Supporting Information

Rhodium-catalyzed regioselective alkynylations of 8-pyrroleappended BODIPYs

Machongyang Wang, Shuibo Fan, Cong Duan, Hui Shu, Ruiquan Ding, Mingbo Zhou*, Ling Xu, Yutao Rao, Atsuhiro Osuka, and Jianxin Song*

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China.

E-mail: zhoumingbo@hunnu.edu.cn, and jxsong@hunnu.edu.cn

Table of Contents

1. Instruments and materials	1
2. General procedure for syntheses and spectral data	1
3. NMR spectra	.11
4. UV/vis absorption and fluorescence spectra and data	.47
5. X-ray crystal data	.49
6. HR-MALDI-TOF mass data	.66
7. References	.68

1. Instruments and materials

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra were taken on a Bruker AVANCE-500 spectrometer and Quantum-I Plus 500 MHz, and chemical shifts were reported as the delta scale in ppm. The residual peak of CDCl₃ was used as internal reference for ¹H NMR (δ = 7.26 ppm) and the solvent CDCl₃ was used as internal reference for ¹³C NMR (δ = 77.0 ppm). UV/vis absorption spectra were recorded on a Shimadzu UV-3600 spectrometer. Measurement of photoluminescence spectra and the fluorescent quantum yields were measured in CH₂Cl₂ using an integrating sphere by an Edinburgh FLS1000 machine. The MALDI-TOF mass spectra were obtained with a Bruker ultrafle Xtreme MALDI-TOF/TOF spectrometer with matrix. X-Ray data were taken on a Bruker SMART APEX X-Ray diffractometer equipped with a large area CCD detector. BODIPYs **1a-1e** and brominated alkynes **2a-21** were prepared according to the literature procedures.^{S1-S8} Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

2. General procedure for syntheses and spectral data

2.1. Synthesis of alkynylated BODIPYs 3aa-3aj, 3ba-bb, 3bd, 3bg-h, 3bj, and 3ca

A mixture of **1** (0.1 mmol), alkyne (0.15 mmol), $[Cp*RhCl_2]_2$ (0.005 mmol), Na₂CO₃ (0.20 mmol), AgOAc (0.12 mmol) in *o*-xylene was stirred at 70 °C for about 12 h. After cooling to room temperature, the mixture was passed through a short silica-gel column (CH₂Cl₂ as an eluent). After removal of solvents in *vacuo*, the crude product was purified by silica-gel (CH₂Cl₂/*n*-hexane as an eluent) and recrystallized from CH₂Cl₂/*n*-hexane to afford **3** as red solids.

3aa: yield: 78%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 8.38 (br, 1H), 7.56 (d, *J* = 2.5 Hz, 1H), 7.29 (d, *J* = 9.0 Hz, 2H), 7.25 (d, *J* = 9.0 Hz, 2H), 6.99 (td, *J* = 2.5, 1.5 Hz, 1H), 6.56 (d, *J* = 2.5 Hz, 1H), 6.44 (ddd, *J* = 3.5, 2.5, 1.5 Hz, 1H), 6.38 (td, *J* = 3.5, 2.5 Hz, 1H), 6.15 (s, 1H), 2.60 (s, 3H), 1.68 (s, 3H) and 1.30 (s, 9H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ = 162.8, 151.6, 148.4, 137.1, 135.6, 134.0, 133.1, 131.8, 125.1, 123.8, 122.1, 121.3, 120.8, 120.2, 120.2, 112.7, 110.2, 98.0, 83.2, 34.8, 31.2, 15.2 and 14.0 ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₂₇H₂₆BF₂N₃ 441.2188; Found: 441.2189.

3ab: yield: 74%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 8.34 (br, 1H), 7.58 (br, 1H), 7.34-7.30 (m, 2H), 7.28-7.26 (m, 3H), 6.99 (td, *J* = 3.0, 1.5 Hz, 1H), 6.58 (d, *J* = 2.5 Hz, 1H), 6.45 (ddd, *J* = 4.0,

3.0, 1.5 Hz, 1H), 6.37 (dt, J = 4.0, 3.0 Hz, 1H), 6.17 (s, 1H), 2.61 (s, 3H) and 1.70 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) $\delta = 163.2$, 148.6, 136.9, 135.7, 134.1, 133.1, 132.0, 128.2, 128.1, 123.9, 123.3, 121.6, 121.2, 120.9, 120.2, 112.7, 110.2, 97.5, 83.7, 15.3 and 14.1 ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₂₃H₁₈BF₂N₃ 385.1562; Found: 385.1561.

3ac: yield: 73%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 8.38 (br, 1H), 7.56 (br, 1H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.07 (d, *J* = 8.0 Hz, 2H), 6.95-6.94 (m, 1H), 6.55 (d, *J* = 2.5 Hz, 1H), 6.44-6.43 (m, 1H), 6.34-6.33 (m, 1H), 6.14 (s, 1H), 2.59 (s, 3H), 2.33 (s, 3H) and 1.67 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ = 162.8, 148.4, 138.4, 137.0, 135.6, 134.0, 133.0, 131.9, 128.8, 123.8, 121.9, 121.2, 120.7, 120.1, 112.6, 110.2, 97.9, 83.1, 21.5, 15.2 and 14.0 ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₂₄H₂₀BF₂N₃ 399.1718, Found: 399.1719.

3ad: yield: 55%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 8.42 (br, 1H), 7.85 (d, *J* = 8.5 Hz, 2H), 7.56 (d, *J* = 2.5 Hz, 1H), 7.38 (d, *J* = 8.5 Hz, 2H), 6.98 (td, *J* = 2.5, 1.5 Hz, 1H), 6.59 (d, *J* = 2.5 Hz, 1H), 6.45 (td, *J* = 3.0, 2.5, 1.5 Hz, 1H), 6.39-6.33 (m, 1H), 6.18 (s, 1H), 2.61 (s, 3H), 2.58 (s, 3H) and 1.69 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ = 197.4, 164.1, 149.0, 136.6, 136.0, 135.9, 134.3, 132.8, 132.0, 128.3, 127.9, 124.2, 121.2, 120.9, 120.4, 120.2, 112.7, 110.3, 96.3, 87.0, 26.6, 15.4 and 14.0 ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₂₅H₂₀BF₂N₃O 427.1667, Found: 427.1673.

3ae: yield: 73%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 8.38 (br, 1H), 7.56 (d, *J* = 2.5 Hz, 1H), 7.39 (d, *J* = 8.5 Hz, 2H), 7.16 (d, *J* = 8.5 Hz, 2H), 6.94 (dd, *J* = 4.0, 2.0 Hz, 1H), 6.56 (d, *J* = 2.5 Hz, 1H), 6.42 (dt, *J* = 4.0, 2.0 Hz, 1H), 6.33 (dt, *J* = 4.0, 2.5 Hz, 1H), 6.16 (s, 1H), 2.60 (s, 3H) and 1.67 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ = 163.7, 148.8, 136.8, 135.9, 134.1, 133.4, 132.9, 131.3, 124.1, 122.4, 122.2, 121.2, 120.9, 120.7, 120.1, 112.6, 110.2, 96.2, 84.8, 15.4 and 14.0 ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₂₃H₁₇BF₂N₃Br 463.0667, Found: 463.0662. **3af**: yield: 71%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 8.39 (br, 1H), 7.57-7.55 (m, 1H), 7.23 (br, 4H), 6.94 (td, *J* = 3.0, 1.5 Hz, 1H), 6.56 (d, *J* = 2.5 Hz, 1H), 6.42 (ddd, *J* = 4.0, 2.5, 1.5 Hz, 1H), 6.33 (dt, *J* = 4.0, 2.5 Hz, 1H), 6.15 (s, 1H), 2.60 (s, 3H) and 1.67 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ = 163.7, 148.8, 136.8, 135.9, 134.1, 133.4, 120.9, 131.3, 124.1, 122.4, 122.2, 121.2, 120.9, 120.7, 120.1, 112.6, 110.2, 110.2, 112.2, 120.2, 121.2, 120.3, 120.1, 112.6, 110.2, 96.2, 84.8, 15.4 and 14.0 ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₂₃H₁₇BCIF₂N₃419.1172, Found: 419.1185.

3ag: yield: 41%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 8.32 (br, 1H), 7.56 (br, 1H), 7.24 (d, J =

5.0 Hz, 1H), 7.11 (d, J = 3.5 Hz, 1H), 7.04 (dd, J = 4.5, 3.0 Hz, 1H), 6.94 (dd, J = 5.0, 3.5 Hz, 1H), 6.55 (d, J = 2.5 Hz, 1H), 6.45-6.39 (m, 2H), 6.17 (s, 1H), 2.61 (s, 3H) and 1.72 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) $\delta = 163.3$, 148.6, 137.1, 135.8, 135.3, 134.4, 134.1, 133.0, 129.4, 127.9, 127.0, 124.0, 123.6, 121.2, 120.4, 112.7, 110.5, 90.6, 87.6, 15.4 and 14.2 ppm; HRMS (MALDI-TOF) m/z: [M-F]⁺ Calcd for C₂₁H₁₆BFN₃S 372.1142, Found: 372.1138.

3ah: yield: 71%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 8.27 (br, 1H), 7.55 (br, 1H), 6.94 (td, *J* = 3.0, 1.5 Hz, 1H), 6.54 (d, *J* = 2.5 Hz, 1H), 6.38 (td, *J* = 3.0, 2.5, 1.5 Hz, 1H), 6.26 (dt, *J* = 4.0, 2.5 Hz, 1H), 6.15 (s, 1H), 2.59 (s, 3H), 1.66 (s, 3H) and 1.02 (br, 21H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ = 163.0, 148.6, 136.6, 135.7, 133.9, 133.3, 123.8, 122.4, 121.7, 121.3, 120.2, 113.1, 110.3, 100.3, 100.1, 18.8, 15.3, 14.1 and 11.4 ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₂₆H₃₄BF₂N₃Si 465.2583, Found: 465.2588.

3ai: yield: 75%, ¹H NMR (500 MHz, CDCl₃, 298 K) *δ* = 8.26 (br, 1H), 7.50 (br, 1H), 6.96-6.94 (m, 1H), 6.51 (d, *J* = 2.5 Hz, 1H), 6.36-6.34 (m, 1H), 6.29-6.26 (m, 1H), 6.15 (s, 1H), 2.59 (s, 3H), 1.70 (s, 3H), 0.93 (t, *J* = 8.0 Hz, 9H) and 0.55 (d, *J* = 8.0 Hz, 6H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) *δ* = 163.2, 148.7, 136.6, 135.7, 134.5, 133.1, 123.9, 121.7, 121.3, 119.9, 112.7, 110.0, 100.5, 98.9, 15.3, 14.2, 7.5 and 4.5 ppm; HRMS (MALDI-TOF) m/z: [M-F]⁺ Calcd for C₂₃H₂₈BF₂N₃Si 423.2114, Found: 423.2122.

