Supporting Information

A Chemoselective Radical Cascade Polarity-Mismatched Silylarylation of Unactivated Alkenes

Liang Liu, ^{a, b} Xiao Yang, ^a Jinghui Tong, ^a Huajie Zhu, ^a Lu Ouyang, ^a Renshi Luo, *^b Jianhua Liao, *^a

^a School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China.
 ^b College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan, 512005, China.

E-mail: liaojianhua715@163.com

Table of Contents

1.	Experimental Section	S2
2.	General Procedures for Synthesis of Indole Alkenes	S2
3.	General Procedures for Synthesis of Silyated Pyrrolo[1,2-a]indoles	S2
4.	Analytical Data of Radical Polarity-Mismatched Silylarylation Products	S3
5.	Procedure for gram-scale experiment	S18
6.	Radical Trapping Experiments	S18
7.	X-ray Crystallographic Data	S18
8.	References	S20
9.	NMR Spectra of New Compounds	S21

1. Experimental Section

General Information. The starting materials of alkenyl indole (1) and silanes (2) were

purchased and used without further purification.

Melting points were measured using a melting point instrument and are uncorrected. ¹H and ¹³C NMR spectra were acquired on a 400 MHz NMR spectrometer. Chemical shifts were reported in ppm from the CDCl₃ resonance as the internal reference (CDCl₃ 7.26 ppm, $\delta_C = 77.16$ ppm). Multiplicities are reported as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. GC-MS was conducted using electron ionization. HRMS analysis was performed on an EI-ion trap High Resolution mass spectrometer. Thin-layer chromatography (TLC) was performed using commercially prepared 100-400 Mesh silica gel plates and visualization was monitored at 254 nm. X-ray structural analysis was recorded on an X-ray analysis instrument.

2. General Procedures for Synthesis of Indole Alkenes 1.^[1]

The indole S1 (10.0 mmol, 1.0 equiv.) were added to a 150.0 mL round-bottom flask and dissolved in 30.0 mL of CH₃CN. The mixtures were then immersed in an ice bath, sodium hydride (40.0 mmol, 4.0 equiv.) was added slowly at 0°C. Subsequently, 4bromo-1-butene S2 (40.0 mmol, 4.0 equiv.) was added slowly, stirring overnight at room temperature. After completion and quenched by H₂O at 0°C, the mixture was extracted with ethyl acetate (3×10.0 mL). The combined ethyl acetate layer was then dried over Na₂SO₄ and concentrated in vacuum. Further purification by flash column chromatography on silica gel (PE/EA = 50:1) afforded the desired indole alkenes 1.

3. General Procedures for Synthesis of Silyated Pyrrolo[1,2-a]indoles.

A dry 25.0 mL Schlenk tube containing a straight condensing tube capped with a balloon was charged with indole alkenes 1 (0.2 mmol, 1.0 equiv.), silanes 2 (2.0 mmol,

10.0 equiv.), CuCN (0.04 mmol, 20.0 mol%), 2,4'-bipyridine (0.04 mmol, 20.0 mol%), DTBP (1.0 mmol, 5.0 equiv.), and 3 mL of *t*-BuOH. The mixtures were vigorously stirred together at 130 °C for 15 h under nitrogen atmosphere. After completion, the reaction was quenched by saturated brine and then extracted with dichloromethane (3 × 15.0 mL). The combined dichloromethane layer was then dried over anhydrous Na₂SO₄ and concentrated in vacuum. The residue was purified by flash column chromatography on silica gel (PE/EA = 50:1) afforded the desired silyated pyrrolo[1,2-a]indoles **3**.

4. Analytical Data of Radical Polarity-Mismatched Silylarylation Products. 1-((dimethyl(phenyl)silyl)methyl)-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3aa)

40.3 mg, 66% yield; black solid, m.p. 85-86 °C; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.47 (m, 2H), 7.44 (d, J = 7.8 Hz, 1H), 7.31-7.29 (m, 3H), 7.14-7.10 (m, 1H), 7.01 (t, J = 7.4 Hz, 1H), 6.95 (t, J = 7.4 Hz, 1H), 5.99 (s, 1H), 4.00-3.95 (m, 1H), 3.82-3.75 (m, 1H), 3.27 (ddd, J = 4.5 Hz, J = 8.2 Hz, J = 12.2 Hz, 1H), 2.52 (qd, J = 3.0Hz, J = 7.4 Hz, 1H), 1.97 (dq, J = 8.4 Hz, J = 12.5 Hz, 1H), 1.46 (dd, J = 4.3 Hz, J = 14.9 Hz, 1H), 1.02 (dd, J = 10.2 Hz, J = 14.8 Hz, 1H), 0.31 (d, J = 5.3 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 150.6, 138.9, 133.6 (2C), 132.8, 132.4, 129.1, 127.9 (2C), 120.4, 120.1, 119.0, 109.2, 91.4, 43.2, 37.5, 33.6, 21.6, -2.2, -2.3. HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₀H₂₄NSi, 306.1678; found, 306.1671.

1-((dimethyl(phenyl)silyl)methyl)-8-methyl-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3ab)

40.2 mg, 63% yield; black oil; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.45 (m, 2H), 7.32-7.27 (m, 3H), 6.93 (q, *J* = 8.1 Hz, 2H), 6.75 (d, *J* = 6.3 Hz, 1H), 5.97 (s, 1H), 3.98-3.92 (m, 1H), 3.76 (dd, *J* = 8.4 Hz, *J* = 8.8 Hz, 1H), 3.31-3.23 (m,

1H), 2.54-2.48 (m, 1H), 2.41 (s, 3H), 1.95 (td, J = 8.4 Hz, J = 3.9 Hz, 1H), 1.47 (dd, J = 4.2 Hz, J = 14.9 Hz, 1H), 1.05-0.99 (m, 1H), 0.31 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.9, 138.9, 133.6, 132.6, 132.0, 129.7, 129.1, 127.9, 120.3, 119.2, 106.8, 89.9, 43.2, 37.5, 33.6, 21.8, 18.7, -2.2, -2.3; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₁H₂₆NSi, 320.1835; found, 320.1839.

1-((dimethyl(phenyl)silyl)methyl)-8-methoxy-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3ac)

33.5 mg, 50% yield; grey solid, m.p.111-112 °C; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.55 (m, 2H), 7.37 (d, J = 4.0 Hz, 3H), 7.02 (t, J = 7.9 Hz, 1H), 6.83 (d, J = 8.1 Hz, 1H), 6.48 (d, J = 7.7 Hz, 1H), 6.19 (s, 1H), 4.06-4.00 (m, 1H), 3.93 (s, 3H), 3.85 (q, J = 8.2 Hz, 1H), 3.33 (dt, J = 6.1 Hz, J = 11.9 Hz, 1H), 2.62-2.55 (m, 1H), 2.04 (dq, J = 8.3 Hz, J = 12.4 Hz, 1H), 1.53 (dd, J = 4.2 Hz, J = 15.0 Hz, 1H), 1.09 (dd, J = 10.2 Hz, J = 14.9 Hz, 1H), 0.38 (d, J = 7.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.9, 149.1, 138.9, 133.7 ,133.5, 129.0, 127.9, 122.9, 120.9, 102.9, 99.3, 88.6, 55.3, 43.3, 37.6, 33.5, 21.7, -2.1, -2.3; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₁H₂₆NOSi, 336.1784; found, 336.1791.

