Iminophosphorane in Perylenediimide Chemistry: Staudinger Reaction and a Visible-Light-Driven Competitive Reaction of the Cadogan Cyclization

Maxime Roger,¹ Oksana Krupka,² Olivier Alévêque,¹ Eric Levillain,¹ and Piétrick Hudhomme^{1,*}

¹ Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France. E-mail: <u>pietrick.hudhomme@univ-angers.fr</u>

² Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.

Experimental details

Table of content

Ι.	N	laterials and Methods	3
11.	E	xperimental Procedures	5
III.		Characterizations	9
1	•	NMR, MS, IR	9
2	•	Absorption and fluorescence spectroscopies	25
3	•	Electrochemistry	27
4	•	Spectroelectrochemistry	27
5	•	Thermogravimetric analysis	.32
6		pH sensing experiments	33

I. Materials and Methods

Chemicals were purchased from Avocado (sodium azide), Alfa Aesar (triphenylphosphine).

NitroPDI 1 was prepared according to literature.¹

Solvents were purchased from Fisher Scientific (DMF HPLC grade, MeOH HPLC grade, THF HPLC grade, CH₂Cl₂ HPLC grade), Carlo Erba (CHCl₃, CH₂Cl₂), deuterated solvent (CDCl₃) from Sigma Aldrich. THF was dried over Na/benzophenone.

Thin layer chromatography (TLC) was conducted on pre-coated aluminum sheets with 0.20 mm Merck Alugram SIL G/UV254 with fluorescent indicator UV254. Column chromatography was carried out using Sigma-Aldrich silica gel 60 (particle size 63-200 μ m).

Nuclear magnetic resonance (NMR) ¹H, ¹³C, ³¹P spectra were obtained on a Bruker 300 MHz Avance III spectrometer (300 MHz for ¹H and 75 MHz for ¹³C) or 500 MHz Advance III HD spectrometer (500 MHz for ¹H, 125 MHz for ¹³C, 202.4 MHz for ³¹P). ¹³C and ³¹P spectra were recorded with a complete decoupling for the proton. ¹⁹F spectra were recorded on a Bruker 300 MHz Avance III spectrometer (283 MHz for ¹⁹F). Chemical shifts were reported in ppm according to tetramethylsilane using the solvent residual signal as an internal reference (CDCl₃: ¹H = 7.26 ppm, ¹³C = 77.16 ppm). Coupling constants (J) were given in Hz. Resonance multiplicity was described as s (singlet), d (doublet), t (triplet), q (quartet), tt (triplet of triplet), m (multiplet) and br.s. (broad singlet).

MALDI-TOF spectra were performed on a Bruker Daltonics Biflex III (SFR Matrix, MOLTECH-Anjou, Angers) using DCTB (trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile) as matrix. High resolution mass spectrometry (HRMS) was performed with a JEOL JMS-700 B/E.

UV-Visible absorption spectra were recorded on a Shimadzu UV-1800 UV-Vis spectrophotometer using quartz cell (pathlength of 1 cm).

Fluorescence was measured on a Shimadzu RF-6000 Spectrophotometer using quartz cell (pathlength of 1 cm).

Cyclic voltammetry experiments were carried out at room temperature in a glove box on a Bio-Logic SAS SP-150 potentiostat, with Pt electrode and counter-electrode and Ag as a reference electrode using 0.1 M n-Bu₄NPF₆ in CH₂Cl₂ as supporting electrolyte.

Thermogravimetric analyses (TGA) were carried out with a TA instruments Q500 apparatus under nitrogen atmosphere at a heating rate of 10 °C/min from room temperature up to 1000°C.

¹ El-Berjawi, R.; Hudhomme, P., *Dyes and Pigments* **2018**, *159*, 551-556.

