Supporting Information

Iron-Catalyzed Thiolation of C(sp³)–H with Sulfonyl Chlorides via Photoinduced Ligand-to-Metal Charge Transfer

Sheng-Ping Liu, Lan Yang, Yan-Hong He* and Zhi Guan*

Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China

Contents

1.General experiment details and materials
2. Experimental procedures
2.1 General procedure for the synthesis of products 3
2.2 General procedure for the synthesis of products 5
2.3 1 mmol scale synthesis of product 3a
2.4 1 mmol scale synthesis of product 5a
2.5 Gram scale synthesis of product 5a
3. Optimization of reaction conditions
3.1 Optimization of conditions for ether C(sp ³) - H thiolation
3.2 Optimization of conditions for unactivated alkane C(sp ³) - H thiolation
4. Mechanistic investigation
4.1 UV-vis absorption experiments
4.2 Radicals trapping experiments and HRMS analysis of by-products
4.3 Isolation of by-products
4.3.1 Isolation of by-products for dioxane system
4.3.2 Isolation of by-products for cyclohexane system
4.4 The validation of the by-products and intermediates
4.5 Kinetic isotope effect (KIE) experiments
4.6 Reaction mechanism
4.6.1 Possible pathways for the formation of products 3am, 3an, 3ao, and 3aq. S26
4.6.2 Plausible mechanism for thiolation of ethers
4.7 Exploration of di-thiolated products
5. Unsuccessful substrates
6. Characterization data of the products
7. References

1.General experiment details and materials

Unless otherwise noted, all reagents were purchased from commercial suppliers and used without further purification. The purity of ferric chloride is 98%, purchased from J&K Scientific and used directly without purification. All light-promoted reactions were performed in two-necked schlenk tube made of borosilicate glass. The light source was a 40 W 390 nm LEDs, 220 V, 50 Hz, placed approximately 5 cm from the reaction tube without any filters. All air- and moisture-sensitive reactions were performed using oven-dried glassware, including standard Schlenk techniques under an argon atmosphere, magnetically stirred, and monitored by thin layer chromatography (TLC) with Haiyang GF 254 silica gel plates (Qingdao Haiyang chemical industry Co Ltd, Qingdao, China) using UV light, phosphomolybdic acid as visualizing agents. ¹H NMR spectra, ¹³C NMR spectra and ¹⁹F spectra were respectively recorded on 600 MHz NMR Bruker spectrometers. Chemical shifts (δ) were expressed in ppm with TMS as the internal standard and multiplicity identified as s = singlet, br = broad, d = doublet, t = triplet, q = quartet, m = multiplet; coupling constants (*J*) were reported in Hz. High-resolution mass spectra (HRMS) were recorded on Bruker Impact II TOF mass spectrometer using ESI ionization sourse.

2. Experimental procedures

2.1 General procedure for the synthesis of products 3

A 10 mL two-necked schlenk tube containing a stirring bar was charged with FeCl₃ (4.9 mg, 0.03 mmol, 10 mol%) and **1** (0.3 mmol, 1.0 equiv) (if solid). After the tube was purged with several vacuum/argon cycles, it was backfilled with argon and incorporated with an argon balloon. **2** (2 mL) and **1** (0.3 mmol, 1.0 equiv) (if liquid) were then added via syringe. The resulting mixture was irradiated with 40 W 390 nm LEDs (5 cm away) under continuous stirring. The temperature around the reaction flask was approximately 35 °C (induced by the LED lamp). The reaction was moitored by TLC. After completion, the solvent (excess of **2**) was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel with ethyl acetate/hexane (1/100~4/1) as eluent to give the desired product **3**.

2.2 General procedure for the synthesis of products 5

A 10 mL two-necked schlenk tube containing a stirring bar was charged with FeCl₃ (4.9 mg, 0.03 mmol, 10 mol%), **1** (0.3 mmol, 1.0 equiv) (if solid) and **4** (4.5 mmol, 15.0 equiv) (if solid). After the tube was purged with several vacuum/argon cycles, it was backfilled with argon and incorporated with an argon balloon. MeCN (2 mL), **1** (0.3 mmol, 1.0 equiv) (if liquid), **4** (4.5 mmol, 15.0 equiv) (if liquid), and HCl (conc.) (0.6 mmol, 2.0 equiv) were then added via syringe. The resulting mixture was irradiated with 40 W 390 nm LEDs (5 cm away) under continuous stirring. The temperature around the reaction flask was approximately 35 °C (induced by the LED lamp). The reaction was moitored by TLC. After completion, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel with ethyl acetate/petroleum ether (PE~2/1) as eluent to give the desired product **5**.

2.3 1 mmol scale synthesis of product 3a

A 15 mL two-necked schlenk tube containing a stirring bar was charged with FeCl₃ (16.2 mg, 0.1 mmol, 10 mol%). After the tube was purged with several vacuum/argon cycles, it was backfilled with argon and incorporated with an argon balloon. **2a** (6 mL) and **1a** (127 μ L, 1.0 mmol, 1.0 equiv) were then added via syringe. The resulting mixture was irradiated with 40 W 390 nm LEDs (5 cm away) under continuous stirring. The temperature around the reaction flask was approximately 35 °C (induced by the LED lamp). The reaction was moitored by TLC. After completion, the solvent (excess of **2a**) was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel with ethyl acetate/hexane (1/30) as eluent to give the desired product **3a** (137 mg, 70% yield).

2.4 1 mmol scale synthesis of product 5a

A 15 mL two-necked schlenk tube containing a stirring bar was charged with FeCl₃ (16.2 mg, 0.1 mmol, 10 mol%). After the tube was purged with several vacuum/argon cycles, it was backfilled with argon and incorporated with an argon balloon. MeCN (6 mL), **1a** (127 μ L, 1.0 mmol, 1.0 equiv), **4a** (1.61 mL, 15.0 mmol, 15.0 equiv) and HCl (conc.) (166 μ L, 2 mmol, 2.0 equiv) were then added via syringe. The resulting mixture was irradiated with 40 W 390 nm LEDs (5 cm away) under continuous stirring. The temperature around the reaction flask was approximately 35 °C (induced by the LED lamp). The reaction was moitored by TLC. After completion, the solvent was removed under reduced pressure. The residue was purified by flash

column chromatography on silica gel with petroleum ether as eluent to give the desired product **5a** (151 mg, 78% yield).

2.5 Gram scale synthesis of product 5a

A 100 mL two-necked schlenk tube containing a stirring bar was charged with FeCl₃ (114.3 mg, 10 mol%). After the tube was purged with several vacuum/argon cycles, it was backfilled with argon and incorporated with an argon balloon. MeCN (40 mL), **1a** (889.0 μ L, 7.0 mmol, 1.0 equiv), **4a** (11.4 mL, 15.0 equiv) and HCl (conc.) (1.2 mL, 2.0 equiv) were then added via syringe. The resulting mixture was irradiated with 40 W 390 nm LEDs (5 cm away) under continuous stirring. The temperature around the reaction flask was approximately 35 °C (induced by the LED lamp). The reaction was moitored by TLC. After 11 h, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel with petroleum ether as eluent to give the desired product **5a** (1.08 g, 81% yield).

3. Optimization of reaction conditions

3.1 Optimization of conditions for ether C(sp³)–H thiolation

O Ph-S-CI O	+	40 W LEDs FeCl ₃ (10 mol%) Ar, 8 h	→ s→ O→ Ph
1a	2a		3a
Entry		Light source (nm)	Yield (%) ^b
1		390	82
2		427	77
3		440	72
4		456	58
5		467	35

Table S1. Screening of light source^a

^{*a*}Reaction conditions: a mixture of **1a** (0.3 mmol, 1.0 equiv), **2a** (1 mL) and FeCl₃ (0.03 mmol, 10 mol%) was irradiated with 40 W LEDs for 8 h. The temperature around the reaction flask was approximately 35 °C (induced by the LED lamp). ^{*b*}Isolated yields.

Table S2. Screening of the amount of $2a^a$

O H-S-CI O	+	40 W 390 nm LEDs FeCl ₃ (10 mol%) Ar, 8 h	→ s-√O
1a	2a		3a
Entry		2a (mL)	Yield (%) ^b
1		0.5	70
2		1	82
3		2	90
4		4	80

^{*a*}Reaction conditions: **1a** (0.3 mmol, 1.0 equiv), **2a** (x mL) and FeCl₃ (0.03 mmol, 10 mol%) was irradiated with 40 W 390 nm LEDs for 8 h. The temperature around the reaction flask was approximately 35 °C (induced by the LED lamp). ^{*b*}Isolated yields.

Table S3. Screening of the amount of FeCl₃^{*a*}

Ph-S-Cl +		40 W 390 nm LEDs FeCl ₃ (x mol%) Ar, 8 h	► s-<->
1a	2a		3a
Entry]	FeCl ₃ (mol%)	Yield (%) ^b
1		5	62
2		10	90
3		20	88

^{*a*}Reaction conditions: **1a** (0.3 mmol, 1.0 equiv), **2a** (2 mL) and FeCl₃ (x mol%) was irradiated with 40 W 390 nm LEDs for 8 h. The temperature around the reaction flask was approximately 35 °C (induced by the LED lamp). ^{*b*}Isolated yields.

3.2 Optimization of conditions for unactivated alkane C(sp³)–H thiolation

Table S4. Screening of chlorine sources^a

O Ph-S-Cl +	\bigcirc	40 W 390 nm LEDs FeCl ₃ (10 mol%), chlorine source CH ₃ CN (2 mL), Ar, 3 h	s
1a	4a		5a
Entry		Chlorine source (10 mol%)	Yield (%) ^b
1		NH4Cl	4
2		Et ₄ NCl	trace
3		$^{n}\mathrm{Bu}_{4}\mathrm{NCl}$	3
4		Me ₃ SiCl	4
5		Bu ₄ PCl	trace
6		LiCl	5
7		HCl	10
8			n.d.

^{*a*}Reaction conditions: a mixture of **1a** (0.3 mmol, 1.0 equiv), **4a** (3 mmol, 10.0 equiv), chlorine source (0.03 mmol, 10 mol%) and FeCl₃ (0.03 mmol, 10 mol%) in MeCN (2 mL) was irradiated with 40 W 390 nm LEDs for 3 h. The temperature around the reaction flask was approximately 35 °C (induced by the LED lamp). ^{*b*}Isolated yields.

Table S5. Screening of solvents^a

O Ph-S-Cl +	\bigcap	40 W 390 nm LEDs FeCl ₃ (10 mol%), HCl (10 mol%)	s
0	\smile	Solvent (2 mL), Ar, 3 h	Ph /
1a	4a		5a
Entry		Solvent (2 mL)	Yield (%) ^b
1		DMSO	n.d.
2		DMF	n.d.
3		DCM	trace
4		EA	5
5		MeOH	3
6		acetone	8
7		MeCN	10

^{*a*}Reaction conditions: a mixture of **1a** (0.3 mmol, 1.0 equiv), **4a** (3 mmol, 10.0 equiv), HCl (conc.) (0.03 mmol, 10 mol%) and FeCl₃ (0.03 mmol, 10 mol%) in solvent (2 mL) was irradiated with 40 W 390 nm LEDs for 3 h. The temperature around the reaction flask was approximately 35 °C (induced by the LED lamp). ^{*b*}Isolated yields.

Table S6. Screening of the amount of HCl^a

O Ph-S-Cl O	+	40 W 390 nm LEDs FeCl ₃ (10 mol%), HCl CH ₃ CN (2 mL), Ar, 3 h	- s-
1a	4a		5a
Entry		HCl (x equiv)	Yield (%) ^b
1		0.1	10
2		0.2	14
3		0.4	21
4		0.8	38
5		1.25	61
6		1.5	72
7		2	83
8		2.5	82

^{*a*}Reaction conditions: a mixture of **1a** (0.3 mmol, 1.0 equiv), **4a** (3 mmol, 10.0 equiv), HCl (conc.) and FeCl₃ (0.03 mmol, 10 mol%) in MeCN (2 mL) was irradiated with 40 W 390 nm LEDs for 3 h. The temperature around the reaction flask was approximately 35 °C (induced by the LED lamp). ^{*b*}Isolated yields.

Table S7. Screening of the amount of CH₃CN^a

2	1	71
3	2	83
4	3	78
5	5	77

^{*a*}Reaction conditions: a mixture of **1a** (0.3 mmol, 1.0 equiv), **4a** (3 mmol, 10.0 equiv), HCl (conc.) (0.6 mmol, 2 equiv) and FeCl₃ (0.03 mmol, 10 mol%) in CH₃CN (x mL) was irradiated with 40 W 390 nm LEDs for 3 h. The temperature around the reaction flask was approximately 35 °C (induced by the LED lamp). ^{*b*}Isolated yields.

Table S8. Screening of the amount of FeCl₃^a

O ⊨ Bh−S−Cl + O 1a	40 W 390 nm LEDs FeCl ₃ (x mol%), HCl (2 eq CH ₃ CN (2 mL), Ar, 3 h 4a	n Ph 5a
Entry	FeCl ₃ (mol%)	Yield (%) ^b
1	5	73
2	10	83
3	20	79
4		26
^c 5		n.d.

^{*a*}Reaction conditions: **1a** (0.3 mmol, 1.0 equiv), **4a** (3 mmol, 10.0 equiv), HCl (conc.) (0.6 mmol, 2 equiv) and FeCl₃ (x mol%) in CH₃CN (2 mL) was irradiated with 40 W 390 nm LEDs for 3 h. The temperature around the reaction flask was approximately 35 °C (induced by the LED lamp). ^{*b*}Isolated yields. ^{*c*}In dark.

Table S9. Screening of the amount of 4a^a

^{*a*}Reaction conditions: **1a** (0.3 mmol, 1.0 equiv), **4a** (x equiv), HCl (conc.) (0.6 mmol, 2 equiv) and FeCl₃ (10 mol%) in CH₃CN (2 mL) was irradiated with 40 W 390 nm LEDs for 3 h. The temperature around the reaction flask was approximately 35 °C (induced by the LED lamp). ^{*b*}Isolated yields.

Table S10. Light source screening^a

Entry	Light source (nm)	Yield (%) ^b
^c 1	XenonLight (200-400, 50 W)	43
^c 2	365 (40 W)	21
3	390 (40 W)	88
4	427 (40 W)	52
5	440 (40 W)	9
6	456 (40 W)	trace
7	467 (40 W)	n.d.

^{*a*}Reaction conditions: **1a** (0.3 mmol, 1.0 equiv), **4a** (4.5 mmol, 15.0 equiv), HCl (conc.) (0.6 mmol, 2 equiv) and FeCl₃ (10 mol%) in CH₃CN (2 mL) was irradiated with light source for 3 h. The temperature around the reaction flask was approximately 35 °C (induced by the lamp). ^{*b*}Isolated yields. ^{*c*}**1a** was consumed, and some unidentified by-products were formed.