3aj: yield: 46%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 8.24 (br, 1H), 7.53 (d, *J* = 2.5 Hz, 1H), 6.96 (td, *J* = 3.0, 1.5 Hz, 1H), 6.42 (d, *J* = 2.5 Hz, 1H), 6.34 (td, *J* = 3.0, 2.5, 1.5 Hz, 1H), 6.32-6.27 (m, 1H), 6.14 (s, 1H), 2.59 (s, 3H), 2.16 (t, *J* = 7.0 Hz, 2H), 1.70 (s, 3H), 1.47-1.35 (m, 2H), 1.28 (dt, *J* = 7.0, 3.0 Hz, 4H) and 0.89 (t, *J* = 7.0 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ = 162.3, 148.2, 137.4, 135.4, 134.2, 133.3, 123.6, 123.2, 121.4, 120.5, 119.8, 112.3, 109.9, 99.8, 74.1, 31.3, 28.4, 22.3, 20.2, 15.3, 14.2 and 14.1.ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₂₂H₂₄BF₂N₃ 379.2031, Found: 379.2045.

3ba: yield: 22%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 9.21 (br, 1H), 7.89 (br, 1H), 7.78 (br, 1H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.25 (m, 3H), 7.22–7.19 (m, 1H), 6.97 (d, *J* = 3.5 Hz, 1H), 6.72 (d, *J* = 2.0 Hz, 1H), 6.61-6.57 (m, 1H), 6.54-6.52 (m, 1H) and 1.31 (s, 9H) ppm; UV/vis (CH₂Cl₂): λ_{max} (ε [M⁻¹cm⁻¹]) = 520 (60424), 447 (16990) nm; HRMS (MALDI-TOF) m/z: [M+H]⁺ Calcd for C₂₅H₂₃BF₂N₃414.1952, Found: 414.1947.

3bb: yield: 24%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 9.20 (br, 1H), 7.90 (br, 1H), 7.78 (d, J =

2.5 Hz, 1H), 7.33-7.28 (m, 5H), 7.25 (br, 1H), 7.20 (td, J = 2.5, 1.5 Hz, 1H), 6.97 (ddd, J = 4.0, 2.5, 1.5 Hz, 1H), 6.72 (d, J = 2.5 Hz, 1H), 6.59 (dd, J = 4.5, 2.0 Hz, 1H) and 6.52 (dt, J = 4.0, 2.5 Hz, 1H) ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₂₁H₁₄BF₂N₃ 357.1249, Found: 357.1251. **3bd**: yield: 8%, ¹H NMR (500 MHz, CDCl₃, 298 K) $\delta = 9.09$ (br, 1H), 7.94 (br, 1H), 7.90-7.85 (m, 2H), 7.79 (d, J = 2.5 Hz, 1H), 7.40-7.37 (m, 2H), 7.29 (d, J = 4.0 Hz, 1H), 7.20 (td, J = 3.0, 1.5 Hz, 1H), 6.98 (ddd, J = 4.0, 2.5, 1.5 Hz, 1H), 6.79-6.73 (m, 1H), 6.66-6.61 (m, 1H), 6.53 (dt, J = 4.0, 2.5 Hz, 1H) and 2.60 (s, 3H) ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₂₃H₁₆BF₂N₃O 399.1354, Found: 399.1364.

3bg: yield: 20%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 9.12 (br, 1H), 7.90 (br, 1H), 7.77 (d, *J* = 2.0 Hz, 1H), 7.30 (dd, *J* = 5.0, 1.5 Hz, 1H), 7.26-7.24 (m, 2H), 7.15 (dd, *J* = 4.0, 1.5 Hz, 1H), 6.97 (dd, *J* = 5.0, 4.0 Hz, 1H), 6.94 (ddd, *J* = 4.0, 2.5, 1.5 Hz, 1H), 6.70 (d, *J* = 2.5 Hz, 1H), 6.59 (dd, *J* = 4.0, 2.0 Hz, 1H) and 6.54 (dt, *J* = 4.0, 2.5 Hz, 1H) ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₁₉H₁₂BF₂N₃S 363.0813, Found: 363.0840.

3bh: yield: 23%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 9.31 (br, 1H), 7.86 (br, 1H), 7.72 (d, *J* = 2.0 Hz, 1H), 7.24 (d, *J* = 4.5 Hz, 1H), 7.20 (dd, *J* = 4.5 Hz, 3.0 Hz, 1H), 6.96-6.95 (m, 1H), 6.71 (d, *J* = 2.5 Hz, 1H), 6.57 (dd, *J* = 4.5, 2.0 Hz, 1H), 6.47-6.44 (m, 1H) and 1.04-1.03 (br, 21H) ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₂₄H₃₀BF₂N₃Si 437.2270, Found: 437.2281.

3bj: yield: 15%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 9.10 (br, 1H), 7.86 (br, 1H), 7.75 (br, 1H), 7.23 (d, *J* = 4.5 Hz, 1H), 7.17 (dd, *J* = 4.5, 3.0 Hz, 1H), 6.90-6.84 (td, *J* = 4.0, 1.5 Hz, 1H), 6.59 (d, *J* = 2.5 Hz, 1H), 6.56 (dd, *J* = 4.5, 2.0 Hz, 1H), 6.46 (dd, *J* = 4.5, 3.0 Hz, 1H), 2.27 (t, *J* = 7.0 Hz, 2H), 1.45-1.42 (m, 2H), 1.28-1.26 (m, 4H) and 0.89 (t, *J* = 7.0 Hz, 3H) ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₂₀H₂₀BF₂N₃ 351.1718, Found: 351.1710.

3ca: yield: 38%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 8.70 (br, 1H), 7.98 (br, 1H), 7.86 (d, *J* = 2.5 Hz, 1H), 7.78-7.77 (m, 1H), 7.35-7.34 (m, 1H), 7.2 -7.26 (m, 2H), 7.25-7.24(m, 1H) 7.05 (dd, *J* = 2.0, 1.0 Hz, 1H), 7.00 (d, *J* = 8.5 Hz, 2H), 6.72 (d, *J* = 2.5 Hz, 1H), 6.61 (dd, *J* = 4.5, 2.0 Hz, 1H), 6.34 (d, *J* = 8.5 Hz, 2H) and 1.23 (s, 9H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ = 152.1, 145.0, 142.0, 137.7, 136.0, 135.9, 133.3, 132.7, 131.5, 131.3, 128.9, 128.1, 125.8, 125.0, 124.9, 122.3, 121.9, 121.1, 119.3, 118.8, 112.2, 109.5, 101.4, 83.1, 34.7 and 31.0 ppm; HRMS (MALDI-TOF) m/z: [M-F]⁺ Calcd for C₂₉H₂₄BFN₃ 444.2047, Found: 444.2047.

2.2. Synthesis of BODIPY dimer 3ak and trimer 3al

A mixture of **1a** (0.1 mmol), 1,4-bis(bromoethynyl)benzene **2k** (0.06 mmol), $[Cp*RhCl_2]_2$ (0.006 mmol), Na₂CO₃ (0.20 mmol), AgOAc (0.12 mmol) in *o*-xylene was stirred at 70 °C for about 16 h. After cooling to room temperature, the mixture was passed through a short silica-gel column (CH₂Cl₂ as an eluent). After removal of solvents in *vacuo*, the crude product was purified by silica-gel (CH₂Cl₂/*n*-hexane as an eluent) and recrystallized from CH₂Cl₂/*n*-hexane to afford BODIPY dimer **3ak**.

3ak: red solids, yield: 55%, ¹H NMR (500 MHz, Acetone- d_6 , 298 K) $\delta = 10.57$ (br, 2H), 7.61 (br, 2H), 7.34 (br, 4H), 7.21 (td, J = 3.0, 1.5 Hz, 2H), 6.64 (d, J = 2.5 Hz, 2H), 6.48-6.45 (m, 2H), 6.42 (s, 2H), 6.40 (dt, J = 4.0, 2.5 Hz, 2H), 2.61 (s, 6H) and 1.73 (s, 6H) ppm; ¹³C NMR (126 MHz, Acetone- d_6 , 298 K) $\delta = 163.5, 149.0, 136.3, 135.9, 134.1, 131.6, 124.0, 123.2, 121.1, 120.7, 120.4, 112.1, 109.5, 96.7, 86.0, 14.3 and 13.1 ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₄₀H₃₀B₂F₄N₆ 692.2654, Found: 692.2657.$

A mixture of **1a** (0.1 mmol), 1,3,5-tris(bromoethynyl)benzene **2l** (0.04 mmol), $[Cp*RhCl_2]_2$ (0.01 mmol), Na₂CO₃ (0.30 mmol), AgOAc (0.18 mmol) in *o*-xylene was stirred at 70 °C for about 16 h. After cooling to room temperature, the mixture was passed through a short silica-gel column (CH₂Cl₂ as an eluent). After removal of solvents in *vacuo*, the crude product was purified by silica-gel (CH₂Cl₂/*n*-hexane as an eluent) and recrystallized from CH₂Cl₂/*n*-hexane to afford BODIPY trimer **3al**.

3al: purple solids, yield: 42%, ¹H NMR (500 MHz, Acetone-*d*₆, 298 K) *δ* = 10.60 (br, 3H), 7.59-7.58 (m, 3H), 7.25 (s, 3H), 7.19 (td, *J* = 3.0, 1.5 Hz, 3H), 6.71 (d, *J* = 2.5 Hz, 3H), 6.52-6.50 (m, 3H), 6.41 (s, 3H), 6.40-6.35 (m, 3H), 2.60 (s, 9H) and 1.72 (s, 9H) ppm; ¹³C NMR (126 MHz, Acetone-*d*₆, 298 K) *δ* = 163.8, 149.2, 136.1, 134.2, 124.1, 123.8, 121.1, 120.8, 120.5, 112.1, 109.6, 94.9, 84.9, 54.6, 14.4 and 13.1 ppm; HRMS (MALDI-TOF) m/z: [M-F]⁺ Calcd for C₅₇H₄₂B₃F₅N₉ 980.3762, Found: 980.3762.

2.3. Synthesis of di-alkynylated BODIPYs 4ba-4bj and 4ca-4ea

A mixture of **1** (0.1 mmol), alkyne (0.3 mmol), [Cp*RhCl₂]₂ (0.01 mmol), Na₂CO₃ (0.40 mmol), AgOAc (0.12 mmol) in *o*-xylene was stirred at 70 °C for about 16 h. After cooling to room temperature, the mixture was passed through a short silica-gel column (CH₂Cl₂ as an eluent). After removal of solvents in *vacuo*, the crude product was purified by silica-gel (CH₂Cl₂/*n*-hexane as an eluent) and recrystallized from CH₂Cl₂/n-hexane to afford 4 as purple solids.

4ba: yield: 72%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 8.99 (br, 1H), 7.80 (d, *J* = 2.5 Hz, 2H), 7.31 (d, *J* = 8.5 Hz, 8H), 7.18-7.17 (m, 1H), 7.11-7.09 (m, 1H), 6.70 (d, *J* = 2.5 Hz, 2H), 6.52 (dd, *J* = 6.0 Hz, 3.0 Hz, 1H) and 1.31 (s, 18H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ = 152.3, 141.6, 135.6, 134.2, 131.6, 126.4, 125.2, 124.1, 122.9, 121.6, 119.7, 119.2, 111.6, 100.1, 84.0, 34.9 and 31.1 ppm; UV/vis (CH₂Cl₂): λ_{max} (ε [M⁻¹cm⁻¹]) = 453 (14450), 545 (46652) nm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₃₇H₃₄BF₂N₃ 569.2814, Found: 569.2810.

