Supporting Information

Iridium/palladium dual photocatalysis for oxidative decarboxylative

esterification of alcohols using α -keto acids

Subal Mondal, Soumya Mondal[†], Debabrata Halder[†], Siba P. Midya[†], Ankan Paul*

and Pradyut Ghosh*

School of Chemical Sciences, Indian Association for the Cultivation of Science,

2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India

[†]S.M., D.H. and S.P.M. contributed equally

*Corresponding authors; Email: <u>rcap@iacs.res.in</u>; <u>icpg@iacs.res.in</u>

Contents

1. General Information	S2-S3
2. Experimental Section	S4-S53
3. Mechanistic Studies	S54-S64
4. X-ray Crystal Structure	S65-S67
5. DFT Studies	S68-S116
6. References	S117-S120
7. Copy of Spectra	S121-S225

1. General Information

All catalytic experiments were carried out using standard Schlenk techniques. All solvents were reagent grade or better. Deuterated solvents were used as received commercially. Commercially available metal salt precursors were used without additional purification. Most of the chemicals used in the catalytic reactions were purified according to standard procedure.^{S1}

Chemicals: All reactants **1** and **2** were purchased from Sigma Aldrich, TCI India, Thermo Scientific and BLD Pharmatech India and used as received. Other reagents were purchased from Sigma Aldrich or TCI India and used as received.

Blue LED Setup: Reactions were irradiated with 40 W Kessil PR160L-456 nm LED (λ_{max} = 456 nm, average intensity of LED at 2x4 cm area is 137 mW/cm²). Kessil PR160L-456 nm LED contains linear reflector and has upto 25% higher average intensity than Kessil PR160-456 nm LED. Distance between LED and reaction vessel surface was kept between 5-6 cm. 2 LEDs were used for irradiating 4 reaction vials and a cooling fan was used for maintaining the reaction temperature between 30-32 °C.

Chromatography Techniques: Thin layer chromatography (TLC) was performed using silica gel percolated glass plates, which were visualized with UV light at 254 nm or under iodine. Column chromatography was performed with SiO₂ (Silicycle Silica flash F60 (230-400 mesh)).

NMR Spectra: ¹H NMR (300, 400, 500 or 600 MHz), ¹³C NMR (75, 101, 126 or 151 MHz) spectra were recorded on the NMR spectrometer. Deuterated chloroform, dimethyl sulfoxide were used as NMR solvent, and chemical shift values (δ) are reported in parts per million relatives to the residual signals of this solvent [δ 7.26 for ¹H (chloroform-d), δ 2.50 for ¹H (DMSO-d₆), δ 77.16 for ¹³C (chloroform-d), δ 39.52 for ¹³C (DMSO-d₆)]. Abbreviations used in the NMR follow-up experiments: br, broad; s, singlet; d, doublet; dd, doublet of doublet; t, triplet; q, quartet; quin, pentet (quintet); sext, sextet; m, multiplet; dq, doublet of quartet; qd, quartet of doublet.

Instrumental Techniques: GC-MS measurements were conducted on an Thermo Fischer TRACE 1300 GC system equipped with a ISQ QD single quadrupole mass spectrometer. GC analysis was carried out using a TG-5MS column (30 m, 0.25 mm, 0.25µ). High resolution mass

spectra (HRMS) were measured on Q-Tof micro-MS system by electron spray ionization (ESI) technique. Elemental analyses were performed on a Vario-EL cube elemental analyzer. Fourier transform infrared (FT-IR) analysis was carried out on a Perkin-Elmer Spectrometer. Optical absorption measurements were carried out by Shimadazu UV-vis-IR-3600 Plus spectrophotometer. The crystals were mounted on a Super Nova Dual Source X-ray Diffractometer system (Agilent Technologies) equipped with a CCD area detector and operated at 250 W power (50 kV, 0.8 mA) to generate Mo K_a radiation (λ = 0.71073 Å) and **Cu K_a** radiation (λ = 1.54178 Å) at 298K. X-ray photoelectron spectroscopy (XPS) measurements were performed at room temperature using Al K_a source (10 mA, 15kV) on a laboratory based commercial X-ray photoelectron spectrometer from Omicron Nanotechnology.

Computational Details: All molecular geometries were optimized in vacuum with M06 density functional paired with 6-31++G(p,d) basis set for C, H, N, O, F atoms and LanL2DZ, which has a double- ζ quality basis set with the Los Alamos effective core potential for Ir and Pd. The M06 density functional was used as it has been shown to be a tool to make reliable predictions for photo-redox reaction free energy changes and barriers. The CPCM technique has been chosen because continuum solvent models are reported to give satisfactory results for the solvent phase. All the calculations were conducted within the Gaussian 09 suite of programs.

2. Experimental Section

2.1 Optimization conditions

Table S1: Screening of solvent^a

H H H H H H H H H H H H H H H H H H H	OH 2a CN Hr-2 / Pd-1 NaHCO ₃ / solvent 40W Blue LED (456 nm)	3a CN CN
Entry	Solvent	$\operatorname{Yield}^{b}(\%) \mathbf{3a}$
1	DMSO	88
2	DMF	56
3	DMA	47
4	CH ₃ CN	37
5	THF	trace
6	1,4-Dioxane	7
7	DCE	19
8	Acetone	34
9	MeOH	trace
10	Toluene	NR
11	Water	NR
12	CCl_4	trace

^{*a*}Reaction conditions: α -keto acid **1a** (0.3 mmol), 4-hydroxybenzonitrile **2a** (0.25 mmol), **Ir-2** (2.5 mol%), (4,4²-dtbbpy)PdCl₂ (5 mol%), NaHCO₃ (0.3 mmol), and solvent (1.5 mL) stirred at room temperature (RT) under 40W blue LED (456 nm) for 24 h. ^{*b*}Yield determined by GC using 1,4-dibromobutane as an internal standard. NR = No reaction.