The irradiation was done with a HCK1012-01-005 EvoluChem LED Spotlight (18 W) from HepatoChem Its absorption spectrum is given below :

II. Experimental Procedures

PDI-NO₂ **1** (240 mg, 0.4 mmol) was dissolved in THF / DMF mixture (15 mL; ratio : 1/1) and protected from light, then NaN₃ (31.2 mg, 0.48 mmol) was added. The mixture was stirred at room temperature for 3h until TLC analysis showed complete disappearance of the starting material. To this solution of intermediate azide **3**, PPh₃ (524.6 mg, 2.0 mmol) was added and the mixture was stirred for 48h. The solvent was removed under vacuum and the crude material was extracted using CHCl₃ - water mixture. The organic phase was dried over MgSO₄ then concentrated and the residue was purified by silica gel chromatography using CHCl₃ (100%) then CHCl₃ (98%) - ethyl acetate (2%) as the eluents. After precipitation in methanol, a blue-green powder was obtained (226 mg, yield: 68%).

PDI-NO₂ **1** (599 mg, 1 mmol) was dissolved in THF / DMF mixture (40 mL; ratio : 1/1) and protected from light, then NaN₃ (98 mg, 1.5 mmol) and PPh₃ (1.31 g, 5.0 mmol) were added. The mixture was stirred at room temperature for 72h. The solvent was removed under vacuum and the residue was purified by silica gel chromatography using CHCl₃ (100%) then CHCl₃ (98%) - ethyl acetate (2%) as the eluents. After precipitation in methanol, a blue-green powder was obtained (655 mg, yield: 79%).

¹H NMR (500 MHz, CDCl₃, 293 K), δ : 10.83 (d, J_{H-H} = 8.5 Hz, 1H), 8.59 (d, J_{H-H} = 8.1 Hz, 1H), 8.51 (d, J_{H-H} = 8.1 Hz, 1H), 8.50 (d, J_{H-H} = 8.3 Hz, 1H), 8.46 (d, J_{H-H} = 8.2 Hz, 1H), 8.32 (d, J = 8.1 Hz, 1H), 7.99 (d, ${}^{4}J_{H-P}$ = 1.6 Hz, 1H), 7.90 - 7.86 (m, 6H), 7.67- 7.63 (m, 3H), 7.60 - 7.56 (m, 6H), 5.09 (tt, J_{H-H} = 12.1, 3.7 Hz, 1H, CH cyclohexyl), 4.87 (tt, J_{H-H} = 12.1, 3.7 Hz, 1H, CH cyclohexyl), 2.68 - 2.56 (m, 2H, CH-CH₂ cyclohexyl), 2.50 - 2.42 (m, 2H, CH-CH₂ cyclohexyl), 2.02 - 1.62 (m, 10H, CH₂ cyclohexyl), 1.55 - 1.23 (m, 6H, CH₂ cyclohexyl).

¹³C NMR (125 MHz, CDCl₃, 293 K), δ: 164.8, 164.7, 164.6, 164.1, 137.9, 135.7, 132.1, 132.9, 132.8, 132.8, 132.6, 131.8, 130.6, 130.5, 130.4, 129.6, 129.5, 129.5, 129.4, 129.3, 129.3, 128.7, 127.6, 126.4, 126.2, 123.5, 123.3, 123.2, 122.7, 122.5, 122.1, 120.5, 120.1, 53.8, 53.8, 29.3, 29.2, 26.8, 26.7, 25.7, 25.6 ppm.

 ^{31}P NMR (202.4 MHz, CDCl3, 293 K, δ : 9.74.

HR-MS (MALDI-TOF, DCTB, negative mode) m/z = calc for $C_{54}H_{44}N_4O_7P$: 829.3069; found 829.3075 (0.77 ppm error).

 λ ,nm (ϵ , L.mol⁻¹.cm⁻¹) in CH₂Cl₂: 639 (42 200), 600 (36 500), 470 (5 500), 430 (20 800).

Compound 5 :

A solution of PDI-NO₂ (599 mg, 1 mmol) and PPh₃ (865 mg, 3.3 mmol) in anhydrous THF (100 mL) in a round-bottom flask was irradiated under white LED lamp for two hours and controlled by TLC (CHCl₃/ethyl acetate: 96/4). The solution was concentrated then the crude material was purified by silica gel chromatography using CH₂Cl₂ then CH₂Cl₂/EtOAc (90/10) as the mixture of eluents. After precipitation in methanol, a dark-violet powder was obtained (795 mg, yield: 94%).

The same reaction carried out in CH_2CI_2 yielded 794 mg (94% yield) of compound 5.

