Supporting Information

Ir/XuPhos-Catalyzed Direct Asymmetric Reductive Amination of Ketones with Secondary Amines

Zhou Luo,^{[a]#} Tianxiang Fan,^{[a]#} Jingyan Luo,^[a] Yuanyuan Liu,^{*[a]} and Junliang Zhang^{*[b]}

^[a]Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

^[b]Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.

E-mail : <u>yyliu@chem.ecnu.edu.cn</u> <u>junliangzhang@fudan.edu.cn</u>

Table of Contents

1. General Information:	3
2. Experimental Procedure and Characterization Data .	4
3. X-Ray Crystal Data	39
4. References	41
5. NMR Spectra of Hydrogenation Products	42

1. General Information:

Unless otherwise noted, Materials obtained from commercial suppliers were used directly without further purification. ¹H NMR spectra were recorded on a BRUKER 500 (or 600) MHz spectrometer in CDCl₃. Chemical shifts are reported in ppm with tetramethylsilane (TMS: 0 ppm) with the solvent resonance as the internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), and integration. ¹³C NMR spectra were recorded on a BRUKER 500 (125 MHz) or 600 (150 MHz) spectrometer in CDCl₃ with complete proton decoupling. Chemical shifts are reported in δ units, parts per million (ppm), and were referenced to CDCl₃ (δ 7.26 or 77.0 ppm) as the internal standard. All products were further characterized by HRMS (high resolution mass spectra). The enantionmeric excesses of the products were determined by chiral stationary phase HPLC using a Chiralpak OJ-H, OD-H, AD-H, AS-H, or determined by ¹H NMR using D-(-)-Mandelic acid as chemical shift reagent.

Anhydrous tetrahydrofuran (THF), toluene, 1,4-Dioxane and diethyl ether (Et₂O) were distilled from sodium and benzophenone to use; Anhydrous dichloromethane (DCM) and 1,2-dichloroethane (DCE) were distilled from CaH₂. Unless otherwise noted, analytical grade solvents and commercially available reagents were used directly.

Reactions were monitored by thin layer chromatography (TLC) using silicycle pre-coated silica gel plates. Flash column chromatography was performed on silica gel 60 (particle size 200-400 mesh ASTM, purchased from Yantai, China) and eluted with petroleum ether/ethyl acetate.

2. Experimental Procedure and Characterization Data

2.1 Typical procedure for the synthesis of Ir catalyst.

To an oven-dried Schlenk tube was added **NMe-XuPhos**^[1] (1 mmol) and $[Ir(COD)CI]_2$ (0.6 mmol). After vacuuming and refilled with nitrogen for three times, anhydrous THF (5 mL) was added under nitrogen atmosphere. The Schlenk tube was transferred to a heating pot and heated at 40 °C for 1 hour. Upon completion of the reaction, the solution was concentrated under reduced pressure. The crude mixture was then purified by column chromatography on silica gel with PE : EA = 5:1 as eluent to afford the **NMe-Xu1-Ir** as a yellow solid.

To an oven-dried Schlenk tube was added **NMe-XuPhos**^[1] (1 mmol), NaBArF(1.2 mmol) and [Ir(COD)Cl]₂ (0.6 mmol). After vacuuming and refilled with nitrogen for three times, anhydrous THF (5 mL) was added under nitrogen atmosphere. The Schlenk tube was transferred to a heating pot and heated at 40 °C for 1 hour. Upon completion of the reaction, the solution was concentrated under reduced pressure. The crude mixture was then purified by column chromatography on silica gel with PE: DCM = 1:1 as eluent to afford the **NMe-Xu3-Ir** as a light yellow solid.

2.2 General procedure for the preparation of the chiral products.

To a vial containing a magnetic stirring bar was added **1** (0.2 mmol), **2** (0.22 mmol), I_2 (2 mol%), Ti(OEt)₄ (0.4 mmol), [Ir(COD)(Cl)]₂ (1 mol%), and **N-Me-Xu6** (2.2 mol%) under nitrogen atmosphere, anhydrous THF (2 mL) was added and stirred for 30 minutes. Then the vial was transferred in Parr steel autoclave, which was purged three times with hydrogen and finally pressurized to 50 atm. The reaction mixture was stirred at 0 °C for 24 h. The hydrogen gas was released slowly and the solution was quenched with Na₂SO₄·10H₂O and filtered. The organic phase was concentrated and purified by column chromotography and then analyzed by chiral HPLC or using ¹H NMR with chemical shift reagent to determine the enantiomicric excesses.