Table S11. Reevaluation of chlorine sources under optimized conditions^a

Ph-S-Cl +		40 W 390 nm LEDs FeCl ₃ (10 mol%), chlorine source CH ₃ CN (2 mL), Ar, 3 h	► s-
1a	4a		5a
Entry		Chlorine source (2 equiv)	Yield (%) ^b
1		NH4Cl	9
2		ⁿ Bu ₄ NCl	5
3		Me ₃ SiCl	11
4		Bu ₄ PCl	10
5		LiCl	21
6		NaCl	trace
7		KCl	3
8		HCl (conc.)	88

^{*a*}Reaction conditions: a mixture of **1a** (0.3 mmol, 1.0 equiv), **4a** (4.5 mmol, 15.0 equiv), chlorine source (0.6 mmol, 2 equiv) and FeCl₃ (0.03 mmol, 10 mol%) in MeCN (2 mL) was irradiated with 40 W 390 nm LEDs for 3 h. The temperature around the reaction flask was approximately 35 °C (induced by the LED lamp). ^{*b*}Isolated yields.

Table S12.	Control ex	periments ^a
------------	------------	------------------------

O H-S-CI + O	<u> </u>	40 W 390 nm LEDs eCl ₃ (10 mol%), HCl (2 equiv CH ₃ CN (2 mL), Ar, 3 h	Ph S-
1a	4a		5a
Entry		Deviation	Yield (%) ^b
1		none	88
2		no HCl	n.d.
3		no FeCl ₃	30
4^c		no FeCl ₃	n.d.
5		no light	n.d.
6		air instead of Ar	64

^{*a*}Reaction conditions: **1a** (0.3 mmol, 1.0 equiv), **4a** (4.5 mmol, $\overline{15.0 \text{ equiv}}$), HCl (conc.) (0.6 mmol, 2 equiv) and FeCl₃ (10 mol%) in CH₃CN (2 mL) was irradiated with 40 W 390 nm LEDs for 3 h. The temperature around the reaction flask was approximately 35 °C (induced by the LED lamp).

^bIsolated yields. ^cIn dark.

4. Mechanistic investigation

4.1 UV-vis absorption experiments

4.1.1 UV-vis absorption of various substances

UV-vis absorption experiments were performed on a spectrophotometer. The samples were measured in a 1.5 mL quartz (Figure S1). The measured solution concentration is as follows:

1a: Preparing 1a (15 mM) solution in CH₃CN.

HCl: Preparing HCl (conc.) (15 mM) solution in CH₃CN.

1a + HCl: Preparing 1a (15 mM) and HCl (conc.) (15 mM) solution in CH₃CN.

FeCl₃: Preparing FeCl₃ (0.25 mM) solution in CH₃CN.

FeCl₃ + HCl: Preparing FeCl₃ (0.25 mM) and HCl (conc.) (15 mM) solution in CH₃CN

Figure S1. UV-Vis absorption spectra of HCl and FeCl₃.

Figure S2. UV-Vis absorption spectra of HCl and 1a.

4.1.2 Determination of binding stoichiometry of EDA complex between HCl and 1a

Using UV–vis spectroscopy, the absorbance values at 360 nm were monitored and plotted as a function of molar fraction of the benzenesulfonyl chloride (1a). The total concentration of HCl and 1a was kept constant at 10 mM, while the amount of 1a was varied from 0 to 10 mM. A parabolic curve with a maximum absorbance value at 50% ($X_{max} = b/(-2a) = 0.1936/(2 \times 0.2037 \approx 0.5)$) mol fraction of 1a was obtained, indicating a 1:1 EDA complex between HCl and 1a.

Figure S3. Job Plot of the EDA complex system between HCl and 1a

4.2 Radicals trapping experiments and HRMS analysis of by-products

Scheme S1. Radical trapping experiments and HRMS analysis of by-products for reaction of 1a and 2a

Scheme S2. Radical trapping experiments for unactivated alkane C(sp³)-H thiolation

4.3 Isolation of by-products

4.3.1 Isolation of by-products for dioxane system

A 10 mL two-necked schlenk tube containing a stirring bar was charged with FeCl₃ (4.9 mg, 0.03 mmol, 10 mol%). After the tube was purged with several vacuum/argon cycles, it was backfilled with argon and incorporated with an argon balloon. **2a** (2 mL) and **1a** (0.3 mmol, 1.0 equiv) were then added via syringe. The resulting mixture was irradiated with 40 W 390 nm LEDs (5 cm away) under continuous stirring. The temperature around the reaction flask was approximately 35 °C (induced by the LED lamp). The reaction was moitored by TLC. After completion, the solvent (excess of **2a**) was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel with ethyl acetate/hexane as eluent to give the desired product **3a** (53 mg, 90% yield), **14** and **15**.

1,4-Dioxan-2-ol (14): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 20.0 mg. Eluent: (petroleum ether/ethyl acetate =3/1). ¹H NMR (600 MHz, CDCl₃) δ 4.91 (dd, *J* = 5.0, 2.2 Hz, 1H), 4.10-4.04 (m, 1H), 3.79 (dd, *J* = 11.6, 2.2 Hz, 1H), 3.72-3.65 (m, 3H), 3.46 (dd, *J* = 11.5, 5.0 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 90.8, 70.0, 66.1, 62.3. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₄H₉O₃ 105.0546; found: 105.0543.

2,2'-Oxybis(1,4-dioxane) (15): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 7.0 mg. Eluent: (petroleum ether/ethyl acetate =4/1). ¹H NMR (600 MHz, CDCl₃) δ 4.97-4.95 (m, 2H), 4.03-3.98 (m, 2H), 3.80 (dd, *J* = 11.7, 2.3 Hz, 2H), 3.74-3.68 (m, 4H), 3.64-3.58 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 91.4, 68.8, 66.1, 61.9. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₈H₁₅O₅ 191.0914; found: 191.0913.

4.3.2 Isolation of by-products for cyclohexane system

In model reactions between **1a** and **4a**, the cyclohexane **17** was observed by ¹HNMR.⁽¹⁾ (containing an excess of alkanes).

In addition, when norbornane or cyclododecane reacted with 1a, the structures of alkyl chlorides were confirmed by ¹H NMR.

During the investigation of substrate scope, when 2,3-dihydrobenzofuran-6-sulfonyl chloride was used as the substrate, the compound **13** was isolated. The specific procedure is as follows: A 10 mL two-necked schlenk tube containing a stirring bar was charged with FeCl₃ (4.9 mg, 0.03 mmol, 10 mol%) and 2,3-dihydrobenzofuran-6-sulfonyl chloride (0.3 mmol, 1.0 equiv). After the tube was purged with several vacuum/argon cycles, it was backfilled with argon and incorporated with an argon balloon. MeCN (2 mL), **4a** (4.5 mmol, 1.5 equiv) and HCl (conc.) (0.6 mmol, 2 equiv) were then added via syringe. The resulting mixture was irradiated with 40 W 390 nm LEDs (5 cm away) under continuous stirring. The temperature around the reaction flask was approximately 35 °C (induced by the LED lamp). The reaction was moitored by TLC. After completion, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel to give compound **13** (7 mg). The structure of **13** was confirmed by ¹H NMR, ¹³C NMR and HRMS.

1,2-Bis(2,3-dihydrobenzofuran-5-yl)disulfane (13): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give a white solid, 7.0 mg. Eluent: (petroleum). ¹H NMR (600 MHz, CDCl₃) δ 7.33 (s, 2H), 7.20 (d, J = 8.2 Hz, 2H), 6.70 (d, J = 8.3 Hz, 2H), 4.59 (t, J = 8.7 Hz, 4H), 3.19 (t, J = 8.7 Hz, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 160.8, 132.1, 128.6, 128.3, 128.2, 109.7, 71.6, 29.5. HRMS

(ESI-TOF) m/z: $[M+Na]^+$ calcd. for $C_{16}H_{14}O_2S_2Na$ 325.0327; found: 325.0333.

4.4 The validation of the by-products and intermediates

A 10 mL two-necked schlenk tube, equipped with a stirring bar, was purged with several vacuum/argon cycles. It was then backfilled with argon and incorporated with an argon balloon. Dioxane (2 mL) and NaClO (0.3 mL) were then added via syringe. The resulting mixture was heated in 40 °C under continuous stirring. After 8 h, the dioxane was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel with ethyl acetate/hexaneas eluent to give compound **14**.

A 10 mL two-necked schlenk tube, equipped with a stirring bar, was purged with several vacuum/argon cycles. It was then backfilled with argon and incorporated with an argon balloon. MeCN (2 mL), cyclohexane (4.5 mmol, 15.0 equiv) and NaClO (0.3 mL) were then added via syringe. The resulting mixture was heated at 40 °C with continuous stirring. After 3 h, the reaction mixture was filtered, the filtrate was concentrated, and then subjected to ¹H NMR analysis.

In the completed model reaction mixture, benzyl alcohol was added and stirred without light for 12 h. The generation of benzaldehyde was observed by ¹H NMR.

Standard conditions: A 10 mL two-necked schlenk tube containing a stirring bar was charged with FeCl₃ (4.9 mg, 0.03 mmol, 20 mol%) and **G** (0.15 mmol, 1.0 equiv). After the tube was purged with several vacuum/argon cycles, it was backfilled with argon and incorporated with an argon balloon. **2a** (2 mL) was then added via syringe. The resulting mixture was irradiated with 40 W 390 nm LEDs (5 cm away) under continuous stirring. The temperature around the reaction flask was approximately 35 °C (induced by the LED lamp). After 8 h, the solvent (excess of **2a**) was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel with ethyl acetate/hexane (1/30) as eluent to give the desired product **3a**.

Standard conditions: A 10 mL two-necked schlenk tube containing a stirring bar was charged with FeCl₃ (4.9 mg, 0.03 mmol, 20 mol%) and **G** (0.15 mmol, 1.0 equiv). After the tube was purged with several vacuum/argon cycles, it was backfilled with argon and incorporated with

an argon balloon. MeCN (2 mL), **4a** (4.5 mmol, 30.0 equiv) and HCl (conc.) (0.6 mmol, 4.0 equiv) were then added via syringe. The resulting mixture was irradiated with 40 W 390 nm LEDs (5 cm away) under continuous stirring. The temperature around the reaction flask was approximately 35 °C (induced by the LED lamp). After 5 h, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel with petroleum ether as eluent to give the desired product **5a**.

4.5 Kinetic isotope effect (KIE) experiments


```
K_H/K_D = 0.50/(1 - 0.50) = 1
```

This result suggested that the cleavage of C–H bonds might not be the rate-determining step.

4.6 Reaction mechanism

4.6.1 Possible pathways for the formation of products 3am, 3an, 3ao, and 3aq

4.6.2 Plausible mechanism for thiolation of ethers

Figure S4. Plausible mechanism for thiolation of ethers.

4.7 Exploration of di-thiolated products

To investigate whether the mono-thiolated products could be further converted into di-thiolated products, we conducted the following experiment. However, no formation of di-thiolated products was detected, and some unidentified by-products were generated.

A 10 mL two-necked schlenk tube containing a stirring bar was charged with FeCl₃ (4.9 mg, 0.03 mmol, 10 mol%) and **5a** (115.0 mg, 0.60 mmol, 2.0 equiv). After the tube was purged with several vacuum/argon cycles, it was backfilled with argon and incorporated with an argon balloon. MeCN (2 mL), **1a** (38.0 μ L, 0.30 mmol, 1.0 equiv) and HCl (conc.) (0.6 mmol, 2.0 equiv) were then added via syringe. The resulting mixture was irradiated with 40 W 390 nm LEDs (5 cm away) under continuous stirring. The temperature around the reaction flask was approximately 35 °C (induced by the LED lamp). The reaction was moitored by TLC.

5. Unsuccessful substrates

6. Characterization data of the products

2-(Phenylthio)-1,4-dioxane (3a)⁽²⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 53.0 mg, 90% yield. Eluent: (petroleum ether/ethyl acetate = 30/1). ¹H NMR (600 MHz, CDCl₃) δ 7.50 (d, *J* = 7.6 Hz, 2H), 7.32-7.28 (m, 2H), 7.27-7.24 (m, 1H), 5.11 (dd, *J* = 5.7, 3.0 Hz, 1H), 4.25-4.19 (m, 1H), 4.01-3.96 (m, 1H), 3.74-3.65 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 134.0, 131.6, 129.0, 127.4, 83.3, 70.0, 66.5, 63.8.

2-(*o*-**Tolylthio**)-**1,4-dioxane** (**3b**)⁽³⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 42.0 mg, 67% yield. Eluent: (petroleum ether/ethyl acetate = 30/1). ¹H NMR (600 MHz, CDCl₃) δ 7.56-7.52 (m, 1H), 7.20-7.14 (m, 3H), 5.10 (dd, *J* = 5.7, 3.0 Hz, 1H), 4.24-4.19 (m, 1H), 3.99 (dd, *J* = 11.7, 3.0 Hz, 1H), 3.78-3.71 (m, 3H), 3.70-3.64 (m, 1H), 2.41 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 139.1, 133.5, 131.5, 130.2, 127.3, 126.6, 82.8, 70.2, 66.6, 63.9, 20.9.

2-(*m***-Tolylthio)-1,4-dioxane (3c)**: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 47.0 mg, 75% yield. Eluent: (petroleum ether/ethyl acetate = 30/1). ¹H NMR (600 MHz, CDCl₃) δ 7.32-7.28 (m, 2H), 7.19 (t, *J* = 7.6 Hz, 1H), 7.06 (d, *J* = 7.6 Hz, 1H), 5.11 (dd, *J* = 5.8, 3.0 Hz, 1H), 4.24-4.19 (m, 1H), 3.97 (dd, *J* = 11.8, 3.0 Hz, 1H), 3.74-3.64 (m, 4H), 2.33 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 138.8, 133.7, 132.2, 128.8, 128.6, 128.2, 83.3, 70.0, 66.5, 63.8, 21.3. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₁H₁₄O₂SNa 233.0607; found 233.0607.

2-(*p***-Tolylthio**)**-1,4-dioxane** (**3d**)⁽²⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give a white solid, 50.5 mg, 80% yield. Eluent: (petroleum ether/ethyl acetate = 30/1). ¹H NMR (600 MHz, CDCl₃) δ 7.40 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 7.9 Hz, 2H), 5.02 (dd, *J* = 6.0, 2.9 Hz, 1H), 4.22-4.17 (m, 1H), 3.96 (dd, *J* = 11.8, 3.0 Hz, 1H), 3.72-3.63 (m, 4H), 2.33 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 137.7, 132.4, 130.0, 129.8, 83.5, 69.9, 66.5, 64.0, 21.1.

2-((4-Methoxyphenyl)thio)-1,4-dioxane (3e)⁽³⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 46.0 mg, 68% yield. Eluent: (petroleum ether/ethyl acetate = 15/1). ¹H NMR (600 MHz, CDCl₃) δ 7.45 (d, *J* = 8.7 Hz, 2H), 6.85 (d, *J* = 8.8 Hz, 2H), 4.92 (dd, *J* = 6.3, 2.9 Hz, 1H), 4.21-4.16 (m, 1H), 3.95 (dd, *J* = 11.7, 2.9 Hz, 1H), 3.80 (s, 3H), 3.70-3.62 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 159.8, 135.0, 123.6, 114.6, 83.8, 69.9, 66.4, 64.3, 55.3.