1-((dimethyl(phenyl)silyl)methyl)-8-fluoro-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3ad)

45.2 mg, 70% yield; grey solid, m.p. 82-83 °C; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.55 (m, 2H), 7.39-7.37 (m, 3H), 6.98 (dt, J = 8.0Hz, J = 13.9 Hz, 2H), 6.71 (dd, J = 7.5 Hz, J = 10.5 Hz, 1H), 6.15 (s, 1H), 4.04 (td, J = 2.9 Hz, J =9.8 Hz, 1H), 3.87 (dd, J = 8.3 Hz, J = 17.3 Hz, 1H), 3.38-3.30 (m, 1H), 2.64-2.56 (m, 1H), 2.11-2.03 (m, 1H), 1.53 (dd, J = 4.2 Hz, J = 14.8 Hz, 1H), 1.10 (dd, J = 10.2 Hz, J = 14.8 Hz, 1H), 0.39 (d, J = 6.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 138.7, 133.5 (2C), 129.1, 127.9 (2C), 120.5, 120.4, 105.4 (2C), 104.0, 103.8, 87.6, 43.4, 37.5, 33.6, 21.6, -2.2, -2.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -123.0 (s, 1F); HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₀H₂₃FNSi, 324.1584; found, 324.1582.

8-chloro-1-((dimethyl(phenyl)silyl)methyl)-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3ae)

48.1 mg, 71% yield; brown oil; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.54 (m, 2H), 7.38-7.37 (m, 3H), 7.02 (tt, J = 7.7 Hz, J = 15.3 Hz, 3H), 6.17 (s, 1H), 4.02 (td, J = 2.8 Hz, J = 10.0 Hz, 1H), 3.84 (dd, J = 8.4 Hz, J = 17.2 Hz, 1H), 3,34 (q, J = 11.4 Hz, 1H), 2.61-2.55 (m, 1H), 2.03 (dq, J = 8.4 Hz, J = 12.5 Hz, 1H), 1.55 (dd, J = 4.1 Hz, J = 4.8 Hz, 1H), 1.09 (dd, J = 10.4 Hz, J = 14.8 Hz, 1H), 0.39 (d, J = 4.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.3, 138.7, 133.5, 133.1, 131.2, 129.2, 127.9, 125.2, 120.6, 118.7, 107.8, 90.3, 43.5, 37.3, 33.7, 21.6, -2.3(2C); HRMS (ESI, m/z): [M+Na]⁺ Calcd. for C₂₀H₂₃ClNSi, 340.1288; found, 340.1290.

1-((dimethyl(phenyl)silyl)methyl)-8-(trifluoromethyl)-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3af)

44.8mg, 60% yield; brown solid, m.p. 79-80 °C; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, J = 2.7 Hz, J = 6.0 Hz, 2H), 7.38-7.37 (m, 3H), 7.31 (t, J = 6.9 Hz, 2H), 7.10 (t, J = 7.8 Hz, 1H), 6.25 (s, 1H), 4.05 (td, J = 2.9 Hz, J = 9.9 Hz, 1H), 3.85 (dd, J = 8.7 Hz, J = 17.0 Hz, 1H), 3.36 (qd, J = 4.4 Hz, J = 8.5 Hz, 1H), 2.63-2.56 (m, 1H), 2.09-2.00 (m, 1H), 1.56 (dd, J = 4.1 Hz, J = 14.9 Hz, 1H), 1.10 (dd, J = 10.4 Hz, J = 14.8 Hz, 1H), 0.39 (d, J = 3.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.7, 138.6, 133.5 (2C), 132.9, 129.2, 127.9 (2C), 121.1 (q, J = 31.7 Hz), 119.2, 116.6 (q, J = 5.0 Hz), 116.5 (d, J = 4.9 Hz), 112.8, 90.8, 43.4, 37.2, 33.8, 21.6, -2.3, -2.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.5 (s, 3F); HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₁H₂₃F₃NSi, 374.1522; found, 374.1522.

1-((dimethyl(phenyl)silyl)methyl)-7-methyl-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3ag)

38.9 mg, 61% yield; black solid, m.p. 49-50 °C; TLC (petroleum ether/ethyl acetate = 100/1, v/v):

 $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, J = 2.8 Hz, J = 6.1 Hz, 2H), 7.38-7.37 (m, 3H), 7.30 (s, 1H), 7.07 (d, J = 8.2 Hz, 1H), 6.91 (d, J = 8.1 Hz, 1H), 5.98 (s, 1H), 4.02 (td, J = 3.0 Hz, J = 9.7 Hz, 1H), 3.83 (dd, J = 8.1 Hz, J = 17.3 Hz, 1H), 3.37-3.29 (m, 1H), 2.62-2.54 (m, 1H), 2.41 (s, 3H), 2.03 (dq, J = 8.3 Hz, J = 12.4 Hz, 1H), 1.52 (dd, J = 4.2 Hz, J = 14.9 Hz, 1H), 1.09 (dd, J = 10.2 Hz, J = 14.8 Hz, 1H), 0.38 (d, J = 5.3 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 150.7, 138.9, 133.6, 133.2, 130.8, 129.1, 128.1, 127.9, 121.6, 120.1, 108.8, 90.8, 43.2, 37.4, 33.6, 21.7, 21.5, -2.2, -2.3; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₁H₂₆NSi, 320.1835; found, 320.1835.

1-((dimethyl(phenyl)silyl)methyl)-7-methoxy-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3ah)

43.6 mg, 65% yield; black solid, m.p. 69-70 °C; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 2H), 7.38 (s, 3H), 7.08-7.01 (m, 2H), 6.75 (d, J = 8.5 Hz, 1H), 6.00 (s, 1H), 4.02 (t, J = 8.8 Hz, 1H), 3.87-3.82 (m, 4H), 3.33 (d, J = 5.7 Hz, 1H), 2.58 (d, J = 8.9 Hz, 1H), 2.08-1.99 (m, 1H), 1.58-1.50 (m, 1H), 1.12-1.06 (m, 1H), 0.38 (d, J = 4.5 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 153.8, 151.4, 138.9, 133.6, 133.2, 129.1, 127.9, 127.8, 110.1, 109.8, 102.7, 91.1, 55.9, 43.3, 37.4, 33.8, 21.7, -2.2, -2.3; HRMS (ESI, m/z): [M+Na]⁺ Calcd. for $C_{21}H_{26}NOSi$, 336.1784; found, 336.1783.

