Rh(III)-catalyzed regioselective C–H activation/[3+2] cyclization of KHAs with iodonium ylides accessing pyrimido[1,2-*a*]indole derivatives[†]

Qin Luo^a, Jin-Mei Qi^a, Li Chen, Cen Jian^a, Cong-Hai Zhang^{a,*} and Sheng-Jiao Yan^{a,*}

Key Laboratory of Medicinal Chemistry for Natural Resources (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China

Supporting Information

1. General Information	S4
2. General Procedure for the Preparation of 3-5	S4
2.1 Synthesis of pyrimido[1,2- <i>a</i>]indole derivatives (PIIDOs) 3	S4
2.2 Synthesis of pyrimido[1,2- <i>a</i>]indole derivatives (PIIDOs) 4	S5
2.3 Synthesis of pyrimido[1,2- <i>a</i>]indole derivatives (PIIDOs) 5	S5
2.4 Synthesis of pyrimido[1,2- <i>a</i>]indole derivatives (PIIDOs) 3k	S6
3. Spectroscopic Data	S6
Figure S1. X-Ray crystal structure of 3d	S19
Table S1. Crystal data and structure refinement for 3d	S19
Table S2. Bond lengths (Å) for 3d	S20
Figure S2. X-Ray crystal structure of 4h	S21
Table S3. Crystal data and structure refinement for 4h	S21
Table S4. Bond lengths (Å) for 4h.	S22
Figure S3. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 3a	S24
Figure S4. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 3a	S25
Figure S5. ¹ H NMR (500 MHz, CDCl ₃ - <i>d</i> ₆) spectra of compound 3b	S26
Figure S6. ¹³ C NMR (125 MHz,CDCl ₃ - <i>d</i> ₆) spectra of compound 3b	S27
Figure S7. ¹ H NMR (600 MHz, CDCl ₃ - <i>d</i> ₆) spectra of compound 3c	S28
Figure S8. ¹³ C NMR (150 MHz, CDCl ₃ - <i>d</i> ₆) spectra of compound 3c	S29
Figure S9. ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) spectra of compound 3d	S30
Figure S10. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 3d	S31
Figure S11. ¹⁹ F NMR (475 MHz, DMSO- <i>d</i> ₆) spectra of compound 3d	S32
Figure S12. ¹ H NMR (500 MHz, CDCl ₃ - <i>d</i> ₆) spectra of compound 3e	S33
Figure S13. ¹³ C NMR (125 MHz, CDCl ₃ - <i>d</i> ₆) spectra of compound 3e	S34
Figure S14. ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) spectra of compound 3f	S35
Figure S15. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 3f	S36

Figure S16. ¹⁹ F NMR (475 MHz, DMSO- d_6) spectra of compound 3f	S37
Figure S17. ¹ H NMR (500 MHz,CDCl ₃ - <i>d</i> ₆) spectra of compound 3g	S38
Figure S18. ¹³ C NMR (125 MHz,CDCl ₃ - <i>d</i> ₆) spectra of compound 3g	S39
Figure S19. ¹ H NMR (600 MHz,DMSO- <i>d</i> ₆) spectra of compound 3h	S40
Figure S20. ¹³ C NMR (150 MHz,DMSO- <i>d</i> ₆) spectra of compound 3h	S41
Figure S21. ¹ H NMR (500 MHz,DMSO- <i>d</i> ₆) spectra of compound 3i	S42
Figure S22. ¹³ C NMR (125 MHz,DMSO- <i>d</i> ₆) spectra of compound 3i	S43
Figure S23. ¹⁹ F NMR (475 MHz, DMSO- <i>d</i> ₆) spectra of compound 3i	S44
Figure S24. ¹ H NMR (600 MHz,CDCl ₃ - <i>d</i> ₆) spectra of compound 3j	S45
Figure S25. ¹³ C NMR (150 MHz,CDCl ₃ - <i>d</i> ₆) spectra of compound 3 j	S46
Figure S26. ¹ H NMR (500 MHz,DMSO- <i>d</i> ₆) spectra of compound 3k	S47
Figure S27. ¹³ C NMR (125 MHz,DMSO- <i>d</i> ₆) spectra of compound 3k	S48
Figure S28. ¹ H NMR (500 MHz,DMSO- <i>d</i> ₆) spectra of compound 31	S49
Figure S29. ¹³ C NMR (125 MHz,DMSO- <i>d</i> ₆) spectra of compound 31	S50
Figure S30. ¹⁹ F NMR (475 MHz, DMSO- <i>d</i> ₆) spectra of compound 31	S51
Figure S31. ¹ H NMR (500 MHz,CDCl ₃ - <i>d</i> ₆) spectra of compound 3m	S52
Figure S32. ¹³ C NMR (125 MHz,CDCl ₃ - <i>d</i> ₆) spectra of compound 3m	S53
Figure S33. ¹ H NMR (600 MHz,CDCl ₃ - <i>d</i> ₆) spectra of compound 3n	S54
Figure S34. ¹³ C NMR (150 MHz,CDCl ₃ - <i>d</i> ₆) spectra of compound 3n	S55
Figure S35. ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) spectra of compound 30	S56
Figure S36. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 30	
Figure S37. ¹ H NMR (500 MHz,CDCl ₃ - <i>d</i> ₆) spectra of compound 3p	S58
Figure S38. ¹³ C NMR (125 MHz,CDCl ₃ - <i>d</i> ₆) spectra of compound 3p	S59
Figure S39. ¹ H NMR (600 MHz,DMSO- <i>d</i> ₆) spectra of compound 3q	
Figure S40. ¹³ C NMR (150 MHz,DMSO- <i>d</i> ₆) spectra of compound 3q	S61
Figure S41. ¹ H NMR (500 MHz,CDCl ₃ - <i>d</i> ₆) spectra of compound 3r	
Figure S42. ¹³ C NMR (125 MHz,CDCl ₃ - d_6) spectra of compound 3r	S63
Figure S43. ¹ H NMR (500 MHz,DMSO- <i>d</i> ₆) spectra of compound 4a	S64
Figure S44. ¹³ C NMR (150 MHz,CDCl ₃ -d ₆) spectra of compound 4a	S65
Figure S45. ¹ H NMR (600 MHz,DMSO- <i>d</i> ₆) spectra of compound 4b	S66
Figure S46. ¹³ C NMR (150 MHz,DMSO- <i>d</i> ₆) spectra of compound 4b	S67
Figure S47. ¹ H NMR (600 MHz,CDCl ₃ - <i>d</i> ₆) spectra of compound 4c	S68
Figure S48. ¹³ C NMR (150 MHz,CDCl ₃ - d_6) spectra of compound 4c	S69
Figure S49. ¹ H NMR (500 MHz,CDCl ₃ - <i>d</i> ₆) spectra of compound 4d	S70
Figure S50. ¹³ C NMR (125 MHz,CDCl ₃ - <i>d</i> ₆) spectra of compound 4d	S71
Figure S51. ¹ H NMR (500 MHz,CDCl ₃ - <i>d</i> ₆) spectra of compound 4e	S72
Figure S52. ¹³ C NMR (125 MHz,CDCl ₃ - <i>d</i> ₆) spectra of compound 4e	S73
Figure S53. ¹⁹ F NMR (475 MHz, CDCl ₃ - <i>d</i> ₆) spectra of compound 4e	S74
Figure S54. ¹ H NMR (500 MHz,CDCl ₃ - <i>d</i> ₆) spectra of compound 4f	S75
Figure S55. ¹³ C NMR (125 MHz,CDCl ₃ - <i>d</i> ₆) spectra of compound 4f	S76

Figure S56. ¹⁹ F NMR (475 MHz, CDCl ₃ - <i>d₆</i>) spectra of compound 4f	
Figure S57. ¹ H NMR (600 MHz,DMSO- <i>d</i> ₆) spectra of compound 4g	
Figure S58. ¹³ C NMR (150 MHz,DMSO- <i>d</i> ₆) spectra of compound 4g	S79
Figure S59. ¹ H NMR (500 MHz,CDCl ₃ - <i>d</i> ₆) spectra of compound 4h	
Figure S60. ¹³ C NMR (125 MHz,CDCl ₃ - <i>d</i> ₆) spectra of compound 4h	
Figure S61. ¹⁹ F NMR (475 MHz, CDCl ₃ - <i>d</i> ₆) spectra of compound 4h	
Figure S62. ¹ H NMR (500 MHz,DMSO- <i>d</i> ₆) spectra of compound 4i	
Figure S63. ¹³ C NMR (125 MHz,DMSO- <i>d</i> ₆) spectra of compound 4i	
Figure S64. ¹⁹ F NMR (475 MHz, DMSO- <i>d</i> ₆) spectra of compound 4i	
Figure S65. ¹ H NMR (600 MHz,DMSO- <i>d</i> ₆) spectra of compound 5a	
Figure S66. ¹³ C NMR (150 MHz,DMSO- <i>d</i> ₆) spectra of compound 5a	
Figure S67. ¹ H NMR (600 MHz,DMSO- <i>d</i> ₆) spectra of compound 5b	
Figure S68. ¹³ C NMR (150 MHz,DMSO- <i>d</i> ₆) spectra of compound 5b	S89
Figure S69. ¹ H NMR (600 MHz,DMSO- <i>d</i> ₆) spectra of compound 5c	S90
Figure S70. ¹³ C NMR (150 MHz,DMSO- <i>d</i> ₆) spectra of compound 5c	S91
Figure S71. ¹ H NMR (500 MHz,DMSO- <i>d</i> ₆) spectra of compound 5d	
Figure S72. ¹³ C NMR (125 MHz,DMSO- <i>d</i> ₆) spectra of compound 5d	
References	

1. General Information.

All compounds were fully characterized by spectroscopic data. The NMR spectra were recorded on a Bruker DRX500 or DRX600, chemical shifts (δ) are expressed in ppm, and *J* values are given in Hz, and deuterated CDCl₃ was used as solvent. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on XT-4A melting point apparatus and are uncorrected. HRMs were performed on a Agilent LC/Msd TOF instrument. X-ray diffraction was obtained by APEX DUO.