¹H NMR (500 MHz, CDCl₃, 293 K, δ): 12.72 (s, 1H), 8.53 (s, 2H), 8.50 (s, 2H), 8.41 (s, 1H), 8.09 (d, ⁴J_{H-H} = 1.3 Hz, 1H), 7.75 – 7.69 (m, 6H), 7.65 – 7.60 (m, 3H), 7.55 – 7.50 (m, 6H), 5.09 (tt, J_{H-H} = 12.2, 3.8 Hz, 1H, CH cyclohexyl), 4.92 (tt, J_{H-H} = 12.2, 3.8 Hz, 1H, CH cyclohexyl), 2.63 (qd, J_{H-H} = 12.2, 3.6 Hz, 2H, CH-CH₂ cyclohexyl), 2.49 (qd, J_{H-H} = 12.4, 3.6 Hz, 2H, CH-CH₂ cyclohexyl), 1.99 – 1.62 (m, 11H, CH₂ cyclohexyl), 1.54 – 1.20 (m, 5H, CH₂ cyclohexyl) ppm.

¹³C NMR (125 MHz, CDCl₃, 293 K, δ): 165.0, 164.7, 164.7, 164.2, 158.5, 144.1, 144.0, 133.7, 133.6, 133.6, 133.1, 133.0, 129.7, 129.6, 129.4, 128.8, 128.7, 128.6, 127.9, 127.8, 127.7, 127.2, 126.7, 125.9, 124.2, 124.0, 123.8, 122.7, 122.1, 122.0, 121.9, 121.3, 53.9, 53.8, 29.4, 29.2, 26.8, 26.7, 25.7, 25.6 ppm.

³¹P NMR (202.4 MHz, CDCl₃, 293 K, δ): 20.23 ppm.

HR-MS (MALDI, DCTB, positive mode) m/z [M]^{•+} calc for [C₅₄H₄₄N₃O₅P]^{•+}: 845.3022; found 845.3013. λ,nm (ε, L.mol⁻¹.cm⁻¹) in CH₂Cl₂: 594 (44 800), 556 (33 000), 429 (13 800).

Compound 6 :

To a solution of 82.9 mg (0.1 mmol) of compound **4** in anhydrous CH_2Cl_2 (10 mL) was added HBF₄.Et₂O 50-55% in Et₂O (0.1 mL). After stirring for 5 min at room temperature, petroleum ether was added for the precipitation of compound **6**. The precipitate was filtered, washed with petroleum ether, dried under vacuum affording compound **6** in quantitative yield (91 mg).

¹H NMR (500 MHz, CDCl₃, 293 K, δ): 9.28 (d, *J*_{H-H} = 8 Hz, 1H), 8.69 (br.s, 1H), 8.56 (d, *J*_{H-H} = 8 Hz, 1H), 8.50 (d, *J*_{H-H} = 8 Hz, 1H), 8.42-8.39 (m, 3H), 8.36 (d, *J*_{H-H} = 8 Hz, 1H), 7.61-7.57 (m, 9H), 7.48-7.45 (m, 6H), 5.00 (t, *J*_{H-H} = 12.2 Hz, 1H, CH cyclohexyl), 4.90 (t, *J*_{H-H} = 12.2 Hz, 1H, CH cyclohexyl), 2.55 (dq, *J*_{H-H} = 12.2, 3.6 Hz, 2H, CH-CH₂ cyclohexyl), 2.46 (dq, *J*_{H-H} = 12.4, 3.6 Hz, 2H, CH-CH₂ cyclohexyl), 1.94 – 1.87 (m, 4H, CH₂ cyclohexyl), 1.80 – 1.70 (m, 6H, CH₂ cyclohexyl), 1.50-1.25 (m, 6H, CH₂ cyclohexyl) ppm.

¹³C NMR (125 MHz, CDCl₃, 293 K, δ): 163.9, 163.6, 163.5, 162.5, 135.6, 135.5, 134.1, 133.8, 133.7, 133.4, 133.3, 133.27, 133.2, 132.9, 131.2, 130.4, 130.2, 130.1, 129.0, 128.6, 127.8, 127.5, 126.5, 124.1, 124.0, 123.6, 123.5, 123.1, 119.7, 119.0, 54.3, 29.4, 29.1, 26.7, 26.6, 25.6, 25.5 ppm.