1-((dimethyl(phenyl)silyl)methyl)-7-fluoro-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3ai)

43.9mg, 68% yield; black solid, m.p. 53-54 °C; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 2.8 Hz, 2H), 7.38 (d, J = 1.0 Hz, 3H), 7.16 (d, J = 10.0 Hz, 1H), 7.06 (dd, J = 4.1 Hz, J = 8.3 Hz, 1H), 6.82 (t, J = 9.0 Hz, 1H), 6.02 (s, 1H), 4.03 (t, J = 9.1 Hz, 1H), 3.87-3.81 (m, 1H), 3.35-3.33 (m, 1H), 2.60-2.58 (m, 1H), 2.09-2.00 (m, 1H), 1.54-1.49 (m, 1H), 1.09 (dd, J = 10.5 Hz, J = 14.6 Hz, 1H), 0.38 (d, J = 4.3 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 138.9, 133.6 (2C), 132.8, 132.4, 129.1, 127.9 (2C), 120.4, 120.1, 119.0, 109.2, 91.4, 43.2, 37.5, 33.6, 21.6, -2.2, -2.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -125.8 (s, 1F); HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₀H₂₃FNSi, 324.1584; found, 324.1582.

7-chloro-1-((dimethyl(phenyl)silyl)methyl)-2,3-dihydro-1H-pyrrolo[1,2-a]indole (3aj)

48.8 mg, 72% yield; grey solid, m.p. 60-61 °C; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (dd, J = 2.9 Hz, J = 6.4 Hz, 2H), 7.39 (d, J = 1.5 Hz, 1H), 7.31-7.30 (m, 3H), 6.96 (dt, J = 5.1 Hz, J = 8.6 Hz, 2H), 5.92 (s, 1H), 3.95 (td, J = 3.0 Hz, J = 9.9 Hz, 1H), 3.80-3.74 (m, 1H), 3.30-3.22 (m, 1H), 2.56-2.48 (m, 1H), 2.02-1.93 (m, 1H), 1.44 (dd, J = 4.3 Hz, J = 14.9 Hz, 1H), 1.02 (dd, J = 10.2 Hz, J = 14.9 Hz, 1H), 0.31 (d, J = 4.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.1, 138.7, 133.8, 133.5, 130.8, 129.1, 127.9, 124.6, 120.3, 119.7, 110.1, 91.3, 43.4, 37.3, 33.8, 21.6, -2.2, -2.3; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₀H₂₃ClNSi, 340.1288; found, 340.1292.

1-((dimethyl(phenyl)silyl)methyl)-8-(trifluoromethyl)-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3ak)

41.0mg, 55% yield; yellow oil; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.56 (dd, J = 3.0 Hz, J = 6.4 Hz, 2H), 7.38 (dd, J = 3.4 Hz, J = 6.4 Hz, 3H), 7.31 (d, J = 8.4 Hz, 1H), 7.25-7.21 (m, 1H), 6.13 (s, 1H), 4.11-4.06 (m, 1H), 3.94-3.87 (m, 1H), 3.41-3.33 (m, 1H), 2.66-2.59 (m, 1H), 2.12-2.03 (m, 1H), 1.53 (dd, J = 4.2 Hz, J = 14.9 Hz, 1H), 1.11 (dd, J = 10.1 Hz, J = 14.9 Hz, 1H), 0.39 (d, J = 5.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.3, 138.6, 133.6, 132.9, 129.2, 128.0, 125.2 (q, J = 270.0 Hz), 121.1 (q, J = 31.8 Hz), 119.2, 116.5 (q, J = 5.0 Hz), 112.8, 90.8, 43.4, 37.4, 33.7, 21.6, -2.2, -2.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -60.1 (s, 3F); HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₁H₂₃F₃NSi, 374.1552; found, 374.1548.

1-((dimethyl(phenyl)silyl)methyl)-6-methyl-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3al)

38.9mg, 61% yield; black oil; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR

(400 MHz, CDCl₃) δ 7.57-7.55 (m, 2H), 7.38 (dd, J = 6.5 Hz, J = 7.5 Hz, 4H), 6.99 (s, 1H), 6.86 (d, J = 8.1 Hz, 1H), 6.01 (s, 1H), 4.05-3.99 (m, 1H), 3.83 (dd, J = 8.3 Hz, J = 17.0 Hz, 1H), 3.37-3.29 (m, 1H), 2.61-2.55 (m, 1H), 2.44 (s, 3H), 2.08-1.98 (m, 1H), 1.50 (d, J = 4.3 Hz, 1H), 1.09 (dd, J = 10.2 Hz, J = 14.8 Hz, 1H), 0.38 (d, J = 5.5 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 139.0, 133.6, 132.8, 130.6, 129.8, 129.1, 127.9, 120.6, 120.0, 109.3, 91.2, 43.0, 37.5, 33.5, 21.7, -2.2, -2.3; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₁H₂₆NSi, 320.1835; found, 320.1833.

1-((dimethyl(phenyl)silyl)methyl)-6-methoxy-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3am)

40.2mg, 60% yield; black solid, m.p. 75-76 °C; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 3.1 Hz, 2H), 7.38-7.37 (m, 4H), 6.72-6.69 (m, 2H), 5.99 (s, 1H), 4.03-3.98 (m, 1H), 3.86-3.82 (m, 4H), 3.33 (q, J = 3.3 Hz, 1H), 2.62-2.55 (m, 1H), 2.08-1.99 (m, 1H), 1.51 (dd, J = 4.2 Hz, J = 14.9 Hz, 1H), 1.09 (dd, J = 10.1 Hz, J = 14.8 Hz, 1H), 0.38 (d, J = 5.3 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 149.5, 138.9, 133.6, 132.9, 129.1, 127.9, 127.0, 120.9, 108.6, 93.2, 91.1, 55.8, 43.0, 37.5, 33.5, 21.7, -2.2, -2.3; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₁H₂₆NOSi, 336.1784; found, 336.1786.