All chemicals and solvents were used as received without further purification unless otherwise stated. All chemicals were purchased from Adamas-beta. Column chromatography was performed on silica gel (Qingdao, 200–300 mesh). HKAs 1 were prepared according to the literature^[1]. Iodonium ylides were prepared according to the literature^[2].

2. General Procedure for the Preparation of 3-5

2.1 Synthesis of pyrimido[1,2-a]indole derivatives (PIIDOs) 3.

Enaminones (1, 1.1 mmol), iodonium ylides (2, 1.0 mmol), $[Cp*RhCl_2]_2$ (2.5 mol%), AgSbF₆ (10.0 mol%), and acetic acid (HOAc, 1.0 mmol) were combined in a 25 mL round-bottom flask. The mixture was stirred and heated under reflux in acetone (5 mL) for 8 hours, or until the iodonium ylides were completely consumed. Subsequently, the mixture was allowed to cool to room temperature, followed by the addition of dichloromethane (DCM, 15 mL×2). The organic phase was washed with a sodium chloride (NaCl) solution (10 mL), dried over sodium sulfate (Na₂SO₄), concentrated, and purified by flash column chromatography to yield compound **3**.

2.2 Synthesis of pyrimido[1,2-a]indole derivatives (PIIDOs) 4.

Enaminones (1, 1.1 mmol), iodonium ylides (2, 1.0 mmol), $[Cp*RhCl_2]_2$ (2.5 mol%), NaSbF₆ (10.0 mol%), and acetic acid (1.0 mmol) were added to a 25 mL round-bottom flask. The mixture was stirred and heated under reflux in dichloroethane (5 mL) for 12 hours, or until the iodonium ylides were completely consumed. Following this, the mixture was cooled to room temperature, and dichloromethane (DCM, 15 mL \times 2) was added. The organic layer was washed with a sodium chloride (NaCl) solution (10 mL), dried over sodium sulfate (Na₂SO₄), concentrated, and purified by flash column chromatography to yield compounds **4**.

2.3 Synthesis of pyrimido[1,2-a]indole derivatives (PIIDOs) 5.

Enaminones (1, 1.1 mmol), iodonium ylides (2, 1.0 mmol), $[Cp*RhCl_2]_2$ (2.5 mol%), AgSbF₆ (10.0 mol%), and acetic acid (1.0 mmol) were added to a 25 mL round-bottom flask. The mixture was stirred and heated under reflux in dichloroethane (5 mL) for 12 hours, or until the iodonium ylides were completely consumed. Following this, the mixture was cooled to room temperature, and dichloromethane (DCM, 15 mL \times 2) was added. The organic layer was washed with a sodium chloride (NaCl) solution (10 mL), dried over sodium sulfate (Na₂SO₄), concentrated, and purified by flash column chromatography to yield compounds **5**.

2.4 Synthesis of pyrimido[1,2-a]indole derivatives (PIIDOs) 3k.

Enaminones (1, 3.3 mmol), iodonium ylides (2, 3.0 mmol), $[Cp*RhCl_2]_2$ (2.5 mol%), AgSbF₆ (10.0 mol%), and acetic acid (HOAc, 3.0 mmol) were combined in a 25 mL round-bottom flask. The mixture was stirred and heated under reflux in acetone (10 mL) for 8 hours, or until the iodonium ylides were completely consumed. Subsequently, the mixture was allowed to cool to room temperature, followed by the addition of dichloromethane (DCM, 60 mL×2). The organic phase was washed with a sodium chloride (NaCl) solution (30 mL), dried over sodium sulfate (Na₂SO₄), concentrated, and purified by flash column chromatography to yield compound **3k** 852 mg, yield is 78%.

3. Spectroscopic Data.

10-(4-methylbenzoyl)-1,3,4,6,7,8-hexahydropyrimido[**1,2-***a*]**indol-9**(*2H*)-**one** (**3a**)

Yellow solid (70%, 215mg); Mp: 231.7-232.7 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 2.00-2.05 (m, 2H, CH₂), 2.19 (t, *J* = 6.12 Hz, 2H, CH₂), 2.32 (s, 3H, CH₃), 2.70 (t, *J* = 6.12 Hz, 2H, CH₂), 3.34-3.36 (m, 2H, CH₂), 3.88 (t, *J* = 5.94 Hz, 2H, CH₂), 7.08 (d, *J* = 7.92 Hz, 2H, ArH), 7.38 (d, *J* = 7.98 Hz, 2H, ArH), 7.78 (s, 1H, NH); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 21.1, 21.1, 21.5, 22.6, 38.3, 38.4, 40.7, 96.6, 116.1, 128.1, 128.9, 139.6, 140.0, 142.1, 148.8, 187.9, 189.9. HRMS (TOF ES⁺): *m/z* calcd for C₁₉H₂₀O₂N₂Na [(M+Na)⁺], 331.1417; found, 331.1416.

Yellow solid (85%, 316mg); Mp: 288.2-289.2 °C; ¹H NMR (500 MHz, CDCl₃- d_6): δ = 2.10-2.15 (m, 2H, CH₂), 2.17-2.22 (m, 2H, CH₂), 2.34 (t, J = 6.00 Hz, 2H, CH₂), 2.66 (t, J = 6.15 Hz, 2H, CH₂), 3.48-3.50 (m, 2H, CH₂), 3.86 (t, J = 6.00 Hz, 2H, CH₂), 7.43-7.47 (m, 4H, ArH), 7.94 (s, 1H, NH); ¹³C NMR (125 MHz, CDCl₃- d_6): δ = 21.0, 21.4, 22.5, 38.0, 38.2, 40.5, 97.4, 116.3, 124.5, 129.9, 130.5, 141.3, 141.4, 149.3, 188.9, 190.8. HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₇O₂N₂ [(M+Na)⁺], 395.0366; found, 395.0365.

10-benzoyl-1,3,4,6,7,8-hexahydropyrimido[1,2-*a*]indol-9(2*H*)-one (3c)

Yellow solid (82%, 241mg); Mp: 233.1-234.1 °C; ¹H NMR (600 MHz, CDCl₃-*d*₆): δ = 2.09-2.13 (m, 2H, CH₂), 2.17-2.21 (m, 2H, CH₂), 2.32 (t, *J* = 6.12 Hz, 2H, CH₂), 2.65 (t, *J* = 6.12 Hz, 2H, CH₂), 3.47-3.50 (m, 2H, CH₂), 3.85 (t, *J* = 6.00 Hz, 2H, CH₂), 7.33 (t, *J* = 7.68 Hz, 2H, ArH), 7.40 (t, *J* = 7.26 Hz, 1H, ArH), 7.56 (t, *J* = 7.08 Hz, 2H, ArH), 7.92 (s, 1H, NH); ¹³C NMR (150 MHz, CDCl₃-*d*₆): δ = 21.1, 21.4, 22.6, 38.2, 40.5, 97.6, 116.6, 127.3, 128.1, 130.0, 140.8, 142.6, 149.0, 190.5, 190.6. HRMS (TOF ES⁺): *m*/*z* calcd for C₁₈H₁₉O₂N₂ [(M+H)⁺], 295.1441; found, 295.1440.