Table S2:	Screening	of additive ^{<i>a</i>}
	~~~~~	

OH + 1a	OH 2a CN H Ir-2 / Pd-1 Additive/ DMSO 40W Blue LED (456 nm)	CN 3a
Entry	Additive	$\operatorname{Yield}^{b}(\%) \mathbf{3a}$
1	NaHCO ₃	88
2	$Cs_2CO_3$	55
3	Na ₂ CO ₃	59
4	K ₂ CO ₃	57
5	NaOAc	23
6	NaH ₂ PO ₄	56
7	Na ₂ HPO ₄	64
8	$K_2HPO_4$	57
9	NaOH	9
10	NEt ₃	11
11	NaHSO ₄	NR
12	K ₃ PO ₄	NR
13	^t BuOK	40

^{*a*}Reaction conditions:  $\alpha$ -keto acid **1a** (0.3 mmol), 4-hydroxybenzonitrile **2a** (0.25 mmol), **Ir-2** (2.5 mol%), (4,4'-dtbbpy)PdCl₂ (5 mol%), addtive (0.3 mmol), and solvent (1.5 mL) stirred at room temperature (RT) under 40W blue LED (456 nm) for 24 h. ^{*b*}Yield determined by GC using 1,4-dibromobutane as an internal standard. NR = No reaction.

**Table S3**: Screening of photoredox catalyst^{*a*}



^{*a*}Reaction conditions:  $\alpha$ -keto acid **1a** (0.3 mmol), 4-hydroxybenzonitrile **2a** (0.25 mmol), photocatalyst (2.5 mol%), (4,4'-dtbbpy)PdCl₂ (5 mol%), NaHCO₃ (0.3 mmol), and solvent (1.5 mL) stirred at room temperature (RT) under 40W blue LED (456 nm) for 24 h. ^{*b*}Yield determined by GC using 1,4-dibromobutane as an internal standard. NR = No reaction.

Table S4: Screening	of	transition	metal	catalyst ^a
---------------------	----	------------	-------	-----------------------

ОН	OH	Ir-2 / TM-catalyst	O CN
1a +	2a _{CN}	NaHCO ₃ / DMSO 40W Blue LED (456 nm)	3a

Entry	TM-catalyst	$\operatorname{Yield}^{b}(\%) \mathbf{3a}$
1	PdCl ₂	67
2	$Pd(OAc)_2$	49
3	(4,4'-dtbbpy)PdCl ₂ (Pd-1)	88
4	Pd(TFA) ₂	60
5	$Pd(PPh_3)_2Cl_2$	62
6	Pd(PPh ₃ ) ₄	11
7	NiCl ₂	41
8	$Pd(acac)_2$	57
9	$PdCl_2 + (4,4'-dtbbpy)$	84
10	Ni(TFA) ₂	43
11	$CuCl_2$	35
12	CuI	trace
13	Rh(Ph ₃ P) ₃ Cl	trace

^{*a*}Reaction conditions:  $\alpha$ -keto acid **1a** (0.3 mmol), 4-hydroxybenzonitrile **2a** (0.25 mmol), **Ir-2** (2.5 mol%), TM-catalyst (5 mol%), NaHCO₃ (0.3 mmol), and solvent (1.5 mL) stirred at room temperature (RT) under 40W blue LED (456 nm) for 24 h. ^{*b*}Yield determined by GC using 1,4-dibromobutane as an internal standard. NR = No reaction.

**Table S5**: Variation of light source and intensity^{*a*}

1a	$\begin{array}{c} \text{OH} \\ + \\ 2a \\ \text{CN} \end{array} \xrightarrow{\text{OH}} \\ \begin{array}{c} \text{Ir-2 / Pd-1} \\ \text{NaHCO_3 / DMSO} \\ \text{hv} \end{array}$	CN 3a
Entry	Light source (Intensity)	$Yield^{b} (\%) 3a$
1	PR160L-440 nm LED (100%)	63
2	PR160L-390 nm LED (100%)	32
3	PR160L-456 nm LED (100%)	88
4	PR160L-456 nm LED (50%)	64
5	CFL bulb	13

^{*a*}Reaction conditions:  $\alpha$ -keto acid **1a** (0.3 mmol), 4-hydroxybenzonitrile **2a** (0.25 mmol), **Ir-2** (2.5 mol%), (4,4²-dtbbpy)PdCl₂ (5 mol%), NaHCO₃ (0.3 mmol), and solvent (1.5 mL) stirred at room temperature (RT) under 40W blue LED (456 nm) for 24 h. ^{*b*}Yield determined by GC using 1,4-dibromobutane as an internal standard. NR = No reaction.

**Table S6**: Additive Equivalent^{a,b}

ſ	OH → OH + 1a	OH Ir-2 / Pd-1 NaHCO ₃ (x mmol) DMSO 2a hv	Ja Ja
-	Entry	Additive NaHCO ₃ (mmol)	Yield (%) ^b 3a
_	1	0.3	88
	2	0.2	65
	3	0.6	75

^{*a*}Reaction conditions:  $\alpha$ -keto acid **1a** (0.3 mmol), 4-hydroxybenzonitrile **2a** (0.25 mmol), **Ir-2** (2.5 mol%), (4,4'-dtbbpy)PdCl₂ (5 mol%), NaHCO₃ (x mmol), and solvent (1.5 mL) stirred at room temperature (RT) under 40W blue LED (456 nm) for 24 h. ^{*b*}Yield determined by GC using 1,4-dibromobutane as an internal standard. NR = No reaction.

**Table S7**: Substrate Equivalent^{a,b}

1a	(x mmol) OH OH CN CN CN 2a (y mmol)	Ir-2 / Pd-1 NaHCO ₃ / DMSO hv 3a	CN CN
Entry	Keto Acid 1a (mmol)	Alcohol 2a (mmol)	Yield (%) ^b 3a
1	0.3	0.3	80
2	0.3	0.25	88
3	0.45	0.25	90
4	0.3	0.45	76

^{*a*}Reaction conditions: *a*-keto acid **1a** (x mmol), 4-hydroxybenzonitrile **2a** (y mmol), **Ir-2** (2.5 mol%), (4,4²-dtbbpy)PdCl₂ (5 mol%), NaHCO₃ (0.3 mmol), and solvent (1.5 mL) stirred at room temperature (RT) under 40W blue LED (456 nm) for 24 h. ^{*b*}Yield determined by GC using 1,4-dibromobutane as an internal standard. NR = No reaction.

 Table S8: Catalyst loading^{a,b}

ĺ	1a $2a$ $CN$ $OH$ $Na$	Ir-2 / Pd-1	CN
Entry	Photocatalyst (mol%)	TM-catalyst (mol%)	Yield (%) ^b 3a
1	1	5	30
2	1.5	5	42
3	2	5	55
4	5	5	88
5	5	2	60
6	5	10	90

^{*a*}Reaction conditions:  $\alpha$ -keto acid **1a** (0.3 mmol), 4-hydroxybenzonitrile **2a** (0.25 mmol), **Ir-2** (2.5 mol%), (4,4'-dtbbpy)PdCl₂ (5 mol%), NaHCO₃ (0.3 mmol), and solvent (1.5 mL) stirred at room temperature (RT) under 40W blue LED (456 nm) for 24 h. ^{*b*}Yield determined by GC using 1,4-dibromobutane as an internal standard. NR = No reaction.

**Table S9**: Control experiment^a

OH OH 1a 2a CN		OH Ir-2 / Pd-1 NaHCO ₃ / DMSO 40W Blue LED (456 nm)	3a CN
	Entry	Condition	$Yield (\%)^b 3a$
	1	Without Ir-2	NR
	2	Without Pd-1	20
	3	Without NaHCO ₃	9
	4	Without blue LED	NR

^{*a*}Reaction conditions:  $\alpha$ -keto acid **1a** (0.3 mmol), 4-hydroxybenzonitrile **2a** (0.25 mmol), **Ir-2** (2.5 mol%), (4,4'-dtbbpy)PdCl₂ (5 mol%), NaHCO₃ (0.3 mmol), and solvent (1.5 mL) stirred at room temperature (RT) under 40W blue LED (456 nm) for 24 h. ^{*b*}Yield determined by GC using 1,4-dibromobutane as an internal standard. NR = No reaction.

#### Table S10: Reaction Kinetics



# 2.2 Synthesis and characterization of starting material

#### 2.2.1 Photocatalyst preparation:

The photocatalysts, such as  $[Ir(ppy)_2(dtbbpy)]PF_6$  (**Ir-1**),  $[Ir\{dF(CF_3)ppy\}_2(dtbbpy)]PF_6$  (**Ir-2**),  $[Ru(phen)_3](PF_6)_2$  (**Ru-1**) were synthesized according to literature report.^{S2} The spectral data of the photocatalysts are consistent with the literature data. Other photocatalysts such as Eosin-Y, Rose-Bengal were purchased from commercial supplier and used as received.



2.2.2 General procedure for synthesis of glyoxalic acids^{S3}

Scheme S1. Synthesis of glyoxalic acids.

**Process:** According to literature^{S3}, in a 50 mL round-bottom flask equipped with stirred bar and filled with argon, acetophenone derivatives (5 mmol, 1.0 equiv.) and selenium dioxide (15 mmol, 3 equiv.) were added followed by freshly-dried pyridine (15 mL). The reaction mixture was stirred at 110 °C in an oil bath for overnight (12-16 hr). After completion of the reaction, as determined by TLC, the mixture containing precipitated selenium was filtered through a pad of celite, the black selenium was washed several times with ethyl acetate. The combined filtrate was concentrated by rotary evaporator. The residue was transferred to a separatory funnel then 1 M HCl was gradually added to the solution for neutralize the leftover pyridine (a precipitate can be seen). The aqueous layer was extracted three times with ethyl acetate. The combined organic layers were treated with 1 M NaOH and the solution was washed with water three times. The combined aqueous layers were acidified using 1 M HCl to about pH = 2 (a precipitate can be seen). The mixture was extracted with ethyl acetate, and the combined organic layers were washed with brine solution, dried with Na₂SO₄ and concentrated under vacuo. The crude  $\alpha$ -oxocarboxylic acid was used without further purification and spectral data are consistent with the

literal report. Remaining  $\alpha$ -keto acids were purchased from commercial supplier and used as received.

2.2.3 General procedure for synthesis of ester



Scheme S2. Synthesis of ester(3a-3zzw; 5a-5o; 7a-7p).

**Process:** To a 15 mL clean, oven-dried screw cap reaction tube,  $\alpha$ -keto acid **1a** (0.30 mmol), alcohol **2a** (0.25 mmol), **Ir-2** (2.5 mol%), (4,4'-dtbbpy)PdCl₂ (5 mol%), NaHCO₃ (0.30 mmol) in DMSO (1.5 mL) were added. The solution was then photoirradiated with 40 W Kessil PR160L-456 nm LED at room temperature for 24h. A cooling fan was used to maintain the reaction temperature between 30-32 °C. After 24h, the reaction mixture was diluted with water (5 mL) and extracted with ethyl acetate (3 x 5 mL). The resultant organic layer was dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The crude mixture was purified by silica gel column chromatography (230-400 mesh size) using petroleum-ether/ethyl acetate as an eluting system.

# **Characteristics of Isolated Products**

#### phenyl benzoate (3b)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2b** (24 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography

(Hexane/Ethyl acetate, 98:2), White solid, 39.6 mg, Yield: 80%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.23-8.20(d, *J* = 9 Hz, 2H), 7.67-7.62(t, *J* = 9 Hz, 1H), 7.54-7.49(t, *J* = 9 Hz, 2H), 7.46-7.41(t, *J* = 9 Hz, 2H), 7.30-7.26(t, *J* = 9 Hz, 1H), 7.24-7.21(d, *J* = 9 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  165.4, 151.1, 133.7, 130.3, 129.8, 129.6, 128.7, 126.0, 121.9. HRMS (ESI): m/z Calcd for C₁₃H₁₁O₂ [M+H]⁺: 199.0754; Found: 199.0755.

#### p-tolyl benzoate (3c)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2c** (27 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 97:3), White solid, 44.0 mg, Yield: 83%. ¹H NMR (400 MHz, CDCl₃)  $\delta$  8.22-8.20(d, J = 8 Hz, 2H), 7.65-7.61(t, J = 8 Hz, 1H), 7.53-7.49(t, J = 8 Hz, 2H), 7.24-7.22(d, J = 8 Hz, 2H), 7.11- 7.09(d, J = 8 Hz, 2H), 2.38(s, 3H). ¹³C NMR (101 MHz, CDCl₃)  $\delta$  165.5, 148.9, 135.6, 133.6, 130.3, 130.1, 129.9, 128.7, 121.5, 21.0. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₄H₁₃O₂: 213.0910; Found: 213.0912.

#### 4-ethylphenyl benzoate (3d)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2d** (31 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by

column chromatography (Hexane/Ethyl acetate, 97:3), White solid, 46.3 mg, Yield: 82%. ¹H NMR (400 MHz, CDCl₃)  $\delta$  8.24-8.22(d, J = 8 Hz, 2H), 7.68-7.64(t, J = 8 Hz, 1H), 7.55-7.52(t, J = 8 Hz, 2H), 7.28-7.27(d, J = 8 Hz, 2H), 7.16-7.14(d, J = 8 Hz, 2H), 2.73-2.67(q, J = 8 Hz, 2H), 1.30-1.27(t, J = 8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃)  $\delta$  165.5, 149.0, 142.0, 133.6, 130.3, 129.9, 129.0, 128.7, 121.6, 28.5, 15.7. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₅H₁₅O₂: 227.1067; Found: 227.1066.

#### 4-(tert-butyl)phenyl benzoate (3e)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2e** (47.5 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 97:3), White solid, 50.8 mg, Yield: 80%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.24-8.21(d, J = 9 Hz, 2H), 7.67-7.62(t, J = 9 Hz, 1H), 7.55-7.50(t, J = 9 Hz, 2H), 7.48-7.45(d, J = 9 Hz, 2H), 7.18-7.15(d, J = 9 Hz, 2H), 1.37(s, 9H). ¹³C NMR (75 MHz,

CDCl₃)  $\delta$  165.5, 148.8, 148.7, 133.6, 130.3, 129.8, 128.6, 126.5, 121.1, 34.6, 31.6. **HRMS** (**ESI**): m/z Calcd for [M+H]⁺ C₁₇H₁₉O₂: 255.1380; Found: 255.1384.

# 4-((3r,5r,7r)-adamantan-1-yl)phenyl benzoate (3f)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2f** (57 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 97:3), White

solid, 65.5 mg, Yield: 79%. ¹**H NMR** (400 MHz, CDCl₃)  $\delta$  8.21-8.19(d, J = 8 Hz, 2H), 7.65-7.61(t, J = 8 Hz, 1H), 7.53-7.49(t, J = 8 Hz, 2H), 7.42-7.40(d, J = 8 Hz, 2H), 7.17-7.15(d, J = 8 Hz, 2H), 2.11(br, 3H), 1.94(br, 6H), 1.77(br, 6H). ¹³**C NMR** (75 MHz, CDCl₃)  $\delta$  165.5, 149.1, 148.8, 133.6, 130.3, 129.9, 128.7, 126.1, 121.2, 43.4, 36.9, 36.2, 29.1. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₂₃H₂₅O₂: 333.1849; Found: 333.1844.

### 4-(4-acetylpiperazin-1-yl)phenyl benzoate (3g)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2g** (45 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 70:30), White solid, 54.2 mg,

Yield: 67%. ¹**H** NMR (300 MHz, CDCl₃)  $\delta$  8.20-8.17(d, J = 9 Hz, 2H), 7.66-7.61(t, J = 9 Hz, 1H), 7.53-7.48(t, J = 9 Hz, 2H), 7.15-7.12(d, J = 9 Hz, 2H), 6.98-6.95(d, J = 9 Hz, 2H), 3.80-3.62(m, 4H), 3.19-3.12(m, 4H), 2.15(s, 3H). ¹³**C** NMR (75 MHz, CDCl₃)  $\delta$  169.2, 165.7, 149.1, 144.7, 133.7, 130.3, 129.8, 128.7, 122.4, 117.9, 50.4, 50.0, 46.4, 41.5, 21.5. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₁₉H₂₁N₂O₃: 325.1547; Found: 325.1543.

#### 4-methoxyphenyl benzoate (3h)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2h** (31 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3

mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 94:6), White solid, 35.3 mg, Yield: 62%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.22-8.19(d, *J* = 9 Hz, 2H), 7.66-7.61(t, *J* = 9 Hz, 1H), 7.53-7.48(t, *J* = 9 Hz, 2H), 7.15-7.12(d, *J* = 9 Hz, 2H), 6.96-6.93(d, *J* = 9 Hz, 2H), 3.83(s, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  165.7, 157.5, 144.6, 133.6, 130.3, 129.8, 128.7, 122.6, 114.7, 55.8. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₄H₁₃O₃: 229.0859; Found: 229.0853.

#### 4-fluorophenyl benzoate (3i)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2i** (28 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 97:3), White solid, 42.1 mg, Yield: 78%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.21-8.18(d, J = 9 Hz, 2H), 7.67-7.63(t, J = 6 Hz, 1H), 7.55-7.49(t, J = 9 Hz, 2H), 7.21-7.08(m, 4H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  165.4, 162.1-158.8(d, J = 242.2 Hz, 1F), 146.9, 133.9, 130.3, 129.5, 128.8, 123.3-123.2(d, J = 8.2 Hz, 1F), 116.5-116.1(d, J = 24 Hz, 1F). HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₃H₁₀FO₂: 217.0659; Found: 217.0655.

#### 4-chlorophenyl benzoate (3j)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2j** (32 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate,

97:3), White solid, 46.9 mg, Yield: 81%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.20-8.17(d, J = 9 Hz, 2H), 7.67-7.63(t, J = 9 Hz, 1H), 7.54-7.49(t, J = 9Hz, 2H), 7.41-7.38(d, J = 9 Hz, 2H), 7.18-7.15(d, J = 9 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  165.1, 149.6, 133.9, 131.4, 130.4, 129.7, 129.3, 128.8, 123.3. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₃H₁₀ClO₂: 233.0364; Found: 233.0365.

#### 4-bromophenyl benzoate (3k)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2k** (43 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 97:3), White solid, 52.9 mg, Yield: 77%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.20-8.17(d, J = 9 Hz, 2H), 7.68-7.63(t, J = 9 Hz, 1H), 7.56-7.49(m, 4H), 7.13-7.10(d, J = 9 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  165.0, 150.1, 133.9, 132.7, 130.3, 129.3, 128.8, 123.7, 119.1. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₃H₁₀BrO₂: 276.9859; Found: 276.9862.

#### 4-iodophenyl benzoate (31)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2l** (55 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 97:3), White solid, 62.1 mg, Yield: 77%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.20-8.17(d, J = 9 Hz, 2H), 7.75-7.72(d, J = 9 Hz, 2H), 7.67-7.62(t, J = 9 Hz, 1H), 7.54-7.49(t, J = 9 Hz, 2H), 7.01-6.98(d, J = 9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃)  $\delta$  165.0, 151.0, 138.7, 133.9, 130.4, 129.4, 128.8, 124.1, 90.0. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₃H₁₀IO₂: 324.9720; Found: 324.9724.

#### [1,1'-biphenyl]-4-yl benzoate (3m)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2m** (42 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 97:3), White solid, 57.5 mg, Yield: 84%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.25-8.22(d, *J* = 9 Hz, 2H), 7.66-7.59(m, 5H), 7.56-7.51(t, *J* = 9 Hz, 2H), 7.48-7.43(t, *J* = 9 Hz, 2H), 7.39-7.34(t, *J* = 9 Hz, 1H), 7.32-7.29(d, *J* = 9 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  165.4, 150.5, 140.6, 139.2, 133.8, 130.4, 129.7, 129.0, 128.7, 128.4, 127.5, 127.3, 122.1. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₉H₁₅O₂: 275.1067; Found: 275.1075.

#### 4-cyanophenyl benzoate (3a)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2a** (25 mg, 0.3 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 90:10), White solid, 46.3 mg, Yield: 83% (88% GCMS). ¹**H NMR** (300 MHz, CDCl₃)  $\delta$  8.21-8.18(d, J = 9 Hz, 2H), 7.76-7.73(d, J = 9 Hz, 2H), 7.70-7.65(t, J = 9 Hz, 1H), 7.56-7.51(d, J = 9 Hz, 2H), 7.39-7.36(d, J = 9 Hz, 2H). ¹³**C NMR** (101 MHz, CDCl₃)  $\delta$  164.5, 154.5, 134.3, 133.9, 130.5, 128.9, 123.1, 118.4, 110.1. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₁₄H₁₀NO₂: 224.0706; Found: 224.0705.

#### 4-nitrophenyl benzoate (3n)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2n** (35 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 90:10), White solid, 43.1 mg, Yield: 71%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.35-8.32(d, *J* = 9 Hz, 2H), 8.22-8.19(d, *J* = 9 Hz, 2H), 7.71-7.66(t, *J* = 9 Hz, 1H), 7.57-7.52(t, *J* = 9 Hz, 2H), 7.44-7.41(d, *J* = 9 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  164.4, 155.9, 145.6, 134.4, 130.5, 128.9, 128.7, 125.4, 122.8. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₄H₁₀NO₄: 244.0604; Found: 244.0605.

#### 4-formylphenyl benzoate (30)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2o** (25 mg, 0.3 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 92:8), White solid, 40.6 mg, Yield: 72%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  10.03(s, 1H), 8.23-8.19(d, J = 9 Hz, 2H), 7.99-7.97(d, J = 6 Hz, 2H), 7.70-7.64(t, J = 9 Hz, 1H), 7.56-7.51(t, J = 9 Hz, 2H), 7.44-7.41(d, J = 9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃)  $\delta$  191.0, 164.6, 155.9, 134.3, 134.2, 131.4, 130.4, 129.1, 128.9, 122.7. HRMS (ESI): m/z Calcd for [M+H]⁺C₁₄H₁₁O₃: 227.0703; Found: 227.0701.

#### 4-acetylphenyl benzoate (3p)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2p** (34 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 92:8), White

solid, 45.0 mg, Yield: 75%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.22-8.19(d, J = 9 Hz, 2H), 8.07-8.04(d, J = 9 Hz, 2H), 7.69-7.64(t, J = 9 Hz, 1H), 7.55-7.50(t, J = 9 Hz, 2H), 7.35-7.32(d, J = 9 Hz, 2H), 2.63(s, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  197.1, 164.8, 154.8, 135.0, 134.1, 130.4, 130.2, 129.2, 128.8, 122.1, 26.8. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₁₅H₁₃O₃: 241.0859; Found: 241.0854.

# 4-(methylsulfonyl)phenyl benzoate (3q)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2q** (43 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 85:15), White

solid, 53.8 mg, Yield: 78%. ¹H NMR (400 MHz, CDCl₃)  $\delta$  8.22-8.20(d, J = 8 Hz, 2H), 8.05-8.03(d, J = 8 Hz, 2H), 7.70-7.66(t, J = 8 Hz, 1H), 7.56-7.52(t, J = 8 Hz, 2H), 7.46-7.44(d, J = 8 Hz, 2H), 3.09(s, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  164.6, 155.2, 138.1, 134.3, 130.5, 129.4, 128.9, 123.0, 44.8. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₄H₁₃O₄S: 277.0529; Found: 277.0524.

#### m-tolyl benzoate (3r)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2r** (27 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 97:3), White solid, 42.9 mg, Yield: 81%. ¹H NMR (400 MHz, CDCl₃)  $\delta$  8.21-8.19(d, J = 8 Hz, 2H), 7.65-7.62(t, J = 8 Hz, 1H), 7.53-7.49(t, J = 8 Hz, 2H), 7.33-7.29(t, J = 8 Hz, 1H), 7.10-7.08(d, J = 8 Hz, 1H), 7.04-7.01(m, 2H), 2.39(s, 3H). ¹³C

**NMR** (75 MHz, CDCl₃) δ 165.5, 151.1, 139.8, 133.7, 130.3, 129.8, 129.4, 128.7, 126.8, 122.5, 118.8, 21.5. **HRMS** (**ESI**): m/z Calcd for [M+H]⁺ C₁₄H₁₃O₂: 213.0910; Found: 213.0913.

#### **3-methoxyphenyl benzoate (3s)**



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2s** (31 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 92:8), White solid, 44.4 mg, Yield: 78%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.22-8.19(d, J = 9 Hz, 2H), 7.67-7.62(t, J = 9 Hz, 1H), 7.54-7.49(t, J = 9 Hz, 2H) 7.36-7.30(t, J = 9 Hz, 1H), 6.85-6.78(m, 3H), 3.82(s, 3H). ¹³C NMR (101 MHz, CDCl₃)  $\delta$  165.2, 160.7, 152.1, 133.7, 130.3, 130.0, 129.8, 128.7, 114.1, 112.0, 107.9, 55.6. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₄H₁₃O₃: 229.0859; Found: 229.0860.

#### **3-morpholinophenyl benzoate (3t)**



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2t** (45 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by

column chromatography (Hexane/Ethyl acetate, 85:15), White solid, 51.6 mg, Yield: 73%. ¹H **NMR** (400 MHz, CDCl₃)  $\delta$  8.22-8.19(d, J = 8 Hz, 2H), 7.66-7.61(t, J = 8 Hz, 1H), 7.54-7.48(t, J = 8 Hz, 2H), 7.34-7.29(t, J = 8 Hz, 1H), 6.84-6.80(d, J = 8 Hz, 1H), 6.75(s, 1H), 6.75-6.72(d, J = 8 Hz, 1H), 3.87-3.84(t, J = 8 Hz, 4H), 3.20-3.17(t, J = 8 Hz, 4H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  165.3, 152.6, 152.1, 133.7, 130.3, 130.0, 129.8, 128.7, 113.1, 113.0, 109.0, 66.9, 49.1. **HRMS** (**ESI**): m/z Calcd for [M+H]⁺ C₁₇H₁₈NO₃: 284.1281; Found: 284.1288.

#### **3-fluorophenyl benzoate (3u)**



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2u** (28 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 97:3), White solid, 41.5 mg, Yield: 77%. ¹H NMR (300

