.43 (dd, J = 7.8, 3.7 Hz, 4H), 7.21 (dd, J = 6.8, 2.9 Hz, 2H), 7.12 (d, J = 7.7 Hz, 1H), 7.06 (t, J = 7.7 Hz, 1H), 5.02 (s, 1H), 4.77 (d, J = 15.1 Hz, 2H), 4.05 (t, J = 2.8 Hz, 1H), 3.63 (d, J = 15.0 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.14, 154.57, 137.53, 137.39, 137.29, 136.54, 130.65, 129.58, 129.43, 127.94, 127.89, 94.73, 88.80, 62.24, 45.02 ppm. IR (neat) v 3131, 3057, 3026, 2961, 2924, 2853, 2086, 1946, 1877 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₇H₁₄NO₂NaI⁺ [M+Na]⁺: 413.9961, Found: 413.9964. The enantiomeric excess was determined by HPLC on Chiralcel IC column, n-hexane : isopropanol = 95 : 5, flow rate = 1.0 mL/min, UV detection at $\lambda = 214$ nm, t_R = 23.7 min (minor), t_R = 21.1 min (major).

(R)-5-methylene-3-(3-nitrobenzyl)-4-phenyloxazolidin-2-one (3aj)

Brown solid, 14.2 mg, 45% yield, 86% *ee*. M. P. 97-99 °C. $[\alpha]_D^{20} = -18.30$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.17 – 8.12 (m, 1H), 7.88 (t, *J* = 2.0 Hz, 1H),

7.59 – 7.46 (m, 2H), 7.41 – 7.38 (m, 3H), 7.25 – 7.16 (m, 2H), 5.07 (t, J = 2.3 Hz, 1H), 4.85 – 4.75 (m, 2H), 4.08 (dd, J = 3.4, 2.1 Hz, 1H), 3.96 (d, J = 15.3 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.22, 154.34, 148.48, 137.36, 136.34, 134.70, 130.12, 129.79, 129.58, 128.01, 123.41, 123.31, 89.26, 62.82, 45.29 ppm. IR (neat) v 3084, 3029, 2959, 2922, 2853, 2333, 2118, 1970, 1921, 1765 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₇H₁₄N₂O₄Na⁺ [M+Na]⁺: 333.0846, Found: 333.0843. The enantiomeric excess was determined by HPLC on Chiralcel IB column, n-hexane : isopropanol = 90 : 10, flow rate = 1.0 mL/min, UV detection at $\lambda = 214$ nm, t_R = 14.5 min (minor), t_R = 16.2 min (major).

(R)-methyl 3-((5-methylene-2-oxo-4-phenyloxazolidin-3-yl)methyl)benzoate (3ak)

White solid, 18.6 mg, 57% yield, 91% *ee*. M. P. 99-101 °C. $[\alpha]_D^{20} = -18.00$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.96 (m, 1H), 7.77 (d, J = 1.8 Hz, 1H), 7.44 – 7.34 (m, 5H), 7.23 – 7.17 (m, 2H), 5.02 (t, J = 2.3 Hz, 1H), 4.87 (d, J = 15.1 Hz, 1H), 4.78 (t, J = 2.9 Hz, 1H), 4.04 (dd, J = 3.3, 2.2 Hz, 1H), 3.92 (s, 3H), 3.76 (d, J = 15.1 Hz, 1H) ppm.¹³C NMR (101 MHz, CDCl₃) δ 166.73, 155.24, 154.64, 136.62, 135.46, 133.14, 130.90, 129.65, 129.55, 129.54, 129.46, 129.19, 127.97, 88.79, 62.26, 52.39, 45.40 ppm. IR (neat) v 3410, 3081, 3007, 2957, 2851, 2082, 1911 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₉H₁₇NO₄Na⁺ [M+Na]⁺: 346.1050, Found: 346.1049. The enantiomeric excess was determined by HPLC on Chiralcel IB-3 column, n-hexane : isopropanol = 90 : 10, flow rate = 1.0 mL/min, UV detection at $\lambda = 214$ nm, t_R = 9.1 min (minor), t_R = 9.5 min (major).