(S)-2-(1-phenylethyl)-1,2,3,4-tetrahydroisoquinoline (3a).^[2]

PE:EA = 20:1; Yellow oil, 43.6 mg (92% yield), 94% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.32 (m, 2H), 7.10 – 7.05 (m, 3H), 7.01 – 6.96 (m, 1H), 6.88 (d, J = 8.5 Hz, 2H), 3.57 – 3.52 (m, 2H), 2.92 – 2.72 (m, 3H), 2.62 – 2.55 (m, 1H), 1.41 (d, J = 6.6 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ 158.58, 135.15, 134.26, 130.68, 128.65, 128.32, 126.11, 125.32, 125.11, 113.68, 73.60, 58.20, 53.38, 28.21, 20.09. HPLC: Chiralpak OJ-H, hexane : isopropanol = 98:2, 0.5 mL/min, 210 nm, t_R = 9.8 min (major), t_R = 13.6 min (minor). [α]²⁰_D = +3.3 (c 0.7, CHCl₃). The absolute

configuration was determined by comparation of the optical rotation value with the data in reference [3] ($[\alpha]^{20}_{D} = +9.2$ (c 0.5, CHCl₃)). The absolute configuration of other hydrogenation products was assigned by analogy to that of **3a**.

(S)-2-(1-(4-methoxyphenyl) ethyl)-1,2,3,4-tetrahydroisoquinoline (3b).^[4]

PE:EA = 5:1; Yellow oil, 50.8 mg (95% yield), 91% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.30 (m, 2H), 7.16 – 7.07 (m, 3H), 7.04 – 7.00 (m, 1H), 6.90 (d, *J* = 8.6 Hz, 2H), 3.84 (s, 3H), 3.62 – 3.52 (m, 2H), 2.94 – 2.77 (m, 3H), 2.66 – 2.60 (m, 1H), 1.48 (d, *J* = 6.6 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ 158.50, 135.18, 134.59, 130.58, 128.59, 128.57, 126.77, 125.94, 125.47, 113.57, 63.62, 55.22, 53.49, 47.85, 29.29, 20.03. HPLC: Chiralpak OJ-H, hexane : isopropanol = 98:2, 0.5 mL/min, 210 nm, t_R = 7.5 min (major), t_R = 9.8 min (minor).

(S)-2-(1-(p-tolyl) ethyl)-1,2,3,4-tetrahydroisoquinoline (3c).

PE:EA = 30:1; Yellow oil, 46.7 mg (93% yield), 90% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.31 (m, 2H), 7.16 – 7.08 (m, 3H), 7.02 – 6.98 (m, 1H), 6.90 (d, *J* = 8.5 Hz, 2H), 3.79 (s, 3H), 3.59 – 3.51 (m, 2H), 2.90 – 2.69 (m, 3H), 2.65 – 2.58 (m, 1H), 1.40 (d, *J* = 6.6 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ 158.51, 135.20, 134.49, 130.50, 128.57, 128.51, 126.75, 125.89, 125.40, 113.57, 63.60, 55.20, 53.38, 47.71, 29.21, 20.09. HPLC: Chiralpak OJ-H, hexane : isopropanol = 99:1, 0.5 mL/min, 210 nm, t_R = 16.5 min (major), t_R = 27.8 min (minor). HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₈H₂₁NNa: 274.1572, found 274.1568.

47.608

100.00

100.00

9

73.523

Total:

(S)-2-(1-([1,1'-biphenyl]-4-yl) ethyl)-1,2,3,4-tetrahydroisoquinoline (3d).

PE:EA = 20:1; Yellow oil, 50.8 mg (90% yield), 90% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 7.75 – 7.60 (m, 4H), 7.59 – 7.45 (m, 4H), 7.45 – 7.37 (m, 1H), 7.23 – 7.13 (m, 3H), 7.13 – 7.05 (m, 1H), 3.94 (d, J = 14.8 Hz, 1H), 3.76 – 3.64 (m, 2H), 3.09 – 2.86 (m, 3H), 2.79 – 2.68 (m, 1H), 1.59 (d, J = 6.7 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 143.33, 140.87, 139.73, 135.11, 134.54, 128.67, 128.56, 127.91, 127.06, 126.96, 126.73, 125.94, 125.47, 64.00, 53.52, 47.97, 29.30, 20.01. HPLC: Chiralpak OJ-H, hexane: isopropanol = 98:2, 0.5 mL/min, 210 nm, t_R = 10.3 min (major), t_R = 15.7 min (minor). HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₃H₂₃NNa: 336.1728, found 336.1725.

(S)-2-(1-(4-fluorophenyl)ethyl)-1,2,3,4-tetrahydroisoquinoline (3e).

PE:EA = 20:1; Yellow oil, 48.5 mg (95% yield), 90% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.30 (m, 2H), 7.16 – 7.07 (m, 3H), 7.04 – 7.00 (m, 1H), 6.90 (d, *J* = 8.6 Hz, 2H), 3.84 (s, 3H), 3.62 – 3.52 (m, 2H), 2.94 – 2.77 (m, 3H), 2.66 – 2.60 (m, 1H), 1.48 (d, *J* = 6.6 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ 158.50, 135.18, 134.59, 130.58, 128.59, 128.57, 126.77, 125.94, 125.47, 113.57, 63.62, 55.22, 53.49, 47.85, 29.29, 20.03. HPLC: Chiralpak ODH+OJ-H column, hexane: isopropanol = 98:2,

flow rate = 0.5 mL/min, UV detection at λ = 210 nm, t_R = 22.9 min (major), t_R = 25.7 min (minor). HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₇H₁₉FN: 256.1502, found 336.156.1494.