10-(4-fluorobenzoyl)-1,3,4,6,7,8-hexahydropyrimido[1,2-a]indol-9(2H)-one (3d)

Yellow solid (85%, 265mg); Mp: 196.8-197.8 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 1.99-2.04 (m, 2H, CH₂), 2.18 (t, *J* = 6.05 Hz, 2H, CH₂), 2.69 (t, *J* = 6.10 Hz, 2H, CH₂), 3.36-3.38 (m, 2H, CH₂), 3.88 (t, *J* = 5.95 Hz, 2H, CH₂), 7.06-7.10 (m, 2H, ArH), 7.48-7.51 (m, 2H, ArH), 7.88 (s, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 21.0, 21.1, 22.5, 38.3, 38.3, 40.2, 114.3 (d, *J* = 21.3 Hz), 131.0 (d, *J* = 8.8 Hz), 131.0 (d, *J* = 8.8 Hz), 139.4 (d, *J* = 3.8 Hz), 142.6, 149.1, 163.4 (d, *J* = 245.0 Hz), 186.5, 190.0; ¹⁹F NMR (470 MHz, DMSO-*d*₆): δ = -111.9. HRMS (TOF

ES⁺): *m/z* calcd for C₁₈H₁₇O₂N₂Na [(M+Na)⁺], 335.1166; found, 335.1165.

10-(4-isopropylbenzoyl)-7-methyl-1,3,4,6,7,8-hexahydropyrimido[1,2-a]indol-9(2H)-one (3e)

Yellow solid (84%, 294mg); Mp: 227.9-228.9 °C; ¹H NMR (500 MHz, CDCl₃-*d*₆): δ = 1.26 (t, J = 5.95 Hz, 6H, 2CH₃), 2.09-2.18 (m, 4H, 1CH₃, 1CH₂), 2.33-2.37 (m, 2H, CH₂), 2.63-2.68 (m, 2H, CH₂), 2.89-2.95 (m, 1H, CH₂), 3.45-3.47 (m, 2H, CH₂), 3.83-3.87 (m, 2H, CH₂), 7.18 (d, J = 8.10 Hz, 2H, ArH), 7.54 (d, J = 8.20 Hz, 2H, ArH), 7.87 (s, 1H, NH); ¹³C NMR (125 MHz, CDCl₃-*d*₆): δ = 21.2, 21.4, 22.6, 23.8, 34.0, 38.2, 38.2, 40.5, 97.5, 116.7, 125.3, 128.6, 139.9, 140.6, 140.7, 148.9, 150.9, 190.1, 190.5. HRMS (TOF ES⁺): *m*/*z* calcd for C₂₂H₂₇O₂N₂ [(M+H)⁺], 351.2067; found, 351.2063.

10-(4-fluorobenzoyl)-7-methyl-1,3,4,6,7,8-hexahydropyrimido[1,2-a]indol-9(2H)-one (3f)

Yellow solid (85%, 277mg); Mp: 267.7-268.7 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 1.07 (d, J = 6.30 Hz, 3H, CH₃), 1.98-2.09 (m, 3H, 2CH₂), 2.16-2.20 (m, 1H, CH₂), 2.25-2.36 (m, 2H, CH₂), 2.82-2.85 (m, 1H, CH), 3.35-3.39 (m, 2H, CH₂), 3.82-3.93 (m, 2H, CH₂), 7.06-7.10 (m, 2H, ArH), 7.47-7.50 (m, 2H, ArH), 7.86 (s, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 21.0, 21.3, 29.1, 30.5, 38.3, 40.2, 46.8, 96.5, 114.3 (d, J = 21.3 Hz), 115.4, 131.0 (d, J = 8.8 Hz), 139.4 (d, J = 2.5 Hz), 142.1, 149.3, 163.4 (d, J = 245.0 Hz), 186.5, 189.9; ¹⁹F NMR (470 MHz, DMSO-*d*₆): δ = -111.9. HRMS (TOF ES⁺): m/z calcd for C₁₉H₂₀O₂N₂F[(M+H)⁺], 327.1503; found, 327.1501.

10-(4-isopropylbenzoyl)-7-phenyl-1,3,4,6,7,8-hexahydropyrimido[1,2-a]indol-9(2H)-one (3g)

Yellow solid (79%, 325mg); Mp:197.9-198.9 °C; ¹H NMR (500 MHz, CDCl₃-*d*₆): δ = 1.24-1.27 (m, 6H, 2CH₃), 2.16 (t, *J* = 5.75 Hz, 2H, 1CH₂), 2.63 (t, *J* = 2.90 Hz, 2H, CH₂), 2.79-2.84 (m, 1H, CH), 2.91-2.99 (m, 2H, CH₂), 3.44-3.54 (m, 3H, 1CH₂, 1CH₂), 3.78-3.86 (m, 2H, CH₂), 7.20 (d, *J* = 8.15 Hz, 2H, ArH), 7.26 (d, *J* = 5.90 Hz, 1H, ArH), 7.30 (d, *J* = 7.55 Hz, 2H, ArH), 7.35 (t, *J* = 7.45 Hz, 2H, ArH), 7.56 (d, *J* = 8.20 Hz, 2H, ArH), 7.88 (s, 1H, NH); ¹³C NMR (125 MHz, CDCl₃-*d*₆): δ = 21.2, 23.8, 23.9, 29.4, 34.0, 38.2, 40.6, 41.1, 45.2, 97.4, 116.4, 125.4, 126.8, 127.1, 128.7, 128.8, 139.8, 143.2, 149.2, 151.0, 189.3, 190.2. HRMS (TOF ES⁺): *m*/*z* calcd for C₂₇H₂₉O₂N₂ [(M+H)⁺], 413.2224; found, 413.2222.

10-(4-chlorobenzoyl)-7-phenyl-1,3,4,6,7,8-hexahydropyrimido[1,2-*a*]indol-9(2*H*)-one (3h)

Yellow solid (85%, 343mg); Mp: 198.7-199.7 °C; ¹H NMR (600 MHz, CDCl₃- d_6): $\delta = 2.03$ (t, J = 5.70 Hz, 2H, CH₂), 2.31-2.34 (m, 1H, CH₂), 2.59-2.63 (m, 1H, CH₂), 2.85-2.89 (m, 1H, CH₂), 3.03-3.06 (m, 1H, CH₂), 3.36-3.40 (m, 2H, CH₂), 3.45-3.49 (m, 1H, CH), 3.83-3.86 (m, 1H, CH₂), 3.93-3.96 (m, 1H, CH₂), 7.25 (t, J = 7.32 Hz, 1H, ArH), 7.33-7.36 (m, 6H, ArH), 7.46-7.48 (m, 2H, ArH), 7.95 (s, 1H, NH); ¹³C NMR (150 MHz, CDCl₃- d_6): $\delta = 20.9$, 28.9, 38.3, 40.2, 40.5, 45.3, 96.5, 115.4, 127.1, 127.5, 127.6, 128.9, 130.4, 134.6, 141.7, 142.0, 144.1, 149.5, 186.5, 189.0. HRMS (TOF ES⁺): m/z calcd for C₂₄H₂₂ClO₂N₂ [(M+H)⁺], 405.1364; found, 405.1364.

10-(4-fluorobenzoyl)-7-phenyl-1,3,4,6,7,8-hexahydropyrimido[1,2-*a*]indol-9(2*H*)-one (3i)

Yellow solid (86%, 333mg); Mp: 256.4-257.4 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 2.03 (s, 2H, CH₂), 2.33 (d, *J* = 13.75 Hz, 1H, CH₂), 2.62 (t, *J* = 15.60 Hz, 1H, CH₂), 2.87-2.90 (m, 1H, CH₂), 3.03-3.07 (m, 1H, CH₂), 3.36 (s, 2H, CH₂), 3.48 (d, *J* = 10.75 Hz, 1H, CH₂), 3.84 (t, *J* = 5.80 Hz, 1H, CH₂), 3.95 (t, *J* = 6.15 Hz, 1H, CH₂), 7.11 (t, *J* = 8.55 Hz, 2H, ArH), 7.26 (t, *J* = 6.90 Hz, 1H, ArH), 7.34-7.41 (m, 4H, ArH), 7.53 (d, *J* = 5.70 Hz, 2H, ArH), 7.92 (s, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 21.0, 28.9, 38.3, 39.8, 40.2, 45.5, 96.5, 114.3 (d, *J* = 21.3 Hz), 115.5, 127.1, 127.5, 128.9, 131.0 (d, *J* = 8.8 Hz), 139.3, 141.8, 144.1, 149.4, 163.5 (d, *J* = 245.0 Hz), 186.6, 189.0; ¹⁹F NMR (470 MHz, DMSO-*d*₆): δ = -111.7. HRMS (TOF ES⁺): *m/z* calcd for C₂₄H₂₂O₂N₂F [(M+H)⁺], 389.1660; found, 389.1664.

