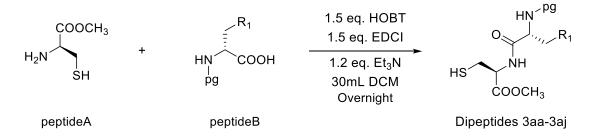
Electrochemical diversification of cysteine derivatives and cysteine-containing peptides to phosphorothioates and sulfinates

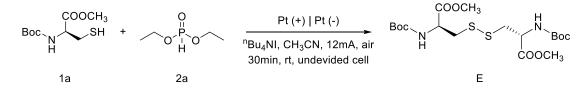
Supporting Information

TABLE OF CONTENTS

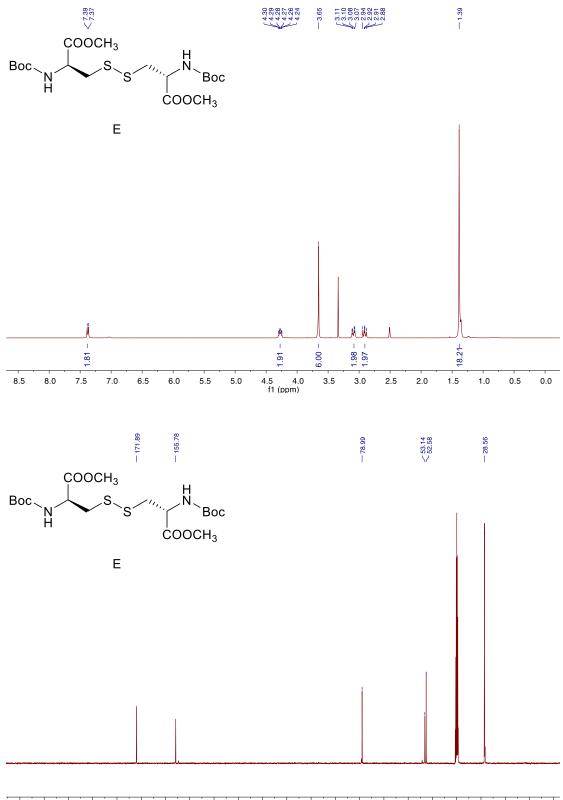

1. General Information4
2. Synthesis of Starting Materials
2.1 Synthesis of starting materials dipeptides 3aa-3aj ¹ 5
2.2 Synthesis of starting materials E······5
3. General Procedure 77
3.1.1 General Procedure for Phosphorothioates Synthesis7
3.1.2 General Procedure for sulfinates Synthesis7
3.2 Table S1 Optimization of the reaction conditions
4. Mechanistic Experiments
4.1 Cyclic voltammetry experiments of Phosphorothioates Synthesis
4.2 Cyclic voltammetry experiments of sulfinates Synthesis 10
4.3 General procedure for the electron paramagnetic resonance (EPR) experiment 12
4.4 The isotope labeling experiment 14
5. Gram-scale synthesis 16
5.1.1 Gram synthesis of 3a · · · · · 16
5.1.2 Antifungal experiment of 3a
5.2 Gram-Scale Experiments with methanol 17
6. Detailed descriptions for products
6.1 Phosphite ester and Thioglucose scope and characterization
6.2 Dipeptide scope and characterization
6.3 Alcohols substrate and characterization
6.4 Dipeptide and Thioglucose scope and characterization
6.5 Polypeptide scope and characterization
7. Spectra
7.1 NMR Spectra of Products
8. References

1. General Information

All glassware was oven dried at 110°C for hours and cooled down under vacuum. Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. The instrument for electrolysis was dual display potentiostat (DJS-292B) (made in China). The anodic electrode was platinum plate (15 mm×15 mm×0.3 mm) and cathodic electrode was platinum plate (15 mm×15 mm×0.3 mm). Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel. Gradient flash chromatography was conducted eluting with a continuous gradient from dichloromethane to the methanol. High resolution mass spectra (HRMS) for polypeptides were measured with an ABI 5800 instrument and accurate masses were reported for the molecular ion + Hydrogen (M+H) or molecular ion + Sodium (M+Na) or molecular ion + Potassium (M+Ka). The ¹H, ¹³C, ¹⁹F and ³¹P NMR spectra were recorded on a Bruker 400 MHz NMR spectrometer. For ¹H NMR, chemical shifts (δ) were given in ppm relatives to internal standard (TMS at 0 ppm, DMSO- d_6 at 2.50 ppm, MeOH- d_4 at 3.31 ppm). For ¹³C-NMR, chemical shifts (δ) were reported in ppm using solvent as internal standard (DMSO- d_6 at 39.50 ppm). HPLC analyses were performed on an Agilent 1260 Infinity LC system using a 100 mm Agilent Zorbax 300SB-C18 5 µm analytical column. All of the MALDI-TOF-MS and MALDI-TOF-MS/MS spectra were acquired using Orbitrap Exploris 480 and QE HF-X mass spectrometer (Thermo Fisher).

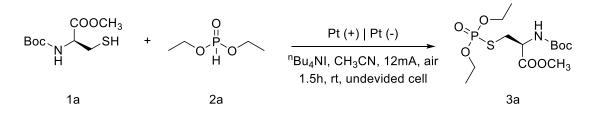

2. Synthesis of Starting Materials

2.1 Synthesis of starting materials dipeptides 3aa-3aj¹

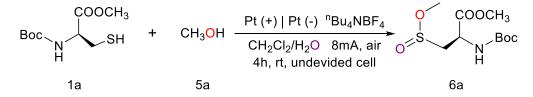

In a round bottomed flask, equipped with a stir bar, peptide A (5.0 mmol), peptide B (5.0 mmol), HOBT (1-hydroxybenzotriazole) (7.5 mmol), EDCI (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride) (7.5 mmol), dichloromethane (30 mL) and triethylamine (6 mmol) were combined and added. The reaction was stirred overnight. After regular workup, the reaction mixture washed by saturated NaHCO₃ solution (40 mL x 3), 2M hydrochloric acid solution (40 mL x 3) and H₂O (40 mL x 3). The organic layers were combined, dried over Na₂SO₄, and concentrated. The resulting crude product was purified by flash chromatography (DCM/ MeOH) to afford corresponding dipeptides **3aa-3aj**.

2.2 Synthesis of starting materials E

In an oven-dried undivided three-necked bottle (25 mL) equipped with a stir bar, methyl (tert-butoxycarbonyl)-D-cysteinate (0.2 mmol), diethyl phosphonate (0.4 mmol), and ⁿBu₄NI (0.2 mmol), Then, CH₃CN (8 mL) were added. The bottle was equipped with platinum plate (15 mm×15 mm×0.3 mm as the anode and platinum plate (15 mm×15 mm×0.3 mm) as the cathode. The reaction mixture was stirred and electrolysis at constant current of 12 mA under 25°C for 30 min. After completion of the reaction, as indicated by TLC, the pure product E was obtained by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate= 4:1).


¹H NMR (400 MHz, DMSO-d6) δ 7.38 (d, *J* = 8.2 Hz, 2H), 4.27 (td, *J* = 8.9, 4.5 Hz, 2H), 3.65 (s, 6H), 3.09 (dd, *J* = 13.7, 4.7 Hz, 2H), 2.91 (dd, *J* = 13.7, 9.7 Hz, 2H), 1.39 (s, 18H). ¹³C NMR (101 MHz, DMSO-d6) δ 171.89, 155.78, 78.99, 53.14, 52.58, 28.56.

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)


3. General Procedure

3.1.1 General Procedure for Phosphorothioates Synthesis

General procedure for Gram-Scale Experiments: In an oven-dried undivided threenecked bottle (25 mL) equipped with a stir bar, methyl (tert-butoxycarbonyl)-Dcysteinate (0.2 mmol), diethyl phosphonate (0.4 mmol), and ⁿBu₄NI (0.2 mmol), Then, CH₃CN (8 mL) were added. The bottle was equipped with platinum plate (15 mm×15 mm×0.3 mm as the anode and platinum plate (15 mm×15 mm×0.3 mm) as the cathode. The reaction mixture was stirred and electrolysis at constant current of 12 mA under 25°C for 1.5 hours. After completion of the reaction, as indicated by TLC, the pure product (yield: 87%, 64.6 mg) was obtained by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate= 2:1).

3.1.2 General Procedure for sulfinates Synthesis

General procedure for Gram-Scale Experiments: In an oven-dried undivided threenecked bottle (25 mL) equipped with a stir bar, methyl (tert-butoxycarbonyl)-Dcysteinate (5.0 mmol), methanol (5.0 mmol), H₂O (10 uL) and $^{n}Bu_4NBF_4$ (5.0 mmol), Then, CH₂Cl₂ (6 mL) were added. The bottle was equipped with platinum plate (15 mm×15 mm×0.3 mm as the anode and platinum plate (15 mm×15 mm×0.3 mm) as the cathode. The reaction mixture was stirred and electrolysis at constant current of 8 mA under 25°C for 4 hours. After completion of the reaction, as indicated by TLC, the pure product (yield: 90%, 50.6 mg) was obtained by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate= 2:1).

Boc N H 1a	+ СН ₃ ОН 5а	Pt (+) Pt (-) ⁿ Bu ₄ NBF ₄ , CH ₂ Cl ₂ /H ₂ O, 8mA air, 4h, rt, undevided cell	O COOCH ₃ O Boc H Boc 6a
Entry	variation from the standard conditions		yield(%)
1	none		90
2	6 mA i	50	
3	10 mA	73	
4	ⁿ Bu ₄ NPF ₆	57	
5	ⁿ Bu₄NI ir	N.R	
6	with	N.R	
7	CH₃OH	78	
8	CH ₃ CN	N.R	
9	H ₂ O in	N.R	
10	graphite	64	
11	Ni foam	85	
12	no	N.R	

3.2 Table S1 Optimization of the reaction conditions

^aReaction conditions: undivided cell, Pt anode, Pt cathode, **1a** (0.2 mmol), **5a** (5.0 mmol), "Bu₄NBF₄ (0.2 mmol), CH₂Cl₂ (6 mL), H₂O (10 uL), air, rt, 8 mA, 4 h. yield of isolated products. N.R = Not Reaction

4. Mechanistic Experiments

4.1 Cyclic voltammetry experiments of Phosphorothioates Synthesis

Cyclic voltammetry was performed in a three-electrode cell connected to a schlenk line at room temperature. Cyclic voltammograms of reactants and the mixtures in 2×10^{-3} M ⁿBu₄NI/CH₃CN using a glassy carbon-disk working electrode (diameter, 3 mm). Pt disk as counter; Ag/AgCl as reference electrode, at 100 mV/s scan rate.

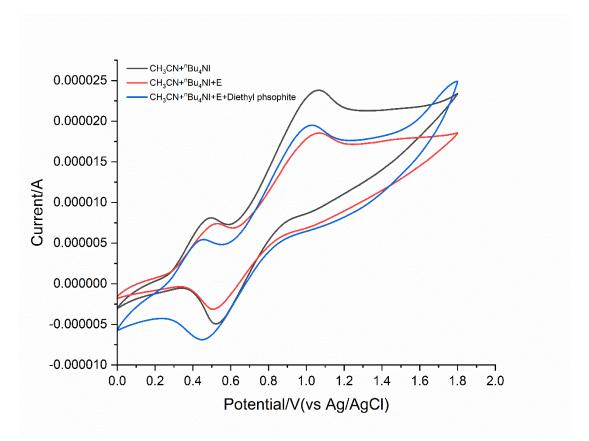


Figure S1. Cyclic voltammograms of substrate CH₃CN+ⁿBu₄NI, CH₃CN+ⁿBu₄NI+ E(10mmol/L),

 $CH_3CN+^nBu_4NI+E+2a, 0-2V$

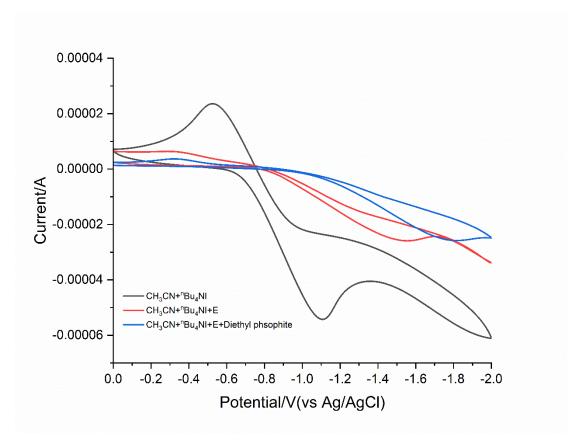


Figure S2. Cyclic voltammograms of substrate CH₃CN+ⁿBu₄NI, CH₃CN+ⁿBu₄NI+E,

 $CH_3CN+^nBu_4NI+E+2a, -2-0V$

4.2 Cyclic voltammetry experiments of sulfinates Synthesis

Cyclic voltammetry was performed in a three-electrode cell connected to a schlenk line at room temperature. Cyclic voltammograms of reactants and the mixtures in 2×10^{-3} M ⁿBu₄NBF₄/CH₂Cl₂ using a glassy carbon-disk working electrode (diameter, 3 mm). Pt disk as counter; Ag/AgCl as reference electrode, at 100 mV/s scan rate.

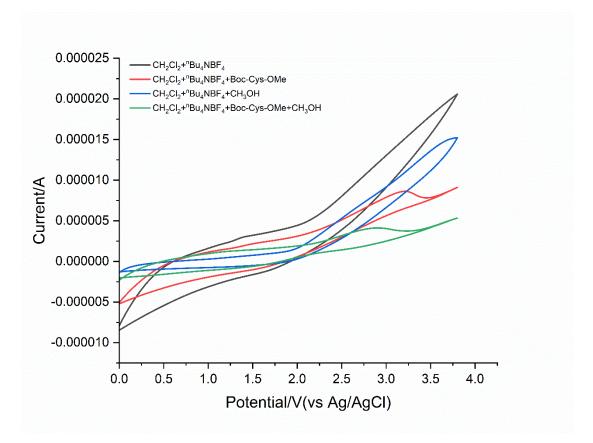
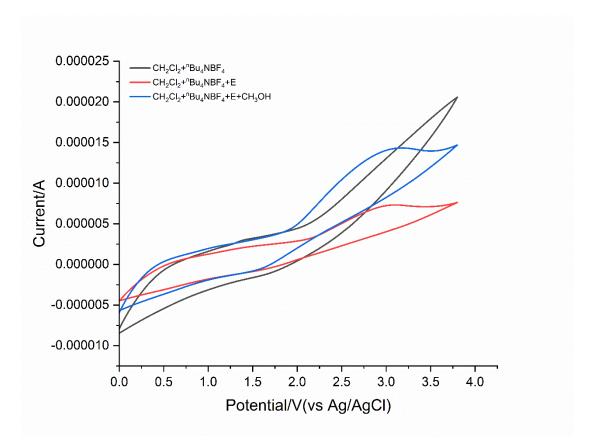



Figure S3. Cyclic voltammograms of substrate CH₃CN+ⁿBu₄NBF₄, CH₃CN+ⁿBu₄NBF₄+ 1a(8mmol/L), CH₃CN+ⁿBu₄NBF₄+5a(50uL), CH₃CN+ⁿBu₄NBF₄+1a+5a, 0-3.8V

Figure S4. Cyclic voltammograms of substrate of substrate CH₃CN+ⁿBuNBF₄, CH₃CN+ⁿBu₄NBF₄+**E**(10mmol/L), CH₃CN+ⁿBu₄NBF₄+**E**+**5a**, 0-3.8V

4.3 General procedure for the electron paramagnetic resonance

(EPR) experiment

Reagent was electrolyzed in CH₃CN (8.0 mL) for 20 min. The samples were taken out by a capillary (borosilicate glass, $0.8-1.1 \times 100$ mm), and then recorded by EPR spectrometer at indicated temperature and parameters.