(S)-2-(1-(4-chlorophenyl)ethyl)-1,2,3,4-tetrahydroisoquinoline (3f).

PE:EA = 20:1; Yellow oil, 50.5 mg (95% yield), 91% *ee*;¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.28 (m, 4H), 7.15 – 7.06 (m, 3H), 7.02 – 6.96 (m, 1H), 3.80 (d, *J* = 14.7 Hz, 1H), 3.61 – 3.49 (m, 2H), 2.94 – 2.71 (m, 3H), 2.67 – 2.58 (m, 1H), 1.44 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 143.00, 134.92, 134.47, 132.45, 128.82, 128.61, 128.45, 126.73, 126.05, 125.56, 63.68, 53.48, 47.95, 29.22, 20.01. HPLC: Chiralpak ODH + OJ-H, hexane : isopropanol = 98:2, 0.5 mL/min, 210 nm, t_R = 23.4 min (major), t_R = 25.7 min (minor). HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₇H₁₉NCl: 272.1206, found 272.1199.

(S)-2-(1-(4-(trifluoromethyl)phenyl)ethyl)-1,2,3,4-tetrahydroisoquinoline (3g).

PE:EA = 20:1; Yellow oil, 55.6 mg (91% yield), 90% ee;¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J = 8.1 Hz, 2H), 7.55 (d, J = 8.1 Hz, 2H), 7.20 – 7.11 (m, 3H), 7.06 – 6.99 (m, 1H), 3.86 (d, J = 14.7 Hz, 1H), 3.70 – 3.56 (m, 2H), 3.00 – 2.74 (m, 3H), 1.49 (d, J = 6.7 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 128.63, 127.74, 126.74, 126.14, 125.63, 125.35, 125.32, 64.03, 53.50, 48.08, 29.17, 20.06. HPLC: Chiralpak ODH+ODH, hexane : isopropanol = 98:2, 0.5 mL/min, 210 nm, t_R = 17.6 min (major), t_R = 18.8 min (minor). HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₈H₁₈F₃NNa: 328.3340, found 328.3334.

		17.000	91.047	201.401	49.50	50.47	II.d.	
2		18.860	92.607	203.613	50.42	49.53	n.a.	
Total:			183.654	411.101	100.00	100.00		
Chroma	atogram							
250	HY #81 [manually integrated]	ftx-5-46-2-4	CF3-ODH+ODH		UV VIS 1 WVL:210 nm		
250]	mAU							
200-				1 - 17.658				
-		\checkmark		/ \				
]		$\langle \rangle$				
Ş ¹⁵⁰⁻	∑ ¹⁵⁰							
<u>1</u>								
- nce		`		$ \rangle$				
g 100-				/ \				
Abs.	F ₃ C			/ \				
50-								
			/					
		\frown	/		2 - 18.800			
0-							min	
]							min	
14	.00 15.00	16.00	17.00	18.00	19.00	20.00	21.00	
Time [min]								

Integration Results								
No.	Peak Name	Retention Time Area		Height	Relative Area	Relative Height	Amount	
		min	mAU*min	mAU	%	%	n.a.	
1		17.658	87.504	192.838	95.00	94.72	n.a.	
2		18.800	4.608	10.751	5.00	5.28	n.a.	
Total:			92.112	203.589	100.00	100.00		

(S)-2-(1-(4-nitrophenyl)ethyl)-1,2,3,4-tetrahydroisoquinoline (3h).

PE:EA = 20:1; Yellow oil, 50.8 mg (90% yield), 90% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 8.31 – 8.17 (m, 2H), 7.62 (d, *J* = 8.3 Hz, 2H), 7.22 – 7.11 (m, 3H), 7.06 – 6.98 (m, 1H), 3.86 (d, *J* = 14.6 Hz, 1H), 3.77 – 3.55 (m, 2H), 2.99 – 2.60 (m, 4H), 1.50 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 134.41, 128.63, 127.74, 126.74, 126.14, 125.63, 125.35, 125.32, 123.17, 64.03, 53.50, 48.08, 29.17, 20.06. HPLC: Chiralpak OJ-H, hexane : isopropanol = 97:3, 0.5 mL/min, 210 nm, t_R = 38.5 min (major), t_R = 46.0 min (minor). HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₇H₁₈N₂O₂Na: 305.1266, found 305.1269.

(S)-2-(1-(3-methoxyphenyl)ethyl)-1,2,3,4-tetrahydroisoquinoline (3i).

