Supporting information for

Calix[4]pyrrole Bis-crowns as Ion Pair Receptors: Cation Selectivity

Modulated by the Counter Anions

Ju Ho Yang,[#] Ju Hyun Oh,[#] Seung-Ryong Kwon and Sung Kuk Kim^{*}

Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju, 660-701, Korea

1. General experimental and synthetic details	S1 – S3
2. ¹ H NMR Spectral data for ion binding studies	S4-S30
3. NMR and HRMS spectra	S31 - S43
4. X-ray crystal data S48	S44 –
5. References	S45

1. General experimental and synthetic details

Solvents and reagents used for the synthetic work were purchased from Aldrich, TCI, or Alfa Aesar and used without further purification. NMR spectra were recorded on a Bruker Advance-300 MHz instrument. The NMR spectra were referenced to residual solvent peaks and the spectroscopic solvents were purchased from either Cambridge Isotope Laboratories or Aldrich. Fast atom bombardment (FAB) mass spectra (MS) were recorded on a JMS-700 (JEOL) spectrometer. TLC analyses were carried out using Sorbent Technologies silica gel (200 mm) sheets. Column chromatography was performed on Sorbent silica gel 60 (40–63 mm). Calix[4]pyrrole **5** was synthesized following a literature procedure.^{1,2} The X-ray crystallographic analysis was carried out on a Rigaku Oxford Diffraction HyPix6000E Synergy diffractometer using a μ -focus Cu K α radiation source ($\lambda = 1.5418$ Å) with collimating mirror monochromators.

Compound 2

To acetonitrile (100 mL) were added calix[4]pyrrole **6** (1.00 g, 1.34 mmol) and triethylene glycol ditosylates (1.23 g, 2.68 mmol) in the presence of 12 equiv of K₂CO₃ (2.23 g). The reaction mixture was stirred under a nitrogen atmosphere for 3 days at reflux. After the reaction was completed, the volatile solvent was removed by evaporation *in vacuo*. To the resulting crude reaction mixture, ethyl acetate was added and the organic layer was washed twice with water. The organic layer was separated off and then dried over anhydrous MgSO₄. The organic solvent was evaporated in vacuo to give a brownish solid. Column chromatography over neutral alumina (eluent: ethyl acetate/hexane (1:1)) gave receptor **2** (0.13 g, 10% yield) as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.17 (s, 2H), 7.04 (s, 2H), 6.89 – 6.79 (m, 8H), 6.73 – 6.63 (m, 8H), 6.09 (d, *J* = 2.5 Hz, 4H), 6.00 (d, *J* = 2.6 Hz, 4H), 4.10 – 4.00 (m, 8H), 3.93 – 3.78 (m, 8H), 3.74 (s, 8H), 1.90 (s, 12H). ¹³C NMR (75 MHz, chloroform-*d*) δ 157.1, 137.3, 136.6, 128.4, 113.7, 106.1, 105.2, 71.1, 69.7, 67.4, 44.0, 30.1 ppm. HRMS (FAB) *m/z* 969.4825 [M + H⁺] calc. for C₆₀H₆₅N₄O₈, found 969.4802.

Compound 3

To acetonitrile (100 mL) were added calix[4]pyrrole **6** (1.00 g, 1.34 mmol) and tetraethylene glycol ditosylates (1.42 g, 2.82 mmol) in the presence of 12 equiv of K₂CO₃ (2.23 g). The reaction mixture was stirred under a nitrogen atmosphere for 3 days at reflux. After the reaction was completed, the volatile solvent was removed by evaporation *in vacuo*. To the resulting crude reaction mixture, ethyl acetate was added, and the organic layer was washed twice with water. The organic layer was separated off and then dried over anhydrous MgSO₄. The organic solvent was evaporated in vacuo to give a brownish solid. Column chromatography over silica gel (eluent: ethyl acetate/hexane (3:2)) gave receptor **3** (0.33 g, 23% yield) as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.59 (s, 2H), 7.34 (s, 2H), 6.83 (d, *J* = 8.7 Hz, 8H), 6.64 (d, *J* = 8.6 Hz, 8H), 6.02 (d, *J* = 2.5 Hz, 4H), 5.67 (s, 4H), 4.09 – 3.95 (m, 8H), 3.79 (t, *J* = 4.9 Hz, 8H), 3.70 – 3.55 (m, 16H), 1.84 (s, 12H). ¹³C NMR (75 MHz, chloroform-*d*) δ 156.1, 136.1, 127.5, 112.6, 104.5, 69.6, 68.4, 66.4, 43.0 ppm. HRMS (FAB) *m/z* 1057.5326 [M + H⁺] calc. for C₆₄H₇₃N₄O₁₀, found 1057.5327.