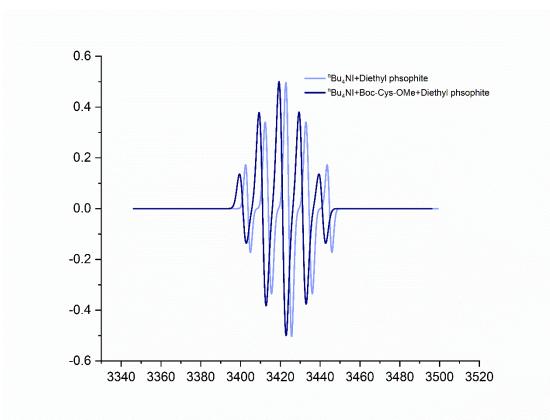


Figure S5

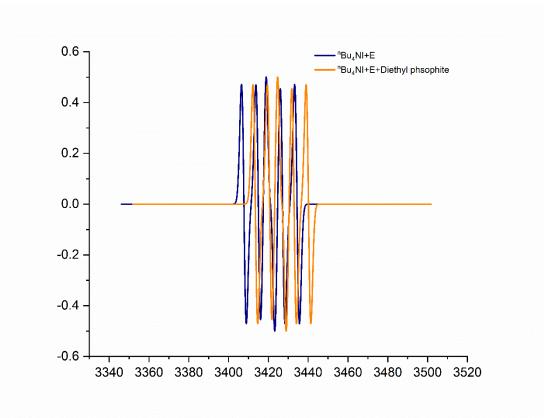
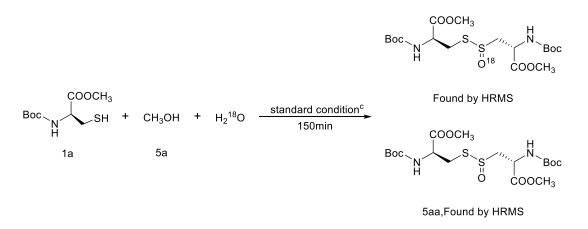



Figure S6

4.4 The isotope labeling experiment

We replace the water with water containing the isotope ¹⁸O, and we let the reactant 1a and the reactant 5a react for 150 min under standard conditions, and finally get the intermediate 5aa and the 5aa mixture containing ¹⁸O. The spectra of the intermediate 5aa and the 5aa mixture containing ¹⁸O are listed below (Figure S7).

HRMS (ESI-TOF): m/z calculated for $C_{18}H_{32}N_2O_9S_2$, [M+Na]⁺, 507.14414, found 507.14839.

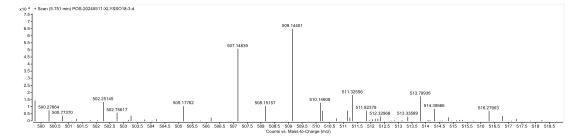
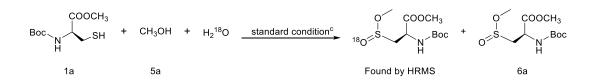



Figure S7. The HMRS spectra of the mixture of 5aa and [180]-5aa.

we let the reactant 1a and the reactant 5a react under standard conditions, and finally get the intermediate 6a and the 6a mixture containing ¹⁸O. The spectra of the intermediate 6a and the 6a mixture containing ¹⁸O are listed below (Figure S8).

HRMS (ESI-TOF): m/z calculated for $C_{10}H_{19}NO_6S$, [M+Na]⁺, 507.14414, found 507.14839.

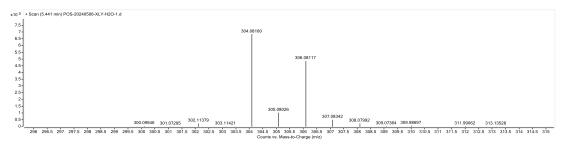


Figure S8. The HMRS spectra of the mixture of 6a and [180]-6a.

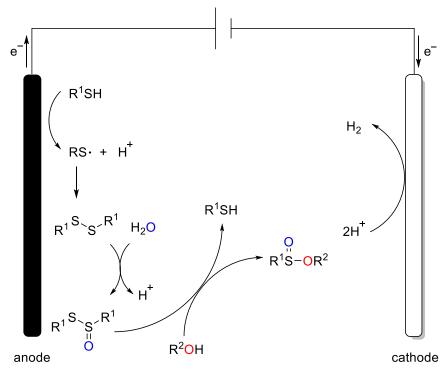


Figure S9. Proposed mechanism of 6a.

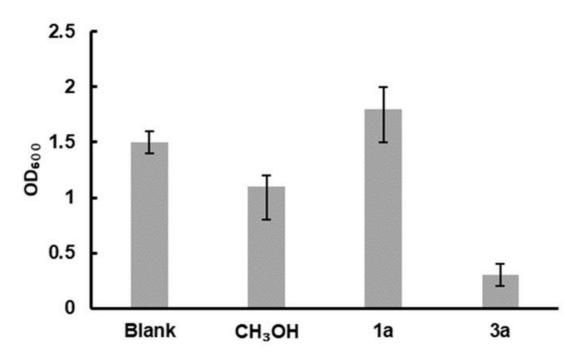
5. Gram-scale synthesis

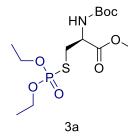
5.1.1 Gram synthesis of 3a

General procedure for Gram-Scale Experiments: In an oven-dried undivided threenecked bottle (100 mL) equipped with a stir bar, methyl (tert-butoxycarbonyl)-Dcysteinate (5.0 mmol), diethyl phosphonate (10.0 mmol), and ⁿBu₄NI (5.0 mmol), Then, CH₃CN (40 mL) were injected into the tubes via syringes. The bottle was equipped with platinum plate (15 mm×15 mm×0.3 mm as the anode and platinum plate (15 mm×15 mm×0.3 mm) as the cathode. The reaction mixture was stirred and electrolysis at constant current of 12 mA under 25°C for 48 hours. The solvent was removed under vacuum. The crude product was purified by flash column chromatography on silica gel to afford pure product.

5.1.2 Antifungal experiment of 3a

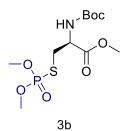
Fungal plaque was inoculated into 2mL of Luria-Bertani liquid culture medium in 96well plates and incubated at 28°C for 24 hours. Afterwards, the optical density at 600nm (OD₆₀₀) of each sample was determined.



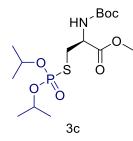

Figure S10. Optical density of treated fungal patches at $600 \text{ nm} (OD_{600})$

5.2 Gram-Scale Experiments with methanol

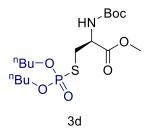
General procedure for Gram-Scale Experiments: In an oven-dried undivided threenecked bottle (100 mL) equipped with a stir bar, methyl (tert-butoxycarbonyl)-Dcysteinate (5.0 mmol), methanol (4.20 mL), H₂O (0.25 mL) and ⁿBu₄NBF₄ (5.0 mmol), Then, CH₂Cl₂ (40 mL) were injected into the tubes via syringes. The bottle was equipped with platinum plate (15 mm×15 mm×0.3 mm as the anode and platinum plate (15 mm×15 mm×0.3 mm) as the cathode. The reaction mixture was stirred and electrolysis at constant current of 8 mA under 25°C for 96 hours. The solvent was removed under vacuum. The crude product was purified by flash column chromatography on silica gel to afford pure product.


6. Detailed descriptions for products

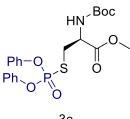
6.1 Phosphite ester and Thioglucose scope and characterization


Metnyl N-(tert-butoxycarbonyl)-S-(diethoxyphosphory)-D-cysteinate (3a).

64.6 mg (yield: 87%, 0.2 mmol scale), yellow oil. ¹H NMR (400 MHz, DMSO-d6) δ 7.44 (d, J = 8.4 Hz, 1H), 4.24 (ddd, J = 9.9, 8.3, 4.6 Hz, 1H), 4.08 (ddt, J = 9.0, 7.0, 2.0Hz, 4H), 3.66 (s, 3H), 3.16 (td, J = 13.4, 4.7 Hz, 1H), 2.99 (ddd, J = 16.9, 13.3, 9.9 Hz, 1H), 1.39 (s, 9H), 1.27 (tt, J = 7.1, 1.2 Hz, 6H). ¹³C NMR (101 MHz, DMSO-d6) δ 171.25, 155.76, 79.11, 63.83 (dd, J = 5.7, 2.5 Hz), 54.30 (d, J = 4.1 Hz), 52.71, 40.30, 31.73 (d, J = 3.7 Hz), 28.53, 16.26 (dd, J = 7.1, 2.6 Hz). ³¹P NMR (162 MHz, DMSOd6) δ 26.03. HRMS (ESI) calcd. For (M+Na)⁺ C₁₃H₂₆NO₇PS: 394.10598 found, 394.10593.

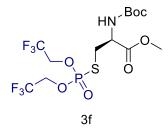

Methyl N-(tert-butoxycarbonyl)-S-(dimethoxyphosphoryl)-D-cysteinate (3b).

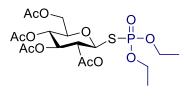
51.5 mg (yield: 75%, 0.2 mmol scale), yellow oil. ¹H NMR (400 MHz, DMSO-d6) δ 7.46 (d, J = 8.4 Hz, 1H), 4.24 (ddd, J = 9.9, 8.4, 4.6 Hz, 1H), 3.74 (d, J = 2.2 Hz, 3H), 3.70 (d, J = 2.2 Hz, 3H), 3.66 (s, 3H), 3.17 (td, J = 13.4, 4.7 Hz, 1H), 3.00 (ddd, J =17.0, 13.3, 9.9 Hz, 1H), 1.39 (s, 9H), 3.37 – 3.35 (m, 3H). ¹³C NMR (101 MHz, DMSOd6) δ 171.17, 155.76, 79.15, 54.24 (dd, J = 5.6, 2.3 Hz), 52.73, 31.66 (d, J = 3.7 Hz), 28.53. ³¹P NMR (162 MHz, DMSO-d6) δ 29.70. HRMS (ESI) cald. for (M+Na)⁺ C₁₁H₂₂NO₇PS: 366.07648, found, 366.07463.


Methyl N-(tert-butoxycarbonyl)-S-(diisopropoxyphosphoryl)-D-cysteinate (3c).

57.6 mg (yield: 72%, 0.2 mmol scale), yellow oil. ¹H NMR (400 MHz, DMSO-d6) δ 7.42 (d, J = 8.3 Hz, 1H), 4.62 (ddq, J = 12.6, 6.3, 3.6, 3.1 Hz, 2H), 4.30 – 4.23 (m, 1H), 3.66 (s, 3H), 3.20 – 3.11 (m, 1H), 2.99 (ddd, J = 16.1, 13.2, 9.9 Hz, 1H), 1.39 (s, 9H), 1.30 – 1.26 (m, 12H). ¹³C NMR (101 MHz, DMSO-d6) δ 171.30, 155.73, 79.43, 79.07, 72.88 (dd, J = 9.2, 6.2 Hz), 55.60, 54.41 (d, J = 4.2 Hz), 52.70, 31.89 (d, J = 3.7 Hz), 29.47, 28.53, 23.95 (d, J = 3.8 Hz), 23.71 (d, J = 5.6 Hz). ³¹P NMR (162 MHz, DMSOd6) δ 23.56. HRMS (ESI) cald. for (M+Na)⁺ C₁₅H₃₀NO₇PS: 422.13728, found, 422.13765.

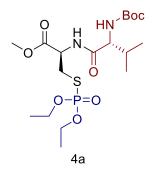
Methyl N-(tert-butoxycarbonyl)-S-(dibutoxyphosphoryl)-D-cysteinate (3d).


56.4 mg (yield: 66%, 0.2 mmol scale), yellow oil. ¹H NMR (400 MHz, DMSO-d6) δ 7.43 (d, J = 8.4 Hz, 1H), 4.24 (ddd, J = 10.0, 8.4, 4.6 Hz, 1H), 4.06 – 3.98 (m, 4H), 3.66 (s, 3H), 3.16 (td, J = 13.4, 4.6 Hz, 1H), 2.99 (ddd, J = 16.9, 13.3, 10.0 Hz, 1H), 1.65 – 1.58 (m, 4H), 1.39 (d, J = 3.1 Hz, 9H), 1.36 – 1.32 (m, 4H), 0.90 (t, J = 7.4 Hz, 6H). ¹³C NMR (101 MHz, DMSO-d6) δ 171.24, 155.76, 79.12, 67.32 (d, J = 6.3 Hz), 54.36 (d, J = 4.0 Hz), 52.72, 40.55 (d, J = 12.3 Hz), 31.99 (d, J = 6.5 Hz), 31.69 (d, J = 3.7 Hz), 28.52, 28.30, 18.66, 13.84.³¹P NMR (162 MHz, DMSO-d6) δ 26.33. HRMS (ESI) cald. for (M+Na)⁺ C₁₇H₃₄NO₇PS: 428.18664, found, 428.18624.

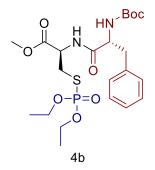

Methyl N-(tert-butoxycarbonyl)-S-(diphenoxyphosphoryl)-D-cysteinate (3e).

81.3 mg (yield: 87%, 0.2 mmol scale), yellow oil. ¹H NMR (400 MHz, Methanol-d4) δ 7.41 (dd, J = 8.6, 7.2 Hz, 4H), 7.31 – 7.24 (m, 6H), 4.42 (dd, J = 8.6, 4.8 Hz, 1H), 3.69 (s, 3H), 3.48 (ddd, J = 15.1, 13.3, 4.8 Hz, 1H), 3.33 - 3.23 (m, 1H), 1.41 (s, 9H). ¹³C NMR (101 MHz, DMSO-d6) δ 170.93, 155.71, 150.08 (dd, *J* = 8.4, 5.2 Hz), 130.65, 126.44, 120.91 (d, J = 4.7 Hz), 79.27, 54.15 (d, J = 5.3 Hz), 52.82, 32.36 (d, J = 3.9 Hz), 28.51. ³¹P NMR (162 MHz, DMSO-d6) δ 20.28. HRMS (ESI) cald. for (M+Na)⁺ C₂₁H₂₆NO₇PS: 490.10598, found, 490.10538.

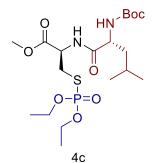
Methyl S-(bis(trifluoromethoxy)phosphoryl)-N-(tert-butoxycarbonyl)-D-cysteinate (3f). 54.1 mg (yield: 60%, 0.2 mmol scale), yellow oil. ¹H NMR (400 MHz, DMSO-d6) δ 7.52 (d, J = 8.6 Hz, 1H), 4.85 - 4.76 (m, 4H), 4.36 - 4.30 (m, 1H), 3.67 (s, 3H), 3.34 - 4.30 (m, 2H), 3.34 (m, 2H), 3.3.28 (m, 1H), 3.14 (ddd, J = 18.3, 13.2, 10.0 Hz, 1H), 1.40 (s, 9H).¹³C NMR (101 MHz, DMSO-d6) δ 170.87, 155.82, 127.46 (d, J = 11.2 Hz), 124.70 (d, J = 10.7 Hz), 121.94 (d, J = 10.8 Hz), 79.31, 63.73 (d, J = 5.0 Hz), 63.37 (dd, J = 8.0, 4.2 Hz), 63.01 (dd, J = 8.0, 4.2 Hz), 62.80 - 62.52 (m), 53.89 (d, J = 4.7 Hz), 52.80, 32.36 (d, J = 3.7 Hz), 28.45. ³¹P NMR (162 MHz, DMSO-d6) δ 29.80. ¹⁹F NMR (377 MHz, DMSO-d6) δ -


73.78 (q, J = 8.4 Hz). HRMS (ESI) cald. for (M+Na)⁺ C₁₁H₁₆F₆NO₇PS: 502.04945, found, 502.04980.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((diethoxyphosphoryl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3g).

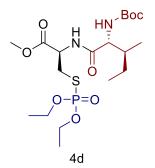

72.7 mg (yield: 72%, 0.2 mmol scale), yellow oil. ¹H NMR (400 MHz, DMSO-d6) δ 5.41 (t, *J* = 9.4 Hz, 1H), 5.21 (dd, *J* = 13.3, 10.0 Hz, 1H), 5.00 – 4.91 (m, 2H), 4.15 – 4.09 (m, 5H), 4.08 – 4.00 (m, 2H), 2.05 – 1.97 (m, 9H), 1.95 (s, 3H), 1.31 – 1.26 (m, 6H). ¹³C NMR (101 MHz, DMSO-d6) δ 170.44, 169.83 (d, *J* = 19.1 Hz), 169.50, 81.90 (d, *J* = 3.8 Hz), 75.23, 73.10, 70.97 (d, *J* = 9.2 Hz), 68.17, 64.14 (dd, *J* = 16.9, 5.3 Hz), 62.37, 61.59, 21.00 – 20.60 (m), 16.54 (d, *J* = 6.2 Hz), 16.20 (dd, *J* = 7.0, 3.4 Hz). ³¹P NMR (162 MHz, DMSO-d6) δ 21.47. HRMS (ESI)cald. for (M+K)⁺ C₁₈H₂₉O₁₂PS: 539.07489, found, 539.07485.