PE:EA = 20:1; Yellow oil, 50.3 mg (94% yield), 91% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 7.27 (d, *J* = 8.1 Hz, 1H), 7.17 – 7.09 (m, 3H), 7.05 – 6.96 (m, 3H), 6.89 – 6.76 (m, 1H), 3.87 (d, *J* = 14.9 Hz, 1H), 3.84 (s, 3H), 3.65 – 3.48 (m, 2H), 2.97 – 2.76 (m, 3H), 2.69 – 2.56 (m, 1H), 1.49 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 159.67, 146.19, 135.17, 134.62, 129.23, 128.59, 126.78, 125.97, 125.50, 119.97, 112.95, 112.28, 64.49, 55.21, 53.61, 48.09, 29.32, 20.26. HPLC: Chiralpak OJ-H, hexane : isopropanol = 98:2, 0.5 mL/min, 210 nm, t_R = 9.9 min (major), t_R = 14.1 min (minor). HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₈H₂₁NONa: 290.1521, found 290.1510.

No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		21.053	132.830	292.189	49.93	54.14	n.a.
2		25.160	133.203	247.463	50.07	45.86	n.a.
Total:			266.033	539.653	100.00	100.00	

(S)-2-(1-(*m*-tolyl)ethyl)-1,2,3,4-tetrahydroisoquinoline (3j).

PE:EA = 20:1; Yellow oil, 47.7 mg (95% yield), 92% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 7.27 – 7.17 (m, 3H), 7.15 – 7.06 (m, 4H), 7.06 – 6.98 (m, 1H), 3.85 (d, *J* = 14.8 Hz, 1H), 3.66 – 3.47 (m, 2H), 2.98 – 2.76 (m, 3H), 2.71 – 2.57 (m, 1H), 2.38 (s, 3H), 1.49 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 144.29, 137.92, 134.63, 128.63, 128.22, 128.19, 127.71, 126.83, 126.00, 125.53, 124.69, 77.29, 64.51, 53.69, 48.12, 29.30, 21.52, 20.31. HPLC: Chiralpak OJ-H, hexane : isopropanol = 98:2, 0.5 mL/min, 210 nm, t_R = 14.2 min (major), t_R = 17.5 min (minor). HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₈H₂₂N: 252.1752, found 252.1759.

(S)-2-(1-(3-chlorophenyl)ethyl)-1,2,3,4-tetrahydroisoquinoline (3k).

PE:EA = 20:1; Yellow oil, 49.4 mg (91% yield), 92% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.38 (m, 1H), 7.32 – 7.26 (m, 2H), 7.25 – 7.21 (m, 1H), 7.16 – 7.06 (m, 3H), 7.04 – 6.97 (m, 1H), 3.81 (d, J = 14.7 Hz, 1H), 3.63 – 3.47 (m, 2H), 2.95 – 2.72 (m, 3H), 2.69 – 2.60 (m, 1H), 1.45 (d, J = 6.7 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 146.74, 134.92, 134.49, 134.21, 129.60, 128.61, 127.54, 127.09, 126.74, 126.05, 125.68, 125.56, 63.96, 53.47, 47.97, 29.25, 19.96. HPLC: Chiralpak OJ-H, hexane : isopropanol = 98:2, 0.5 mL/min, 210 nm, t_R = 14.1 min (major), t_R = 18.3 min (minor). HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₇H₁₈ClNNa: 294.1025, found 294.1012.

(S)-2-(1-(3-bromophenyl)ethyl)-1,2,3,4-tetrahydroisoquinoline (3l).

PE:EA = 20:1; Yellow oil, 60.0 mg (95% yield), 90% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 7.61 (t, *J* = 1.8 Hz, 1H), 7.47 – 7.40 (m, 1H), 7.39 – 7.34 (m, 1H), 7.24 (t, *J* = 7.8 Hz, 1H), 7.21 – 7.11 (m, 3H), 7.09 – 7.01 (m, 1H), 3.85 (d, *J* = 14.7 Hz, 1H), 3.70 – 3.48 (m, 2H), 3.01 – 2.76 (m, 3H), 2.73 – 2.63 (m, 1H), 1.49 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 147.02, 134.88, 134.45, 130.43, 130.01, 129.92, 128.59, 126.72, 126.12, 126.04, 125.55, 122.52, 63.91, 53.44, 47.95, 29.23, 19.97. HPLC: Chiralpak OJ-H, hexane : isopropanol = 98:2, 0.5 mL/min, 210 nm, t_R = 6.9 min (major), t_R = 9.2 min (minor). HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₇H₁₈BrNNa: 338.0520, found 338.0504.

(S)-2-(1-(3-(trifluoromethyl)phenyl)ethyl)-1,2,3,4-tetrahydroisoquinoline (3m).

PE:EA = 20:1; Yellow oil, 58.0 mg (95% yield), 91% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 7.68 (s, 1H), 7.64 – 7.60 (m, 1H), 7.58 – 7.53 (m, 1H), 7.50 – 7.42 (m, 1H), 7.23 – 7.08 (m, 3H), 7.07 – 6.99 (m, 1H), 3.87 (d, J = 14.7 Hz, 1H), 3.72 – 3.55 (m, 2H), 2.98 – 2.74 (m, 3H), 2.73 – 2.57 (m, 1H), 1.50 (d, J = 6.7 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 145.72, 134.84, 134.47, 130.85, 128.80, 128.64, 126.75, 126.11, 125.61, 124.17, 124.14, 123.84, 63.98, 53.45, 47.99, 29.21, 19.97. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.38. HPLC: Chiralpak OJ-H, hexane : isopropanol = 98:2, 0.5 mL/min, 210 nm, t_R = 11.2 min (major), t_R = 16.2 min (minor). HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₈H₁₈NF3Na: 328.3340, found 328.3331.