Compound 4

To acetonitrile (100 mL) were added calix[4]pyrrole **6** (1.00 g, 1.34 mmol) and pentaethylene glycol ditosylates (1.47 g, 2.68 mmol) in the presence of 12 equiv of K₂CO₃ (2.23 g). The reaction mixture was stirred under a nitrogen atmosphere for 3 days at reflux. After the reaction was completed, the volatile solvent was removed by evaporation *in vacuo*. To the resulting crude reaction mixture, ethyl acetate was added and the organic layer was washed twice with water. The organic layer was separated off and then dried over anhydrous MgSO₄. The organic solvent was evaporated in vacuo to give a brownish solid. Column chromatography over neutral alumina (eluent: ethyl acetate/hexane (1:1)) gave receptor **4** (0.22 g, 15% yield) as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.81 (s, 2H), 7.47 (s, 2H), 7.02 – 6.93 (m, 8H), 6.80 – 6.70 (m, 8H), 6.10 (d, J = 2.6 Hz, 4H), 5.45 (d, J = 2.5 Hz, 4H), 4.14 – 4.04 (m, 8H), 3.85 (t, J = 5.1 Hz, 8H), 3.76 – 3.62 (m, 24H), 1.93 (s, 12H). ¹³C NMR (75 MHz, chloroform-*d*) δ 156.1, 136.7, 127.5, 112.5, 104.1, 70.3, 69.0, 68.5, 66.2, 43.0 ppm. HRMS (FAB) *m/z* 1145.5830 [M + H⁺] calc. for C₆₈H₈₁N₄O₁₂, found 1145.5851.

2. ¹H NMR spectral data

a) Treatment used where binding between receptors and anions is governed by a binding/release equilibrium that is slow on the NMR time scale:

Equilib

Equilibrium:
$$A + B \xrightarrow{K_a} AB$$

$$\frac{[AB]}{[A][B]} = \frac{[AB]}{(c(A) - [AB])(c(B) - [AB])}$$
(1)

c(A) and c(B) are the initial concentrations of A and B, and [A], [B] and [AB] are the equilibrium concentrations of the three species.

A and B is in slow exchange with the complex AB on the ¹H NMR time scale.

Two signals for one specific proton on A can be seen in the spectrum, corresponding to complexed and uncomplexed forms of A:

Single-point Methods

 K_a is determined from the integrals of complexed and uncomplexed A. If I(A) denotes the integral of a signal for one specific proton of A and I(AB) the integral for the same proton in the complex, the concentration of AB at equilibrium is shown by eq 2. The equilibrium expression is obtrained after substituting into eq. (1):

$$[AB] = \frac{I(AB)}{I(A) + I(AB)}c(A)$$

$$I(AB)$$
(2)

$$K_{a} = \overline{I(A)(c(B) - \frac{I(AB)}{I(A) + I(AB)}c(A))}$$
(3)

b) Treatment used where binding between receptors and anions is governed by a binding/release equilibrium that is fast on the NMR time scale:

Binding constants of receptors anions calculated with were using the equation $y = (b \times x)/(1 + x \times Ka)$, where x = [G], $y = |\delta_0 - \delta|$ (δ is the chemical shift of an indicative receptor proton signal at a certain anion concentration and δ_0 is the chemical shift of the receptor signal for the anion-free form).

*

Pyrrolic NH Ha H_d $\mathbf{H}_{\mathbf{c}}$ He H_b (a) **2** only (b) $2 + F^{-}$ (c) $2 + Cl^{-1}$ (d) **2** + Br (e) $2 + I^{-}$ (f) $2 + HCO_{3}^{-}$ (g) $2 + HSO_4^{-1}$ (h) $\mathbf{2} + SO_4^{2-}$ (i) $\mathbf{2} + H_2 PO_4^{-1}$ (j) $\mathbf{2} + HP_2O_7^{3-1}$ 7.5 13 7.0 6.5 6.0 4.0 ppm

Fig. S1 Top: Proposed binding modes of receptor 2 for F⁻ and HCO₃⁻. Bottom: Partial views of ¹H NMR spectra (300 MHz, 25 °C) of 2 (3 mM) recorded in chloroform-*d* in the presence of the indicated anions (ca. 10 equiv each) as their respective TBA⁺ (tetrabutylammonium) salts except for HCO₃⁻ in the TEA⁺ (tetraethylammonium) salt form. The asterisk (*) denotes a residual NMR solvent peak. The proton signals exhibited at lower fields than $\delta = 10$ ppm were magnified by 2-fold.