6.2 Dipeptide scope and characterization

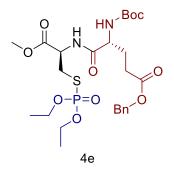


Methyl N-((tertbutoxycarbonyl)-D-valyl)-S-(diethoxyphosphoryl)-L-cyteinate (4a).

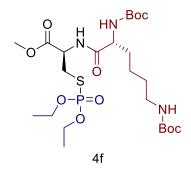
45.2 mg (yield: 48%, 0.2 mmol scale), yellow oil. ¹H NMR (400 MHz, DMSO-d6) δ 8.51 (d, J = 7.9 Hz, 1H), 6.63 (d, J = 9.0 Hz, 1H), 4.52 (td, J = 8.7, 4.9 Hz, 1H), 4.12 – 4.01 (m, 4H), 3.85 (dd, J = 9.2, 6.7 Hz, 1H), 3.65 (s, 3H), 3.21 (td, J = 13.3, 5.0 Hz, 1H), 3.04 (ddd, J = 16.1, 13.2, 9.2 Hz, 1H), 1.96 (h, J = 6.6 Hz, 1H), 1.39 (s, 9H), 1.27 (t, J = 7.1 Hz, 6H), 0.85 (dd, J = 12.4, 6.8 Hz, 6H).¹³C NMR (101 MHz, DMSO-d6) δ 172.19, 170.64, 155.84, 78.47, 63.83 (d, J = 5.7 Hz), 59.98, 52.69 (d, J = 4.2 Hz), 31.61, 30.90, 28.60, 19.60, 18.33, 16.26 (d, J = 6.9 Hz).³¹P NMR (162 MHz, DMSO-d6) δ 25.88. HRMS (ESI) cald. for (M+Na)⁺ C₁₈H₃₅N₂O₈PS: 493.17439, found, 493.17486.



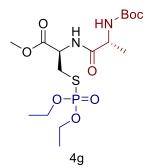
Methyl N-((tert-butoxycarbonyl)-D-phenylalanyl)-S-(diethoxyphosphoryl)-L-cyteinate (4b). 84.5 mg (yield: 77%, 0.2 mmol scale), yellow oil. ¹H NMR (400 MHz, DMSO-d6) δ 8.58 (d, *J* = 7.9 Hz, 1H), 7.28 (d, *J* = 4.4 Hz, 4H), 7.20 (dt, *J* = 8.8, 4.3 Hz, 1H), 6.94 (d, *J* = 8.7 Hz, 1H), 4.58 (td, *J* = 8.4, 5.2 Hz, 1H), 4.21 (ddd, *J* = 10.3, 8.6, 4.2 Hz, 1H), 4.08 (ddt, *J* = 12.3, 6.0, 2.3 Hz, 4H), 3.66 (s, 3H), 3.22 (td, *J* = 13.4, 5.3 Hz, 1H), 3.12 – 3.03 (m, 1H), 3.02 – 2.95 (m, 1H), 2.75 (dd, *J* = 13.8, 10.3 Hz, 1H), 1.29 (d, *J* = 2.1 Hz, 9H), 1.27 (d, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, DMSO-d6) δ 172.59, 170.73, 155.65, 138.49, 129.65, 128.49, 126.67, 78.48, 63.91 (d, *J* = 5.9 Hz), 56.04, 52.77 (d, *J* = 4.7 Hz), 37.76, 31.51 (d, *J* = 3.5 Hz), 28.56, 16.29 (d, *J* = 7.1 Hz). ³¹P NMR (162 MHz, DMSO-d6) δ 25.87. HRMS (ESI) cald. for (M+Na)⁺ C₂₂H₃₅N₂O₈PS : 541.17439, found, 507.17439.


Methyl N-((tertbutoxycarbonyl)-D-leucyl)-S-(diethoxyphosphoryl)-L-cyteinate (4c).

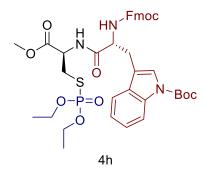
49.4 mg (yield: 51%, 0.2 mmol scale), yellow oil. ¹H NMR (400 MHz, DMSO-d6) δ 8.45 (d, *J* = 8.0 Hz, 1H), 6.86 (d, *J* = 8.5 Hz, 1H), 4.52 (td, *J* = 8.6, 4.9 Hz, 1H), 4.06 (dddd, *J* = 17.4, 8.4, 4.9, 1.5 Hz, 5H), 3.66 (s, 3H), 3.20 (td, *J* = 13.2, 5.0 Hz, 1H), 3.05 (ddd, *J* = 16.0, 13.2, 9.1 Hz, 1H), 1.61 (dt, *J* = 13.4, 6.7 Hz, 1H), 1.43 (dd, *J* = 8.6, 6.0 Hz, 2H), 1.38 (s, 9H), 1.27 (t, *J* = 7.1 Hz, 6H), 0.87 (t, *J* = 6.8 Hz, 6H). ¹³C NMR (101 MHz, DMSO-d6) δ 173.34, 170.69, 155.69, 78.41, 63.80 (d, *J* = 5.6 Hz), 53.04, 52.82 – 52.44 (m), 41.25, 31.73 (d, *J* = 3.5 Hz), 28.61, 24.67, 23.33, 22.01, 16.26 (d, *J* = 6.8 Hz). ³¹P NMR (162 MHz, DMSO-d6) δ 25.89. HRMS (ESI) cald. for (M+H)⁺ C₁₉H₃₇N₂O₈PS: 485.20812, found, 485.20322.


Methyl N-((tertbutoxycarbonyl)-D-alloisoleucyl)-S-(diethoxyphosphoryl)-L-cyteinate (4d). 54.3 mg (yield: 56%, 0.2 mmol scale), yellow oil. ¹H NMR (400 MHz, DMSO-d6) δ 8.52 (d, *J* = 7.9 Hz, 1H), 6.66 (d, *J* = 9.0 Hz, 1H), 4.52 (tt, *J* = 8.7, 5.0 Hz, 1H), 4.07 (ddt, *J* = 12.5, 6.3, 2.3 Hz, 4H), 3.90 – 3.84 (m, 1H), 3.65 (s, 3H), 3.20 (td, *J* = 13.3,

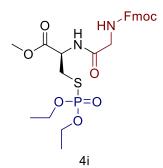
5.0 Hz, 1H), 3.04 (ddd, J = 16.1, 13.2, 9.3 Hz, 1H), 1.70 (ddq, J = 14.3, 7.2, 3.5 Hz, 1H), 1.38 (s, 10H), 1.27 (t, J = 7.0 Hz, 6H), 1.08 (ddt, J = 14.2, 9.9, 7.2 Hz, 1H), 0.86 -0.79 (m, 6H). ¹³C NMR (101 MHz, DMSO-d6) δ 172.24, 170.64, 155.76, 78.47, 63.83 (d, J = 6.0 Hz), 59.08, 52.69 (d, J = 3.6 Hz), 40.20, 37.02, 31.59, 28.60, 24.64, 16.26 (d, J = 7.2 Hz), 15.76, 11.44. ³¹P NMR (162 MHz, DMSO-d6) δ 25.90. HRMS (ESI) cald. for (M+Na)⁺ C₁₉H₃₇N₂O₈PS: 507.19004, found, 507.19061.


Benzyl (R)-4-((tert-butoxycarbonyl)amino)-5-((R)-3-((diethoxyphosphoryl)thio)-1-methoxy-1-oxopropan-2-yl)amino)-5-oxopentanoate (4e).

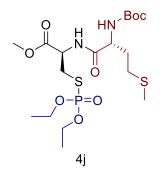
79.1 mg (yield: 67%, 0.2 mmol scale), yellow oil. ¹H NMR (400 MHz, DMSO-d6) δ 8.50 (d, *J* = 8.0 Hz, 1H), 7.38 – 7.31 (m, 5H), 6.98 (d, *J* = 8.1 Hz, 1H), 5.09 (s, 2H), 4.54 (td, *J* = 8.6, 4.8 Hz, 1H), 4.11 – 3.98 (m, 5H), 3.65 (s, 3H), 3.22 (td, *J* = 13.2, 4.9 Hz, 1H), 3.07 (ddd, *J* = 16.3, 13.2, 9.2 Hz, 1H), 2.46 – 2.35 (m, 2H), 1.99 – 1.87 (m, 1H), 1.86 – 1.75 (m, 1H), 1.39 – 1.33 (m, 9H), 1.25 (td, *J* = 7.0, 1.8 Hz, 6H).¹³C NMR (101 MHz, DMSO-d6) δ 172.67, 172.37, 170.61, 155.71, 136.66, 128.88, 128.36 (d, *J* = 14.4 Hz), 78.66, 65.91, 63.84 (d, *J* = 5.8 Hz), 53.82, 52.73 (d, *J* = 12.7 Hz), 40.44 (d, *J* = 1.1 Hz), 31.70, 30.46, 28.61, 27.63, 16.27 (d, *J* = 7.2 Hz). ³¹P NMR (162 MHz, DMSO-d6) δ 25.85. HRMS (ESI) cald. for (M+Na)⁺ C₂₅H₃₉N₂O₁₀PS: 613.19552, found, 613.19428.


Methyl N-(N²,N⁶-bis(tert-butoxycarbonyl)-D-lysyl)-S-(diethoxyphosphoryl)-L-cysteinate (4f). 82.8 mg (yield: 69%, 0.2 mmol scale), yellow oil. ¹H NMR (400 MHz, DMSO-d6) δ 8.42 (d, *J* = 8.1 Hz, 1H), 6.83 – 6.66 (m, 2H), 4.59 (td, *J* = 8.2, 4.9 Hz, 1H), 4.20 – 4.05 (m, 4H), 3.99 (q, *J* = 7.7, 7.2 Hz, 1H), 3.71 (s, 3H), 3.30 – 3.05 (m, 2H), 2.97 – 2.89 (m, 2H), 1.69 – 1.53 (m, 2H), 1.43 (d, *J* = 3.6 Hz, 20H), 1.32 (t, *J* = 7.1 Hz, 8H). ¹³C NMR (101 MHz, DMSO-d6) δ 172.95, 170.64, 156.03, 155.72, 78.49, 77.77, 63.85 (d,

J = 5.8 Hz), 54.65, 52.65 (d, J = 7.0 Hz), 32.10, 31.79 (d, J = 3.6 Hz), 29.66, 28.68 (d, J = 8.8 Hz), 23.15, 16.25 (d, J = 6.8 Hz). ³¹P NMR (162 MHz, DMSO-d6) δ 25.84. HRMS (ESI) cald. for (M+H)⁺ C₂₄H₄₆N₃O₁₀PS: 600.27143, found, 600.27098.

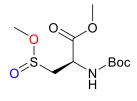

Methyl N-((tertbutoxycarbonyl)-D-alanyl)-S-(diethoxyphosphoryl)-L-cyteinate (4g).

39.7 mg (yield: 45%, 0.2 mmol scale), yellow oil. ¹H NMR (400 MHz, DMSO-d6) δ 8.39 (d, *J* = 8.1 Hz, 1H), 6.93 (d, *J* = 7.6 Hz, 1H), 4.54 (td, *J* = 8.6, 5.1 Hz, 1H), 4.12 – 3.96 (m, 5H), 3.66 (s, 3H), 3.20 (td, *J* = 13.3, 5.1 Hz, 1H), 3.05 (ddd, *J* = 16.1, 13.2, 9.0 Hz, 1H), 1.38 (s, 9H), 1.29 – 1.25 (m, 6H), 1.20 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, DMSO-d6) δ 173.56, 170.70, 155.44, 78.49, 63.84 (d, *J* = 5.8 Hz), 52.79, 52.54 (d, *J* = 4.6 Hz), 50.05, 39.52, 31.81, 28.64, 18.66, 16.28 (d, *J* = 6.8 Hz). ³¹P NMR (162 MHz, DMSO-d6) δ 25.87. HRMS (ESI) cald. for (M+H)⁺ C₁₆H₃₁N₂O₈PS: 443.16115, found, 443.16163.



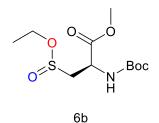
Tert-butyl 3-((R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(((R)-3-(((R)-3-((diethox yphosphoryl)thio)-1-methoxy-1-oxopropan-2-yl)amino)-3-oxopropyl)-1H-indole-1-carboxyla -te (4h).

85.8 mg (yield: 55%, 0.2 mmol scale), yellow oil. ¹H NMR (400 MHz, DMSO-d6) δ 8.83 (d, J = 8.1 Hz, 1H), 8.04 (d, J = 8.2 Hz, 1H), 7.86 (d, J = 7.7 Hz, 2H), 7.80 (d, J = 7.8 Hz, 1H), 7.74 (d, J = 8.7 Hz, 1H), 7.66 – 7.57 (m, 3H), 7.40 – 7.30 (m, 3H), 7.25 (dq, J = 15.4, 7.5, 5.4 Hz, 3H), 4.63 (td, J = 8.4, 5.1 Hz, 1H), 4.49 (td, J = 9.3, 4.4 Hz, 1H), 4.22 – 4.14 (m, 2H), 4.05 (dddd, J = 15.3, 10.8, 7.1, 2.3 Hz, 5H), 3.69 (s, 3H), 3.26 – 2.95 (m, 4H), 1.57 (s, 9H), 1.26 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, DMSO-d6) δ 172.22, 170.64, 156.32, 149.52, 144.18 (d, J = 3.4 Hz), 141.12 (d, J = 3.0 Hz), 135.20, 130.71, 128.04, 127.44, 125.73 (d, J = 10.2 Hz), 124.71 (d, J = 7.0 Hz), 122.85, 120.50, 119.93, 117.05, 115.13, 83.90, 66.30, 63.89 (d, J = 6.1 Hz), 54.85, 52.82 (d, J = 4.2 Hz), 47.05, 31.90 (d, J = 3.4 Hz), 28.12, 16.26 (d, J = 6.8 Hz). ³¹P NMR (162 MHz, DMSO-d6) δ 25.81. HRMS (ESI) cald. for (M+Na)⁺ C₃₉H₄₆N₃O₁₀PS: 802.25337, found, 802.25121.

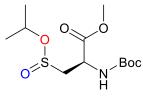

Methyl N-(((9H-fluoren-9-yl)methoxy) carbonglcyl)-S-(diethoxyphosphoryl)-L-cyteinate (4i). 47.4 mg (yield: 43%, 0.2 mmol scale), yellow oil. ¹H NMR (400 MHz, DMSO-d6) δ 8.54 (d, J = 7.9 Hz, 1H), 7.91 – 7.88 (m, 2H), 7.73 (d, J = 7.5 Hz, 2H), 7.60 (t, J = 6.2Hz, 1H), 7.42 (td, J = 7.5, 1.2 Hz, 2H), 7.34 (td, J = 7.4, 1.2 Hz, 2H), 4.59 (dt, J = 8.3, 4.1 Hz, 1H), 4.30 (d, J = 7.7 Hz, 2H), 4.24 (d, J = 6.7 Hz, 1H), 4.07 (dtt, J = 8.4, 5.2, 1.6 Hz, 4H), 3.70 (d, J = 6.2 Hz, 2H), 3.67 (s, 3H), 3.21 (td, J = 13.5, 5.3 Hz, 1H), 3.07 (ddd, J = 15.9, 13.3, 8.6 Hz, 1H), 1.26 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, DMSOd6) δ 170.73, 169.93, 156.95, 144.30, 141.20, 128.11, 127.55, 125.73, 120.58, 66.23, 63.92 (d, J = 5.8 Hz), 52.92 – 52.60 (m), 47.09, 43.59, 31.66 (d, J = 3.8 Hz), 16.29 (d, J = 6.9 Hz). ³¹P NMR (162 MHz, DMSO-d6) δ 25.85. HRMS (ESI) cald. for (M+Na)⁺ C₂₅H₃₁N₂O₈PS: 573.14309, found, 573.14329.

Methyl N-((tert-butoxycarbonyl)-D-methionyl)-S-(diethoxyphosphoryl)-L-cyteinate (4j).