(S)-2-(1-(2-methoxyphenyl)ethyl)-1,2,3,4-tetrahydroisoquinoline (3n).

PE:EA = 20:1; Yellow oil, 51.3 mg (96% yield), 91% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.53 (m, 1H), 7.28 – 7.22 (m, 1H), 7.17 – 7.08 (m, 3H), 7.07 – 7.02 (m, 1H), 6.99 (t, *J* = 7.5 Hz, 1H), 6.92 (d, *J* = 8.2 Hz, 1H), 4.13 (q, *J* = 6.7 Hz, 1H), 3.91 (d, *J* = 14.8 Hz, 1H), 3.87 (s, 3H), 3.60 (d, *J* = 14.8 Hz, 1H), 2.97 – 2.77 (m, 3H), 2.67 – 2.56 (m, 1H), 1.44 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 156.95, 135.42, 134.74, 132.61, 128.56, 127.62, 127.43, 126.79, 125.89, 125.41, 120.68, 110.50, 55.88, 55.43, 53.74, 48.25, 20.15. HPLC: Chiralpak OJ-H, hexane : isopropanol = 98:2, 0.5 mL/min, 210 nm, t_R = 20.9 min (major), t_R = 24.8 min (minor). HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₈H₂₁NONa: 290.1521, found 290.1516.

(S)-2-(1-(o-tolyl) ethyl)-1,2,3,4-tetrahydroisoquinoline (30).

PE:EA = 20:1; Yellow oil, 47.2 mg (94% yield), 92% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, *J* = 7.6 Hz, 1H), 7.27 – 7.10 (m, 6H), 7.08 – 7.02 (m, 1H), 3.91 (d, *J* = 14.8 Hz, 1H), 3.78 (q, *J* = 6.6 Hz, 1H), 3.61 (d, *J* = 14.7 Hz, 1H), 3.00 – 2.89 (m, 1H), 2.88 – 2.74 (m, 2H), 2.71 – 2.61 (m, 1H), 2.42 (s, 3H), 1.44 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 143.24, 135.66, 135.29, 134.76, 130.33, 128.57, 126.78, 126.60, 126.32, 126.13, 125.93, 125.46, 60.09, 53.67, 48.22, 29.38, 19.54, 19.16. HPLC: Chiralpak OJ-H, hexane : isopropanol = 98:2, 0.5 mL/min, 210 nm, t_R = 16.7 min (major), t_R = 22.2 min (minor). HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₈H₂₂N: 252.1752, found 252.1749.

(S)-2-(1-(2-fluorophenyl) ethyl)-1,2,3,4-tetrahydroisoquinoline (3p).

PE: EA = 20:1; Yellow oil, 48.0 mg (94% yield), 92% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 7.59 – 7.52 (m, 1H), 7.32 – 7.22 (m, 1H), 7.22 – 6.99 (m, 6H), 4.08 (q, J = 6.8 Hz, 1H), 3.88 (d, J = 14.7 Hz, 1H), 3.63 (d, J = 14.7 Hz, 1H), 3.01 – 2.77 (m, 3H), 2.72 – 2.60 (m, 1H), 1.53 (d, J = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.72, 159.77, 135.09, 134.55, 130.49, 130.39, 128.74, 128.71, 128.64, 128.27, 128.20, 126.81, 126.06, 125.57, 124.13, 124.10, 115.45, 115.26, 56.17, 53.49, 47.98, 29.43, 19.74. ¹⁹F NMR (471 MHz, CDCl₃) δ -118.60. HPLC: Chiralpak OJ-H, hexane : isopropanol = 98:2, 0.5 mL/min, 210 nm, t_R = 13.2 min (major), t_R = 17.5 min (minor). HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₇H₁₈FNNa: 278.1321, found 278.1312.

(S)-2-(1-(2-chlorophenyl) ethyl)-1,2,3,4-tetrahydroisoquinoline (3q).

PE:EA = 20:1; Yellow oil, 51.1 mg (94% yield), 90% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 7.77 – 7.60 (m, 1H), 7.45 – 7.38 (m, 1H), 7.34 – 7.27 (m, 1H), 7.26 – 7.12 (m, 4H), 7.11 – 7.04 (m, 1H), 4.12 (q, *J* = 6.6 Hz, 1H), 3.97 (d, *J* = 14.7 Hz, 1H), 3.64 (d, *J* = 14.7 Hz, 1H), 3.02 – 2.90 (m, 1H), 2.89 – 2.77 (m, 2H), 2.76 – 2.65 (m, 1H), 1.47 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 142.50, 135.02, 134.58, 133.38, 129.40, 128.56, 128.32, 127.69, 127.05, 126.76, 126.01, 125.52, 59.96, 53.75, 48.39, 29.33, 20.12. HPLC: Chiralpak OJ-H, hexane : isopropanol = 98:2, 0.5 mL/min, 210 nm, t_R = 13.4 min (major), t_R = 21.2 min (minor). HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₇H₁₈ClNNa: 294.1025, found 294.1031.