MHz, CDCl₃)  $\delta$  8.21-8.18(d, J = 9 Hz, 2H), 7.68-7.63(t, J = 9 Hz, 1H), 7.55-7.50(t, J = 9 Hz, 2H), 7.43-7.35(m, 1H), 7.05-6.97(m, 3H). ¹³**C** NMR (75 MHz, CDCl₃)  $\delta$  164.9, 164.8-161.5 (d, J = 246 Hz, 1F), 152.0-151.9(d, J = 11.2 Hz, 1F), 134.0, 130.4-130.3(d, J = 9 Hz, 1F), 130.4, 128.8, 117.7, 113.2-113.0(d, J = 21 Hz, 1F), 110.2-109.9(d, J = 24 Hz, 1F). HRMS (ESI): m/z Calcd for C₁₃H₁₀FO₂ [M+H]⁺: 217.0659; Found: 217.0657.

### **3-chlorophenyl benzoate (3v)**



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2v** (32 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 97:3), White solid, 45.8 mg, Yield: 79%. ¹H NMR (400 MHz, CDCl₃)  $\delta$  8.20-8.18(d, J = 8 Hz, 2H), 7.67-7.63(t, J = 8 Hz, 1H), 7.54-7.50(t, J = 8 Hz, 2H), 7.38-7.34(t, J = 8 Hz, 1H), 7.27-7.26(m, 2H), 7.15-7.13(d, J = 8 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  164.9, 151.6, 134.9, 134.0, 130.4, 129.3, 128.8, 126.3, 122.6, 120.3. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₃H₁₀ClO₂: 233.0364; Found: 233.0361.

# **3-bromophenyl benzoate (3w)**



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2w** (43 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 97:3), White solid, 50.8 mg, Yield: 74%. ¹H NMR (400 MHz, CDCl₃)  $\delta$  8.20-8.18(d, J = 8 Hz, 2H), 7.67-7.64(t, J = 8 Hz, 1H), 7.54-7.50(t, J = 8 Hz, 2H), 7.43-7.41(m, 2H), 7.33-7.28(t, J = 8 Hz, 1H), 7.19-7.18(d, J = 4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃)  $\delta$  164.9, 151.7, 134.0, 130.7, 130.4, 129.3, 128.8, 125.4, 122.6, 120.8. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₃H₁₀BrO₂: 276.9859; Found: 276.9855.

# **3-iodophenyl benzoate (3x)**



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2x** (55 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg,

0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 97:3), White solid, 57.3 mg, Yield: 71%. ¹H NMR (400 MHz, CDCl₃)  $\delta$  8.19-8.17(d, *J* = 8 Hz, 2H), 7.67-7.63(t *J* = 8 Hz, 1H), 7.63-7.61(d, *J* = 8 Hz, 2H), 7.54-7.50(t, *J* = 8 Hz, 2H), 7.23-7.21(d, *J* = 8 Hz, 1H), 7.18-7.14(t, *J* = 8 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  164.9, 151.4, 135.2, 134.0, 131.1, 130.9, 130.4, 129.2, 128.8, 121.5, 93.7. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₃H₁₀IO₂: 324.9720; Found: 324.9723.

#### **3-acetylphenyl benzoate (3y)**



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2y** (34 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 92:8), White solid, 43.8 mg,

Yield: 73%. ¹**H** NMR (500 MHz, CDCl₃)  $\delta$  8.22-8.21(d, J = 8 Hz, 2H), 7.88-7.87(d, J = 8 Hz, 1H), 7.81(s, 1H), 7.68-7.65(t, J = 8 Hz, 1H), 7.56-7.52(m, 3H), 7.45-7.44(d, J = 8 Hz, 1H), 2.62(s, 3H). ¹³**C** NMR (101 MHz, CDCl₃)  $\delta$  197.0, 165.1, 151.5, 139.0, 133.9, 130.4, 129.8, 129.5, 128.8, 126.6, 125.9, 121.8, 26.7. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₁₅H₁₃O₃: 241.0859; Found: 241.0856.

# 3-(trifluoromethyl)phenyl benzoate (3z)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2z** (41 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 95:5), White solid, 44.5 mg, Yield: 67%. ¹H NMR (500 MHz, CDCl₃)  $\delta$  8.22-8.20(d, J = 8 Hz, 2H), 7.68-7.65(t, J = 8 Hz, 1H), 7.59-7.52(m, 5H), 7.45-7.44(m, 1H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  164.9, 151.2, 134.1, 132.9-131.6(q, J = 32.2 Hz, 3F), 130.4, 130.2, 129.1, 129.1-118.3(q, J = 271.5 Hz, 3F), 128.8, 125.5, 122.9-122.8(q, J = 3.7 Hz, 3F), 119.3-119.2(q, J = 3.7 Hz, 3F). HRMS (ESI): m/z Calcd for C₁₄H₁₀F₃O₂ [M+H]⁺: 267.0627; Found: 267.0624.

#### **3-nitrophenyl benzoate (3za)**



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2za** (35 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 90:10), White solid, 40.1

mg, Yield: 66%. ¹**H NMR** (300 MHz, CDCl₃)  $\delta$  8.23-8.20(d, J = 9 Hz, 2H), 8.18-8.14(m, 2H), 7.71-7.66(t, J = 9 Hz, 1H), 7.63-7.59(m, 2H), 7.57-7.52(t, J = 9 Hz, 2H). ¹³**C NMR** (75 MHz, CDCl₃)  $\delta$  164.7, 151.4, 149.1, 134.4, 130.5, 130.3, 128.9, 128.7, 128.4, 121.0, 117.7. **HRMS** (**ESI**): m/z Calcd for [M+H]⁺ C₁₃H₁₀NO₄: 244.0604; Found: 244.0600.

# o-tolyl benzoate (3zb)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zb** (27 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 97:3), White solid, 35.5 mg, Yield: 67%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.27-8.24(d, J = 9 Hz, 2H), 7.69-7.64(t, J = 9 Hz, 1H), 7.57-7.51(t, J = 9 Hz, 2H), 7.31-7.15(m, 4H), 2.26(s, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  165.0, 149.7, 133.7, 131.3, 130.4, 130.3, 129.6, 128.7, 127.1, 126.2, 122.1, 16.4. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₄H₁₃O₂: 213.0910; Found: 213.0913.

#### 2-fluorophenyl benzoate (3zc)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zc** (28 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 97:3), White solid, 31.3 mg, Yield: 58%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.24-8.21(d, J = 9 Hz, 2H), 7.68-7.63(t, J = 9 Hz, 1H), 7.55-7.50(t, J = 9 Hz, 2H), 7.30-7.16(m, 4H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  164.3, 156.1-152.8(d, J = 248 Hz, 1F), 138.6-138.5(d, J = 12.7 Hz, 1F), 134.0, 130.5, 128.9, 128.8, 127.3-127.2(d, J = 7.5 Hz, 1F),

124.7-124.6(d, J = 3.7 Hz, 1F), 124.1, 117.1-116.8(d, J = 18 Hz, 1F). **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₁₃H₁₀FO₂: 217.0659; Found: 217.0656.

#### 2-bromophenyl benzoate (3zd)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zd** (43 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 97:3), White solid, 44.7 mg, Yield: 65%. ¹H NMR (500 MHz, CDCl₃)  $\delta$  8.27-8.25(d, *J* = 8 Hz, 2H), 7.68-7.65(m, 2H), 7.55-7.52(t, *J* = 8 Hz, 2H), 7.41-7.37(t, *J* = 8 Hz, 1H), 7.30-7.28(d, *J* = 8 Hz, 1H), 7.19-7.16(t, *J* = 8 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  164.4, 148.6, 134.0, 133.6, 130.6, 129.2, 128.8, 128.6, 127.5, 124.1, 116.4. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₃H₁₀BrO₂: 276.9859; Found: 276.9855.

#### 2,4-dimethylphenyl benzoate (3ze)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2ze** (31 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 95:5), White solid, 47.5

mg, Yield: 84%. ¹**H NMR** (300 MHz, CDCl₃)  $\delta$  8.24-8.21(d, J = 9 Hz, 2H), 7.67-7.62(t, J = 9 Hz, 1H), 7.54-7.49(t, J = 9 Hz, 2H), 7.09-7.00(m, 3H), 2.34(s, 3H), 2.20(s, 3H). ¹³**C NMR** (101 MHz, CDCl₃)  $\delta$  165.2, 147.5, 135.8, 133.6, 131.9, 130.3, 130.0, 129.8, 128.7, 127.7, 121.8, 21.0, 16.3. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₁₅H₁₅O₂: 227.1067; Found: 227.1066.

#### 2,4-dichlorophenyl benzoate (3zf)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zf** (40 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 95:5), White solid, 45.0

mg, Yield: 68%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.24-8.21(d, J = 9 Hz, 2H), 7.70-7.65(t, J = 9

Hz, 1H), 7.56-7.50(m, 3H), 7.33-7.30(d, J = 9 Hz, 1H), 7.25-7.22(d, J = 9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃)  $\delta$  164.2, 146.2, 134.2, 132.1, 130.6, 130.3, 128.9, 128.7, 128.2, 128.1, 124.9. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₁₃H₉Cl₂O₂: 266.9974; Found: 266.9977.

#### 3-methyl-4-nitrophenyl benzoate (3zg)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zg** (38 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 90:10), White

solid, 39.8 mg, Yield: 62%. ¹**H NMR** (300 MHz, CDCl₃)  $\delta$  8.21-8.18(d, J = 9 Hz, 2H), 8.13-8.10(d, J = 9 Hz, 1H), 7.70-7.65(t, J = 9 Hz, 1H), 7.56-7.51(t, J = 9 Hz, 2H), 7.24-7.21(m, 2H), 2.66(s, 3H). ¹³**C NMR** (75 MHz, CDCl₃)  $\delta$  164.5, 154.1, 146.6, 136.3, 134.3, 130.4, 128.9, 128.8, 126.7, 125.9, 120.4, 21.0. **HRMS (ESI):** m/z Calcd for C₁₄H₁₂NO₄ [M+H]⁺: 258.0761; Found: 258.0765.

#### 3,5-dimethylphenyl benzoate (3zh)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zh** (31 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 95:5), White solid, 48.0

mg, Yield: 85%. ¹**H** NMR (300 MHz, CDCl₃)  $\delta$  8.21-8.18(d, J = 9 Hz, 2H), 7.66-7.61(t, J = 9 Hz, 1H), 7.53-7.48(t, J = 9 Hz, 2H), 6.91(s, 1H), 6.84(s, 2H), 2.35(s, 6H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  165.5, 151.0, 139.5, 133.6, 130.3, 129.9, 128.7, 127.8, 119.4, 21.4. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₁₅H₁₅O₂: 227.1067; Found: 227.1066.

#### 3,5-dimethoxyphenyl benzoate (3zi)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zi** (37 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by

column chromatography (Hexane/Ethyl acetate, 90:10), White solid, 56.1 mg, Yield: 87%. ¹**H NMR** (300 MHz, CDCl₃)  $\delta$  8.21-8.18(d, J = 9 Hz, 2H), 7.66-7.61(t, J = 9 Hz, 1H), 7.54-7.49(t, J = 9 Hz, 2H), 6.41-6.38(m, 3H), 3.80(s, 6H). ¹³**C NMR** (75 MHz, CDCl₃)  $\delta$  165.2, 161.4, 152.7, 133.8, 130.3, 129.7, 128.7, 100.5, 98.6, 55.7. **HRMS** (**ESI**): m/z Calcd for [M+H]⁺ C₁₅H₁₅O₄: 259.0965; Found: 259.0967.

#### dimethyl 5-(benzoyloxy)isophthalate (3zj)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zj** (52 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate,

90:10), White solid, 54.1 mg, Yield: 69%. ¹**H NMR** (300 MHz, CDCl₃)  $\delta$  8.62-8.61(t, J = 3 Hz, 1H), 8.22-8.19(d, J = 9 Hz, 2H), 8.10-8.09(d, J = 3 Hz, 2H), 7.69-7.64(t, J = 9 Hz, 1H), 7.56-7.51(t, J = 9 Hz, 2H), 3.96(s, 6H). ¹³**C NMR** (75 MHz, CDCl₃)  $\delta$  165.6, 164.9, 151.1, 134.2, 132.2, 130.4, 129.0, 128.9, 128.3, 127.5, 52.7. **HRMS** (**ESI**): m/z Calcd for [M+H]⁺ C₁₇H₁₅O₆: 315.0863; Found: 315.0860.

# 3,5-bis(trifluoromethyl)phenyl benzoate (3zk)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zk** (57 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 95:5), White solid, 54.2

mg, Yield: 65%. ¹**H** NMR (300 MHz, CDCl₃)  $\delta$  8.22-8.19(d, J = 9 Hz, 2H), 7.81(s, 1H), 7.74(s, 2H), 7.72-7.67(t, J = 9 Hz, 1H), 7.58-7.53(t, J = 9 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  164.5, 151.6, 134.5, 133.9-132.5(q, J = 34.5 Hz, 3F), 130.5, 129.0, 128.5, 128.4-117.5(q, J = 271.5 Hz, 3F), 122.9-122.8(q, J = 3 Hz, 3F), 120.0-119.8(sept, J = 3.7 Hz, 6F). **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₁₅H₉F₆O₂: 335.0501; Found: 335.0505.

#### 3-oxo-2,3-dihydro-1H-inden-5-yl benzoate (3zn)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zn** (37 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 90:10), White solid, 49.7 mg, Yield: 79%. ¹H NMR (400 MHz, CDCl₃)  $\delta$  8.21-8.19(d, J = 8 Hz, 2H), 7.67-7.63(d, J = 8 Hz, 1H), 7.58(s, 1H), 7.54-7.50(m, 3H), 7.45-7.43(d, J = 8 Hz, 1H), 3.18-3.15(m, 2H), 2.77-2.74(m, 2H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  206.1, 165.2, 152.5, 150.5, 138.5, 133.9, 130.3, 129.2, 128.8, 128.6, 127.7, 116.6, 37.0, 25.6. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₆H₁₃O₃: 253.0859; Found: 253.0856.

#### naphthalen-1-yl benzoate (3zl)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zl** (36 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 95:5), White solid, 39.7 mg, Yield: 64%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.42-8.39(d, *J* = 9 Hz, 2H), 8.03-8.00(m, 1H), 7.96-7.93(m, 1H), 7.85-7.82(d, *J* = 9 Hz, 1H), 7.74-7.69(t, *J* = 9 Hz, 1H), 7.63-7.54(m, 5H), 7.46-7.44(d, *J* = 6 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  165.3, 147.0, 134.8, 133.9, 130.4, 129.5, 128.8, 128.2, 127.1, 126.6, 126.2, 125.6, 121.4, 118.3. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₇H₁₃O₂: 249.0910; Found: 249.0912.

#### naphthalen-2-yl benzoate (3zm)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zm** (36 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 95:5), White solid, 44.0 mg, Yield: 71%. ¹**H NMR** (400 MHz, CDCl₃)  $\delta$  8.33-8.31(d, *J* = 8 Hz, 2H), 7.95-7.93(d, *J* = 8 Hz, 1H), 7.93-7.86(dd, *J* = 8 Hz, 8 Hz, 2H), 7.75(s, 1H), 7.70-7.66(t, *J* = 8 Hz, 1H), 7.58-7.52(m, 4H), 7.43-7.41(d, *J* = 8 Hz, 1H). ¹³**C NMR** (75 MHz, CDCl₃)  $\delta$  165.4, 148.7, 133.9, 133.7, 131.6, 130.3, 129.6, 129.5, 128.7,

127.9, 127.7, 126.6, 125.8, 121.3, 118.8. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₁₇H₁₃O₂: 249.0910; Found: 249.0915.

# 4-(1,2,2-triphenylvinyl)phenyl benzoate (3zo)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zo** (87 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 98:2), White solid, 80.2 mg, Yield:

71%. ¹**H NMR** (400 MHz, CDCl₃)  $\delta$  8.18-8.15(d, J = 8 Hz, 2H), 7.65-7.60(t, J = 8 Hz, 1H), 7.52-7.47(t, J = 8 Hz, 2H), 7.17-7.02(m, 17H), 6.99-6.96(d, J = 8 Hz, 2H). ¹³**C NMR** (75 MHz, CDCl₃)  $\delta$  165.2, 149.5, 143.8, 143.7, 143.6, 141.5, 140.2, 133.7, 132.5, 131.5, 131.47, 131.4, 130.3, 129.8, 129.2, 128.7, 128.0, 127.9, 127.8, 126.74, 126.69, 126.6, 121.0. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₃₃H₂₅O₂: 453.1849; Found: 453.1847.

# 2,5-dimethyl-4-oxo-4,5-dihydrofuran-3-yl benzoate (3zp)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zp** (32 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 93:7), White solid, 41.1 mg,

Yield: 71%. ¹**H** NMR (300 MHz, CDCl₃)  $\delta$  8.14-8.11(d, J = 9 Hz, 2H), 7.63-7.58(t, J = 9 Hz, 1H), 7.49-7.44(d, J = 9 Hz, 2H), 4.66-4.59(q, J = 9 Hz, 1H), 2.21(s, 3H), 1.54-1.52(d, J = 6 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  195.8, 180.4, 163.5, 134.0, 130.5, 129.2, 128.7, 128.2, 81.6, 16.5, 14.2. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₁₃H₁₃O₄: 233.0808; Found: 233.0806.

# methyl 3-(benzoyloxy)thiophene-2-carboxylate (3zq)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zq** (39 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 92:8), White solid, 44.5 mg, Yield: 68%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.25-8.22(d, *J* = 9 Hz, 2H), 7.67-7.62(t, *J* = 9 Hz, 1H), 7.55-7.50(m, 3H), 7.12-7.10(d, *J* = 6 Hz, 1H), 3.80(s, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  164.2, 161.2, 151.2, 133.9, 130.5, 130.0, 129.1, 128.8, 123.8, 118.8, 52.1. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₃H₁₁O₄S: 263.0373; Found: 263.0371.

#### methyl benzoate (3zr)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zr** (8 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 99:1), White solid, 7.8 mg, Yield: 23%. ¹H NMR

(400 MHz, CDCl₃)  $\delta$  8.05-8.03(d, J = 8 Hz, 2H), 7.57-7.53(t, J = 8 Hz, 1H), 7.45-7.41(t, J = 8 Hz, 2H), 3.91(s, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  167.2, 133.0, 130.2, 129.7, 128.5, 52.2. HRMS (ESI): m/z Calcd for [M+H]⁺ C₈H₉O₂: 137.0597; Found: 137.0598.

hexyl benzoate (3zs)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zs** (25 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 99:1), White solid, 11.3 mg, Yield: 22%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.06-8.03(d, J = 9 Hz, 2H), 7.57-7.52(t, J = 9 Hz, 1H), 7.45-7.40(t, J = 9 Hz, 2H), 4.34-4.29(t, J = 9 Hz, 2H), 1.81-1.72(quin, J = 9 Hz, 2H), 1.49-1.40(m, 2H), 1.37-1.31(m, 4H), 0.93-0.88(t, J = 9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  166.8, 132.9, 130.6, 129.6, 128.4, 65.2, 31.6, 28.8, 25.8, 22.7, 14.1. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₃H₁₉O₂: 207.1380; Found: 207.1382.

# cyclopropylmethyl benzoate (3zt)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zt** (18 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in

DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 99:1), White solid, 13.6 mg, Yield: 31%. ¹H NMR (400 MHz, CDCl₃)  $\delta$  8.08-8.06(d, *J* = 8 Hz, 2H), 7.57-7.53(t, *J* = 8 Hz, 1H), 7.46-7.42(t, *J* = 8 Hz, 2H), 4.17-4.15(d, *J* = 8 Hz, 2H), 1.30-1.23(m, 1H), 0.64-0.59(q, *J* = 8 Hz, 2H), 0.39-0.35(q, *J* = 8 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  166.9, 132.9, 130.7, 129.7, 128.4, 69.8, 10.0, 3.4. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₁H₁₃O₂: 177.0910; Found: 177.0911.

#### phenethyl benzoate (3zu)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zu** (25 mg, 0.3 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 97:3), White solid, 15.2

mg, Yield: 27%. ¹**H NMR** (300 MHz, CDCl₃)  $\delta$  8.06-8.03(d, J = 9 Hz, 2H), 7.59-7.54(t, J = 9 Hz, 1H), 7.47-7.42(t, J = 9 Hz, 2H), 7.37-7.24(m, 5H), 4.58-4.54(t, J = 9 Hz, 2H), 3.13-3.08(t, J = 9 Hz, 2H). ¹³**C NMR** (75 MHz, CDCl₃)  $\delta$  166.6, 138.0, 133.0, 130.4, 129.7, 129.1, 128.7, 128.5, 126.7, 65.6, 35.4. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₁₅H₁₅O₂: 227.1067; Found: 227.1069.

#### 4-methylbenzyl benzoate (3zv)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zv** (25 mg, 0.3 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by

column chromatography (Hexane/Ethyl acetate, 96:4), White solid, 19.7 mg, Yield: 35%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.12-8.09(d, J = 9 Hz, 2H), 7.59-7.54(t, J = 9 Hz, 1H), 7.47-7.42(t, J = 9 Hz, 2H), 7.40-7.37(d, J = 9 Hz, 2H), 7.24-7.21(d, J = 9 Hz, 2H), 5.36(s, 2H), 2.39(s, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  166.5, 138.2, 133.2, 133.0, 130.3, 129.8, 129.4, 128.44, 128.42, 66.7, 21.3. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₅H₁₅O₂: 227.1067; Found: 227.1066.

#### 4-methoxybenzyl benzoate (3zw)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zw** (34 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by

column chromatography (Hexane/Ethyl acetate, 95:5), White solid, 19.3 mg, Yield: 32%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.08-8.05(d, J = 9 Hz, 2H), 7.57-7.53(d, J = 9 Hz, 1H), 7.45-7.40(t, J = 9 Hz, 2H), 7.41-7.38(d, J = 9 Hz, 2H), 6.94-6.91(d, J = 9 Hz, 2H), 5.31(s, 2H), 3.82(s, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  166.7, 159.8, 133.1, 130.4, 130.2, 129.8, 128.5, 128.3, 114.1, 66.7, 55.4. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₅H₁₅O₃: 243.1016; Found: 243.1012.

#### 4-fluorobenzyl benzoate (3zx)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zx** (32 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 96:4), White solid, 23.6 mg, Yield: 41%. ¹**H NMR** (300 MHz, CDCl₃)  $\delta$  8.08-8.05(d, J = 9 Hz, 2H), 7.58-7.53(t, J = 9 Hz, 1H), 7.46-7.41(m, 4H), 7.10-7.04(t, J = 9 Hz, 2H), 5.33(s, 2H). ¹³**C NMR** (75 MHz, CDCl₃)  $\delta$  166.5, 164.4-161.2(d, J = 245.2 Hz, 1F), 133.2, 132.1-132.0(d, J = 3.7 Hz, 1F), 130.4-130.3(d, J = 8.2 Hz, 1F), 130.2, 129.8, 128.5, 115.8-115.5(d, J = 21.7 Hz, 1F), 66.1. **HRMS** (ESI): m/z Calcd for [M+H]⁺ C₁₄H₁₂FO₂: 231.0816; Found: 231.0814.

#### 4-nitrobenzyl benzoate (3zy)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zy** (38 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by

column chromatography (Hexane/Ethyl acetate, 90:10), White solid, 42.4 mg, Yield: 66%. ¹H **NMR** (300 MHz, CDCl₃)  $\delta$  8.27-8.24(d, *J* = 9 Hz, 2H), 8.10-8.07(d, *J* = 9 Hz, 2H), 7.63-7.60(d, *J* = 9 Hz, 2H), 7.63-7.58(t, *J* = 9 Hz, 1H), 7.50-7.45(t, *J* = 9 Hz, 2H), 5.46(s, 2H). ¹³C **NMR** (75

MHz, CDCl₃)  $\delta$  166.2, 147.8, 143.5, 133.5, 129.8, 129.6, 128.6, 128.4, 123.9, 65.3. **HRMS** (**ESI**): m/z Calcd for [M+H]⁺ C₁₄H₁₂NO₄: 258.0761; Found: 258.0766.

### 3-methylbenzyl benzoate (3zz)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **2zz** (25 mg, 0.3 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by

column chromatography (Hexane/Ethyl acetate, 97:3), White solid, 19.6 mg, Yield: 35%. ¹H **NMR** (400 MHz, CDCl₃)  $\delta$  8.19-8.17(d, J = 8 Hz, 2H), 7.63-7.59(t, J = 8 Hz, 1H), 7.51-7.47(t, J = 8 Hz, 2H), 7.38-7.35(m, 3H), 7.24-7.22(d, J = 8 Hz, 1H), 5.42(s, 2H), 2.45(s, 3H). ¹³C **NMR** (75 MHz, CDCl₃)  $\delta$  166.4, 138.2, 136.0, 133.0, 130.2, 129.7, 129.0, 128.9, 128.5, 128.3, 125.3, 66.7, 21.3. **HRMS** (**ESI**): m/z Calcd for [M+H]⁺ C₁₅H₁₅O₂: 227.1067; Found: 227.1064.

#### 4-cyanophenyl 4-methylbenzoate (3zza)



Following General Procedure 2.2.3 using **1b** (50 mg, 0.3 mmol, 1.2 equiv), **2a** (25 mg, 0.3 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was

purified by column chromatography (Hexane/Ethyl acetate, 90:10), White solid, 37.4 mg, Yield: 63%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.09-8.06(d, *J* = 9 Hz, 2H), 7.75-7.72(d, *J* = 9 Hz, 2H), 7.38-7.35(d, *J* = 9 Hz, 2H), 7.34-7.31(d, *J* = 9 Hz, 2H), 2.47(s, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  164.4, 154.4, 145.3, 133.8, 130.4, 129.6, 129.3, 125.9, 123.0, 109.7, 21.9. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₅H₁₂NO₂: 238.0863; Found: 238.0869.

# 4-cyanophenyl 4-butylbenzoate (3zzb)



Following General Procedure 2.2.3 using 1c (62.0 mg, 0.3 mmol, 1.2 equiv), 2a (25 mg, 0.3 mmol, 1.0 equiv), Ir-2 (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was

purified by column chromatography (Hexane/Ethyl acetate, 90:10), White solid, 40.6 mg, Yield: 58%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.11-8.08(d, *J* = 9 Hz, 2H), 7.75-7.72(d, *J* = 9 Hz, 2H),

7.37-7.34(d, J = 9 Hz, 2H), 7.34-7.32(d, J = 6 Hz, 2H), 2.74-2.69(t, J = 9 Hz, 2H), 1.70-1.59(m, 2H), 1.44-1.32(sext, J = 9 Hz, 2H), 0.97-0.92(t, J = 9 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃)  $\delta$  164.5, 154.5, 150.3, 133.9, 130.5, 129.0, 126.2, 123.1, 109.8, 36.0, 33.4, 22.5, 14.0. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₈H₁₈NO₂: 280.1332; Found: 280.1336.