2-((4-(*tert***-Butyl)phenyl)thio)-1,4-dioxane (3f)**⁽⁴⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 50.0 mg, 66% yield. Eluent: (petroleum ether/ethyl acetate = 30/1). ¹H NMR (600 MHz, CDCl₃) δ 7.47 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 5.10 (dd, *J* = 6.1, 3.0

Hz, 1H), 4.28-4.23 (m, 1H), 4.01 (dd, J = 11.8, 2.9 Hz, 1H), 3.76-3.68 (m, 4H), 1.34 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 150.8, 131.8, 130.2, 126.1, 83.5, 70.0, 66.5, 64.0, 34.6, 31.3.

2-([1,1'-Biphenyl]-4-ylthio)-1,4-dioxane (3g): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give a white solid, 60.0 mg, 74% yield. Eluent: (petroleum ether/ethyl acetate = 20/1). ¹H NMR (600 MHz, CDCl₃) δ 7.58-7.55 (m, 4H), 7.54-7.51 (m, 2H), 7.45-7.41 (m, 2H), 7.36-7.32 (m, 1H), 5.16 (dd, *J* = 5.6, 2.9 Hz, 1H), 4.28-4.23 (m, 1H), 4.00 (dd, *J* = 11.8, 2.9 Hz, 1H), 3.78-3.73 (m, 3H), 3.72-3.67 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 140.4, 133.0, 132.0, 128.9, 127.7, 127.5, 127.0, 83.3, 70.0, 66.6, 63.8. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₆H₁₆O₂SNa 295.0763; found 295.0763.

2-(Mesitylthio)-1,4-dioxane (3h): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give a white solid, 45.0 mg, 63% yield. Eluent: (petroleum ether/ethyl acetate = 30/1). ¹H NMR (600 MHz, CDCl₃) δ 6.98 (s, 2H), 4.74 (dd, *J* = 6.8, 2.9 Hz, 1H), 4.18-4.12 (m, 1H), 3.97 (dd, *J* = 11.6, 2.9 Hz, 1H), 3.74-3.70 (m, 3H), 3.67-3.62 (m, 1H), 2.54 (s, 6H), 2.30 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 143.4, 138.7, 129.1, 128.3, 84.9, 70.6, 66.4, 64.9, 22.4, 21.0. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₃H₁₈O₂SNa 261.0920; found 261.0923.

2-((4-Cyclohexylphenyl)thio)-1,4-dioxane (3i): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to a white solid, 53.0 mg, 64% yield. Eluent: (petroleum ether/ethyl acetate =20/1). ¹H NMR (600 MHz, CDCl₃) δ 7.45 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 5.09 (dd, *J* = 6.0, 2.9 Hz, 1H), 4.27-4.22 (m, 1H), 4.00 (dd, *J* = 11.7, 3.0 Hz, 1H), 3.76-3.67 (m, 4H), 2.55-2.47 (m, 1H), 1.92-1.83 (m, 4H), 1.81-1.76 (m, 1H), 1.47-1.37 (m, 4H), 1.33-1.26 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 147.7, 132.2, 130.4, 127.5, 83.5, 70.0, 66.5, 64.0, 44.2, 34.4, 26.9, 26.1. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₆H₂₂O₂SNa 301.1233; found 301.1232.

2-((4-Fluorophenyl)thio)-1,4-dioxane (3j)⁽⁴⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 50.0 mg, 78% yield. Eluent: (petroleum ether/ethyl acetate = 30/1). ¹H NMR (600 MHz, CDCl₃) δ 7.51-7.47 (m, 2H), 7.01 (t, *J* = 8.6 Hz, 2H), 5.01 (dd, *J* = 5.7, 3.0 Hz, 1H), 4.25-4.20 (m, 1H), 3.97 (dd, *J* = 11.8, 3.0 Hz, 1H), 3.73-3.70 (m, 2H), 3.70-3.64 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 162.6 (d, *J* = 247.7 Hz), 134.5 (d, *J* = 8.2 Hz), 128.7 (d, *J* = 3.4 Hz), 116.0 (d, *J* = 21.7 Hz), 83.6, 69.8, 66.5, 63.8. ¹⁹F NMR (565 MHz, CDCl₃) δ -113.9.

2-((2-Chlorophenyl)thio)-1,4-dioxane (**3k**)⁽⁵⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give a white solid, 46.0 mg, 67% yield. Eluent: (petroleum ether/ethyl acetate = 30/1). ¹H NMR (600 MHz, CDCl₃) δ 7.61 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.39 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.25-7.20 (m, 1H), 7.20-7.15 (m, 1H), 5.26 (dd, *J* = 4.6, 3.0 Hz, 1H), 4.31-4.26 (m, 1H), 4.03 (dd, *J* = 11.9, 3.1 Hz, 1H), 3.84 (dd, *J* = 11.9, 4.6 Hz, 1H), 3.78-3.72 (m, 2H), 3.68-3.63 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 134.9, 133.9, 131.6, 129.8, 127.9, 127.3, 82.1, 69.9, 66.7, 63.0.

2-((3-Chlorophenyl)thio)-1,4-dioxane (3l): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 57.0 mg, 83% yield. Eluent: (petroleum ether/ethyl acetate = 30/1). ¹H NMR (600 MHz, CDCl₃) δ 7.51-7.47 (m, 1H), 7.38-7.34 (m, 1H), 7.24-7.20 (m, 2H), 5.16 (dd, *J* = 5.1, 3.0 Hz, 1H), 4.28-4.22 (m, 1H), 3.98 (dd, *J* = 11.8, 3.0 Hz, 1H), 3.77-3.72 (m, 3H), 3.70-3.65 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 136.4, 134.6, 130.7, 129.9, 129.1, 127.3, 83.1, 69.9, 66.6, 63.3. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₀H₁₁ClO₂SNa 253.0060; found 253.0057.

2-((4-Chlorophenyl)thio)-1,4-dioxane (3m)⁽²⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give a white solid, 60.0 mg, 87% yield. Eluent: (petroleum ether/ethyl acetate = 30/1). ¹H NMR (600 MHz,

CDCl₃) δ 7.43 (d, *J* = 8.5 Hz, 2H), 7.27 (d, *J* = 8.6 Hz, 2H), 5.08 (dd, *J* = 5.4, 3.0 Hz, 1H), 4.26-4.21 (m, 1H), 3.97 (dd, *J* = 11.8, 3.0 Hz, 1H), 3.74-3.70 (m, 3H), 3.69-3.64 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 133.6, 132.9, 132.5, 129.1, 83.3, 69.8, 66.5, 63.6.

2-((4-Bromophenyl)thio)-1,4-dioxane (3n)⁽³⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give a white solid, 58.0 mg, 71% yield. Eluent: (petroleum ether/ethyl acetate = 20/1). ¹H NMR (600 MHz, CDCl₃) δ 7.44 (d, *J* = 8.2 Hz, 2H), 7.38 (d, *J* = 8.3 Hz, 2H), 5.12 (dd, *J* = 5.4, 3.0 Hz, 1H), 4.28-4.23 (m, 1H), 3.99 (dd, *J* = 11.8, 3.0 Hz, 1H), 3.77-3.72 (m, 3H), 3.71-3.66 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 133.3, 133.1, 132.0, 121.5, 83.2, 69.8, 66.5, 63.5.

4-((**1,4-Dioxan-2-yl)thio**)**benzonitrile** (**3o**): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give a white solid, 47.0 mg, 71% yield. Eluent: (petroleum ether/ethyl acetate =8/1). ¹H NMR (600 MHz, CDCl₃) δ 7.57-7.51 (m, 4H), 5.34 (t, *J* = 3.6 Hz, 1H), 4.31-4.25 (m, 1H), 4.02 (dd, *J* = 12.0, 3.0 Hz, 1H), 3.82 (dd, *J* = 11.9, 4.1 Hz, 1H), 3.80-3.76 (m, 2H), 3.71-3.66 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 142.5, 132.3, 129.3, 118.7, 109.8, 82.2, 69.8, 66.7, 62.7. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₁H₁₁NO₂SNa 244.0403; found 244.0405.

2-((4-Nitrophenyl)thio)-1,4-dioxane (3p): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 15.0 mg, 21% yield. Eluent: (petroleum ether/ethyl acetate =10/1). ¹H NMR (600 MHz, CDCl₃) δ 8.14 (d, *J* = 8.9 Hz, 2H), 7.57 (d, *J* = 8.9 Hz, 2H), 5.40 (t, *J* = 3.4 Hz, 1H), 4.33-4.27 (m, 1H), 4.05 (dd, *J* = 12.0, 3.0 Hz, 1H), 3.86 (dd, *J* = 12.0, 3.9 Hz, 1H), 3.83-3.78 (m, 2H), 3.72-3.67 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 146.1, 145.2, 128.7, 123.9, 82.2, 69.8, 66.7, 62.5. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₀H₁₁NO₄SNa 264.0301; found 264.0302.

2-((4-(Trifluoromethyl)phenyl)thio)-1,4-dioxane (3q)⁽³⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give a white solid, 65.0 mg, 82% yield. Eluent: (petroleum ether/ethyl acetate =15/1). ¹H NMR (600 MHz, CDCl₃) δ 7.60 (d, *J* = 8.2 Hz, 2H), 7.56 (d, *J* = 8.2 Hz, 2H), 5.29 (t, *J* = 3.8 Hz, 1H), 4.33-4.27 (m, 1H), 4.04 (dd, *J* = 11.9, 3.1 Hz, 1H), 3.84-3.78 (m, 3H), 3.74-3.68 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 139.9, 130.0, 128.8 (q, *J* = 32.8 Hz), 125.7 (q, *J* = 3.8 Hz), 124.0 (q, *J* = 271.9 Hz), 82.6, 69.8, 66.6, 63.0. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.6.

4-((**1,4-Dioxan-2-yl)thio**)**phenyl pivalate** (**3r**): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give a white solid, 68.0 mg, 77% yield. Eluent: (petroleum ether/ethyl acetate =8/1). ¹H NMR (600 MHz, CDCl₃) δ 7.51 (d, *J* = 8.6 Hz, 2H), 7.01 (d, *J* = 8.6 Hz, 2H), 5.05 (dd, *J* = 5.8, 2.9 Hz, 1H), 4.23-4.18 (m, 1H), 3.96 (dd, *J* = 11.8, 2.9 Hz, 1H), 3.72-3.63 (m, 4H), 1.35 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 176.8, 150.8, 133.2, 130.7, 122.1, 83.5, 69.9, 66.5, 63.8, 39.1, 27.1. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₅H₂₀O₄SNa 319.0975; found 319.0976.

2-(Naphthalen-2-ylthio)-1,4-dioxane (**3s**)⁽³⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give a white solid, 40.0 mg, 50% yield. Eluent: (petroleum ether/ethyl acetate =20/1). ¹H NMR (600 MHz, CDCl₃) δ 7.97 (s, 1H), 7.79 (d, *J* = 7.7 Hz, 1H), 7.76 (d, *J* = 8.3 Hz, 2H), 7.56 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.49-7.42 (m, 2H), 5.21 (dd, *J* = 5.7, 2.9 Hz, 1H), 4.29-4.23 (m, 1H), 4.01 (dd, *J* = 11.8, 2.9 Hz, 1H), 3.76 (dd, *J* = 11.8, 5.6 Hz, 1H), 3.74-3.66 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 133.7, 132.4, 131.4, 130.3, 129.1, 128.5, 127.7, 127.5, 126.6, 126.2, 83.3, 70.0, 66.6, 63.8.

2-((5,6,7,8-Tetrahydronaphthalen-2-yl)thio)-1,4-dioxane (3t): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 49.0 mg, 65% yield. Eluent: (petroleum ether/ethyl acetate =20/1). ¹H NMR (600 MHz, CDCl₃) δ 7.24-7.20 (m, 2H), 7.00 (d, *J* = 7.8 Hz, 1H), 5.04 (dd, *J* = 6.1, 2.9 Hz, 1H), 4.23-4.17 (m, 1H), 3.97 (dd, *J* = 11.7, 2.9 Hz, 1H), 3.73-3.64 (m, 4H), 2.77-2.71 (m, 4H), 1.80-1.75 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 138.0, 137.0, 133.0, 129.8, 129.7, 129.5, 83.6, 70.0, 66.5, 64.1, 29.3, 29.1, 23.1, 23.0. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₁₈O₂SNa 273.0920; found 273.0919.

2-(Thiophen-2-ylthio)-1,4-dioxane (3u)⁽³⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 32.0 mg, 53% yield. Eluent: (petroleum ether/ethyl acetate =20/1). ¹H NMR (600 MHz, CDCl₃) δ 7.39 (dd, J = 5.4, 1.2 Hz, 1H), 7.20-7.17 (m, 1H), 7.01-6.98 (m, 1H), 4.91 (dd, J = 5.3, 3.0 Hz, 1H), 4.28-4.23 (m, 1H), 3.94 (dd, J = 11.9, 3.0 Hz, 1H), 3.72-3.64 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 135.0, 130.5, 130.3, 127.6, 84.5, 69.4, 66.5, 63.7.

5-((**1,4-Dioxan-2-yl)thio**)-**2,3-dihydrobenzofuran** (**3v**): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give a white solid, 14.0 mg, 20% yield. Eluent: (petroleum ether/ethyl acetate =10/1). ¹H NMR (600 MHz, CDCl₃) δ 7.36 (s, 1H), 7.30-7.25 (m, 1H), 6.73 (dd, J = 8.3, 2.6 Hz, 1H), 4.92-4.87 (m, 1H), 4.61-4.56 (m, 2H), 4.21-4.16 (m, 1H), 3.98-3.93 (m, 1H), 3.70-3.62 (m, 4H), 3.23-3.18 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 160.6, 134.1, 130.7, 128.1, 122.9, 109.8, 84.1, 71.6, 69.9, 66.4, 64.3, 29.6. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₄O₃SNa 261.0556; found 261.0552.

5-((1,4-Dioxan-2-yl)thio)-3-methylbenzo[d]oxazol-2(3H)-one (3w): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give a white solid, 57.0 mg, 71% yield. Eluent: (petroleum ether/ethyl acetate =4/1). ¹H NMR (600 MHz, CDCl₃) δ 7.41 (d, J = 1.6 Hz, 1H), 7.37 (dd, J = 8.1, 1.6 Hz, 1H), 6.91 (d, J = 8.0 Hz, 1H), 5.01 (dd, J = 5.6, 2.9 Hz, 1H), 4.26-4.21 (m, 1H), 3.97 (dd, J = 11.8, 3.0 Hz, 1H), 3.74-3.65 (m, 4H), 3.40 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 154.5, 142.7, 131.8, 128.9, 127.2, 114.6, 108.2, 83.9, 69.7, 66.5, 63.7, 28.2. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₃NO₄SNa 290.0457; found 290.0460.