10-(4-methoxybenzoyl)-7,7-dimethyl-1,3,4,6,7,8-hexahydropyrimido[1,2-*a*]indol-9(2*H*)-one (3j)

Yellow solid (88%, 309mg); Mp: 221.7-222.7 °C; ¹H NMR (600 MHz, CDCl₃- d_6): $\delta = 1.13$ (s, 6H, 2CH₃), 2.19 (t, J = 5.76 Hz, 2H, CH₂), 2.26 (s, 2H, CH₂), 2.54 (s, 2H, CH₂), 3.46-3.48 (m, 2H, CH₂), 3.83 (t, J = 6.06 Hz, 5H, 1CH₂, 1CH₃), 6.82-6.84 (m, 2H, ArH), 7.56-7.58 (m, 2H, ArH), 5.60 (s, 1H, NH); ¹³C NMR (150 MHz, CDCl₃- d_6): $\delta = 21.2$, 28.7, 35.0, 35.4, 38.2, 40.5, 52.7, 55.2, 97.2, 112.5, 115.5, 130.5, 134.9, 139.1, 148.9, 161.3, 189.4, 190.6. HRMS (TOF ES⁺): m/z calcd for C₂₁H₂₅O₃N₂ [(M+H)⁺], 353.1860; found, 353.1861.

10-(4-isopropylbenzoyl)-7,7-dimethyl-1,3,4,6,7,8-hexahydropyrimido[1,2-*a*]indol-9(2*H*)-one (3k)

Yellow solid (82%, 298mg); Mp: 225.2-226.2 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 1.07 (d, J = 11.9 Hz, 6H, 2CH₃), 1.15-1.21 (m, 6H, 2CH₃), 1.99-2.04 (m, 2H, CH₂), 2.12 (s, 2H, CH₂), 3.03-3.07 (m, 1H, CH₂), 2.61 (s, 2H, CH₂), 2.87-2.92 (m, 1H, CH), 3.33-3.37 (m, 2H, CH₂), 3.86 (t, J = 5.95 Hz, 2H, CH₂), 7.13 (d, J = 8.15 Hz, 2H, ArH), 7.26 (t, J = 6.90 Hz, 1H, ArH), 7.38 (d, J = 8.20 Hz, 2H, ArH), 7.78 (s, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 21.1, 24.2, 28.7, 33.8, 34.8, 35.0, 38.3, 40.2, 52.7, 60.2, 96.4, 114.7, 125.4, 129.0, 140.3, 140.4, 149.0, 150.4, 187.8, 189.9. HRMS (TOF ES⁺): m/z calcd for C₂₃H₂₉O₂N₂ [(M+H)⁺], 365.2224; found, 365.2221.

10-(4-fluorobenzoyl)-7,7-dimethyl-1,3,4,6,7,8-hexahydropyrimido[**1,2***-a*]**indol-9**(*2H*)-**one** (**3l**)

Yellow solid (89%, 302mg); Mp: 244.4-245.4 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 1.06 (s, 6H, 2CH₃), 2.03 (t, *J* = 5.60 Hz, 2H, CH₂), 2.12 (s, 2H, CH₂), 2.50-2.52 (m, 2H, CH₂), 3.87 (d, *J* = 5.90 Hz, 2H, CH₂), 7.07-7.10 (m, 2H, ArH), 7.45-7.48 (m, 2H, ArH), 7.86 (s, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 21.0, 28.7, 34.7, 35.0, 38.2, 39.9, 52.7, 96.4, 114.2, 114.4, 130.9 (d, *J* = 8.8 Hz), 139.4 130.9 (d, *J* = 2.5 Hz), 140.9, 149.3, 163.4 (d, *J* = 245.0 Hz), 186.6, 190.0. HRMS (TOF ES⁺): *m/z* calcd for C₂₀H₂₂O₂N₂F [(M+H)⁺], 341.1660; found, 341.1655.

10-(4-fluorobenzoyl)-7,7-dimethyl-1,3,4,6,7,8-hexahydropyrimido[1,2-*a*]indol-9(2*H*)-one (3m)

Yellow solid (72%, 236mg); Mp: 246.4-247.4 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 1.09 (s, 6H, 2CH₃), 2.00-2.03 (m, 2H, CH₂), 2.21 (s, 2H, CH₂), 2.62 (s, 2H, CH₂), 3.86 (d, *J* = 5.90 Hz, 2H, CH₂), 7.00-7.01 (m, 1H, ArH), 7.14-7.15 (m, 1H, ArH), 7.59 (s, 1H, NH), 7.64-7.65 (m, 1H, ArH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 21.1, 28.8, 34.8, 35.0, 38.3, 39.9, 52.7, 96.3, 114.7, 127.4, 130.3, 131.3, 141.3, 146.9, 148.9, 179.4, 190.2. HRMS (TOF ES⁺): *m*/*z* calcd for C₁₈H₂₁O₂N₂S [(M+H)⁺], 329.1318; found, 329.1316.

11-(4-methylbenzoyl)-1,2,3,4,6,7,8,9-octahydro-10*H*-cyclohepta[4,5]pyrrolo[1,2*a*]pyrimidin-10-one (3n)

Yellow solid (20%, 64mg); Mp: 198.7-199.7 °C; ¹H NMR (600 MHz, CDCl₃-*d*₆): δ = 1.86-1.92 (m, 4H, 2CH₂), 2.17 (t, *J* = 5.76 Hz, 2H, CH₂), 2.33 (s, 3H, CH₃), 2.53 (t, *J* = 6.54 Hz, 2H, CH₂), 2.74 (t, *J* = 5.76 Hz, 2H, CH₂), 3.41-3.44 (m, 2H, CH₂), 3.80 (t, *J* = 6.06 Hz, 2H, CH₂), 7.10 (d, *J* = 7.92 Hz, 2H, ArH), 7.43 (d, *J* = 7.98 Hz, 2H, ArH), 7.58 (s, 1H, NH); ¹³C NMR (150 MHz, CDCl₃-*d*₆): δ = 21.5, 21.5, 22.4, 25.0, 25.7, 37.9, 40.5, 44.2, 99.4, 121.3, 127.7, 128.3, 132.8, 139.8, 139.9, 147.8, 190.0, 197.6. HRMS (TOF ES⁺): *m*/*z* calcd for C₂₀H₂₃O₂N₂ [(M+H)⁺], 323.1754; found, 323.1760.

9-(4-methoxybenzoyl)-1,2,3,5,6,7-hexahydro-8*H*-imidazo[1,2-*a*]indol-8-one (30)

Yellow solid (80%, 248mg); Mp: 273.9-274.9 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 1.98-2.03 (m, 2H, CH₂), 2.21 (t, *J* = 6.00 Hz, 2H, CH₂), 2.71 (t, *J* = 6.05 Hz, 2H, CH₂), 3.79 (s, 3H, OCH₃), 3.90 (t, *J* = 7.90 Hz, 2H, CH₂), 4.04-4.07 (m, 2H, CH₂), 6.71 (s, 1H, NH), 6.85-6.87 (m, 2H, ArH), 7.55-7.58 (m, 2H, ArH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 21.7, 23.0, 38.3, 42.4, 49.1, 55.6, 95.5, 113.0, 119.8, 131.2, 133.9, 139.1, 154.4, 161.6, 187.2, 190.1. HRMS (TOF ES⁺): *m/z* calcd for C₁₈H₁₉O₃N₂ [(M+H)⁺], 311.1390; found, 311.1388.

6-methyl-9-(4-methylbenzoyl)-1,2,3,5,6,7-hexahydro-8*H*-imidazo[1,2-*a*]indol-8-one (3p)

Yellow solid (70%, 205mg); Mp: 232.7-233.7 °C; ¹H NMR (500 MHz, CDCl₃- d_6): $\delta = 2.11$ (t, J = 6.30 Hz, 2H, CH₂), 2.36 (t, J = 4.80 Hz, 5H, CH₃, CH₂), 2.68 (t, J = 6.20 Hz, 2H, CH₂), 4.00-4.07 (m, 4H, 2CH₂), 5.60 (s, 1H, NH), 7.15 (d, J = 7.85 Hz, 2H, ArH), 7.57 (d, J = 8.10 Hz, 2H, ArH); ¹³C NMR (125 MHz, CDCl₃- d_6): $\delta = 21.7$, 22.0, 22.9, 38.2, 42.4, 48.9, 97.0, 120.2,

128.1, 128.9, 138.1, 138.3, 140.0, 154.7, 190.3, 191.0. HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₉O₂N₂ [(M+H)⁺], 295.1441; found, 295.1440.