(R)-3-(2-chlorobenzyl)-5-methylene-4-phenyloxazolidin-2-one (3al)

White solid, 20.7 mg, 69% yield, 91% *ee*. M. P. 91-93 °C. $[\alpha]_D^{20} = 15.10$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.23 (m, 4H), 7.21 – 7.08 (m, 5H), 5.01 (t, J = 2.3 Hz, 1H), 4.77 (d, J = 15.4 Hz, 1H), 4.70 (dd, J = 3.3, 2.5 Hz, 1H), 4.01 – 3.93 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.27, 154.71, 137.05, 133.96, 132.63, 130.84, 129.95, 129.67, 129.37, 129.31, 127.68, 127.25, 88.55, 62.61, 43.39 ppm. IR (neat) v 3189, 3069, 3012, 2959, 2924, 2853, 2640, 2328 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₇H₁₄NO₂NaCl⁺ [M+Na]⁺: 322.0605, Found: 322.0603. The enantiomeric excess was determined by HPLC on Chiralcel IA column, n-hexane : isopropanol = 95 : 5, flow rate = 1.0 mL/min, UV detection at $\lambda = 214$ nm, t_R = 10.0 min (minor), t_R = 11.0 min (major).

(R)-3-(4-bromo-2-fluorobenzyl)-5-methylene-4-phenyloxazolidin-2-one (3am)

White solid, 16.0 mg, 44% yield, 92% *ee*. M. P. 89-91 °C. $[\alpha]_D^{20} = -85.0$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.38 (m, 3H), 7.26 – 7.21 (m, 3H), 7.20 – 7.13 (m, 2H), 5.08 (t, J = 2.3 Hz, 1H), 4.78 (dd, J = 3.3, 2.5 Hz, 1H), 4.65 (d, J = 15.2 Hz, 1H), 4.06 (dd, J = 3.3, 2.1 Hz, 1H), 3.92 (d, J = 15.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.72 (d, J = 253.1 Hz),155.17, 154.59, 136.77, 132.37 (d, J = 4.5 Hz), 129.53, 129.38, 128.07 (d, J = 3.7 Hz), 127.86, 122.72 (d, J = 9.4 Hz), 121.50 (d, J = 15.4 Hz), 119.42 (d, J = 24.9 Hz), 88.86, 62.74, 39.05 (d, J = 3.0 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.85 (t, J = 8.6 Hz) ppm. IR (neat) v 3190, 3116, 3074, 3011, 2959, 2923, 2853, 2117, 1948 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₇H₁₃NO₂NaFBr⁺ [M+Na]⁺: 384.0006, Found: 384.0009. The enantiomeric excess was determined by HPLC on Chiralcel IB column, n-hexane : isopropanol = 99 : 1, flow rate = 1.0 mL/min, UV detection at λ = 214 nm, t_R = 15.0 min (minor), t_R = 16.2 min (major).

(R)-5-methylene-4-phenyl-3-(2,4,6-trimethylbenzyl)oxazolidin-2-one (3an)

White solid, 17.0 mg, 55% yield, 80% *ee*. M. P. 77-79 °C. $[\alpha]_D^{20} = 3.50$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.33 (m, 3H), 7.07 – 7.00 (m, 2H), 6.76 (s, 2H), 4.82 (d, J = 14.6 Hz, 1H), 4.71 – 4.66 (m, 2H), 4.11 (d, J = 14.6 Hz, 1H), 3.95 (dd, J =3.1, 2.1 Hz, 1H), 2.25 (s, 3H), 1.86 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 155.00, 138.09, 137.91, 137.85, 129.51, 129.32, 129.13, 127.27, 127.04, 88.06, 61.54, 40.36, 21.02, 19.52 ppm. IR (neat) v 3064, 2959, 2921, 2853, 2097, 1950, 1771 cm⁻¹; HRMS (ESI) m/z: calcd. for C₂₀H₂₁NO₂Na⁺ [M+Na]⁺: 330.1465, Found: 330.1470. The enantiomeric excess was determined by HPLC on Chiralcel IB column, n-hexane : isopropanol = 99 : 1, flow rate = 1.0 mL/min, UV detection at $\lambda = 214$ nm, t_R = 12.3 min (minor), t_R = 10.9 min (major).