4bb: yield: 61%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 8.96 (br, 1H), 7.82 (d, *J* = 2.0 Hz, 2H), 7.37-7.35 (m, 4H), 7.32-7.27 (m, 6H), 7.16 (td, *J* = 3.0, 1.5 Hz, 1H), 7.11 (ddd, *J* = 4.0, 2.5, 1.5 Hz, 1H), 6.73 (d, *J* = 2.5 Hz, 2H) and 6.49 (dt, *J* = 4.0, 2.5 Hz, 1H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ = 141.7, 135.8, 134.3, 131.8, 128.8, 128.2, 126.1, 124.1, 123.1, 122.7, 121.6, 119.1, 111.6, 99.7 and 84.3 ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₂₉H₁₈BF₂N₃ 457.1562, Found: 457.1558.

4bc: yield: 62%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 8.95 (br, 1H), 7.81 (d, *J* = 2.5 Hz, 2H), 7.26-7.25 (m, 4H), 7.15 (td, *J* = 3.0, 1.5 Hz, 1H), 7.12-7.08 (m, 5H), 6.71 (d, *J* = 2.5 Hz, 2H), 6.48 (dt, *J* = 4.0, 2.5 Hz, 1H) and 2.35 (s, 6H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ = 141.6, 139.2, 134.2, 131.8, 129.0, 126.3, 124.0, 122.9, 121.6, 119.7, 119.1, 111.5, 100.1, 83.9 and 21.6 ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₃₁H₂₂BF₂N₃ 485.1875, Found: 485.1867.

4bd: yield: 25%, ¹H NMR (500 MHz, CDCl₃, 298 K) $\delta = 8.89$ (s, 1H), 7.88 (d, J = 8.5 Hz, 4H), 7.86 (d, J = 2.0 Hz, 2H), 7.42 (d, J = 8.5 Hz, 4H), 7.15 (td, J = 3.0, 1.5 Hz, 1H), 7.09 (ddd, J = 4.0, 2.5, 1.5 Hz, 1H), 6.78 (d, J = 2.0 Hz, 2H), 6.47 (dt, J = 3.0, 2.5 Hz, 1H) and 2.60 (s, 6H) ppm; ³C NMR (126 MHz, CDCl₃, 298 K) $\delta = 197.2$, 142.3, 136.6, 136.0, 134.7, 132.0, 128.2, 127.6, 125.8, 124.1, 123.6, 121.6, 118.9, 111.7, 98.8, 87.1 and 26.7 ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₃₃H₂₂BF₂N₃O₂ 541.1773, Found: 541.1771.

4be: yield: 76%, ¹H NMR (500 MHz, CDCl₃, 298 K) $\delta = 8.84$ (br, 1H), 7.83 (br, 2H), 7.43 (d, J = 8.5 Hz, 4H), 7.20 (d, J = 8.5 Hz, 4H), 7.12 (td, J = 3.0, 1.5 Hz, 1H), 7.05 (tt, J = 2.5, 1.5 Hz, 1H), 6.73 (d, J = 2.5 Hz, 2H) and 6.44 (dt, J = 4.0, 2.5 Hz, 1H) ppm;¹³C NMR (126 MHz, CDCl₃, 298 K) $\delta = 142.2$, 135.7, 134.5, 133.2, 131.6, 126.0, 123.8, 123.3, 123.27, 121.7, 121.5, 118.6, 111.5, 98.7 and 85.3 ppm; HRMS (MALDI-TOF) m/z: [M-F]⁺ Calcd for C₂₉H₁₆BBr₂FN₃ 593.9788, Found: 593.9783.

4bf: yield: 72%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 8.86 (br, 1H), 7.83 (d, *J* = 2.0 Hz, 2H), 7.27 - 7.26 (m, 8H), 7.13 - 7.11 (m, 1H), 7.06 - 7.04 (m, 1H), 6.73 (d, *J* = 2.5 Hz, 2H) and 6.45 (dd, *J* = 6.0, 2.5 Hz, 1H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ = 142.0, 135.6, 135.0, 134.4, 128.6, 126.0, 123.7, 123.22, 123.2, 121.4, 121.1, 118.5, 111.4, 98.6 and 85.0 ppm; HRMS (MALDI-TOF) m/z: [M-F]⁺ Calcd for C₂₉H₁₆BCl₂FN₃ 506.0798, Found: 506.0790.

4bg: yield: 55%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 8.83 (br, 1H), 7.81 (d, *J* = 2.5 Hz, 2H), 7.31 (d, *J* = 5.0 Hz, 2H), 7.25-7.23 (m, 1H), 7.19 (d, *J* = 4.0 Hz, 2H), 7.01 (dt, *J* = 4.0, 2.0 Hz, 1H), 6.98 (dd, *J* = 5.0, 4.0 Hz, 2H), 6.70 (d, *J* = 2.5 Hz, 2H) and 6.59-6.57 (m, 1H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ = 141.9, 135.4, 134.6, 133.5, 128.7, 127.3, 125.9, 124.0, 122.9, 122.4, 121.4, 118.4, 111.9, 93.2 and 88.4 ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₂₅H₁₄BF₂N₃S₂ 469.0690, Found: 469.0682.

4bh: yield: 79%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 10.26 (br, 1H), 7.67 (d, *J* = 2.0 Hz, 2H), 7.31 (ddd, *J* = 4.0, 2.5, 1.5 Hz, 1H), 7.22 (td, *J* = 2.5, 1.5 Hz, 1H), 6.68 (d, *J* = 2.0 Hz, 2H), 6.38 (dt, *J* = 4.0, 2.5 Hz, 1H) and 1.17-1.05 (m, 42H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ = 138.7, 137.0, 133.4, 128.1, 127.0, 125.0, 123.7, 123.1, 113.1, 101.9, 100.9, 18.6 and 11.4 ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₃₅H₅₀BF₂N₃Si₂ 617.3604, Found: 617.3601.

4bi: yield: 79%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 9.49 (br, 1H), 7.71 (br, 2H), 7.19 (br, 1H), 7.15 (br, 1H), 6.88 (br, 2H), 6.42-6.35 (m, 1H), 0.99 (t, *J* = 8.0 Hz, 18H) and 0.63 (q, *J* = 8.0 Hz, 12H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ = 140.0, 136.5, 134.0, 126.0, 124.4, 123.7, 123.4, 123.39, 122.4, 112.1, 102.4, 100.2, 7.4 and 4.3 ppm; HRMS (MALDI-TOF) m/z: [M-F]⁺ Calcd for C₂₉H₃₈BFN₃Si₂ 514.2681, Found: 514.2688.

4bj: yield: 43%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 8.75 (br, 1H), 7.74 (d, *J* = 2.0 Hz, 2H), 7.07 (td, *J* = 3.5, 1.5 Hz, 1H), 6.89 (td, *J* = 2.5, 1.5 Hz, 1H), 6.55 (d, *J* = 2.0 Hz, 2H), 6.34 (dt, *J* = 3.5, 2.5 Hz, 1H), 2.23 (t, *J* = 7.0 Hz, 4H), 1.43 (p, *J* = 7.0 Hz, 4H), 1.31-1.26 (m, 8H) and 0.90 (t, *J* = 7.0 Hz, 6H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ = 141.4, 135.8, 134.2, 127.1, 122.9, 122.5, 121.3, 118.2, 110.5, 101.9, 75.0, 31.1, 28.0, 22.2, 20.1 and 14.0 ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₂₇H₃₀BF₂N₃ 445.2501, Found: 445.249.

8.5 Hz, 4H) and 1.19 (s, 18H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ = 152.2, 145.1, 142.1, 137.8, 132.7, 131.4, 129.0, 128.2, 125.0, 124.96, 122.3, 122.0, 121.2, 119.4, 118.9, 112.3, 109.6, 101.4, 83.7, 34.8, and 31.1 ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₄₁H₃₆BF₂N₃ 619.2970, Found: 619.2971.

4da: yield: 52%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 8.55 (br, 1H), 7.33 (br, 8H), 7.09 (td, *J* = 3.0, 1.5 Hz, 1H), 6.78 (ddd, *J* = 4.0, 2.5, 1.5 Hz, 1H), 6.54-6.45 (m, 3H), 2.64 (s, 6H) and 1.34 (s, 18H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ = 156.2, 152.0, 135.0, 131.9, 131.4, 126.1, 125.1, 124.0, 121.2, 121.1, 120.0, 115.5, 110.7, 100.0, 83.3, 34.9, 31.2 and 14.8 ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₃₉H₃₈BF₂N₃ 597.3127, Found: 597.3149.

4ea: yield: 66%,¹H NMR (500 MHz, CDCl₃, 298 K) δ = 9.03 (br, 1H), 7.88 (d, *J* = 2.5 Hz, 1H), 7.81 (s, 1H), 7.38 (d, *J* = 7.0 Hz, 2H), 7.35 (d, *J* = 7.0 Hz, 4H), 7.27 (td, *J* = 3.0, 1.5 Hz, 1H), 7.20 (ddd, *J* = 4.0, 2.5, 1.5 Hz, 1H), 6.78 (d, *J* = 2.5 Hz, 1H), 6.60 (dt, *J* = 4.0, 2.5 Hz, 1H), 1.35 (s, 9H) and 1.348 (s, 9H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ = 152.6, 152.6, 142.7, 140.1, 135.3, 134.2, 133.46, 131.8, 131.6, 127.5, 125.3, 125.3, 124.8, 123.3, 121.5, 120.0, 119.5, 119.5, 111.8, 111.1, 103.6, 100.8, 83.9, 82.6, 34.9 and 31.1 ppm; HRMS (MALDI-TOF) m/z: [M-F]⁺ Calcd for C₃₇H₃₃BBrFN₃ 628.1935, Found: 628.1929.

2.4. Synthesis of di-alkynylated BODIPYs 5 and 6

A mixture of **4ba** (0.1 mmol), alkyne **2d** (0.15 mmol), $[Cp*RhCl_2]_2$ (0.005 mmol), Na₂CO₃ (0.20 mmol), AgOAc (0.12 mmol) in *o*-xylene was stirred at 70 °C for about 12 h. After cooling to room temperature, the mixture was passed through a short silica-gel column (CH₂Cl₂ as an eluent). After removal of solvents in *vacuo*, the crude product was purified by silica-gel (CH₂Cl₂/*n*-hexane as an eluent) and recrystallized from CH₂Cl₂/*n*-hexane to afford **5**.

5: purple solids, yield: 42%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 9.00 (br, 1H), 7.87 (d, *J* = 8.5 Hz, 2H), 7.85 (br, 1H), 7.81 (br, 1H), 7.42 (d, *J* = 8.5 Hz, 2H), 7.34–7.29 (m, 4H), 7.10 (m, 1H), 7.17 (td, *J* = 3.0, 1.5 Hz, 1H), 6.79 (dd, *J* = 5.0, 2.5 Hz, 2H), 6.49 (dt, *J* = 5.0, 2.5 Hz, 1H), 2.60 (s, 3H), and 1.31 (s, 9H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298K) δ = 197.2, 152.6, 142.7, 141.1, 136.4, 135.7, 134.4, 131.8, 131.7, 131.6, 128.2, 128.1, 127.7, 127.2, 125.3, 125.2, 124.8, 124.1, 123.3, 123.1, 121.6, 119.5, 119.1, 111.6, 100.9, 98.0, 87.4, 83.9, 34.9, 31.1, 31.1, 29.7 and 26.6 ppm; UV/Vis (CH₂Cl₂): λ_{max} (ε [M⁻¹cm⁻¹]) = 447 (12617), 545 (48440) nm; HRMS (MALDI-TOF) m/z: [M-F]⁺ Calcd for C₃₅H₂₈BFN₃O 536.2310, Found: 536.2309.