2-(Ethylthio)-1,4-dioxane (3x): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 10.0 mg, 23% yield. Eluent: (petroleum ether/ethyl acetate =30/1). ¹H NMR (600 MHz, CDCl₃) δ 4.82 (dd, *J* = 7.0, 2.9 Hz, 1H), 4.11-4.06 (m, 1H), 3.90 (dd, *J* = 11.7, 2.9 Hz, 1H),

3.73-3.63 (m, 3H), 3.58 (dd, J = 11.7, 7.0 Hz, 1H), 2.77-2.63 (m, 2H), 1.30 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 80.2, 69.9, 66.4 , 64.5, 24.5, 15.3. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₆H₁₃O₂S 149.0631; found: 149.0626.

2-(Butylthio)-1,4-dioxane (3y): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 30.0 mg, 57% yield. Eluent: (petroleum ether/ethyl acetate =30/1). ¹H NMR (600 MHz, CDCl₃) δ 4.79 (dd, *J* = 6.9, 2.9 Hz, 1H), 4.10-4.06 (m, 1H), 3.89 (dd, *J* = 11.7, 2.9 Hz, 1H), 3.73-3.62 (m, 3H), 3.57 (dd, *J* = 11.7, 6.9 Hz, 1H), 2.73-2.61 (m, 2H), 1.64-1.57 (m, 2H), 1.46-1.38 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 80.5, 69.9, 66.4, 64.5, 32.2, 30.1, 21.9, 13.6. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₈H₁₇O₂S 177.0944; found: 177.0946.

2-(Octylthio)-1,4-dioxane (3z): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 35.0 mg, 50% yield. Eluent: (petroleum ether/ethyl acetate =30/1). ¹H NMR (600 MHz, CDCl₃) δ 4.79 (dd, *J* = 7.0, 2.9 Hz, 1H), 4.11-4.06 (m, 1H), 3.89 (dd, *J* = 11.7, 2.9 Hz, 1H), 3.73-3.62 (m, 3H), 3.57 (dd, *J* = 11.7, 6.9 Hz, 1H), 2.72-2.60 (m, 2H), 1.66-1.58 (m, 2H), 1.42-1.38 (m, 2H), 1.28 (q, *J* = 7.5 Hz, 9H), 0.88 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 80.5, 69.9, 66.4, 64.5, 31.8, 30.5, 30.1, 29.2, 29.1, 28.8, 22.6, 14.1. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₂H₂₄O₂SNa 255.1389; found 255.1390.

2-(Cyclopropylthio)-1,4-dioxane (3aa): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 15.0 mg, 31% yield. Eluent: (petroleum ether/ethyl acetate =30/1). ¹H NMR (600 MHz, CDCl₃) δ 4.87 (dd, *J* = 7.0, 2.9 Hz, 1H), 4.12-4.05 (m, 1H), 3.90 (dd, *J* = 11.7, 2.9 Hz, 1H), 3.74-3.67 (m, 3H), 3.63 (dd, *J* = 11.7, 7.0 Hz, 1H), 2.08-2.00 (m, 1H), 0.95-0.86 (m, 2H), 0.71-0.65 (m, 1H), 0.62-0.55 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 82.0, 69.9, 66.4, 64.8, 11.1, 8.4, 7.9. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₇H₁₃O₂S 161.0631; found: 161.0634.

2-(Isobutylthio)-1,4-dioxane (3ab): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 22.0 mg, 42% yield. Eluent: (petroleum ether/ethyl acetate =30/1). ¹H NMR (600 MHz, CDCl₃) δ 4.78-4.75 (m, 1H), 4.11-4.06 (m, 1H), 3.89 (dd, *J* = 11.7, 3.0 Hz, 1H), 3.71-3.67 (m, 2H), 3.67-3.62 (m, 1H), 3.60-3.55 (m, 1H), 2.62-2.51 (m, 2H), 1.88-1.81 (m, 1H), 1.01-0.98 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 80.9, 69.9, 66.4, 64.4, 39.5, 29.0, 22.0, 21.9. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₈H₁₇O₂S 177.0944; found: 177.0939.

2-(Phenethylthio)-1,4-dioxane (3ac): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 32.0 mg, 48% yield. Eluent: (petroleum ether/ethyl acetate =30/1). ¹H NMR (600 MHz, CDCl₃) δ 7.32-7.27 (m, 2H), 7.24-7.19 (m, 3H), 4.78 (dd, *J* = 6.6, 2.9 Hz, 1H), 4.10-4.05 (m, 1H), 3.87 (dd, *J* = 11.7, 2.9 Hz, 1H), 3.70-3.66 (m, 2H), 3.65-3.59 (m, 1H), 3.57 (dd, *J* = 11.7, 6.6 Hz, 1H), 2.97-2.88 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 140.3, 128.5, 128.4, 126.4, 80.5, 69.8, 66.4, 64.3, 36.8, 31.8. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₆O₂SNa 247.0763; found 247.0763.

5-(5-((1,4-Dioxan-2-yl)thio)-2-ethoxyphenyl)-1-methyl-3-propyl-1,6-dihydro-7*H*-

pyrazolo[4,3-*d*]**pyrimidin-7-one (3ad)**: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give a yellow solid, 84.0 mg, 65% yield. Eluent: (petroleum ether/ethyl acetate =4/1). ¹H NMR (600 MHz, CDCl₃) δ 11.02 (br, 1H), 8.59 (d, J = 2.4 Hz, 1H), 7.59 (dd, J = 8.6, 2.4 Hz, 1H), 6.99 (d, J = 8.6 Hz, 1H), 5.07 (dd, J = 5.7, 2.9 Hz, 1H), 4.30-4.26 (m, 3H), 4.26 (s, 3H), 4.00 (dd, J = 11.8, 2.9 Hz, 1H), 3.76-3.72 (m, 3H), 3.72-3.67 (m, 1H), 2.93 (t, J = 7.6 Hz, 2H), 1.87 (q, J = 7.5 Hz, 2H), 1.59 (t, J = 7.0 Hz, 3H), 1.04 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 156.2, 153.8, 147.6, 146.7, 138.5, 136.6, 135.3, 126.2, 124.5, 120.9, 113.6, 83.6, 69.8, 66.5, 65.6, 63.8, 38.2, 27.8, 22.3, 14.7, 14.1. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd. for C₂₁H₂₆N₄O₄SNa 453.1567; found: 453.1571.

2-(Phenylthio)tetrahydrofuran (3ae)⁽³⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 18.0 mg, 34% yield. Eluent: (petroleum ether/ethyl acetate =40/1). ¹H NMR (600 MHz, CDCl₃) δ 7.43 (d, *J* = 8.2 Hz, 2H), 7.24-7.19 (m, 2H), 7.17-7.12 (m, 1H), 5.59-5.55 (m, 1H), 3.98-3.92 (m, 1H), 3.91-3.86 (m, 1H), 2.33-2.25 (m, 1H), 1.98-1.86 (m, 2H), 1.85-1.77 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 134.7, 130.1, 127.8, 125.8, 86.1, 66.3, 31.6, 23.8.

2-(Phenylthio)tetrahydro-2*H***-pyran (3af)**⁽²⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 35.5 mg, 61% yield. Eluent: (petroleum ether/ethyl acetate =40/1). ¹H NMR (600 MHz, CDCl₃) δ 7.40 (d, *J* = 7.7 Hz, 2H), 7.21 (t, *J* = 7.6 Hz, 2H), 7.14 (t, *J* = 7.4 Hz, 1H), 5.14 (t, *J* = 4.6 Hz, 1H), 4.13-4.07 (m, 1H), 3.55-3.49 (m, 1H), 1.99-1.91 (m, 1H), 1.83-1.72 (m, 2H), 1.62-1.52 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 134.4, 129.9, 127.8, 125.7, 84.3, 63.5, 30.6, 24.5, 20.6.

2-((4-Chlorophenyl)thio)tetrahydrofuran (**3ag**)⁽³⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 32.0 mg, 50% yield. Eluent: (petroleum ether/ethyl acetate =50/1). ¹H NMR (600 MHz, CDCl₃) δ 7.43 (d, *J* = 8.3 Hz, 2H), 7.26 (d, *J* = 8.4 Hz, 2H), 5.60 (dd, *J* = 7.2, 4.1 Hz, 1H), 4.01 (q, *J* = 7.9 Hz, 1H), 3.98-3.93 (m, 1H), 2.40-2.33 (m, 1H), 2.06-1.83 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 134.3, 133.0, 132.5, 128.9, 87.3, 67.3, 32.6, 24.8.

2-((4-Chlorophenyl)thio)tetrahydro-2*H***-pyran (3ah)⁽²⁾:** The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 53.5 mg, 78% yield. Eluent: (petroleum ether/ethyl acetate =50/1). ¹H NMR (600 MHz, CDCl₃) δ 7.40 (d, *J* = 8.3 Hz, 2H), 7.25 (d, *J* = 8.2 Hz, 2H), 5.17 (t, *J* = 4.8 Hz, 1H), 4.17-4.12 (m, 1H), 3.61-3.55 (m, 1H), 2.05-1.99 (m, 1H), 1.89-1.78 (m, 2H), 1.69-

1.59 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 133.9, 132.9, 132.3, 128.9, 85.4, 64.5, 31.5, 25.5, 21.5.

2-(*p*-**Tolylthio**)**tetrahydrofuran** (**3ai**)⁽³⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 15.0 mg, 26% yield. Eluent: (petroleum ether/ethyl acetate =40/1). ¹H NMR (600 MHz, CDCl₃) δ 7.40 (d, *J* = 7.9 Hz, 2H), 7.10 (d, *J* = 7.8 Hz, 2H), 5.57 (dd, *J* = 7.2, 3.9 Hz, 1H), 4.02 (q, *J* = 7.9 Hz, 1H), 3.96-3.91(m, 1H), 2.37-2.32 (m, 1H), 2.32 (s, 3H), 2.03-1.92 (m, 2H), 1.90-1.82 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 137.0, 131.9, 131.8, 129.6, 87.6, 67.2, 32.6, 24.9, 21.1.

2-(*p***-Tolylthio**)**tetrahydro-**2*H***-pyran** (**3aj**)⁽⁴⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 22.0 mg, 35% yield. Eluent: (petroleum ether/ethyl acetate =40/1). ¹H NMR (600 MHz, CDCl₃) δ 7.38 (d, *J* = 7.8 Hz, 2H), 7.10 (d, *J* = 7.8 Hz, 2H), 5.12 (dd, *J* = 6.1, 3.8 Hz, 1H), 4.20-4.14 (m, 1H), 3.59-3.53 (m, 1H), 2.32 (s, 3H), 2.04-1.97 (m, 1H), 1.89-1.77 (m, 2H), 1.66-1.57 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 136.9, 131.7, 131.5, 129.6, 85.7, 64.6, 31.6, 25.6, 21.7, 21.1.

2-Methyl-5-(phenylthio)tetrahydrofuran (**3ak**)⁽²⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 36.0 mg, 62% yield (dr = 2.6:1. The polarity of the two is very close and cannot be separated.). Eluent: (petroleum ether/ethylacetate =40/1). ¹H NMR (600 MHz, CDCl₃) δ 7.46-7.41 (m, 2.85H), 7.23-7.18 (m, 3H), 7.16-7.12 (m, 1.35H), 5.62 (dd, *J* = 7.3, 4.8 Hz, 1H), 5.41 (dd, *J* = 7.1, 4.0 Hz, 0.37H), 4.27-4.21 (m, 1H), 4.14-4.09 (m, 0.39H), 2.42-2.36 (m, 1H), 2.30-2.24 (m, 0.37H), 2.05-1.98 (m, 2H), 1.91-1.88 (m, 0.77H), 1.62-1.56 (m, 0.44H), 1.39-1.34 (m, 1H), 1.27 (d, *J* = 6.2 Hz, 1H), 1.22 (d, *J* = 6.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 136.2, 135.5, 135.4, 131.5, 130.8, 129.5, 129.1, 128.8, 126.9, 126.6, 87.1, 86.8, 77.7, 74.5, 33.6, 33.2, 32.5, 22.1, 20.1.

((2-Methoxyethoxy)methyl)(phenyl)sulfane (3al): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 21.0 mg, 35% yield. Eluent: (petroleum ether/ethyl acetate =30/1). ¹H NMR (600 MHz, CDCl₃) δ 7.48 (dd, *J* = 7.1, 1.4 Hz, 2H), 7.28 (t, *J* = 7.7 Hz, 2H), 7.23-7.19 (m, 1H), 5.07 (s, 2H), 3.79-3.76 (m, 2H), 3.59-3.56 (m, 2H), 3.38 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 135.9, 130.2, 128.9, 126.7, 76.5, 71.6, 67.4, 59.0. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₀H₁₅O₂S 199.0787; found: 199.0788.

(2-Methoxyethane-1,1-diyl)bis(phenylsulfane) (3am): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 10.0 mg, 12% yield. Eluent: (petroleum ether/ethyl acetate =40/1). ¹H NMR (600 MHz, CDCl₃) δ 7.50-7.46 (m, 4H), 7.33-7.28 (m, 6H), 4.53 (t, *J* = 6.3 Hz, 1H), 3.63 (d, *J* = 6.3 Hz, 2H), 3.38 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 133.6, 133.0, 129.0, 127.9, 74.3, 59.0, 57.2. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₅H₁₇OS₂ 277.0715; found: 277.0718.

(1-Ethoxy-2-(2-ethoxyethoxy)ethyl)(phenyl)sulfane (3an): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 20.0 mg, 25% yield. Eluent: (petroleum ether/ethyl acetate =10/1). ¹H NMR (600 MHz, CDCl₃) δ 7.54-7.51 (m, 2H), 7.30-7.25 (m, 3H), 4.91 (t, *J* = 5.8 Hz, 1H), 4.14-4.09 (m, 1H), 3.74-3.69 (m, 1H), 3.66-3.59 (m, 4H), 3.56-3.48 (m, 4H), 1.21 (t, *J* = 7.0 Hz, 3H), 1.18 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 133.9, 132.5, 128.7, 127.7, 88.0, 72.5, 69.5, 67.8, 66.8, 66.6, 15.2, 15.2. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd. for C_{14H22}O₃SNa 293.1182; found: 293.1178.

(2-Ethoxyethane-1,1-diyl)bis(phenylsulfane) (3ao): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 20.0 mg, 23% yield. Eluent: (petroleum ether/ethyl acetate =40/1). ¹H NMR (600 MHz, CDCl₃) δ 7.51 (d, *J* = 7.1 Hz, 4H), 7.36-7.30 (m, 6H), 4.57 (t, *J* = 6.4 Hz, 1H), 3.71 (d, *J* = 6.4 Hz, 2H), 3.55 (q, *J* = 7.0 Hz, 2H), 1.22 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 133.8, 132.9, 128.9, 127.8, 72.4, 66.8, 57.3, 15.1. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd. for C₁₆H₁₈OS₂Na 313.0691; found: 313.0691.