# 4-cyanophenyl 4-cyclohexylbenzoate (3zzc)



Following General Procedure 2.2.3 using **1d** (70 mg, 0.3 mmol, 1.2 equiv), **2a** (25 mg, 0.3 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography

(Hexane/Ethyl acetate, 90:10), White solid, 61.2 mg, Yield: 80%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.12-8.09(d, J = 9 Hz, 2H), 7.75-7.72(d, J = 9 Hz, 2H), 7.37-7.35(d, J = 9 Hz, 2H), 7.37-7.34(d, J = 9 Hz, 2H), 2.64-2.56(m, 1H), 1.89-1.76(m, 5H), 1.48-1.25(m, 5H). ¹³C NMR (151 MHz, CDCl₃)  $\delta$  164.5, 155.2, 154.5, 133.8, 130.6, 127.4, 126.3, 123.1, 118.5, 109.8, 45.0, 34.2, 26.8, 26.1. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₂₀H₂₀NO₂: 306.1489; Found: 306.1488.

# 4-cyanophenyl 4-methoxybenzoate (3zzd)



Following General Procedure 2.2.3 using **1e** (54 mg, 0.3 mmol, 1.2 equiv), **2a** (25 mg, 0.3 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was

purified by column chromatography (Hexane/Ethyl acetate, 85:15), White solid, 41.2 mg, Yield: 65%. ¹**H NMR** (300 MHz, CDCl₃)  $\delta$  8.14-8.11(d, *J* = 9 Hz, 2H), 7.73-7.70(d, *J* = 9 Hz, 2H), 7.36-7.33(d, *J* = 9 Hz, 2H), 7.00-6.97(d, *J* = 9 Hz, 2H), 3.89(s, 3H). ¹³**C NMR** (75 MHz, CDCl₃)  $\delta$  164.4, 164.1, 154.5, 133.7, 132.6, 123.1, 120.9, 118.4, 114.1, 109.6, 55.7. **HRMS** (**ESI**): m/z Calcd for [M+H]⁺ C₁₅H₁₂NO₃: 254.0812; Found: 254.0810.

# 4-cyanophenyl 4-(methylthio)benzoate (3zze)



Following General Procedure 2.2.3 using **1f** (58.8 mg, 0.3 mmol, 1.2 equiv), **2a** (25 mg, 0.3 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃

(25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 85:15), White solid, 38.4 mg, Yield: 57%. ¹H NMR (400 MHz, CDCl₃)  $\delta$  8.08-8.06(d, *J* = 8 Hz, 2H), 7.75-7.73(d, *J* = 8 Hz, 2H), 7.37-7.35(d, *J* = 8 Hz, 2H), 7.33-7.31(d, *J* = 8 Hz, 2H), 2.55(s, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  164.2, 154.4, 147.7, 133.8, 130.7, 125.2, 124.6, 123.1, 118.4, 109.9, 14.9. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₅H₁₂NO₂S: 270.0583; Found: 270.0588.

### 4-cyanophenyl 4-(allyloxy)benzoate (3zzf)



Following General Procedure 2.2.3 using **1g** (61.8 mg, 0.3 mmol, 1.2 equiv), **2a** (25 mg, 0.3 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The

product was purified by column chromatography (Hexane/Ethyl acetate, 85:15), White solid, 47.0 mg, Yield: 67%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.15-8.12(d, *J* = 9 Hz, 2H), 7.75-7.72(d, *J* = 9 Hz, 2H), 7.37-7.34(d, *J* = 9 Hz, 2H), 7.03-7.00(d, *J* = 9 Hz, 2H), 6.13-6.01(m, 1H), 5.48-5.42(m, 1H), 5.37-5.33(m, 1H), 4.65-4.63(m, 2H). ¹³C NMR (101 MHz, CDCl₃)  $\delta$  164.1, 163.5, 154.6, 133.8, 132.6, 132.4, 123.1, 121.1, 118.5, 118.5, 114.9, 109.8, 69.1. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₇H₁₄NO₃: 280.0968; Found: 280.0966.

# 4-cyanophenyl 4-chlorobenzoate (3zzg)



Following General Procedure 2.2.3 using **1h** (55 mg, 0.3 mmol, 1.2 equiv), **2a** (25 mg, 0.3 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by

column chromatography (Hexane/Ethyl acetate, 90:10), White solid, 47.7 mg, Yield: 74%. ¹**H NMR** (400 MHz, CDCl₃)  $\delta$  8.14-8.12(d, J = 8 Hz, 2H), 7.76-7.74(d, J = 8 Hz, 2H), 7.52-7.50(d, J = 8 Hz, 2H), 7.38-7.35(d, J = 8 Hz, 2H). ¹³**C NMR** (75 MHz, CDCl₃)  $\delta$  163.7, 154.2, 141.0, 133.9, 131.8, 129.3, 127.3, 123.0, 118.3, 110.2. **HRMS** (**ESI**): m/z Calcd for [M+H]⁺ C₁₄H₉CINO₂: 258.0316; Found: 258.0312.

#### 4-cyanophenyl 4-bromobenzoate (3zzh)



Following General Procedure 2.2.3 using **1i** (68 mg, 0.3 mmol, 1.2 equiv), **2a** (25 mg, 0.3 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 90:10), White solid, 43.6 mg, Yield: 58%. ¹H NMR (400 MHz, CDCl₃)  $\delta$  8.06-8.03(d, J = 8 Hz, 2H), 7.76-7.74(d, J = 8 Hz, 2H), 7.69-7.67(d, J = 8 Hz, 2H), 7.37-7.35(d, J = 8 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃)  $\delta$  163.8, 154.1, 133.9, 132.3, 131.9, 129.7, 127.7, 123.0, 118.3, 110.2. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₄H₉BrNO₂: 301.9811; Found: 301.9815.

# 4-cyanophenyl 3-chlorobenzoate (3zzi)



Following General Procedure 2.2.3 using **1j** (55 mg, 0.3 mmol, 1.2 equiv), **2a** (25 mg, 0.3 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 90:10), White solid, 45.8 mg, Yield: 71%. ¹H NMR (400 MHz, CDCl₃)  $\delta$  8.17(s, 1H), 8.09-8.07(d, J = 8 Hz, 1H), 7.77-7.75(d, J = 8 Hz, 2H), 7.66-7.64(d, J = 8 Hz, 1H), 7.51-7.47(t, J = 8 Hz, 1H), 7.38-7.36(d, J = 8 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃)  $\delta$  163.3, 154.1, 135.1, 134.3, 134.0, 130.5, 130.4, 130.2, 128.6, 123.0, 118.3, 110.3. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₄H₉ClNO₂: 258.0316; Found: 258.0312.

#### 4-cyanophenyl 3-bromobenzoate (3zzj)



Following General Procedure 2.2.3 using **1k** (68 mg, 0.3 mmol, 1.2 equiv), **2a** (25 mg, 0.3 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 90:10), White solid, 43.6 mg, Yield: 58%. ¹H NMR (400 MHz, CDCl₃)  $\delta$  8.33(s, 1H), 8.13-8.11(d, J = 8 Hz, 1H), 7.81-7.79(d, J = 8 Hz, 1H), 7.77-7.75(d, J = 8 Hz, 2H), 7.44-7.40(t, J = 8 Hz, 1H), 7.38-7.36(d, J = 8 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃)  $\delta$  163.2, 154.1, 137.3, 134.0, 133.4, 130.7, 130.5, 129.0, 123.0, 118.3, 110.3. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₄H₉BrNO₂: 301.9811; Found: 301.9812.

#### 4-cyanophenyl 2-methylbenzoate (3zzk)



Following General Procedure 2.2.3 using **11** (49.2 mg, 0.3 mmol, 1.2 equiv), **2a** (25 mg, 0.3 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 90:10), White solid, 37.4 mg, Yield: 63%. ¹H NMR (400 MHz, CDCl₃)  $\delta$  8.17-8.15(d, J = 8 Hz, 1H), 7.76-7.74(d, J = 8 Hz, 2H), 7.53-7.50(t, J = 8 Hz, 1H), 7.37-7.33(m, 4H), 2.67(s, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  164.9, 154.4, 142.0, 133.9, 133.5, 132.3, 131.4, 127.6, 126.2, 123.2, 118.5, 109.9, 22.1. HRMS (ESI): m/z Calcd for C₁₅H₁₂NO₂ [M+H]⁺: 238.0863; Found: 238.0869.

### 4-cyanophenyl 3,4-dimethylbenzoate (3zzl)



Following General Procedure 2.2.3 using **1m** (53.4 mg, 0.3 mmol, 1.2 equiv), **2a** (25 mg, 0.3 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was

purified by column chromatography (Hexane/Ethyl acetate, 88:12), White solid, 54 mg, Yield: 86%. ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.94(s, 1H), 7.92-7.90(d, *J* = 8 Hz, 1H), 7.75-7.72(d, *J* = 8 Hz, 2H), 7.37-7.35(d, *J* = 8 Hz, 2H), 7.29-7.27(d, *J* = 8 Hz, 1H), 2.37(s, 3H), 2.35(s, 3H). ¹³C NMR (151 MHz, CDCl₃)  $\delta$  164.7, 154.6, 144.0, 137.4, 133.8, 131.4, 130.2, 128.1, 126.3, 123.1, 118.5, 109.8, 20.3, 19.9. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₆H₁₄NO₂: 252.1019; Found: 252.1014.

#### 4-cyanophenyl 1-naphthoate (3zzm)



Following General Procedure 2.2.3 using **1n** (60 mg, 0.3 mmol, 1.2 equiv), **2a** (25 mg, 0.3 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 90:10), White solid, 52.7 mg, Yield: 77%. ¹H NMR (400 MHz, CDCl₃)  $\delta$  9.01-8.99(d, J = 8 Hz, 1H), 8.49-8.48(d, J = 4 Hz, 1H), 8.16-8.14(d, J = 8 Hz, 1H), 7.96-7.94(d, J = 8 Hz, 1H), 7.79-7.77(d, J = 8 Hz, 2H), 7.69-7.65(t, J = 8 Hz, 1H), 7.61-7.57(t, J = 8 Hz, 2H), 7.45-7.43(d, J = 8 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃)  $\delta$  164.9,

154.5, 135.2, 134.1, 133.9, 131.9, 131.8, 129.0, 128.7, 126.8, 125.6, 124.8, 124.6, 123.3, 118.5, 110.0. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₁₈H₁₂NO₂: 274.0863; Found: 274.0861.

#### 4-cyanophenyl 2-naphthoate (3zzn)



Following General Procedure 2.2.3 using **10** (60 mg, 0.3 mmol, 1.2 equiv), **2a** (25 mg, 0.3 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by

column chromatography (Hexane/Ethyl acetate, 88:12), White solid, 43.8 mg, Yield: 64%. ¹H **NMR** (400 MHz, CDCl₃)  $\delta$  8.78(s, 1H), 8.18-8.16(d, *J* = 8 Hz, 1H), 8.02-8.00(d, *J* = 8 Hz, 1H), 7.98-7.96(d, *J* = 8 Hz, 1H), 7.95-7.93(d, *J* = 8 Hz, 1H), 7.79-7.76(d, *J* = 8 Hz, 2H), 7.68-7.65(t, *J* = 8 Hz, 1H), 7.62-7.59(t, *J* = 8 Hz, 1H), 7.44-7.42(d, *J* = 8 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  164.7, 154.5, 136.2, 133.9, 132.6, 132.5, 129.7, 129.2, 128.8, 128.1, 127.2, 126.0, 125.4, 123.1, 118.5, 110.0. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₈H₁₂NO₂: 274.0863; Found: 274.0866.

# 4-cyanophenyl thiophene-2-carboxylate (3zzo)



Following General Procedure 2.2.3 using **1p** (46.5 mg, 0.3 mmol, 1.2 equiv), **2a** (25 mg, 0.3 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 80:20), White solid, 41.4 mg, Yield: 72%. ¹H NMR (400 MHz, CDCl₃)  $\delta$  8.34-8.33(d, *J* = 1.8 Hz, 1H), 7.75-7.73(d, *J* = 8 Hz, 2H), 7.66-7.65(d, *J* = 4 Hz, 1H), 7.42-7.40(dd, *J* = 4 Hz, 1.8 Hz, 1H), 7.37-7.34(d, *J* = 8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃)  $\delta$  159.8, 154.0, 135.6, 134.5, 133.9, 131.9, 128.4, 123.0, 118.4, 110.0. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₂H₈NO₂S: 230.0270; Found: 230.0274.

#### 4-cyanophenyl thiophene-3-carboxylate (3zzp)



Following General Procedure 2.2.3 using 1q (46.5 mg, 0.3 mmol, 1.2 equiv), 2a (25 mg, 0.3 mmol, 1.0 equiv), Ir-2 (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 80:20), White solid, 43.7 mg, Yield: 76%. ¹H NMR
(400 MHz, CDCl₃)  $\delta$  8.34-8.33(d, J = 4 Hz, 1H), 7.75-7.73(d, J = 8 Hz, 2H), 7.66-7.65(d, J = 4 Hz, 1H), 7.42-7.40(m, 1H), 7.37-7.34(d, J = 8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃)  $\delta$  160.2, 154.1, 135.0, 133.9, 132.0, 128.3, 126.9, 123.0, 118.4, 109.9. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₂H₈NO₂S: 230.0270; Found: 230.0272.

#### (S)-4-(2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)phenyl benzoate (5a)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **4a** (73.5 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography

(Hexane/Ethyl acetate, 80:20), White solid, 56 mg, Yield: 56%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.20-8.17(d, J = 9 Hz, 2H), 7.66-7.61(t, J = 9 Hz, 1H), 7.54-7.49(t, J = 9 Hz, 2H), 7.21-7.11(m, 4H), 5.03-5.00(d, J = 9 Hz, 1H), 4.61-4.59(d, J = 9 Hz, 1H), 3.73(s, 3H), 3.13-3.09(t, J = 9 Hz, 1H), 1.43(s, 9H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  172.4, 165.3, 155.2, 150.2, 133.9, 133.8, 130.5, 130.3, 129.7, 128.7, 121.9, 80.2, 54.6, 52.4, 37.9, 28.4. HRMS (ESI): m/z Calcd for [M+H]⁺ C₂₂H₂₆NO₆: 400.1755; Found: 400.1753.

#### 4-acetamidophenyl benzoate (5b)



Following General Procedure 2.2.3 using **1a** (37.5 mg, 0.3 mmol, 1.2 equiv), **4b** (25 mg, 0.3 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate,

80:20), White solid, 47.3 mg, Yield: 74%. ¹**H NMR** (300 MHz, CDCl₃)  $\delta$  8.21-8.18(d, J = 9 Hz, 2H), 7.67-7.62(t, J = 9 Hz, 1H), 7.56-7.49(m, 4H), 7.37(br, 1H), 7.18-7.15(d, J = 9 Hz, 2H), 2.18(s, 3H). ¹³**C NMR** (101 MHz, CDCl₃)  $\delta$  168.4, 165.5, 147.3, 135.8, 133.8, 130.3, 129.6, 128.7, 122.3, 121.1, 24.7. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₁₅H₁₄NO₃: 256.0968; Found: 256.0966.

4-((2S,3S)-1-(4-fluorophenyl)-3-((R)-3-(4-fluorophenyl)-3-hydroxypropyl)-4-oxoazetidin-2-yl)phenyl benzoate (5c)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **4c** (102 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 80:20), White solid, 60.4 mg, Yield: 47%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.20-8.17(d, *J* = 9 Hz, 2H), 7.67-7.62(t, *J* = 9 Hz, 1H), 7.54-7.49(t, *J* = 9 Hz, 2H), 7.40-7.37(d, *J* = 9 Hz, 2H), 7.32-7.22(m, 6H),

7.05-6.91(m, 4H), 4.74-4.70(t, J = 8 Hz, 1H), 4.67-4.66(d, J = 3 Hz, 1H), 3.14-3.09(m, 1H), 2.00-1.89(m, 4H). ¹³**C NMR** (75 MHz, CDCl₃)  $\delta$  167.6, 165.2, 164.0-160.7(d, J = 243.7 Hz, 1F), 160.8-157.6(d, J = 242.2 Hz, 1F), 151.2, 140.2-140.1(d, J = 3 Hz, 1F), 135.2, 134.0, 133.9, 130.3, 129.3, 128.8, 127.6, 127.5, 127.1, 122.8, 118.6-118.5(d, J = 7.5 Hz, 1F), 116.2-115.9(d, J = 23.2 Hz, 1F), 115.6-115.4(d, J = 21.9 Hz, 1F), 73.2, 61.0, 60.5, 36.7, 25.2. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₃₁H₂₆F₂NO₄: 514.1824; Found: 514.1827.

#### 4-pentylphenyl benzoate (5d)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **4d** (41 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 97:3), White solid, 53.1 mg, Yield: 79%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.22-8.19(d, J = 9 Hz, 2H), 7.66-7.61(t, J = 9 Hz, 1H), 7.54-7.49(d, J = 9 Hz, 2H), 7.24-7.22(d, J = 6 Hz, 2H), 7.13-7.10(d, J = 9 Hz, 2H), 2.65-2.60(d, J = 9 Hz, 2H), 1.68-1.58(quin, J = 6 Hz, 2H), 1.36-1.31(m, 4H), 0.93-0.88(t, J = 9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  165.5, 149.0, 140.7, 133.6, 130.3, 129.9, 129.5, 128.7, 121.5, 35.5, 31.6, 31.3, 22.7, 14.2. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₈H₂₁O₂: 269.1536; Found: 269.1533.

#### (1S,2R,4R)-2-isopropyl-4-methylcyclohexyl benzoate (5e)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **4e** (39 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 99:1), White solid, 21

mg, Yield: 32%. ¹**H** NMR (300 MHz, CDCl₃)  $\delta$  8.06-8.04(d, J = 8 Hz, 2H), 7.57-7.52(t, J = 8 Hz, 1H), 7.46-7.41(t, J = 8 Hz, 2H), 4.98-4.89(td, J = 9 Hz, 3 Hz, 1H), 2.17-2.11(m, 1H), 2.03-1.92(m, 1H), 1.76-1.71(m, 2H), 1.61-1.51(m, 2H), 1.20-0.99(m, 3H), 0.94-0.91(m, 6H), 0.81-0.78(d, J = 9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  166.3, 132.8, 131.0, 129.7, 128.4, 75.0, 47.4, 41.1, 34.5, 31.6, 26.6, 23.8, 22.2, 20.9, 16.7. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₇H₂₅O₂: 261.1849; Found: 261.1848.

#### 4-(2-hydroxyethyl)phenyl benzoate (5f)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **4f** (34 mg, 0.25 mmol, 1.0 equiv), Ir-2 (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was

purified by column chromatography (Hexane/Ethyl acetate, 90:10), White solid, 46.7 mg, Yield: 77%. ¹**H NMR** (300 MHz, CDCl₃)  $\delta$  8.22-8.19(d, *J* = 9 Hz, 2H), 7.67-7.62(d, *J* = 9 Hz, 1H), 7.54-7.49(t, *J* = 9 Hz, 2H), 7.31-7.28(d, *J* = 9 Hz, 2H), 7.18-7.15(d, *J* = 9 Hz, 2H), 3.91-3.87(t, *J* = 6 Hz, 2H), 2.92-2.88(t, *J* = 6 Hz, 2H). ¹³**C NMR** (101 MHz, CDCl₃)  $\delta$  165.5, 149.8, 136.4, 133.7, 130.3, 130.2, 129.8, 128.7, 128.6, 121.9, 63.8, 38.8. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₁₅H₁₅O₃: 243.1016; Found: 243.1019.

#### benzo[d][1,3]dioxol-5-yl benzoate (5g)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **4g** (34.2 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 90:10), White solid, 49.8 mg, Yield: 82%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.19-8.16(d, J = 9 Hz, 2H), 7.66-7.61(t, J = 9 Hz, 1H), 7.53-7.48(t, J = 9

Hz, 2H), 6.84-6.81(d, J = 9 Hz, 1H), 6.74-6.73(d, J = 3 Hz, 1H), 6.67-6.64(d, J = 9 Hz, 1H), 6.01(s, 2H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  165.6, 148.2, 145.6, 145.4, 133.7, 130.3, 129.6, 128.7, 114.2, 108.2, 104.1, 101.9. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₄H₁₁O₄: 243.0652; Found: 243.0656.

#### 2,4-dihydroxypyrimidin-5-yl benzoate (5h)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **4h** (31.7 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 60:40), White solid, 45.4 mg, Yield: 78%. ¹H NMR (400 MHz, DMSO-d₆)  $\delta$  11.53(s, 1H), 10.99(s, 1H), 8.07-8.05(d, J = 8 Hz, 2H), 7.75-7.73(m, 2H), 7.62-7.58(t, J = 8 Hz, 2H). ¹³C NMR (75 MHz, DMSO-d₆)  $\delta$  164.0, 159.3, 150.6, 134.3, 133.7, 129.8, 129.0, 128.1, 126.0. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₁H₉N₂O₄: 233.0557; Found: 233.0552.

## (8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6Hcyclopenta[a]phenanthren-3-yl benzoate (5i)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **4i** (67.3 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 70:30), White solid, 57.1 mg, Yield:

61%. ¹**H NMR** (300 MHz, CDCl₃)  $\delta$  8.21-8.18(d, J = 9 Hz, 2H), 7.66-7.61(t, J = 9 Hz, 1H), 7.53-7.48(t, J = 9 Hz, 2H), 7.35-7.32(d, J = 9 Hz, 1H), 7.00-6.97(d, J = 9 Hz, 1H), 6.95(s, 1H), 2.96-2.92(m, 2H), 2.56-2.47(q, J = 9 Hz, 1H), 2.46-2.41(m, 1H), 2.36-2.28(m, 1H), 2.21-2.12(m, 1H), 2.10-1.96(m, 3H), 1.61-1.40(m, 6H), 0.93(s, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  221.0, 165.6, 149.0, 138.2, 137.6, 133.7, 130.3, 129.8, 128.7, 126.6, 121.9, 119.0, 50.6, 48.1, 44.3, 38.2, 36.0, 31.7, 29.6, 26.5, 25.9, 21.7, 14.0. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₂₅H₂₇O₃: 375.1955; Found: 375.1994.

## (8R,9S,13S,14S,17S)-17-hydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6Hcyclopenta[a]phenanthren-3-yl benzoate (5j)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **4j** (67.7 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 60:40), White solid, 54.6 mg, Yield:

58%. ¹**H NMR** (300 MHz, CDCl₃)  $\delta$  8.20-8.17(d, J = 9 Hz, 2H), 7.65-7.60(t, J = 9 Hz, 1H), 7.52-7.47(t, J = 9 Hz, 2H), 7.35-7.32(d, J = 9 Hz, 1H), 6.98-6.95(d, J = 9 Hz, 1H), 6.93(s, 1H), 3.77-3.71(t, J = 9 Hz, 1H), 2.90-2.87(m, 2H), 2.38-2.19(m, 2H), 2.17-2.07(m, 1H), 2.00-1.86(m, 2H), 1.75-1.58(m, 1H), 1.54-1.16(m, 7H), 0.79(s, 3H). ¹³C NMR (101 MHz, CDCl₃)  $\delta$  165.6, 148.9, 138.5, 138.2, 133.6, 130.3, 129.9, 128.7, 126.6, 121.8, 118.8, 82.1, 50.3, 44.3, 43.4, 38.7, 36.9, 30.8, 29.7, 27.2, 26.4, 23.3, 11.2. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₂₅H₂₉O₃: 377.2111; Found: 377.2115.

(8R,9S,13S,14S,17S)-17-hydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6Hcyclopenta[a]phenanthren-3-yl 4-cyclohexylbenzoate (5k)



Following General Procedure 2.4.1 using **1d** (70 mg, 0.3 mmol, 1.2 equiv), **4j** (67.7 mg, 0.25 mmol, 1.0 equiv), cat-**1** (5.6 mg, 2 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate,

60:40), White solid, 66.5 mg, Yield: 58%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.12-8.09(d, J = 9 Hz, 2H), 7.34-7.32(m, 3H), 6.96-6.94(d, J = 9 Hz, 1H), 6.91(s, 1H), 3.77-3.72(t, J = 8 Hz, 1H), 2.89-2.87(m, 2H), 2.62-2.56(m, 1H), 2.37-2.08(m, 3H), 2.00-1.76(m, 7H), 1.76-1.56(m, 1H), 1.53-1.20(m, 7H), 0.79(s, 3H). ¹³C NMR (101 MHz, CDCl₃)  $\delta$  165.7, 154.3, 148.9, 138.4, 138.1, 130.4, 127.2, 126.6, 121.8, 118.9, 82.1, 50.2, 44.9, 44.3, 43.4, 38.7, 36.8, 34.3, 30.8, 29.7, 27.2, 26.9, 26.3, 26.2, 23.3, 11.2. HRMS (ESI): m/z Calcd for [M+H]⁺ C₃₁H₃₉O₃: 459.2894; Found: 459.2896.

## (8R,9S,13S,14S,17S)-17-hydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6Hcyclopenta[a]phenanthren-3-yl 4-chlorobenzoate (5l)



Following General Procedure 2.4.1 using **1h** (55 mg, 0.3 mmol, 1.2 equiv), **4j** (67.7 mg, 0.25 mmol, 1.0 equiv), cat-**1** (5.6 mg, 2 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 60:40), White

solid, 55 mg, Yield: 54%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.14-8.11(d, J = 9 Hz, 2H), 7.49-7.46(d, J = 9 Hz, 2H), 7.35-7.32(d, J = 9 Hz, 1H), 6.97-6.94(d, J = 9 Hz, 1H), 6.91(s, 1H), 3.77-3.71(t, J = 9 Hz, 1H), 2.89-2.87(m, 2H), 2.37-2.21(m, 2H), 2.17-2.07(m, 1H), 2.00-1.86(m, 2H), 1.76-1.66(m, 1H), 1.57-1.16(m, 7H), 0.79(s, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  164.8, 148.6, 140.2, 138.5, 138.4, 131.7, 129.0, 128.3, 126.6, 121.6, 118.7, 82.0, 50.2, 44.3, 43.4, 38.6, 36.8, 30.7, 29.7, 27.2, 26.3, 23.3, 11.2. HRMS (ESI): m/z Calcd for [M+H]⁺ C₂₅H₂₈ClO₃: 411.1727; Found: 411.1729.

## (8R,9S,13S,14S,17S)-17-hydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6Hcyclopenta[a]phenanthren-3-yl 3,4-dimethylbenzoate (5m)



Following General Procedure 2.2.3 using **1m** (53.4 mg, 0.3 mmol, 1.2 equiv), **4j** (67.7 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 60:40), White

solid, 63.7 mg, Yield: 63%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  7.95(s, 1H), 7.93-7.90(d, J = 9 Hz, 1H), 7.34-7.31(d, J = 9 Hz, 1H), 7.26-7.23(d, J = 9 Hz, 1H), 6.97-6.94(d, J = 9 Hz, 1H), 6.91(s, 1H), 3.77-3.72(t, J = 9 Hz, 1H), 2.89-2.87(m, 2H), 2.35(s, 3H), 2.34(s, 3H), 2.29-2.07(m, 3H), 2.00-1.87(m, 1H), 1.57-1.16(m, 7H), 0.79(s, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  165.9, 148.9, 143.1, 138.4, 138.0, 137.1, 131.3, 129.9, 127.9, 127.4, 126.5, 121.8, 118.9, 82.1, 50.2, 44.3, 43.4, 38.7, 36.8, 30.7, 29.7, 27.2, 26.3, 23.3, 20.2, 19.8, 11.2. HRMS (ESI): m/z Calcd for [M+H]⁺ C₂₇H₃₃O₃: 405.2424; Found: 405.2423.

## (8R,9S,13S,14S,17S)-17-hydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6Hcyclopenta[a]phenanthren-3-yl 2-naphthoate (5n)



Following General Procedure 2.2.3 using **10** (60 mg, 0.3 mmol, 1.2 equiv), **4j** (67.7 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 60:40), White

solid, 50.2 mg, Yield: 47%. ¹**H NMR** (300 MHz, CDCl₃)  $\delta$  8.78(s, 1H), 8.20-8.17(d, J = 9 Hz, 1H), 8.02-7.99(d, J = 9 Hz, 1H), 7.95-7.90(t, J = 9 Hz, 2H), 7.65-7.55(m, 2H), 7.38-7.35(d, J = 9 Hz, 1H), 7.04-7.01(d, J = 9 Hz, 1H), 6.98(s, 1H), 3.78-3.72(t, J = 9 Hz, 1H), 2.92-2.89(m, 2H), 2.39-2.23(m, 2H), 2.18-2.09(m, 1H), 2.00-1.89(m, 2H), 1.76-1.59(m, 1H), 1.56-1.17(m, 7H), 0.80(s, 3H). ¹³C NMR (101 MHz, CDCl₃)  $\delta$  165.8, 148.9, 138.5, 138.2, 135.9, 132.7, 132.0, 131.7, 129.1, 128.7, 128.5, 128.0, 126.9, 126.6, 125.7, 121.8, 118.9, 82.0, 50.2, 44.3, 43.4, 38.7, 36.8, 30.7, 29.7, 27.2, 26.3, 23.3, 11.2. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₂₉H₃₁O₃: 427.2268; Found: 427.2265.