A mixture of **4ba** (0.1 mmol), alkyne **2h** (0.15 mmol), $[Cp*RhCl_2]_2$ (0.005 mmol), Na₂CO₃ (0.20 mmol), AgOAc (0.12 mmol) in *o*-xylene was stirred at 70 °C for about 12 h. After cooling to room temperature, the mixture was passed through a short silica-gel column (CH₂Cl₂ as an eluent). After removal of solvents in *vacuo*, the crude product was purified by silica-gel (CH₂Cl₂/*n*-hexane as an eluent) and recrystallized from CH₂Cl₂/*n*-hexane to afford **6**.

6: purple solids, yield: 75%, ¹H NMR (500 MHz, CDCl₃, 298K) *δ* = 9.27 (br, 1H), 7.78 (s, 1H), 7.74 (s, 1H), 7.3 (q, *J* = 8.5 Hz, 4H), 7.17–7.16 (m, 2H), 6.71–6.69 (m, 2H), 6.45–6.43 (m, 1H), 1.31 (s, 9H), 1.26 (s, 3H) and 1.05 (s, 18H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298K) *δ* = 152.3, 141.1, 140.3, 136.1, 134.0, 133.7, 131.5, 128.8, 126.0, 125.31, 125.28, 125.0, 124.4, 122.8, 122.6, 121.6, 119.7, 112.1, 102.3, 101.2, 99.4, 84.1, 34.9, 31.1, 18.6 and 11.4 ppm; HRMS (MALDI-TOF) m/z: [M-F]⁺ Calcd for C₃₆H₄₂BFN₃Si 574.3226, Found: 574.3244.

2.5. Synthesis of multi-fused compounds 7-9

Under green light, a mixture of corresponding alkynylated BODIPY (0.035 mmol), Cs_2CO_3 (0.035 mmol) in CH₂Cl₂/Acetone (volume ratio is 9:1, 10 mL) was stirred at room temperature for about 6 h. After cooling to room temperature, the mixture was passed through a short silica-gel column (CH₂Cl₂ as an eluent). After removal of solvents in *vacuo*, the crude product was purified by silica-gel (CH₂Cl₂/*n*-hexane as an eluent) and recrystallized from CH₂Cl₂/*n*-hexane to afford multi-fused compounds **7-9**.

7: orange solids, yield: 34%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 8.47 (br, 1H), 8.42 (s, 1H), 8.13 (d, *J* = 10.0 Hz, 1H), 8.02 (d, *J* = 5.0 Hz, 1H), 7.98-7.96 (m, 2H), 7.88 (d, *J* = 5.0 Hz, 1H), 7.69 (br, 1H), 7.32 (br, 1H), 7.11 (br, 1H), 6.54 (br, 1H) and 1.58 (s, 9H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ = 152.9, 136.4, 135.2, 133.8, 130.9, 128.7, 128.5, 127.6, 126.8, 126.6, 123.2, 122.9, 122.7, 121.7, 118.9, 118.7, 114.9, 112.3, 105.0, 35.7 and 31.1 ppm; UV/vis (CH₂Cl₂): λ_{max} (ε [M⁻¹cm⁻¹]) = 483 (13152), 500 (17085), 534 (72227) nm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₂₅H₂₀BF₂N₃411.1718; Found: 411.1719.

8: orange solids, yield: 20%, ¹H NMR (500 MHz, CDCl₃, 298 K) δ = 9.65 (d, *J* = 5.0 Hz, 1H), 8.60 (br, 1H), 8.51 (s, 1H), 8.17 (d, *J* = 8.5 Hz, 1H), 7.97-7.94 (m, 3H), 7.59 (d, *J* = 9.0 Hz, 2H), 7.54 (br, 1H), 7.52 (d, *J* = 9.0 Hz, 2H), 7.24 (d, *J* = 2.5 Hz, 1H), 6.80 (dd, *J* = 4.5, 2.5 Hz, 1H), 1.56 (s, 9H) and 1.42 (s, 9H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ = 152.7, 151.8, 137.2, 134.5, 132.2, 131.2, 130.9, 129.1, 129.0, 127.6, 127.3, 126.9, 126.1, 125.7, 124.4, 123.1, 122.8, 122.3,

120.6, 120.4, 118.8, 114.9, 113.1, 111.6, 105.2, 95.5, 88.0, 35.7, 35.0, 31.3 and 31.1 ppm; UV/vis (CH₂Cl₂): λ_{max} (ϵ [M⁻¹cm⁻¹]) = 490 (18004), 555 (47092) nm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₃₇H₃₂BF₂N₃ 567.2657; Found: 567.2651;

9: orange solids, yield: 15%, ¹H NMR (500 MHz, CDCl₃) δ = 9.73 (br, 1H), 8.60 (br, 1H), 8.54 (s, 1H), 8.24-8.14 (m, 1H), 8.06 (s, 1H), 7.96-7.79 (m, 3H), 7.69-7.62 (m, 3H), 7.51-7.44 (m, 3H), 7.32 (br, 1H), 6.76 (s, 1H) ppm; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₂₉H₁₆BF₂N₃ 455.1405; Found: 455.1425.

3. NMR spectra

Figure S2. ¹³C NMR spectrum of **3aa** in CDCl₃ at 298 K

Figure S4. ¹³C NMR spectrum of **3ab** in CDCl₃ at 298 K

Figure S6. ¹³C NMR spectrum of **3ac** in CDCl₃ at 298 K

Figure S8. ¹³C NMR spectrum of 3ad in CDCl₃ at 298 K

Figure S10. 13 C NMR spectrum of 3ae in CDCl₃ at 298 K

Figure S12. ¹³C NMR spectrum of **3af** in CDCl₃ at 298 K

Figure S14. ¹³C NMR spectrum of 3ag in CDCl₃ at 298 K

Figure S16. ¹³C NMR spectrum of **3ah** in CDCl₃ at 298 K

Figure S18. ¹³C NMR spectrum of 3ai in CDCl₃ at 298 K

Figure S20. ¹³C NMR spectrum of 3aj in CDCl₃ at 298 K

Figure S22. ¹³C NMR spectrum of **3ak** in acetone- d_6 at 298 K

Figure S24. ¹³C NMR spectrum of **3al** in acetone- d_6 at 298 K

δ (ppm)

Figure S26. ¹H NMR spectrum of 3bb in CDCl₃ at 298 K

7,939 7,738 7,880 7,738 7,738 7,738 7,737 7,236 7,737 7,236 7,236 7,236 7,236 7,236 7,237 7,236 7,237 7,236 7,237 7,236 7,237 7,236 7,237 7,236 7,237 7,236 7,266 7,2367 7,236 7,236 7,236 7,236 7,236 7,236 7,236 7,236 7,236 7,236

Figure S28. ¹H NMR spectrum of 3bg in CDCl₃ at 298 K

δ (ppm)

4

3

5

6

2

1

0

9

8

Figure S30 ¹H NMR spectrum of 3bj in CDCl₃ at 298 K

Figure S32 ¹³C NMR spectrum of 3ca in CDCl₃ at 298 K

Figure S34. ¹³C NMR spectrum of 4ba in CDCl₃ at 298 K

Figure S35. ¹H NMR spectrum of 4bb in CDCl₃ at 298 K

Figure S36. ¹³C NMR spectrum of 4bb in CDCl₃ at 298 K

Figure S38. ¹³C NMR spectrum of 4bc in CDCl₃ at 298 K

Figure S40. ¹³C NMR spectrum of 4bd in CDCl₃ at 298 K

Figure S42. ¹³C NMR spectrum of 4be in CDCl₃ at 298 K

160 140 120 100 80 60 40 20 δ (ppm)

0

Figure S44. ¹³C NMR spectrum of 4bf in CDCl₃ at 298 K

200

- 8.855 - 8.855 - 8.855 - 7.839 - 7.830 - 7.335 - 7.326 - 7.327 - 7

Figure S46. ¹³C NMR spectrum of 4bg in CDCl₃ at 298 K

Figure S48. ¹³C NMR spectrum of 4bh in CDCl₃ at 298 K

Figure S50. ¹³C NMR spectrum of 4bi in CDCl₃ at 298 K

- 8.750 - 8.750 7.774 7.774 7.774 7.774 7.774 7.774 7.774 7.774 7.774 7.774 7.774 7.774 7.774 7.774 7.775 6.888 6.8889 6.8889 6.8889 6.8889 6.8889 6.8889 6.8889 6.8889 6.8889 6.8889 6.8889 6.8889 6.8889 6.8889 6.8889 6.8889 6.8333 6.6336 7.11456 7.11456 7.11456 7.12917 7.12917 7.12919

Figure S52. ¹³C NMR spectrum of 4bj in CDCl₃ at 298 K

Figure S54. ¹³C NMR spectrum of 4ca in CDCl₃ at 298 K.

Figure S56. ¹³C NMR spectrum of 4da in CDCl₃ at 298 K

 $<^{1.350}_{1.348}$

Figure S58. ¹³C NMR spectrum of 4ea in CDCl₃ at 298 K.

Figure S60. ¹³C NMR spectrum of 5 in CDCl₃ at 298 K

Figure S62. ¹³C NMR spectrum of 6 in CDCl₃ at 298 K

Figure 64. ¹H NMR spectra of 7 with D_2O (top) and 7 (bottom) in $CDCl_3$ at 298 K

Figure S66. ¹H-¹H COSY spectrum of 7 in CDCl₃ at 298 K

Figure S68. ¹³C NMR spectrum of 8 in CDCl₃ at 298 K.

9.771 1.8538 1.8538 1.8530 1.8530 1.8530 1.8530 1.8530 1.8530 1.7330 1.7330 1.7330 1.7333 1.7333 1.7358 1.7558

4. UV/vis absorption and fluorescence spectra and data

Figure S70. Absorption and fluorescence spectra in CH₂Cl₂.

Compound	λ_{abs} /nm (ϵ /10 ⁴ ·M ⁻¹ ·cm ⁻¹)	λ_{em} / nm	$arPhi_{ m F}$
1b	500 (5.48), 447 (2.45)	575	0.04
3ba	520 (6.04), 447 (1.70)	580	
4ba	545 (4.67), 453 (1.44)	572	
5	545 (4.84), 447 (1.26)	600	
7	534 (7.22), 500 (1.71), 483 (1.31)	566	0.77
8	555 (4.71), 490 (1.80)	621	0.047

Table S1. UV/vis absorption and fluorescence spectra data

Fluorescence quantum yield was obtained by $\Phi_F = S_F/S_R \cdot A_R/A_F \cdot \Phi_R$ ($\lambda_{ex} = 425$ nm), here S is the measured integrated emission intensity; A is the optical density; F means sample and R means reference; **1b** was used as the reference ($\Phi = 0.04$ in CH₂Cl₂).^{S6, S9}

5. X-ray crystal data

Single crystals of **4ba**, **5**, and **9** was obtained by diffusion of methanol into toluene solution. A suitable crystal was selected and measured on a SuperNova, Dual, Cu at zero, EosS2 diffractometer. The crystal was kept at 100.01(10) K during data collection. Using Olex^{S10}, the structure was solved with the olex2.solve^{S11} structure solution program using Charge Flipping and refined with the ShelXL^{S12} refinement package using Least Squares minimization.

a)

Figure S71. X-ray crystal structure of **4ba**: a) top view, b) side view. The thermal ellipsoids are 50% probability level. H atom and solvent molecules are omitted for clarity.