Ethane-1,1-diylbis(phenylsulfane) (**3aq**)⁽⁶⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 32.0 mg, 43% yield. Eluent: (petroleum ether/ethyl acetate =100/1). ¹H NMR (600 MHz, CDCl₃) δ 7.50-7.46 (m, 4H), 7.34-7.26 (m, 6H), 4.54 (q, *J* = 6.9 Hz, 1H), 1.61 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 134.1, 132.9, 128.9, 127.8, 52.2, 22.8.

Cyclohexyl(phenyl)sulfane (5a)⁽⁷⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 50.5 mg, 88% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.40-7.38 (m, 1H), 7.27 (t, *J* = 7.6 Hz, 2H), 7.22-7.18 (m, 1H), 3.13-3.07 (m, 1H), 2.01-1.96 (m, 2H), 1.80-1.75 (m, 2H), 1.63-1.59 (m, 1H), 1.41-1.22 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 135.2, 131.9, 128.8, 126.6, 46.6, 33.4, 26.1, 25.8.

Cyclohexyl(*o*-tolyl)sulfane (5b)⁽⁸⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 42.0 mg, 68% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.38-7.34 (m, 1H), 7.19-7.16 (m, 1H), 7.15-7.08 (m, 2H), 3.11-3.06 (m, 1H), 2.40 (s, 3H), 1.99-1.95 (m, 2H), 1.79-1.75 (m, 2H), 1.63-1.60 (m, 1H), 1.44-1.36 (m, 2H), 1.33-1.22 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 139.4, 134.7, 131.4, 130.2, 126.4, 126.2, 46.0, 33.4, 26.1, 25.9, 20.9.

Cyclohexyl(*m*-tolyl)sulfane (5c)⁽⁹⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 47.0 mg, 76% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.22-7.14 (m, 3H), 7.01 (d, *J* = 7.1 Hz, 1H), 3.11-3.06 (m, 1H), 2.32 (s, 3H), 2.00-1.96 (m, 2H), 1.78-1.75 (m, 2H), 1.63-1.59 (m, 1H), 1.40-1.22 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 138.5, 134.9, 132.6, 128.9, 128.6, 127.5, 46.6, 33.4, 26.1, 25.8, 21.4.

Cyclohexyl(*p*-tolyl)sulfane (5d)⁽⁸⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 44.0 mg, 71% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.31 (d, *J* = 7.7 Hz, 2H), 7.09 (d, *J* = 7.5 Hz, 2H), 3.04-2.98 (m, 1H), 2.32 (s, 3H), 1.98-1.94 (m, 2H), 1.77-1.74 (m, 2H), 1.62-1.58 (m, 1H), 1.36-1.22 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 136.9, 132.8, 131.3, 129.5, 47.1, 33.4, 26.1, 25.8, 21.1.

Cyclohexyl(4-methoxyphenyl)sulfane (**5e**)⁽⁸⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 45.0 mg, 68% yield. Eluent: (petroleum ether/ethyl acetate=80/1). ¹H NMR (600 MHz, CDCl₃) δ 7.38 (d, *J* = 8.7 Hz, 2H), 6.83 (d, *J* = 8.7 Hz, 2H), 3.79 (s, 3H), 2.92-2.86 (m, 1H), 1.95-1.91 (m, 2H), 1.77-1.73 (m, 2H), 1.61-1.57 (m, 1H), 1.35-1.18(m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 159.3, 135.6, 132.7, 114.3, 55.3, 47.9, 33.4, 26.1, 25.8.

(4-(*tert*-Butyl)phenyl)(cyclohexyl)sulfane (5f)⁽¹⁰⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 59.0 mg, 79% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.33 (d, *J* = 8.5 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 3.08-3.01 (m, 1H), 2.00-1.96 (m, 2H), 1.78-1.74 (m, 2H), 1.62-1.59 (m, 1H), 1.42-1.32 (m, 3H), 1.30 (s, 9H), 1.28-1.20(m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 149.9, 132.1, 131.5, 125.8, 46.9, 34.5, 33.5, 31.3, 26.1, 25.8.

[1,1'-Biphenyl]-4-yl(cyclohexyl)sulfane (5g)⁽¹¹⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 54.0 mg, 67% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.56 (d, *J* = 7.8 Hz, 2H), 7.50 (d, *J* = 8.1 Hz, 2H), 7.46-7.39 (m, 4H), 7.32 (t, *J* = 7.4 Hz, 1H), 3.17-3.11 (m, 1H), 2.03-1.99 (m, 2H), 1.80-1.76 (m, 2H), 1.64-1.60 (m, 1H), 1.44-1.23 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 140.5, 139.5, 134.4, 132.1, 128.9, 127.5, 127.4, 127.0, 46.7, 33.4, 26.1, 25.8.

Cyclohexyl(4-cyclohexylphenyl)sulfane (5h): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give a white solid, 54.0 mg, 66% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.32 (d, *J* = 7.9 Hz, 2H), 7.12 (d, *J* = 7.9 Hz, 2H), 3.06-3.01 (m, 1H), 2.49-2.43 (m, 1H), 1.99-1.95 (m, 2H), 1.88-1.82 (m, 4H), 1.78-1.72 (m, 3H), 1.62-1.58 (m, 1H), 1.41-1.21 (m, 10H). ¹³C NMR (151 MHz, CDCl₃) δ 147.0, 132.5, 131.7, 127.3, 47.0, 44.2, 34.4, 33.5, 26.9, 26.2, 26.1, 25.8. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₈H₂₇S 275.1828; found: 275.1825.

Cyclohexyl(4-fluorophenyl)sulfane (**5i**)⁽⁷⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 48.0 mg, 76% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.42-7.37 (m, 2H), 6.98 (t, *J* = 8.5 Hz, 2H), 3.00-2.95 (m, 1H), 1.96-1.91 (m, 2H), 1.78-1.74 (m, 2H), 1.62-1.58 (m, 1H), 1.37-1.22 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 162.2 (d, *J* = 247.1 Hz), 134.9 (d, *J* = 7.9 Hz), 129.8 (d, *J* = 3.3 Hz), 115.8 (d, *J* = 21.8 Hz), 47.6, 33.3, 26.1, 25.7. ¹⁹F NMR (565 MHz, CDCl₃) δ -114.9.

(2-Chlorophenyl)(cyclohexyl)sulfane (5j)⁽⁷⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 40.0 mg, 65% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ

7.37 (d, J = 8.0 Hz, 2H), 7.19 (t, J = 7.5 Hz, 1H), 7.14-7.10 (m, 1H), 3.26-3.21 (m, 1H), 2.01-1.97 (m, 2H), 1.81-1.77 (m, 2H), 1.65-1.61 (m, 1H), 1.47-1.40 (m, 2H), 1.38-1.26 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 135.3, 134.8, 131.4, 129.9, 127.1, 126.9, 45.3, 33.1, 26.0, 25.8.

(3-Chlorophenyl)(cyclohexyl)sulfane (5k)⁽¹²⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 60.0 mg, 88% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.36 (t, *J* = 2.1 Hz, 1H), 7.26-7.22 (m, 1H), 7.21-7.15 (m, 2H), 3.16-3.10 (m, 1H), 2.00-1.96 (m, 2H), 1.79-1.75 (m, 2H), 1.64-1.59 (m, 1H), 1.40-1.24 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 137.6, 134.4, 130.8, 129.8, 129.3, 126.5, 46.5, 33.3, 26.0, 25.7.

(4-Chlorophenyl)(cyclohexyl)sulfane (51)⁽¹³⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 53.0 mg, 78% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.31 (d, J = 8.6 Hz, 2H), 7.24 (d, J = 8.5 Hz, 2H), 3.08-3.03 (m, 1H), 1.97-1.93 (m, 2H), 1.78-1.74 (m, 2H), 1.63-1.59 (m, 1H), 1.37-1.22 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 133.7, 133.3, 132.7, 128.9, 46.9, 33.3, 26.0, 25.7.

(4-Bromophenyl)(cyclohexyl)sulfane (5m)⁽¹⁴⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 60.0 mg, 74% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.39 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.2 Hz, 2H), 3.09-3.04 (m, 1H), 1.98-1.94 (m, 2H), 1.78-1.74 (m, 2H), 1.63-1.59 (m, 1H), 1.39-1.22 (m, 5H) ¹³C NMR (151 MHz, CDCl₃) δ 134.5, 133.4, 131.8, 120.6, 46.8, 33.3, 26.0, 25.7.

4-(Cyclohexylthio)benzonitrile (5n)⁽¹⁵⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 48.0 mg, 74% yield. Eluent: (petroleum ether/ethyl acetate=20/1). ¹H NMR (600

MHz, CDCl₃) δ 7.52 (d, J = 8.1 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 3.32-3.27 (m, 1H), 2.04-2.00 (m, 2H), 1.82-1.78 (m, 2H), 1.67-1.63 (m, 1H), 1.48-1.26 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 144.0, 132.2, 128.6, 118.9, 108.5, 44.9, 33.0, 25.9, 25.6.

Cyclohexyl(4-nitrophenyl)sulfane (50)⁽¹⁶⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 14.0 mg, 20% yield. Eluent: (petroleum ether/ethyl acetate=10/1). ¹H NMR (600 MHz, CDCl₃) δ 7.26 (d, *J* = 8.3 Hz, 2H), 6.65 (d, *J* = 8.3 Hz, 2H), 2.87-2.81 (m, 1H), 1.94-1.90 (m, 2H), 1.76-1.72 (m, 2H), 1.60-1.57 (m, 1H), 1.32-1.21 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 145.4, 135.9, 122.8, 115.7, 48.1, 33.4, 26.2, 25.8.

Cyclohexyl(4-(trifluoromethyl)phenyl)sulfane (**5p**)⁽⁶⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 61.0 mg, 78% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.50 (d, *J* = 8.1 Hz, 2H), 7.41 (d, *J* = 8.1 Hz, 2H), 3.27-3.21 (m, 1H), 2.03-1.99 (m, 2H), 1.81-1.77 (m, 2H), 1.66-1.62 (m, 1H), 1.46-1.28 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 141.2, 129.7, 127.9 (q, *J* = 32.7 Hz), 125.5 (q, *J* = 3.8 Hz), 124.2 (q, *J* = 271.8 Hz), 45.6, 33.1, 25.9, 25.7. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.5.

N-(**4**-(**cyclohexylthio**)**phenyl**)**acetamide** (**5q**)⁽¹⁷⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give a yellow solid, 31.0 mg, 41% yield. Eluent: (petroleum ether/ethyl acetate=4/1). ¹H NMR (600 MHz, CDCl₃) δ 7.75 (br, 1H), 7.44 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 8.3 Hz, 2H), 3.02-2.97 (m, 1H), 2.15 (s, 3H), 1.96-1.92 (m, 2H), 1.77-1.73 (m, 2H), 1.62-1.58 (m, 1H), 1.37-1.22 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 168.6, 137.1, 133.6, 129.9, 120.3, 47.3, 33.3, 26.1, 25.8, 24.5.

4-(Cyclohexylthio)phenyl pivalate (5r): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light

yellow oil, 73.0 mg, 83% yield. Eluent: (petroleum ether/ethyl acetate=40/1). ¹H NMR (600 MHz, CDCl₃) δ 7.41 (d, *J* = 8.5 Hz, 2H), 6.99 (d, *J* = 8.5 Hz, 2H), 3.06-2.99 (m, 1H), 1.98-1.93 (m, 2H), 1.78-1.74 (m, 2H), 1.62-1.57 (m, 1H), 1.39-1.35 (m, 1H), 1.34 (s, 9H), 1.32-1.22 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 176.9, 150.3, 133.7, 131.8, 121.9, 47.3, 39.1, 33.3, 27.1, 26.1, 25.8. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd. for C₁₇H₂₄O₂SNa 315.1389; found: 315.1391.

Cyclohexyl(naphthalen-2-yl)sulfane (5s)⁽⁶⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give white solid, 51.0 mg, 70% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.85 (s, 1H), 7.79-7.72 (m, 3H), 7.49-7.42 (m, 3H), 3.25-3.19 (m, 1H), 2.04-2.00 (m, 2H), 1.80-1.75 (m, 2H), 1.64-1.59 (m, 1H), 1.46-1.38 (m, 2H), 1.36-1.23 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 133.8, 132.8, 132.2, 130.3, 129.7, 128.2, 127.7, 127.3, 126.4, 125.8, 46.7, 33.4, 26.1, 25.8.

Cyclohexyl(5,6,7,8-tetrahydronaphthalen-2-yl)sulfane (5t): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 47.0 mg, 64% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.15-7.11 (m, 2H), 6.97 (d, *J* = 7.8 Hz, 1H), 3.05-2.98 (m, 1H), 2.76-2.71 (m, 4H), 1.99-1.95 (m, 2H), 1.80-1.74 (m, 6H), 1.62-1.57 (m, 1H), 1.37-1.21 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 137.7, 136.2, 133.4, 131.2, 129.9, 129.5, 47.1, 33.5, 29.3, 29.1, 26.1, 25.8, 23.1, 23.1. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd. for C₁₆H₂₂SNa 269.1334; found: 269.1338.

2-(Cyclohexylthio)thiophene (**5u**)⁽⁷⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 25.0 mg, 42% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.35 (d, *J* = 5.4 Hz, 1H), 7.12-7.09 (m, 1H), 6.99-6.96 (m, 1H), 2.89-2.82 (m, 1H), 1.99-1.94 (m, 2H), 1.79-1.74 (m, 2H), 1.62-1.56 (m, 1H), 1.38-1.19 (m,5H). ¹³C NMR (151 MHz, CDCl₃) δ 134.9, 132.9, 129.7, 127.5, 49.9, 33.2, 26.1, 25.6.

5-(Cyclohexylthio)-3-methylbenzo[d]oxazol-2(3H)-one (5v): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give a white solid, 37.0 mg, 47% yield. Eluent: (petroleum ether/ethyl acetate=10/1). ¹H NMR (600 MHz, CDCl₃) δ 7.31-7.28 (m, 2H), 6.89 (d, *J* = 8.3 Hz, 1H), 3.40 (s, 3H), 3.02-2.95 (m, 1H), 1.95-1.91 (m, 2H), 1.78-1.73 (m, 2H), 1.63-1.58 (m, 1H), 1.37-1.22 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 154.5, 142.7, 131.3, 129.5, 128.5, 115.0, 108.0, 48.1, 33.3, 28.2 26.0, 25.7. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₄H₁₈NO₂S 264.1053; found: 264.1058.

Butyl(cyclohexyl)sulfane (5w)⁽¹⁸⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 33.0 mg, 64% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 2.66-2.59 (m, 1H), 2.53 (t, *J* = 7.5 Hz, 2H), 1.99-1.94 (m, 2H), 1.79-1.74 (m, 2H), 1.64-1.60 (m, 1H), 1.59-1.52 (m, 2H), 1.43-1.38 (m, 2H), 1.34-1.25 (m, 5H), 0.91 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 43.5, 33.8, 32.2, 29.8, 26.2, 25.9, 22.2, 13.7.