Ha H_d Pyrrolic NH H H_e H_{c} H_e (a) 4 only (b) $4 + F^{-1}$ (c) $4 + Cl^{-}$ (d) 4 + Br(e) $4 + I^{-}$ (f) $4 + HCO_{3}^{-1}$ (g) $4 + HSO_4^{-1}$ (h) $4 + SO_4^{2-}$ (i) $4 + H_2 PO_4^{-1}$ (j) $4 + HP_2O_7^{3-1}$ 12.5 7.5 6.5 13.5 7.0 6.0 5.5 4.0 ppm

Fig. S2 Top: Proposed binding modes of receptor **4** for F⁻ and HCO₃⁻. Bottom: Partial views of ¹H NMR spectra (300 MHz, 25 °C) of **4** (3 mM) recorded in chloroform-*d* in the presence of the indicated anions (ca. 10 equiv each) as their respective TBA⁺ (tetrabutylammonium) salts except for HCO₃⁻ in the TEA⁺ (tetraethylammonium) salt form. The asterisk (*) denotes a residual NMR solvent peak. The proton signals exhibited at lower fields than $\delta = 10$ ppm were magnified by 3-fold.

Fig. S3 Partial ¹H NMR spectra (300 MHz, 25 °C) recorded during the titration of 2 (3 mM) with TBAF in CDCl₃. The asterisk (*) denotes a residual NMR solvent peak. The proton signals exhibited at lower fields than $\delta = 10$ ppm were magnified by 3-fold.

Fig. S4 Partial ¹⁹F NMR spectra of (a) TBAF only and (b) receptor **2** (10 mM) + TBAF (5 equiv) recorded in CDCl3. Fluorobenzene was used as an internal reference.

Fig. S5 Partial ¹H NMR spectra (300 MHz, 25 °C) recorded during the titration of 3 (3 mM) with TBAF in CDCl₃. The asterisk (*) denotes a residual NMR solvent peak. The proton signals exhibited at lower fields than $\delta = 10$ ppm were magnified by 3-fold.

Fig. S6 Partial ¹H NMR spectra (300 MHz, 25 °C) recorded during the titration of 4 (3 mM) with TBAF in CDCl₃. The asterisk (*) denotes a residual NMR solvent peak. The proton signals exhibited at lower fields than $\delta = 10$ ppm were magnified by 3-fold.

	*			H_{a}
		H _d	H	TT TT
2 only		M M	ΛŇ	$H_c H_b$
U.11 equiv				
0.21 equiv		M M	٨٨	m n h
0.21 against				
0.51 equiv		M		
0.52 equiv		M.M.	٨٨	m
0.92 equiv				
Happhillinghappinghappinghappinghappinghapping		M_wMu		
1.48 equiv		~mm	A AM	mm
2.01 equiv				
www.ingener had when any any				m
2.84 equiv		Mr	M	mun
3.59 equiv		Make		~
humphine horace and humphine and have a second and have a second and have a second and have a second and have a				- Mi mining
4.28 equiv		Mul		
5.21 equiv	Å	Mah	M	ma internet
when we have a second				h
6.29 equiv		MM		Mumm
8.04 equiv		MAL	AM.	Ma cont
uphall for which all which and a for some and a state of the state of				
10.47 equiv		Mu	M	minut
ia Méricani na Marijian Manusita da manja ng kang kang kang kang kang kang kang				
11.5 11.0	7.5	7.0 6.5	6.0	4.0
		ppm		
		* *		

Fig. S7 Top: Two possible binding modes between receptor 2 and HCO₃⁻. Bottom: Partial ¹H NMR spectra (300 MHz, 25 °C) recorded during the titration of 2 (3 mM) with TEAHCO₃ in CDCl₃. The asterisk (*) denotes a residual NMR solvent peak. The proton signals exhibited at lower fields than $\delta = 10$ ppm were magnified by 5-fold.