 Table S2. X-ray Crystal Data for 4ba.

Identification code	exp_2153_sq	
Empirical formula	$C_{37}H_{34}BF_2N_3$	
Formula weight	569.48	
Temperature	100.01(10) K	
Wavelength	1.54184 Å	
Crystal system	Orthorhombic	
Space group	Pca21	
Unit cell dimensions	$a = 38.5907(19) \text{ Å}$ $\alpha =$	= 90°.
	$b = 6.1918(3)$ Å $\beta =$	• 90°.
	$c = 29.5351(13) \text{ Å}$ $\gamma =$	90°.
Volume	7057.3(6) Å ³	
Z	4	
Density (calculated)	1.072 Mg/m ³	
Absorption coefficient	0.556 mm ⁻¹	
F(000)	2400	
Crystal size	0.3 x 0.1 x 0.05 mm ³	
Theta range for data collection2.735 to 71.982°.		
Index ranges -46<=h<=47, -7<=k<=6, -18<=		=36
Reflections collected	16481	
Independent reflections	9240 [R(int) = 0.0422]	
Completeness to theta = 67.684°	99.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.47230	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	9240 / 1 / 787	
Goodness-of-fit on F ²	1.028	
Final R indices [I>2sigma(I)]	R1 = 0.0620, wR2 = 0.1613	
R indices (all data)	R1 = 0.0775, wR2 = 0.1784	
Absolute structure parameter	0.3(3)	
Extinction coefficient	n/a	
Largest diff. peak and hole CCDC	0.281 and -0.266 e.Å ⁻³ 2374385	

Table S3. bond lengths ((Å) and angles (°) for	C(12)-C(13)	1.418(8)
4ba	ba		1.392(8)
F(1)-B(1)	1.376(7)	C(13)-C(16)	1.417(7)
F(2)-B(1)	1.388(6)	C(14)-H(14)	0.9500
N(1)-C(22)	1.381(6)	C(14)-C(15)	1.415(8)
N(1)-C(25)	1.347(6)	C(15)-H(15)	0.9500
N(1)-B(1)	1.561(7)	C(16)-C(17)	1.405(7)
N(2)-C(15)	1.349(6)	C(17)-C(18)	1.458(7)
N(2)-C(16)	1.398(6)	C(17)-C(22)	1.417(7)
N(2)-B(1)	1.523(7)	C(18)-C(19)	1.394(8)
N(3)-H(3)	0.8800	C(19)-H(19)	0.9500
N(3)-C(18)	1.360(7)	C(19)-C(20)	1.467(11)
N(3)-C(21)	1.367(9)	C(20)-H(20)	0.9500
C(1)-H(1A)	0.9800	C(20)-C(21)	1.303(13)
C(1)-H(1B)	0.9800	C(21)-H(21)	0.9500
C(1)-H(1C)	0.9800	C(22)-C(23)	1.424(7)
C(1)-C(4)	1.531(8)	C(23)-C(24)	1.401(8)
C(2)-H(2A)	0.9800	C(23)-C(26)	1.430(7)
C(2)-H(2B)	0.9800	C(24)-H(24)	0.9500
C(2)-H(2C)	0.9800	C(24)-C(25)	1.387(7)
C(2)-C(4)	1.491(8)	C(25)-H(25)	0.9500
C(3)-H(3A)	0.9800	C(26)-C(27)	1.190(8)
C(3)-H(3B)	0.9800	C(27)-C(28)	1.437(7)
C(3)-H(3C)	0.9800	C(28)-C(29)	1.371(9)
C(3)-C(4)	1.523(9)	C(28)-C(30)	1.374(8)
C(4)-C(5)	1.529(8)	C(29)-H(29)	0.9500
C(5)-C(6)	1.352(11)	C(29)-C(33)	1.392(8)
C(5)-C(9)	1.342(10)	C(30)-H(30)	0.9500
C(6)-H(6)	0.9500	C(30)-C(31)	1.395(8)
C(6)-C(7)	1.430(11)	C(31)-H(31)	0.9500
C(7)-H(7)	0.9500	C(31)-C(32)	1.356(8)
C(7)-C(10)	1.363(11)	C(32)-C(33)	1.370(8)
C(8)-H(8)	0.9500	C(32)-C(34)	1.538(7)
C(8)-C(9)	1.384(11)	C(33)-H(33)	0.9500
C(8)-C(10)	1.333(11)	C(34)-C(35)	1.521(9)
C(9)-H(9)	0.9500	C(34)-C(36)	1.551(8)
C(10)-C(11)	1.447(8)	C(34)-C(37)	1.537(7)
C(11)-C(12)	1.197(8)	C(35)-H(35A)	0.9800

C(35)-H(35B)	0.9800	C(45)-H(45)	0.9500
C(35)-H(35C)	0.9800	C(45)-C(47)	1.368(8)
C(36)-H(36A)	0.9800	C(46)-H(46)	0.9500
C(36)-H(36B)	0.9800	C(46)-C(47)	1.393(8)
C(36)-H(36C)	0.9800	C(47)-C(48)	1.445(7)
C(37)-H(37A)	0.9800	C(48)-C(49)	1.192(7)
C(37)-H(37B)	0.9800	C(49)-C(50)	1.431(7)
C(37)-H(37C)	0.9800	C(50)-C(51)	1.402(7)
F(3)-B(2)	1.375(6)	C(50)-C(53)	1.427(7)
F(4)-B(2)	1.400(7)	C(51)-H(51)	0.9500
N(4)-H(4)	0.8800	C(51)-C(52)	1.389(7)
N(4)-C(55)	1.366(7)	C(52)-H(52)	0.9500
N(4)-C(58)	1.359(9)	C(53)-C(54)	1.388(7)
N(5)-C(60)	1.394(6)	C(54)-C(55)	1.477(7)
N(5)-C(63)	1.356(6)	C(54)-C(60)	1.418(7)
N(5)-B(2)	1.538(7)	C(55)-C(59)	1.375(8)
N(6)-C(52)	1.338(6)	C(56)-H(56A)	0.9800
N(6)-C(53)	1.383(6)	C(56)-H(56B)	0.9800
N(6)-B(2)	1.539(7)	C(56)-H(56C)	0.9800
C(38)-H(38A)	0.9800	C(56)-C(72)	1.534(7)
C(38)-H(38B)	0.9800	C(57)-H(57)	0.9500
C(38)-H(38C)	0.9800	C(57)-C(58)	1.380(13)
C(38)-C(40)	1.534(8)	C(57)-C(59)	1.414(10)
C(39)-H(39A)	0.9800	C(58)-H(58)	0.9500
C(39)-H(39B)	0.9800	C(59)-H(59)	0.9500
C(39)-H(39C)	0.9800	C(60)-C(61)	1.423(7)
C(39)-C(40)	1.512(10)	C(61)-C(62)	1.423(7)
C(40)-C(41)	1.548(9)	C(61)-C(64)	1.408(7)
C(40)-C(42)	1.534(7)	C(62)-H(62)	0.9500
C(41)-H(41A)	0.9800	C(62)-C(63)	1.388(7)
C(41)-H(41B)	0.9800	C(63)-H(63)	0.9500
C(41)-H(41C)	0.9800	C(64)-C(65)	1.203(8)
C(42)-C(43)	1.384(8)	C(65)-C(66)	1.431(8)
C(42)-C(44)	1.394(8)	C(66)-C(67)	1.378(9)
C(43)-H(43)	0.9500	C(66)-C(71)	1.403(8)
C(43)-C(46)	1.382(8)	C(67)-H(67)	0.9500
C(44)-H(44)	0.9500	C(67)-C(68)	1.388(8)
C(44)-C(45)	1.397(8)	C(68)-H(68)	0.9500

C(68)-C(69)	1.417(7)	C(4)-C(3)-H(3A)	109.5
C(69)-C(70)	1.386(8)	C(4)-C(3)-H(3B)	109.5
C(69)-C(72)	1.537(7)	C(4)-C(3)-H(3C)	109.5
C(70)-H(70)	0.9500	C(2)-C(4)-C(1)	108.1(5)
C(70)-C(71)	1.385(8)	C(2)-C(4)-C(3)	110.5(5)
C(71)-H(71)	0.9500	C(2)-C(4)-C(5)	111.5(5)
C(72)-C(73)	1.521(7)	C(3)-C(4)-C(1)	107.6(6)
C(72)-C(74)	1.544(7)	C(3)-C(4)-C(5)	108.4(5)
C(73)-H(73A)	0.9800	C(5)-C(4)-C(1)	110.7(5)
C(73)-H(73B)	0.9800	C(6)-C(5)-C(4)	122.0(6)
C(73)-H(73C)	0.9800	C(9)-C(5)-C(4)	124.4(6)
C(74)-H(74A)	0.9800	C(9)-C(5)-C(6)	113.5(7)
C(74)-H(74B)	0.9800	C(5)-C(6)-H(6)	118.3
C(74)-H(74C)	0.9800	C(5)-C(6)-C(7)	123.4(8)
C(22)-N(1)-B(1)	125.5(4)	C(7)-C(6)-H(6)	118.3
C(25)-N(1)-C(22)	108.2(4)	C(6)-C(7)-H(7)	120.7
C(25)-N(1)-B(1)	125.2(4)	C(10)-C(7)-C(6)	118.7(8)
C(15)-N(2)-C(16)	107.2(4)	C(10)-C(7)-H(7)	120.7
C(15)-N(2)-B(1)	124.9(4)	C(9)-C(8)-H(8)	119.8
C(16)-N(2)-B(1)	127.5(4)	C(10)-C(8)-H(8)	119.8
C(18)-N(3)-H(3)	125.5	C(10)-C(8)-C(9)	120.4(8)
C(18)-N(3)-C(21)	108.9(6)	C(5)-C(9)-C(8)	125.1(8)
C(21)-N(3)-H(3)	125.5	C(5)-C(9)-H(9)	117.5
H(1A)-C(1)-H(1B)	109.5	C(8)-C(9)-H(9)	117.5
H(1A)-C(1)-H(1C)	109.5	C(7)-C(10)-C(11)	120.6(6)
H(1B)-C(1)-H(1C)	109.5	C(8)-C(10)-C(7)	118.3(7)
C(4)-C(1)-H(1A)	109.5	C(8)-C(10)-C(11)	121.1(6)
C(4)-C(1)-H(1B)	109.5	C(12)-C(11)-C(10)	176.2(7)
C(4)-C(1)-H(1C)	109.5	C(11)-C(12)-C(13)	176.0(6)
H(2A)-C(2)-H(2B)	109.5	C(14)-C(13)-C(12)	125.6(5)
H(2A)-C(2)-H(2C)	109.5	C(14)-C(13)-C(16)	107.8(5)
H(2B)-C(2)-H(2C)	109.5	C(16)-C(13)-C(12)	126.3(5)
C(4)-C(2)-H(2A)	109.5	C(13)-C(14)-H(14)	127.1
C(4)-C(2)-H(2B)	109.5	C(13)-C(14)-C(15)	105.8(5)
C(4)-C(2)-H(2C)	109.5	C(15)-C(14)-H(14)	127.1
H(3A)-C(3)-H(3B)	109.5	N(2)-C(15)-C(14)	111.0(4)
H(3A)-C(3)-H(3C)	109.5	N(2)-C(15)-H(15)	124.5
H(3B)-C(3)-H(3C)	109.5	С(14)-С(15)-Н(15)	124.5