Cyclohexyl(octyl)sulfane (**5x**)⁽¹⁹⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 42.0 mg, 61% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 2.64-2.60 (m, 1H), 2.52 (t, *J* = 7.5 Hz, 2H), 1.98-1.95 (m, 2H), 1.78-1.74 (m, 2H), 1.64-1.60 (m, 1H), 1.59-1.53 (m, 2H), 1.39-1.35 (m, 2H), 1.33-1.25 (m, 13H), 0.88 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 43.5, 33.8, 31.8, 30.2, 30.1, 29.2, 29.2, 29.1, 26.2, 25.9, 22.7, 14.1.

Cyclohexyl(phenethyl)sulfane (**5**y)⁽²⁰⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 23.0 mg, 35% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.29 (t, *J* = 7.5 Hz, 2H), 7.23-7.19 (m, 3H), 2.90-2.85 (m, 2H), 2.81-2.77 (m, 2H), 2.68-2.63 (m, 1H), 1.99-1.96 (m, 2H), 1.78-1.74 (m, 2H), 1.64-1.60 (m, 1H), 1.35-1.23 (m, 5H). ¹³C NMR

(151 MHz, CDCl₃) δ 140.9, 128.5, 126.3, 43.7, 36.8, 33.7, 31.7, 26.2, 25.9.

5-(5-(Cyclohexylthio)-2-ethoxyphenyl)-1-methyl-3-propyl-1,6-dihydro-*7H***-pyrazolo**[**4,3-d]pyrimidin-7-one** (**5z**): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give a yellow solid, 77.0 mg, 61% yield. Eluent: (petroleum ether/ethyl acetate=2/1). ¹H NMR (600 MHz, CDCl₃) δ 11.05 (br, 1H), 8.51 (d, J = 2.4 Hz, 1H), 7.48 (dd, J = 8.6, 2.4 Hz, 1H), 6.97 (d, J = 8.7 Hz, 1H), 4.29-4.27 (q, J = 6.8 Hz, 2H), 4.27 (s, 3H), 3.10-3.02 (m, 1H), 2.94 (t, J = 7.7 Hz, 2H), 2.03-1.98 (m, 2H), 1.88 (q, J = 7.5 Hz, 2H), 1.83-1.76 (m, 2H), 1.65-1.61 (m, 1H), 1.59 (t, J = 6.9 Hz, 3H), 1.44-1.22 (m, 5H), 1.04 (t, J = 7.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 155.7, 153.9, 147.8, 146.7, 138.6, 136.9, 135.2, 127.6, 124.5, 120.6, 113.5, 65.5, 47.4, 38.2, 33.4, 27.8, 26.1, 25.7, 22.4, 14.7, 14.1. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₂₃H₃₁N₄O₂S 427.2162; found: 427.2155.

Cyclopentyl(phenyl)sulfane (**5aa**)⁽²¹⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 41.0 mg, 77% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.35 (d, *J* = 7.7 Hz, 2H), 7.27 (t, *J* = 7.7 Hz, 2H), 7.17 (t, *J* = 7.4 Hz, 1H), 3.63-3.56 (m, 1H), 2.09-2.04 (m, 2H), 1.80-1.76 (m, 2H), 1.66-1.59 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 137.3, 130.1, 128.7, 125.9, 46.1, 33.6, 24.8.

Cyclooctyl(phenyl)sulfane (**5ab**)⁽¹³⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 25.0 mg, 38% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.37 (d, *J* = 7.7 Hz, 2H), 7.28 (t, *J* = 7.6 Hz, 2H), 7.19 (t, *J* = 7.4 Hz, 1H), 3.43-3.36 (m, 1H), 1.99-1.93 (m, 2H), 1.80-1.73 (m, 2H), 1.72-1.65 (m, 2H), 1.61-1.48 (m, 8H).¹³C NMR (151 MHz, CDCl₃) δ 136.2, 131.5, 128.8, 126.4, 47.8, 32.1, 27.2, 25.9, 25.2.

Cyclododecyl(phenyl)sulfane (**5ac**)⁽⁶⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 45.0 mg, 54% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.37 (d, *J* = 7.7 Hz, 2H), 7.27 (t, *J* = 7.6 Hz, 2H), 7.18 (t, *J* = 7.4 Hz, 1H), 3.29-3.23 (m, 1H), 1.97-1.89 (m, 1H), 1.73-1.68 (m, 3H), 1.60-1.57 (m, 1H), 1.56-1.53 (m, 2H), 1.43-1.33 (m, 15H). ¹³C NMR (151 MHz, CDCl₃) δ 136.1, 131.2, 128.8, 126.3, 44.8, 29.9, 24.2, 23.9, 23.4, 22.2.

(Decahydronaphthalen-2-yl)(phenyl)sulfane (5ad) and (decahydronaphthalen-1-yl)(phenyl)sulfane (5ad'): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 30.0 mg, 41% yield (C1:C2 =56:44). Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.41-7.36 (m, 2.03H), 7.30-7.25 (m, 2.28H), 7.23-7.19 (m, 0.91H), 3.30-3.22 (m, 0.44H), 3.11-3.04 (m, 0.56H), 2.05-2.00 (m, 0.95H), 1.95-1.86 (m, 1.01H), 1.81-1.63 (m, 4.15H), 1.61-1.57 (m, 1.12H), 1.53-1.30 (m, 5.31H), 1.27-1.20 (m, 1.97H), 1.12-1.00 (m, 1.02H), 0.98-0.93 (m, 1.07H). ¹³C NMR (151 MHz, CDCl₃) δ 135.1, 131.9, 131.8, 131.5, 128.8, 128.8, 126.6, 126.6, 126.5, 46.3, 43.4, 42.6, 40.8, 36.5, 35.5, 35.2, 34.0, 33.7, 33.6, 33.5, 26.5, 26.4. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₆H₂₃S 247.1515; found: 247.1506.

[1,1'-Bi(cyclohexan)]-2-yl(phenyl)sulfane (5ae), [1,1'-Bi(cyclohexan)]-3-yl(phenyl)sulfane (5ae') and [1,1'-Bi(cyclohexan)]-4-yl(phenyl)sulfane (5ae''): The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 55.0 mg, 67% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.40-7.37 (m, 1.74H), 7.30-7.24 (m, 1.81H), 7.23-7.17 (m, 0.79H), 4.54-4.42 (m, 0.13H), 3.65-3.53 (m, 0.48H), 3.06-2.94 (m, 0.39H), 2.08-1.98 (m, 1.04H), 1.81-1.61 (m, 9.49H), 1.54-1.49 (m, 1.06H), 1.33-1.04 (m, 7.00H), 0.97-0.89 (m, 2.14H). ¹³C NMR (151 MHz, CDCl₃) δ 136.3, 135.2, 132.0, 131.7, 131.4, 131.2, 128.8, 128.8, 126.5, 126.4, 126.3, 46.9, 45.8, 43.9, 43.3, 42.0, 37.7, 37.2, 34.6, 33.9, 33.8, 31.4, 30.7, 30.4, 30.2, 30.2, 30.1, 30.0,

29.4, 29.0, 26.9, 26.8, 26.8, 26.8, 26.6, 25.2, 21.6. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₈H₂₇S 275.1828; found: 275.1833.

Pentyl(phenyl)sulfane (5af), pentan-2-yl(phenyl)sulfane (5af) and pentan-3yl(phenyl)sulfane (5af)⁽⁶⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 22.0 mg, 41% yield (C1:C2:C3=61:26:13). Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.50 (d, *J* = 7.8 Hz, 0.11H), 7.39 (d, *J* = 8.1 Hz, 0.72H), 7.34-7.25 (m, 2.17H), 7.21 (t, *J* = 7.6 Hz, 0.39H), 7.16 (t, *J* = 7.3 Hz, 0.31H), 3.25-3.19 (m, 0.26H), 3.02-2.96 (m, 0.13H), 2.91 (t, *J* = 7.4 Hz, 0.61H), 1.69-1.56 (m, 1.48H), 1.51-1.37 (m, 1.53H), 1.36-1.29 (m, 0.72H), 1.27 (d, *J* = 6.7 Hz, 0.93H), 1.01 (t, *J* = 7.4 Hz, 0.72H), 0.95-0.83 (m, 1.86H). ¹³C NMR (151 MHz, CDCl₃) δ 137.1, 135.6, 131.9, 131.8, 129.1, 128.9, 128.8, 128.8, 127.6, 126.6, 126.4, 125.6, 52.3, 43.0, 38.9, 33.6, 31.0, 28.9, 26.7, 22.3, 21.1, 20.3, 14.0, 13.9, 11.2.

Hexyl(phenyl)sulfane hexan-2-yl(phenyl)sulfane (5ag), (5ag³) and hexan-3yl(phenyl)sulfane (5ag^w)⁽²²⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 57.0 mg, 98% yield (C1:C2:C3=52:27:21). Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.49 (d, J = 7.7 Hz, 0.33H), 7.38 (d, J = 7.6 Hz, 0.97H), 7.33-7.23 (m, 2.61H), 7.22-7.17 (m, 0.70H), 7.15 (t, J = 7.3 Hz, 0.27H), 3.24-3.16 (m, 0.27H), 3.07-3.01 (m, 0.21H), 2.91 (t, J = 7.4 Hz, 0.52H), 1.66-1.56 (m, 1.44H), 1.55-1.47 (m, 2.44H), 1.45-1.40 (m, 1.40H), 1.28-1.25 (m, 2.21H), 1.00 (t, J = 7.3 Hz, 1.10H), 0.91-0.83 (m, 4.51H). ¹³C NMR (151 MHz, CDCl₃) δ 137.2, 137.2, 136.1, 135.7, 131.9, 131.8, 129.0, 129.0, 128.8, 128.7, 127.7, 127.2, 126.6, 126.4, 125.6, 50.5, 43.4, 37.1, 36.4, 36.3, 33.7, 32.8, 31.9, 31.4, 30.1, 29.7, 29.7, 29.4, 29.3, 29.2, 28.5, 27.4, 27.1, 22.7, 22.6, 22.5, 21.2, 20.1, 19.7, 14.1, 14.0, 11.1.

Octyl(phenyl)sulfane (5ah), octan-2-yl(phenyl)sulfane (5ah[']), octan-3-yl(phenyl)sulfane (5ah^{''}) and octan-4-yl(phenyl)sulfane (5ah^{'''})⁽²³⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 47.0 mg, 71% yield (C1:C2:C3:C4=41:25:17:17). Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.49 (d, *J* = 7.6 Hz, 0.32H), 7.40-7.37(m, 1.22H), 7.33-7.23 (m, 2.34H), 7.22-7.17 (m, 0.78H), 7.15 (t, *J* = 7.3 Hz, 0.22H), 3.22-3.16 (m, 0.25H), 3.08-3.04 (m, 0.17H), 3.03-3.00 (m, 0.17H), 2.91 (t, *J* = 7.4 Hz, 0.41H), 1.78-1.67 (m, 0.76H), 1.66-1.52 (m, 2.45H), 1.51-1.41 (m, 2.83H), 1.30-1.25 (m, 5.19H), 1.00 (t, *J* = 7.4 Hz, 0.68H), 0.90-0.85 (m, 3.14H). ¹³C NMR (151 MHz, CDCl₃) δ 137.1, 137.1, 136.0, 135.6, 131.9, 131.8, 129.1, 128.9, 128.8, 128.8, 128.7, 127.6, 127.2, 126.6, 126.4, 125.6, 50.7, 48.9, 43.3, 36.8, 36.7, 34.3, 33.9, 33.6, 31.8, 31.8, 29.2, 29.2, 29.0, 28.9, 27.3, 27.0, 26.5, 22.7, 22.6, 22.6, 21.2, 20.0, 14.1, 14.1, 14.0, 14.0, 11.1.

(2,3-Dimethylbutyl)(phenyl)sulfane (5ai)⁽⁶⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 23.0mg, 40% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.33-7.30 (m, 2H), 7.26 (t, *J* = 7.6 Hz, 2H), 7.15 (t, *J* = 7.3 Hz, 1H), 3.01 (dd, *J* = 12.4, 5.2 Hz, 1H), 2.71 (dd, *J* = 12.4, 8.5 Hz, 1H), 1.80-1.74 (m, 1H), 1.66-1.59 (m, 1H), 0.97 (d, *J* = 6.9 Hz, 3H), 0.91 (d, *J* = 6.9 Hz, 3H), 0.85 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 137.6, 128.8, 128.8, 125.6, 39.0, 38.5, 31.5, 20.3, 17.8, 15.2.

((1*S*,4*R*)-Bicyclo[2.2.1]heptan-2-yl)(phenyl)sulfane (5aj)⁽²⁴⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 36.5 mg, 60% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.32-7.29 (m, 2H), 7.26 (t, *J* = 7.1 Hz, 2H), 7.15 (t, *J* = 7.4 Hz, 1H), 3.21-

3.17 (m, 1H), 2.31-2.26 (m, 2H), 1.83-1.77 (m, 1H), 1.71-1.67 (m, 1H), 1.65-1.57 (m, 1H), 1.54-1.50 (m, 1H), 1.45-1.40 (m, 1H), 1.27-1.17 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 137.8, 129.0, 128.8, 125.5, 48.2, 42.3, 38.6, 36.5, 35.6, 28.9, 28.7.

((1r,3r,5r,7r)-Adamantan-2-yl)(phenyl)sulfane (5ak)⁽⁶⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 26.0 mg, 36% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.37 (d, J = 7.6 Hz, 2H), 7.29-7.25 (m, 2H), 7.18 (t, J = 7.4 Hz, 1H), 3.58-3.55 (m, 1H), 2.26-2.21 (m, 2H), 2.05-2.02 (m, 2H), 1.93-1.88 (m, 4H), 1.81-1.74 (m, 4H), 1.60-1.55 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 136.7, 130.8, 128.8, 126.2, 55.6, 38.8, 37.7, 32.9, 32.0, 27.7, 27.4.

Triethyl(2-(phenylthio)ethyl)silane (5al)⁽²⁵⁾: The title compound was prepared according to the general procedure and purified by flash column chromatography on silica gel to give the light yellow oil, 32.0 mg, 42% yield. Eluent: (petroleum ether). ¹H NMR (600 MHz, CDCl₃) δ 7.32-7.24 (m, 4H), 7.16 (t, *J* = 7.1 Hz, 1H), 2.99-2.94 (m, 2H), 0.99-0.91 (m, 11H), 0.55 (q, *J* = 7.9 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 137.3, 129.0, 128.8, 125.7, 29.6, 12.0, 7.4, 3.2.