## (8R,9S,13S,14S,17S)-17-hydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6Hcyclopenta[a]phenanthren-3-yl thiophene-2-carboxylate (50)



Following General Procedure 2.2.3 using **1p** (46.5 mg, 0.3 mmol, 1.2 equiv), **4j** (67.7 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 60:40), White solid, 50 mg, Yield:

52%. ¹**H NMR** (300 MHz, CDCl₃)  $\delta$  7.97-7.96(d, J = 3 Hz, 1H), 7.66-7.64(d, J = 6 Hz, 1H), 7.34-7.31(d, J = 9 Hz, 1H), 7.18-7.15(dd, J = 6 Hz, 6Hz, 1H), 6.98-6.95(d, J = 9 Hz, 1H), 6.93(s, 1H), 3.77-3.71(t, J = 9 Hz, 1H), 2.89-2.86(m, 2H), 2.37-2.19(m, 2H), 2.16-2.07(m, 1H), 2.00-1.86(m, 2H), 1.75-1.60(m, 1H), 1.53-1.16(m, 7H), 0.79(s, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  161.0, 148.5, 138.5, 138.3, 134.7, 133.5, 133.3, 128.1, 126.6, 121.7, 118.8, 82.0, 50.2, 44.3, 43.4,

38.6, 36.8, 30.7, 29.7, 27.2, 26.3, 23.3, 11.2. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₂₃H₂₇O₃S: 383.1675; Found: 383.1674.

#### 2-hydroxypyridin-3-yl benzoate (7a)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **6a** (27.5 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography

(Hexane/Ethyl acetate, 65:35), White solid, 43.7 mg, Yield: 81%. ¹H NMR (300 MHz, DMSOd₆)  $\delta$  12.09(s, 1H), 8.10-8.07(d, J = 9 Hz, 2H), 7.77-7.72(t, J = 9 Hz, 1H), 7.63-7.58(t, J = 9 Hz, 2H), 7.48-7.45(d, J = 9 Hz, 1H), 7.37-7.34(d, J = 9 Hz, 1H), 6.26-6.22(t, J = 6 Hz, 1H). ¹³C NMR (101 MHz, DMSO-d₆)  $\delta$  163.6, 157.2, 141.1, 134.1, 132.9, 130.7, 129.9, 129.0, 128.6, 104.1. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₂H₁₀NO₃: 216.0655; Found: 216.0654.

#### 5-chloro-2-hydroxypyridin-3-yl benzoate (7b)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **6b** (35.7 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Acetone, 70:30), White solid, 48.7 mg, Yield: 78%. ¹H NMR

(400 MHz, CDCl₃)  $\delta$  8.21-8.19(d, J = 8 Hz, 2H), 7.68-7.64(t, J = 8 Hz, 1H), 7.54-7.50(d, J = 8 Hz, 2H), 7.42-7.41(d, J = 4 Hz, 1H), 7.32-7.31(d, J = 4 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  163.9, 158.6, 141.4, 134.2, 133.2, 130.7, 130.2, 128.8, 128.5, 113.1. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₂H₉ClNO₃: 250.0265; Found: 250.0262.

#### 5-bromo-2-hydroxypyridin-3-yl benzoate (7c)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **6c** (46.7 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Acetone, 70:30), White solid, 50.4 mg, Yield: 69%. ¹H NMR

 $(300 \text{ MHz}, \text{DMSO-d}_6) \delta 12.42(s, 1\text{H}), 8.09-8.06(d, J = 9 \text{ Hz}, 2\text{H}), 7.78-7.73(t, J = 9 \text{ Hz}, 1\text{H}),$ 

7.76-7.75(d, J = 3 Hz, 1H), 7.68-7.67(d, J = 3 Hz, 1H), 7.63-7.58(t, J = 9 Hz, 2H). ¹³C NMR (101 MHz, DMSO-d₆)  $\delta$  163.4, 156.1, 141.2, 134.3, 133.9, 133.6, 129.9, 129.1, 128.2, 95.3. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₂H₉BrNO₃: 293.9760; Found: 293.9762.

#### 2-hydroxypyridin-3-yl 4-methylbenzoate (7d)



Following General Procedure 2.2.3 using **1b** (50 mg, 0.3 mmol, 1.2 equiv), **6a** (27.5 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Acetone, 70:30), White solid, 48.3 mg, Yield: 84%. ¹H NMR (400 MHz, DMSO-d₆)  $\delta$  12.07(s, 1H), 7.98-7.96(d, J = 8 Hz, 2H), 7.46-7.44(d, J = 8 Hz, 1H), 7.41-7.39(d, J = 8 Hz, 2H), 7.35-7.33(d, J = 8 Hz, 1H), 6.25-6.21(t, J = 8 Hz, 1H), 2.42(s, 3H). ¹³C NMR (75 MHz, DMSO-d₆)  $\delta$  163.6, 157.2, 144.5, 141.2, 132.8, 130.6, 129.9, 129.5, 125.9, 104.0, 21.3. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₃H₁₂NO₃: 230.0812; Found: 230.0816.

#### 2-hydroxypyridin-3-yl 4-isopropylbenzoate (7e)



Following General Procedure 2.2.3 using **1r** (57.0 mg, 0.3 mmol, 1.2 equiv), **6a** (27.5 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Acetone, 70:30), White solid,

49.6 mg, Yield: 77%. ¹**H** NMR (300 MHz, DMSO-d₆)  $\delta$  12.08(s, 1H), 8.02-7.99(d, J = 9 Hz, 2H), 7.48-7.45(d, J = 9 Hz, 2H), 7.45-7.42(d, J = 9 Hz, 1H), 7.36-7.33(d, J = 9 Hz, 1H), 6.26-6.21(t, J = 9 Hz, 1H), 3.07-2.94(hept, J = 9 Hz, 1H), 1.25-1.23(d, J = 6 Hz, 6H). ¹³C NMR (75 MHz, DMSO-d₆)  $\delta$  163.6, 157.2, 155.1, 141.2, 132.8, 130.6, 130.1, 126.9, 126.3, 104.0, 33.6, 23.5. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₁₅H₁₆NO₃: 258.1125; Found: 258.1122.

#### 2-hydroxypyridin-3-yl 4-methoxybenzoate (7f)



Following General Procedure 2.2.3 using **1e** (54 mg, 0.3 mmol, 1.2 equiv), **6a** (27.5 mg, 0.25 mmol, 1.0 equiv), **Ir-2** (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Acetone, 70:30), White solid, 44.9 mg, Yield: 73%. ¹H NMR (300 MHz, DMSO-d₆)  $\delta$  12.01(s, 1H), 8.04-8.01(d, J = 9 Hz, 2H), 7.44-7.41(d, J = 9 Hz, 1H), 7.35-7.32(d, J = 9 Hz, 1H), 7.12-7.09(d, J = 9 Hz, 2H), 6.25-6.20(t, J = 9 Hz, 1H), 3.87(s, 3H). ¹³C NMR (75 MHz, DMSO-d₆)  $\delta$  163.8, 163.3, 157.4, 141.3, 132.7, 132.1, 130.7, 120.7, 114.3, 104.1, 55.7. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₃H₁₂NO₄: 246.0761; Found: 246.0765.

#### 2-hydroxypyridin-3-yl 4-bromobenzoate (7g)



Following General Procedure 2.2.3 using **1i** (68 mg, 0.3 mmol, 1.2 equiv), **6a** (27.5 mg, 0.25 mmol, 1.0 equiv), Ir-2 (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Acetone, 70:30), White solid, 45.4 mg, Yield: 62%. ¹H NMR (300 MHz, DMSO-d₆)  $\delta$  12.13(s, 1H), 8.01-7.99(d, J = 9 Hz, 2H), 7.83-7.80(d, J = 9 Hz, 2H), 7.50-7.47(d, J = 9 Hz, 1H), 7.38-7.35(d, J = 9 Hz, 1H), 6.26-6.22(t, J = 9 Hz, 1H). ¹³C NMR (75 MHz, DMSO-d₆)  $\delta$  163.0, 157.1, 141.0, 133.0, 132.2, 131.8, 131.0, 128.2, 127.8, 104.0. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₂H₉BrNO₃: 293.9760; Found: 293.9761.

#### 2-hydroxypyridin-3-yl 2-methylbenzoate (7h)



Following General Procedure 2.2.3 using **11** (49.2 mg, 0.3 mmol, 1.2 equiv), **6a** (27.5 mg, 0.25 mmol, 1.0 equiv), Ir-2 (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography

(Hexane/Acetone, 70:30), White solid, 39.6 mg, Yield: 69%. ¹H NMR (300 MHz, DMSO-d₆)  $\delta$  12.07(s, 1H), 8.02-7.99(d, *J* = 9 Hz, 1H), 7.59-7.54(t, *J* = 9 Hz, 1H), 7.47-7.44(d, *J* = 9 Hz, 1H), 7.41-7.38(d, *J* = 9 Hz, 2H), 7.36-7.33(d, *J* = 9 Hz, 1H), 6.26-6.21(t, *J* = 9 Hz, 1H), 2.56(s, 3H). ¹³C NMR (75 MHz, DMSO-d₆)  $\delta$  164.4, 157.2, 141.2, 140.0, 132.9, 132.7, 131.8, 130.8, 130.6, 128.2, 126.1, 104.0, 21.1. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₃H₁₂NO₃: 230.0812; Found: 230.0817.

#### 2-hydroxypyridin-3-yl 3,4-dimethylbenzoate (7i)



Following General Procedure 2.2.3 using **1m** (53.4 mg, 0.3 mmol, 1.2 equiv), **6a** (27.5 mg, 0.25 mmol, 1.0 equiv), Ir-2 (8.5 mg, 2.5

mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Acetone, 70:30), White solid, 34.7 mg, Yield: 57%. ¹H NMR (300 MHz, DMSO-d₆)  $\delta$  12.07(s, 1H), 7.85(s, 1H), 7.81-7.78(d, J = 9 Hz, 1H), 7.45-7.42(d, J = 9 Hz, 1H), 7.37-7.33(m, 2H), 6.25-6.20(t, J = 9 Hz, 1H), 2.33(s, 3H), 2.31(s, 3H). ¹³C NMR (75 MHz, DMSO-d₆)  $\delta$  163.7, 157.2, 143.3, 141.2, 137.1, 132.7, 130.6, 120.0, 127.5, 126.1, 104.0, 19.7, 19.2. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₄H₁₄NO₃: 244.0968; Found: 244.0966.

#### 2-hydroxypyridin-3-yl 2-naphthoate (7j)



Following General Procedure 2.2.3 using **10** (60.0 mg, 0.3 mmol, 1.2 equiv), **6a** (27.5 mg, 0.25 mmol, 1.0 equiv), Ir-2 (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Acetone, 70:30), White solid, 39.2 mg, Yield: 59%. ¹H NMR (300 MHz, DMSO-d₆)  $\delta$  12.13(s, 1H), 8.80(s, 1H), 8.23-8.20(d, J = 9 Hz, 1H), 8.13-8.05(m, 3H), 7.75-7.63(m, 2H), 7.54-7.51(d, J = 9 Hz, 1H), 7.39-7.37(d, J = 6 Hz, 1H), 6.29-6.24(t, J = 9 Hz, 1H). ¹³C NMR (75 MHz, DMSO-d₆)  $\delta$  163.7, 157.2, 141.2, 135.3, 132.9, 132.1, 131.6, 130.7, 129.5, 129.0, 128.6, 127.8, 127.2, 125.8, 125.0, 104.0. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₆H₁₂NO₃: 266.0812; Found: 266.0811.

#### 2-hydroxypyridin-3-yl thiophene-2-carboxylate (7k)



Following General Procedure 2.2.3 using **1p** (46.5 mg, 0.3 mmol, 1.2 equiv), **6a** (27.5 mg, 0.25 mmol, 1.0 equiv), Ir-2 (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography

(Hexane/Acetone, 70:30), White solid, 29.0 mg, Yield: 52%. ¹H NMR (500 MHz, DMSO-d₆)  $\delta$  12.10(s, 1H), 8.08-8.07(d, J = 5 Hz, 1H), 7.98-7.97(d, J = 5 Hz, 1H), 7.48-7.46(d, J = 8 Hz, 1H), 7.36-7.35(d, J = 5 Hz, 1H), 7.31-7.29(t, J = 5 Hz, 1H), 6.24-6.21(t, J = 8 Hz, 1H). ¹³C NMR (75 MHz, DMSO-d₆)  $\delta$  159.0, 157.1, 140.7, 135.3, 135.2, 133.1, 131.4, 130.8, 128.7, 104.0. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₀H₈NO₃S: 222.0219; Found: 222.0220.

#### 4-hydroxy-3-methylphenyl benzoate (7l)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **6d** (30.8 mg, 0.25 mmol, 1.0 equiv), Ir-2 (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 80:20), White solid, 29.2 mg, Yield: 51%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.23-8.21(d, J = 8 Hz, 2H), 7.67-7.63(t, J = 8 Hz, 1H), 7.55-7.49(t, J = 8 Hz, 2H), 6.95-6.94(d, J = 3 Hz, 1H), 6.86-6.82(d, J = 8 Hz, 1H), 6.67-6.64(d, J = 8 Hz, 1H), 5.97(s, 1H), 2.22(s, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  166.6, 152.1, 143.9, 133.8, 130.3, 129.6, 128.7, 125.8, 123.7, 119.6, 115.8, 16.0. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₄H₁₃O₃: 229.0859; Found: 229.0855.

#### 4-hydroxy-2-methylphenyl benzoate (7m)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **6d** (30.8 mg, 0.25 mmol, 1.0 equiv), Ir-2 (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 90:20), White solid, 12.6 mg, Yield: 22%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.23-8.21(d, *J* = 8 Hz, 2H), 7.67-7.62(t, *J* = 8 Hz, 1H), 7.54-7.50(t, *J* = 8 Hz, 2H), 6.98-6.96(d, *J* = 8 Hz, 1H), 6.71-6.66(m, 2H), 5.11(s, 1H), 2.17(s, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  165.6, 153.6, 143.2, 133.7, 131.6, 130.3, 129.6, 128.8, 122.9, 117.8, 113.7, 16.5. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₄H₁₃O₃: 229.0859; Found: 229.0858.

#### **3-formyl-4-hydroxyphenyl benzoate** (7n)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **6e** (34.3 mg, 0.25 mmol, 1.0 equiv), Ir-2 (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 80:20), White solid, 32.2 mg, Yield: 53%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  10.95(s, 1H), 9.86(s, 1H), 8.21-8.18(d, *J* = 9 Hz, 2H), 7.68-7.63(t, *J* = 9 Hz, 1H), 7.55-7.50(t, *J* = 9 Hz, 2H), 7.46-7.45(d, *J* = 3 Hz, 1H), 7.40-7.36(dd, *J* = 9 Hz, 3 Hz, 1H),

7.06-7.03(d, J = 9 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  195.9, 165.3, 159.4, 143.3, 134.0, 130.9, 130.3, 129.1, 128.8, 125.6, 120.3, 118.8. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₁₄H₁₁O₄: 243.0652; Found: 243.0652.

#### 6-(hydroxymethyl)-4-oxo-4H-pyran-3-yl benzoate (7p)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **6f** (35.3 mg, 0.25 mmol, 1.0 equiv), Ir-2 (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column

chromatography (Hexane/Ethyl acetate, 80:20), White solid, 24.0 mg, Yield: 39%. ¹H NMR (300 MHz, DMSO-d₆)  $\delta$  8.65(s, 1H), 8.10-8.07(d, *J* = 9 Hz, 2H), 7.79-7.74(t, *J* = 9 Hz, 1H), 7.64-7.59(t, *J* = 9 Hz, 2H), 6.49(s, 1H), 5.81(s, 1H), 4.39(s, 2H). ¹³C NMR (75 MHz, DMSO-d₆)  $\delta$  171.8, 169.7, 163.2, 149.3, 140.5, 134.4, 129.9, 129.1, 127.9, 112.1, 59.3. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₃H₁₁O₅: 247.0601; Found: 247.0600.

#### 2-benzoyl-4-methoxyphenyl benzoate (9)



Following General Procedure 2.2.3 using **1a** (45 mg, 0.3 mmol, 1.2 equiv), **8** (56.8 mg, 0.25 mmol, 1.0 equiv), Ir-2 (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography (Hexane/Ethyl acetate, 90:10), White solid, 50.0 mg, Yield: 60%. ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.80-7.76(m, 4H),

7.52-7.49(t, J = 8 Hz, 1H), 7.47-7.43(t, J = 8 Hz, 1H), 7.38-7.28(m, 5H), 7.14-7.10(m, 2H), 3.85(s, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  194.8, 165.1, 157.2, 142.3, 137.7, 133.5, 133.1, 132.7, 130.1, 129.9, 129.0, 128.5, 128.4, 124.4, 118.0, 114.9, 56.0. **HRMS (ESI):** m/z Calcd for [M+H]⁺ C₂₁H₁₇O₄: 333.1121; Found: 333.1122.

#### phenyl 2-bromobenzoate (13)



Following General Procedure 2.2.3 using **1s** (68.1 mg, 0.3 mmol, 1.2 equiv), **2b** (23.3 mg, 0.25 mmol, 1.0 equiv), Ir-2 (8.5 mg, 2.5 mol%), (dtbbpy)PdCl₂ (6.0 mg, 5 mol%) and NaHCO₃ (25 mg, 0.3 mmol) in DMSO (1.5 mL). The product was purified by column chromatography

(Hexane/Ethyl acetate, 95:5), White solid, 44.2 mg, Yield: 64%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.03-8.00(d, J = 9 Hz, 1H), 7.75-7.72(d, J = 9 Hz, 1H), 7.47-7.36(m, 4H), 7.31-7.26(m, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  164.7, 150.8, 134.7, 133.2, 131.9, 131.5, 129.6, 127.4, 126.2, 122.3, 121.7. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₃H₁₀BrO₂: 276.9859; Found: 276.9855.

#### **2.3 Synthetic Application**

**2.3.1** General procedure for the synthesis of (2-hydroxy-5-methoxyphenyl)(phenyl)methanone (8) ^{S4}



Scheme S3. Synthesis of (2-hydroxy-5-methoxyphenyl)(phenyl)methanone.

**Process:** Ester (4-methoxyphenyl benzoate) **3h** (114 mg, 0.50 mmol) in DMF (5 mL) was dissolved with AlCl₃ (100 mg, 0.75 mmol). The solution in sealed tube was stirred at 150-160 °C for 12 hr. The reaction mixture was cooled in ice, then mixed with 1 N HCl, after that extracted with CHCl₃, dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (60-120 mesh size) using petroleum-ether/ethyl acetate (90:10) as an eluting system to give yellow oil (62 mg, 54%). Yellowish Liquid, 71.0 mg, Yield: 62%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  11.58(s, 1H), 7.72-7.68(d, *J* = 8 Hz, 2H), 7.62-7.57(t, *J* = 8 Hz, 1H), 7.53-7.49(t, *J* = 8 Hz, 2H), 7.17-7.13(dd, *J* = 8 Hz, 8 Hz, 1H), 7.07-7.06(d, *J* = 3 Hz, 1H), 7.04-7.01(d, *J* = 8 Hz, 1H), 3.70(s, 3H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  201.3, 157.7, 151.6, 138.1, 132.1, 129.2, 128.5, 124.2, 119.4, 118.9, 116.5, 56.1. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₄H₂₃O₃: 229.0859; Found: 229.0864.



#### 2.3.2 General procedure for synthesis of ring opening polymerization (ROP)^{S5}

Scheme S4. Synthesis of poly(L-lactide) (PLLA) via ROP of L-lactide using 7p initiator.

*Process:* To a 25 mL clean round bottom (R.B) flask equipped with a septum, ester (4-(2-hydroxyethyl)phenyl benzoate) **7p** (10 mg, 0.04 mmol) and L-lactide (~1.8 g, 12.4 mmol) were taken and added 3 mL of dry and degassed toluene to the R.B. Then, a solution of Sn(Oct)₂ (12.15 mg, 0.03 mmol) was added to the reaction vessel and the solution was degassed for 30 minute and the R.B was immersed in a preheated oil bath at 115 °C for 24 h. After that, the reaction was quenched by exposing to air. An off-white solid was produced after the solution was dissolved in DCM and purified by precipitating from cold methanol. To produce a pure polymer, the procedure was carried out three times. The polymer was then vacuum-dried for 48 hours at 40 °C (1.17 g, yield = 65 %). ¹H NMR (500 MHz, CDCl₃)  $\delta$  8.20-8.19(d, *J* = 8 Hz, 2H), 7.65-7.62(t, *J* = 8 Hz, 1H), 7.53-7.50(t, *J* = 8 Hz, 2H), 7.26-7.25(d, *J* = 8 Hz, 2H), 7.16-7.14(d, *J* = 8 Hz, 2H), 5.19-5.14(m, 260H), 4.37-4.33(m, 5H), 3.76-3.74(t, *J* = 8 Hz, 2H), 2.98-2.96(t, *J* = 8 Hz, 2H), 1.58-1.57(m, 800H). Complete conversion was noted from the ¹H NMR of the crude. Molecular weight was calculated from ¹H NMR using the integration ratios of the aromatic protons (Ha) and the PLLA proton (Hb) = ~19,000 g/ mol (DP = 260), which gave a good match with the theoretical value (15000 g/mol).





Scheme S5. Synthesis of pyridine-2,3-diyl dibenzoate.

*Process:* Ester (2-hydroxypyridin-3-yl benzoate) **7a** (215 mg, 1.0 mmol) was dissolved in 6 mL dry DCM with 175  $\mu$ L of Et₃N (1.25 mmol). After 10 min, benzoyl chloride (116 mg, 1.0 mmol),

which was previously dissolved in 1 mL dry DCM, was added dropwise to the stirred solution of compound 7**a** under an inert atmosphere. After 12 h of stirring at room temperature, the reaction mixture was diluted with water (5 mL) and extracted with DCM (3 x 5 mL). The resultant organic layer was dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The crude mixture was purified by silica gel column chromatography (60-120 mesh size) using petroleum-ether/ethyl acetate (80:20) as an eluting system. White solid, 240 mg, Yield: 75%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.38-8.36(d, *J* = 6 Hz, 1H), 8.14-8.11(d, *J* = 9 Hz, 2H), 8.05-8.02(d, *J* = 9 Hz, 2H), 7.87-7.84(d, *J* = 9 Hz, 1H), 7.60-7.52(m, 2H), 7.44-7.34(m, 5H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  164.1, 163.9, 150.7, 145.3, 139.0, 134.1, 134.0, 133.1, 130.5, 130.4, 128.73, 128.68, 128.6, 128.4, 123.3. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₉H₁₄NO₄: 320.0917; Found: 320.0919.

2.3.4 General procedure for synthesis of 6H-Benzo[c]chromen-6-ones (14)^{S7}



Scheme S6. Synthesis of 6H-Benzo[c]chromen-6-ones.

*Process:* To a 15 mL clean, oven-dried screw cap reaction tube, bromo-ester **13** (70 mg, 0.25 mmol, 1.0 equiv), Pd(OAc)₂ (0.1 equiv), NaOAc (2.5 equiv), PPh₃ (0.2 equiv) in DMF (3 mL) were added. The solution was then refluxed at 150 °C temperature for 6h. After 6h, the reaction mixture was diluted with water (5 mL) and extracted with ethyl acetate (3 x 5 mL). The resultant organic layer was dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The crude mixture was purified by silica gel column chromatography (230-400 mesh size) using petroleum-ether/ethyl acetate (90:10) as an eluting system. White solid, 29.6 mg, Yield: 60%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.41-8.38(d, *J* = 9 Hz, 1H), 8.13-8.11(d, *J* = 8 Hz, 1H), 8.07-8.04(d, *J* = 9 Hz, 1H), 7.85-7.80(t, *J* = 9 Hz, 1H), 7.61-7.55(t, *J* = 9 Hz, 1H), 7.51-7.45(t, *J* = 9 Hz, 1H), 7.38-7.31(m, 2H). ¹³C NMR (75 MHz, CDCl₃)  $\delta$  161.3, 151.4, 135.0, 134.9, 130.7, 130.6, 129.0, 124.7, 122.9, 121.8, 121.4, 118.2, 117.9. HRMS (ESI): m/z Calcd for [M+H]⁺ C₁₃H₉O₂: 197.0597; Found: 197.0597.



#### 2.3.5 General procedure for synthesis of phenyl 2-benzoylbenzoate (15)⁵⁸

Scheme S7. Synthesis of phenyl 2-benzoylbenzoate.

Process: To a 40 mL clean, oven-dried screw cap reaction tube, phenyl 2-bromobenzoate 13 (138 mg, 0.50 mmol, 1.0 equiv),  $\alpha$ -keto acid (150 mg, 1.00 mmol, 2.0 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ Ir-2 (11.2 mg, 0.01 mmol, 0.02 equiv), NiCl₂·glyme (11.2 mg, 0.05 mmol, 0.10 equiv), 4,4'-di-tert-butyl-2,2'-bipyridine (20.1 mg, 0.075 mmol, 0.15 equiv), Li₂CO₃ (73.9 mg, 1.00 mmol, 2.0 equiv) and water (18 µL, 2.00 mmol, 2.0 equiv) in DMF (40 mL) were added. The reaction mixture was degassed for 30 minutes by bubbling argon stream, and then sealed with parafilm. The solution was then photoirradiated with 40 W Kessil PR160L-456 nm LED at room temperature for 24h. A cooling fan was used to maintain the reaction temperature between 30-32 °C. After 24h, the reaction mixture was diluted with water (5 mL) and extracted with ethyl acetate (3 x 5 mL). The resultant organic layer was dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The crude mixture was purified by silica gel column chromatography (230-400 mesh size) using petroleum-ether/ethyl acetate (95:5) as an eluting system. White solid, 98.5 mg, Yield: 65%. ¹H NMR (300 MHz, CDCl₃)  $\delta$  8.24-8.21(d, J = 8 Hz, 1H), 7.81-7.79(d, J = 8 Hz, 2H), 7.75-7.63(m, 2H), 7.60-7.55(t, J = 8 Hz, 1H), 7.52-7.41(m, 3H), 7.30-7.25(t, J = 8 Hz, 2H), 7.22-7.14(m, 1H), 6.82-6.79(d, J = 8 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 196.8, 164.8, 150.4, 142.0, 137.3, 133.4, 133.1, 130.8, 130.0, 129.7, 129.4, 128.9, 128.7, 128.3, 126.1, 121.3, 115.4. **HRMS (ESI):** m/z Calcd for  $[M+H]^+$  C₂₀H₁₅O₃: 303.1016; Found: 303.1015.

#### 3. Mechanistic studies

#### 3.1 Radical trapping experiment

To a 30 mL clean Schlenk reaction tube, glyoxalic acid **1a** (0.3 mmol), alcohol **2a** (0.25 mmol), **Ir-2** (2.5 mol%), (4,4'-dtbbpy)PdCl₂ (5 mol%), NaHCO₃ (0.30 mmol) and TEMPO (2.00 equiv) were added in DMSO (1.5 mL). The solution was then photoirradiated with 40 W Kessil PR160L-456 nm LED at room temperature. A cooling fan was used to maintain the reaction temperature between 30-32 °C. After 4h of irradiation, a TEMPO-glyoxalic acid adduct **16** was observed, which was identified through GCMS & HRMS of the reaction mixture. Also after 24h of irradiation, any kind of our desired product **3a** was not formed. This observation further signifies that the reaction is likely to proceed through radical pathway.



Scheme S8. Radical trapping experiment.