(S)-2-(1-(4-methoxyphenyl)propan-2-yl)-1,2,3,4-tetrahydroisoquinoline (3r).^[2]

PE:EA = 20:1; Yellow oil, 52.9 mg (94% yield), 14% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 7.24 – 7.12 (m, 5H), 7.12 – 7.05 (m, 1H), 6.91 – 6.84 (m, 2H), 3.87 (s, 2H), 3.83 (s, 3H), 3.11 – 3.00 (m, 2H), 2.99 – 2.94 (m, 2H), 2.93 – 2.87 (m, 2H), 2.58 – 2.46 (m, 1H), 1.08 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.75, 135.44, 134.64, 132.54, 130.10, 128.73, 126.67, 125.87, 125.43, 113.63, 61.26, 55.17, 51.50, 46.09, 38.49, 29.89, 13.99. Enantiomeric excess was determined by ¹H NMR using D-(-)-Mandelic acid as chemical shift reagent. HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₀H₂₆NO: 296.2014, found 296.2026.

(S)-1-(1-phenylethyl)pyrrolidine (3s).^[2]

PE:EA = 2:1; Yellow oil, 32.2 mg (92% yield), 94% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.30 (m, 4H), 7.27 – 7.22 (m, 1H), 3.20 (q, *J* = 6.6 Hz, 1H), 2.63 – 2.49 (m, 2H), 2.45 – 2.33 (m, 2H), 1.82 – 1.75 (m, 4H), 1.43 (dd, *J* = 6.6, 1.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 145.73, 128.22, 127.20, 126.78, 66.00, 52.98, 23.39, 23.18. Enantiomeric excess was determined by ¹H NMR using D-(-)-Mandelic acid as

(S)-1-(1-phenylethyl)piperidine (3t).^[2]

PE:EA = 5:1; Yellow oil, 34.1 mg (90% yield), 92 % *ee*, ¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.29 (m, 3H), 7.28 – 7.19 (m, 2H), 3.38 (q, *J* = 6.8 Hz, 1H), 2.38 – 2.29 (m, 4H), 1.65 – 1.43 (m, 6H), 1.36 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 143.91, 127.98, 126.63, 125.37, 65.18, 51.49, 26.26, 24.60, 19.40. Enantiomeric excess was determined by ¹H NMR using D-(-)-Mandelic acid as chemical shift reagent.

(S)-4-(1-phenylethyl)morpholine (3u).^[2]

PE:EA = 5:1; Yellow oil, 34.4 mg (90% yield), 89% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, J = 4.4 Hz, 4H), 7.29 – 7.24 (m, 1H), 3.75 – 3.68 (m, 4H), 3.32 (q, J = 6.6 Hz, 1H), 2.57 – 2.46 (m, 2H), 2.44 – 2.34 (m, 2H), 1.38 (d, J = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 143.92, 128.26, 127.60, 126.94, 67.21, 65.37, 51.29, 19.81. Enantiomeric excess was determined by ¹H NMR using D-(-)-Mandelic acid as chemical shift reagent.

(S)-N,N-dimethyl-1-phenylethan-1-amine(3v)^[2]

DCM:MeOH = 5:1; Yellow oil, 27.1 mg (91% yield), 91% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.32 (m, 3H), 7.29 – 7.24 (m, 2H), 3.27 (d, *J* = 6.7 Hz, 1H), 2.22 (s, 6H), 1.40 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.08, 128.18, 127.51, 126.86, 65.98, 43.25, 20.24. Enantiomeric excess was determined by ¹H NMR using D-(-)-Mandelic acid as chemical shift reagent.

(S)-N-benzyl-N-methyl-1-phenylethan-1-amine(3w)^[2]

PE:EA = 5:1; Yellow oil, 42.3 mg (94% yield), 89% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 7.47 – 7.42 (m, 2H), 7.40 – 7.29 (m, 6H), 7.30 – 7.23 (m, 2H), 3.73 – 3.55 (m, 2H), 3.35 (d, *J* = 13.3 Hz, 1H), 2.18 (s, 3H), 1.47 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.17, 140.10, 128.72, 128.15, 128.13, 127.67, 126.76, 126.69, 63.21, 58.86, 38.34, 18.37. Enantiomeric excess was determined by ¹H NMR using D-(-)-Mandelic acid as chemical shift reagent.