1-((dimethyl(phenyl)silyl)methyl)-6-fluoro-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3an)

45.9 mg, 71% yield; brown oil; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.52 (m, 2H), 7.40-7.33 (m, 4H), 6.85-6.73 (m, 2H), 6.00 (d, J = 10.1 Hz, 1H), 3.99-3.90 (m, 1H), 3.82-3.73 (m, 1H), 3.32-3.28 (m, 1H), 2.60-2.50 (m, 1H), 2.07-1.95 (m, 1H), 1.52-1.45 (m, 1H), 1.12-1.03 (m, 1H), 0.38-0.34 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.0 (d, J = 3.6 Hz), 138.8, 133.5 (2C), 129.1 (d, J = 9.0 Hz), 127.9 (2C), 120.8, 120.7, 107.5, 107.4, 95.8, 95.5, 91.5, 43.2, 37.4, 33.6, 21.6, -2.2, -2.3; ¹⁹F NMR (376 MHz, CDCl₃) δ - 122.9 (s, 1F); HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₀H₂₃FNSi, 324.1584; found, 324.1588. **6-chloro-1-((dimethyl(phenyl)silyl)methyl)-2,3-dihydro-1***H***-pyrrolo[1,2-***a***]indole (3ao)**

50.2 mg, 74% yield; black oil; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 2H), 7.39 (d, J = 8.5 Hz, 4H), 7.16 (s, 1H), 6.98 (d, J = 8.4 Hz, 1H), 6.02 (s, 1H), 3.99 (t, J = 9.1 Hz, 1H), 3.81 (dd, J = 8.4 Hz, J = 17.1 Hz, 1H), 3.32 (q, J = 11.9 Hz, 1H), 2.60-2.54 (m, 1H), 2.07-1.98 (m, 1H), 1.50 (dd, J = 4.1 Hz, J = 14.9 Hz, 1H), 1.09 (dd, J = 10.3 Hz, J = 14.7 Hz, 1H), 0.38 (d, J = 4.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.4, 138.7, 133.5, 132.7, 131.3, 129.1, 127.9, 125.9, 121.1, 119.5, 109.2, 91.7, 43.2, 37.3, 33.6, 21.5, -2.2, -2.3; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₀H₂₃ClNSi, 340.1288; found, 340.1289.

1-((dimethyl(phenyl)silyl)methyl)-5-methyl-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3ap)

52.3 mg, 82% yield; brown solid, m.p. 67-68 °C; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.55 (m, 2H), 7.36 (dd, J = 5.1 Hz, J = 15.6 Hz, 4H), 6.90 (t, J = 7.5 Hz, 1H), 6.80 (d, J = 7.0 Hz, 1H), 6.05 (s, 1H), 4.42-4.37 (m, 1H), 4.15 (dd, J = 8.4Hz, J = 16.9 Hz, 1H), 3.32-3.24 (m, 1H), 2.61 (s, 4H), 2.06-1.97 (m, 1H), 1.53 (dd, J = 4.0 Hz, J =14.7 Hz, 1H), 1.08 (dd, J = 10.3 Hz, J = 14.8 Hz, 1H), 0.38 (d, J = 5.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 138.9, 133.6, 133.0, 132.0, 129.1, 127.9, 121.7, 120.2, 119.2, 118.2, 91.7, 46.1, 37.5, 33.0, 21.6, 18.0, -2.2, -2.3; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₁H₂₆NSi, 320.1835; found, 320.1839.

1-((dimethyl(phenyl)silyl)methyl)-5-methoxy-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3aq)

40.2 mg, 60% yield; black solid, m.p. 53-54 °C; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, J = 2.8 Hz, J = 6.1 Hz, 2H), 7.38-7.37 (m, 3H), 7.11 (d, J = 7.9 Hz, 1H), 6.90 (t, J = 7.8 Hz, 1H), 6.51 (d, J = 7.7 Hz, 1H), 6.02 (s, 1H), 4.41-4.46 (m, 1H), 4.13-4.06 (m, 1H), 3.88 (s, 3H), 3.32-3.25 (m, 1H), 2.58-2.51 (m, 1H), 2.06-1.97 (m, 1H), 1.54-1.49 (m, 1H), 1.08 (dd, J = 10.3 Hz, J = 14.8 Hz, 1H), 0.38 (d, J = 3.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 146.8,141.5,135.4, 133.6, 129.1, 127.9, 122.8, 119.4, 113.4, 100.9, 91.6, 55.4, 46.2, 37.7, 33.3, 21.7, -2.1, -2.2; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₁H₂₆NOSi, 336.1784; found, 336.1780.

1-((dimethyl(phenyl)silyl)methyl)-5-fluoro-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3ar)

42.0 mg, 65% yield; brown solid, m.p. 59-60 °C; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 2H), 7.38 (s, 4H), 6.89 (dd, J = 7.4 Hz, J = 12.6Hz, 1H), 6.77-6.72 (m, 1H), 6.06 (s, 1H), 4.28 (t, J = 8.9 Hz, 1H), 4.06 (dd, J = 8.5 Hz, J = 17.4 Hz, 1H), 3.31 (q, J = 11.3 Hz, 1H), 2.61-2.55 (m, 1H), 2.10-2.00 (m, 1H), 1.51 (dd, J = 3.9 Hz, J = 14.9Hz, 1H), 1.10 (dd, J = 10.3 Hz, J = 14.7 Hz, 1H), 0.39-0.36 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.7, 138.7, 133.5 (2C), 129.1, 127.9 (2C), 119.1, 119.0, 116.1 (2C), 105.4, 105.2, 92.2, 45.4, 37.6, 33.3, 21.6, -2.2, -2.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -138.5 (s, 1F); HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₀H₂₃FNSi, 324.1584; found, 324.1586.

5-chloro-1-((dimethyl(phenyl)silyl)methyl)-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3as)

45.4 mg, 67% yield; brown solid, m.p. 57-58 °C; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 3.4 Hz, 2H), 7.37 (d, J = 7.7 Hz, 4H), 7.01 (d, J = 7.6 Hz, 1H), 6.90 (t, J = 7.7 Hz, 1H), 6.07 (s, 1H), 4.57-4.52 (m, 1H), 4.19 (dd, J = 8.1 Hz, J=18.2 Hz, 1H), 3.28 (q, J = 11.9 Hz, 1H), 2.59-2.52 (m, 1H), 2.07-1.97 (m, 1H), 1.51 (dd, J = 4.0Hz, J = 14.9 Hz, 1H), 1.09 (dd, J = 10.4 Hz, J = 14.7 Hz, 1H), 0.39 (d, J = 3.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.1, 138.7, 134.9, 133.5, 129.1, 127.9, 120.5, 119.7, 119.0, 116.1, 92.3, 46.1, 37.3, 33.1, 21.5, -2.2, -2.3; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₀H₂₃ClNSi, 340.1288; found, 340.1281.