9-(4-chloro-3-methylbenzoyl)-6-methyl-1,2,3,5,6,7-hexahydro-8*H*-imidazo[1,2-*a*]indol-8-one (3q)

Yellow solid (86%, 294mg); Mp: 244.6-245.6 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 1.07 (d, J = 6.54 Hz, 3H, CH₃), 2.00-2.05 (m, 1H, CH₂), 2.17-2.20 (m, 1H, CH₂), 2.27-2.33 (m, 4H, 1CH₃, 1CH), 2.36-2.41 (m, 1H, CH₂), 2.79-2.83 (m, 1H, CH₂), 3.92-3.96 (m, 2H, CH₂), 4.02-4.09 (m, 2H, CH₂), 6.95 (s, 1H, NH), 7.32 (s, 2H, ArH), 7.48 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 20.0, 21.2, 29.6, 30.9, 42.3, 46.7, 49.1, 95.3, 119.0, 128.2, 131.5, 134.6, 135.5, 139.2, 140.6, 155.2, 187.0, 190.0. HRMS (TOF ES⁺): *m*/*z* calcd for C₁₉H₁₉O₂N₂ClNa [(M+Na)⁺], 365.1027; found, 365.1031.

6,6-dimethyl-9-(4-methylbenzoyl)-1,2,3,5,6,7-hexahydro-8*H*-imidazo[1,2-*a*]indol-8-one (3r)

Yellow solid (80%, 257mg); ¹H NMR (500 MHz, CDCl₃-*d*₆): $\delta = 0.81$ (s, 6H, 2CH₃), 1.92 (s, 2H, CH₂), 2.06 (s, 3H, CH₃), 2.29 (s, 2H, CH₂), 2.66 (s, 2H, CH₂), 3.74-3.78 (m, 4H, 2CH₂), 5.68 (s, 1H, NH), 6.81 (d, J = 7.90 Hz, 2H, ArH), 7.22 (d, J = 8.05 Hz, 2H, ArH); ¹³C NMR (125 MHz, CDCl₃-*d*₆): $\delta = 21.4$, 28.3, 35.2, 35.5, 42.1, 48.7, 52.4, 96.1, 118.5, 127.8, 128.6, 136.7, 138.2, 140.4, 154.6, 189.2, 190.3. HRMS (TOF ES⁺): *m*/*z* calcd for C₂₀H₂₃O₂N₂ [(M+H)⁺], 323.1754; found, 323.1753.

10-(4-isopropylbenzoyl)-1,2,3,4,8,9-hexahydropyrimido[1,2-*a*]indol-6(7*H*)-one (4a)

Yellow solid (48%, 161mg); Mp: 242.9–243.9 °C; ¹H NMR (500 MHz, CDCl₃- d_6): δ = 1.28 (d, J = 6.90 Hz, 6H, 2CH₃), 1.82 (t, J = 6.15 Hz, 2H, CH₂), 2.11 (t, J = 5.75 Hz, 2H, CH₂), 2.20 (t, J

= 5.95 Hz, 2H, CH₂), 2.37 (t, J = 6.00 Hz, 2H, CH₂), 2.96 (t, J = 6.90 Hz, 1H, CH), 3.47-3.49 (m, 2H, CH₂), 4.39 (t, J = 5.95 Hz, 2H, CH₂), 7.27 (d, J = 7.15 Hz, 2H, ArH), 7.42-7.44 (m, 2H, ArH), 7.76 (s, 1H, NH); ¹³C NMR (125 MHz, CDCl₃- d_6): δ = 20.9, 23.9, 24.7, 25.2, 34.1, 38.1, 38.2, 42.5, 103.8, 121.9, 126.2, 127.6, 138.5, 139.3, 149.8, 151.6, 187.0, 192.2. HRMS (TOF ES⁺): m/z calcd for C₂₁H₂₄O₂N₂Na [(M+Na)⁺], 359.1730; found, 359.1735.

10-(4-methylbenzoyl)-1,2,3,4,8,9-hexahydropyrimido[1,2-*a*]indol-6(7*H*)-one (4b)

Yellow solid (52%, 160mg); Mp: 225.8–226.8 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 1.70-1.74 (m, 2H, CH₂), 1.95-1.99 (m, 2H, CH₂), 2.08 (t, *J* = 6.00 Hz, 2H, CH₂), 2.24 (t, *J* = 5.94 Hz, 2H, CH₂), 2.37 (s, 3H, CH₃), 3.36-3.39 (m, 2H, CH₂), 4.22 (t, *J* = 5.88 Hz, 2H, CH₂), 7.26 (d, *J* = 7.80 Hz, 2H, ArH), 7.35 (d, *J* = 7.98 Hz, 2H, ArH), 7.89 (s, 1H, NH); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 20.8, 21.5, 24.6, 25.1, 38.1, 42.8, 103.4, 121.5, 127.7, 129.1, 137.6, 139.6, 140.4, 149.5, 185.7, 190.6. HRMS (TOF ES⁺): *m*/*z* calcd for C₁₉H₂₀O₂N₂Na [(M+Na)⁺], 331.1417; found, 331.1413.

10-benzoyl-1,2,3,4,8,9-hexahydropyrimido[1,2-*a*]indol-6(7*H*)-one (4c)

Yellow solid (65%, 191mg); Mp: 200.6–201.6 °C; ¹H NMR (600 MHz, CDCl₃-*d*₆): δ = 1.17-1.83 (m, 2H, CH₂), 2.05-2.14 (m, 4H, 2CH₂), 2.36 (t, *J* = 6.18 Hz, 2H, CH₂), 3.48-3.50 (m, 2H, CH₂), 4.39 (t, *J* = 5.94 Hz, 2H, CH₂), 7.41-7.48 (m, 5H, ArH), 7.79 (s, 1H, NH); ¹³C NMR (150 MHz, CDCl₃-*d*₆): δ = 20.9, 24.6, 25.0, 38.1, 38.2, 42.5, 103.8, 122.1, 127.3, 128.2, 130.3, 138.3, 141.8, 149.8, 187.0, 190.1. HRMS (TOF ES⁺): *m*/*z* calcd for C₁₈H₁₉O₂N₂ [(M+H)⁺], 295.1441; found, 295.1443.

10-(4-bromobenzoyl)-1,2,3,4,8,9-hexahydropyrimido[1,2-*a*]indol-6(7*H*)-one (4d)

Yellow solid (66%, 245mg); Mp: 231.7–232.7 °C; ¹H NMR (500 MHz, CDCl₃-*d*₆): δ = 1.81-1.86 (m, 2H, CH₂), 2.05-2.15 (m, 4H, 2CH₂), 2.38 (t, *J* = 6.05 Hz, 2H, CH₂), 3.48-3.50 (m, 2H, CH₂), 4.38 (t, *J* = 5.95 Hz, 2H, CH₂), 7.35-7.39 (m, 2H, ArH), 7.53-7.58 (m, 2H, ArH), 7.77 (s, 1H, NH); ¹³C NMR (125 MHz, CDCl₃-*d*₆): δ = 20.9, 24.5, 25.2, 38.1, 38.1, 42.5, 103.6, 122.2, 124.8, 129.1, 131.4, 137.8, 140.5, 149.9, 187.2, 190.6. HRMS (TOF ES⁺): *m/z* calcd for C₁₈H₁₇O₂N₂BrNa [(M+Na)⁺], 395.0366; found, 395.0364.

10-(4-fluorobenzoyl)-1,2,3,4,8,9-hexahydropyrimido[1,2-*a*]indol-6(7*H*)-one (4e)

Yellow solid (68%, 212mg); Mp: 206.8–207.8 °C; ¹H NMR (500 MHz, CDCl₃-*d*₆): δ = 1.82-1.86 (m, 2H, CH₂), 2.10-2.17 (m, 4H, 2CH₂), 2.38 (t, *J* = 6.10 Hz, 2H, CH₂), 3.48-3.50 (m, 2H, CH₂), 4.39 (t, *J* = 5.95 Hz, 2H, CH₂), 7.09-7.14 (m, 2H, ArH), 7.48-7.52 (m, 2H, ArH), 7.74 (s, 1H, NH); ¹³C NMR (125 MHz, CDCl₃-*d*₆): δ = 20.9, 24.6, 25.2, 38.1, 38.2, 42.5, 103.7, 115.2 (d, *J* = 22.5 Hz), 122.1, 129.7 (d, *J* = 7.5 Hz), 137.9 (d, *J* = 3.8 Hz), 137.9, 149.8, 164.0 (d, *J* = 248.8 Hz), 187.1, 190.7; ¹⁹F NMR (470 MHz, CDCl₃-*d*₆): δ = -109.6. HRMS (TOF ES⁺): *m*/*z* calcd for C₁₈H₁₇O₂N₂FNa [(M+Na)⁺], 335.1173; found, 335.1175.