N(2)-C(16)-C(13)	108.1(4)	C(28)-C(30)-H(30)	119.8
N(2)-C(16)-C(17)	119.3(4)	C(28)-C(30)-C(31)	120.4(6)
C(17)-C(16)-C(13)	132.6(5)	C(31)-C(30)-H(30)	119.8
C(16)-C(17)-C(18)	120.0(5)	C(30)-C(31)-H(31)	118.7
C(16)-C(17)-C(22)	120.1(4)	C(32)-C(31)-C(30)	122.7(6)
C(22)-C(17)-C(18)	119.9(5)	C(32)-C(31)-H(31)	118.7
N(3)-C(18)-C(17)	124.1(5)	C(31)-C(32)-C(33)	116.3(5)
N(3)-C(18)-C(19)	109.7(5)	C(31)-C(32)-C(34)	123.5(5)
C(19)-C(18)-C(17)	126.2(5)	C(33)-C(32)-C(34)	120.2(5)
С(18)-С(19)-Н(19)	128.8	C(29)-C(33)-H(33)	118.8
C(18)-C(19)-C(20)	102.4(7)	C(32)-C(33)-C(29)	122.3(6)
С(20)-С(19)-Н(19)	128.8	C(32)-C(33)-H(33)	118.8
С(19)-С(20)-Н(20)	124.9	C(32)-C(34)-C(36)	107.4(5)
C(21)-C(20)-C(19)	110.2(7)	C(35)-C(34)-C(32)	112.7(5)
С(21)-С(20)-Н(20)	124.9	C(35)-C(34)-C(36)	109.3(5)
N(3)-C(21)-H(21)	125.6	C(35)-C(34)-C(37)	108.3(5)
C(20)-C(21)-N(3)	108.8(7)	C(37)-C(34)-C(32)	110.4(4)
C(20)-C(21)-H(21)	125.6	C(37)-C(34)-C(36)	108.8(5)
N(1)-C(22)-C(17)	120.3(4)	C(34)-C(35)-H(35A)	109.5
N(1)-C(22)-C(23)	107.5(4)	C(34)-C(35)-H(35B)	109.5
C(17)-C(22)-C(23)	132.2(5)	C(34)-C(35)-H(35C)	109.5
C(22)-C(23)-C(26)	128.4(5)	H(35A)-C(35)-H(35B)	109.5
C(24)-C(23)-C(22)	107.0(4)	H(35A)-C(35)-H(35C)	109.5
C(24)-C(23)-C(26)	124.2(5)	H(35B)-C(35)-H(35C)	109.5
C(23)-C(24)-H(24)	126.8	C(34)-C(36)-H(36A)	109.5
C(25)-C(24)-C(23)	106.4(5)	C(34)-C(36)-H(36B)	109.5
C(25)-C(24)-H(24)	126.8	C(34)-C(36)-H(36C)	109.5
N(1)-C(25)-C(24)	110.8(4)	H(36A)-C(36)-H(36B)	109.5
N(1)-C(25)-H(25)	124.6	H(36A)-C(36)-H(36C)	109.5
C(24)-C(25)-H(25)	124.6	H(36B)-C(36)-H(36C)	109.5
C(27)-C(26)-C(23)	173.7(7)	C(34)-C(37)-H(37A)	109.5
C(26)-C(27)-C(28)	176.2(7)	C(34)-C(37)-H(37B)	109.5
C(29)-C(28)-C(27)	120.9(5)	C(34)-C(37)-H(37C)	109.5
C(29)-C(28)-C(30)	117.6(5)	H(37A)-C(37)-H(37B)	109.5
C(30)-C(28)-C(27)	121.5(5)	H(37A)-C(37)-H(37C)	109.5
C(28)-C(29)-H(29)	119.7	H(37B)-C(37)-H(37C)	109.5
C(28)-C(29)-C(33)	120.6(6)	F(1)-B(1)-F(2)	110.2(5)
C(33)-C(29)-H(29)	119.7	F(1)-B(1)-N(1)	109.3(4)

F(1)-B(1)-N(2)	112.3(5)	C(43)-C(42)-C(44)	117.0(5)
F(2)-B(1)-N(1)	108.4(4)	C(44)-C(42)-C(40)	120.2(5)
F(2)-B(1)-N(2)	110.9(5)	C(42)-C(43)-H(43)	119.0
N(2)-B(1)-N(1)	105.5(4)	C(46)-C(43)-C(42)	122.1(6)
C(55)-N(4)-H(4)	125.5	C(46)-C(43)-H(43)	119.0
C(58)-N(4)-H(4)	125.5	C(42)-C(44)-H(44)	119.5
C(58)-N(4)-C(55)	109.0(6)	C(42)-C(44)-C(45)	121.1(6)
C(60)-N(5)-B(2)	125.9(4)	C(45)-C(44)-H(44)	119.5
C(63)-N(5)-C(60)	107.7(4)	C(44)-C(45)-H(45)	119.5
C(63)-N(5)-B(2)	126.2(4)	C(47)-C(45)-C(44)	121.0(5)
C(52)-N(6)-C(53)	109.0(4)	C(47)-C(45)-H(45)	119.5
C(52)-N(6)-B(2)	124.9(4)	C(43)-C(46)-H(46)	119.8
C(53)-N(6)-B(2)	124.8(4)	C(43)-C(46)-C(47)	120.4(6)
H(38A)-C(38)-H(38B)	109.5	C(47)-C(46)-H(46)	119.8
H(38A)-C(38)-H(38C)	109.5	C(45)-C(47)-C(46)	118.4(5)
H(38B)-C(38)-H(38C)	109.5	C(45)-C(47)-C(48)	120.7(5)
C(40)-C(38)-H(38A)	109.5	C(46)-C(47)-C(48)	120.9(5)
C(40)-C(38)-H(38B)	109.5	C(49)-C(48)-C(47)	177.9(6)
C(40)-C(38)-H(38C)	109.5	C(48)-C(49)-C(50)	173.3(6)
H(39A)-C(39)-H(39B)	109.5	C(51)-C(50)-C(49)	123.8(5)
H(39A)-C(39)-H(39C)	109.5	C(51)-C(50)-C(53)	106.7(4)
H(39B)-C(39)-H(39C)	109.5	C(53)-C(50)-C(49)	129.1(5)
C(40)-C(39)-H(39A)	109.5	C(50)-C(51)-H(51)	126.6
C(40)-C(39)-H(39B)	109.5	C(52)-C(51)-C(50)	106.8(5)
C(40)-C(39)-H(39C)	109.5	C(52)-C(51)-H(51)	126.6
C(38)-C(40)-C(41)	106.8(6)	N(6)-C(52)-C(51)	110.3(4)
C(39)-C(40)-C(38)	109.1(5)	N(6)-C(52)-H(52)	124.8
C(39)-C(40)-C(41)	111.3(6)	C(51)-C(52)-H(52)	124.8
C(39)-C(40)-C(42)	108.4(5)	N(6)-C(53)-C(50)	107.1(4)
C(42)-C(40)-C(38)	110.6(5)	N(6)-C(53)-C(54)	121.0(4)
C(42)-C(40)-C(41)	110.7(5)	C(54)-C(53)-C(50)	132.0(5)
C(40)-C(41)-H(41A)	109.5	C(53)-C(54)-C(55)	120.5(5)
C(40)-C(41)-H(41B)	109.5	C(53)-C(54)-C(60)	120.3(4)
C(40)-C(41)-H(41C)	109.5	C(60)-C(54)-C(55)	119.2(4)
H(41A)-C(41)-H(41B)	109.5	N(4)-C(55)-C(54)	124.4(5)
H(41A)-C(41)-H(41C)	109.5	N(4)-C(55)-C(59)	109.0(5)
H(41B)-C(41)-H(41C)	109.5	C(59)-C(55)-C(54)	126.6(5)
C(43)-C(42)-C(40)	122.7(5)	H(56A)-C(56)-H(56B)	109.5

H(56A)-C(56)-H(56C)	109.5	C(70)-C(69)-C(68)	117.2(5)
H(56B)-C(56)-H(56C)	109.5	C(70)-C(69)-C(72)	123.8(5)
C(72)-C(56)-H(56A)	109.5	С(69)-С(70)-Н(70)	119.1
C(72)-C(56)-H(56B)	109.5	C(71)-C(70)-C(69)	121.9(5)
C(72)-C(56)-H(56C)	109.5	С(71)-С(70)-Н(70)	119.1
C(58)-C(57)-H(57)	126.2	C(66)-C(71)-H(71)	119.8
C(58)-C(57)-C(59)	107.7(6)	C(70)-C(71)-C(66)	120.5(5)
C(59)-C(57)-H(57)	126.2	C(70)-C(71)-H(71)	119.8
N(4)-C(58)-C(57)	108.1(7)	C(56)-C(72)-C(69)	112.5(4)
N(4)-C(58)-H(58)	126.0	C(56)-C(72)-C(74)	107.4(4)
C(57)-C(58)-H(58)	126.0	C(69)-C(72)-C(74)	109.1(4)
C(55)-C(59)-C(57)	106.3(6)	C(73)-C(72)-C(56)	108.6(4)
C(55)-C(59)-H(59)	126.9	C(73)-C(72)-C(69)	109.0(4)
C(57)-C(59)-H(59)	126.9	C(73)-C(72)-C(74)	110.2(4)
N(5)-C(60)-C(54)	119.5(4)	С(72)-С(73)-Н(73А)	109.5
N(5)-C(60)-C(61)	108.2(4)	C(72)-C(73)-H(73B)	109.5
C(54)-C(60)-C(61)	132.3(5)	С(72)-С(73)-Н(73С)	109.5
C(62)-C(61)-C(60)	106.4(4)	H(73A)-C(73)-H(73B)	109.5
C(64)-C(61)-C(60)	128.4(5)	H(73A)-C(73)-H(73C)	109.5
C(64)-C(61)-C(62)	125.0(5)	H(73B)-C(73)-H(73C)	109.5
C(61)-C(62)-H(62)	126.7	C(72)-C(74)-H(74A)	109.5
C(63)-C(62)-C(61)	106.5(4)	C(72)-C(74)-H(74B)	109.5
C(63)-C(62)-H(62)	126.7	C(72)-C(74)-H(74C)	109.5
N(5)-C(63)-C(62)	111.0(4)	H(74A)-C(74)-H(74B)	109.5
N(5)-C(63)-H(63)	124.5	H(74A)-C(74)-H(74C)	109.5
C(62)-C(63)-H(63)	124.5	H(74B)-C(74)-H(74C)	109.5
C(65)-C(64)-C(61)	177.3(6)	F(3)-B(2)-F(4)	109.0(4)
C(64)-C(65)-C(66)	177.4(6)	F(3)-B(2)-N(5)	110.0(4)
C(67)-C(66)-C(65)	119.5(5)	F(3)-B(2)-N(6)	111.7(4)
C(67)-C(66)-C(71)	118.4(5)	F(4)-B(2)-N(5)	110.1(4)
C(71)-C(66)-C(65)	122.1(5)	F(4)-B(2)-N(6)	109.4(4)
C(66)-C(67)-H(67)	119.4	N(5)-B(2)-N(6)	106.5(4)
C(66)-C(67)-C(68)	121.2(5)		
C(68)-C(67)-H(67)	119.4		
C(67)-C(68)-H(68)	119.6		
C(67)-C(68)-C(69)	120.8(5)		
C(69)-C(68)-H(68)	119.6		
C(68)-C(69)-C(72)	119.1(5)		

Figure S72. X-ray crystal structure of **5**: a) top view, b) side view. The thermal ellipsoids are 50% probability level. H atom and solvent molecules are omitted for clarity.