1-((dimethyl(phenyl)silyl)methyl)-6,7-difluoro-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3at)

38.0 mg, 56% yield; yellow solid, m.p. 50-51 °C; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, J = 2.9 Hz, J = 6.3 Hz, 2H), 7.37 (dd, J = 3.2Hz, J = 6.4 Hz, 3H), 7.22 (dd, J = 4.7 Hz, 1H), 6.93 (dd, J = 10.5 Hz, J = 6.8 Hz, 1H), 5.98 (s, 1H), 4.01-3.96 (m, 1H), 3.82 (dd, J = 8.1 Hz, J = 17.4 Hz, 1H), 3.37-3.29 (m, 1H), 2.63-2.56 (m, 1H), 2.10-2.01 (m, 1H), 1.55-1.51 (m, 1H), 1.09 (dd, J = 10.1 Hz, J = 14.9 Hz, 1H), 0.38 (d, J = 4.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.1 (d, J = 3.6 Hz), 138.7, 133.5 (2C), 129.2, 127.9 (2C), 127.7 (d, J = 8.4 Hz), 127.5 (d, J = 10.2 Hz), 106.9, 106.7, 97.2, 97.0, 91.7, 43.5, 37.4, 33.9, 21.6, -2.2, -2.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -146.1 (d, J = 21.0 Hz, 2F), δ -149.1 (d, J = 21.0 Hz, 1F); HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₀H₂₂F₂NSi, 342.1490; found, 342.1492.

8-(benzyloxy)-1-((dimethyl(phenyl)silyl)methyl)-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3au) Bn

50.1 mg, 61% yield; grey solid, m.p. 94-95 °C; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.55 (m, 2H), 7.50 (d, J = 7.5 Hz, 2H), 7.40 (s, 1H), 7.38-7.37 (m, 4H), 7.32 (d, J = 7.2 Hz, 1H), 6.99 (t, J = 7.9 Hz, 1H), 6.84 (d, J = 8.0 Hz, 1H), 6.54 (d, J = 7.8 Hz, 1H), 6.24 (s, 1H), 5.21 (s, 2H), 4.07-4.02 (m, 1H), 3.89-3.83 (m, 1H), 3.34 (q, J =11.7 Hz, 1H), 2.61-2.57 (m, 1H), 2.09-2.00 (m, 1H), 1.57-1.53 (m, 1H), 1.10 (dd, J = 10.3 Hz, J =14.8 Hz, 1H), 0.38 (d, J = 2.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.2, 149.4, 139.1, 138.1, 134.0, 133.7, 129.2, 128.6, 128.1, 127.7, 127.4, 123.5, 121.0, 103.3, 101.1, 89.1, 70.0, 43.5, 37.7, 33.7, 21.9, -2.1; HRMS (ESI, m/z): [M+Na]⁺ Calcd. for C₂₇H₂₉NNaOSi, 434.1911; found, 434.1911.

1-((dimethyl(phenyl)silyl)methyl)-9-methyl-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3av)

45.9 mg, 72% yield; brown oil; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 2H), 7.46 (d, J = 7.7 Hz, 1H), 7.38 (d, J = 1.7 Hz, 3H), 7.14 (d, J = 7.8 Hz, 1H), 7.10-7.02 (m, 2H), 4.02-3.96 (m, 1H), 3.83 (dd, J = 7.9 Hz, J = 16.0 Hz, 1H), 3.42-3.36 (m, 1H), 2.62-2.54 (m, 1H), 2.27 (s, 3H), 2.08-1.99 (m, 1H), 1.57-1.54 (m, 1H), 1.11 (dd, J = 12.0 Hz, J = 14.6 Hz, 1H), 0.38 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 146.0, 139.0, 133.6, 133.3, 131.9, 129.1, 127.9, 120.0, 118.3, 109.0, 100.0, 42.6, 36.6, 32.8, 21.2, 8.5, -2.2, -2.3; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₁H₂₆NSi, 320.1835; found, 320.1836.

9-((dimethyl(phenyl)silyl)methyl)-6,7,8,9-tetrahydropyrido[1,2-*a*]indole (3aw)

38.9 mg, 61% yield; black oil; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.51 (m, 3H), 7.37 (s, 3H), 7.22 (d, J = 7.9 Hz, 1H), 7.09 (dt, J = 6.8 Hz, J = 21.6 Hz, 2H), 6.27 (s, 1H), 4.14-4.12 (m, 1H), 3.82-3.76 (m, 1H), 3.08 (s, 1H), 2.10 (d, J = 7.9 Hz, 1H), 1.93 (dd, J = 9.6 Hz, J = 28.0 Hz, 2H), 1.62-1.54 (m, 2H), 1.22-1.15 (m, 1H), 0.37 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 139.4, 136.3, 133.5, 129.0, 128.1, 127.8, 120.3, 119.7, 119.5, 108.7, 96.9, 42.1, 31.7, 29.9, 22.6, 22.3, -1.8, -1.9; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₁H₂₆NSi, 320.1835; found, 320.1834.

9-((dimethyl(phenyl)silyl)methyl)-2-methyl-6,7,8,9-tetrahydropyrido[1,2-*a*]indole (3ax)

38.6 mg, 58% yield; brown oil; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.45 (m, 2H), 7.27-7.26 (m, 3H), 7.22 (s, 1H), 7.00 (d, J = 8.2 Hz, 1H), 6.85 (d, J = 8.2 Hz, 1H), 6.09 (s, 1H), 4.00-3.95 (m, 1H), 3.67-3.61 (m, 1H), 2.00-2.93 (m, 1H), 2.33 (s, 3H), 2.02-1.95 (m, 1H), 1.89-1.75 (m, 2H), 1.51-1.47 (m, 1H), 1.31-1.22 (m, 1H), 1.11-1.05 (m, 1H), 0.27 (d, J = 3.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 146.0, 141.3, 136.6, 135.4, 130.8, 130.5, 130.3, 129.7, 123.7, 121.3, 110.2, 98.3, 44.0, 33.6, 31.8, 24.5, 24.2, 23.4, 0.1, 0.0; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₂H₂₈NSi, 334.1991; found, 334.1993.

2-chloro-9-((dimethyl(phenyl)silyl)methyl)-6,7,8,9-tetrahydropyrido[1,2-*a*]indole (3ay)

49.4 mg, 70% yield; brown oil; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.52 (m, 2H), 7.46-7.45 (d, J = 1.9 Hz, 1H), 7.36-7.34 (m, 3H), 7.09-7.02 (m, 2H), 6.18 (s, 1H), 4.07-4.02 (m, 1H), 3.76-3.69 (m, 1H), 3.07-3.00 (m, 1H), 2.10-2.05 (m, 1H), 1.98-1.83 (m, 2H), 1.57-1.53 (m, 1H), 1.40-1.31 (m, 1H), 1.19-1.13 (m, 1H), 0.4 (d, J = 2.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 147.5, 141.1, 136.6, 135.4, 131.0, 131.0, 129.8, 127.0, 122.3, 121.0, 111.5, 98.7, 44.2, 33.6, 31.5, 24.4, 24.2, 0.1, 0.0; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₁H₂₅ClNSi, 354.1445; found, 354.1443.