65.3 mg (yield: 65%, 0.2 mmol scale), yellow oil. ¹H NMR (400 MHz, DMSO-d6) δ 8.47 (d, J = 8.1 Hz, 1H), 6.97 (d, J = 8.1 Hz, 1H), 4.55 (td, J = 8.6, 4.9 Hz, 1H), 4.11 – 4.02 (m, 5H), 3.66 (s, 3H), 3.22 (td, J = 13.1, 4.9 Hz, 1H), 3.07 (ddd, J = 16.1, 13.2, 9.2 Hz, 1H), 2.46 (dd, J = 9.0, 6.3 Hz, 2H), 2.04 (s, 3H), 1.92 – 1.76 (m, 2H), 1.39 (s, 9H), 1.27 (t, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, DMSO-d6) δ 172.94, 172.52, 170.62, 155.75, 155.12, 78.60, 63.85 (d, J = 5.7 Hz), 53.90, 52.88 – 52.47 (m), 32.18, 31.78 (d, J = 3.7 Hz), 30.04, 28.61, 16.27 (d, J = 7.0 Hz), 15.05. ³¹P NMR (162 MHz, DMSOd6) δ 25.85. HRMS (ESI) cald. for (M+Na)⁺ C₁₈H₃₅N₂O₈PS₂: 525.14647, found, 525.14598.


6.3 Alcohols substrate and characterization

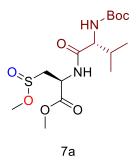
6a


Methyl (tert-butoxycarbonyl)(methoxysulfinyl)-D-alaninate (6a).

50.6 mg (yield: 90%, 0.2 mmol scale), colorless oil. ¹H NMR (400 MHz, DMSO-d6) δ 7.59 (dd, J = 8.4, 2.7 Hz, 1H), 4.37 – 4.26 (m, 1H), 3.70 (s, 3H), 3.66 (s, 3H), 3.22 – 3.14 (m, 1H), 3.05 – 2.96 (m, 1H), 1.39 (s, 9H). ¹³C NMR (101 MHz, DMSO-d6) δ 171.32 (d, J = 11.5 Hz), 155.52, 79.34 (d, J = 4.0 Hz), 57.68, 57.16, 54.28 (d, J = 3.1Hz), 52.89, 49.03 (d, J = 10.1 Hz), 28.51. HRMS (ESI) cald. for (M+Na)⁺ C₁₀H₁₉NO₆S: 304.08253, found, 304.08221.

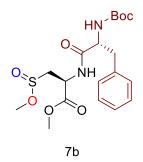
Methyl (tert-butoxycarbonyl)(ethoxysulfinyl)-D-alaninate (6b).

46.1 mg (yield: 78%, 0.2 mmol scale), colorless oil. ¹H NMR (400 MHz, DMSO-d6) δ 7.58 (dd, J = 8.3, 2.4 Hz, 1H), 4.39 – 4.26 (m, 1H), 4.06 (ttd, J = 7.1, 4.3, 2.2 Hz, 2H), 3.66 (s, 3H), 3.21 – 3.09 (m, 1H), 3.06 – 2.94 (m, 1H), 1.39 (s, 9H), 1.25 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, DMSO-d6) δ 171.34 (d, J = 14.9 Hz), 155.54 (d, J = 12.8Hz), 79.30 (d, J = 5.3 Hz), 64.86 (d, J = 17.2 Hz), 58.24, 57.70, 52.87, 49.12, 28.50, 16.19 (d, J = 7.2 Hz). HRMS (ESI) cald. for (M+K)⁺ C₁₁H₂₁NO₆S: 334.07212, found, 334.07208.

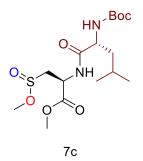


6c

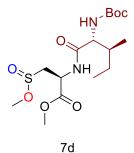
Methyl (tert-butoxycarbonyl)(isopropoxysulfinyl)-D-alaninate (6c).


45.2 mg (yield: 73%, 0.2 mmol scale), colorless oil. ¹H NMR (400 MHz, DMSO-d6) δ 7.58 (t, *J* = 9.2 Hz, 1H), 4.50 – 4.41 (m, 1H), 4.37 – 4.23 (m, 1H), 3.66 (s, 3H), 3.17 – 2.89 (m, 2H), 1.39 (d, *J* = 1.9 Hz, 9H), 1.26 (ddd, *J* = 17.2, 6.2, 3.0 Hz, 6H). ¹³C NMR (101 MHz, DMSO-d6) δ 171.36 (d, *J* = 19.2 Hz), 155.52 (d, *J* = 14.7 Hz), 79.28 (d, *J* = 7.0 Hz), 74.55 (d, *J* = 17.1 Hz), 58.57, 58.18, 52.86 (d, *J* = 3.4 Hz), 49.23 (d, *J* = 15.1 Hz), 39.49, 28.51 (d, *J* = 2.8 Hz), 24.05, 23.49, 23.27. HRMS (ESI) cald. for (M+Na)⁺ C₁₂H₂₃NO₆S: 332.11383, found, 332.11330.

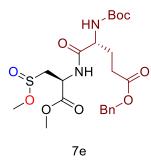
6.4 Dipeptide and Thioglucose scope and characterization


Methyl ((tert-butoxycarbonyl)-D-valyl)(methoxysulfinyl)-L-alaninate (7a).

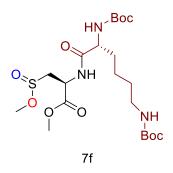
60.0 mg (yield: 67%, 0.2 mmol scale), colorless oil. ¹H NMR (400 MHz, DMSO-d6) δ 8.66 (dd, J = 11.1, 7.8 Hz, 1H), 6.70 (d, J = 8.8 Hz, 1H), 4.64 – 4.51 (m, 1H), 3.80 (dt, J = 8.8, 6.4 Hz, 1H), 3.69 (s, 3H), 3.65 (d, J = 1.2 Hz, 3H), 3.28 – 3.19 (m, 1H), 3.10 – 3.01 (m, 1H), 1.98 – 1.87 (m, 1H), 1.39 (s, 9H), 0.84 (t, J = 7.4 Hz, 6H). ¹³C NMR (101 MHz, DMSO-d6) δ 172.11 (d, J = 19.3 Hz), 170.72 (d, J = 4.5 Hz), 155.89, 78.53, 60.07 (d, J = 4.7 Hz), 57.60, 57.36, 54.43, 54.20, 52.87, 47.43 (d, J = 18.3 Hz), 30.73 (d, J = 8.7 Hz), 28.61, 19.52, 18.37 (d, J = 3.2 Hz). HRMS (ESI) cald. for (M+Na)⁺ C₁₅H₂₈N₂O₇S: 403.15094, found, 403.15013.


Methyl ((tert-butoxycarbonyl)-D-phenylalanyl)(methoxysulfinyl)-L-alaninate (7b).

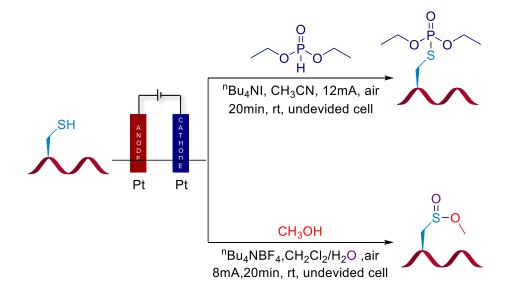
48.0 mg (yield: 56%, 0.2 mmol scale), colorless oil. ¹H NMR (400 MHz, DMSO-d6) δ 8.69 (dd, J = 7.9, 1.6 Hz, 1H), 7.28 (d, J = 5.3 Hz, 4H), 7.23 – 7.19 (m, 1H), 6.99 (dd, J = 8.6, 4.1 Hz, 1H), 4.69 – 4.58 (m, 1H), 4.21 – 4.14 (m, 1H), 3.70 (s, 3H), 3.67 – 3.64 (m, 3H), 3.29 – 3.18 (m, 1H), 3.14 – 3.04 (m, 1H), 3.02 – 2.95 (m, H), 2.74 (ddd, J =13.9, 10.3, 1.8 Hz, 1H), 1.30 (s, 9H). ¹³C NMR (101 MHz, DMSO-d6) δ 172.52, 172.32, 170.78 (d, J = 3.2 Hz), 155.67 (d, J = 3.7 Hz), 138.48, 129.65, 128.52, 126.69, 78.54, 57.60 (d, J = 18.3 Hz), 56.04 (d, J = 10.6 Hz), 54.59, 54.22, 52.95, 47.53 (d, J = 16.8Hz), 37.59 (d, J = 6.8 Hz), 28.57. HRMS (ESI) cald. for (M+Na)⁺ C₁₉H₂₈N₂O₇S: 429.16972, found, 429.16911.


Methyl ((tert-butoxycarbonyl)-D-leucyl)(methoxysulfinyl)-L-alaninate (7c).

41.0 mg (yield: 52%, 0.2 mmol scale), colorless oil. ¹H NMR (400 MHz, DMSO-d6) δ 8.51 (dd, J = 8.0, 3.3 Hz, 1H), 6.83 (d, J = 8.3 Hz, 1H), 4.60 (tdd, J = 9.4, 8.1, 4.9 Hz, 1H), 4.10 – 3.91 (m, 1H), 3.69 (d, J = 1.8 Hz, 3H), 3.66 (d, J = 3.7 Hz, 3H), 3.27 – 3.19 (m, 1H), 3.12 – 3.04 (m, 1H), 1.65 – 1.56 (m, 1H), 1.39 (s, 11H), 0.89 – 0.84 (m, 6H). ¹³C NMR (101 MHz, DMSO-d6) δ 173.32, 173.10, 170.76 (d, J = 4.1 Hz), 155.72, 78.48, 57.71, 57.44, 54.40 (d, J = 19.5 Hz), 54.08, 52.98 (d, J = 16.7 Hz), 47.44 (d, J =19.8 Hz), 40.97 (d, J = 6.0 Hz), 28.63, 24.64, 23.30, 22.04. HRMS (ESI) cald. for (M+K)⁺ C₁₆H₃₀N₂O₇S: 395.18465, found, 395.18419.

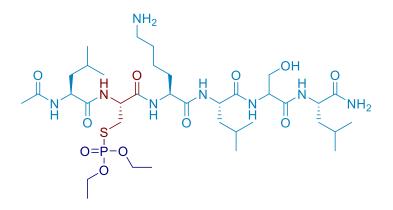

Methyl ((tert-butoxycarbonyl)-D-isoleucyl)(methoxysulfinyl)-L-alaninate (7d).

44.6 mg (yield: 57%, 0.2 mmol scale), colorless oil. ¹H NMR (400 MHz, DMSO-d6) δ 8.59 (t, *J* = 8.5 Hz, 1H), 6.63 (d, *J* = 8.7 Hz, 1H), 4.58 (ddt, *J* = 14.2, 10.0, 4.7 Hz, 1H), 3.87 – 3.78 (m, 1H), 3.68 (d, *J* = 1.2 Hz, 3H), 3.65 (d, *J* = 1.3 Hz, 3H), 3.26 – 3.20 (m, 1H), 3.10 – 3.02 (m, 1H), 1.69 (s, 1H), 1.38 (s, 10H), 1.09 (s, 1H), 0.81 (t, *J* = 6.4 Hz, 6H). ¹³C NMR (101 MHz, DMSO-d6) δ 172.26, 172.05, 170.71 (d, *J* = 6.2 Hz), 155.80, 78.49, 59.07 (d, *J* = 6.6 Hz), 57.58, 57.34, 54.42, 54.18, 52.86, 47.44 (d, *J* = 13.9 Hz), 36.82 (d, *J* = 5.5 Hz), 28.61, 24.69, 15.67, 11.43 (d, *J* = 4.1 Hz).HRMS (ESI) cald. for (M+K)⁺ C₁₆H₃₀N₂O₇S: 433.14053, found, 433.14027.



Benzyl (4R)-4-((tert-butoxycarbonyl)amino)-5-(((2S)-1-methxoy-3-(methoxysulfinyl)-1-oxop ropan-2-yl)amino-5-oxopentanoate (7e).

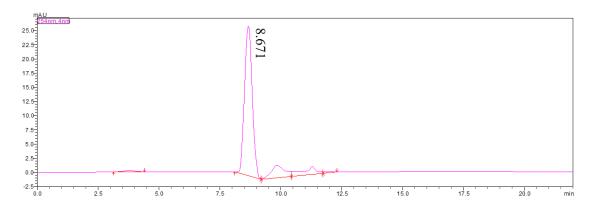
41.0 mg (yield: 62%, 0.2 mmol scale), colorless oil. ¹H NMR (400 MHz, DMSO-d6) δ 8.64 (dd, J = 7.9, 4.6 Hz, 1H), 7.38 – 7.33 (m, 5H), 7.03 (d, J = 8.1 Hz, 1H), 5.10 (s, 2H), 4.69 – 4.51 (m, 1H), 3.98 (qd, J = 7.8, 5.5 Hz, 1H), 3.67 (s, 3H), 3.64 (d, J = 0.9Hz, 3H), 3.25 (dt, J = 13.5, 7.7 Hz, 1H), 3.09 (ddd, J = 13.6, 6.8, 2.4 Hz, 1H), 2.42 (ddt, J = 12.4, 9.0, 4.9 Hz, 2H), 1.97 – 1.87 (m, 1H), 1.83 – 1.74 (m, 1H), 1.38 (d, J = 4.4Hz, 9H). ¹³C NMR (101 MHz, DMSO-d6) δ 172.65, 170.67 (d, J = 1.4 Hz), 136.69, 128.87, 128.52 – 128.16 (m), 78.73, 65.91, 57.60 (d, J = 15.6 Hz), 54.40, 54.05, 52.88, 47.59, 47.36, 30.38, 28.61, 27.39 (d, J = 4.8 Hz).HRMS (ESI) cald. for (M+K)⁺ C₂₂H₃₂N₂O₉S: 539.14601, found, 539.14632.



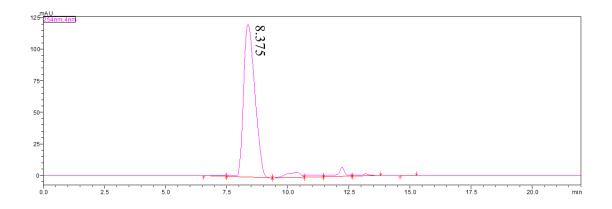
Methyl N-(N²,N⁶-bis(tert-butoxycarbonyl)-D-lysyl)(methoxysulfinyl)-L-alaninate (7f). 73.4 mg (yield: 72%, 0.2 mmol scale), colorless oil. ¹H NMR (400 MHz, DMSO-d6) δ 8.50 (dd, J = 8.0, 3.2 Hz, 1H), 6.85 – 6.59 (m, 2H), 4.66 – 4.57 (m, 1H), 3.93 – 3.85 (m, 1H), 3.69 (d, J = 2.4 Hz, 3H), 3.66 (s, 3H), 3.24 – 3.17 (m, 1H), 3.07 (ddd, J = 13.5, 9.9, 6.6 Hz, 1H), 2.92 – 2.85 (m, 2H), 1.62 – 1.44 (m, 3H), 1.42 (s, 1H), 1.38 (d, J = 3.8 Hz, 20H). ¹³C NMR (101 MHz, DMSO-d6) δ 170.73 (d, J = 4.0 Hz), 156.04, 155.73, 78.54, 77.80, 57.85, 57.64, 54.68 (d, J = 6.0 Hz), 54.40, 54.04, 52.85, 47.46 (d, J = 17.3 Hz), 40.11, 31.84 (d, J = 5.9 Hz), 29.64, 28.69 (d, J = 9.9 Hz), 28.40, 23.10. HRMS (ESI) cald. for (M+H)⁺ C₂₁H₃₉N₃O₉S: 510.24798, found, 510.24786.

6.5 Polypeptide scope and characterization

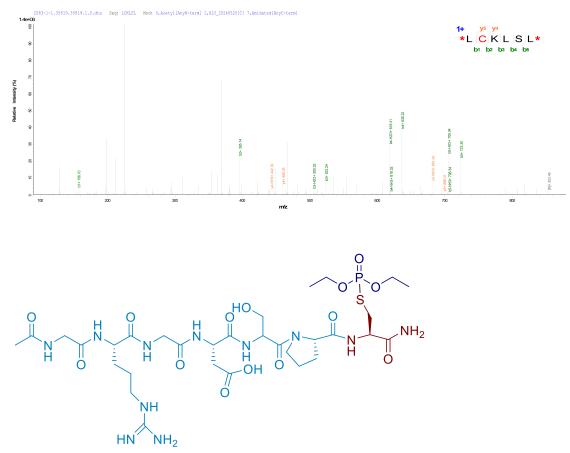
General Procedure for Bioconjugation of cystein and diethyl phosphonate : In an ovendried undivided three-necked bottle (15 mL) equipped with a stir bar, polypeptides (8 mg), diethyl phosphonate (10 mg), CH₃CN (3 mL), "Bu₄NI (20.0 mg) were combined and added. The bottle was equipped platinum plate (10 mm×10 mm×0.3 mm) as the anode and platinum plate (10 mm×10 mm×0.3 mm) as the cathode and then charged. The reaction mixture was stirred and electrolyzed at constant current of 12 mA under room temperature for 15 min. General Procedure for Bioconjugation of cystein and CH₃OH : In an oven-dried undivided three-necked bottle (15 mL) equipped with a stir bar, polypeptides (8 mg), CH₃OH (50 uL), CH₂Cl₂ (3 mL), H₂O (10 uL), "Bu₄NBF₄ (20.0 mg) were combined and added. The bottle was equipped platinum plate (10 mm×10 mm×0.3 mm) as the anode and platinum plate (10 mm×10 mm×0.3 mm) as the cathode and then charged. The reaction mixture was stirred and electrolyzed at constant current of 8 mA under room temperature for 20 min. After completion of the reaction, the solution was analyzed by LC-MS/MS spectroscopy. The reaction was analyzed by reversed-phase HPLC on a 250 mm long ChromCore C18 5 μ m column using a gradient of 40% buffer B within 22 minutes. HPLC analysis used buffers A (water + 0.1% TFA) and B (acetonitrile + 0.1% TFA). Conversion reported as a % conversion as determined.