 Table S4. X-ray Crystal Data for 5.

Identification code	exp_3434	
Empirical formula	$C_{35}H_{28}BF_2N_3O$	
Formula weight	555.41	
Temperature	100.01(10) K	
Wavelength	1.54184 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 9.9099(2) Å	$\alpha = 69.706(2)^{\circ}.$
	b = 11.4408(3) Å	$\beta = 87.070(2)^{\circ}.$
	c = 13.8879(3) Å	$\gamma = 78.071(2)^{\circ}.$
Volume	1444.57(6) Å ³	
Z	2	
Density (calculated)	1.277 Mg/m ³	
Absorption coefficient	0.696 mm ⁻¹	
F(000)	580	
Crystal size	0.3 x 0.1 x 0.1 mm ³	
Theta range for data collection	3.394 to 66.571°.	
Index ranges	-11<=h<=11, -13<=k<=	=13, -16<=l<=16
Reflections collected	18263	
Independent reflections	5097 [R(int) = 0.0180]	
Completeness to theta = 66.571°	99.9 %	
Absorption correction	Semi-empirical from ec	luivalents
Max. and min. transmission	1.00000 and 0.83801	
Refinement method	Full-matrix least-square	es on F ²
Data / restraints / parameters	5097 / 12 / 383	
Goodness-of-fit on F ²	1.032	
Final R indices [I>2sigma(I)]	R1 = 0.0400, wR2 = 0.1	1017
R indices (all data)	R1 = 0.0433, wR2 = 0.1	1038
Extinction coefficient	n/a	
Largest diff. peak and hole	0.342 and -0.296 e.Å ⁻³	
CCDC	2374386	

Table S5. bond lengths (A	Table S5. bond lengths (Å) and angles (°) for		1.383(2)
5		C(10)-C(9)	1.400(2)
F(1)-B(015)	1.379(2)	C(10)-C(11)	1.393(2)
F(2)-B(015)	1.385(2)	C(10)-C(13)	1.532(2)
O(1)-C(34)	1.2231(18)	C(34)-C(35)	1.498(2)
N(2)-C(4)	1.3915(17)	C(12)-C(11)	1.388(2)
N(2)-C(1)	1.344(2)	C(24)-C(23)	1.378(2)
N(2)-B(015)	1.539(2)	C(13)-C(14)	1.532(2)
N(1)-C(22)	1.3915(18)	C(13)-C(16)	1.537(2)
N(1)-C(23)	1.344(2)	C(13)-C(15)	1.530(2)
N(1)-B(015)	1.545(2)	C(20)-C(19)	1.356(3)
N(3)-C(18)	1.3754(19)	C(4)-N(2)-B(015)	125.98(13)
N(3)-C(20)	1.357(2)	C(1)-N(2)-C(4)	108.31(12)
C(0AA)-C(4)	1.426(2)	C(1)-N(2)-B(015)	124.21(13)
C(0AA)-C(5)	1.4197(19)	C(22)-N(1)-B(015)	125.92(13)
C(0AA)-C(2)	1.401(2)	C(23)-N(1)-C(22)	108.16(13)
C(17)-C(4)	1.407(2)	C(23)-N(1)-B(015)	125.72(13)
C(17)-C(18)	1.4606(19)	C(20)-N(3)-C(18)	109.15(14)
C(17)-C(22)	1.404(2)	C(5)-C(0AA)-C(4)	129.24(13)
C(18)-C(21)	1.374(2)	C(2)-C(0AA)-C(4)	106.91(12)
C(22)-C(25)	1.428(2)	C(2)-C(0AA)-C(5)	123.83(13)
C(5)-C(6)	1.200(2)	C(4)-C(17)-C(18)	120.05(12)
C(21)-C(19)	1.424(2)	C(22)-C(17)-C(4)	119.95(13)
C(28)-C(33)	1.405(2)	C(22)-C(17)-C(18)	119.97(13)
C(28)-C(26)	1.430(2)	N(2)-C(4)-C(0AA)	107.15(12)
C(28)-C(29)	1.392(2)	N(2)-C(4)-C(17)	120.40(13)
C(32)-C(31)	1.392(2)	C(17)-C(4)-C(0AA)	132.28(13)
C(32)-C(33)	1.376(2)	N(3)-C(18)-C(17)	124.28(13)
C(27)-C(26)	1.202(2)	C(21)-C(18)-N(3)	108.59(13)
C(27)-C(25)	1.414(2)	C(21)-C(18)-C(17)	126.95(13)
C(31)-C(30)	1.398(2)	N(1)-C(22)-C(17)	120.76(13)
C(31)-C(34)	1.490(2)	N(1)-C(22)-C(25)	107.31(12)
C(6)-C(7)	1.432(2)	C(17)-C(22)-C(25)	131.70(13)
C(30)-C(29)	1.380(2)	C(6)-C(5)-C(0AA)	174.60(15)
C(7)-C(8)	1.402(2)	C(18)-C(21)-C(19)	105.54(14)
C(7)-C(12)	1.395(2)	C(33)-C(28)-C(26)	120.47(14)
C(8)-C(9)	1.381(2)	C(29)-C(28)-C(33)	118.92(14)
C(25)-C(24)	1.398(2)	C(29)-C(28)-C(26)	120.61(13)

C(33)-C(32)-C(31)	120.95(13)	F(1)-B(015)-F(2)	109.77(14)
C(26)-C(27)-C(25)	174.98(16)	F(1)-B(015)-N(2)	110.25(15)
C(32)-C(31)-C(30)	118.81(14)	F(1)-B(015)-N(1)	110.54(14)
C(32)-C(31)-C(34)	119.61(13)	F(2)-B(015)-N(2)	109.72(14)
C(30)-C(31)-C(34)	121.56(14)	F(2)-B(015)-N(1)	110.39(15)
C(32)-C(33)-C(28)	120.19(14)	N(2)-B(015)-N(1)	106.12(12)
C(5)-C(6)-C(7)	178.00(16)	F(001)-B(00U)-N(005)	111.3(5)
C(27)-C(26)-C(28)	177.42(16)	F(002)-B(00U)-F(001)	109.4(5)
C(29)-C(30)-C(31)	120.56(14)	F(002)-B(00U)-N(004)	110.2(5)
C(8)-C(7)-C(6)	119.77(13)	F(002)-B(00U)-N(005)	111.5(5)
C(12)-C(7)-C(6)	121.93(14)	N(005)-B(00U)-N(004)	104.9(5)
C(12)-C(7)-C(8)	118.27(13)	C(2)-C(1)-C(6)	109.3(12)
C(9)-C(8)-C(7)	120.49(14)	C(2)-C(1)-C(9)	114.0(14)
C(27)-C(25)-C(22)	128.27(14)	C(2)-C(1)-C(0AA)	108.2(13)
C(24)-C(25)-C(22)	106.50(13)	C(9)-C(1)-C(6)	102.9(12)
C(24)-C(25)-C(27)	124.98(14)	C(0AA)-C(1)-C(6)	109.1(13)
C(1)-C(2)-C(0AA)	106.87(13)	C(0AA)-C(1)-C(9)	113.1(14)
N(2)-C(1)-C(2)	110.75(13)	C(7)-C(8)-C(6)	120.0
C(9)-C(10)-C(13)	119.64(13)	C(00Z)-C(7)-C(8)	120.0
C(11)-C(10)-C(9)	117.19(13)	C(7)-C(00Z)-C(00T)	120.3(6)
C(11)-C(10)-C(13)	123.16(13)	C(7)-C(00Z)-C(00Y)	120.0
O(1)-C(34)-C(31)	119.98(14)	C(00Y)-C(00Z)-C(00T)	119.6(6)
O(1)-C(34)-C(35)	120.62(14)	C(00Z)-C(00Y)-C(011)	120.0
C(31)-C(34)-C(35)	119.38(13)	C(6)-C(011)-C(00Y)	120.0
C(11)-C(12)-C(7)	120.50(14)	C(8)-C(6)-C(1)	123.4(9)
C(8)-C(9)-C(10)	121.74(14)	C(011)-C(6)-C(1)	116.5(9)
C(30)-C(29)-C(28)	120.56(14)	C(011)-C(6)-C(8)	120.0
C(12)-C(11)-C(10)	121.74(14)		
C(23)-C(24)-C(25)	107.35(14)		
N(1)-C(23)-C(24)	110.67(13)		
C(10)-C(13)-C(16)	109.15(13)		
C(14)-C(13)-C(10)	111.89(13)		
C(14)-C(13)-C(16)	108.05(14)		
C(15)-C(13)-C(10)	109.36(14)		
C(15)-C(13)-C(14)	108.80(14)		
C(15)-C(13)-C(16)	109.56(15)		
C(19)-C(20)-N(3)	108.01(14)		
C(20)-C(19)-C(21)	108.67(14)		

Figure S73. X-ray crystal structure of **9**: a) top view, b) side view. The thermal ellipsoids are 50% probability level. H atom and solvent molecules are omitted for clarity.

 Table S6. X-ray Crystal Data for 9.