³¹P NMR (202.4 MHz, CDCl₃, 293 K, δ): 39.09 ppm.

¹⁹F NMR (283 MHz, CDCl₃, 293 K, δ): - 149.63 ppm.

Compound 7 :

To a solution of 84.5 mg (0.1 mmol) of compound **5** in anhydrous CH₂Cl₂ (10 mL) was added HBF₄.Et₂O 50-55% in Et₂O (0.1 mL). After stirring for 5 min at room temperature, petroleum ether was added for the precipitation of compound **7**. The precipitate was filtered, washed with petroleum ether, dried under vacuum affording compound **7** in quantitative yield (93 mg).

The ¹H NMR spectrum clearly shows the presence of two isomeric forms. However, a single peak is present in the ³¹P spectrum, suggesting effectively the presence of a single compound.

 ^{31}P NMR (202.4 MHz, CDCl₃, 293 K, δ): 34.06 ppm.

III. Characterizations

1. NMR spectra

Compound 4 :

Figure S1:¹H NMR (500 MHz, CDCl₃, 293 K) of compound **4**, enlargement of the aromatic region and protons of both cyclohexyl groups.

Figure S2: 2D¹H NMR (500 MHz, CDCl₃, 293 K) of compound **4** and enlargement of the aromatic region.

Figure S4: ³¹P NMR (202.4 MHz, CDCl₃, 293 K) of compound **4**.

 Mass
 Tolerance
 Electron Mode
 Charge
 DBE Range
 Max Results

 829.30685 ± 0.00166
 2.0 ppm
 Odd
 1
 -0.5 - 200.0
 100

Elements C 0-60 H 0-50 O 0-5 N 0-5 P 1-1

Results:

Formula Mass DBE Abs. Error (u) Error (u) Error (ppm) 1 C54 H44 N3 O4 P 829.30749 35.0 0.00064 -0.00064 -0.77

Figure S5: HR-MS (MALDI-TOF, DCTB matrix) of compound 4.

Figure S6: FT-IR spectrum of compound 4.

Figure S7: ¹H NMR (500 MHz, CDCl₃, 293 K) of compound **5** and enlargement of the aromatic region.

Figure S8: 2D¹H NMR (500 MHz, CDCl₃, 293 K) of compound **5** and enlargement of the aromatic region.

Figure S10: ³¹P NMR (202.4 MHz, CDCl₃, 293 K) of compound **5**.

Figure S11: HR-MS (MALDI, DCTB matrix) of compound 5.

Figure S12: FT-IR spectrum of compound 5.

Figure S15: ³¹P NMR (202.4 MHz, CDCl₃, 293 K) of compound **6**.

Figure S16: ¹⁹F NMR (283 MHz, CDCl₃, 293 K) of compound **6**.

Compound 7 :

Figure S18: ¹³C NMR (125 MHz, CDCl₃, 293 K) of compound **7**, poorly soluble in CDCl₃.

2. Absorption and fluorescence spectroscopies

Figure S20: UV-Visible spectra of nitroPDI **1** in CH_2CI_2 (10⁻⁵ M).

Figure S21: UV-Visible spectra of compound **4** (blue) and compound **5** (violet) in CH₂Cl₂ at 10⁻⁴ M (left) and 10⁻⁵ M (right). Some aggregation can be noticed for compound **4** at higher concentration.

Figure S22: Photostability study of compound **4** at 10^{-6} M in CH₂Cl₂ UV-Visible spectra at t = 0 (blue), after 3 h of irradiation with the LED lamp (green).

Figure S23: Photostability study of compound **5** at 10^{-6} M in CH₂Cl₂ UV-Visible spectra at t = 0 (violet), after 3 h of irradiation with the LED lamp (olive).