#### **3.2 Individual TEMPO: Alcohol or TEMPO: α-keto Acid**

To a 15 mL clean, oven-dried screw cap reaction tube,  $\alpha$ -keto acid **1a** (0.30 mmol), **Ir-2** (2.5 mol%), (4,4'-dtbbpy)PdCl₂ (5 mol%), NaHCO₃ (0.30 mmol) and TEMPO (2.00 equiv) in DMSO (1.5 mL) were added. The solution was then photoirradiated with 40 W Kessil PR160L-456 nm LED at room temperature for 24h. A cooling fan was used to maintain the reaction temperature between 30-32 °C. After 4h of irradiation, a TEMPO-glyoxalic acid adduct **16** was observed, which was identified through GCMS analysis of the reaction mixture.

To a 15 mL clean, oven-dried screw cap reaction tube, alcohol **2a** (0.30 mmol), **Ir-2** (2.5 mol%),  $(4,4'-dtbbpy)PdCl_2$  (5 mol%), NaHCO₃ (0.30 mmol) and TEMPO (2.00 equiv) in DMSO (1.5 mL) were added. The solution was then photoirradiated with 40 W Kessil PR160L-456 nm LED at room temperature for 24h. A cooling fan was used to maintain the reaction temperature between 30-32 °C. After 4h of irradiation, there was no TEMPO-alcohol adduct observed.



Scheme S9. Identification of TEMPO adduct.







#### 3.3 Oxidative addition of Alcohols with Palladium complex



To a 30 mL clean Schlenk reaction tube, glyoxalic acid **1a** (0.3 mmol), alcohol **2a** (0.25 mmol), **Ir-2** (2.5 mol%), (4,4'-dtbbpy)PdCl₂ (22.5mg, 20.0 mol%), NaHCO₃ (0.30 mmol) were added in DMSO (1.5 mL). The solution was then photoirradiated with 40 W Kessil PR160L-456 nm LED at room temperature. A cooling fan was used to maintain the reaction temperature between 30-32 °C. After 4h of irradiation, oxidative additive product of alcohol with palladium complex that is intermediate **D** was observed and this was identified through the HRMS of the reaction mixture. These observations further support our proposed mechanistic catalytic pathway.



Figure S6: HRMS Chromatogram data for intermediate D.

# **3.4** Regio-selectivity comparisons between conventional esterification and present esterification of 2,3-dihydroxypyridine:



¹H NMR for conventional esterification reaction of 2,3-dihydroxypyridine.







Representation of the lack of free hydroxyl groups at the 2-position in N-heterocyclic alcohols.

#### **3.5 Fluorescence Quenching Experiments**

For the fluorescence quenching experiment, we used  $1.0 \times 10^{-6}$  (M) solution of **Ir-2** in DMSO. For all sample, an appropriate amount of quencher was added for several times to that **Ir-2** solution in a screw-top 3.0 cm quartz cuvette. All **Ir-2** solution with or without quencher were excited at 350 nm and the emission intensity at 479 nm was observed and the emission spectrum of the sample was collected. I₀ is the luminescence intensity of the catalyst solution without the quencher and I is the intensity in presence of the quencher. For each quenching experiment, 10 µL of quencher solution (0.2 M) was added to 2.0 mL of **Ir-2** solution. From K(sv) value of Stern-Volmer quenching plot, we can say that the quenching efficiency of *a*-keto carboxylic acid **1** is more than the alcohol **2**. In this esterification reaction, *a*-keto acid was found to be the primary quencher.

To investigate the difference in reaction efficiency for pyridin-4-ol a series of fluorescence quenching studies were also performed. It is found that, other alcohols such as aromatic, aliphatic, pyridin-3-ol, where photoluminescence property of **Ir-2** was quenched. But in case of pyridin-4-ol, photoluminescence property of **Ir-2** was enhanced. In the contrary, heterocyclic 2 or 4 hydroxy group did not yield any esterification product. Also, this could be tautomerization of 2 or 4 hydroxy heterocyclic compounds and binding with the palladium center, which quenched the esterification reaction.



Figure S7. Photoluminescence fluorescence quenching experiments of keto acid & alcohols.



Figure S8: Stern-Volmer plot of Ir-2 using keto acid & alcohols as quencher.

Quencher	Stern-Volmer constant (K _{sv} )
$\alpha$ -Keto acid	229.83
Phenol	12.01
Pyridin-3-ol	8.77
Pyridin-4-ol	-
<i>p</i> -Tolylmethanol	13.29

## **3.6 XPS Data: Evidence of Pd²⁺, Pd⁰ metal state**^{S9}



Figure S9. Pd 3d XPS spectra of Pd catalyst in present methodology

Binding energy:		2J (2V)
Oxidation state	$50_{5/2}$ (eV)	$5d_{3/2}(ev)$
Pd(II)	337.39	342.77
Pd(0)	335.19	341.95

**3.7 XPS Data: Evidence of Ir²⁺, Ir³⁺ metal state**^{S10}



Figure S10. Ir 4f XPS spectra of Ir photocatalyst in present methodology

Binding energy:			
	Oxidation state	4f _{7/2} (eV)	4f _{5/2} (eV)
	Ir(III)	62.52	65.29
	Ir(II)	61.70	64.53

## 4. X-ray Crystal Structure

## 4.1 Crystal Structure of 3q

X-ray diffraction quality singles crystal of entry_3q were found by slow evaporating the chloroform solution of 3q, and it was crystallized in the orthorhombic crystal system with **P n a** 21 space group.

Compound reference	Entry_3q
Chemical formula	$C_{14}H_{12}O_4S$
Formula Mass	276.30
Crystal system	Orthorhombic
a/Å	8.6986(10)
b/Å	5.2970(8)
c/Å	27.895(3)
α/°	90
β/°	90
γ/°	90
Unit cell volume/Å ³	1285.3(3)
Temperature/K	146
Space group	P n a 21
No. of formula units per unit	4
cell, Z	
Radiation type	MoK\a
No. of reflections measured	13857
No. of independent reflections	3131
R _{int}	0.0467
Final $R_1$ values (I > $2\sigma(I)$ )	0.0335
Final wR( $F^2$ ) values (I > $2\sigma(I)$ )	0.0734
Final R ₁ values (all data)	0.0451
Final wR( $F^2$ ) values (all data)	0.0800
CCDC number	2354489

Crystallographic data (CCDC 2354489)

## **Crystal structure image of 3q:**



Figure S11: crystal structure of Entry_3q where thermal ellipsoids are shown at 50% probability.



### 4.2 Crystal Structure of 7e

X-ray diffraction quality singles crystal of entry_7e were found by slow evaporating the chloroform solution of 7e, and it was crystallized in the orthorhombic crystal system with P-1 space group.

Compound reference	Entry_7e
Chemical formula	C ₁₅ H ₁₅ NO ₃
Formula Mass	257.28
Crystal system	triclinic
a/Å	7.402(2)
b/Å	12.593(4)
c/Å	15.571(5)
α/°	75.32(1)
β/°	76.785(10)
$\gamma/^{\circ}$	82.923(11)
Unit cell volume/Å ³	1363.6(7)
Temperature/K	163
Space group	P-1

## Crystallographic data (CCDC 2354490)

No. of formula units per unit	2
cell, Z	
Radiation type	MoK\a
No. of reflections measured	20198
No. of independent reflections	9081
R _{int}	0.0836
Final $R_1$ values ( $I > 2\sigma(I)$ )	0.0960
Final wR( $F^2$ ) values (I > 2 $\sigma$ (I))	0.2609
Final R ₁ values (all data)	0.1531
Final wR( $F^2$ ) values (all data)	0.3264
CCDC number	2354490

Crystal structure image of 7e:



Figure S12: crystal structure of Entry_7e where thermal ellipsoids are shown at 50% probability.



#### 5. Computational details:

All molecular geometries were optimized in vacuum with M06 density functional paired with 6-31++G(p,d) basis set for C, H, N, O, F atoms and LanL2DZ, which has a double- $\zeta$  quality basis set with the Los Alamos effective core potential for Ir and Pd. The M06 density functional was used as it has been shown to be a tool to make reliable predictions^{S11} for photo-redox reaction free energy changes and barriers^{S12}. Harmonic vibrational frequencies at the same level of theory were computed to characterize the structures as minima (all real frequencies) and transition states (one imaginary mode). Thermo-chemical information like zero-point corrections (ZPC) and thermal corrections to free energy were obtained from frequency calculations for 1 atmospheric pressure and 298 K temperature. To compensate for the damping of translational and rotational degrees of freedom in the solvent phase, Gibbs free energies were computed using solvent phase entropies, which in turn were derived by scaling gas phase entropies by an empirical factor of 0.5, which is a standard practice^{S13}. The CPCM^{S14} technique has been chosen because continuum solvent models are reported to give satisfactory results for the solvent phase. All the calculations were conducted within the Gaussian 09 suite of programs.^{S15}

# Energy barriers of single electron transfer steps, involved in this whole study, by using Marcus-Hush theory^{S16}

 $\lambda$  is the reorganization energy, which has two components, inner sphere and outer sphere. However the first one is considered to be neglected, and hence, the total  $\lambda$  will be the outer sphere reorganization energy, which can be calculated by the equation:

$$\begin{split} \lambda_0 &= (332kcal / mol)(\frac{1}{2a_1} + \frac{1}{2a_2} - \frac{1}{R})(\frac{1}{\varepsilon_{op}} - \frac{1}{\varepsilon})\\ \lambda &= \lambda_0 + \lambda_i\\ \Delta G^{0\#} &= \frac{(\Delta G_r + \lambda)^2}{4\lambda} \end{split}$$

Where  $a_1$  is the radii of the oxidant,  $a_2$  is the radii of the reductant,  $R = a_1 + a_2$ ,  $\varepsilon_{op}$  is the optical dielectric constant ( $\varepsilon_{op} = 2.18$ ),  $\varepsilon$  is the static dielectric constant for the solvent ( $\varepsilon = 46.68$ ), and  $\Delta Gr$  is the free energy change of the reaction.

SET steps	<b>a</b> ₁	<b>a</b> ₂	R	λ	$\Delta G_r$	$\Delta G_{SET}$
	(Å)	(Å)	(Å)	(kcal/mol)	(kcal/mol)	(kcal/mol)
Radical formation	7.09	3.41	10.50	19.20	-14.0	0.4
SET _{E-J}	7.25	7.09	14.34	10.95	-24.83	4.4
STE _{F-G}	5.32	7.09	12.41	28.08	1.62	7.8

#### **Mechanistic Details:**

In the reaction medium both  $\alpha$ -keto acid (PhCOCOOH) and (-HCO₃⁻) are present. They participate in an exoergic acid-base reaction which is favorable by 14.8 kcal/mol. The acid-base reaction produces H₂CO₃ and the deprotonated form of the  $\alpha$ -keto acid, which serves as our starting reactive species. The photoexcitation of Ir(III) to *Ir(III) can plausibly initiate a reductive quenching process where the *IrIII can strip off an electron from the deprotonated keto-carboxylic acid, thus triggering decarboxylation and simultaneously yielding Ir(II). The decarboxylative redox process is facilitated by a single electron transfer (SET) which is predicted to be essentially barrierless (1.2 kcal/mol barrier) and is downhill by 16.0 kcal/mol. The SET facilitated decarboxylation yields a reactive acyl radical in the medium. The acyl radical sets into action the catalytic cycle for production of ester through a cross coupling reaction (see Figure 13). Some of the Ir(II) thus produced plausibly reduces Pd(II) to Pd(0). It must be noted that the optimized reaction uses 1.25 equiv of the phenyl-keto-carboxylic-acid. The excess acid produces enough Ir(II) to yield the requisite catalytic amount of Pd(0) from Pd(II).

The Pd(0)-complex (B) reacts with phenol to form an intermediate C, which is 9.3 kcal/mol more stable than the starting reactants. Subsequently, an oxidative addition occurs yielding intermediate, D. The oxidative addition process is 16.7 kcal/mol downhill and it proceeds through a transition state, TS-1 which lies 13.2 kcal/mol higher in energy than the previous intermediate C. In D the metal center is in formal II oxidation state. At this juncture the acyl radical A enters the reaction web. The acyl radical can endoergically bind to D leading to formation of metastable intermediate E which is 5 kcal/mol higher in free energy than D. Not

surprisingly, E, which has a formal Pd(III) center is predicted to undergo a highly exoergic reductive elimination involving C-O coupling by overcoming a barrier of 8.4 kcal/mol via TS-2 to yield F with formal I oxidation sate of Pd and the observed ester product (catalytic path-B). Ir(II) in the medium can reduce F by SET and converts it to G with a Pd(0) bearing a Pd-H bond. The barrier for SET leading to the formation of G is estimated to be only 7.8 kcal/mol. Alternatively, E can transform to G through a pathway which initiates through a SET from Ir(II) to E converting it to a five coordinate Pd(II) intermediate J (path-B). The overall barrier for the SET for J formation is only 4.4 kcal/mol. J is predicted to undergo reductive elimination, thus releasing the observed ester product and yielding simultaneously G. The intermediate G interacts with H2CO3 through hydrogen bonding interaction and releases H2 through a barrier less process and simultaneously releases the Pd(0) active catalytic form B. Thus in the last step the active catalytic form of the Pd complex is regenerated. Both the pathways described above are low barrier routes which are likely to be facile at room temperature. Moreover, both of these pathways satisfactorily delineates channels for ester formation as well as Pd(0) catalyst and Ir(III)-photocatalyst regeneration. Comparison of the two theoretically predicated paths for ester formation suggests that the one involving conversion of E to G via J (path-A) is expected to be more dominant than the other involving conversion of E to G via F (path-B). Both pathways involve a significantly exothermic step beyond intermediate E (E to F and E to J) and the relative barriers of from E to F and E to J are 8.4 kcal/mol and 4.4 kcal/mol respectively. Hence, conversion of E to J is likely to be several folds faster than E to F. The rater determining barrier for Pathway-B is the reductive elimination from J, with a barrier of 13.4 kcal/mol.



**Figure S13:** Plausible mechanistic cycles and Gibbs free energy profile (kcal/mol) of Ir-Pd catalyzed C-O cross-coupled decarboxylative ester synthesis at 298K.

Optimized cartesian coordinates:

## Geometry of Ir^{III} in Cartesian Coordinates and in Angstroms:

С	2.17395500	0.08396600	0.73280600
С	0.93766400	-0.51476100	2.59931600
С	2.07196700	-0.58385200	3.38592400
С	3.32995300	-0.30851900	2.83293600
С	3.35034300	0.03196800	1.47967000
С	2.14673600	0.42662300	-0.70650500
С	0.83478100	0.76215000	-2.58743900
С	1.94043500	1.05753400	-3.36282300
С	3.22265200	1.03723200	-2.79711300
С	3.29645600	0.71167700	-1.44241300
Н	-0.04909400	-0.73077900	3.00742800
Н	1.96418900	-0.85888800	4.43170700
Н	4.29491900	0.25951500	0.99754800
Н	-0.17168800	0.77307200	-3.00440600
Н	1.79115800	1.30303900	-4.41117000
Н	4.26274200	0.67676400	-0.95075500
Ν	0.97798000	-0.19214800	1.29754300
Ν	0.92586500	0.45538400	-1.28443200
С	-2.65844400	0.62363100	2.08517200
С	-3.61508600	0.41639200	3.08916400
С	-4.11914800	-0.82983400	3.39995300

С	-3.63704700	-1.90251600	2.66166000
С	-2.69155200	-1.76695400	1.65482400
С	-2.18573700	-0.50219500	1.35482300
С	-2.08616200	1.90530800	1.71274500
С	-2.42344800	3.16419100	2.23458300
С	-1.79774200	4.29985800	1.76044700
С	-0.82785200	4.18249700	0.76209700
С	-0.52596300	2.92537100	0.27834900
Н	-4.86060000	-0.95971000	4.18085600
Н	-2.37920500	-2.66130600	1.11895000
Н	-3.18078700	3.23893200	3.00380800
Н	-2.05854900	5.27880700	2.15717600
Н	0.21422600	2.78420100	-0.50508900
С	-2.41239200	-1.21336300	-2.11540100
С	-2.23161800	-0.00344800	-1.38825900
С	-3.02995900	1.09836200	-1.69478600
С	-3.97897800	0.99389900	-2.70191100
С	-4.18351300	-0.16731700	-3.43572600
С	-3.38908400	-1.25064300	-3.12107700
С	-1.54518700	-2.31498600	-1.73604900
С	0.20772200	-2.91600400	-0.28719100
С	0.23045900	-4.20877700	-0.76958800
С	-0.67482200	-4.56450400	-1.77224300
С	-1.55849700	-3.61966800	-2.25493100
----	-------------	-------------	-------------
Η	-2.94716100	2.04442200	-1.16325300
Η	-4.93293700	-0.22615000	-4.21750100
Η	0.88310300	-2.59544700	0.50176700
Η	-0.68332000	-5.57908900	-2.16512400
Η	-2.26957000	-3.87872300	-3.02855500
Ir	-0.77512800	-0.07402900	-0.00855100
С	4.58285800	-0.39207400	3.69039000
С	4.44878200	0.59437400	4.85940700
Η	5.34965700	0.55325400	5.48339400
Η	4.33443400	1.62444500	4.49885600
Η	3.59267500	0.36156100	5.50303300
С	4.71411000	-1.82339500	4.23045200
Η	3.86394100	-2.10990600	4.86034900
Η	4.79271600	-2.55185200	3.41350700
Η	5.61974900	-1.90405800	4.84353800
С	5.84675900	-0.04944700	2.90546500
Η	6.01441400	-0.74228300	2.07052600
Η	5.82729100	0.97728000	2.51713300
Η	6.71605800	-0.12686300	3.56791700
С	4.44500500	1.35426600	-3.64494800
С	4.29870600	2.77274100	-4.21303000
Н	3.41627500	2.87527800	-4.85508800

Η	4.22397800	3.51711200	-3.41027500
Н	5.17758000	3.01894800	-4.82094800
С	4.52525000	0.33906500	-4.79373500
Н	4.62567800	-0.68506600	-4.41263100
Н	3.64444000	0.37502100	-5.44538500
Н	5.40280500	0.55608400	-5.41443300
С	5.74153600	1.28222900	-2.84138200
Н	5.76144000	2.01297200	-2.02226000
Н	5.91581400	0.28032800	-2.42743700
Н	6.58809100	1.51167300	-3.49810700
Ν	-1.13544100	1.82059300	0.73475400
Ν	-0.65240800	-1.99690300	-0.75173100
С	-0.12454500	5.40564100	0.25650400
F	-0.99890800	6.33767300	-0.13633800
F	0.67795300	5.13165900	-0.77996600
F	0.63089900	5.95472000	1.21864700
С	1.19710000	-5.22552900	-0.24239500
F	1.99090000	-5.68344500	-1.21985000
F	1.98455100	-4.72142500	0.71706300
F	0.55455800	-6.28165700	0.26864200
F	-4.07639700	1.45716800	3.79847800
F	-4.11119600	-3.11754700	2.93746000
F	-4.73647800	2.05444900	-2.98255400

Geometry	of Ir  in Car	tesian Coordii	nates and in Angstr
С	-1.58776800	1.54698400	0.52961200
С	-0.10642700	1.62191200	2.31038000
С	-0.82915500	2.62342600	2.92986900
С	-1.98076700	3.13953200	2.31978400
С	-2.34708800	2.56844700	1.09999400
С	-1.93182200	0.91191100	-0.76145400
С	-1.24196000	-0.49998600	-2.46500600
С	-2.43149200	-0.33269900	-3.14797900
С	-3.44465100	0.47323500	-2.60960600
С	-3.15618800	1.10661000	-1.39961000
Н	0.80611300	1.22034000	2.75164400
Н	-0.47989400	3.00312400	3.88640400
Н	-3.22474800	2.93466900	0.57866000
Н	-0.45617200	-1.15017000	-2.84729500
Н	-2.56841200	-0.85395400	-4.09157300
Н	-3.90084800	1.74061700	-0.93017000
Ν	-0.46634500	1.09580300	1.13028200
Ν	-0.99618200	0.09155400	-1.28608300
С	1.55500000	-1.78479600	2.42585500
С	2.43836200	-2.08154600	3.51249000

# Geometry of ^{*}Ir^{III} in Cartesian Coordinates and in Angstroms:

С	3.65390400 -1.48537800 3.65799600
С	4.06188500 -0.53684900 2.68744700
С	3.27317800 -0.19334500 1.60505900
С	2.01802300 -0.77937700 1.45046900
С	0.29802100 -2.36206800 2.19264200
С	-0.35626300 -3.39211200 2.93812500
С	-1.58645000 -3.85621000 2.57029000
С	-2.21490300 -3.29314000 1.41856700
С	-1.55442100 -2.30808500 0.70047000
Н	4.29846600 -1.73375400 4.49568700
Н	3.65961700 0.53309700 0.89266000
Н	0.14584600 -3.80739800 3.80381000
Н	-2.08214500 -4.64285100 3.13243600
Н	-2.01022900 -1.89210700 -0.19498600
С	2.56382100 -1.09602200 -2.08472500
С	1.64353300 -1.70500100 -1.18650900
С	1.44898200 -3.08516000 -1.23049900
С	2.15661200 -3.83904000 -2.15632200
С	3.06075200 -3.28426100 -3.05270500
С	3.24469700 -1.91751300 -2.99340800
С	2.70708400 0.34672000 -1.97437300
С	1.90626000 2.23124500 -0.81849300
С	2.73495700 3.07884900 -1.52582700

С	3.58642200	2.53243300	-2.48875800
С	3.57217400	1.16941300	-2.71348500
Н	0.76627100	-3.59563900	-0.55402900
Н	3.60339600	-3.89367400	-3.76742200
Н	1.23430900	2.60815200	-0.05133800
Н	4.25374400	3.17740200	-3.05674700
Н	4.22779100	0.73102500	-3.45482200
Ir	0.69521800	-0.41950200	0.02418600
С	-2.76295600	4.26405700	2.98050900
С	-3.27268200	3.77168500	4.34229200
Н	-3.83671500	4.57186600	4.83642400
Н	-3.93994200	2.90808400	4.22826800
Н	-2.45465300	3.48297200	5.01269300
С	-1.83041400	5.46776700	3.17705600
Н	-0.98048600	5.23620600	3.82949900
Н	-1.43503000	5.82644100	2.21806000
Н	-2.38563100	6.29105600	3.64231600
С	-3.95885400	4.70861900	2.14217100
Н	-3.65409800	5.09152200	1.15930000
Н	-4.68800200	3.90064500	1.99811100
Н	-4.47959500	5.52320800	2.65796600
С	-4.77872700	0.61501600	-3.32434600
С	-5.41443900	-0.77708700	-3.45472800

Η	-4.80356900	-1.45726600	-4.05965400
Н	-5.56732200	-1.24089400	-2.47144200
Н	-6.39197300	-0.69026000	-3.94420100
С	-4.53491300	1.20979400	-4.71840300
Н	-4.07027000	2.20172800	-4.65185100
Н	-3.89238600	0.57278200	-5.33746000
Н	-5.49148900	1.32045100	-5.24315400
С	-5.74515200	1.52413700	-2.56855700
Н	-5.98596200	1.13229700	-1.57165500
Н	-5.35556900	2.54538900	-2.46395500
Н	-6.68686200	1.59329800	-3.12433400
Ν	-0.35617300	-1.84386500	1.03991300
Ν	1.89453700	0.90757300	-1.03159000
С	-3.56601200	-3.76408000	1.00154900
F	-3.57124100	-5.07866200	0.74040300
F	-4.00746200	-3.13119500	-0.10005700
F	-4.47467800	-3.56012300	1.96890600
С	2.72597700	4.55891700	-1.28701500
F	2.35502300	5.21752300	-2.39300800
F	1.88019400	4.90271200	-0.30660100
F	3.94218900	5.00206100	-0.95315500
F	2.05664400	-2.98257100	4.42942200
F	5.25620900	0.03063300	2.85217900

F	1.96691700	-5.15664900	-2.19237800
F	4.11475500	-1.37994700	-3.85934600

# Geometry of Ir^{II} in Cartesian Coordinates and in Angstroms:

Ir	0.81484900 -	0.05267700	0.00122400
С	-0.87580400	-0.92762400	-2.49429700
С	-2.11645500	-0.10964000	-0.67154300
С	-2.00850300	-1.21057500	-3.22150700
Н	0.11424200	-1.13457300	-2.90288200
С	-3.31092600	-0.39006100	-1.39203400
С	-3.28829800	-0.94104300	-2.65137300
Н	-1.90285200	-1.63718800	-4.21488400
Н	-4.26040400	-0.17470100	-0.91177700
С	-2.08353600	0.43692400	0.64281600
С	-0.75501700	1.06693400	2.47829500
С	-3.23265100	0.87792000	1.35696500
С	-1.84357100	1.49317600	3.20319300
Н	0.25189100	1.13668600	2.89189100
С	-3.14322200	1.40945600	2.62204700
Н	-4.19941400	0.79930200	0.86957300
Н	-1.68852000	1.89138200	4.20169500
Ν	-0.89596400	-0.40467600	-1.25600600