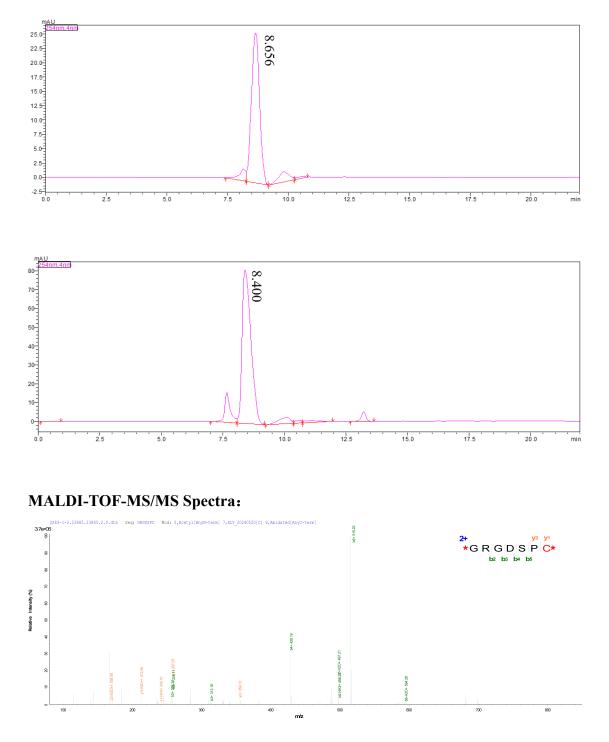
AnxA2 inhibitor:LCKLSL

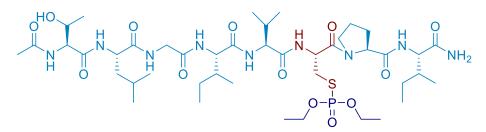

1HPLC: >99% conversion.

Product 8a is a peak that elute at 40% buffer B (acetonitrile + 0.1% TFA) with retention times of 8.375 min. Reactant is a peak that elutes at 40% buffer B with a retention time of 8.671min.


HRMS (ESI-TOF): m/z calculated for C₃₆H₆₉N₈O₁₁PS, [M+H]⁺, 853.4617, found 853.4630.

HPLC Spectra:

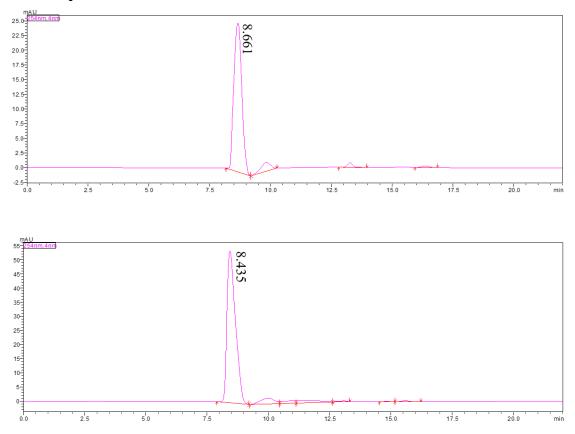

Cell adhesion peptide: GRGDSPC


HPLC: >99% conversion.

Product 8b is a peak that elute at 40% buffer B (acetonitrile + 0.1% TFA) with retention times of 8.400 min. Reactant is a peak that elutes at 40% buffer B with a retention time of 8.656 min.

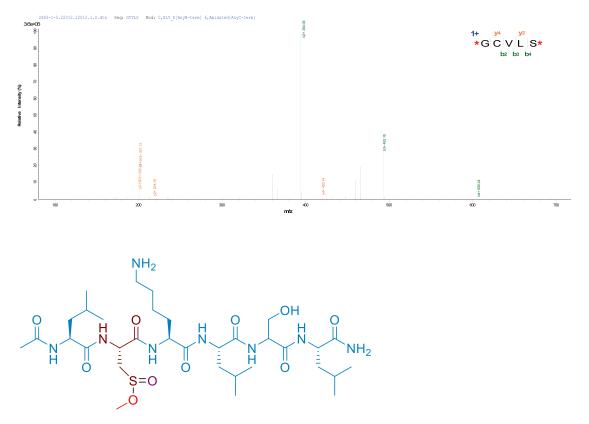
HRMS (ESI-TOF): m/z calculated for C₃₁H₅₄N₁₁O₁₄PS, [M+H]⁺, 868.3383, found 868.3361.

HPLC Spectra:


HPV16 E7(86-93): TLGIVCPI

HPLC: >99% conversion.

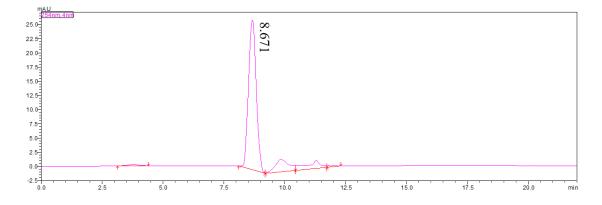
Product 8c is a peak that elute at 40% buffer B (acetonitrile + 0.1% TFA) with retention times of 8.639 min. Reactant is a peak that elutes at 40% buffer B with a retention time of 8.661 min.


HRMS (ESI-TOF): m/z calculated for C₄₃H₇₈N₉O₁₃PS, [M+H]⁺, 992.5250, found

992.5212.

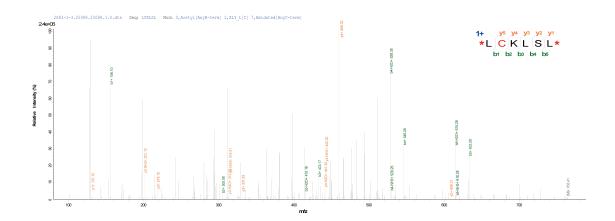
HPLC Spectra:

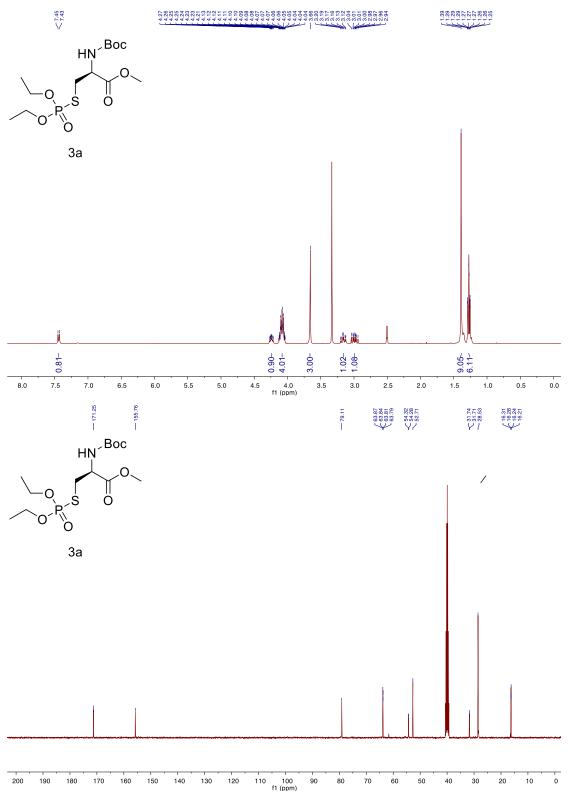
MALDI-TOF-MS/MS Spectra:

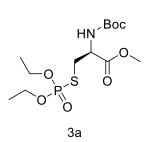


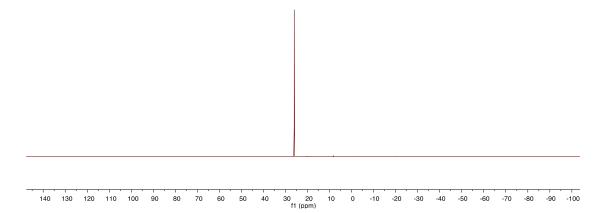
HPLC: >99% conversion.

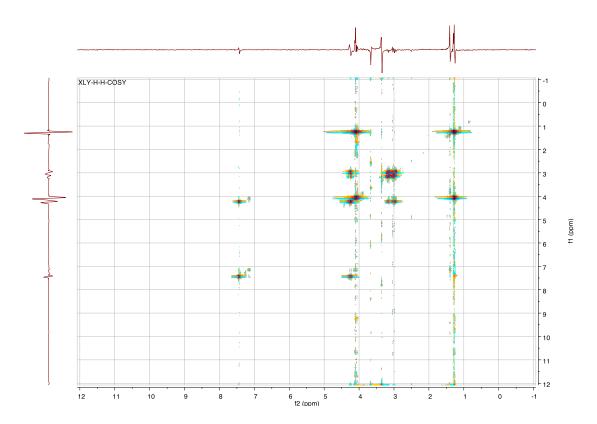
Product 8d is a peak that elute at 40% buffer B (acetonitrile + 0.1% TFA) with retention times of 8.639 min. Reactant is a peak that elutes at 40% buffer B with a retention time of 8.671 min.

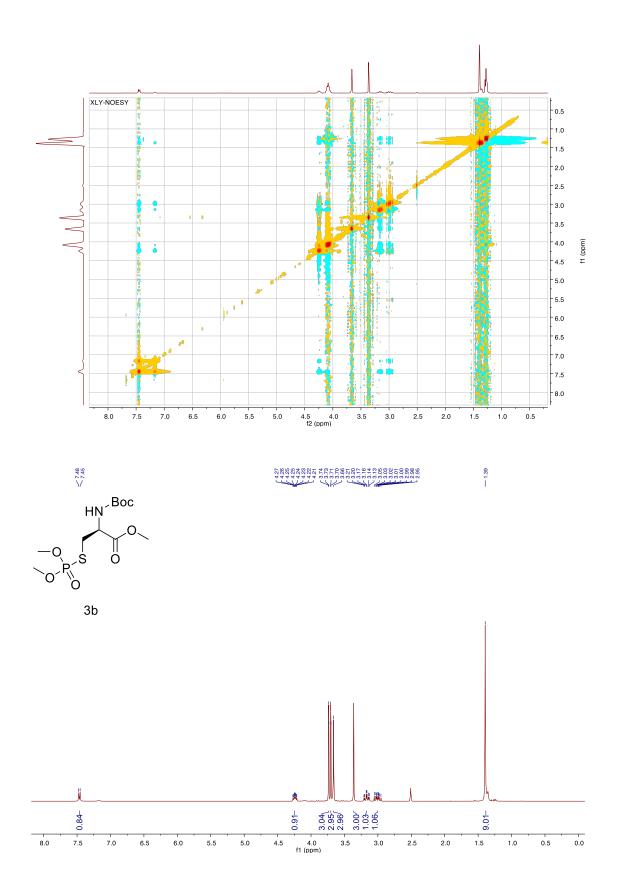

HRMS (ESI-TOF): m/z calculated for C₃₃H₆₂N₈O₁₀S, [M+H]⁺, 763.4382, found 763.4372.

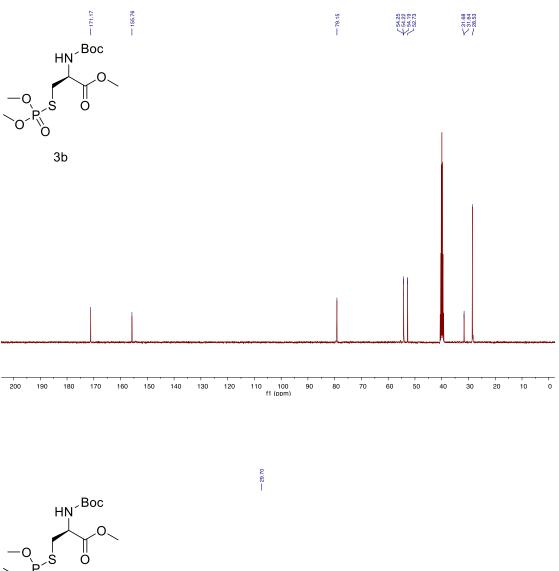


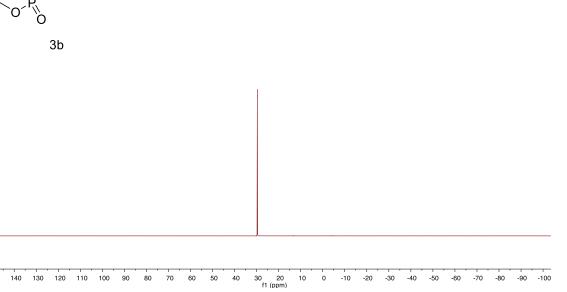

MALDI-TOF-MS/MS Spectra:

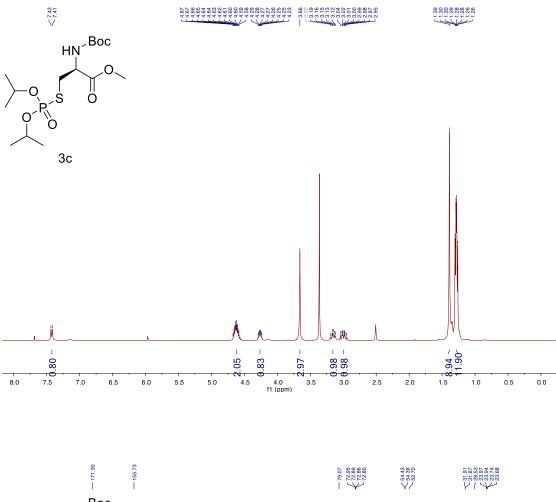


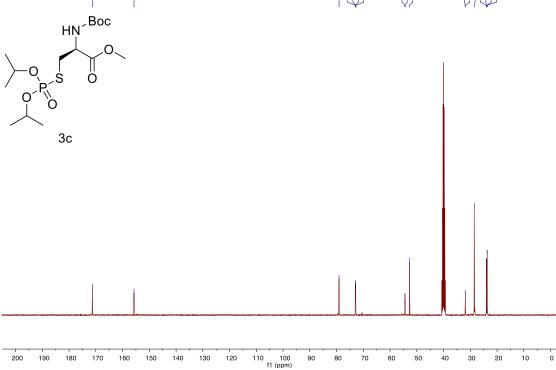

7. Spectra

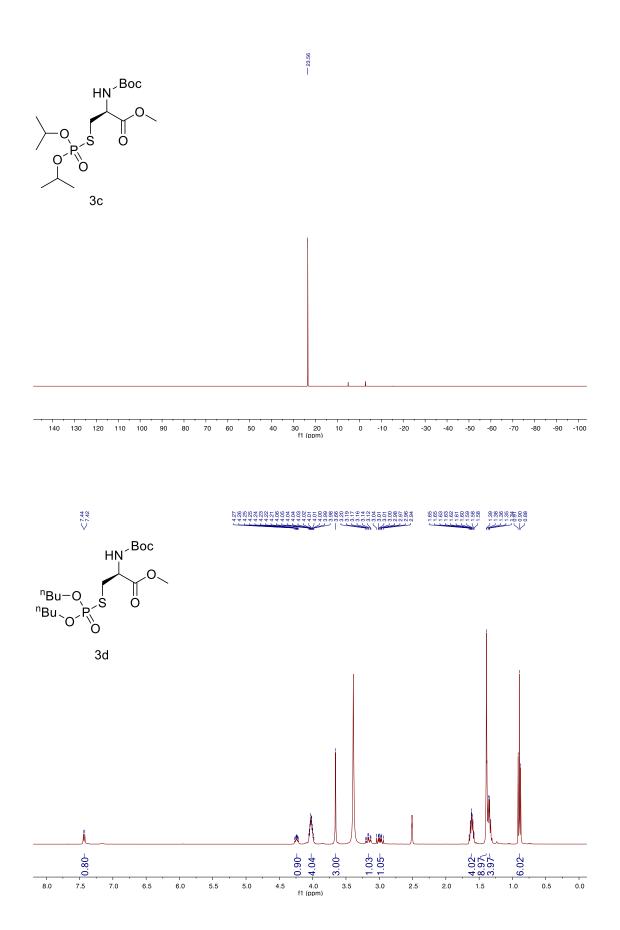

7.1 NMR Spectra of Products

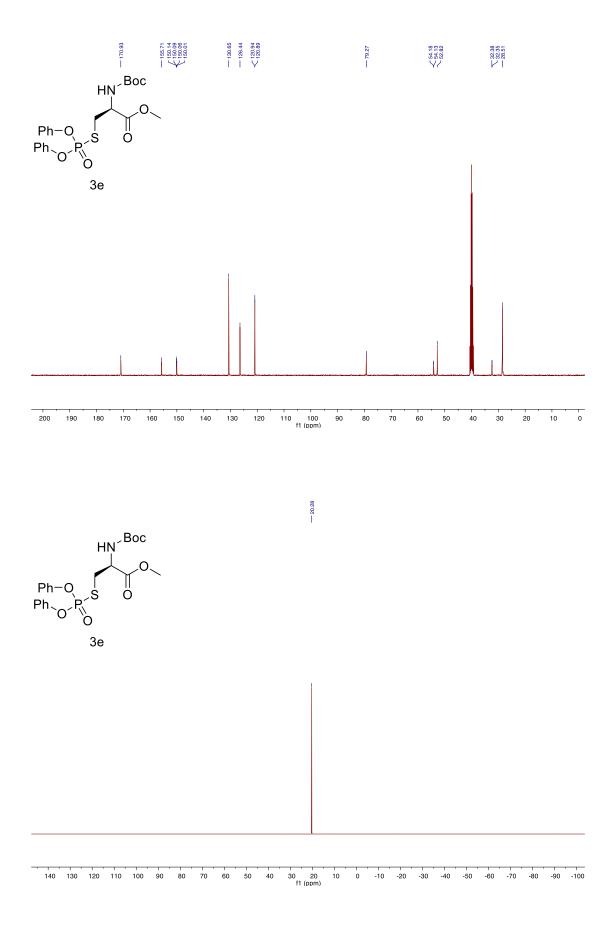


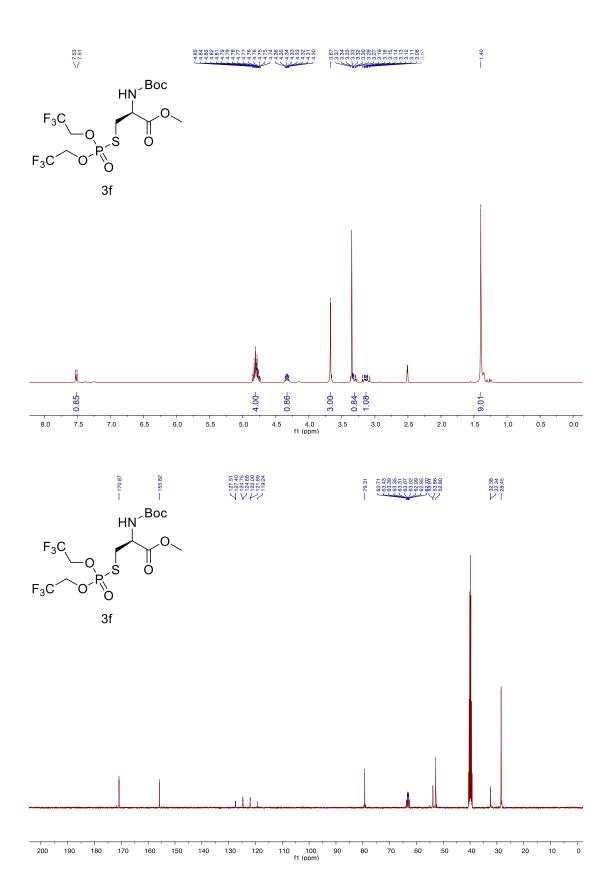


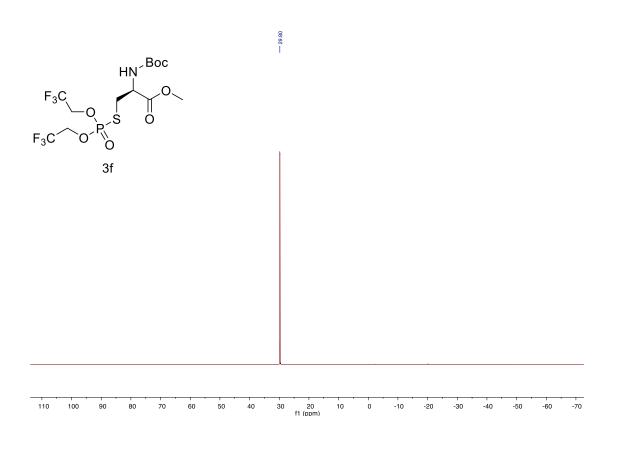


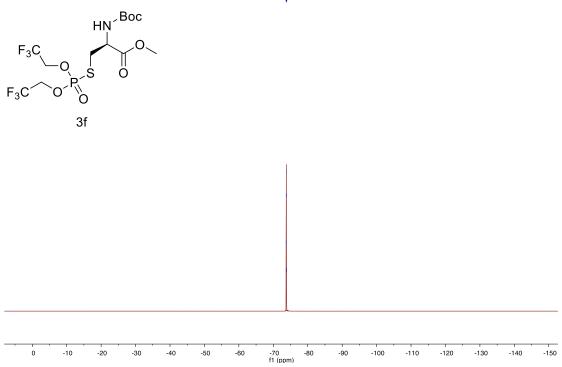


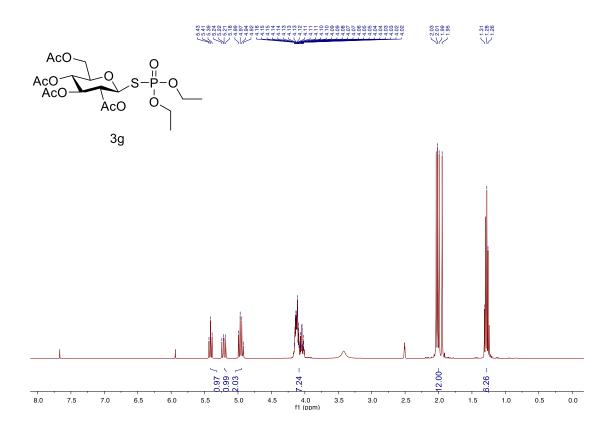


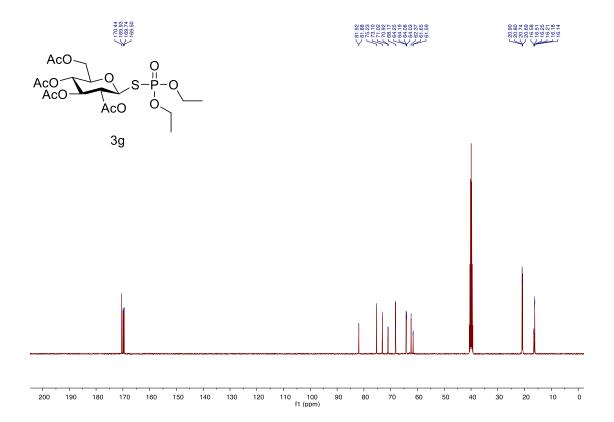


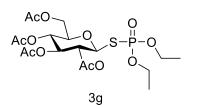


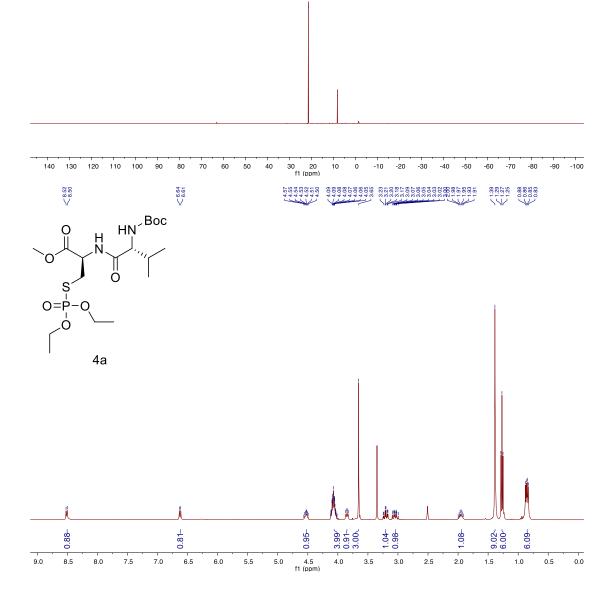


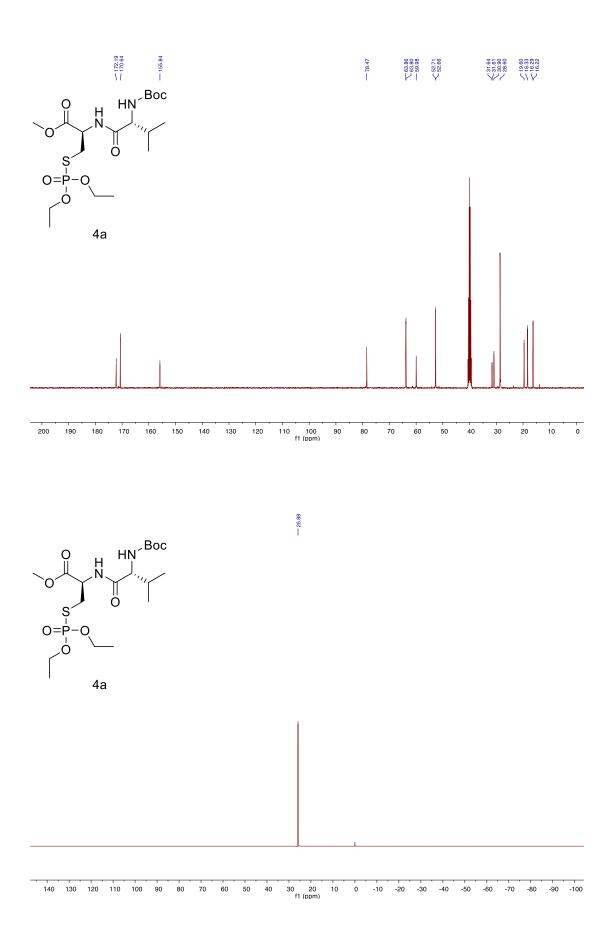


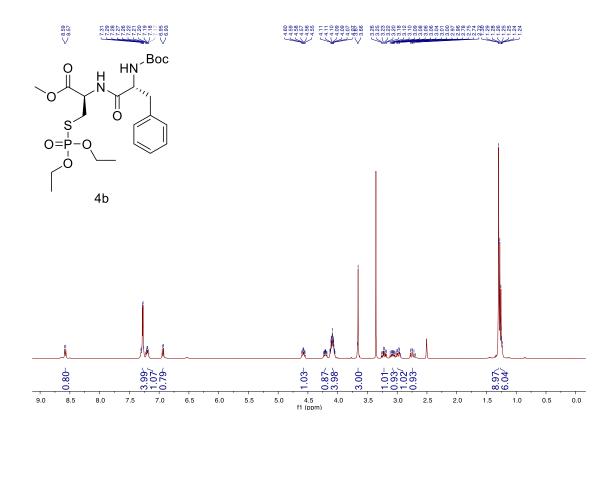


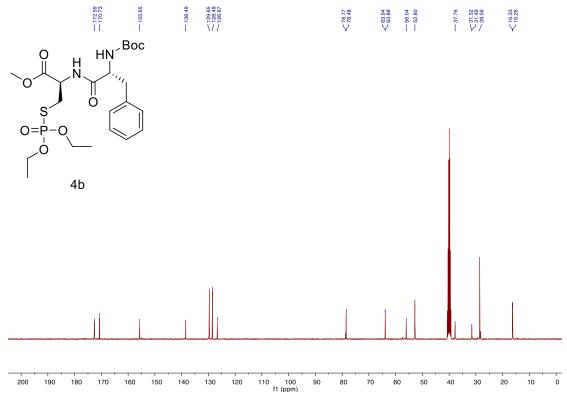


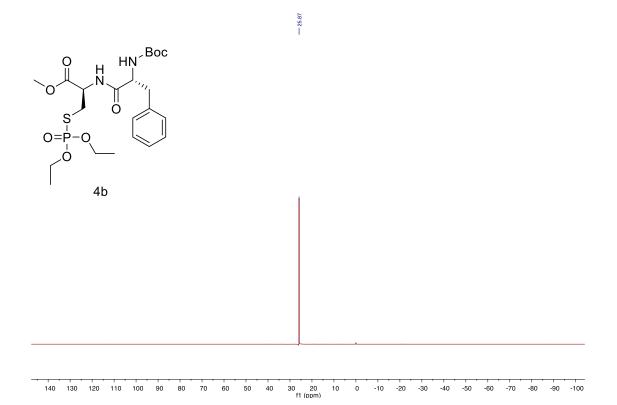


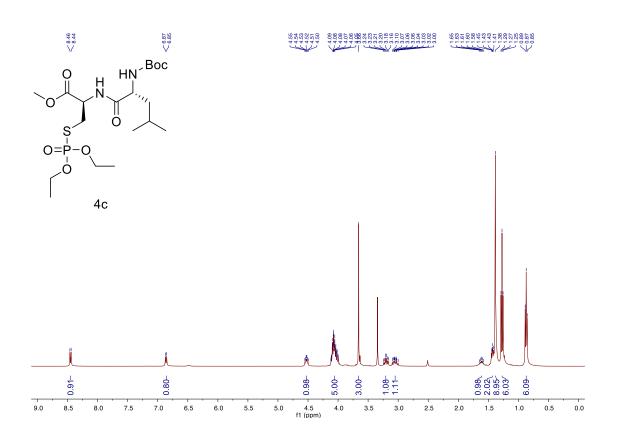


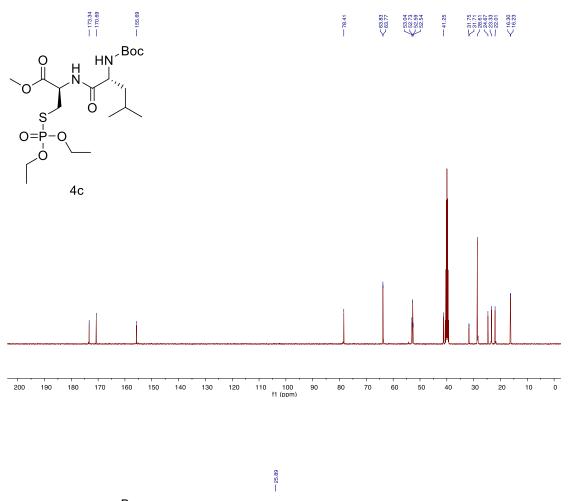


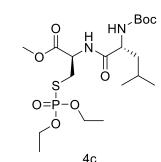


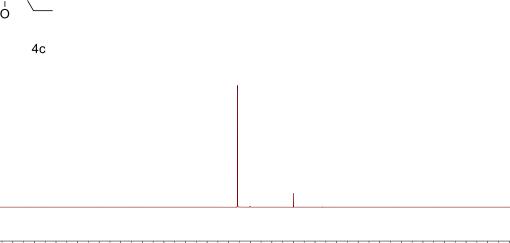