(R)-3-(2,4-dimethoxybenzyl)-5-methylene-4-phenyloxazolidin-2-one (3ao)

Yellow oil, 14.9 mg, 44% yield, 95% *ee*. $[\alpha]_D^{20} = -49.00$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.35 (m, 3H), 7.23 – 7.19 (m, 2H), 7.05 – 7.01 (m, 1H), 6.43 – 6.39 (m, 2H), 5.03 (t, *J* = 2.3 Hz, 1H), 4.71 (d, *J* = 10.0 Hz, 1H), 4.69 – 4.68 (m, 1H). 3.97 (dd, *J* = 3.1, 2.1 Hz, 1H), 3.82 (d, *J* = 13.5 Hz, 1H), 3.82(s, 3H), 3.71 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.18, 158.85, 155.27, 155.23, 137.83, 131.88, 129.09, 129.01, 127.65, 115.59, 104.23, 98.51, 87.79, 62.42, 55.54, 55.32, 40.68 ppm. IR (neat) v 3062, 3004, 2933, 2838, 2331, 1776 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₉H₁₉NO₄Na⁺ [M+Na]⁺: 348.1206, Found: 348.12053. The enantiomeric excess was determined by HPLC on Chiralcel IC column, n-hexane : isopropanol = 85 : 15, flow rate = 1.0 mL/min, UV detection at $\lambda = 214$ nm, t_R = 25.0 min (minor), t_R = 20.6 min (major).

(R)-5-methylene-3-(naphthalen-1-ylmethyl)-4-phenyloxazolidin-2-one (3ap)

Colorless oil, 27.4 mg, 88% yield, 96% *ee*. $[\alpha]_D^{20} = 9.40$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.06 (m, 1H), 7.92 – 7.80 (m, 2H), 7.60 – 7.50 (m, 2H), 7.43 – 7.40 (m, 3H), 7.34 (dd, *J* = 8.3, 7.0 Hz, 1H), 7.17 (dd, *J* = 6.5, 2.9 Hz, 2H), 7.00 (d, *J* = 6.9 Hz, 1H), 5.44 (d, *J* = 14.8 Hz, 1H), 4.81 (t, *J* = 2.3 Hz, 1H), 4.69 (t, *J* = 2.8 Hz, 1H), 4.11 (d, *J* = 14.8 Hz, 1H), 3.94 (dd, *J* = 3.3, 2.1 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 154.95, 154.76, 137.13, 134.01, 131.70, 130.14, 129.49, 129.35, 129.32, 128.88, 128.41, 127.66, 127.20, 126.35, 125.01, 123.73, 88.37, 62.06, 43.86 ppm. IR (neat) v 3058, 3028, 2929, 2925, 2855, 2634, 2332, 2122 cm⁻¹; HRMS (ESI) m/z: calcd. for C₂₁H₁₇NO₂Na⁺ [M+Na]⁺: 338.1152, Found: 338.1154. The enantiomeric excess was determined by HPLC on Chiralcel IC column, n-hexane : isopropanol = 95 : 5, flow rate = 1.0 mL/min, UV detection at λ = 214 nm, t_R = 26.2 min (minor), t_R = 23.4 min (major).