Ν	-0.83830700	0.56122600	1.23587600

С	1.95351900	1.83074900	-1.93206800
С	0.34386700	2.86206100	-0.55899200
С	2.16021600	3.04838700	-2.60019700
С	0.51401700	4.07773100	-1.19279600
Н	-0.36399100	2.73273100	0.25651500
С	1.44362100	4.16902900	-2.23130700
Н	2.88208800	3.10150000	-3.40486400
Н	1.59918100	5.11639000	-2.74342100
С	2.23288400	-0.51787400	-1.34713700
С	2.61930800	0.56478300	-2.18980700
С	2.83470100	-1.76586200	-1.53660800
С	3.58042200	0.33221300	-3.18186400
Н	2.58343800	-2.62485700	-0.91642500
С	4.17483800	-0.89688900	-3.38072900
Н	4.91631700	-1.04600800	-4.15790900
Ν	1.04475600	1.77507500	-0.91304500
С	1.59929300	-2.09020700	1.95597000
С	-0.11537500	-2.86097400	0.53997300
С	1.59274100	-3.32167200	2.63154500
С	-0.15475300	-4.08561600	1.17840800
Н	-0.77192800	-2.62785900	-0.29542500
С	0.71840300	-4.31681900	2.24323800
Н	2.27527900	-3.48352100	3.45561900

Н	0.70679300	-5.27370700	2.76096700
С	2.26282900	0.18314900	1.37860600
С	2.45289000	-0.94585900	2.22785400
С	3.05370900	1.31858600	1.58502600
С	3.41941300	-0.87151700	3.23825800
Н	2.95892100	2.20761600	0.96366800
С	4.20020600	0.24545900	3.45275900
Н	4.94113600	0.27347200	4.24387500
Ν	0.73649000	-1.89519400	0.91472800
С	-4.54505200	-1.27910800	-3.44013700
С	-5.82278100	-0.92284200	-2.68409900
Н	-5.88153300	0.15164800	-2.46651200
Н	-6.69607300	-1.18541600	-3.29412100
Н	-5.90282800	-1.47374800	-1.73795700
С	-4.53562900	-0.50019800	-4.76229900
Н	-3.66505800	-0.74862300	-5.38050500
Н	-5.43650200	-0.73460100	-5.34500400
Н	-4.51887600	0.58176300	-4.57790000
С	-4.56193000	-2.78577300	-3.73136200
Н	-3.69221400	-3.10054300	-4.32008000
Н	-4.56072300	-3.36325400	-2.79781700
Н	-5.46391100	-3.05197000	-4.29846400
С	-4.34680800	1.90905400	3.40780000

С	-4.14327700	3.39099100	3.75188300
Н	-5.01064800	3.77111600	4.30787400
Н	-3.25374400	3.55215600	4.37212100
Н	-4.03007900	3.99224800	2.84039400
С	-5.65260600	1.77624800	2.62707200
Н	-5.63310200	2.35781500	1.69616000
Н	-5.87757500	0.73063100	2.37942600
Н	-6.48299200	2.15550600	3.23573500
С	-4.47519200	1.09518000	4.70217100
Н	-3.58229700	1.18130600	5.33275100
Н	-5.33398300	1.44877400	5.28836500
Н	-4.62826800	0.03111700	4.47996000
С	3.99015000	1.32559900	2.60382200
С	3.77752700	-1.92698500	-2.53652900
С	-0.27559400	5.28472800	-0.79744700
F	-1.01280300	5.74169100	-1.82420600
F	0.53166500	6.29511000	-0.43148900
F	-1.10721600	5.04402700	0.22006500
F	4.34432200	-3.12863600	-2.70998500
F	3.96496900	1.33091300	-3.99970800
С	-1.11062200	-5.15597400	0.75689400
F	-1.92548100	-5.50527500	1.76690000
F	-0.46055600	-6.27344400	0.39035300

F	-1.87903900	-4.78168100	-0.26992200
F	4.74084800	2.42028000	2.79099900
F	3.62265900	-1.92108500	4.05826400

#### Geometry of deprotonated acid in Cartesian Coordinates and in Angstroms:

С	3.02649500	-0.52311200	0.06261100
С	2.00957700	-1.48306000	0.01188700
С	0.66974400	-1.08797900	-0.03487600
С	0.33366900	0.27408500	-0.03506200
С	1.35843300	1.23078100	0.01318000
С	2.69690700	0.83810200	0.06355400
Н	4.06865400	-0.83286400	0.10098000
Н	2.26087400	-2.54119400	0.00696700
Н	-0.12432700	-1.82657300	-0.08910500
Н	1.07492800	2.27948200	0.00984900
Н	3.48393400	1.58829300	0.10434900
С	-1.10989100	0.73547700	-0.07317000
0	-1.36178200	1.93348800	-0.19547200
С	-2.19091000	-0.35712600	0.04023700
0	-2.41593300	-0.95345500	-1.04482600
0	-2.66331000	-0.53380200	1.18739800

Geometry of acid radical in Cartesian Coordinates and in Angstroms:

С	-3.20799000	-1.01422100	0.00011900
С	-1.97887800	-1.68101200	-0.00006200
С	-0.79042700	-0.94870900	-0.00019300
С	-0.83670600	0.45354600	-0.00012400
С	-2.07537100	1.12421400	0.00014800
С	-3.25664100	0.38668900	0.00024700
Н	-4.13225500	-1.58522400	0.00023500
Н	-1.94772800	-2.76638000	-0.00012400
Н	0.17401500	-1.44703900	-0.00034400
Н	-2.09179500	2.20975000	0.00021400
Н	-4.21550800	0.89705300	0.00043600
С	0.43000400	1.21742200	-0.00025800
0	0.59350100	2.40111100	-0.00024600
С	3.53005700	-0.61980200	0.00009400
0	4.25440000	0.29677200	0.00041200
0	2.81822300	-1.54999900	-0.00019600

## Geometry of radical in Cartesian Coordinates and in Angstroms:

С	-2.16773200	0.26604800	0.00019100
С	-1.70934400	-1.04978600	-0.00003200
С	-0.34194400	-1.30321900	-0.00016500
С	0.56102500	-0.23804800	-0.00007600
С	0.09932700	1.08524900	0.00014900

С	-1.26635800	1.33287100	0.00028200
Н	-3.23725300	0.46461600	0.00029700
Н	-2.41752700	-1.87458700	-0.00010100
Н	0.04473700	-2.32062900	-0.00033900
Н	0.82299400	1.89775700	0.00021300
Н	-1.63477000	2.35612600	0.00045600
С	2.00796400	-0.51827800	-0.00021400
0	2.91552400	0.25346200	-0.00016800

### Geometry of B in Cartesian Coordinates and in Angstroms:

С	-0.75703400	0.20678100	0.06707900
С	-2.55132800	1.46086800	0.74026400
С	-3.43281900	0.41339100	0.52606700
С	-2.95383700	-0.81844000	0.06083000
С	-1.58142300	-0.89813100	-0.16716700
С	0.69682400	0.14375700	-0.20431800
С	2.57743400	1.20591800	-0.96789600
С	3.37772600	0.11520300	-0.66780200
С	2.81129600	-1.03771400	-0.10882200
С	1.43546100	-0.99967000	0.11161000
Н	-2.91032000	2.41854300	1.11522600
Н	-4.49076700	0.56585200	0.73015800
Н	-1.13445400	-1.80737000	-0.56085900

Н	3.00575400	2.09773000	-1.42363900
Н	4.44374900	0.17156600	-0.87930400
Н	0.92066700	-1.84201300	0.56710700
Ν	-1.23258000	1.37694900	0.52617800
Ν	1.25546200	1.24458100	-0.74236100
С	-3.91067600	-1.97662500	-0.19026000
С	-4.65360500	-2.31110700	1.10962300
Н	-5.33972700	-3.15219600	0.94477600
Н	-3.94964100	-2.59497600	1.90235500
Н	-5.24748200	-1.46494400	1.47456800
С	-4.92147800	-1.56757900	-1.26952800
Н	-5.51508900	-0.69635400	-0.96782400
Н	-4.41177700	-1.31699500	-2.20864900
Н	-5.61711100	-2.39377100	-1.46803900
С	-3.18394500	-3.23373400	-0.66402300
Н	-2.66127900	-3.07088800	-1.61539700
Н	-2.45428300	-3.58784600	0.07605700
Н	-3.91166400	-4.03925400	-0.82178000
С	3.68341000	-2.23504700	0.24437500
С	4.72211600	-1.80801100	1.28981600
Н	5.38204200	-1.01676100	0.91452700
Н	4.23205600	-1.43359500	2.19760800
Н	5.35099400	-2.66408400	1.56857300

С	4.39864100	-2.73333200	-1.01781800
Н	3.67493000	-3.04409100	-1.78227600
Н	5.04297400	-1.96351400	-1.45856700
Н	5.03093400	-3.59745300	-0.77472000
С	2.87023100	-3.39222200	0.82204600
Н	2.36800300	-3.11371500	1.75744900
Н	2.11178700	-3.75275900	0.11470400
Н	3.53820500	-4.23329800	1.04559000
Pd	0.23085600	3.12990500	0.06046000

## Geometry of C in Cartesian Coordinates and in Angstroms:

С	0.47799000	0.73182200	0.19928600
С	-1.64235000	1.32397400	0.78810000
С	-1.42505300	2.65931900	0.45302100
С	-0.17645800	3.05527800	-0.02556500
С	0.78539400	2.04626600	-0.14733100
С	1.48281400	-0.34310800	0.01659200
С	1.97803500	-2.47299400	-0.68839500
С	3.31411300	-2.32718800	-0.35952600
С	3.77577800	-1.12430100	0.19018200
С	2.81869400	-0.12890700	0.36932500
Н	-2.61463500	1.00893600	1.17336600
Н	-2.23709400	3.37001800	0.57831100

Н	1.77274900	2.26926900	-0.54923700
Н	1.60814800	-3.39841800	-1.12334600
Н	3.98859600	-3.16213100	-0.53752000
Н	3.08359700	0.82717600	0.81328200
Ν	-0.72414500	0.36742300	0.67399700
Ν	1.05796000	-1.50840700	-0.51016800
С	0.15593400	4.48857900	-0.42261800
С	-1.02058800	5.43514500	-0.19153700
Н	-0.73626600	6.45316600	-0.48591200
Η	-1.89701400	5.15076400	-0.78802100
Η	-1.31757400	5.46606100	0.86481700
С	1.34305500	4.98401800	0.41296800
Н	1.10824100	4.95256200	1.48472600
Н	2.24261600	4.37918200	0.24762600
Н	1.58554900	6.02141800	0.14668900
С	0.52349500	4.52915200	-1.91143100
Н	1.39637500	3.90501700	-2.13738300
Η	-0.31072700	4.17498600	-2.53037600
Н	0.76065800	5.55831800	-2.21266900
С	5.24182700	-0.95717400	0.56593400
С	6.10476700	-1.12899400	-0.69079500
Н	5.97636100	-2.11857900	-1.14495800
Н	5.84963800	-0.37631600	-1.44784500

Н	7.16695900	-1.01295800	-0.43765000
С	5.62240300	-2.02440600	1.60028800
Н	5.00577800	-1.93310000	2.50351200
Н	5.49538700	-3.04024700	1.20776200
Н	6.67480500	-1.90843700	1.89145000
С	5.53274000	0.41737000	1.16451900
Н	5.30433200	1.22780900	0.46009200
Н	4.96527200	0.59111200	2.08795200
Н	6.59863000	0.48857200	1.41392800
Pd	-1.01458900	-1.94217900	-0.74001000
С	-4.01872900	-1.61833700	-0.13332500
С	-3.71249500	-1.69032700	1.22341100
С	-5.06960400	-0.83035700	-0.59087000
С	-4.47989300	-0.96747800	2.12801100
Н	-2.85797600	-2.28968600	1.53311000
С	-5.82665100	-0.10427400	0.32803000
Н	-5.29257400	-0.77861700	-1.65628100
С	-5.53938400	-0.17065700	1.68796700
Н	-4.24171300	-1.01992500	3.18801200
Н	-6.64707400	0.51481400	-0.02811500
Н	-6.13364400	0.39483000	2.40136300
0	-3.24494800	-2.36311700	-0.98921400
Н	-3.47843700	-2.17808800	-1.90674700

## Geometry of D in Cartesian Coordinates and in Angstroms:

С	0.41858200	0.68166300	-0.19131300
С	-1.84453900	1.06609300	-0.43338600
С	-1.66438100	2.43929900	-0.37543400
С	-0.38006100	2.97027700	-0.21701000
С	0.66798600	2.05439100	-0.12711000
С	1.49532700	-0.33375300	-0.10204500
С	2.06878600	-2.57652300	-0.16098200
С	3.40699100	-2.29216900	0.03555500
С	3.82744100	-0.96463000	0.17821400
С	2.83429400	0.00874700	0.10164600
Н	-2.83713200	0.62781400	-0.54505700
Н	-2.53774800	3.08208800	-0.45032600
Н	1.68575500	2.41000700	-0.01039000
Н	1.71846700	-3.59841500	-0.26943000
Н	4.11282800	-3.11793900	0.07939400
Н	3.09838100	1.05557500	0.20505400
Ν	-0.82847600	0.20451300	-0.34234500
Ν	1.12232500	-1.62756800	-0.22712100
С	-0.17322900	4.47869000	-0.15240100
С	-0.68010900	5.10864900	-1.45624800
Н	-0.53790200	6.19654000	-1.42610300

Н	-0.13192600	4.71716400	-2.32272000
Н	-1.74708100	4.91752200	-1.61907500
С	-0.96465800	5.04197300	1.03532200
Н	-2.04063800	4.85627700	0.94094400
Н	-0.62787100	4.59691800	1.98029800
Н	-0.81902100	6.12801500	1.09943800
С	1.29563700	4.85779700	0.02593700
Н	1.71175100	4.46112200	0.96142300
Н	1.91485300	4.50694100	-0.81009500
Н	1.38739600	5.94981900	0.06499400
С	5.29820400	-0.64022400	0.40110600
С	6.10350700	-1.12837500	-0.81034000
Н	6.00940100	-2.21056200	-0.95829600
Н	5.77061000	-0.63221700	-1.73087900
Н	7.16802900	-0.90273100	-0.66683100
С	5.78469800	-1.35689700	1.66744900
Н	5.20877600	-1.04010700	2.54621300
Н	5.70110300	-2.44664300	1.58483900
Н	6.84079400	-1.11903100	1.84832200
С	5.54286300	0.85754000	0.57316500
Н	5.25405900	1.42790100	-0.31920200
Н	5.00413400	1.26403100	1.43900600
Н	6.61208900	1.03408900	0.74053300

Pd	-0.90280100	-2.01894000	-0.48975400
С	-3.72404900	-1.68864700	-0.06763400
С	-3.46460700	-1.41254300	1.29459000
С	-4.96235500	-1.24989000	-0.59417200
С	-4.37833100	-0.70670600	2.07025300
Н	-2.52082100	-1.76147400	1.71682800
С	-5.86782800	-0.55148500	0.19395000
Н	-5.17442300	-1.47190300	-1.63847500
С	-5.58570000	-0.26085900	1.53146100
Н	-4.14387000	-0.50477800	3.11504700
Н	-6.80999800	-0.22261700	-0.24360900
Н	-6.29725300	0.28987600	2.14236400
0	-2.88136500	-2.31511200	-0.85925800
Н	-0.77674800	-3.55425000	-0.58863900

### Geometry of E in Cartesian Coordinates and in Angstroms:

С	2.02612700	-0.76452300	-0.50079000
С	0.88329900	-2.74758500	-0.19820900
С	2.03899800	-3.42315500	0.14204900
С	3.26524900	-2.74645000	0.16441000
С	3.22778200	-1.39521900	-0.16707300
С	1.99664500	0.67637600	-0.85083500
С	1.04484100	2.32912800	-2.09606300

С	1.78775700	3.31078800	-1.45438700
С	2.69387900	2.95259600	-0.45032600
С	2.79908600	1.59188500	-0.16547900
Н	-0.07766900	-3.25496200	-0.22301300
Н	1.97200800	-4.48112600	0.38339300
Н	4.13928400	-0.80518800	-0.19968500
Н	0.32984400	2.59531700	-2.87422500
Н	1.63703600	4.35211100	-1.73099900
Н	3.45350200	1.23992000	0.62785900
Ν	0.86173000	-1.44193000	-0.51520100
Ν	1.13548400	1.03229200	-1.80583400
С	4.54832800	-3.48484600	0.51762100
С	4.40824900	-4.09225200	1.91945400
Н	5.32827800	-4.62715900	2.18795200
Н	4.23608500	-3.31227000	2.67206200
Н	3.57967200	-4.80756500	1.97950100
С	4.77644300	-4.60218200	-0.50913800
Н	3.95334300	-5.32627900	-0.51831400
Н	4.87568600	-4.19101700	-1.52173500
Н	5.69834200	-5.14826800	-0.27069500
С	5.76597600	-2.56325600	0.51056300
Н	5.94178200	-2.12169500	-0.47883200
Н	5.66754900	-1.75058100	1.24204600

Н	6.66070800	-3.13875400	0.77685400
С	3.45946400	4.02393200	0.31481600
С	2.44450600	4.89272000	1.07063200
Н	1.75432700	5.40013400	0.38658100
Н	1.84382600	4.28289800	1.75783100
Н	2.96633200	5.66220600	1.65493500
С	4.25576800	4.89196100	-0.66662000
Н	4.98655000	4.29007700	-1.22215100
Н	3.60769200	5.39118600	-1.39591100
Н	4.80182500	5.67233500	-0.12058900
С	4.43365900	3.42784100	1.32847800
Н	3.91661200	2.83777100	2.09600100
Н	5.18656400	2.79010400	0.84629400
Н	4.96657500	4.23781900	1.84153200
Pd	-0.98129300	-0.50373700	-0.96736400
С	-1.13886400	0.61124200	0.93591500
0	-0.29690200	1.44794400	1.11052600
С	-2.33412800	0.36812700	1.75943100
С	-3.04603200	-0.82891600	1.65724800
С	-2.78333800	1.38879500	2.60894500
С	-4.20074100	-1.01256700	2.40859900
Н	-2.69012300	-1.60067100	0.97688300
С	-3.94547900	1.20521500	3.34445300

Н	-2.22130200	2.31826600	2.66558900
С	-4.65257200	0.00534300	3.24428000
Н	-4.76303500	-1.93857100	2.31744900
Н	-4.30774300	1.99794600	3.99502400
Н	-5.56854000	-0.13059400	3.81504500
0	-2.69460300	0.50433700	-1.38104900
С	-3.91483200	0.01979000	-1.26354100
С	-4.24350400	-1.34828400	-1.36772000
С	-4.97244400	0.92582500	-1.01919900
С	-5.55823900	-1.78165400	-1.23571000
Н	-3.43582100	-2.05471800	-1.56165800
С	-6.28017100	0.48022400	-0.88553000
Н	-4.72498600	1.98292300	-0.93966000
С	-6.59080500	-0.87808900	-0.98697600
Н	-5.77828200	-2.84461600	-1.33028700
Н	-7.07117800	1.20485800	-0.69623200
Н	-7.61701400	-1.22275000	-0.88217100
Н	-1.32615500	-1.67483400	-2.00230000

## Geometry of F in Cartesian Coordinates and in Angstroms:

С	0.73726100	0.15863000	-0.07899000
С	2.65805500	1.38333200	-0.39028100
С	3.45745300	0.25595200	-0.28041600

95

С	2.87098400	-0.99282700	-0.04126700
С	1.48113500	-1.01753700	0.06163600
С	-0.74323900	0.17450000	0.02018300
С	-2.65122100	1.42520700	0.29362000
С	-3.46422700	0.30620800	0.21932700
С	-2.89162800	-0.95611300	0.02387700
С	-1.50262600	-0.99586000	-0.07558000
Н	3.08625200	2.37067800	-0.55904500
Н	4.53584000	0.36324300	-0.37342300
Н	0.96834000	-1.95088400	0.27176600
Н	-3.07891200	2.41633400	0.43770000
Н	-4.54106900	0.43075100	0.30659200
Н	-0.99823400	-1.94080100	-0.25031200
Ν	1.32795100	1.34193900	-0.29574400
Ν	-1.31888700	1.37577700	0.19668300
С	3.74026900	-2.23622600	0.10310300
С	4.54053200	-2.44004800	-1.19000100
Н	5.16684800	-3.33773100	-1.10633600
Н	3.87061900	-2.57052300	-2.04954000
Н	5.20118800	-1.59200600	-1.40486300
С	4.70390400	-2.04237100	1.28094300
Н	5.36396200	-1.17928100	1.13522400
Н	4.15428500	-1.89050500	2.21865700

Н	5.33749500	-2.93132200	1.39703700
С	2.91535700	-3.49613500	0.35988700
Н	2.33287500	-3.42332100	1.28758700
Н	2.22751800	-3.71224100	-0.46799900
Н	3.58715700	-4.35719800	0.46103600
С	-3.77265400	-2.19409300	-0.08275200
С	-4.71917600	-2.03314600	-1.27939800
Н	-5.36929500	-1.15639600	-1.17604900
Н	-4.15571400	-1.92521400	-2.21499200
Н	-5.36320100	-2.91756100	-1.36907100
С	-4.59113100	-2.34109200	1.20653600
Н	-3.93418400	-2.44314700	2.07976500
Н	-5.24870800	-1.48115100	1.37977000
Н	-5.22348700	-3.23652700	1.14899300
С	-2.95821200	-3.47100600	-0.28231100
Н	-2.36548500	-3.43997400	-1.20579600
Н	-2.28121600	-3.66174900	0.56056800
Н	-3.63776900	-4.32857100	-0.35739800
Pd	0.00957900	3.20621000	0.03217500
Н	0.99581200	4.46116700	-0.14517800

## Geometry of G in Cartesian Coordinates and in Angstroms:

C 0.66387700 0.08913500 -0.35224700

С	2.63494700	1.15105500	-0.92429300
С	3.38462300	0.02566800	-0.65922500
С	2.75451300	-1.13822000	-0.14450500
С	1.38194100	-1.07071100	0.01243800
С	-0.76483700	0.20291900	-0.15884500
С	-2.54241100	1.61315800	0.27935300
С	-3.46148700	0.57925500	0.22802000
С	-3.00644800	-0.73781400	-0.01541200
С	-1.64665600	-0.89808300	-0.22012900
Н	3.10979000	2.07193900	-1.26546100
Н	4.45890200	0.05400800	-0.83869600
Н	0.83272300	-1.89658800	0.46233000
Н	-2.86665000	2.63609500	0.47779300
Н	-4.51509700	0.79699500	0.39375700
Н	-1.23357900	-1.87094200	-0.47667900
Ν	1.29428700	1.21895300	-0.80662500
Ν	-1.22356200	1.45560800	0.13460200
С	3.59168600	-2.35203900	0.23314700
С	4.35330800	-2.85191300	-1.00171300
Н	4.97538900	-3.72195800	-0.74491700
Н	3.65356400	-3.14901900	-1.79367700
Н	5.01202400	-2.07805200	-1.41417100
С	4.59907900	-1.96431500	1.32488400

Н	5.27360700	-1.16786400	0.98908100
Н	4.07579100	-1.59893000	2.21751000
Н	5.21224600	-2.83192200	1.61244300
С	2.74283500	-3.50588800	0.76225200
Н	2.20403400	-3.22691600	1.67673000
Н	2.00576500	-3.83881100	0.01956900
Н	3.38882700	-4.36141000	1.00279100
С	-4.00549000	-1.88825300	-0.07077500
С	-5.04912100	-1.61462600	-1.16150000
Н	-5.60868100	-0.69143900	-0.96909400
Н	-4.56610200	-1.51282000	-2.14203000
Н	-5.77191800	-2.44157500	-1.21543000
С	-4.71038900	-2.01011300	1.28680100
Н	-3.98184300	-2.21298900	2.08241500
Н	-5.24347000	-1.08884000	1.55086700
Н	-5.44113300	-2.83174000	1.26735900
С	-3.33957400	-3.22773500	-0.37974200
Н	-2.84306800	-3.21849900	-1.35876800
Н	-2.59324000	-3.49501400	0.37929500
Н	-4.09854500	-4.02193200	-0.39615400
Pd	0.37010100	3.05270300	0.18469200
Н	1.55858900	4.14308800	0.46041800

## Geometry of H in Cartesian Coordinates and in Angstroms:

С	-1.01380600	-0.64718800	-0.50890400
С	-0.22597900	-2.61814000	-1.37890300
С	-1.27736100	-3.33823900	-0.84373000
С	-2.25439600	-2.68358600	-0.06376000
С	-2.09071500	-1.31414600	0.09783300
С	-0.78083000	0.78150200	-0.30769100
С	0.77245000	2.46723800	-0.09512800
С	-0.20903200	3.43238000	0.04817800
С	-1.56660300	3.05620300	0.02725400
С	-1.82781400	1.70634200	-0.16650600
Н	0.55467400	-3.11746800	-1.95408200
Н	-1.33058900	-4.41082400	-1.02729000
Н	-2.76906100	-0.74071900	0.72633200
Н	1.82881600	2.73364500	-0.06996200
Н	0.08993400	4.46984300	0.18719400
Н	-2.84946400	1.34266000	-0.24641700
Ν	-0.07314300	-1.29116600	-1.24184400
Ν	0.52086200	1.15872000	-0.24333500
С	-3.38804100	-3.47813600	0.57243300
С	-4.19851400	-4.18007900	-0.52489200
Н	-5.02251200	-4.75773700	-0.08162100
Н	-4.62675100	-3.44674100	-1.22096100

Η	-3.57980400	-4.87161900	-1.10944500
С	-2.80403700	-4.53048500	1.52402900
Н	-2.14243800	-5.22969300	0.99864600
Н	-2.21577000	-4.05162100	2.31724000
Н	-3.61030700	-5.11293400	1.99355400
С	-4.34187900	-2.59105600	1.37079800
Н	-3.82871400	-2.08257400	2.19712600
Н	-4.81051000	-1.82705800	0.73637000
Н	-5.14338500	-3.20554000	1.80264500
С	-2.65698100	4.10800900	0.18812100
С	-2.52613700	5.15772400	-0.92284700
Н	-1.55535900	5.66661800	-0.89070100
Н	-2.62503700	4.69112100	-1.91155100
Н	-3.31035200	5.92161800	-0.82128400
С	-2.50378600	4.79028300	1.55382600
Н	-2.59804500	4.05705600	2.36530400
Н	-1.52697400	5.27777800	1.65853200
Н	-3.28034100	5.55688500	1.68852700
С	-4.05898400	3.50608500	0.11105300
Н	-4.23973600	3.02243500	-0.85785100
Н	-4.22495200	2.76179200	0.90088000
Н	-4.80903600	4.29860900	0.23490200
Pd	2.06744400	-0.39984000	-0.55806000

Н	3.25778000	-1.56185600	-0.57400900
Н	4.17013100	-1.03272400	0.48568700
0	4.91116700	-0.98340100	1.20788100
С	5.93817100	-0.25803000	0.88745100
0	6.91293200	-0.06172300	1.59224500
0	5.84859900	0.29165600	-0.35201100
Н	6.66540500	0.79648900	-0.45736300

## Geometry of J in Cartesian Coordinates and in Angstroms:

С	1.93438500	-0.88500000	-0.46010100
С	0.91832800	-2.82022600	0.26518600
С	2.12570600	-3.38353900	0.63302300
С	3.31833200	-2.67353400	0.43469700
С	3.19068200	-1.41092100	-0.12890200
С	1.83141300	0.46610600	-1.05613200
С	0.77557800	1.86412100	-2.50381400
С	1.48955100	2.96380700	-2.05161100
С	2.45632400	2.79630100	-1.04897300
С	2.63749200	1.50498600	-0.57412300
Н	-0.01859600	-3.35711800	0.39095900
Н	2.12299000	-4.38227000	1.06486900
Н	4.06466400	-0.80405800	-0.34893100
Н	0.02112700	1.97925700	-3.28296600

Н	1.26862000	3.94643200	-2.46528500
Н	3.31169400	1.30035200	0.25301500
Ν	0.80624100	-1.59193100	-0.26653600
Ν	0.93002600	0.62975900	-2.02247400
С	4.65919300	-3.29359300	0.80716800
С	4.65623300	-3.64655300	2.29964200
Н	5.62157100	-4.08596000	2.58709000
Н	4.48876800	-2.75139100	2.91207200
Н	3.87191400	-4.37149100	2.54735400
С	4.87281100	-4.56708400	-0.02107800
Н	4.08662500	-5.30943600	0.16084800
Н	4.87313900	-4.33686000	-1.09430600
Н	5.83778300	-5.02800000	0.23250500
С	5.82927100	-2.34814700	0.54144100
Н	5.90761000	-2.08390200	-0.52098800
Н	5.74302400	-1.41997400	1.12114500
Н	6.76840400	-2.83687700	0.83188400
С	3.16783300	4.00302800	-0.45107100
С	2.12105100	4.84222800	0.29470400
Н	1.35452200	5.23056200	-0.38691400
Н	1.61295600	4.22953400	1.05079400
Н	2.59949200	5.69710200	0.79401600
С	3.82032000	4.84147300	-1.55509600

Н	4.57118700	4.25453000	-2.10091100
Н	3.08814500	5.20927200	-2.28399200
Н	4.32133400	5.71634700	-1.11745100
С	4.25353400	3.60081100	0.54631600
Н	3.83366200	3.07250200	1.41135300
Н	5.01424300	2.95823600	0.08237000
Н	4.75845200	4.50097900	0.92145400
Pd	-1.12155800	-0.84424000	-0.60243100
С	-0.78596100	0.64564500	0.90613700
0	0.34925500	1.04375500	1.18300400
С	-1.92690700	1.27879200	1.66814900
С	-3.12457700	0.58988800	1.86563100
С	-1.79453200	2.57128500	2.18608700
С	-4.17157300	1.17843500	2.56979400
Н	-3.23065900	-0.41116900	1.45253100
С	-2.84423400	3.17152800	2.87410700
Н	-0.84888200	3.09073900	2.03398800
С	-4.03731500	2.47296600	3.06893700
Н	-5.10243100	0.63019600	2.70625800