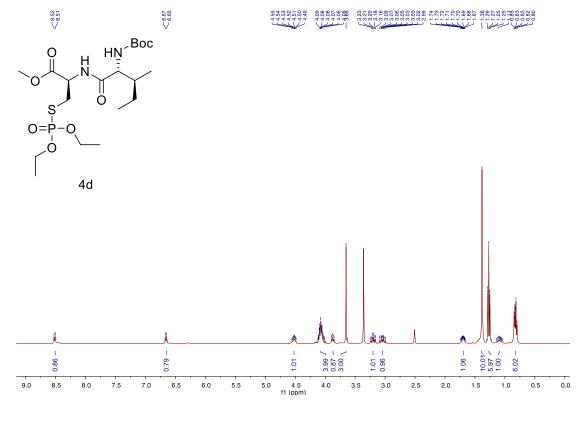


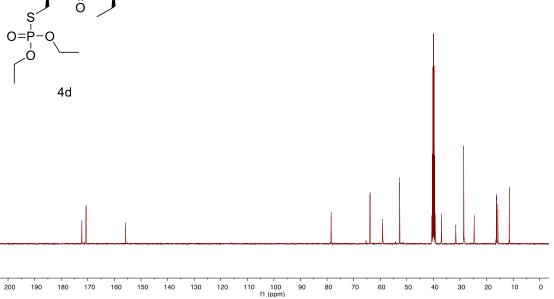


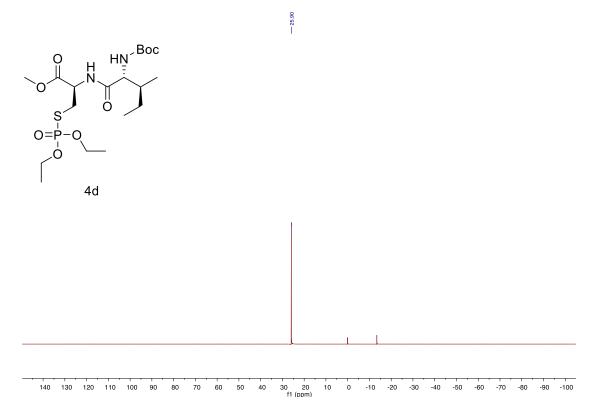


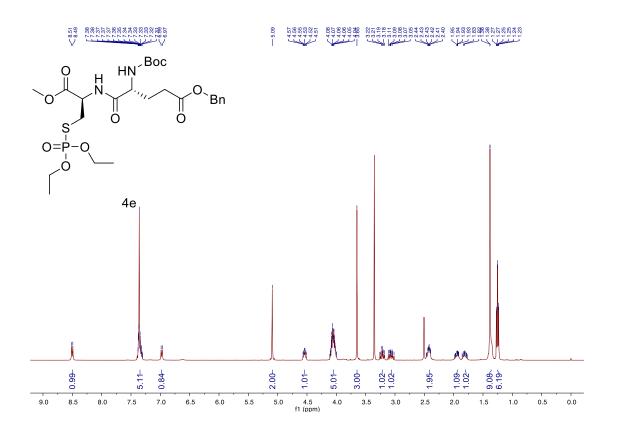


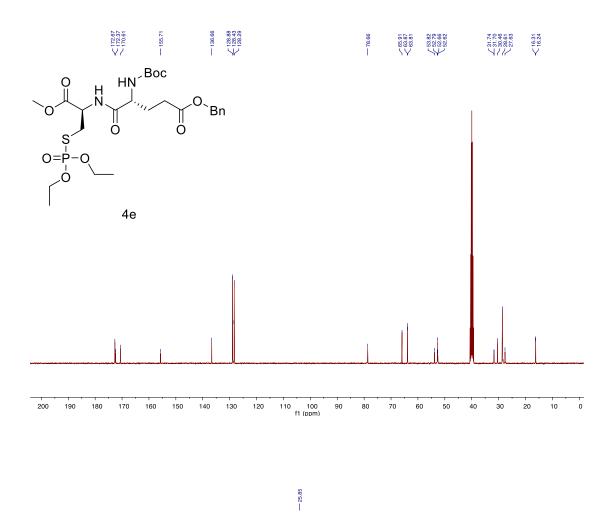


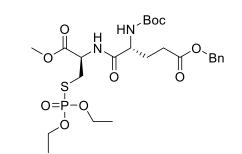


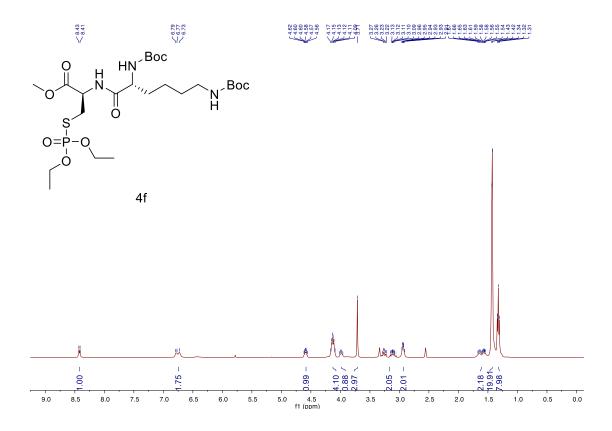


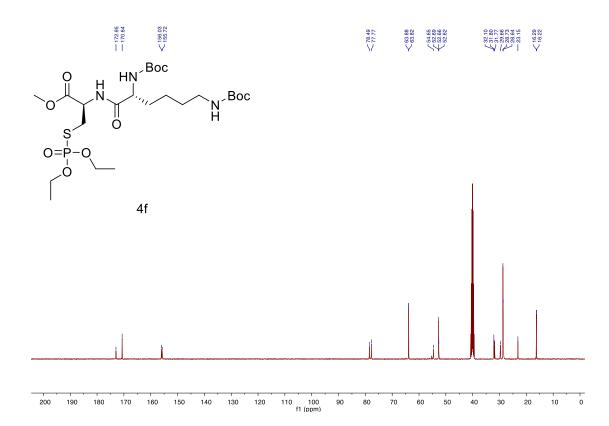

50 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 f1 (ppm)

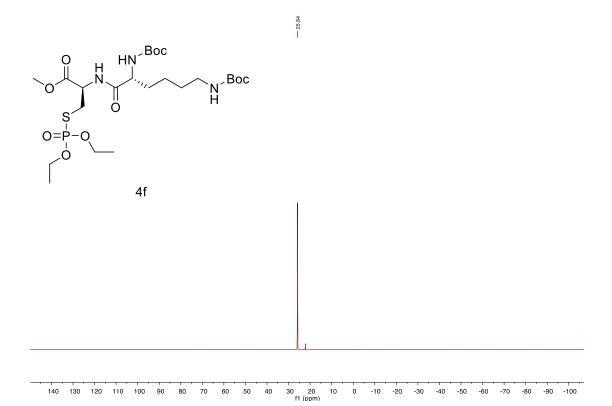

O = P - O = O

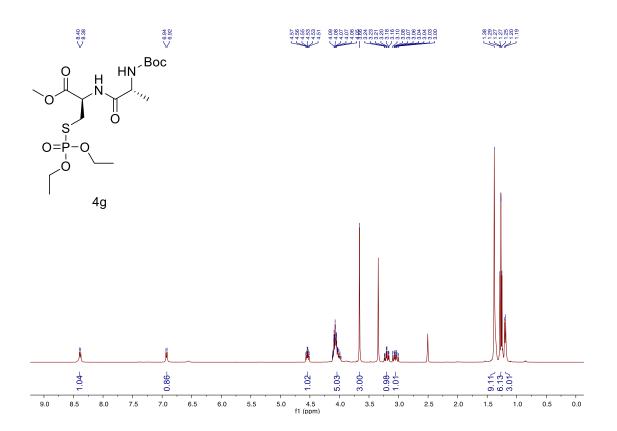


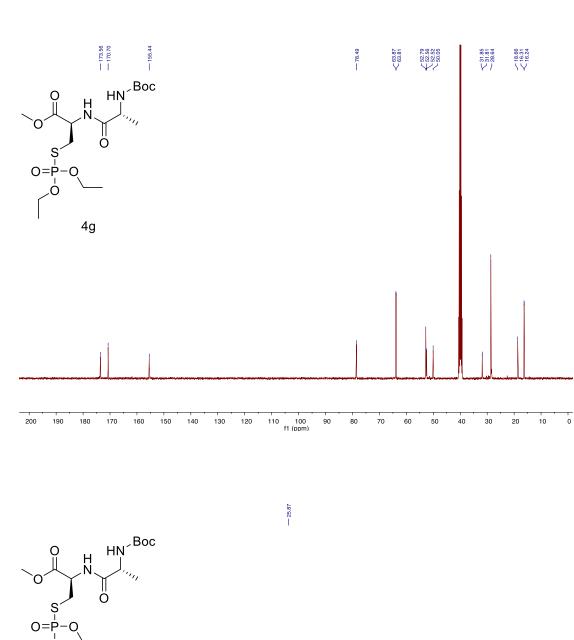


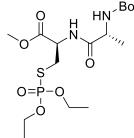


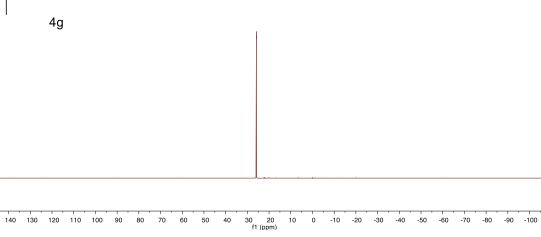


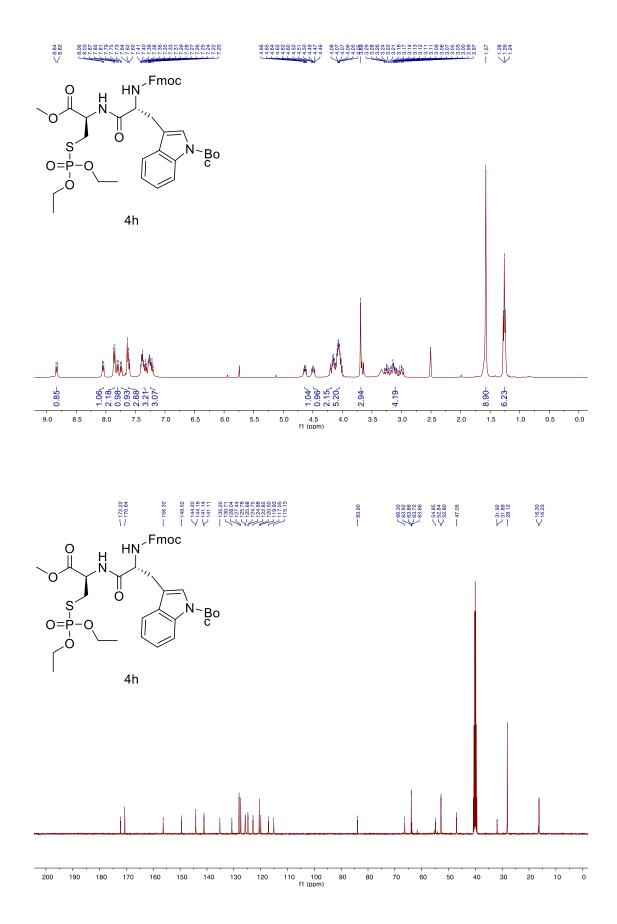


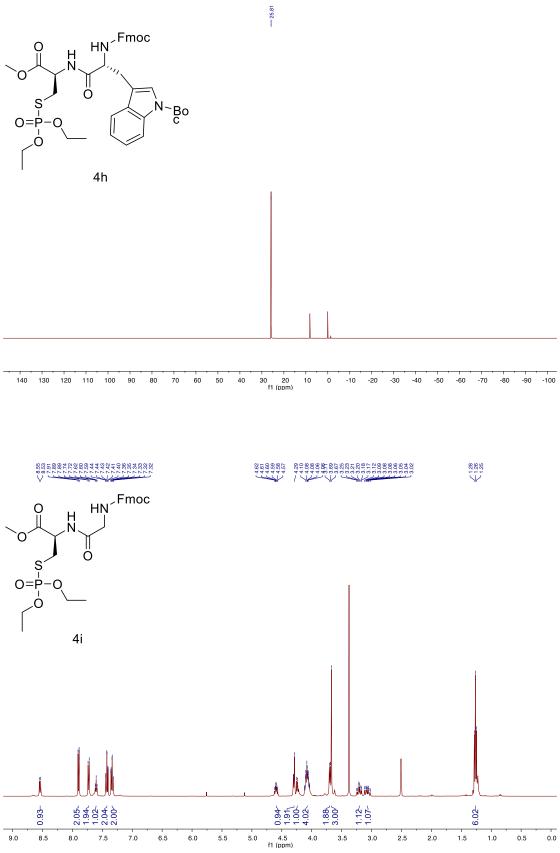

4e

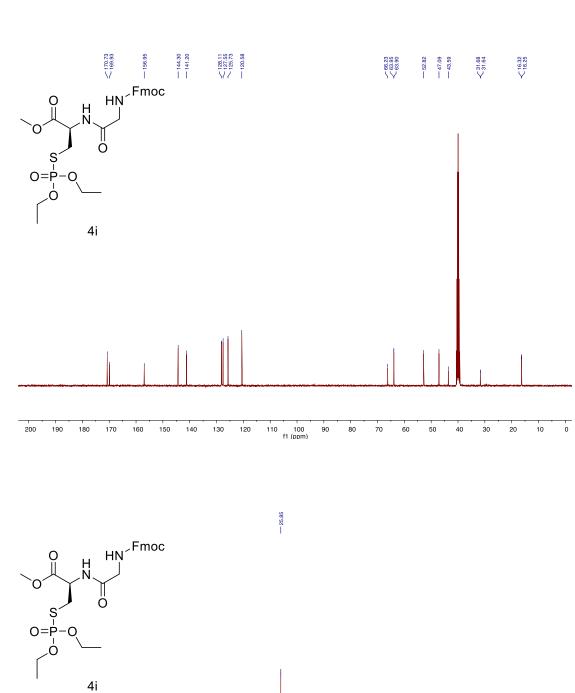

70 60 50 40 30 20 f1 (ppm) 140 130 120 110 100 90 80 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100