N-(2-(1-((dimethyl(phenyl)silyl)methyl)-7-methoxy-2,3-dihydro-1*H*-pyrrolo[1,2-a]indol-9yl)ethyl)acetamide (3az)

42.0 mg, 50% yield; yellow oil; TLC (petroleum ether/ethyl acetate = 3/1, v/v): $R_f = 0.50$; ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.52 (m, 2H), 7.36 (q, J = 2.7 Hz, 3H), 7.03 (d, J = 8.7 Hz, 1H), 6.96 (d, J = 2.4 Hz, 1H), 6.74 (dd, J = 8.7, 2.4 Hz, 1H), 5.75 (s, 1H), 3.96-3.91 (m, 1H), 3.80 (s, 3H), 3.78-3.73 (m, 1H), 3.51-3.42 (m, 2H), 3.36-3.29 (m, 1H), 2.88 (t, J = 6.7 Hz, 2H), 2.58-2.50 (m, 1H), 2.04-1.96 (m, 1H), 1.83 (s, 3H), 1.52 (dd, J = 14.8, 2.6 Hz, 1H), 1.08 (dd, J = 14.7, 11.9 Hz, 1H), 0.38 (d, J = 2.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 156.0, 150.3, 140.9, 135.9, 135.3, 131.5, 130.3, 129.7, 112.5, 112.4, 103.6, 102.9, 58.3, 45.2, 42.5, 38.7, 35.6, 26.6, 25.6, 24.1, 0.0. HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₅H₃₃N₂O₂Si, 421.2306; found, 421.2342.

1-(((3,5-bis(trifluoromethyl)phenyl)dimethylsilyl)methyl)-2,3-dihydro-1*H*-pyrrolo[1,2*a*]indole (3ba)

52.0 mg, 59% yield; black oil; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 2H), 7.87 (s, 1H), 7.52 (d, J = 7.8 Hz, 1H), 7.25-7.19 (m, 1H), 7.07 (dt, J = 7.1 Hz, J = 26.1 Hz, 2H), 6.08 (s, 1H), 4.13-4.08 (m, 1H), 3.92 (dd, J = 7.7 Hz, J = 17.5 Hz, 1H), 3.42-3.34 (m, 1H), 2.69-2.61 (m, 1H), 2.13-2.04 (m, 1H), 1.57 (dd, J = 4.6 Hz, J = 15.0 Hz, 1H), 1.22-1.19 (m, 1H), 0.47 (d, J = 3.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.6, 142.7, 133.2 (2C), 132.6 (q, J = 32.4 Hz), 130.9 (q, J = 32.8 Hz), 124.9, 123.0 (dt, J = 4.0 Hz, J = 7.7 Hz), 122.2, 120.5, 120.4, 119.2, 109.3, 91.7, 43.1, 37.6, 33.4, 21.3, -2.4 (2C); ¹⁹F NMR (376 MHz, CDCl₃) δ - 62.8 (s, 1F); HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₂H₂₂F₆NSi, 442.1426; found, 442.1428.

1-((methyldiphenylsilyl)methyl)-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3bb)

47.7 mg, 65% yield; black oil; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 6.7 Hz, 4H), 7.51 (d, J = 7.6 Hz, 2H), 7.37 (d, J = 5.9 Hz, 5H), 7.17 (d, J = 7.8 Hz, 1H), 7.10-7.01 (m, 2H), 6.06 (s, 1H), 4.04-3.99 (m, 1H), 3.85-3.78 (m, 1H), 3.42 (dd, J = 11.5 Hz, J = 17.9 Hz, 1H), 2.53-2.45 (m, 1H), 2.07-1.98 (m, 1H), 1.88 (dd, J = 2.9 Hz, J = 15.0 Hz, 1H), 1.42 (dd, J = 10.4 Hz, J = 14.9 Hz, 1H), 0.68 (d, J = 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 136.9, 136.7, 134.5, 134.4, 132.8, 132.4, 129.4, 128.0, 128.0, 120.4, 120.2, 119.0, 109.2, 91.5, 43.1, 37.4, 33.5, 20.0, -3.6; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₅H₂₆NSi, 368.1835; found, 368.1839.

1-((triphenylsilyl)methyl)-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3bc)

62.6 mg, 73% yield; black solid, m.p. 61-62 °C; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 6.9 Hz, 6H), 7.49 (d, J = 7.7 Hz, 1H), 7.50-7.36 (m, 9H), 7.15 (d, J = 7.9 Hz, 1H), 7.09-7.00 (m, 2H), 5.98 (s, 1H), 4.01-3.95 (m, 1H), 3.77 (dd, $J = 8.2 \text{ Hz}, J = 17.0 \text{ Hz}, 1\text{H}, 3.55-3.51 \text{ (m, 1H)}, 2.37-2.32 \text{ (m, 1H)}, 2.17 \text{ (dd}, J = 3.7 \text{ Hz}, J = 15.1 \text{ Hz}, 1\text{H}), 2.03-1.94 \text{ (m, 1H)}, 1.70 \text{ (dd}, J = 10.1 \text{ Hz}, J = 15.0 \text{ Hz}, 1\text{H}); {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3)$ $\delta 150.3, 135.7, 134.7, 132.8, 132.4, 129.7, 128.0, 120.4, 120.2, 119.0, 109.2, 91.6, 43.1, 37.6, 33.4, 19.1; \text{HRMS} (ESI, m/z): [M+H]^+ \text{Calcd. for } C_{30}H_{28}\text{NSi}, 430.1991; \text{ found, } 430.1994.$

1-((diphenylsilyl)methyl)-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3bd)

42.4 mg, 60% yield; brown oil; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 6.8 Hz, 4H), 7.53 (d, J = 7.8 Hz, 1H), 7.43-7.35 (m, 6H), 7.22-7.18 (m, 1H), 7.12-7.02 (m, 2H), 6.17 (s, 1H), 5.07 (t, J = 3.8 Hz, 1H), 4.10-4.05 (m, 1H), 3.87 (dd, J = 7.8 Hz, J = 17.4 Hz, 1H), 3.49-3.41 (m, 1H), 2.71-2.63 (m, 1H), 2.23-2.14 (m, 1H), 1.87-1.81 (m, 1H), 1.56-1.47 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.6, 135.1, 135.1, 133.8, 133.7, 132.8, 132.4, 129.8, 128.1, 128.1, 120.4, 120.2, 119.0, 91.9, 43.0, 37.4, 33.7, 18.3; HRMS (ESI, m/z): [M+Na]⁺ Calcd. for C₂₄H₂₄NSi, 354.1678; found, 354.1677.