Н	-2.73662200	4.18453300	3.26204300
Н	-4.86342500	2.94174200	3.60254600
0	-3.00729600	-0.07601700	-1.00405300
С	-4.11149500	-0.75944500	-0.97978500

С	-4.20114500	-2.13662600	-0.64990400
С	-5.33817900	-0.09477400	-1.25907000
С	-5.42625000	-2.79399300	-0.61930800
Н	-3.26672000	-2.65993100	-0.44276600
С	-6.55182900	-0.76544400	-1.22303100
Н	-5.28645100	0.96655600	-1.49892500
С	-6.61931100	-2.12649500	-0.90443200
Н	-5.44868200	-3.85491800	-0.36477600
Н	-7.46807700	-0.21572800	-1.44503000
Н	-7.57454600	-2.64828200	-0.87569000
Н	-1.34308900	-2.03933100	-1.73441800

### Geometry of TS1 in Cartesian Coordinates and in Angstroms:

С	1.09168900	0.80215300	-0.04734100
С	-0.42265100	2.52562200	0.03730200
С	0.58473900	3.48350000	0.11142800
С	1.91917300	3.07844600	0.08983200
С	2.15435700	1.70167200	0.00508500
С	1.28855300	-0.66733600	-0.12925100
С	0.35954500	-2.73327400	-0.54896700
С	1.55524300	-3.38265400	-0.29647500
С	2.68689300	-2.64428600	0.06751700
С	2.52220700	-1.26342400	0.14627200

Н	-1.47265700	2.81725000	0.03656200
Н	0.30921600	4.53177300	0.17482000
Н	3.17683400	1.33480700	-0.04185500
Н	-0.53120100	-3.28942100	-0.82975300
Н	1.58953500	-4.46610600	-0.38105200
Н	3.35548200	-0.63643900	0.44615500
Ν	-0.18435000	1.22048400	-0.03887600
Ν	0.21341900	-1.40312500	-0.46829800
С	3.08888200	4.05400700	0.13900200
С	2.62092800	5.50247200	0.26419800
Н	3.49289000	6.16673200	0.29932900
Н	2.00725000	5.81039700	-0.59200900
Н	2.04284300	5.66723800	1.18256000
С	3.97378100	3.72720900	1.34869300
Н	3.40402100	3.79755200	2.28404200
Н	4.40140500	2.71918500	1.28912900
Н	4.80892900	4.43742100	1.40480700
С	3.90770500	3.91983200	-1.15163000
Н	4.31844100	2.91086100	-1.27784000
Н	3.29300800	4.14557500	-2.03224000
Н	4.75089000	4.62264400	-1.13589700
С	4.00453200	-3.34615900	0.36711100
С	4.44294700	-4.14193800	-0.86889900

Η	3.71578600	-4.91552700	-1.14186100
Н	4.57452300	-3.48203300	-1.73581900
Н	5.40045000	-4.64115800	-0.67206300
С	3.80465300	-4.29991300	1.55207500
Н	3.48564800	-3.75243700	2.44816300
Н	3.05133400	-5.06832400	1.34185800
Н	4.74752000	-4.81238900	1.78304600
С	5.11682300	-2.36171500	0.72455500
Н	5.33043500	-1.66690300	-0.09824300
Н	4.87577800	-1.77721200	1.62203600
Н	6.04037000	-2.91512400	0.93325500
Pd	-1.71717500	-0.45390600	-0.68928100
С	-4.70083000	-0.18298800	-0.27699600
С	-4.42922300	-0.51461000	1.05959500
С	-6.01677100	0.17189500	-0.62514600
С	-5.44202300	-0.49052600	2.01499300
Н	-3.40523700	-0.78567000	1.32651000
С	-7.01616200	0.20268800	0.33879200
Н	-6.22242200	0.42461600	-1.66316100
С	-6.74191800	-0.12987900	1.66719400
Н	-5.20749300	-0.75317700	3.04555800
Н	-8.02663400	0.48663100	0.04841200
Н	-7.52931300	-0.10717800	2.41702000

0  -3.7/403800  -0.17322400  -1.24197600	)()
------------------------------------------	-----

Н -2.91718800 -1.32441500 -1.22218000

#### Geometry of TS2 in Cartesian Coordinates and in Angstroms:

С	2.10124700	-0.69004800	-0.52478000
С	1.17787400	-2.79116700	-0.29842800
С	2.38358000	-3.33219300	0.10600100
С	3.52157000	-2.52099100	0.20219000
С	3.34698400	-1.17911600	-0.12479400
С	1.92550000	0.73928600	-0.87776900
С	0.95363800	2.27290600	-2.24745200
С	1.49170400	3.33127900	-1.52780200
С	2.29657500	3.07909500	-0.41327500
С	2.51908400	1.73719300	-0.10198900
Н	0.28541500	-3.40553700	-0.38539500
Н	2.42576200	-4.39363100	0.33763600
Н	4.18097600	-0.48351300	-0.10288500
Н	0.31356800	2.46300200	-3.10852400
Н	1.25352400	4.34863500	-1.83077500
Н	3.10852300	1.45224700	0.76565100
Ν	1.02351700	-1.49264600	-0.60624500
Ν	1.15709500	0.99329300	-1.94016800
С	4.85866500	-3.11527400	0.62229900
---	------------	-------------	-------------
С	4.71202600	-3.75191600	2.01032900
Н	5.67172200	-4.17879100	2.32884900
Н	4.40689100	-3.00643900	2.75575500
Н	3.97045900	-4.55946700	2.01880900
С	5.26683400	-4.18707700	-0.39709500
Н	4.53372800	-5.00018100	-0.45605900
Н	5.37219500	-3.75492600	-1.40033400
Н	6.23146000	-4.62657600	-0.11190900
С	5.96473900	-2.06405100	0.68666600
Н	6.14283400	-1.59492400	-0.28943200
Н	5.73963000	-1.27512400	1.41603300
Н	6.90243300	-2.54074200	0.99733100
С	2.82409500	4.22873200	0.43512200
С	1.62341300	4.91960000	1.09608200
Н	0.93022200	5.32759900	0.35090300
Н	1.05931900	4.21195200	1.71699700
Н	1.96531800	5.74614900	1.73340000
С	3.57579300	5.22890500	-0.45088700
Н	4.42664400	4.74951400	-0.95226400
Н	2.93137800	5.66421700	-1.22293500
Н	3.96136300	6.05479300	0.16103200
С	3.77632900	3.75286100	1.53065700

Η	3.28096000	3.08437000	2.24624300
Н	4.64971600	3.23274600	1.11493800
Н	4.14412700	4.61868500	2.09494000
Pd	-0.87840500	-0.72318000	-1.14007400
С	-1.66855300	0.83211700	0.24804000
0	-1.15833500	1.91061500	0.08343300
С	-2.40483800	0.35233600	1.43727700
С	-2.69903100	-0.99608600	1.64938500
С	-2.84726100	1.31576500	2.35021400
С	-3.46080000	-1.37358400	2.74868100
Н	-2.33456900	-1.73738100	0.93923100
С	-3.60489200	0.93329900	3.45079100
Н	-2.60538300	2.36112400	2.16896800
С	-3.91995800	-0.41069800	3.64557200
Н	-3.70264200	-2.42249600	2.90313900
Н	-3.95965500	1.68444900	4.15308200
Н	-4.52352400	-0.70861300	4.50022300
0	-2.68887900	0.36314300	-1.20513500
С	-3.91912700	-0.16810500	-1.04367300
С	-4.20164800	-1.50302400	-1.34885600
С	-4.94444400	0.65797500	-0.56196700
С	-5.48858700	-2.00203300	-1.17071400
Н	-3.38893600	-2.12969500	-1.71767900

С	-6.22246500	0.14647500	-0.37353700
Н	-4.71225300	1.69775500	-0.33720900
С	-6.50421400	-1.18668600	-0.67357700
Н	-5.69714400	-3.04190900	-1.41619200
Н	-7.00698400	0.79579800	0.01068600
Н	-7.50526200	-1.58469500	-0.52431900
Н	-1.13477500	-2.01140100	-2.11229400

### Geometry of TS3 in Cartesian Coordinates and in Angstroms:

С	1.99607500	0.97555200	0.47348600
С	1.64006500	-1.21519100	1.03597000
С	2.99663800	-1.50433100	0.99445900
С	3.90152900	-0.50304300	0.63970500
С	3.37257500	0.76276400	0.39714900
С	1.43570700	2.33271400	0.25189200
С	1.81917200	4.55006600	-0.11866700
С	0.46231300	4.85766900	-0.07650300
С	-0.46341100	3.83362800	0.14076000
C	0.05672500	2.54749700	0.29454500
Н	0.92403100	-1.99728100	1.29713600
Н	3.32053500	-2.52410600	1.19059500
Н	3.99559600	1.60984800	0.13002600
Н	2.54902200	5.34460200	-0.28878400

Η	0.14995700	5.89023700	-0.20994000
Н	-0.58855500	1.68751600	0.45367900
Ν	1.12562300	-0.00518700	0.77716700
Ν	2.31398500	3.32844700	0.04756000
С	5.37634600	-0.82922100	0.44637700
С	5.92791300	-1.57108600	1.66859500
Н	6.99086200	-1.80475900	1.51588800
Н	5.83913300	-0.95664700	2.57468400
Н	5.40634900	-2.51789600	1.85110200
С	5.49551700	-1.71726100	-0.80021600
Н	4.96116400	-2.66641900	-0.67220700
Н	5.05420000	-1.22090200	-1.67352100
Н	6.55231700	-1.93933400	-1.00847900
С	6.22329400	0.42437900	0.23256500
Н	5.94029200	0.95705800	-0.68349700
Н	6.13777100	1.12290000	1.07579000
Н	7.27947000	0.13924500	0.13639000
С	-1.96851600	4.07333200	0.17546300
С	-2.56787500	3.58570600	-1.15054400
Н	-2.17091300	4.16953400	-1.99226500
Н	-2.34341000	2.53010300	-1.34850600
Н	-3.66100300	3.70662200	-1.13297100
С	-2.30616900	5.55485300	0.34932400

Н	-1.85807100	5.97059500	1.26258500
Н	-1.97506100	6.15851800	-0.50575200
Н	-3.39515500	5.67160200	0.42528400
С	-2.60091500	3.30552600	1.34182900
Н	-2.47424700	2.22116800	1.24746600
Н	-2.16653000	3.61984500	2.30078400
Н	-3.68160800	3.50181600	1.37201900
Pd	0.27909200	-0.81503300	-1.40409700
С	-1.66818900	-0.33963200	-1.16544200
0	-1.82668900	0.38958400	-2.13550300
С	-2.56114500	-0.32490400	0.02923600
С	-2.13882000	-0.74227300	1.29090500
С	-3.88335700	0.09774300	-0.15000700
С	-3.02948700	-0.74046200	2.36238000
Н	-1.10530900	-1.04898000	1.42655400
С	-4.77309400	0.09316300	0.91812600
Н	-4.19415500	0.41405900	-1.14460800
С	-4.34679700	-0.32792900	2.17883000
Н	-2.69175400	-1.07224500	3.34219300
Н	-5.80270800	0.41558200	0.76953100
Н	-5.04216900	-0.33394200	3.01656100
0	-1.86885000	-2.10430600	-1.73284400
С	-1.91791300	-3.08876200	-0.85279500

С	-0.74789800	-3.67274700	-0.32365700
С	-3.15932600	-3.58618300	-0.39926200
С	-0.81834000	-4.67934300	0.63263000
Н	0.21036600	-3.29746000	-0.69899200
С	-3.22006100	-4.59191800	0.55886700
Н	-4.06594300	-3.13770800	-0.80410900
С	-2.05339200	-5.14470700	1.09117800
Н	0.10401400	-5.10578300	1.02879500
Н	-4.19231900	-4.94291400	0.90526800
Н	-2.10555100	-5.92606900	1.84738900
Н	1.87323100	-1.18550100	-2.04703200

### Geometry of TS4 in Cartesian Coordinates and in Angstroms:

С	-1.17419000	-0.46564200	-0.46454700
С	-1.04680200	-2.58772900	-1.31032000
С	-2.27829000	-2.93137900	-0.77945400
С	-3.00754800	-1.98948500	-0.02902200
С	-2.41989300	-0.73810600	0.11922900
С	-0.49355300	0.81732200	-0.26343200
С	1.51782200	1.89581100	0.03646600
С	0.90183300	3.13356100	0.10126800
С	-0.49707500	3.23055600	-0.01514000
С	-1.18226400	2.03686800	-0.21046600

Н	-0.46476400	-3.31482900	-1.87790100
Н	-2.66459600	-3.93517900	-0.95153900
Н	-2.89265000	0.03663400	0.71941000
Н	2.59852700	1.79095600	0.13206800
Н	1.51787900	4.01763200	0.25525500
Н	-2.25999900	2.02484400	-0.35490600
Ν	-0.48161000	-1.37984600	-1.17694600
Ν	0.84906700	0.74227100	-0.12000000
С	-4.34765000	-2.36780600	0.58959800
С	-5.32775100	-2.76068300	-0.52323800
Н	-6.30261000	-3.03484100	-0.09519800
Н	-5.47977900	-1.92541400	-1.21942400
Н	-4.96307400	-3.61668300	-1.10386200
С	-4.15659100	-3.55426700	1.54308700
Н	-3.76503400	-4.43645900	1.02286200
Н	-3.44959100	-3.30001500	2.34298100
Н	-5.11544000	-3.83238900	2.00384500
С	-4.96659800	-1.21737000	1.38219800
Н	-4.32230900	-0.90275700	2.21335100
Н	-5.15963700	-0.34231400	0.74760300
Н	-5.92679900	-1.53894700	1.80732500
С	-1.18122000	4.59028100	0.05662800
С	-0.63736200	5.49829400	-1.05405900

Η	0.44235300	5.66225300	-0.95565700
Н	-0.81835900	5.05565700	-2.04215500
Н	-1.13074100	6.48007500	-1.01994200
С	-0.89488300	5.22866700	1.42198700
Н	-1.27640700	4.59619400	2.23396300
Н	0.17949800	5.37153400	1.58853500
Н	-1.38053500	6.21226800	1.49314400
С	-2.69595300	4.48658800	-0.11269300
Н	-2.96805300	4.06525600	-1.08922200
Н	-3.15060100	3.86302500	0.66816500
Н	-3.14478600	5.48643400	-0.04409500
Pd	1.88760400	-1.15386600	-0.47042100
Н	2.85975100	-2.55962300	-0.52984600
Н	3.66704200	-2.24004000	0.06792200
0	4.73109400	-2.28358200	0.73454200
С	5.49102800	-1.26385700	0.77142800
0	6.54291800	-1.12240800	1.39410300
0	5.05245200	-0.20125500	-0.00100700
Н	5.73865600	0.46583200	0.12709200

#### 6. Reference:

S1. W. L. F. Armarego and D. D. Perrin, *Purification of Laboratory Chemicals* (Pergamon Press, Oxford, 1988) ed 3.

S2. (a) M. S. Lowry, J. I. Goldsmith, J. D. Slinker, R. Rohl, R. A. Pascal, G. G. Malliaras and S. Bernhard, Single-Layer Electroluminescent Devices and Photoinduced Hydrogen Production from an Ionic Iridium(III) Complex, *Chem. Mater.*, 2005, **17**, 5712-5719; (b) J. E. Collins, J. J. S. Lamba, J. C. Love, J. E. McAlvin, C. Ng, B. P. Peters, X. Wu and C. L. Fraser, Ruthenium(II) α-Diimine Complexes with One, Two, and Three 4,4'-Bis(hydroxymethyl)-2,2'-bipyridine and 4,4'-Bis(chloromethyl)-2,2'-bipyridine Ligands: Useful Starting Materials for Further Derivatization, *Inorg. Chem.*, 1999, **38**, 2020-2024.

S3. (a) K. Wadhwa, C. Yang, P. R. West, K. C. Deming, S. R. Chemburkar and R. E. Reddy, Synthesis of arylglyoxylic acids and their collision-induced dissociation, *Synth Commun.*, 2008, **38**, 4434; (b) S. Mondal, S. P. Midya, S. Mondal, S. Das and P. Ghosh, Merging Photocatalytic Doubly-Decarboxylative  $C_{sp}^{2-}C_{sp}^{2-2}$  Cross-Coupling for Stereo-Selective (*E*)- $\alpha$ , $\beta$ -Unsaturated Ketones Synthesis, *Chem. Eur. J.*, 2024, **30**, e2023033; (c) T. Morack, C. Mück-Lichtenfeld and R. Gilmour, Bioinspired Radical Stetter Reaction: Radical Umpolung Enabled by Ion-Pair Photocatalysis, *Angew. Chem. Int. Ed.*, 2019, **58**, 1208-1212; (d) J. Liu, Q. Liu, H. Yi, C. Qin, R. Bai, X. Qi, Y. Lan and A. Lei., Visible-Light-Mediated Decarboxylation/Oxidative Amidation of  $\alpha$ -Keto Acids with Amines under Mild Reaction Conditions Using O₂, *Angew. Chem. Int. Ed.*, 2014, **53**, 502-506; (e) L. Chu, J. M. Lipshultz and D. W. MacMillan, Merging Photoredox and Nickel Catalysis: The Direct Synthesis of Ketones by the Decarboxylative Arylation of  $\alpha$ -Oxo Acids, *Angew. Chem. Int. Ed.*, 2015, **54**, 7929-7933.

S4. (a) E. M. Kwon, C. G. Kim, A. R. Goh, J. Park and J. G. Jun, Preparation of Benzoyloxy Benzophenone Derivatives and Their Inhibitory Effects of ICAM-1 Expression, *Bull. Korean Chem. Soc.*, 2012, **33**, 1939-1944; (b) G. Siano, S. Crespi, M. Mella and S. M. Bonesi, Selectivity in the Photo-Fries Rearrangement of Some Aryl Benzoates in Green and Sustainable Media. Preparative and Mechanistic Studies, *J. Org. Chem.*, 2019, **84**, 4338-4352. S5. A. Rajak and A. Das, Crystallization-Driven Controlled Two-Dimensional (2D) Assemblies From Chromophore-Appended Poly(L-Lactide)s: Highly Efficient Energy Transfer on a 2D Surface, *Angew. Chem. Int. Ed.*, 2022, **61**, e202116572.

S6. (a) S. Naskar, B. Jana and P. Ghosh, Anion-dependent thermo-responsive supramolecular superstructures of Cu(II) macrocycles, *Dalton Trans.*, 2018, **47**, 5734-5742; (b) S. Pan, S. Kundu and R. Samanta, Rh(II)-Catalyzed Synthesis of *N*-Aryl 2-pyridone Using 2-Oxypyridine and Diazonaphthoquinone Via 1,6-Benzoyl Migratory Rearrangement, *Org. Lett.*, 2023, **25**, 2873-2877.

S7. (a) H. Yasuda and T. Harayama, A Concise Synthesis of Arnottin I via Internal Biaryl Coupling Reaction Using Palladium Reagent, *Heterocycle*, 1997, **46**, 61; (b) Z. Mao, W. Sun, L. Fu, H. Luo, D. Lal and L. Zhou, Natural Dibenzo- $\alpha$ -Pyrones and Their Bioactivities, *Molecules*, 2014, **19**, 5088-5108.

S8. E. R. Welin, C. Le, D. M. Arias-Rotondo, J. K. Mccusker and D. W. C. MacMillan, Photosensitized, Energy Transfer-mediated Organometallic Catalysis Through Electronically Excited Nickel(II), *Science*, 2017, **355**, 380-385.

S9. (a) S. Mondal, S. Mondal, S. P. Midya, S. Das, S. Mondal and P. Ghosh, Merging Photocatalytic C-O Cross-Coupling for  $\alpha$ -Oxycarbonyl- $\beta$ -Ketones: Esterification of Carboxylic Acids via a Decarboxylative Pathway, *Org. Lett.*, 2023, **25**,184-189; (b) N. Ganji, B. Karimi, S. Najafvand-Derikvandi and H. Vali, Palladium Supported on a Novel Ordered Mesoporous Polypyrrole/carbon Nanocomposite as a Powerful Heterogeneous Catalyst for the Aerobic Oxidation of Alcohols to Carboxylic Acids and Ketones on Water, *RSC Adv.*, 2020, **10**, 13616; (c) S. Mondal, S. P. Midya, S. Das, S. Mondal, A. S. M. Islam and P. Ghosh, Pd-Catalyzed Tandem Pathway for Stereoselective Synthesis of (*E*)-1,3-Enyne from  $\beta$ -Nitroalkenes by Using a Sacrificial Directing Group, *Chem. Eur. J.*, 2023, **29**, e202301637.

S10. (a) A. V. Bavykina, H.-H. Mautscke, M. Makkee, F. Kapteijn, J. Gascon and F. X. Llabres i Xamena, Base Free Transfer Hydrogenation Using a Covalent Triazine Framework Based Catalyst, CrystEngComm, 2017, **19**, 4166-4170; (b) H. -P. Liang, Q. Chen and B. -H. Han, Cationic Polycarbazole Networks as Visible-Light Heterogeneous Photocatalysts for Oxidative Organic Transformations, *ACS Catal.*, 2018, **8**, 5313-5322; (c) S. J. Freakley, J. Ruiz-Esquius

and D. J. Morgan, The X-ray Photoelectron Spectra of Ir, IrO₂ and IrCl₃ Revisited, *Surf. Interface Anal.*, 2017, **49**, 794; (d) Z. Y. Xu, Y. Luo, D. W. Zhang, H. Wang, X. W. Sun and Z. T. Li, Iridium Complex-Linked Porous Organic Polymers for Recyclable, Broad-Scope Photocatalysis of Organic Transformations, *Green Chem.*, 2020, **22**, 136-14.

S11. Y. Zhao and D. G. Truhlar, The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals, *Theor. Chem. Acc.*, 2008, **120**, 215-241.

S12. H. Ren, G. F. Li, B. Zhu, Z. D. Lv, L. S. Yao, X. L. Wang, Z. M. Su and W. Guan, How Does Iridium(III) Photocatalyst Regulate Nickel(II) Catalyst in Metallaphotoredox-Catalyzed C–S Cross-Coupling? Theoretical and Experimental Insights, *ACS Catal.*, 2019, **9**, 3858-3865.

S13. C. Spickermann, Entropies of Condensed Phases and Complex Systems, *Springer Berlin Heidelberg*: 2011. DOI: 10.1007/978-3-642-15736-3.

S14. V. Barone and M. Cossi, Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model, *J. Phys. Chem.*, *A*, 1998, **102**, 1995-2001.

S15. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,
G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J.
Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J. V. Ortiz, A.F. Izmaylov, J.
L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A.
Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang,
M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Ir. Montgomery, J. E. Peralta, F. Ogliaro, M.
Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J.
Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M.
Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O.
Farkas, J. B. Foresman and D. J. Fox, *Gaussian 09, Revision A.02, Gaussian Inc.* 2009.

S16. a) N. S. Hush, Adiabatic Rate Processes at Electrodes. I. Energy-Charge Relationships, *J. Chem. Phys.*, 1958, **28**, 962-972; b) N. S. Hush, Adiabatic Theory of Outer Sphere Electron-transfer Reactions in Solution, *T. Faraday Soc.*, 1961, **57**, 557; c) R. A. Marcus, On the Theory

of Oxidation-Reduction Reactions Involving Electron Transfer, J. Chem. Phys., 1956, 24, 966-978; d) R. A. Marcus, Electrostatic Free Energy and Other Properties of States Having Nonequilibrium Polarization, J. Chem. Phys., 1956, 24, 979-989. e) R. A. Marcus, J. Chem. Phys. 1957, 26, 872-877; f) R. A. Marcus, On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. III. Applications to Data on the Rates of Organic Redox Reactions, *Can. J. Chem.*, 1959, 37, 155-163; g) R. A. Marcus, The Second R. A. Robinson Memorial Lecture. Electron, Proton and Related Transfers, *Faraday Discuss.*, 1982, 74, 7-15; h) R. A. Marcus, Electron Transfers in Chemistry and Biology, *Biochim Biophys Acta*, 1985, 811, 265-322.

# 7. Copy of Spectra



¹³C NMR (75 MHz, CDCl₃, 298 K) of 3b































1.0

0.5

0.0















(75 11112, 02013, 2)







¹³C NMR (101 MHz, CDCl₃, 298 K) of 3s





¹³C NMR (75 MHz, CDCl₃, 298 K) of 3u



¹³C NMR (75 MHz, CDCl₃, 298 K) of 3v


















 $^{13}\mathrm{C}$  NMR (75 MHz, CDCl_3, 298 K) of 3zc



¹³C NMR (75 MHz, CDCl₃, 298 K) of 3zd





















































































8.12
<8.12
<8.09
<7.75
<7.77
<7.37
<7.37
<7.37
<7.35
<7.35
<7.35
<7.35
<7.35
<7.35
<7.35
</pre>



¹³C NMR (151 MHz, CDCl₃, 298 K) of 3zzc



¹³C NMR (75 MHz, CDCl₃, 298 K) of 3zzd


















![](_page_182_Figure_0.jpeg)

![](_page_183_Figure_0.jpeg)

![](_page_183_Figure_1.jpeg)

![](_page_184_Figure_0.jpeg)

![](_page_184_Figure_1.jpeg)

![](_page_185_Figure_0.jpeg)

¹³C NMR (75 MHz, CDCl₃, 298 K) of 3zzn

![](_page_186_Figure_0.jpeg)

8.34 8.34 8.33 8.33 8.33 7.75 7.75 7.77 7.66 7.77 7.65 7.74 7.42 7.42 7.42 7.74 7.737 7.37

![](_page_186_Figure_1.jpeg)

![](_page_187_Figure_0.jpeg)

![](_page_187_Figure_1.jpeg)

![](_page_188_Figure_0.jpeg)

![](_page_188_Figure_1.jpeg)

![](_page_189_Figure_0.jpeg)

![](_page_189_Figure_1.jpeg)

![](_page_190_Figure_0.jpeg)

![](_page_190_Figure_1.jpeg)

![](_page_191_Figure_0.jpeg)

## 2.65 2.65 2.65 2.66 2.60 1.64 1.158 1.158 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133

![](_page_191_Figure_2.jpeg)

![](_page_191_Figure_3.jpeg)

¹³C NMR (75 MHz, CDCl₃, 298 K) of 5d

![](_page_192_Figure_0.jpeg)

![](_page_193_Figure_0.jpeg)

![](_page_193_Figure_1.jpeg)

![](_page_193_Figure_2.jpeg)

![](_page_193_Figure_3.jpeg)

![](_page_194_Figure_0.jpeg)

![](_page_194_Figure_1.jpeg)

![](_page_195_Figure_0.jpeg)

 $^{13}\mathrm{C}$  NMR (75 MHz, DMSO-d6, 298 K) of 5h

![](_page_196_Figure_1.jpeg)

![](_page_197_Figure_0.jpeg)

![](_page_198_Figure_0.jpeg)

![](_page_199_Figure_0.jpeg)

![](_page_200_Figure_0.jpeg)

![](_page_200_Figure_1.jpeg)

![](_page_201_Figure_0.jpeg)

![](_page_201_Figure_1.jpeg)

![](_page_202_Figure_0.jpeg)

¹³C NMR (75 MHz, CDCl₃, 298 K) of 50

![](_page_203_Figure_0.jpeg)

## 8.21 8.19 7.68 7.66 7.66 7.54 7.55 7.57 7.57 7.57 7.31 7.31 7.31 7.26

![](_page_204_Picture_1.jpeg)

![](_page_204_Figure_2.jpeg)

![](_page_205_Figure_0.jpeg)

![](_page_206_Figure_0.jpeg)

 $^{13}\text{C}$  NMR (75 MHz, DMSO-d_6, 298 K) of 7d

![](_page_207_Figure_0.jpeg)

![](_page_207_Figure_1.jpeg)

![](_page_208_Figure_0.jpeg)

 $^{13}\text{C}$  NMR (75 MHz, DMSO-d_6, 298 K) of 7f

![](_page_209_Figure_0.jpeg)

![](_page_209_Figure_1.jpeg)

![](_page_210_Figure_0.jpeg)

![](_page_211_Figure_0.jpeg)

![](_page_211_Figure_1.jpeg)

![](_page_212_Figure_0.jpeg)

![](_page_212_Figure_1.jpeg)

![](_page_213_Figure_0.jpeg)

 $^{13}\mathrm{C}$  NMR (75 MHz, DMSO-d_6, 298 K) of 7k

![](_page_214_Figure_0.jpeg)

![](_page_215_Figure_0.jpeg)

![](_page_215_Figure_1.jpeg)








— 3.85





¹H NMR (500 MHz, CDCl₃, 298 K) of 11









## 8.28 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.25 8.24 8.25 8.25 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.25 8.25 8.24 8.24 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 <li