Fig. S8 Top: Two possible binding modes between receptor **3** and HCO_3^- . Bottom: Partial ¹H NMR spectra (300 MHz, 25 °C) recorded during the titration of **3** (3 mM) with TEAHCO₃ in CDCl₃. The asterisk (*) denotes a residual NMR solvent peak.

Fig. S9 Top: Two possible binding modes between receptor **4** and HCO₃⁻. Bottom: Partial ¹H NMR spectra (300 MHz, 25 °C) recorded during the titration of **4** (3 mM) with TEAHCO₃ in CDCl₃. The asterisk (*) denotes a residual NMR solvent peak.

Fig. S10 Partial ¹H NMR spectra (300 MHz, 25 °C) of receptor **2** (3 mM) recorded in 10% CD₃OD in CDCl₃ in the presence of an excess of the indicated alkali metal cations as their respective perchlorate (ClO_4^{-1}) salts. The asterisk (*) denotes a residual NMR solvent peak.

Fig. S11 Top: Proposed binding mode of receptor **4** for Na⁺. Bottom: Partial ¹H NMR spectra (300 MHz, 25 °C) of receptor **4** (3 mM) recorded in 10% CD₃OD in CDCl₃ in the presence of an excess of the indicated alkali metal cations as their respective perchlorate (ClO₄⁻) salts. The asterisk (*) denotes a residual NMR solvent peak.

Fig. S12 Partial ¹H NMR spectra (300 MHz, 25 °C) recorded during the titration of **3** (3 mM) with NaClO₄ in CDCl₃:MeOD (9:1, v/v) and the resulting binding isotherm. The asterisk (*) denotes a residual NMR solvent peak.

Fig. S13 Partial ¹H NMR spectra (300 MHz, 25 °C) recorded during the titration of **4** (3 mM) with NaClO₄ in CDCl₃:MeOD (9:1, v/v)and the resulting binding isotherm. The asterisk (*) denotes a residual NMR solvent peak.

Fig. S14 Top: Putative binding mode of receptor 2 for CsF. Bottom: Partial ¹H NMR spectra (300 MHz, 25 °C) of receptor 2 (3 mM) recorded in 10% CD₃OD in CDCl₃ in the presence of an excess of the indicated alkali metal fluoride salts. The asterisk (*) denotes a residual NMR solvent peak.

Fig. S15 Top: Putative binding mode of receptor **4** for CsF. Bottom: Partial ¹H NMR spectra (300 MHz, 25 °C) of receptor **4** (3 mM) recorded in 10% CD₃OD in CDCl₃ in the presence of an excess of the indicated alkali metal fluoride salts. The asterisk (*) denotes a residua solvent peak.

Fig. S16 Partial ¹H NMR spectra (300 MHz, 25 °C) recorded during the titration of **2** (3 mM) with CsF in CDCl₃:MeOD (9:1, v/v). The asterisk (*) denotes a residual NMR solvent peak.

Fig. S17 Partial ¹H NMR spectra (300 MHz, 25 °C) recorded during the titration of **3** (3 mM) with CsF in CDCl₃:MeOD (9:1, v/v). The asterisk (*) denotes a residual NMR solvent peak.

Fig. S18 Partial ¹H NMR spectra (300 MHz, 25 °C) recorded during the titration of **4** (3 mM) with CsF in CDCl₃:MeOD (9:1, v/v). The asterisks (*) denote a residual solvent peak.

Fig. S19 Top: Putative binding mode of receptor **2** for CsCl. Bottom: Partial ¹H NMR spectra (300 MHz, 25 °C) of receptor **2** (3 mM) recorded in 10% CD₃OD in CDCl₃ in the presence of an excess of the indicated alkali metal chloride salts. The asterisk (*) denotes a residual NMR solvent peak.

Fig. S20 Top: Putative binding mode of receptor **3** for CsCl. Bottom: Partial ¹H NMR spectra (300 MHz, 25 °C) of receptor **3** (3 mM) recorded in 10% CD₃OD in CDCl₃ in the presence of an excess of the indicated alkali metal chloride salts. The asterisks (*) denotes residual solvent peaks.

Fig. S21 Partial ¹H NMR spectra (300 MHz, 25 °C) of receptor 4 (3 mM) recorded in 10% CD₃OD in CDCl₃ in the presence of an excess of the indicated alkali metal chloride salts. The asterisk (*) denotes residual solvent peaks.