7. References

- Shen, C.; Dagnaw, W. M.; Fong, C. W.; Lau, K. C.; Chow, C.-F. Selective Functionalization of C(Sp³)–H Bonds: Catalytic Chlorination and Bromination by IronIII-Acacen-Halide under Ambient Condition. *Chem. Commun.* **2022**, *58*, 10627–10630.
- (2) Zhu, X.; Xie, X.; Li, P.; Guo, J.; Wang, L. Visible-Light-Induced Direct Thiolation at α-C(sp³)–H of Ethers with Disulfides Using Acridine Red as Photocatalyst. *Org. Lett.* 2016, *18*, 1546–1549.
- (3) Guo, S.; He, W.; Xiang, J.; Yuan, Y. Palladium-Catalyzed Direct Thiolation of Ethers with Sodium Sulfinates. *Tetrahedron Lett.* **2014**, *55*, 6407–6410.
- (4) Zhao, F.; Tan, Q.; Wang, D.; Chen, J.; Deng, G.-J. Efficient C–S Bond Formation by Direct Functionalization of C(sp³)–H Bond Adjacent to Heteroatoms under Metal-Free Conditions. *Adv. Synth. Catal.* **2019**, *361*, 4075–4081.
- (5) Guo, S.; Yuan, Y.; Xiang, J. Metal-Free Oxidative C(sp³)–H Bond Thiolation of Ethers with Disulfides. *Org. Lett.* **2013**, *15*, 4654–4657.
- (6) Sakai Kurumi; Ogiwara, Yohei; Ishida, Kento, N. F. Synthesis of Dithioacetals through Iodine-Promoted Insertion Reactions of Vinylsilane to Disulfides and Its Application to

Diselenoacetalization. Synthesis 2023, 55, 1915–1921.

- (7) Tu, J.-L.; Hu, A.-M.; Guo, L.; Xia, W. Iron-Catalyzed C(Sp³)–H Borylation, Thiolation, and Sulfinylation Enabled by Photoinduced Ligand-to-Metal Charge Transfer. J. Am. Chem. Soc. 2023, 145 (13), 7600–7611.
- (8) Yang, S.; Yu, X.; Poater, A.; Cavallo, L.; Cazin, C. S. J.; Nolan, S. P.; Szostak, M. Buchwald–Hartwig Amination and C–S/S–H Metathesis of Aryl Sulfides by Selective C– S Cleavage Mediated by Air- and Moisture-Stable [Pd(NHC)(μ-Cl)Cl]₂ Precatalysts: Unified Mechanism for Activation of Inert C–S Bonds. Org. Lett. 2022, 24 (50), 9210– 9215.
- (9) Delcaillau, T.; Bismuto, A.; Lian, Z.; Morandi, B. Nickel-Catalyzed Inter- and Intramolecular Aryl Thioether Metathesis by Reversible Arylation. *Angew. Chemie Int. Ed.* 2020, 59 (5), 2110–2114.
- (10) Yamada, T.; Tanaka III, K.; Hashimoto, Y.; Morita, N.; Tamura, O. Electrophilic C3–H Alkenylation of 2,6-Dialkoxypyridine Derivatives via Pd(II)/Tl(III) Reaction System. *Adv. Synth. Catal.* **2023**, *365* (18), 3138–3148.
- (11) Sang, R.; Korkis, S. E.; Su, W.; Ye, F.; Engl, P. S.; Berger, F.; Ritter, T. Site-Selective C-H Oxygenation via Aryl Sulfonium Salts. *Angew. Chemie Int. Ed.* 2019, 58 (45), 16161– 16166.
- (12) Du, B.; Jin, B.; Sun, P. Syntheses of Sulfides and Selenides through Direct Oxidative Functionalization of C(Sp³)–H Bond. *Org. Lett.* **2014**, *16* (11), 3032–3035.
- (13) Grover, J.; Prakash, G.; Teja, C.; Lahiri, G. K.; Maiti, D. Metal-Free Photoinduced Hydrogen Atom Transfer Assisted C(Sp³)–H Thioarylation. *Green Chem.* 2023, 25 (9), 3431–3436.
- (14) Cai, Y.-P.; Nie, F.-Y.; Song, Q.-H. Visible-Light-Mediated Alkylation of Thiophenols via Electron Donor–Acceptor Complexes Formed between Two Reactants. J. Org. Chem. 2021, 86 (17), 12419–12426.
- (15) Hu, H.-C.; Wang, Z.-P.; Liang, L.; Du, X.-Y.; Li, T.; Feng, J.; Xiao, T.-T.; Jin, Z.-M.; Ding, S.-Y.; Liu, Q.; Lu, L.-Q.; Xiao, W.-J.; Wang, W. Bottom-Up Construction of Ni(II)-Incorporated Covalent Organic Framework for Metallaphotoredox Catalysis. *Chem. A Eur. J.* 2024, *30* (10), e202303476.
- (16) Caballero-Muñoz, A.; Rosas-Ortega, M.; Díaz-Salazar, H.; Porcel, S. C–S Cross-Coupling of Aryldiazonium Salts with Thiols Mediated by Gold. *European J. Org. Chem.* 2023, 26 (30), e202300203.
- (17) Jiang, Y.; Qin, Y.; Xie, S.; Zhang, X.; Dong, J.; Ma, D. A General and Efficient Approach to Aryl Thiols: CuI-Catalyzed Coupling of Aryl Iodides with Sulfur and Subsequent Reduction. Org. Lett. 2009, 11 (22), 5250–5253.
- (18) Li, Q.-L.; Guo, L.-Y.; Shi, J.; Xiang, T.-X.; Li, Q.; He, K.-H.; Wang, B.-Q.; Feng, C.; Pan, F. Nickel-Catalyzed Deaminative Cross-Coupling of Disulfides with Katritzky Pryidium Salts to Construct Sulfides. *Asian J. Org. Chem.* 2021, *10* (10), 2525–2529.
- (19) Tyson, E. L.; Niemeyer, Z. L.; Yoon, T. P. Redox Mediators in Visible Light Photocatalysis: Photocatalytic Radical Thiol–Ene Additions. J. Org. Chem. **2014**, *79* (3), 1427–1436.
- (20) Wu, H.; Chen, S.; Liu, C.; Zhao, Q.; Wang, Z.; Jin, Q.; Sun, S.; Guo, J.; He, X.; Walsh, P. J.; Shang, Y. Construction of C–S and C–Se Bonds from Unstrained Ketone Precursors under Photoredox Catalysis. *Angew. Chem. Int. Ed.* **2024**, *63* (8), e202314790.

- (21) Wu, F.; Wang, Y.; Qian, Y.; Xie, Z.-B.; Ke, Z.; Zhao, Y.; Liu, Z. A Green Route to Benzyl Phenyl Sulfide from Thioanisole and Benzyl Alcohol over Dual Functional Ionic Liquids. *Chem. An Asian J.* **2023**, *18* (2), e202201078.
- (22) Ren, X.; Tang, S.; Li, L.; Li, J.; Liang, H.; Li, G.; Yang, G.; Li, H.; Yuan, B. Surfactant-Type Catalyst for Aerobic Oxidative Coupling of Hydrazine with Thiol in Water. J. Org. Chem. 2019, 84 (13), 8683–8690.
- (23) Zhang, C.-P.; Wang, T.-Z.; Liang, Y.-F. Manganese-Promoted Reductive Cross-Coupling of Disulfides with Dialkyl Carbonates. *Chem. Commun.* **2023**, *59* (97), 14439–14442.
- (24) Tamai, T.; Fujiwara, K.; Higashimae, S.; Nomoto, A.; Ogawa, A. Gold-Catalyzed Anti-Markovnikov Selective Hydrothiolation of Unactivated Alkenes. *Org. Lett.* 2016, *18* (9), 2114–2117.
- (25) Wang, Z.; Yan, C.-X.; Liu, R.; Li, X.; Dai, J.; Li, X.; Shi, D. Photo-Induced Versatile Aliphatic C–H Functionalization via Electron Donor–Acceptor Complex. *Sci. Bull.* 2024, 69 (3), 345–353.

8. Copies for NMR of products

¹H-NMR Spectrum (600 MHz, CDCl₃) of **3a**

LSP-391-1HNMR

503 312 312 267 255 255

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3a**

LSP-391-1CNMR	134.00 131.61 128.98 127.37	83.28 77.31 76.89 66.51 66.51 63.79
	\\\/	$ \forall $

¹H-NMR Spectrum (600 MHz, CDCl₃) of **3b**

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3b**

LSP-469-5CNMR

000701	00000000	r-
	801 - 80 / 8	00
010130		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NLLOOW	0
	0000000	2
	$ \forall $	

¹H-NMR Spectrum (600 MHz, CDCl₃) of **3c**

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3c**

LSP-462-1CNMR

N V V J	000C 014	<u>е</u>
	00000000	m
00 10 10 00 00 00		
00000	890 977 M	
ннннн	0000000	0
	$ \forall $	

¹H-NMR Spectrum (600 MHz, CDCl₃) of **3d**

LSP-459-1HNMR

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3d**

LSP-459-1CNMR

0 2 9 2 9		
9 8 6 1-	0001-004	-
	N N O & 4 O	-
L 0.66		
0 0 0 m	00004	H
	0000177000	0
$ \rangle V$	$ \vee $	

¹H-NMR Spectrum (600 MHz, CDCl₃) of **3e**

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3e**

LSP-459-5CNMR	159.79	135.02	123.58	114.56	83.82 77.25 77.04 76.83 66.40 66.23
					$ \Psi $

¹H-NMR Spectrum (600 MHz, CDCl₃) of **3f**

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3f**

LSP-470-2CNMR	150.75	131.83 130.20 126.05	83.47 77.28 76.86 66.98 63.95 63.95	34.56 31.27
		\backslash / \downarrow	$ \vee $	

¹H-NMR Spectrum (600 MHz, CDCl₃) of **3g**

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3g**

LSP-461-1CNMR

S67

¹H-NMR Spectrum (600 MHz, CDCl₃) of **3h**

6.981

LSP-470-1HNMR

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3h**

LSP-470-1CNMR	13.43	38.74	29.13	87.000 0.000 0.010 0.00000000	2.40
	1	1	V		

¹H-NMR Spectrum (600 MHz, CDCl₃) of **3i** LSP-470-3HNMR O `S 3i 1.95 2.00 人 人 ... - **5** 1.02 1.00 4.12 4.12 2 1.13 1.18 1.18 1.18 3 9 8 6 0 ppm 1 100

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3i**

LSP-470-3CNMR	.72	.18	5000 0 4 0 4 0 0 7 0 0 9	21	123	
	147	132 130 127	83. 777. 66. 63.	44.	34. 26.	
		$\langle $	$ \vee $		$ \rangle$	

¹H-NMR Spectrum (600 MHz, CDCl₃) of **3j**

LSP-461-3HNMR

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3j**

¹⁹F-NMR Spectrum (576 MHz, CDCl₃) of **3**j

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3**k

	9 8 8 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1234	82. 77. 69. 62.
SUR	$\setminus \vee \mid \mid \mid$

LSP-462-2CNMR

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3**

000000	
~~~~~~	-1000 n 00 h
94000r	
0 0 0 0 0 0 0	~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
нанана	0000 11100
	$  \forall      $

LSP-462-3CNMR





## ¹H-NMR Spectrum (600 MHz, CDCl₃) of **3m**



### ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3m**

8.58 2.94 9.09	503 503 503 503 503 503 503 503 503 503
1133	83. 77. 66.
$\mathbb{V}$	$ \vee   $

LSP-459-2CNMR



## ¹H-NMR Spectrum (600 MHz, CDCl₃) of **3n**



LSP-470-4HNMR



## ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3n**

LSP-470-4CNMR

0 0	M N				
NO	0 0	0000	ST 1	90	
		000	00 1	70 0	
00	H 10				
00	0 0	0000	5	0 m	
	H H	00	9	00	
V	/	$  \vee$			



## ¹H-NMR Spectrum (600 MHz, CDCl₃) of **30**









## ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **30**

0	0		9	S				
n o	<b>m</b>	N	9	5	4 0	in m	90	9
					0 0	0 00	r 9	9
0	0	σ	00	0				
4	<b>m</b>	CN	-	0	01	r 9	σ v	2
H		-	-		-1 00	~ ~	99	9
					1	$\bigvee$		

LSP-461-2CNMR





S85

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3p** 



¹H-NMR Spectrum (600 MHz, CDCl₃) of **3**q



## ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3q**



LSP-470-5CNMR



¹⁹F-NMR Spectrum (576 MHz, CDCl₃) of **3q** 

LSP-470-5FNMR



-62.601



## ¹H-NMR Spectrum (600 MHz, CDCl₃) of **3r**





¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3r** 







## ¹H-NMR Spectrum (600 MHz, CDCl₃) of **3s**



## ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3s**

L- 01 10 4 00 00 00 01	
04000L400	000L 404
	0000000
001000rr99	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	00000000
	$  \forall     $

LSP-471-2CNMR









# ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3t**

LSP-471-1CNMR	<pre>/ 138.02 138.02 138.02 139.7 129.74 129.74 (129.74 129.45</pre>	<ul> <li>83. 61</li> <li>83. 61</li> <li>77. 25</li> <li>77. 25</li> <li>76. 83</li> <li>69. 97</li> <li>66. 46</li> <li>64. 07</li> </ul>	<pre>/ 29.30 29.08 / 22.99</pre>
			$\vee$ $\vee$



## ¹H-NMR Spectrum (600 MHz, CDCl₃) of **3u**



LSP-472-2HNMR



## ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3u**

0040	
0400	0 V M M M M M
	4 000 441
4001-	
0 0 0 0 0	4 220 000
	0 0 0 1 1 1 0 0 0 0
1 \ /	$  \vee      $

LSP-472-2CNMR



¹H-NMR Spectrum (600 MHz, CDCl₃) of **3v** 







# ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3v**

		0 00 00 M	5		
	i O	- 1 Q H O	r-	0400FF00	<b>O</b>
LSP-4/1-3CNMR				00000040	<b>1</b> 0
	0	4000 0	0		
	Q	0 0 0 0	0	4 2 2 9 4 9 9 4 7 7 9 7 9 7 9 7 9 7 9 7 9 7 9	0
	-			0000000	0
				$ \vee //$	



## ¹H-NMR Spectrum (600 MHz, CDCl₃) of **3**w



LSP-476-1HNMR



## ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3w**

LSP-476-1CNMR	54.48	42.65	31.75 28.94 27.16	14.57	08.15	3.90 6.77.29 6.87.44 3.738 3.738 3.738	8.23
						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
			/			$ \vee   $	





¹H-NMR Spectrum (600 MHz, CDCl₃) of 3x



¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3**x

LSP-478-1CNMR	80.15 77.23 77.02 66.81 66.41 66.49	24.50
	$\nabla V   V$	





¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3**y

LSP-478-2CNMR	80.46 77.26 66.38 66.338 64.45 66.39	32.19 30.14	21.94	13.62	
	$\forall \forall \mid \forall$	$\mathbb{N}$			







¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3z** 

177.26 777.26 76.83 69.88 69.88 64.46

0001099	-1 m
00 10 10 10 10	9 0
	CI 77
00000	N 1
SK	/

LSP-478-3CNMR



¹H-NMR Spectrum (600 MHz, CDCl₃) of **3aa** 








## ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3aa**

LSP-478-4CNMR	82 777.025 669.86 66.82 66.42 66.75	11.05 8.41 7.92
	$  \forall     \rangle$	$\backslash V$



¹H-NMR Spectrum (600 MHz, CDCl₃) of **3ab** 







¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3ab** 

LSP-478-5CNMR

8008684 50788684	48	0008
80. 777. 669. 64.	39.	29. 21.
$\forall \forall \mid V$		ΙV





LSP-472-6HNMR





## ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3ac**

LSP-472-6CNMR

	0 F 0		
m	N 4 4	0 0 10 0 0 0 0 0	- D
		N N O 00 00 4 N	
0	0000		
4	000	0110004	e
	ннн	0001111000	m m
	N/	$\forall \forall   1 \rangle$	





¹H-NMR Spectrum (600 MHz, CDCl₃) of **3ad** 





## ¹³C-NMR Spectrum (151 MHz, CDCl₃) of 3ad

	4 0	$r \sim$	401-	000	-					
	N ∞	S [~	500	-l 4 00	9	N O @ Ի տ ത @ @	C~-	9	4	9 Q
LSP-4/0-4UNMR					•	0 0 0 0 r 4 0 r	-		<b>m</b>	90
	90	r 9	0000	0 <del>4</del> 0	e					
	S S	44	ოოო	000	-	~ <u>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </u>	00		0	4 4
					-	0000000	m	0	2	
		V	\ /			$  \vee \rangle \rangle / / /$				V





## ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3ae**

LSP-484-1CNMR

	6 0 6					
9	0 ~ ~	<b>m</b>	M N O	Ω.	4	<b>m</b>
		-	N O Ø	N	9	00
4	0 ~ 0					
e e e e e e e e e e e e e e e e e e e	MNN	9	990	9		m
H		00	~~~	0	<b>m</b>	2
	\17		$\forall$			



### ¹H-NMR Spectrum (600 MHz, CDCl₃) of **3af**







## ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3af**

LSP-484-2CNMR	134.40 129.87 125.69 125.69	84.28 76.22 76.01 75.80 63.52	30.58 24.50 20.64
	\   /	$  \vee  $	





S120

## ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3ag**

LSP-491-4CNMR

r000					
0040	o	OH O	o	e	0
	~	N O 00	N	9	
4° (C)					
0 0 0 0 0		0 7 7	C	2	4
	00	~~~	9	e	0
$\mathbb{V}/$		$\forall$			



¹H-NMR Spectrum (600 MHz, CDCl₃) of **3ah** 







# ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3ah**

LSP-491-3CNMR	133.92 132.85 128.91 128.91	85.36	77.25 77.04 76.82	64.46	31.48	25.47	21.54
	$\mathbb{V}/$		$\vee$				



200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

.....



## ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3ai**

LSP-491-2CNMR	137,04 131,00 131,77 129.61	87.61 77.27 76.84 67.23	32.62 24.86 21.09
	I \/	$  \forall  $	



¹H-NMR Spectrum (600 MHz, CDCl₃) of **3aj** 



## ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3aj**

LSP-491-1CNMR	136.94 131.70 131.45 129.58 129.58	85.71 77.25 76.82 76.82 64.61	31.59 25.55 21.71 21.08
	1 1/2	$  \vee  $	$    \rangle$



¹H-NMR Spectrum (600 MHz, CDCl₃) of **3ak** 



S128

## ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3ak**

LSP-486-2CNMR

50004000000		
1040240200	0H40040	000 01-
	001~0004	00 010
9000-000000		
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	LOLL04	000 000
	0000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ししししコンフン		1 1 1 1 1 1
70 11 IFF	N W C	10 11



S129

## ¹H-NMR Spectrum (600 MHz, CDCl₃) of **3al**



LSP-485-1-2HNMR

190



## ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3al**

	910		
0	00	004000	
		000404	0
c)	000		
m	000	LL004L	5
-		~~~~~	5
	\//	$\mathbb{V}/\mathbb{I}$	