3. Electrochemistry

The electrochemical properties of compounds **1**, **4** and **5** were investigated in glove-box in anhydrous dichloromethane at a scan rate of 100 mV s⁻¹ using 0.1 M nBu₄NPF₆ in CH₂Cl₂ as supporting electrolyte. Pt électrodes were used as both the working and counter electrodes, and with Ag/AgCl as the pseudoreference electrode. A ferrocene/ferrocenium (Fc/Fc⁺) redox couple was used as internal standard and was assigned an absolute energy level of -4.8 eV vs vacuum.

Figure S24: Cyclic voltammogram of compound **1** ($C = 10^{-3}$ M in CH₂Cl₂).

Figure S25: Cyclic voltammograms of compounds **4** and **5** ($C = 10^{-3}$ M in CH_2Cl_2).

4. Spectroelectrochemistry

Figure S26: Absorption variation recorded by real-time absorption spectroelectrochemistry of iminophosphorane-PDI **4** under thin-layer conditions in 1 mM CH₂Cl₂ with n-Bu₄NPF₆ (0.1 M in CH₂Cl₂), using Pt as the working electrode.

Figure S27: Absorption variation derivative recorded by real-time absorption spectroelectrochemistry of iminophosphorane-PDI **4** under thin-layer conditions in 1 mM CH_2Cl_2 with n-Bu₄NPF₆ (0.1 M in CH_2Cl_2), using Pt as the working electrode.

Figure S28: Absorption spectra of iminophosphorane-PDI **4** in neutral state (blue) and in oxidized state (black).

Iminophosphorane-PDI 5:

Figure S29: Absorption variation recorded by real-time absorption spectroelectrochemistry of iminophosphorane-PDI **5** under thin-layer conditions in 1 mM CH₂Cl₂ with n-Bu₄NPF₆ (0.1 M in CH₂Cl₂), using Pt as the working electrode.

Figure S30: Absorption variation derivative recorded by real-time absorption spectroelectrochemistry of iminophosphorane-PDI **5** under thin-layer conditions in 1 mM CH₂Cl₂ with n-Bu₄NPF₆ (0.1 M in CH₂Cl₂), using Pt as the working electrode.

Figure S31: Absorption spectra of iminophosphorane-PDI 5 in neutral state (purple) and in oxidized state (black).

5. Thermogravimetric Analysis

The samples (weight 4.0 mg) were heated with a rate of 10 °C/min under N2. The thermal decomposition temperature (Td) was measured at 5% mass loss of the samples.

Figure S32: Thermogravimetric spectra of compounds **4** (blue) and **5** (red).

6. pH sensing experiments

Figure S33: Iminophosphorane PDI **5** at 10^{-5} M in CH_2Cl_2 during spectrophotometric titration by: **a**) a solution of $H^+PPh_{3,}BF_4^-$ at 10^{-4} M in CH_2Cl_2 ; each addition of 30 μ L corresponds to 0.12 equivalent of acid $H^+PPh_{3,}BF_4^-$; **b**) and subsequent addition of a solution of imidazole at 10^{-3} M in CH_2Cl_2 ; **c**) evolution of the absorption at 526 nm during the titration by a solution of $H^+PPh_{3,}BF_4^-$ at 10^{-4} M in CH_2Cl_2 .

Figure S34: Fluorescence emission spectrum of compound **4** ($C = 10^{-5}$ M, $\lambda_{exc} = 420$ nm) before -1 and after -2 spectrophotometric titration by solution of H⁺PPh₃, BF₄⁻ in CH₂Cl₂ at 298K.

Figure S35: Fluorescence emission spectrum of compound **5** ($C = 10^{-5}$ M, $\lambda_{exc} = 420$ nm) before **-1** and after **-2** spectrophotometric titration by solution of H⁺PPh₃, BF₄⁻ in CH₂Cl₂ at 298K.

Figure S36: Photographic images of compound **4** *before (A) and after addition of different acids:*

A : Compound **4** at 10⁻⁵M in CH₂Cl₂ as reference; **B** : after addition of 5 μ L HCl conc.; **C** : after addition of 5 μ L H₂SO₄ conc.; **D** : after addition of 5 μ L TFA; **E** : after addition of 100 μ L glacial AcOH at t = 0 and **F** : after 16h.