10-(4-fluorobenzoyl)-8-methyl-1,2,3,4,8,9-hexahydropyrimido[1,2-*a*]indol-6(7*H*)-one (4f)

Yellow solid (62%, 202mg); Mp: 222.6–223.6 °C; ¹H NMR (500 MHz, CDCl₃- d_6): $\delta = 0.92$ (d, J = 6.25 Hz, 3H, CH₃), 1.94 (t, J = 9.20 Hz, 1H, CH₂), 2.06-2.18 (m, 5H, CH₂), 2.36-2.40 (m, 1H, CH), 3.46-3.51 (m, 2H, CH₂), 4.36-4.40 (m, 2H, CH₂), 7.10-7.13 (m, 2H, ArH), 7.50-7.52 (m, 2H, ArH), 7.72 (s, 1H, NH); ¹³C NMR (125 MHz, CDCl₃- d_6): $\delta = 20.9$, 21.0, 32.3, 33.3, 38.1, 42.4, 46.4, 103.6, 115.2 (d, J = 10.2 Hz), 121.9, 129.8 (d, J = 8.8 Hz), 137.3, 137.8 (d, J = 3.8 Hz), 150.0, 164.1 (d, J = 248.8 Hz), 186.8, 190.6; ¹⁹F NMR (470 MHz, CDCl₃- d_6): $\delta = -109.5$. HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₉O₂N₂FNa [(M+Na)⁺], 349.1323; found, 349.1324.

10-(4-chlorobenzoyl)-8-phenyl-1,2,3,4,8,9-hexahydropyrimido[1,2-*a*]indol-6(7*H*)-one (4g)

Yellow solid (66%, 266mg); Mp: 242.9–243.8 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 1.96-2.01 (m, 2H, CH₂), 2.13-2.16 (m, 1H, CH₂), 2.35-2.38 (m, 1H, CH₂), 2.50-2.56 (m, 1H, CH₂), 2.66-2.70 (m, 1H, CH₂), 3.16-3.20 (m, 1H, CH₂), 3.37-3.43 (m, 2H, CH₂), 4.25 (t, *J* = 6.36 Hz, 2H, CH₂), 7.15-7.18 (m, 3H, ArH), 7.25 (t, *J* = 7.44 Hz, 2H, ArH), 7.46-7.50 (m, 4H, ArH), 7.97 (s, 1H, NH); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 20.7, 32.3, 38.2, 42.3, 42.7, 45.1, 103.3, 121.6, 127.0, 127.2, 128.7, 128.9, 129.7, 135.4, 136.3, 140.8, 144.3, 149.9, 184.7, 189.0. HRMS (TOF ES⁺): *m*/*z* calcd for C₂₄H₂₂ClO₂N₂ [(M+H)⁺], 405.1364; found, 405.1364.

10-(4-fluorobenzoyl)-8-phenyl-1,2,3,4,8,9-hexahydropyrimido[1,2-a]indol-6(7H)-one (4h)

Yellow solid (69%, 267mg); Mp: 226.8–227.8 °C; ¹H NMR (500 MHz, CDCl₃-*d*₆): δ = 2.05-2.17 (m, 2H, CH₂), 2.35-2.39 (m, 1H, CH₂), 2.52-2.71 (m, 3H, CH₂), 3.19-3.25 (m, 1H, CH), 3.46-3.55 (m, 2H, CH₂), 4.38-4.45 (m, 2H, CH₂), 7.05-7.11 (m, 4H, ArH), 7.19-7.22 (m, 1H, ArH), 7.28 (t, *J* = 7.25 Hz, 2H, ArH), 7.50-7.54 (m, 2H, ArH), 7.74 (s, 1H, NH); ¹³C NMR (125 MHz, CDCl₃-*d*₆): δ = 20.9, 32.3, 38.2, 42.5, 42.8, 45.3, 103.7, 115.3 (d, *J* = 21.3 Hz), 121.9, 126.7, 126.8, 128.6, 129.8 (d, *J* = 7.5 Hz), 136.8, 137.6 (d, *J* = 2.5 Hz), 143.4, 150.2, 163.2 (d, *J* = 248.8 Hz), 185.7, 190.5; ¹⁹F NMR (470 MHz, CDCl₃-*d*₆): δ = -109.0. HRMS (TOF ES⁺): *m*/*z* calcd for C₂₄H₂₁O₂N₂FNa [(M+Na)⁺], 411.1479; found, 411.1476.

10-(4-fluorobenzoyl)-8,8-dimethyl-1,2,3,4,8,9-hexahydropyrimido[**1,2-***a*]**indol-6**(7*H*)-**one** (**4i**)

Yellow solid (70%, 238mg); Mp: 216.2–217.2 °C; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 0.83$ (s, 6H, 2CH₃), 1.98 (d, J = 9.25 Hz, 4H, 2CH₂), 2.14 (s, 2H, CH₂), 4.21 (t, J = 5.80 Hz, 2H, CH₂),

7.28-7.31 (m, 2H, ArH), 7.51-7.53 (m, 2H, ArH), 7.89 (s, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 20.7, 28.4, 35.6, 38.1, 38.7, 42.6, 51.8, 103.7, 115.6, 115.7 (d, *J* = 21.3 Hz), 120.7, 130.4 (d, *J* = 8.8 Hz), 135.4, 138.6 (d, *J* = 2.5 Hz), 149.8, 163.7 (d, *J* = 246.3 Hz), 185.1, 189.2; ¹⁹F NMR (470 MHz, DMSO-*d*₆): δ = -110.1. HRMS (TOF ES⁺): *m*/*z* calcd for C₂₀H₂₂O₂N₂F [(M+H)⁺], 341.1660; found, 341.1670.

10-nitro-1,2,3,4-tetrahydropyrimido[1,2-*a*]indol-9-ol (5a)

Yellow solid (42%, 97mg); Mp: 303.9–304.9 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 2.19-2.23 (m, 2H, CH₂), 3.62-3.64 (m, 2H, CH₂), 2.95 (t, *J* = 5.88 Hz, 2H, CH₂), 6.53 (d, *J* = 8.16 Hz, 1H, ArH), 6.60 (d, *J* = 7.86 Hz, 1H, ArH), 7.06 (t, *J* = 7.98 Hz, 1H, ArH), 9.15 (s, 1H, OH); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 19.5, 38.6, 40.0, 100.2, 106.2, 110.7, 112.2, 126.7, 135.8, 148.8, 150.4. HRMS (TOF ES⁺): *m*/*z* calcd for C₁₁H₁₁O₃N₃Na [(M+Na)⁺], 256.0693; found, 256.0696.

7-methyl-10-nitro-1,2,3,4-tetrahydropyrimido[1,2-*a*]indol-9-ol (5b)

Yellow solid (30%, 74mg); Mp: 269.3–270.3 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 2.09 (t, *J* = 5.52 Hz, 2H, CH₂), 2.28 (s, 3H, CH₃), 3.51 (s, 2H, CH₂), 3.92 (t, *J* = 5.82 Hz, 2H, CH₂), 6.35 (s, 1H, ArH), 6.55 (s, 1H, ArH), 9.24 (s, 1H, NH), 11.22 (s, 1H, OH); ¹³C NMR (150 MHz, DMSO-*d*₆): δ =19.3, 21.8, 38.8, 40.0, 101.6, 103.7, 111.3, 136.4, 137.3, 149.0, 149.9. HRMS (TOF ES⁺): *m*/*z* calcd for C₁₂H₁₄O₃N₃ [(M+H)⁺], 248.1030; found, 248.1028.

10-nitro-7-phenyl-1,2,3,4-tetrahydropyrimido[1,2-*a*]indol-9-ol (5c)

Yellow solid (35%, 108mg); Mp: 268.4–269.4 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 2.13 (d, J = 5.55 Hz, 2H, CH₂), 3.54 (s, 2H, CH₂), 4.02 (t, J = 5.80 Hz, 2H, CH₂), 6.83 (d, J = 1.30 Hz, 1H, ArH), 7.07 (d, J = 1.25 Hz, 1H, ArH), 7.37 (d, J = 7.35 Hz, 1H, ArH), 7.45 (t, J = 7.45 Hz, 2H, ArH), 7.71 (t, J = 7.25 Hz, 2H, ArH), 9.32 (s, 1H, NH), 11.3 (s, 1H, OH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 19.3, 38.9, 40.0, 99.7, 105.4, 108.8, 112.0, 127.1, 128.0, 129.3, 136.9,

139.5, 140.3, 149.2, 150.3. HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₅O₃N₃Na [(M+Na)⁺], 332.1006; found, 332.1003.

7-isopropyl-10-nitro-1,2,3,4-tetrahydropyrimido[1,2-*a*]indol-9-ol (5d)

Yellow solid (20%, 55mg); Mp: 239.3–240.3 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 1.21 (d, J = 6.90 Hz, 6H, 2CH₃), 2.13 (s, 2H, CH₂), 2.83-2.88 (m, 1H, CH), 3.56 (s, 2H, CH₂), 3.93 (t, J = 5.70 Hz, 2H, CH₂), 6.39 (s, 1H, ArH), 6.55 (s, 1H, ArH), 9.21 (s, 1H, NH), 11.16 (s, 1H, OH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ =19.4, 24.3, 34.2, 38.7, 40.0, 98.7, 104.1, 108.8, 112.0, 148.6, 149.0, 150.0. HRMS (TOF ES⁺): *m*/*z* calcd for C₁₄H₁₈O₃N₃ [(M+H)⁺], 276.1343; found, 276.1342.