(R)-5-methylene-3-(naphthalen-2-ylmethyl)-4-phenyloxazolidin-2-one (3aq)

Yellow oil, 26.6 mg, 83% yield, 93% *ee*. $[\alpha]_D^{20} = -76.60$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.81 (m, 2H), 7.80 – 7.76 (m, 1H), 7.54 – 7.47 (m, 3H), 7.44 – 7.39 (m, 3H), 7.32 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.25 – 7.19 (m, 2H), 5.07 (d, *J* = 14.9 Hz, 1H), 5.02 (t, *J* = 2.4 Hz, 1H), 4.77 (t, *J* = 3.0 Hz, 1H), 4.01 (dd, *J* = 3.3, 2.1 Hz, 1H), 3.80 (d, *J* = 14.9 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.35, 154.78, 136.85, 133.32, 133.15, 132.32, 129.44, 129.39, 129.02, 127.96, 127.92, 127.86, 127.78, 126.59, 126.47, 126.22, 88.56, 62.02, 45.81 ppm. IR (neat) v 3055, 3022, 2929, 2925, 2855, 2651, 2331, 2120, 1954 cm⁻¹; HRMS (ESI) m/z: calcd. for C₂₁H₁₇NO₂Na⁺ [M+Na]⁺: 338.1152, Found: 338.1154. The enantiomeric excess was determined by HPLC on Chiralcel IA column, n-hexane : isopropanol = 95 : 5, flow rate = 1.0 mL/min, UV detection at λ = 214 nm, t_R = 15.2 min (minor), t_R = 13.0 min (major).

(R)-5-methylene-4-phenyl-3-(3-phenylpropyl)oxazolidin-2-one (3ar)

Yellow oil, 11.8 mg, 40% yield, 80% *ee*. $[\alpha]_D^{20} = -10.00$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (dd, J = 4.9, 1.9 Hz, 3H), 7.21 – 7.14 (m, 4H), 7.12 – 7.06 (m, 1H), 7.03 – 6.99 (m, 2H), 5.11 (t, J = 2.3 Hz, 1H), 4.67 (dd, J = 3.2, 2.5 Hz, 1H), 3.97 (dd, J = 3.2, 2.1 Hz, 1H), 3.46 – 3.33 (m, 1H), 2.83 – 2.73 (m, 1H), 2.56 – 2.41 (m, 2H),

1.78 - 1.61 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.17, 154.82, 140.97, 137.29, 129.39, 129.35, 128.55, 128.29, 127.73, 126.17, 88.22, 63.11, 41.76, 32.91, 28.52 ppm. IR (neat) v 3297, 3062, 3028, 2926, 2857, 2120 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₉H₁₉NO₂Na⁺ [M+Na]⁺: 316.1308, Found: 316.1303. The enantiomeric excess was determined by HPLC on Chiralcel IA column, n-hexane : isopropanol = 95 : 5, flow rate = 1.0 mL/min, UV detection at λ = 214 nm, t_R = 18.2 min (minor), t_R = 12.8 min (major).

2.4 The transformations of products²⁻⁴

(R)-3aa (26.5 mg, 0.1 mmol), BH₃·THF (2.0 mL, 2 mmol), and anhydrous THF (2.0 mL) were added to a 10 mL Schlenk tube under a nitrogen atmosphere and reacted for 3 hours at 0°C until the reaction was complete, as confirmed by TLC. After cooling to room temperature, 1.0 mL of potassium hydroxide aqueous solution (2.0 M) and 1.0 mL of hydrogen peroxide were added. After stirring at room temperature for 30 minutes, the reaction was quenched by saturated NH₄Cl solution (10 mL), and organic materials were extracted with EA (15 mL×3). The combined extracts were washed with brine and dried over anhydrous Na₂SO₄. The solvent was concentrated under reduced pressure and the residue was purified by column chromatography (SiO₂) with n-hexane and ethyl acetate (5/1 - 1/1) as eluent to the compound 4aa as a yellow oil (10.8mg, 45% yield, 90% ee). $[\alpha]_D^{20} = -47.10$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 2H), 7.33 - 7.28 (m, 5H), 7.27 - 7.22 (m, 3H), 3.89 (dd, J = 9.4, 3.6 Hz, 1H), 3.80 - 1003.75 (m, 2H), 3.71 (d, J = 12.9 Hz, 1H), 3.56 (d, J = 12.9 Hz, 1H), 3.36 (brs, 2H), 2.08 -1.97 (m, 1H), 1.87 - 1.78 (m, 1H) ppm. HRMS (ESI) m/z: calcd. for C₁₆H₂₀NO⁺ [M+H]⁺: 242.1539, Found: 242.1539. The enantiomeric excess was determined by HPLC on Chiralcel AD-3 column, n-hexane : isopropanol = 70 : 30, flow rate = 0.5 mL/min, UV detection at $\lambda = 214$ nm, $t_R = 5.9$ min (minor), $t_R = 6.3$ min (major).