2.3 General procedure for the preparation of 4 and 5.

2.3.1 General procedure for the preparation of 4^[2]

Step1:

To a vial containing a magnetic stirring bar was added **1h** (0.2 mmol), **2f** (0.22 mmol), I₂ (2 mol%), Ti(OEt)₄ (0.4 mmol), [Ir(COD)(Cl)]₂ (1 mol %), and **N-Me-Xu6** (2.2 mol %) under nitrogen atmosphere, anhydrous THF (2 mL) was added and stirred

for 30 minutes. Then the vial was transferred in Parr steel autoclave, which was purged three times with hydrogen and finally pressurized to 50 atm. The reaction mixture was stirred at 0 °C for 24 h. The hydrogen gas was released slowly and the solution was quenched with Na₂SO₄·10H₂O and filtered. The organic phase was concentrated to give the crude products 3x, which were used in next step without purification.

Step2:

Pd(OH)₂ on carbon (10%, 4.5 mg) was added to the solution of 3x (58.6 mg, 0.2 mmol) and acetic acid (1 drop) in MeOH (2 mL). The resulting mixture was transferred to an autoclave, which was charged with 20 atm of H₂, and stirred at r.t. for 10 h. The hydrogen gas was released slowly and the solution was filter and quenched with aqueous sodium bicarbonate solution. The organic phase was concentrated and purified with column chromotography to afford **4**

(S)-N-methyl-1-(4-(trifluoromethyl)phenyl)ethan-1-amine(4)^[5]

PE:EA=5:1, Yellow oil, 7.3 mg, 92% yield, 90% *ee*.¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, J = 8.1 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 3.89 (q, J = 6.7 Hz, 1H), 2.35 (s, 3H), 1.49 (d, J = 6.7 Hz, 3H). Enantiomeric excess was determined by ¹H NMR using D-(-)-Mandelic acid as chemical shift reagent.

2.3.2 General procedure for the preparation of rivastigmine.^[2]

Step1:

To a vial containing a magnetic stirring bar was added **1t** (0.2 mmol), dimethylamine (0.22 mmol), I₂ (2 mol%), Ti(OEt)₄ (0.4 mmol), [Ir(COD)(Cl)]₂ (1 mol%), and **N-Me-Xu6** (2.2 mol%) under nitrogen atmosphere, anhydrous THF (2 mL) was added and stirred for 30 minutes. Then the vial was transferred in Parr steel autoclave, which was purged three times with hydrogen and finally pressurized to 50 atm. The reaction mixture was stirred at 0 °C for 24 h. The hydrogen gas was released slowly and the solution was quenched with Na₂SO₄·10H₂O and filtered. The organic phase was concentrated to give the crude products **3y**, which were used in next step without purification.

Step2:

NaOH (0.25 mmol) was added to the solution of **3y** in CH₃CN (1.5 mL). The the above solution was stirred for 1 h at room temperature, then ethyl(methyl)carbamic chloride (0.22 mmol) was added. The reaction mixture was stirred for 12 h, quenched by aq. NH4Cl solution. CH₃CN was removed under vaccumn and the solution was extracted by EtOAc (5 mL*3). The organic phase was dried over anhydrous Na₂SO₄, concentrated and purified with column chromatograpgy (EtOAc/PE) to give rivastigmine.

(S)-3-[1-(Dimethylamino)ethyl]phenyl Ethyl-(methyl)carbamate(rivastigmine):

PE:EA=20:1, 42.5 mg (85% yield for 2 steps), 90% *ee*, ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.27 (m, 1H), 7.15 – 7.01 (m, 3H), 3.52 – 3.39 (m, 2H), 3.29 (q, J = 6.7 Hz, 1H), 3.04 (d, J = 37.5 Hz, 3H), 2.23 (s, 6H), 1.39 (d, J = 6.7 Hz, 3H), 1.28 – 1.19 (m, 3H). Enantiomeric excess was determined by ¹H NMR using D-(-)-Mandelic acid as chemical shift reagent.

2.3.3 ³¹P NMR spectra of ligands and Ir catalysts.

³¹P NMR spectra for N-Me-Xu1 and Ir complexes

3. X-Ray Crystal Data

Crystal Structure Information of NMe-Xu1-Ir

0.1 mL of DCM was added to a 10 mL oven-dried glass sample bottle with 10 mg pure **NMe-Xu1-Ir** to dissolve the sample, then 8 mL n-hexane was slowly added to the solution, sealed with perforated paper, and then the solvent was slowly dried at room temperature to obtain crystals. Single crystal X-ray diffraction data were collected on Bruker Smart Apex II CCD diffractometer. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC): 2371593

Formula: C47H74 IrNO2PS

Flack parameter 0.066(7)