Fig. S22 Partial ¹H NMR spectra (300 MHz, 25 °C) of receptor 3 (3 mM) recorded in 10% CH₃OH in CDCl₃ in the presence of an excess of the indicated cesium chloride salts. The asterisk (*) denotes residual solvent peaks.

Fig. S23 Top: Proposed binding behavior of receptor **3** for Na⁺ in the absence and presence of F⁻ and Cl⁻. Bottom: Partial ¹H NMR spectra (300 MHz, 25 °C) of (a) **3** (3 mM) only, (b) **3** + excess NaClO₄, (c) **3** + excess NaClO₄ + excess TBAF, (d) **3** + excess NaClO₄ + excess TBACl in 10% CD₃OD in CDCl₃. The asterisk (*) denotes a residual NMR solvent peak.

Fig. S24 Partial ¹H NMR spectra (300 MHz, 25 °C) of receptor **2** (3 mM) before and after the addition of solid CsF (5.0 equiv) and CsCl (5.0 equiv) in CDCl₃. The asterisk denotes a residual NMR solvent peak.

Fig. S25 Partial ¹H NMR spectra (300 MHz, 25 °C) of receptor **3** (3 mM) before and after the addition of solid CsF (5.0 equiv) and CsCl (5.0 equiv) in CDCl₃. The asterisk denotes a residual NMR solvent peak.

Fig. S26 Partial ¹H NMR spectra (300 MHz, 25 °C) of receptor **4** (3 mM) before and after the addition of solid CsF (5.0 equiv) and CsCl (5.0 equiv) in CDCl₃. The asterisk denotes a residual NMR solvent peak.

•

Fig. S27 ¹H NMR spectrum of 2 recorded in CDCl₃.

Fig. S28 ¹³C NMR spectrum of 2 recorded in CDCl₃.

Fig. S29 H-H COSY NMR spectrum (300 MHz, 25 °C) of 2 in CDCl3.

Fig. S30 ¹H NMR spectrum of 3 recorded in CDCl₃.

Fig. S31 ¹³C NMR spectrum of 3 recorded in CDCl₃.

Fig. S32 ¹H NMR spectrum of 4 recorded in CDCl₃.

Fig. S33 ¹³C NMR spectrum of 4 recorded in CDCl₃.

Data : YJH-C4P CE4_HR Date : 24-Jan-2021 14:59 Instrument : MStation Sample : -Note : -Inlet : Direct Ion Mode : FAB+ RT : 3.40 min Scan# : 52 Elements : C 100/1, H 100/1, N 8/1, O 8/1 Mass Tolerance : 1000ppm, 3mmu if m/z > 3 Unsaturation (U.S.) : -0.5 - 31.0 Observed m/z Int% Err[ppm / mmu] U.S. Composition 1 969.4825 7.87 +2.3 / +2.3 30.5 C60 H65 N4 O8

Fig. S34 HR FAB mass data of 2.

Fig. S35 HR ESI mass spectrum of 2.

Data : YJH-C4P CE5,HR Date : 26-Jan-2021 16:04 Instrument : MStation Sample : -Note : -Inlet : Direct Ion Mode : FAB+ RT : 4.40 min Scan# : 67 Elements : C 100/1, H 100/1, N 4/1, O 10/1 Mass Tolerance : 1000ppm, 3mmu if m/z > 3 Unsaturation (U.S.) : -0.5 - 35.0 Observed m/z Int% Err[ppm / mmu] U.S. Composition 1 1057.5326 13.21 -0.1 / -0.1 30.5 C64 H73 N4 O10

Fig. S36 HR FAB mass data of 3.

Fig. S37 FAB mass spectrum of compound 3.

Data : YJH-C4P CE6_HR Date : 26-Jan-2021 16:29 Instrument : MStation Sample : -Note : -Inlet : Direct Ion Mode : FAB+ RT : 2.47 min Scan# : 38 Elements : C 100/1, H 100/1, N 4/1, O 12/1 Mass Tolerance : 1000ppm, 3mmu if m/z > 3 Unsaturation (U.S.) : -0.5 - 35.0 Observed m/z Int% Err[ppm / mmu] U.S. Composition 1 1145.5830 9.86 -1.8 / -2.1 30.5 C68 H81 N4 O12

Fig. S38 HR FAB mass data of 4.