 $Rh(PPh_3)_3Cl$ (4.6 mg, 0.005 mmol) and (*R*)-**3aa** (26.5 mg, 0.1 mmol) in 2 mL of anhydrous methanol was placed in an autoclave. The hydrogenation was performed at

room temperature under 20 bar of H₂ pressure for 3h. After concentration of the reaction mixture under reduced pressure, the residue was purified by silica gel chromatography (hexanes/AcOEt, 5/1) to afford (*4R*, 5*R*)-**4ab** (20.9 mg, 78% yield, 90% *ee*, >95:5 dr) as a yellow oil. $[\alpha]_D^{20} = -72.00$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 6.3 Hz, 3H), 7.32 – 7.28 (m, 3H), 7.17 – 7.07 (m, 4H), 4.96 (d, J = 14.8 Hz, 1H), 4.86 – 4.77 (m, 1H), 4.50 (d, J = 8.2 Hz, 1H), 3.66 (d, J = 14.7 Hz, 1H), 0.94 (d, J = 6.5 Hz, 3H). ppm. ¹³C NMR (101 MHz, CDCl₃) δ 158.48, 135.97, 134.30, 129.11, 129.02, 128.86, 128.59, 128.03, 74.56, 62.52, 46.35, 16.66 ppm. IR (neat) v 3654, 3474, 3313, 3062, 3029, 2960, 2926, 2872, 2855, 2253, 1957, 1887 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₇H₁₇NO₂Na⁺[M+Na]⁺: 290.1152, Found: 290.1158. The enantiomeric excess was determined by HPLC on Chiralcel IA column, n-hexane : isopropanol = 95 : 5, flow rate = 1.0 mL/min, UV detection at $\lambda = 214$ nm, t_R = 19.8 min (minor), t_R = 16.6 min (major).

3. X-ray Crystallographic Data for the 3ah

Crystals suitable for X-ray single-crystal diffraction analysis was obtained through slowly evaporating the mixture solution of DCM and n-hexane at room temperature. CIF file for the product **3ah** has been deposited at the Cambridge Crystallographic Data Centre with deposition number 2356244. Copies of these data can be obtained, free of charge, on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(1223)336033; e-mail: deposit@ccdc.cam.ac.uk].

S27

Identification code	3ah		
Empirical formula	C17 H14 Br N O2		
Formula weight	344.20		
Temperature	170.00 K		
Wavelength	1.34139 Å		
Crystal system	Monoclinic		
Space group	C 1 2 1		
Unit cell dimensions	a = 33.0990(7) Å	<i>α</i> =90°.	
	b = 5.83420(10) Å	β=	
91.5400(10)°.			
	c = 7.8722(2) Å	$\gamma = 90^{\circ}$.	
Volume	1519.62(6) Å ³		
Z	4		
Density (calculated)	1.504 Mg/m ³		
Absorption coefficient	2.452 mm ⁻¹		
F(000)	696		
Crystal size	0.17 x 0.17 x 0.05 mm	1 ³	
Theta range for data collection	4.651 to 54.900°.		
Index ranges	-40<=h<=40, -6<=k<=	=7, -9<=1<=9	
Reflections collected	8082		
Independent reflections	2603 [R(int) = 0.0423]		
Completeness to theta = 53.594°	99.2 %		
Absorption correction	Semi-empirical from e	Semi-empirical from equivalents	
Max. and min. transmission	0.7508 and 0.5475		
Refinement method	Full-matrix least-squa	Full-matrix least-squares on F ²	
Data / restraints / parameters	2603 / 1 / 190		
Goodness-of-fit on F ²	1.089		
Final R indices [I>2sigma(I)]	R1 = 0.0278, wR2 = 0	R1 = 0.0278, wR2 = 0.0770	
R indices (all data)	R1 = 0.0299, wR2 = 0	R1 = 0.0299, wR2 = 0.0804	
Absolute structure parameter	-0.016(15)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.243 and -0.397 e.Å-	0.243 and -0.397 e.Å ⁻³	