1-(((4-(dimethylsilyl)phenyl)dimethylsilyl)methyl)-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3be)

32.7 mg, 45% yield; black solid, m.p. 57-58 °C; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.51 (m, 5H), 7.23-7.18 (m, 1H), 7.11-7.01 (m, 2H), 6.06 (s, 1H), 4.45-4.41 (m, 1H), 4.09-4.04 (m, 1H), 3.91-3.84 (m, 1H), 3.39-3.32 (m, 1H), 2.66-2.59 (m, 1H), 2.11-2.02 (m, 1H), 1.54 (dd, J = 4.3 Hz, J = 14.9 Hz, 1H), 1.11 (dd, J = 10.1 Hz, J = 14.9Hz, 1H), 0.37 (dd, J = 3.7 Hz, J = 13.5 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 139.9, 138.4, 133.4, 132.9, 132.8, 132.4, 120.4, 120.1, 119.0, 109.2, 91.4, 43.2, 37.5, 33.6, 21.6, -2.3, -3.9; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₂H₃₀NSi, 364.1917; found, 364.1914.

7-chloro-1-((methyldiphenylsilyl)methyl)-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3bf)

60.2mg, 75% yield; brown solid, m.p. 63-64 °C; TLC (petroleum ether/ethyl acetate = 100/1, v/v):

R_f = 0.20; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 6.1 Hz, 4H), 7.38 (s, 1H), 7.31 (t, J = 6.5 Hz, 6H), 6.99-6.93 (m, 2H), 5.89 (s, 1H), 3.94-3.89 (m, 1H), 3.73 (dd, J = 8.3 Hz, J = 17.2 Hz, 1H), 3.34 (dd, J = 11.5 Hz, J = 17.3 Hz, 1H), 2.46-2.38 (m, 1H), 2.01-1.91 (m, 1H), 1.77 (dd, J = 4.1 Hz, J = 15.0 Hz, 1H), 1.33 (dd, J = 10.2 Hz, J = 14.9 Hz, 1H), 0.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.9, 136.8, 136.5, 134.5, 134.4, 133.8, 130.8, 129.4, 129.4, 128.0, 128.0, 124.7, 120.4, 119.7, 110.1, 91.5, 43.4, 37.3, 33.7, 20.0, -3.6; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₅H₂₅ClNSi, 402.1445; found, 402.1445.

7-chloro-1-((triphenylsilyl)methyl)-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3bg)

66.7 mg, 72% yield; brown solid, m.p. 109-110 °C; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 6.6 Hz, 6H), 7.35-7.29 (m, 10H), 6.95 (dd, J = 8.2 Hz, J = 14.8 Hz, 2H), 5.80 (s, 1H), 3.88 (dd, J = 6.2 Hz, J = 12.0 Hz, 1H), 3.68 (dd, J = 7.9 Hz, J = 16.1 Hz, 1H), 3.46 (d, J = 5.4 Hz, 1H), 2.32-2.25 (m, 1H), 2.06 (d, J = 10.1 Hz, 1H), 1.97-1.88 (m, 1H), 1.66-1.60 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 151.8, 135.7, 134.6, 133.7, 130.8, 129.7, 128.0, 124.6, 120.4, 119.7, 110.1, 91.6, 43.3, 37.6, 33.6, 19.0; HRMS (ESI, m/z): [M+Na]⁺ Calcd. for C₃₀H₂₇ClNSi, 464.1601; found, 464.1602.

7-chloro-1-((diphenylsilyl)methyl)-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (3bh)

50.3 mg, 65% yield; black oil; TLC (petroleum ether/ethyl acetate = 100/1, v/v): R_f = 0.20; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 7.1 Hz, 4H), 7.47 (s, 1H), 7.39 (t, *J* = 7.0 Hz, 6H), 7.08-7.02 (m, 2H), 6.09 (s, 1H), 5.05 (t, *J* = 3.7 Hz, 1H), 4.06-4.00 (m, 1H), 3.84 (dd, *J* = 7.9 Hz, *J* = 17.4 Hz, 1H), 3.48-3.40 (m, 1H), 2.71-2.63 (m, 1H), 2.23-2.14 (m, 1H), 1.84-1.78 (m, 1H), 1.53-1.46 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 151.1, 135.1, 133.8, 133.7, 133.6, 130.8, 129.9, 129.8, 128.2, 128.1, 124.7, 120.4, 119.8, 110.1, 91.9, 43.3, 37.3, 33.9, 18.2; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₄H₂₃ClNSi, 388.1288; found, 388.1289.

3,5-di-tert-butyl-4-((triphenylsilyl)methyl)cyclohexa-2,5-dien-1-one (5)

45.9 mg, 48% yield; yellow oil; TLC (petroleum ether/ethyl acetate = 100/1, v/v): $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (s, 3H), 7.37 (s, 6H), 7.33-7.29 (m, 6H), 6.59 (s, 2H), 2.81 (s, 1H), 1.43 (s, 2H), 1.22 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 186.0, 150.9, 136.0, 129.4, 127.6, 125.8, 124.9, 34.1, 30.4, 30.1, 22.8; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₃₃H₃₉OSi, 479.2770; found, 479.2775.

N-(2-(1-(but-3-en-1-yl)-5-methoxy-1*H*-indol-3-yl)ethyl)acetamide(1z)

943.9 mg, 33% yield; white solid, m.p. 63-65 °C; TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.60$; ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 8.9 Hz, 1H), 7.02 (d, J = 2.4 Hz, 1H), 6.92-6.86 (m, 2H), 5.76 (m, 1H), 5.61 (s, 1H), 5.09-5.01 (m, 2H), 4.10 (t, J = 7.2 Hz, 2H), 3.86 (s, 3H), 3.56 (q, J = 6.5 Hz, 2H), 2.94-2.89 (m, 2H), 2.54 (q, J = 6.9 Hz, 2H), 1.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 153.8, 134.8, 131.7, 128.2, 126.3, 117.4, 112.0, 111.0, 110.3, 100.6, 56.0, 46.0, 39.8, 34.6, 25.2, 23.4. HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₇H₂₃N₂O₂, 287.1754; found 287.1749.

5. Procedure for gram-scale experiment

S17

A dry 100 mL flask containing a straight condensing tube capped with a balloon was charged with 1-(but-3-en-1-yl)-7-methyl-1H-indole **1p** (5.4 mmol, 1.00 g), dimethylphenylsilane **2a** (54 mmol, 10.0 equiv.), CuCN (1.08 mmol, 20.0 mol%), 2,4'-bipyridine (1.08 mmol, 20.0 mol%), DTBP (5.0 equiv.) in *t*-BuOH (15.0 mL) successively. The mixture was stirred at 130 °C for 15 h in a nitrogen atmosphere. After completion, the reaction was quenched by saturated brine and then extracted with dichloromethane (3×25.0 mL). The combined dichloromethane layer was then dried over anhydrous Na₂SO₄ and concentrated in vacuum. The residue was purified by flash column chromatography on silica gel (PE/EA = 50:1) afforded the desired silyated pyrrolo[1,2-a]indoles **3ap**.