Figure S37: Photographic images of compound 4 and 5 before (A and C) and after addition of HCl 0.1M (B and D)

A : Compound **4** at 10^{-5} M in CH₂Cl₂ as reference; **B** : after addition of 5 μ L HCl 0.1 M solution in CH₂Cl₂ **C** : Compound **5** at 10^{-5} M in CH₂Cl₂ as reference; **D** : after addition of 5 μ L HCl 0.1 M solution in CH₂Cl₂

A : Compound **4** at 10⁻⁵M in CH₂Cl₂ as reference ; **B** : after addition of 5 μ L HCl 0.1 M solution in CH₂Cl₂ ; **C** : after sequential addition of 100 μ L Imidazole 10⁻³M in CH₂Cl₂.

 	c	D

Figure S39: Photographic images of compound **4** (A) and in the presence of $H^+PPh_{3,p}BF_4^-$ (B) and demonstration of the reversibility after addition of imidazole (C), shown after 10 cycles of protonation-deprotonation (D)

A : Compound **4** at 10⁻⁵M in CH₂Cl₂ as reference ; **B** : after addition of 50 μ L H⁺PPh₃, BF₄⁻ 10⁻³M in CH₂Cl₂; **C** : after addition of 50 μ L H⁺PPh₃, BF₄⁻ 10⁻³M in CH₂Cl₂ then 50 μ L Imidazole 10⁻³M in CH₂Cl₂; **D** : after 10 cycles of subsequent addition of 50 μ L H⁺PPh₃, BF₄⁻ 10⁻³M in CH₂Cl₂ then 50 μ L Imidazole 10⁻³M in CH₂Cl₂; **D** : after 10 cycles of subsequent addition of 50 μ L H⁺PPh₃, BF₄⁻ 10⁻³M in CH₂Cl₂ then 50 μ L Imidazole 10⁻³M in CH₂Cl₂; **D** : after 10 cycles of subsequent addition of 50 μ L H⁺PPh₃, BF₄⁻ 10⁻³M in CH₂Cl₂ then 50 μ L Imidazole 10⁻³M in CH₂Cl₂; **D** : after 10 cycles of subsequent addition of 50 μ L

Figure S40: UV-Visible spectra of iminophosphorane-PDI **4** at 10^{-6} M in CH_2Cl_2 (black) and after addition of a solution of $H^+PPh_{3\nu}BF_4^- 10^{-3}$ M in CH_2Cl_2 (red). Photographic images of compound **4** (4 mL) (left) and after addition of a solution $H^+PPh_{3\nu}BF_4^- 10^{-3}$ M (100 μ L) (right).

Figure S41: UV-Visible spectra of iminophosphorane-PDI **5** at 10^{-6} M in CH_2Cl_2 (violet) and after addition of a solution of $H^+PPh_{3\nu}BF_4^ 10^{-3}$ M in CH_2Cl_2 (red). Photographic images of compound **5** (4 mL) (left) and after addition of a solution $H^+PPh_{3\nu}BF_4^ 10^{-3}$ M (100 μ L) (right).

Figure S42: Photographic images of compound **4** (A) in different solvents (top) and after addition of H⁺PPh₃, BF₄⁻ (bottom)

Top : Compound **4** at 10^{-5} M in **A** : CH₂Cl₂, **B** : Toluene, **C** : EtOAc ; **D** : Et₂O ; **E** : DMF ; **F** : EtOH Bottom : Compound **4** after addition of HBF₄.Et₂O (5 μ L) It is noted that no change of colour was occurring in DMF suggesting a preferential protonation of the solvent

Figure S43: Photographic images of compound **4** at 10^{-4} M in CH₂Cl₂ solution (A) and after addition of 10μ L HBF₄.Et₂O (B). Under emission lamp at 420 nm for compound **4** (C) and for protonated form (D).

Figure S44: Photographic images of compound **5** at 10^{-4} M in CH₂Cl₂ solution (A) and after addition of 10μ L HBF₄.Et₂O (B). Under emission lamp at 420 nm for compound **5** (C) and for protonated form (D).

Figure S45: Iminophosphorane PDI **4** (*left*) *in thin film (blue colour) and after addition HCl vapors (pink colour). Iminophosphorane PDI* **5** (*right*) *in thin film (violet colour) and after addition HCl vapors (magenta colour).*