Bond precision:	C-C = 0.0115 A	Wavelength=1.54178			
Cell:	a=44.8783(13) alpha=90	b=11.8093 beta=115.	3(3) .469(1)	c=21.0380(6) gamma=90	
Temperature:	187 K			-	
	Calculated		Reported		
Volume	10066.2(5)		10066.2(5)		
Space group	C 2		C 2		
Hall group	C 2y		C 2y		
Moiety formula	C47 H74 Cl Ir N O2 solvent]	2 P S [+	C47 H74 Cl solvent]	Ir N O2 P S [+	
Sum formula	C47 H74 Cl Ir N O2 solvent]	2 P S [+	C47 H74 Cl	Ir N O2 P S	
Mr	975.77		975.75		
Dx,g cm-3	1.288		1.288		
Z	8		8		
Mu (mm-1)	6.560		6.560		
F000	4032.0		4032.0		
F000′	4009.46				
h,k,lmax	54,14,25		54,14,25		
Nref	18554[9765]		18311		
Tmin, Tmax	0.403,0.455		0.525,0.753	3	
Tmin'	0.304				
Correction metho AbsCorr = MULTI-	od= # Reported T Li	mits: Tmin	n=0.525 Tmax	x=0.753	
Data completenes	s= 1.88/0.99	Theta (ma	ax) = 68.562		

Crystal Structure Information of NMe-Xu3-Ir-BArF

0.1 mL of DCM was added to a 10 mL oven-dried glass sample bottle with 10 mg pure **NMe-Xu3-Ir-BArF** to dissolve the sample, then 8 mL n-hexane was slowly added to the solution, sealed with perforated paper, and then the solvent was slowly dried at room temperature to obtain crystals. Single crystal X-ray diffraction data were collected on Bruker Smart Apex II CCD diffractometer. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC): 2328618

Formula: C₇₉H₈₆BF₂₄IrNO₂PS

Flack parameter -0.012(3)

Bond precisi	ion:	C-C = 0	0.0105 A		Wavelength=1.54184
Cell:	a=14.1597(1)		b=14.8103(1)	c=41.8365	5 (4)
	alpha=90		beta=90	gamma=90	
Temperature	:170 K				
		Calculate	ed		Reported
Volume		8773. 51 (1	12)		8773. 51 (12)
Space group		P 21 21 2	21		P 21 21 21
Hall group		P 2ac 2al	b		P 2ac 2ab
Moiety formu	ıla	C32 H12 H solvent]	B F24, C47 H74	4 Ir N 02 P S [+	C47 H74 Ir N 02 P S, C32 H12 B F24
Sum formula		C79 H86 H	B F24 Ir N 02	P S [+ solvent]	C79 H86 B F24 Ir N 02 P S
Mr		1803. 55			1803. 52
Dx,g cm-3		1.365			1.365
Ζ		4			4
Mu (mm-1)		4.157			4.157
F000		3648.0			3648. 0
F000'		3644.32			
h,k,lmax		16, 17, 49			16, 17, 49
Nref		15652[8	599]		15626
Tmin, Tmax		0.218,0.6	633		0. 198, 1. 000
Tmin'		0.140			
Correction n SCAN	nethod= # Repo	orted T Li	imits: Tmin = 0.	198 Tmax=1.000 Ak	osCorr = MULTI-
Data complet	teness= 1.82/	1.00	Theta	(max)= 67.078	
R(reflection	ns) = 0.0373 (15445)	W	R2(reflections)=	0.0982(15626)
S = 1.022		Npar	= 1002		

4. References

[1] Wang, Y.; Wang, L. Chen, M.; Tu, Y.; Liu, Y.; Zhang, J. Palladium/Xu-Phoscatalyzed asymmetric carboamination towards isoxazolidines and pyrrolidines. *Chem. Sci.*, **2021**,*12*, 8241 - 8245.

[2] Wu, Z.; Du, S.; Gao, G.; Yang, W.; Yang, X.; Huang, H.; Chang, M. Secondary Amines as Coupling Partners in Direct Catalytic Asymmetric Reductive Amination, *Chem. Sci.*, **2019**, *10*, 4509 - 4514.

[3] Benmekhbi, L.; Louafi, F.; Roisnel, T.; Hurvois, J.-P. Synthesis of Tetrahydroisoquinoline Alkaloids and Related Compounds through the Alkylation of Anodically Prepared α-Amino Nitriles. *J. Org. Chem.*, **2016**, *81*, 6721 - 6739.

[4] Kumpaty, H. J.; Bhattacharyya, S. Efficient synthesis of N-alkyl tetrahydroisoquinolines by reductive amination, *Synthesis*, **2005**, *13*, 2205 - 2209.

[5] Wen, Y.; Fernández-Sabaté, M.; Lledós, A.; Sciortino, G.; Eills, J.; Marco-Rius,
I.; Riera, A.; Verdaguer, X. Cyclometallated Imides as Templates for the H-Bond
Directed Iridium-Catalyzed Asymmetric Hydrogenation of N-Methyl, N-Alkyl and
N-Aryl Imines. *Angew. Chem. Int. Ed.*, **2024**, *63*, e202404955.

5. NMR Spectra of Hydrogenation Products

(S)-3d

(*S*)-3e

(*S*)-3h

(S)-3i

(S)-3j

(*S*)-3k

(*S*)-31

*(S)-3*0

(*S*)-3r

40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -3 r1 (ppm)

40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -3 r1 (ppm)

(*S*)-5