6. Radical Trapping Experiments

A dry 25 mL Schlenk tube containing a straight condensing tube capped with a balloon was charged with 1-(but-3-en-1-yl)-1H-indole **1a** (0.2 mmol, 1.0 equiv.), triphenylsilane **2b** (2.0 mmol, 10.0 equiv.), CuCN (0.04 mmol, 20 mol%), 2,4'bipyridine (0.04 mmol, 20.0 mol%), DTBP (1.0 mmol, 5.0 equiv.), radical scavenger (2 equiv.), and *t*-BuOH (3.0 mL). The mixtures were vigorously stirred together at 130 °C for 15 h. After completion, the reaction was quenched by saturated brine and then extracted with dichloromethane (3×15.0 mL). The combined dichloromethane layer was then dried over anhydrous Na₂SO₄ and concentrated in vacuum. The residue was purified by flash column chromatography on silica gel afforded the desired product.

7. X-ray Crystallographic Data

The X-ray crystallographic structures for **3aa**. ORTEP representation with 50% probability thermal ellipsoids. Solvent and hydrogen are omitted for clarity. Crystal data have been deposited to CCDC, number 2264465.

Identification code	3aa
Empirical formula	C ₂₀ H ₂₃ NSi
Formula weight	305.48
Temperature	150(10) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, $P2_{1/C}$
Unit cell dimensions	a = 10.1994(8) Å alpha = 90 deg. b = 12.6675(10) Å beta = 98.481(7) deg. c = 13.4020(11) Å gamma = 90 deg.
Volume	1712.6 (2) Å ³
Z, Calculated density	4, 1.185 Mg/m ³
Absorption coefficient	0.134 mm ⁻¹
F(000)	656.0
Crystal size	0.15×0.13×0.12 mm
Theta range for data collection	4.038 to 49.996 deg.
Limiting indices	$-9 \le h \le 12, -15 \le k \le 13, -15 \le l \le 15$
Reflections collected / unique	8031 / 3013 [R(int) = 0.0244]
Completeness to theta = 25.00	99.99%

Refinement method	Goodness-of-fit on F ²⁻
Data / restraints / parameters	3013 / 0 / 201
Goodness-of-fit on F ²	1.061
Final R indices [I>2sigma(I)]	R1 = 0.0418, $wR2 = 0.1011$
R indices (all data)	R1 = 0.0521, $wR2 = 0.1077$

8. References

[1] Gerry, C. J.; Hua, B. K.; Wawer, M. J.; Knowles, J. P.; Nelson, Jr S. D.; Boskovic,
Z. V. Real-Time Biological Annotation of Synthetic Compounds. *J. Am. Chem. Soc.*2016, *138*, 8920-8927.

9. NMR Spectra of New Compounds

7,49 7,749 7,745 7,745 7,745 7,710 7

Fig. S1 ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) of **3aa**

Fig. S2 ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) of **3ab**

$\begin{array}{c} 7.7.56\\ 6.5.7.7.57\\ 7.7.37\\ 7.7$

Chemical Formula: C₂₀H₂₂FNSi

-35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 Fig. S6 ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃)

of 3af

$\begin{array}{c} 7.7.7\\ 7.7.7\\ 7.5.5\\ 7.7.3\\ 7.$

Fig. S7 ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) of 3ag

Fig. S8 ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) of **3ah**

$\begin{array}{c} 7.56\\ 7.75\\ 7.15\\ 7.15\\ 7.15\\ 7.15\\ 7.15\\ 7.15\\ 7.15\\ 7.16\\$

S30

Fig. S9 ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) of **3ai**

$\begin{array}{c} 7.7\\ 7.55\\$

Fig. S11 ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) of 3ak

Fig. S12 ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) of **3al**

Fig. S13 ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) of **3am**

7.25 7.55

-Śi~Ph

Chemical Formula: C₂₀H₂₂FNSi

S39

S40

²⁰ ¹⁰ ⁰ ⁻¹⁰ ⁻²⁰ ⁻³⁰ ⁻⁴⁰ ⁻⁵⁰ ⁻⁶⁰ ⁻⁷⁰ ⁻⁸⁰ ⁻⁹⁰ ⁻¹⁰⁰ ⁻¹¹⁰ ⁻¹²⁰ ⁻¹³⁰ ⁻¹⁴⁰ ⁻¹⁵⁰ ⁻¹⁶⁰ ⁻¹⁷⁰ ⁻¹⁸⁰ ⁻¹⁹⁰ ⁻²⁰⁰ ⁻²¹⁰ ^{-2:} ^{f1} ^(ppm) ^{f1}

CDCl₃) of 3ar

Fig. S19 ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) of 3as

S43

S44

Fig. S24 ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) of **3ax**

.si_Ph CI--Ń Chemical Formula: C₂₁H₂₄CINSi

1.00H 6.00 1.05H 1.00H 1.00H 1.08 1.10 1.10 1.10 1.10 1.02 1.02 4.5 4.0 f1 (ppm) 3.5 3.0 2.5 2.0 7.0 0.5 0.0 -0.5 -1 9.5 9.0 8.5 8.0 7.5 6.5 6.0 5.5 5.0 1.5 1.0

Fig. S27 ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) of 3ba

Fig. S28 ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) of **3bb**

Fig. S29 ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) of **3bc**

$\begin{array}{c} 7,62\\ 7,752\\ 7,752\\ 7,737\\ 7,737\\ 7,737\\ 7,737\\ 7,737\\ 7,737\\ 7,737\\ 7,737\\ 7,737\\ 7,737\\ 7,737\\ 7,732\\ 7,7$

Fig. S30 1 H NMR (400 MHz, CDCl₃), 13 C NMR (100 MHz, CDCl₃) of **3bd**

Chemical Formula: C₂₂H₂₉NSi₂

Fig. S31 ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) of **3be**

$\begin{array}{c} 749\\ 7733\\ 7737\\ 7737\\ 7737\\ 7737\\ 7737\\ 7737\\ 7537\\ 6997\\ 6997\\ 6997\\ 6997\\ 6997\\ 6995\\ 7337\\ 7337\\ 7337\\ 7337\\ 7337\\ 73327\\ 73337\\ 73327$ 7337 7337 7337 7337 7337 7337 7337 7337 7337 7337 7337 7337

Fig. S32 ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) of **3bf**

Fig. S33 ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) of **3bg**

Fig. S34 $^1\!\mathrm{H}$ NMR (400 MHz, CDCl_3), $^{13}\!\mathrm{C}$ NMR (100 MHz, CDCl_3) of 3bh

$$-2.81$$

$$-2.81$$

$$-2.81$$

$$-1.24$$

Fig. S35 ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) of **5**

Chemical Formula: C₁₇H₂₂N₂O₂

Fig. S36 ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) of 1z