<u>4 X-ray Structure and Data³</u>

4.1 X-ray Structure and Data of 3d

Figure S1. X-Ray crystal structure of 3d

· · · · · · · · · · · · · · · · · · ·	
Identification code	mo-240227B
Empirical formula	$C_{18}H_{17}FN_2O_2$
Formula weight	312.33 g/mol
Wavelength	0.71073 Å
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	$a = 8.5103(2) \text{ Å}$ $\alpha = 86.6800(10)^{\circ}.$
	$b = 10.3560(3) \text{ Å} \beta = 88.9640(10)^{\circ}.$
	$c = 17.9206(4) \text{ Å} \gamma = 75.0740(10)^{\circ}.$
Volume	1523.53(7) Å ³
Z, Calculated density	4, 1.362 g/cm ³
Absorption coefficient	0.098 mm ⁻¹
F(000)	656
Crystal size	0.220 x 0.240 x 0.260 mm
Theta range for data collection	2.04 to 28.38°
Limiting indices	-11<=h<=11, -13<=k<=13, -23<=l<=23
Reflections collected	55404
Independent reflections	7604 [R(int) = 0.0609]
Max. and min. transmission	0.7457 and 0.7263
Structure solution technique	direct methods
Structure solution program	SHELXT 2018/2 (Sheldrick, 2018)
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXL 2018/3 (Sheldrick, 2015)
Function minimized	$\Sigma w (Fo^2 - Fc^2)^2$
Data / restraints / parameters	7604 / 0 / 415
Goodness-of-fit on F^2	1.085
Final R indices [I>2sigma(I)]	R1 = 0.0622, $wR2 = 0.1143$
R indices (all data)	R1 = 0.0994, $wR2 = 0.1314$
Weighting scheme	$w=1/[\sigma^2(Fo^2)+(0.0324P)^2+0.8106P]$
	where $P=(Fo^2+2Fc^2)/3$
Largest diff. peak and hole	0.194 and -0.191 eÅ ⁻³
R.M.S. deviation from mean	0.039 eÅ ⁻³

Table S1. Crystal data and structure refinement for 3d

O4-C25 1.250(2)O1-C7 1.247(2) O2-C10 1.224(2) N2-C14 1.377(3) N2-C15 1.373(2) N2-C18 1.466(2)F2-C19 1.367(2)O3-C33 1.226(3) F1-C1 1.363(3)N4-C27 1.375(2)N4-C31 1.373(2) N4-C30 1.464(2)0.860000 N3-C27 1.340(2)N3-H3 N3-C28 1.452(2)N1-H1 0.860000 N1-C15 1.340(2)N1-C16 1.453(3) C26-C27 1.401(3)C26-C25 1.434(3)C26-C32 1.455(3)C9-C14 1.369(3) C9-C8 1.456(3) C9-C10 1.452(3) C14-C13 C4-C7 1.495(3)1.488(3)C4-C5 1.387(3)C4-C3 1.388(3) C22-C25 1.497(3)C22-C21 1.387(3)C22-C23 1.388(3)C8-C15 1.403(3)C8-C7 1.430(3) C10-C11 1.511(3) C32-C31 C32-C33 1.451(3) 1.370(3) C5-H5 0.930000 C5-C6 1.377(3) 0.930000 C21-C20 C21-H21 1.385(3) C33-C34 C31-C36 1.516(3) 1.489(3)C3-H3A 0.930000 C3-C2 1.384(3)C23-H23 0.930000 C23-C24 1.384(3)C13-H13A 0.970000 C13-H13B 0.970000 C13-C12 C30-H30A 0.970000 1.519(3) C30-H30B 0.970000 C30-C29 1.510(3) C29-H29A 0.970000 C29-H29B 0.970000 C29-C28 1.511(3) C18-H18A 0.970000 C18-H18B 0.970000 C18-C17 1.509(3) C20-H20 0.930000 C20-C19 1.363(3) C28-H28A 0.970000 C28-H28B 0.970000 C2-H2 0.930000 C2-C1 1.368(3) C6-H6 0.930000 C6-C1 1.371(3) C16-H16A 0.970000 C16-H16B 0.970000 C16-C17 C36-H36A 0.970000 1.514(3) C36-H36B 0.970000 C36-C35 1.524(3) C17-H17A 0.970000 C17-H17B 0.970000 C19-C24 1.363(3) C12-H12A 0.970000 C12-H12B 0.970000 C12-C11 1.511(3)C24-H24 0.930000 C34-H34A 0.970000 C34-H34B 0.970000 C34-C35 1.512(4) C11-H11A 0.970000 0.970000 C11-H11B C35-H35A 0.970000 C35-H35B 0.970000

Table S2. Bond lengths (Å) for 3d

4.2 X-ray Structure and Data of 4h

-

Figure S2. X-Ray crystal structure of 4h

Table S3. Crystal data and structure refinement for 4h
--

Identification code	mo-240227A
Empirical formula	$C_{24}H_{21}FN_2O_2$
Formula weight	388.43 g/mol
Wavelength	0.71073 Å
Crystal system, space group	monoclinic, P 1 21/n 1
Unit cell dimensions	$a = 14.4294(6) \text{ Å} \qquad \alpha = 90^{\circ}.$
	$b = 18.3423(10) \text{ Å} \beta = 0.1700(10)^{\circ}.$
	$c = 14.5578(6) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	3853.0(3) Å ³
Z, Calculated density	1.339 g/cm^3
Absorption coefficient	0.092 mm^{-1}
F(000)	1632
Crystal size	0.200 x 0.240 x 0.260 mm
Theta range for data collection	2.22 to 28.40°
Limiting indices	-19<=h<=18, -24<=k<=24, -19<=l<=19
Reflections collected	85595
Independent reflections	9588 [$R(int) = 0.1034$]
Max. and min. transmission	0.7457 and 0.7124
Structure solution technique	direct methods
Structure solution program	SHELXT 2018/2 (Sheldrick, 2018)
Refinement method	Full-matrix least-squares on F2
Refinement program	SHELXL 2018/3 (Sheldrick, 2015)
Function minimized	$\Sigma w (Fo^2 - Fc^2)^2$
Data / restraints / parameters	9588 / 50 / 521
Goodness-of-fit on F^2	1.082
Final R indices [I>2sigma(I)]	R1 = 0.0845, wR2 = 0.1539
R indices (all data)	R1 = 0.1521, $wR2 = 0.1864$
Weighting scheme	$w=1/[\sigma^{2}(Fo^{2})+(0.0462P)^{2}+3.1389P]$
	where $P = (Fo^2 + 2Fc^2)/3$
Largest diff. peak and hole	0.413 and -0.356 $e^{\text{Å}^{-3}}$
R.M.S. deviation from mean	0.044 eÅ ⁻³

F1-C22 1.362(3) O1-C18 1.237(3) N1-H1 O2-C8 1.225(3) 0.860000 N1-C1 1.456(4) N1-C4 1.325(3) N2-C3 1.467(3) N2-C4 1.346(3) N2-C7 1.405(3) C1-H1A 0.970000 C1-H1B 0.970000 C1-C2 1.503(5) C2-H2B C2-H2A 0.970000 0.970000 C2-C3 1.503(4) C3-H3A 0.970000 C3-H3B 0.970000 C4-C5 1.434(4) C5-C6 1.429(4) C5-C18 1.439(3) C6-C7 1.376(3) C6-C10 1.501(4) C7-C8 C8-C9 1.441(4)1.503(4)C9-H9A 0.970000 C9-H9B 0.970000 C9-C11 1.522(4)C10-H10A 0.970000 C10-H10B 0.970000 C10-C11 1.533(4) C11-H11 0.980000 C11-C12 1.513(4) C12-C13 1.376(4) C12-C17 1.377(4) C13-H13 0.930000 C13-C14 1.387(4) C14-H14 0.930000 C14-C15 1.357(5) C15-H15 0.930000 C15-C16 1.361(5) C16-H16 0.930000 C16-C17 1.380(5)C17-H17 0.930000 C18-C19 1.494(4)C19-C20 C19-C24 1.382(4) 1.389(4)C20-H20 0.930000 C20-C21 1.384(4) C21-H21 0.930000 C21-C22 1.368(4) C22-C23 C23-H23 0.930000 1.359(5) 1.376(4) C23-C24 C24-H24 0.930000 F2-C45 1.360(3) O3-C32 1.229(3) O4-C48 1.238(3) N3-C25 1.467(3) N3-C28 1.352(3)N3-C31 1.402(3)N4-H4 0.860000 N4-C27 1.449(4) N4-C28 1.330(3) C25-H25A 0.970000 0.970000 C25-H25B C25-H25C 0.970000 C25-H25D 0.970000 C25-C26 1.456(6) C25-C26A 1.581(11) C26-H26A 0.970000 C26-H26B 0.970000 C26-C27 1.476(6) C27-H27A 0.970000 0.970000 C27-H27B C27-H27C C27-H27D 0.970000 0.970000 C27-C26A C28-C29 1.346(11) 1.425(3) C29-C30 1.424(4)C29-C48 1.436(4) C30-C3 1.371(3) C30-C35 1.500(4) C31-C32 1.439(4) C32-C33 1.501(4) C33-H33A 0.970000 C33-H33B 0.970000

Table S4. Bond lengths (Å) for 4h.