 Table 4. Crystal data and structure refinement

4. References

[1] Q. L. Cai, H. Q. Rao, S. J. Li, Y. Lan, K. L. Ding and X. M. Wang, Well-defined chiral dinuclear copper complexes in enantioselective propargylic substitution: For a long-standing supposition on binuclear mechanism, *Chem*, 2024, 10, 265 – 282.

[2] M. P. Sibi, Mei Liu, Enantioselective Conjugate Addition of Hydroxylamines to Pyrazolidinone Acrylamides, *Org. Lett.*, 2001, **3**, 4181 – 4184.

[3] L. Shao, Y. H. Wang, D. Y. Zhang, J. Xu, and X. P. Hu, Desilylation-Activated Propargylic Transformation: Enantioselective Copper-Catalyzed [3+2] Cycloaddition of Propargylic Esters with β -Naphthol or Phenol Derivatives, *Angew. Chem. Int. Ed.*, 2016, **55**, 5014 – 5018.

[4] C. Miniejew, F. Outurquin and X. Pannecoucke, New phenylselanyl group activation: synthesis of aziridines and oxazolidin-2-ones, *Org. Biomol. Chem.* 2004, **2**, 1575–1576.

5. Copies of NMR Spectra

¹³C NMR spectra (101 MHz, CDCl₃) of **3aa**

 ^{13}C NMR spectra (101 MHz, CDCl₃) of **3ba**

¹³C NMR spectra (101 MHz, CDCl₃) of **3ca**

¹H NMR spectra (400 MHz, CDCl₃) of **3da**

¹H NMR spectra (400 MHz, CDCl₃) of 3ea

¹⁹F NMR spectra (376 MHz, CDCl₃) of 3fa

¹³C NMR spectra (101 MHz, CDCl₃) of **3ga**

¹H NMR spectra (400 MHz, CDCl₃) of **3ha**

¹H NMR spectra (400 MHz, CDCl₃) of **3ja**

¹H NMR spectra (400 MHz, CDCl₃) of **3ka**

¹H NMR spectra (400 MHz, CDCl₃) of **3ac**

¹H NMR spectra (400 MHz, CDCl₃) of **3ad**

fl (ppm)

 ^{19}F NMR spectra (376 MHz, CDCl₃) of 3ad

¹³C NMR spectra (101 MHz, CDCl₃) of **3ae**

¹³C NMR spectra (101 MHz, CDCl₃) of **3af**

¹³C NMR spectra (101 MHz, CDCl₃) of **3ag**

¹³C NMR spectra (101 MHz, CDCl₃) of **3ah**

¹³C NMR spectra (101 MHz, CDCl₃) of **3ai**

¹³C NMR spectra (101 MHz, CDCl₃) of **3aj**

 ^{13}C NMR spectra (101 MHz, CDCl₃) of 3ak

fl (ppm)

¹³C NMR spectra (101 MHz, CDCl₃) of **3al**

¹³C NMR spectra (101 MHz, CDCl₃) of **3am**

fl (ppm)

¹H NMR spectra (400 MHz, CDCl₃) of **3an**

 ^1H NMR spectra (400 MHz, CDCl₃) of 3ao

¹H NMR spectra (400 MHz, CDCl₃) of **3aq**

 ^1H NMR spectra (400 MHz, CDCl₃) of **3ar**

¹H NMR spectra (400 MHz, CDCl₃) of 4aa

¹H NMR spectra (400 MHz, CDCl₃) of 4ab

6. HPLC Chromatograms (*R*)-3-benzyl-5-methylene-4-phenyloxazolidin-2-one (3aa)

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	%
	-					
1	9.790	VV R	0.1837	4154.29443	341.93188	49.5275
2	2 10.637	VB	0.2006	4233. 55566	319.53448	50.4725