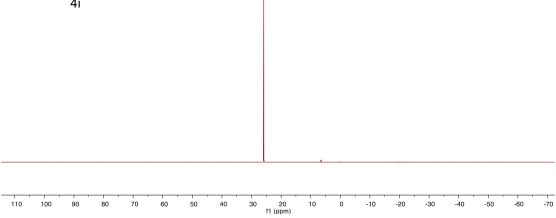


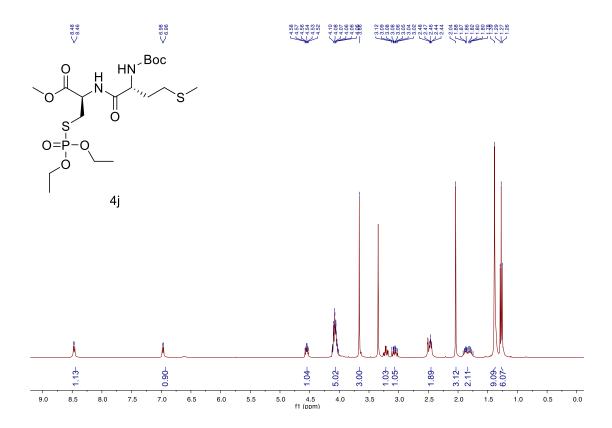


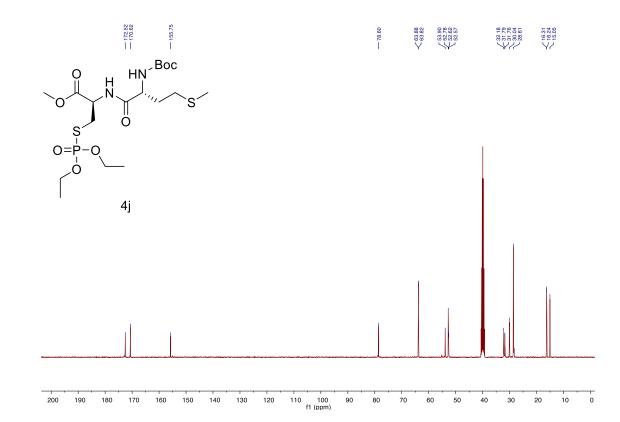


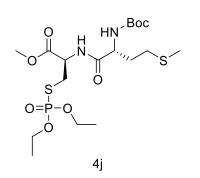


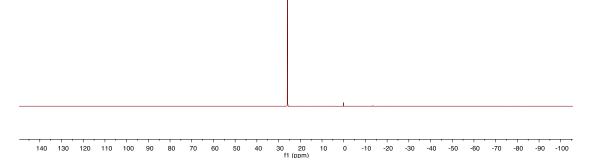


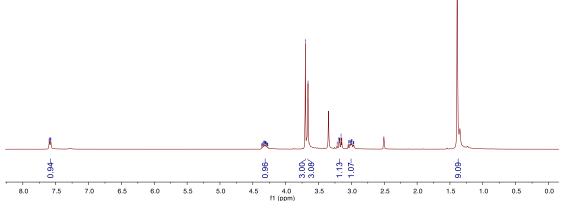


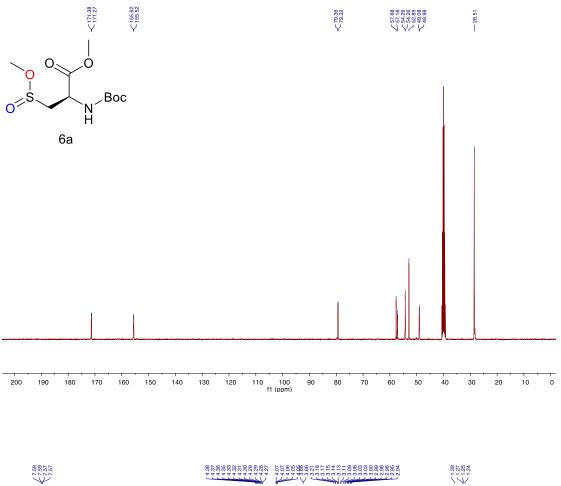


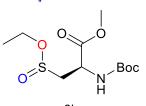


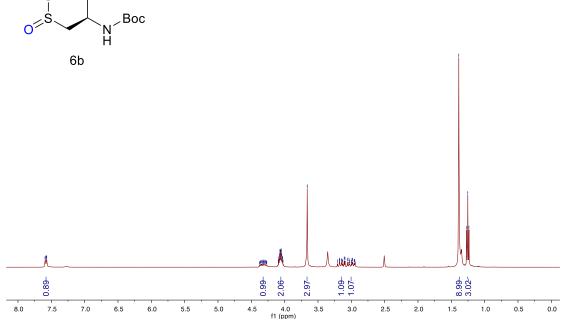


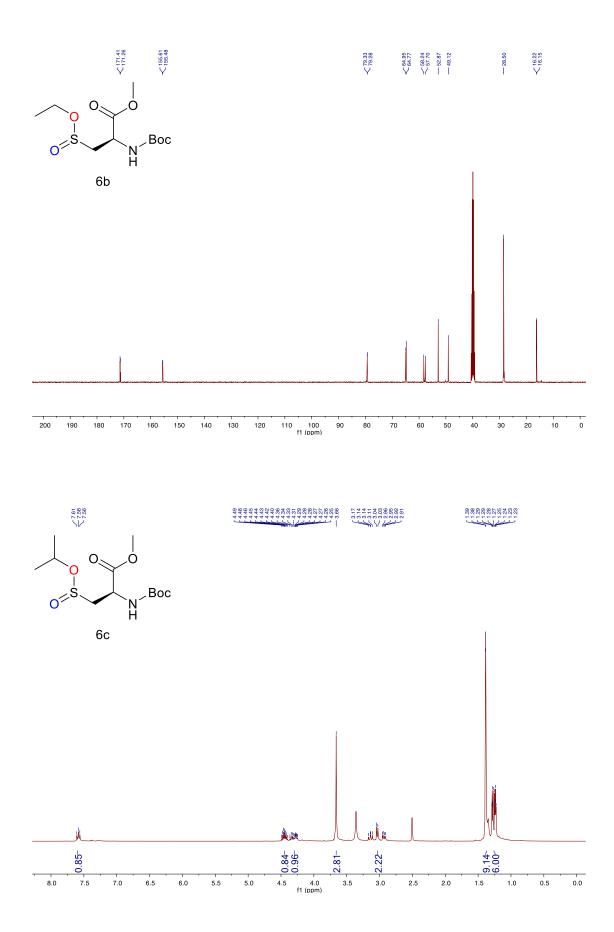


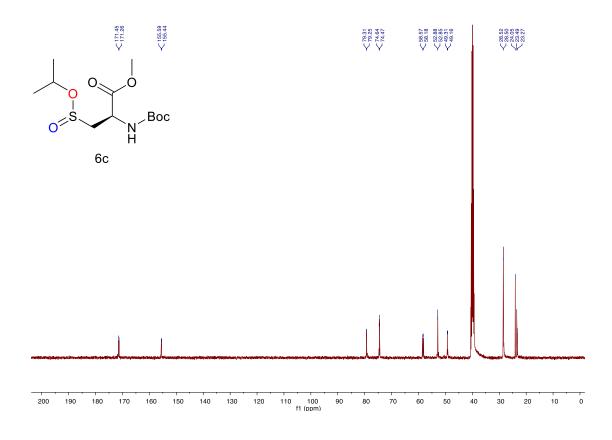


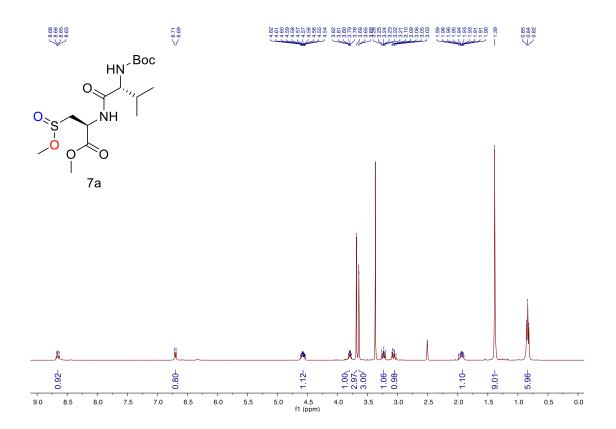


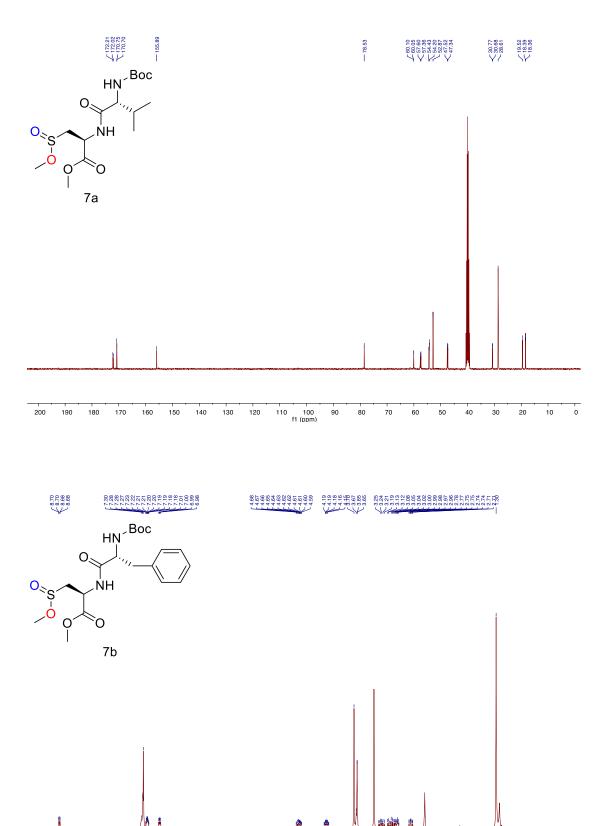


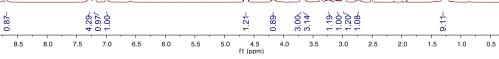


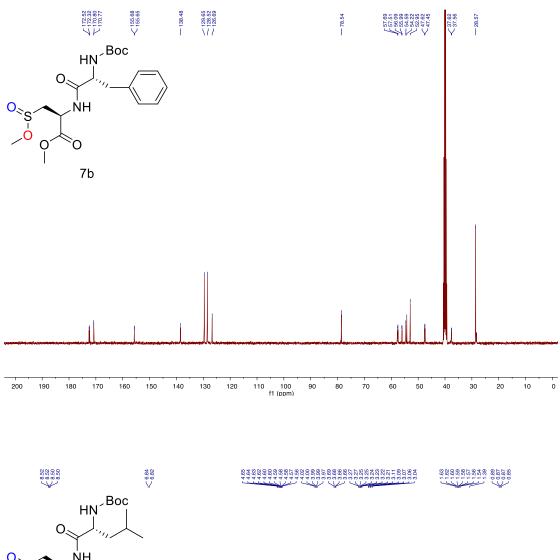


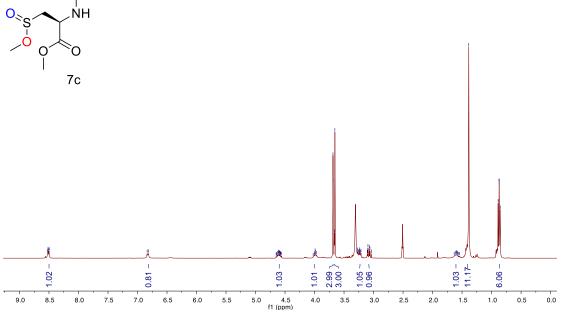


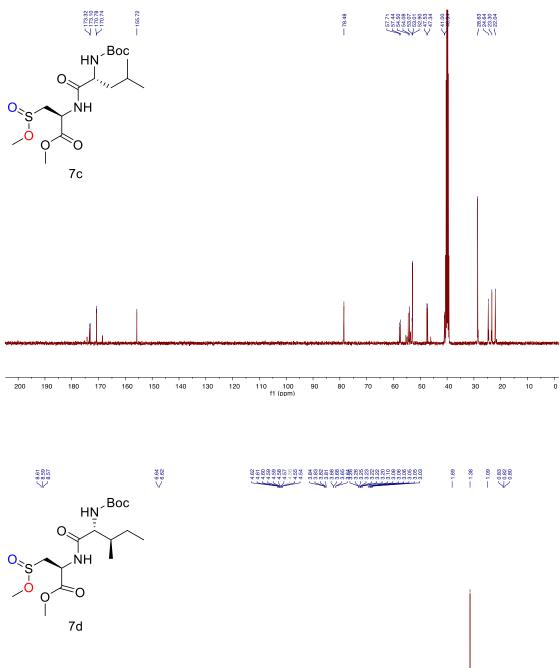


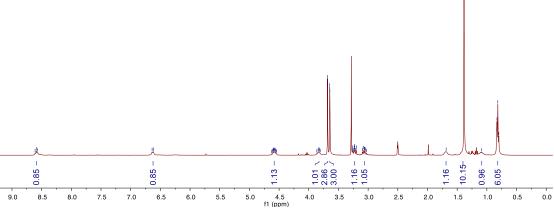




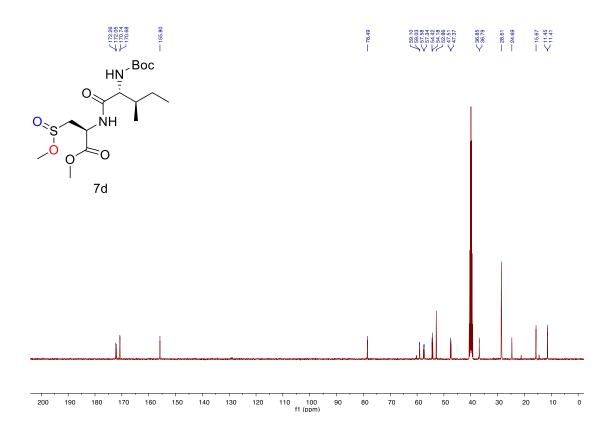


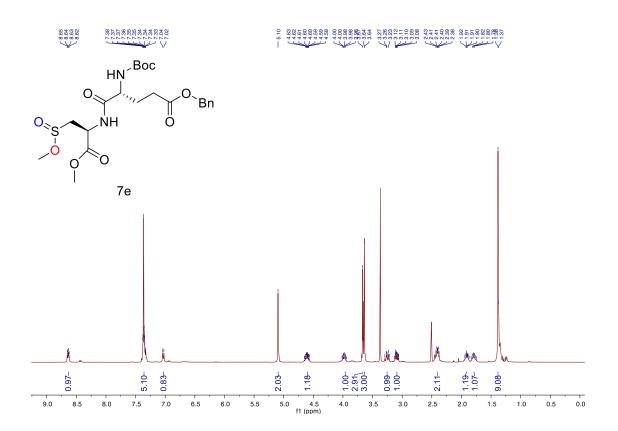


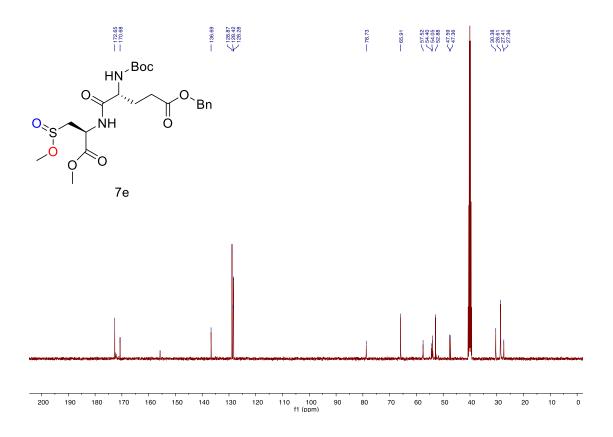


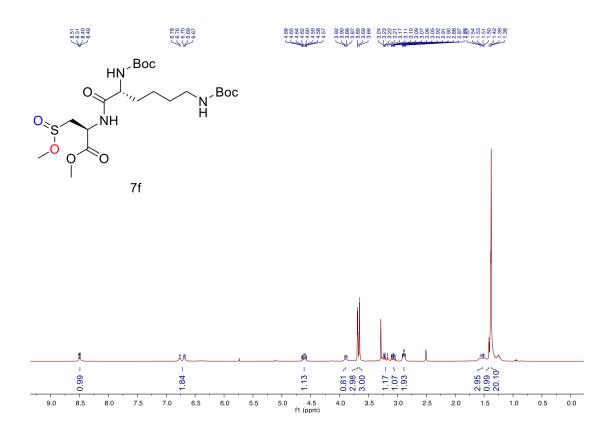

0.0

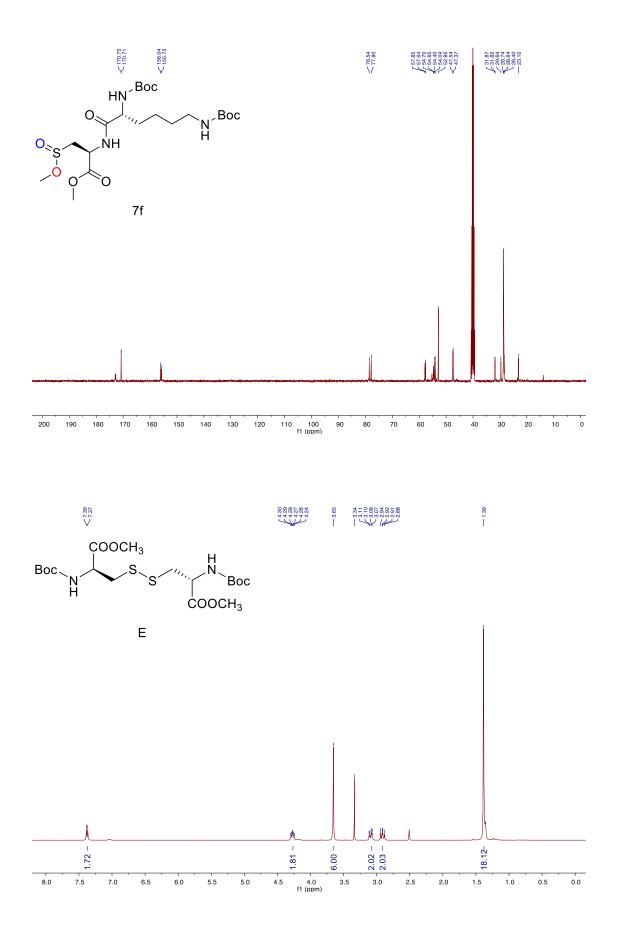
9.0

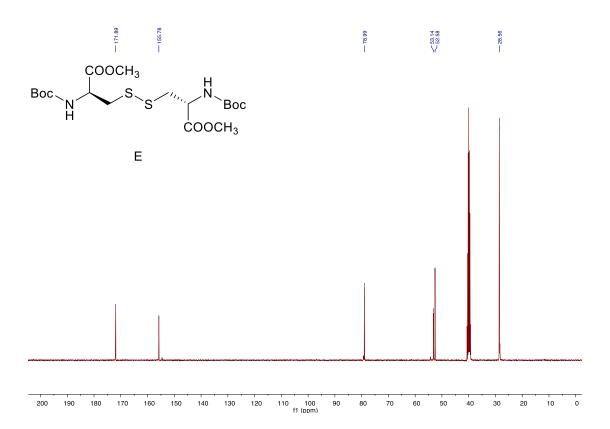



8.0


7.0


6.5


6.0



8. References

 C. Loynd, S. J. Singha Roy, V. J. Ovalle, S. E. Canarelli, A. Mondal, D. Jewel, E. D. Ficaretta, E. Weerapana and A. Chatterjee, Electrochemical labelling of hydroxyindoles with chemoselectivity for site-specific protein bioconjugation, *Nat. Chem.*, 2024, 16, 389-397.