Identification code	exp_1730	
Empirical formula	$C_{37}H_{32}BF_2N_3$	
Formula weight	567.26	
Temperature	100.3(8) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	P 1 21/c 1	
Unit cell dimensions	a = 14.2196(5) Å	$\alpha = 90^{\circ}$.
	b = 7.5050(2) Å	$\beta = 109.003(4)^{\circ}.$
	c = 20.4147(7) Å	$\gamma = 90^{\circ}$.
Volume	2059.89(12) Å ³	
Z	4	
Density (calculated)	1.468 Mg/m ³	
Absorption coefficient	0.811 mm ⁻¹	
F(000)	936	
Crystal size	0.3 x 0.2 x 0.1 mm ³	
Theta range for data collection	3.287 to 66.576°.	
Index ranges	-11<=h<=16, -8<=k<=8, -24	l<=l<=19
Reflections collected	7016	
Independent reflections	3627 [R(int) = 0.0308]	
Completeness to theta = 66.576°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.76303	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3627 / 0 / 316	
Goodness-of-fit on F ²	1.055	
Final R indices [I>2sigma(I)]	R1 = 0.0481, wR2 = 0.1189	
R indices (all data)	R1 = 0.0631, wR2 = 0.1301	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.302 and -0.252 e.Å ⁻³	
CCDC	2374387	

Table S7. bond lengths ((Å) and angles (°) for	C(20)-C(19)	1.365(3)
9		C(23)-H(23)	0.9300
F(2)-B(1)	1.385(3)	C(23)-C(24)	1.364(3)
F(1)-B(1)	1.391(3)	C(8)-H(8)	0.9300
N(2)-C(4)	1.369(2)	C(8)-C(9)	1.369(3)
N(2)-C(1)	1.358(3)	C(9)-H(9)	0.9300
N(2)-B(1)	1.537(3)	C(2)-H(2)	0.9300
N(3)-C(18)	1.405(3)	C(19)-H(19)	0.9300
N(3)-C(21)	1.379(3)	C(13)-H(13)	0.9300
N(3)-C(29)	1.396(3)	C(13)-C(14)	1.385(3)
N(1)-C(6)	1.393(2)	C(17)-H(17)	0.9300
N(1)-C(9)	1.348(3)	C(17)-C(16)	1.381(3)
N(1)-B(1)	1.554(3)	C(26)-H(26)	0.9300
C(4)-C(0AA)	1.400(3)	C(26)-C(25)	1.369(3)
C(4)-C(5)	1.421(3)	C(25)-H(25)	0.9300
C(0AA)-C(29)	1.424(3)	C(25)-C(24)	1.418(3)
C(0AA)-C(2)	1.414(3)	C(24)-H(24)	0.9300
C(6)-C(5)	1.440(3)	C(14)-H(14)	0.9300
C(6)-C(7)	1.420(3)	C(14)-C(15)	1.382(4)
C(18)-C(5)	1.415(3)	C(16)-H(16)	0.9300
C(18)-C(19)	1.410(3)	C(16)-C(15)	1.379(4)
C(21)-C(22)	1.421(3)	C(15)-H(15)	0.9300
C(21)-C(20)	1.408(3)		
C(29)-C(28)	1.371(3)	C(4)-N(2)-B(1)	123.99(17)
C(22)-C(27)	1.426(3)	C(1)-N(2)-C(4)	107.06(17)
C(22)-C(23)	1.407(3)	C(1)-N(2)-B(1)	128.95(17)
C(27)-C(28)	1.414(3)	C(21)-N(3)-C(18)	110.15(17)
C(27)-C(26)	1.417(3)	C(21)-N(3)-C(29)	122.89(18)
C(12)-C(11)	1.432(3)	C(29)-N(3)-C(18)	126.91(17)
C(12)-C(13)	1.403(3)	C(6)-N(1)-B(1)	128.76(17)
C(12)-C(17)	1.395(3)	C(9)-N(1)-C(6)	109.04(17)
C(1)-H(1)	0.9300	C(9)-N(1)-B(1)	121.95(17)
C(1)-C(2)	1.367(3)	N(2)-C(4)-C(0AA)	108.89(17)
C(10)-C(7)	1.414(3)	N(2)-C(4)-C(5)	125.07(19)
C(10)-C(11)	1.208(3)	C(0AA)-C(4)-C(5)	125.97(19)
C(7)-C(8)	1.406(3)	C(4)-C(0AA)-C(29)	120.02(18)
C(28)-H(28)	0.9300	C(4)-C(0AA)-C(2)	106.72(18)
C(20)-H(20)	0.9300	C(2)-C(0AA)-C(29)	133.23(19)

N(1)-C(6)-C(5)	117.83(17)	C(22)-C(23)-H(23)	119.8
N(1)-C(6)-C(7)	106.55(17)	C(24)-C(23)-C(22)	120.4(2)
C(7)-C(6)-C(5)	135.45(18)	C(24)-C(23)-H(23)	119.8
N(3)-C(18)-C(5)	119.76(18)	C(7)-C(8)-H(8)	126.2
N(3)-C(18)-C(19)	104.93(17)	C(9)-C(8)-C(7)	107.63(19)
C(19)-C(18)-C(5)	135.3(2)	C(9)-C(8)-H(8)	126.2
C(4)-C(5)-C(6)	117.60(18)	N(1)-C(9)-C(8)	109.92(19)
C(18)-C(5)-C(4)	113.67(18)	N(1)-C(9)-H(9)	125.0
C(18)-C(5)-C(6)	128.64(18)	C(8)-C(9)-H(9)	125.0
N(3)-C(21)-C(22)	119.58(18)	C(0AA)-C(2)-H(2)	127.0
N(3)-C(21)-C(20)	106.90(18)	C(1)-C(2)-C(0AA)	105.97(19)
C(20)-C(21)-C(22)	133.52(19)	C(1)-C(2)-H(2)	127.0
N(3)-C(29)-C(0AA)	113.59(18)	C(18)-C(19)-H(19)	125.0
C(28)-C(29)-N(3)	118.00(18)	C(20)-C(19)-C(18)	109.96(19)
C(28)-C(29)-C(0AA)	128.40(19)	C(20)-C(19)-H(19)	125.0
C(21)-C(22)-C(27)	118.13(19)	C(12)-C(13)-H(13)	120.1
C(23)-C(22)-C(21)	122.3(2)	C(14)-C(13)-C(12)	119.9(2)
C(23)-C(22)-C(27)	119.5(2)	C(14)-C(13)-H(13)	120.1
C(28)-C(27)-C(22)	119.4(2)	С(12)-С(17)-Н(17)	119.6
C(28)-C(27)-C(26)	121.9(2)	C(16)-C(17)-C(12)	120.7(2)
C(26)-C(27)-C(22)	118.7(2)	C(16)-C(17)-H(17)	119.6
C(13)-C(12)-C(11)	121.0(2)	C(27)-C(26)-H(26)	119.7
C(17)-C(12)-C(11)	120.24(19)	C(25)-C(26)-C(27)	120.6(2)
C(17)-C(12)-C(13)	118.8(2)	C(25)-C(26)-H(26)	119.7
N(2)-C(1)-H(1)	124.3	C(26)-C(25)-H(25)	120.0
N(2)-C(1)-C(2)	111.34(18)	C(26)-C(25)-C(24)	120.0(2)
C(2)-C(1)-H(1)	124.3	C(24)-C(25)-H(25)	120.0
C(11)-C(10)-C(7)	172.4(2)	C(23)-C(24)-C(25)	120.7(2)
C(10)-C(7)-C(6)	132.03(19)	C(23)-C(24)-H(24)	119.6
C(8)-C(7)-C(6)	106.84(18)	C(25)-C(24)-H(24)	119.6
C(8)-C(7)-C(10)	121.11(19)	C(13)-C(14)-H(14)	119.8
C(29)-C(28)-C(27)	122.0(2)	C(15)-C(14)-C(13)	120.5(2)
C(29)-C(28)-H(28)	119.0	C(15)-C(14)-H(14)	119.8
C(27)-C(28)-H(28)	119.0	C(17)-C(16)-H(16)	120.0
C(10)-C(11)-C(12)	178.1(2)	C(15)-C(16)-C(17)	120.0(2)
C(21)-C(20)-H(20)	126.0	C(15)-C(16)-H(16)	120.0
C(19)-C(20)-C(21)	108.06(18)	C(14)-C(15)-H(15)	119.9
C(19)-C(20)-H(20)	126.0	C(16)-C(15)-C(14)	120.1(2)

C(16)-C(15)-H(15)	119.9
F(2)-B(1)-F(1)	109.16(17)
F(2)-B(1)-N(2)	111.12(18)
F(2)-B(1)-N(1)	110.88(18)
F(1)-B(1)-N(2)	110.14(18)
F(1)-B(1)-N(1)	110.07(18)
N(2)-B(1)-N(1)	105.43(16)

6. HR-MALDI-TOF mass data

Figure S74. Observed (top) and simulated (bottom) HR-MALDI-TOF mass spectra of 7.

Figure S75 Observed (top) and simulated (bottom) HR-MALDI-TOF mass spectra of 8.

Figure S76. Observed (top) and simulated (bottom) HR-MALDI-TOF mass spectra of 9.

7. References

- [S1] B. Umasekhar, E. Ganapathi, T. Chatterjee, M. Ravikanth, Synthesis, Structure, and Spectral, Electrochemical and Fluoride Sensing Properties of meso-Pyrrolyl Boron Dipyrromethene. *Dalton Trans.* 2015, 44, 16516-16527.
- [S2] V. Leen, P. Yuan, L. Wang, N. Boens, W. Dehaen, Synthesis of Meso-Halogenated BODIPYs and Access to Meso-Substituted Analogues. *Org. Lett.* 2012,14, 6150-6153.
- [S3] T. Jiang, P. Zhang, C. Yu, J. Yin, L. Jiao, E. Dai, J. Wang, Y. Wei, X. Mu, E. Hao, Straightforward Synthesis of Oligopyrroles through a Regioselective S_NAr Reaction of Pyrroles and Halogenated Boron Dipyrrins. Org. Lett. 2014, 16, 1952-1955.
- [S4] A. J. Gómez-Infante, J. Bañuelos, I. Valois-Escamilla, D. Cruz-Cruz, R. Prieto-Montero, I. López-Arbeloa, T. Arbeloa, E. Peña-Cabrera, Synthesis, Properties, and Functionalization of Non-symmetric 8-MethylthioBODIPYs. *Eur: J. Org. Chem.* 2016, 5009-5023.
- [S5] M. J. Plater, S. Aiken, G. Bourhill, A new synthetic route to donor-acceptor porphyrins. *Tetrahedron* 2002, 58, 2405-2413.
- [S6] H. Shu, M. Guo, M. Wang, S. Fan, M. Zhou, L. Xu, Y. Rao, A. Osuka, J. Song, Rhodium-Catalyzed [5+2] Annulation of Pyrrole Appended BODIPYs: Access to Azepine-Fused BODIPYs. Org. Lett. 2023, 25, 1817-1822.
- [S7] Y. Zhang, R. P. Hsung, M. R. Tracey, K. C. M. Kurtz, E. L. Vera, Copper Sulfate-Pentahydrate-1,10-Phenanthroline Catalyzed Amidations of Alkynyl Bromides. Synthesis of Heteroaromatic Amine Substituted Ynamides. Org. Lett. 2004, 6, 1151-1154.
- [S8] Y. Gao, G. Wu, Q. Zhou and J. Wang, Palladium-Catalyzed Oxygenative Cross-Coupling of Ynamides and Benzyl Bromides by Carbene Migratory Insertion. *Angew. Chem. Int. Ed.* 2018, 57, 2716-2720.
- [S9] B. Xiao, X. Huang, Y. Rao, L. Xu, B. Yin, A. Osuka, J. Song, Axially Arylene-bridged "Dumbbell" B(III)-Subporphyrin Dimers and a Tetrameric Subporphyrin Nanocage. *Chem. Asian J.* 2022, *17*, e202101406.
- [S10] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: A complete structure solution, refinement and analysis program *J. Appl. Cryst.*, 2009, 42, 339-341.
- [S11] L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment-Olex2 dissected, *Acta Cryst.*, 2015, *A71*, 59-75.
- [S12] G. M. Sheldrick, Crystal structure refinement with SHELXL Acta Cryst., 2015, C71, 3-8.