Fig. S39 HR ESI mass spectrum of compound 4

4. X-ray crystal data

-				
Identification code	2 ·MeOH	2 ∙MeOH		
Empirical formula	C63 H69 Cl6 N4 O9	C63 H69 Cl6 N4 O9		
Formula weight	1238.92			
Temperature	173(2) K			
Wavelength	0.71073 Å			
Crystal system	Orthorhombic			
Space group	Pnma			
Unit cell dimensions	a = 20.3119(4) Å	a= 90°.		
	b = 21.5671(5) Å	b= 90°.		
	c = 14.0259(3) Å	g = 90°.		
Volume	6144.3(2) Å ³			
Z	4			
Density (calculated)	1.339 Mg/m ³	1.339 Mg/m ³		
Absorption coefficient	0.339 mm ⁻¹	0.339 mm ⁻¹		
F(000)	2596	2596		
Crystal size	0.282 x 0.258 x 0.203 mm	0.282 x 0.258 x 0.203 mm ³		
Theta range for data collection	1.732 to 28.303°.	1.732 to 28.303°.		
Index ranges	-27<=h<=27, -28<=k<=28	-27<=h<=27, -28<=k<=28, -18<=l<=18		
Reflections collected	97609	97609		
Independent reflections	7836 [R(int) = 0.0695]	7836 [R(int) = 0.0695]		
Completeness to theta = 25.242°	100.0 %	100.0 %		
Absorption correction	Semi-empirical from equi	Semi-empirical from equivalents		
Max. and min. transmission	0.7457 and 0.7131	0.7457 and 0.7131		
Refinement method	Full-matrix least-squares of	Full-matrix least-squares on F ²		
Data / restraints / parameters	7836 / 0 / 397	7836 / 0 / 397		
Goodness-of-fit on F ²	1.049	1.049		
Final R indices [I>2sigma(I)]	R1 = 0.0919, WR2 = 0.270	R1 = 0.0919, wR2 = 0.2701		
R indices (all data)	R1 = 0.1351, WR2 = 0.308	R1 = 0.1351, wR2 = 0.3085		
Extinction coefficient	n/a	n/a		
Largest diff. peak and hole	2.261 and -1.748 e.Å ⁻³	2.261 and -1.748 e.Å ⁻³		

Table S1. Crystal data and structure refinement for $2 \cdot MeOH$.

Fig. S40 View of $2 \cdot$ MeOH complex. Displacement ellipsoids are scaled to the 50% probability level.

X-ray Experimental for 3·Na⁺: Crystals grew as clusters of thin, colorless plates by vapor diffusion of methanol/ethanol into a chloroform solution. The data crystal was cut from a larger crystal and had approximate dimensions; $0.29 \times 0.19 \times 0.050$ mm. The data were collected on a Rigaku Oxford Diffraction HyPix6000E Dual Source diffractometer using a µ-focus Cu K α radiation source ($\lambda = 1.5418$ Å) with collimating mirror monochromators. A total of 3508 frames of data were collected using ω -scans with a scan range of 0.5° and a counting time of 6.6 seconds per frame for frames collected with a detector offset of +/- 48.7° and 26.3 seconds per frame with frames collected with a detector offset of +/- 107.8°. The data were collected at 100 K using an Oxford Cryostream low temperature device. Details of crystal data, data collection and structure refinement are listed in Table S2. Data collection, unit cell refinement and data reduction were performed using Rigaku Oxford Diffraction's CrysAlisPro V 1.171.42.25a.³ The structure was solved by direct methods using SHELXL⁻2018/3.⁵ Structure analysis was aided by use of the programs PLATON⁶ and OLEX2.⁷ The hydrogen atoms on the carbon atoms were calculated in ideal positions with isotropic displacement parameters set to 1.2xUeq of the attached atom (1.5xUeq for methyl hydrogen atoms).

There was quite a bit of disordered solvent of various components. Both molecules of chloroform were disordered. H-bonded to the pyrrole groups was a mixture of acetone and ethanol. In the interior of the macrocycle was a disordered mixture of methanol and water molecules H-bound to one of the polyether groups. The H atoms on some of the oxygen atoms of the methanol and ethanol molecules could not be adequately modeled and were not included in the final refinement model.