LSP-485-1-2CNMR



¹H-NMR Spectrum (600 MHz, CDCl₃) of **3am** 



LSP-485-1-1HNMR



### ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **3am**



### ¹H-NMR Spectrum (600 MHz, CDCl₃) of **3an**







### ¹³C-NMR Spectrum (151MHz, CDCl₃) of **3an**



# ¹H-NMR Spectrum (600 MHz, CDCl₃) of **3ao**









### ¹³C-NMR Spectrum (151MHz, CDCl₃) of **3ao**



# ¹H-NMR Spectrum (600 MHz, CDCl₃) of **3aq**

5555 543 532 521  $\bigwedge^{1.613}_{1.602}$ 



in the

LSP-514-1-1HNMR





## ¹³C-NMR Spectrum (151MHz, CDCl₃) of **3aq**

LSP-514-1-1CNMR	134.13 132.91 128.90 127.79	77.27 77.06 76.84	52.21	22.85
	$\setminus V$	$\vee$		





¹H-NMR Spectrum (600 MHz, CDCl₃) of **5a** 











S141

¹H-NMR Spectrum (600 MHz, CDCl₃) of **5b** 





LSP-557-1HNMR





# ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5b**

LSP-557-1CNMR	139.43 134.69 131.41 130.21 126.43 126.19	77.28 77.07 76.86	45.97	33.41 26.12 25.88 20.87
	$  \rangle \rangle   V$	$\forall$		ΙVΙ





¹H-NMR Spectrum (600 MHz, CDCl₃) of **5**c

3.102 3.066

N.



LSP-557-2HNMR



S144
¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5c** 

LSP-557-2CNMR	138.48 132.99 128.55 128.55 128.59	77.29 77.08 76.87	46.57	33.43 26.10 25.83 21.35
	$    \vee$	$\vee$		I V I





¹H-NMR Spectrum (600 MHz, CDCl₃) of **5d** 



LSP-556-1HNMR

# ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5d**

LSP-556-1CNMR	136.85 131.28 131.28 129.52	77.25 77.04 76.83	47.12	33.41 26.11 25.81 21.08	
	1 \17	$\forall$		IVI	





¹H-NMR Spectrum (600 MHz, CDCl₃) of **5**e



¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5e** 

LSP-556-4CNMR	159.34	135.57 132.65	114.31	77.24 76.82	55.30	47.93	33.40 26.12 25.79
				$\vee$			ΙV





¹H-NMR Spectrum (600 MHz, CDCl₃) of **5**f



¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5f** 

LSP-558-3CNMR	149.93	132.11 131.54 125.75	77.22 77.01 76.80	46.87	34.49 33.47 31.29 31.29 25.82 25.82
		$\vee$	$\vee$		N/ V





¹H-NMR Spectrum (600 MHz, CDCl₃) of **5g** 





LSP-558-6HNMR



 $^{13}\text{C-NMR}$  Spectrum (151 MHz, CDCl₃) of 5g

LSP-558-6CNMR	
---------------	--

140.53 139.51 132.12 132.12 128.85 127.45 127.38 126.97	77.30 77.09 76.88	46.66	33.44	26.12 25.84
	$\forall$			V





¹H-NMR Spectrum (600 MHz, CDCl₃) of **5h** 



¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5h** 

LSP-557-5CNMR	146.95	132.51 131.68 127.28	77.26 77.05 76.83	46.96 44.18	34.41 33.46 26.88 26.15 26.11 25.82 25.82
		VI	$\vee$		



¹H-NMR Spectrum (600 MHz, CDCl₃) of **5**i



LSP-558-1HNMR

7.405 7.395 7.391 6.994 6.980 6.965

Ŵ





¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5**i

	43	00088	71	940	0		4
LSP-558-1CNMR	e H	v, <del>4</del> 0 0	<u>6</u> .0	8 9 M	9	m. 01	÷.
	100	6677	22	11	47	26 33	N
	17	ΥV	V	$\forall$			/





¹⁹F-NMR Spectrum (576 MHz, CDCl₃) of **5i** 



LSP-558-1FNMR





¹H-NMR Spectrum (600 MHz, CDCl₃) of **5**j









# ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5**j

LSP-557-3CNMR	135.33 131.42 126.92 126.92	77.28	45.28	33.07	26.00
	NIP	Ψ		Ĩ	Ŷ





¹H-NMR Spectrum (600 MHz, CDCl₃) of **5**k



1/////

LSP-557-4HNMR







¹H-NMR Spectrum (600 MHz, CDCl₃) of **5**l



LSP-556-2HNMR

7.231 7.231





## ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5**

LSP-556-2CNMR

0 0					
	F 49 47	2		0 0	
	800	0	2	0 -	
000					
0000	rr9	9	e	29	
		4	<b>m</b>	0 0	
$\mathbb{V}/$	$\vee$			V	





¹H-NMR Spectrum (600 MHz, CDCl₃) of **5m** 



## ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5m**

LSP-556-5CNMR

000	N				
4.0.0	ŵ.	845	1	25	35
334	20		ý,		
111	7		4	- m	88
717		$\vee$			V





¹H-NMR Spectrum (600 MHz, CDCl₃) of **5n** 



## ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5n**

LSP-558-2CNMR

44.01	32.20	18.91	.08.47	7.31 6.88 6.88	4.94	12.97	5.63
Ī	ĪĪ	Ĩ	Ï	Ψ	Ĭ	Ï	Ŷ





¹H-NMR Spectrum (600 MHz, CDCl₃) of **50** 



¹³C-NMR Spectrum (151 MHz, CDCl₃) of **50** 



¹H-NMR Spectrum (600 MHz, CDCl₃) of **5**p









## ¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5p**

44000040040444400					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	404	0	<b>m</b>	<u>ന</u> ത	
	N O 00	9	-	69	
4 N N N N N N N N N N N N N N	FF9	n	m	ഗഗ	
		4	m	200	
	NZ.			V	
	Y			Y	

LSP-558-4CNMR

¹⁹F-NMR Spectrum (576 MHz, CDCl₃) of **5p**

-62.472

LSP-558-4FNMR

¹H-NMR Spectrum (600 MHz, CDCl₃) of **5**q

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5q**

LSP-558-5CNMR	168.64	137.07 133.57 129.92	120.26	77.28 76.86	47.32	33.34 26.05 25.75 24.51
				\forall		L VZ

¹H-NMR Spectrum (600 MHz, CDCl₃) of **5**r

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5r**

¹H-NMR Spectrum (600 MHz, CDCl₃) of **5**s

LSP-557-6HNMR

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5**s

90990r-00004				
	0 T N	F-	4	P N
	000	9	4	0 00
000000000000000000000000000000000000000				
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		9	· · ·	99
		4	· · ·	0 0
しししし コンプレ				1.1
	\1/			1/
	W/			V
יוו ורר	Y			¥

LSP-557-6CNMR

¹H-NMR Spectrum (600 MHz, CDCl₃) of **5t**

888

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5**t

¹H-NMR Spectrum (600 MHz, CDCl₃) of **5u**

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5u**

LSP-559-1CNMR	134.93 122.68 127.46 127.46	77.26 77.05 76.83	49.88	33.20 26.06 25.64	
	\ /	\vee		ΙV	

¹H-NMR Spectrum (600 MHz, CDCl₃) of **5**v

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5**v

LSP-562-1CNMR	154.54	142.65	131.28 129.54 128.54	114.99	107.96	77.27 77.06 76.85	48.12	33.29 28.17 26.00 25.71
			NZ.			\forall		$ \rangle V$

¹H-NMR Spectrum (600 MHz, CDCl₃) of **5**w

LSP-560-2HNMR

 $^{13}\text{C-NMR}$ Spectrum (151 MHz, CDCl₃) of 5w

LSP-560-2CNMR	77.25 77.04 76.83	43.49	33.78 32.20 29.84 25.91 22.17 22.17 22.17	13.71
	\forall		$\langle V V \rangle$	

¹H-NMR Spectrum (600 MHz, CDCl₃) of **5**x

LSP-560-3HNMR

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5**x

LSP-560-3CNMR

7.23 7.02 6.81	3.50 3.50 0.118 9.24 9.24 9.24 10 8.11 2.65 5.91 2.08 4.08
V	

¹H-NMR Spectrum (600 MHz, CDCl₃) of **5**y

LSP-560-6HNMR

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5**y

		un on			
LOD FOR COMMO		12 04	9 C)	0	99995
LSP-560-6CINMR			008		P P 9 H 80
		a (a)			
	-	C4 C4	P P 9	-	96496
			PPP	100	0 0 0 0 0
		M	\vee		III V

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5z**

LSP-559-6CNMR	155.72	147.75	138.60 136.86 135.22	127.55 124.46 120.64	113.45	77.27 77.06	65.54	47.43 38.17	23.35 27.79 26.09 22.37	14.69
	$\left \right $	V	11/			Ŷ			TW/	V

¹H-NMR Spectrum (600 MHz, CDCl₃) of 5aa

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 5aa

LSP-561-1CNMR	137.30	130.08 125.89 125.89	77.21 77.00 76.79	46.03	33.60	24.80
		$\langle \rangle$	\forall			

¹H-NMR Spectrum (600 MHz, CDCl₃) of **5ab**

$^{13}\text{C-NMR}$ Spectrum (151 MHz, CDCl₃) of 5ab

LSP-561-2CNMR	136.24 138.76 128.76 126.39	77.22 77.01 76.80	47.77	32.10 27.16 25.92 25.21
		\vee		$ \rangle \rangle$

¹H-NMR Spectrum (600 MHz, CDCl₃) of **5ac**

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5ac**

LSP-561-5CNMR	136.07 131.23 128.77 126.29	77.26 77.05 76.84	44.76	29.93 24.21 23.88 23.42 22.16
		\vee		V/

¹H-NMR Spectrum (600 MHz, CDCl₃) of **5ad**

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 5ad

¹H-NMR Spectrum (600 MHz, CDCl₃) of **5ae**

LSP-570-1CNMR 136. 135. 131. 131. 131. 131. 135. 126. 126. 126. 126. 126. 126. 1228282828283838383833333345 122828282828383838383333345 5ae 5ae′ 5ae″ 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5ae**

¹H-NMR Spectrum (600 MHz, CDCl₃) of **5af**

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5af**

¹H-NMR Spectrum (600 MHz, CDCl₃) of **5ag**

S206

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5ag**

¹H-NMR Spectrum (600 MHz, CDCl₃) of **5ah**

¹H-NMR Spectrum (600 MHz, CDCl₃) of **5ai**

LSP-570-4HNMR

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 5ai

	5	2 2 2 3	4 0 0	96	5	രംഗ
LSP570-4CNMR	÷.	m m m	N O 0	0.4	4	054
	m i	0 0 0	rr 9	00 00	-	01-10
	-	ннн			m	2 1 1 2
		Υ/	\vee	V		

¹H-NMR Spectrum (600 MHz, CDCl₃) of 5aj

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5aj**

¹H-NMR Spectrum (600 MHz, CDCl₃) of **5ak**

LSP-565-1HNMR

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5ak**

¹H-NMR Spectrum (600 MHz, CDCl₃) of 5al

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **5al**

LSP-570-3CNMR	137.27	128.95 128.85 125.67 125.67	76.83	C0.67	11.98	7.37	3.22
		\vee	\vee				