(R)-3-benzyl-4-(4-chlorophenyl)-5-methyleneoxazolidin-2-one (3da)

S65

15

20

25

min

10

0 -

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	%
	-					
1	20. 527	BB	0.3496	7490. 35156	324.08426	49.8186
2	2 22.706	BB	0.3955	7544.89111	289.04489	50.1814

(R)-3-benzyl-4-(4-bromophenyl)-5-methyleneoxazolidin-2-one (3ea)

峰(保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.638	BB	0.3809	1.28388e4	509.67560	50.0174
2	24.504	BB	0.4345	1.28299e4	446.13266	49.9826

(R)-3-benzyl-5-methylene-4-(4-(trifluoromethyl)phenyl)oxazolidin-2-one (3fa)

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	%
	·					
1	9.196	BV	0.1920	1.39791e4	1087.08887	50.1103
2	2 10.419	VB	0.2184	1.39175e4	953.14789	49.8897

(R)-3-benzyl-5-methylene-4-(4-(trifluoromethoxy)phenyl)oxazolidin-2-one (3ga)

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	%
	-					
1	7.666	BB	0.1534	6344.62988	625.07703	49.9455
2	8.669	BV R	0.1717	6358.47412	556.62085	50.0545

(R)-3-benzyl-5-methylene-4-(4-(pyridin-2-yl)phenyl)oxazolidin-2-one (3ha)

(R)-3-benzyl-5-methylene-4-(m-tolyl)oxazolidin-2-one (3ia)

(R)-3-benzyl-4-(3-chlorophenyl)-5-methyleneoxazolidin-2-one (3ja)

(R)-3-benzyl-5-methylene-4-(3,4,5-trimethoxyphenyl)oxazolidin-2-one (3ka)

(R)-3-(4-methylbenzyl)-5-methylene-4-phenyloxazolidin-2-one (3ab)

(R)-3-(4-(tert-butyl)benzyl)-5-methylene-4-phenyloxazolidin-2-one (3ac)

(R)-3-(4-fluorobenzyl)-5-methylene-4-phenyloxazolidin-2-one (3ad)

(R)-3-(4-bromobenzyl)-5-methylene-4-phenyloxazolidin-2-one (3ae)

(R)-3-(4-iodobenzyl)-5-methylene-4-phenyloxazolidin-2-one (3af)

(R)-4-((5-methylene-2-oxo-4-phenyloxazolidin-3-yl)methyl)benzonitrile (3ag)

(R)-3-(3-bromobenzyl)-5-methylene-4-phenyloxazolidin-2-one (3ah)

(R)-5-methylene-3-(3-nitrobenzyl)-4-phenyloxazolidin-2-one (3aj)

MeOOC~

(R)-3-(2-chlorobenzyl)-5-methylene-4-phenyloxazolidin-2-one (3al)

(R)-3-(4-bromo-2-fluorobenzyl)-5-methylene-4-phenyloxazolidin-2-one (3am)

(R)-5-methylene-4-phenyl-3-(2,4,6-trimethylbenzyl)oxazolidin-2-one (3an)

(R)-3-(2,4-dimethoxybenzyl)-5-methylene-4-phenyloxazolidin-2-one (3ao)

(R)-5-methylene-3-(naphthalen-1-ylmethyl)-4-phenyloxazolidin-2-one (3ap)

(R)-5-methylene-3-(naphthalen-2-ylmethyl)-4-phenyloxazolidin-2-one (3aq)

(R)-5-methylene-4-phenyl-3-(3-phenylpropyl)oxazolidin-2-one (3ar)

(R)-3-(benzylamino)-3-phenylpropan-1-ol (4aa)

(4R,5R)-3-benzyl-5-methyl-4-phenyloxazolidin-2-one (4ab)