The function, $\Sigma w(|F_0|^2 - |F_c|^2)^2$, was minimized, where $w = 1/[(\sigma(F_0))^2 + (0.0789*P)^2 + (3.0482*P)]$ and $P = (|F_0|^2 + 2|F_c|^2)/3$. $R_w(F^2)$ refined to 0.153, with R(F) equal to 0.0563 and a goodness of fit, S, = 1.05. Definitions used for calculating R(F), $R_w(F^2)$ and the goodness of fit, S, are given below.⁸ The data were checked for secondary extinction but no correction was necessary. Neutral atom scattering factors and values used to calculate the linear absorption coefficient are from the International Tables for X-ray Crystallography (1992).⁹ All figures were generated using SHELXTL/PC.¹⁰ Tables of positional and thermal parameters, bond lengths and angles, torsion angles and figures may be found from the Cambridge Crystallographic Centre by referencing CCDC number 2258328.

Empirical formula	C71.81 H93 Cl7 N4 Na O19		
Formula weight	1587.30		
Temperature	100.03(12) K		
Wavelength	1.54184 Å		
Crystal system	triclinic		
Space group	P -1		
Unit cell dimensions	a = 14.2739(3) Å	a= 110.4157(8)°.	
	b = 15.65634(16) Å	b=90.9004(15)°.	
	c = 19.10054(13) Å	g = 103.4262(16)°.	
Volume	3869.11(10) Å ³		
Ζ	2		
Density (calculated)	1.362 Mg/m ³		
Absorption coefficient	2.988 mm ⁻¹		
F(000)	1668		
Crystal size	0.29 x 0.19 x 0.05 mm ³		
Theta range for data collection	2.482 to 77.374°.		
Index ranges	-18<=h<=18, -19<=k<=19, -23<=l<=23		
Reflections collected	28080		
Independent reflections	28080 [R(int) = ?]		
Completeness to theta = 67.684°	99.4 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.00000 and 0.67027		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	28080 / 1061 / 1150		
Goodness-of-fit on F^2	1.023		
Final R indices [I>2sigma(I)]	R1 = 0.0563, wR2 = 0.1506		
R indices (all data)	R1 = 0.0593, $wR2 = 0.1529$		
Extinction coefficient	n/a 0.668 and -0.692 e.Å ⁻³		

Table S2. Crystal data and structure refinement for $3 \cdot Na^+$.

Fig. S41 View of the Na⁺ ion complex in **3** showing the heteroatom labeling scheme. Displacement ellipsoids are scaled to the 50% probability level. Dashed lines are indicative of a H-bonding interaction. Most H atoms were omitted for clarity.

5. References

- P. Anzenbacher, K. Jursíková, V. M. Lynch, P. A. Gale, J. L. Sessler, *J. Am. Chem. Soc.*, 1999, 121, 11020-11021.
- J. Aguilera-Sigalat, C. S. de Pipaon, D. Hernandez-Alonso, E. C. J. R. Escudero-Adan, Galan-Mascaros, P. Ballester, *Cryst. Growth Des.*, 2017, 17, 1328–1338.
- CrysAlisPro. Rigaku Oxford Diffraction, HyPix6000E System, CrysAlisPro Software System, 1.171.42.25a.
- 4. G. M. Sheldrick. Acta Cryst., 2015, A71, 3-8.
- 5. G. M. Sheldrick, (2015). Acta Cryst., 2015, C71, 3-8.
- 6. A. L. Spek, Acta Cryst., 2009, D65, 148-155.
- 7. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann, J. Appl. Cryst., 2009, 42, 339-341.
- 8. $R_W(F^2) = \{\Sigma w(|F_0|^2 |F_c|^2)^2 / \Sigma w(|F_0|)^4\}^{1/2}$ where w is the weight given each reflection.

 $R(F) = \Sigma (|F_0| - |F_c|)/\Sigma |F_0|$ for reflections with $F_0 > 4(\sigma(F_0))$.

 $S = [\Sigma w(|F_0|^2 - |F_c|^2)^2/(n - p)]^{1/2}$, where n is the number of reflections and p is the number of refined parameters.

- 9. International Tables for X-ray Crystallography (1992). Vol. C, Tables 4.2.6.8 and 6.1.1.4, A. J. C. Wilson, editor, Boston: Kluwer Academic Press.
- 10. Sheldrick, G. M. (1994). SHELXTL/PC (Version 5.03). Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.