C33-C34	1.502(4)	C34-H34	0.980000	
C34-C35	1.503(4)	C34-C36	1.513(3)	
C35-H35A	0.970000	C35-H35B	0.970000	
C36-C37	1.390000	C36-C41	1.390000	
C37-H37	0.930000	C37-C38	1.390000	
C38-H38	0.930000	C38-C39	1.390000	
C39-H39	0.930000	C39-C40	1.390000	
C40-H40	0.930000	C40-C41	1.390000	
C41-H41	0.930000	C42-C43	1.389(4)	
C42-C47	1.377(4)	C42-C48	1.493(4)	
C43-H43	0.930000	C43-C44	1.384(4)	
C44-H44	0.930000	C44-C45	1.359(5)	
C45-C46	1.354(4)	C46-H46	0.930000	
C46-C47	1.380(4)	C47-H47	0.930000	
C26A-H26C	0.970000	C26A-H26D	0.970000	

Figure S3. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3a

Т

Figure S4. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 3a

Figure S5. ¹H NMR (500 MHz, CDCl₃-*d*₆) spectra of compound **3b**

Figure S6. ¹³C NMR (125 MHz,CDCl₃-*d*₆) spectra of compound **3b**

Figure S7. ¹H NMR (600 MHz, CDCl₃-*d*₆) spectra of compound 3c

DEPT135

Figure S8. ¹³C NMR (150 MHz, $CDCl_3$ - d_6) spectra of compound **3c**

S31

Figure S11. ¹⁹F NMR (475 MHz, DMSO-*d*₆) spectra of compound 3d

Figure S12. ¹H NMR (500 MHz, CDCl₃-*d*₆) spectra of compound 3e

Figure S13. ¹³C NMR (125 MHz, CDCl₃-*d*₆) spectra of compound **3e**

Figure S14. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound 3f

S36

Figure S17. ¹H NMR (500 MHz,CDCl₃-*d*₆) spectra of compound **3g**

Figure S18. ¹³C NMR (125 MHz,CDCl₃-*d*₆) spectra of compound 3g

Figure S19. ¹H NMR (600 MHz,DMSO-*d*₆) spectra of compound 3h

211 251 365 2551 127 2551 725 569 460 869 460 9480 9480 9480 9587 7255 551 122 1302 9480 9587 5551 1302 9683 9683 . 9524 . 9405 . 84555 . 845555 . 8320 . 8320 . 94838 . 9576 . 0552 . 0720 . 0552 . 0552 . 0552 . 0552 . 0552 . 0552 . 0339 . 0552 . 0339 . 0552 . 0552 . 0339 . 0552 . 0339 . 0552 . 055

000000000000

Figure S22. ¹³C NMR (125 MHz,DMSO-*d*₆) spectra of compound 3i

Figure S23. ¹⁹F NMR (475 MHz, DMSO-*d*₆) spectra of compound 3i

Figure S24. ¹H NMR (600 MHz,CDCl₃-*d*₆) spectra of compound 3j

Figure S25. ¹³C NMR (150 MHz,CDCl₃-*d*₆) spectra of compound 3j

Figure S26. ¹H NMR (500 MHz,DMSO-*d*₆) spectra of compound 3k

Figure S28. ¹H NMR (500 MHz,DMSO-*d*₆) spectra of compound **3**

Figure S29. ¹³C NMR (125 MHz,DMSO-*d*₆) spectra of compound 31

Figure S30. ¹⁹F NMR (475 MHz, DMSO-*d*₆) spectra of compound 31

Figure S31. ¹H NMR (500 MHz,CDCl₃-*d*₆) spectra of compound 3m

Figure S33. ¹H NMR (600 MHz,CDCl₃-*d*₆) spectra of compound 3n

Figure S34. ¹³C NMR (150 MHz,CDCl₃-*d*₆) spectra of compound 3n

Figure S35. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound **30**

Figure S36. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 30

Figure S37. ¹H NMR (500 MHz,CDCl₃-*d*₆) spectra of compound **3p**

Figure S39. ¹H NMR (600 MHz,DMSO-*d*₆) spectra of compound 3q

Figure S40. ¹³C NMR (150 MHz,DMSO-*d*₆) spectra of compound 3q

Figure S41. ¹H NMR (500 MHz,CDCl₃-*d*₆) spectra of compound 3r

Figure S42. ¹³C NMR (125 MHz,CDCl₃-*d*₆) spectra of compound 3r

Figure S43. ¹H NMR (500 MHz,DMSO-*d*₆) spectra of compound 4a

Figure S44. ¹³C NMR (150 MHz,CDCl₃-*d*₆) spectra of compound 4a

Figure S45. ¹H NMR (600 MHz,DMSO-*d*₆) spectra of compound 4b

Figure S46. ¹³C NMR (150 MHz,DMSO-*d*₆) spectra of compound 4b

Figure S47. ¹H NMR (600 MHz,CDCl₃-*d*₆) spectra of compound **4c**

Figure S48. ¹³C NMR (150 MHz,CDCl₃-*d*₆) spectra of compound 4c

Figure S49. ¹H NMR (500 MHz,CDCl₃-*d*₆) spectra of compound 4d

Figure S50. ¹³C NMR (125 MHz,CDCl₃-*d*₆) spectra of compound 4d

Figure S51. ¹H NMR (500 MHz,CDCl₃-*d*₆) spectra of compound 4e

Figure S54. ¹H NMR (500 MHz,CDCl₃-*d*₆) spectra of compound 4f

Figure S55. ¹³C NMR (125 MHz,CDCl₃-*d*₆) spectra of compound 4f

Figure S57. ¹H NMR (600 MHz,DMSO-*d*₆) spectra of compound 4g

Figure S58. ¹³C NMR (150 MHz,DMSO-*d*₆) spectra of compound 4g

Figure S59. ¹H NMR (500 MHz,CDCl₃-*d*₆) spectra of compound 4h

Figure S60. ¹³C NMR (125 MHz,CDCl₃-*d*₆) spectra of compound 4h

Figure S61. ¹⁹F NMR (475 MHz, CDCl₃-*d*₆) spectra of compound 4h

Figure S62. ¹H NMR (500 MHz,DMSO-*d*₆) spectra of compound 4i

Figure S63. ¹³C NMR (125 MHz,DMSO-*d*₆) spectra of compound 4i

Figure S64. ¹⁹F NMR (475 MHz, DMSO-*d*₆) spectra of compound 4i

Figure S65. ¹H NMR (600 MHz,DMSO-*d*₆) spectra of compound 5a

Figure S67. ¹H NMR (600 MHz,DMSO-*d*₆) spectra of compound 5b

S89

Figure S69. ¹H NMR (600 MHz,DMSO-*d*₆) spectra of compound 5c

S91

Figure S71. ¹H NMR (500 MHz,DMSO-*d*₆) spectra of compound 5d

Figure S72. ¹³C NMR (125 MHz,DMSO-*d*₆) spectra of compound 5d

References

- (a) Q.-X. Zi, C.-L. Yang, K. Li, Q. Luo, J. Lin, S.-J. Yan, J. Org. Chem., 2020, 85, 327. (b) Z.-T. Huang, Z.-R. Liu, Synthesis, 1987, 357. (c)
 C.-Y. Yu, P.-H. Yang, M.-X. Zhao, Z.-T. Huang, Synthesis, 2006, 12, 1835. (d) K. Luo, Y. Zhao, J. Zhang, J. He, R. Huang, S. Yan, J. Lin,
 Y. Jin, Org. Lett., 2019, 21, 423. (e) Z.-T. Huang, Z.-R. Liu, Synth. Commun., 1989, 19, 943.
- 2. (a) Mayakrishnan, S.; Tamizmani, M.; Maheswari, N. U. Chem. Commun., 2020, 56, 15462. (b) Yang, L.; Pi, C.; Wu, Y.; Cui, X. Org. Lett., 2022, 24, 7502.
- 3. CCDC 2373953 contain the supplementary crystallographic data for compound **3d**. CCDC 2373954 contain the supplementary crystallographic data for compound **4h**. These data can be obtained free of charge from The Cambridge Crystallographic Data Center *via* www.ccdc.cam.ac.uk/data_request/cif