Supporting Information

Design, Synthesis and Application of Bipyridine-N,N'-dioxides Catalysts in Asymmetric Synthesis of Chiral Cyclopropanes Xiaoying Cao^a, Xue Tian^a, Minmin Liu^a, Shi-Wu Li^a * School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China.

E-mail: lishiwu@shzu.edu.cn

Table of Contents

Ι	General Information1
II	Synthesis of Ligands2
III	Optimization of Reaction Condition6
IV	Synthesis of Substrates8
V	Asymmetric Cycloaddition Reactions11
VI	Gram-scale Experiments and Synthetic Transformations 29
VII	NMR Spectra 32
VIII	HPLC Traces on Chiral Stationary Phase
IX	Single Crystal X-Ray DiffractionStudies109
X	References

I General Information

Commercially available materials were used as received, unless otherwise noted, all reactions and manipulations involving air- or moisture-sensitive compounds were performed using standard Schlenk technique. Without special instructions, the heating reactions used are all using an oil bath. Reactions were checked by TLC analysis and plates were visualized with short-wave UV light (254 nm). The ¹H, ¹³C NMR and ¹⁹F spectra were obtained in CDCl₃ & CD₃OD using a Bruker-BioSpin AVANCE III HD NMR spectrometer at 400 MHz, 101 MHz and 376 MHz respectively. Chemical shifts are reported in parts per million (δ value) calibrated against the residual solvent peak. The determination of e.e. was performed via chiral HPLC analysis using Shimadzu LC-20A HPLC workstation. HPLC analysis of the compounds was done using chiralcel IC column using hexane and isopropanol as eluent, and the column temperature is 40 °C. The Rudolph Autopol V polarimeter was employed to gauge the optical rotation. The melting point was measured by Shanghai Instrument electrooptical SGW X-4A micro melting point instrument. High resolution mass spectra(HRMS) were recorded on Thermo Scientific Q Exactive mass spectrometry equipped with an APCI source. Crystal structure data was collected on a SuperNova, Dual, Cu at zero, Atlas diffractometer. The following abbreviations are used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.

II Synthesis of Ligands

1 General procedure L6 for synthesis of hiral Bipyridine-N,N'-dioxides Catalysts.¹⁻³

The synthesis of compound amide **0L** was referred to Reference 1. In a sealed tube equipped with a magnetic stirring bar, [2,2'-bipyridine]-6,6'-dicarbaldehyde (1.0 mmol) and **0L** (2.5 mmol, 2.5 equiv.) were added. Then, anhydrous ethanol (6.0 mL) was added and the reaction was heated with stirring at reflux for 6 h. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to give the intermediate **1L**. Then, the intermediate and m-chloroperoxybenzoic acid (2.1 equiv.) was added to the reaction tube, and an appropriate amount of trichloromethane was added to dissolve the reaction system. After stirring at room temperature for 25 minutes, the reaction liquid was treated and purified by column chromatography (200-300 mesh, EtOAc/MeOH v/v = 20:1-10:1 as the eluent) to obtain a white solid L.

L6: White solid (783.1 mg, 45% yield); >20:1 dr; mp 168.6-170.2 °C. ¹H NMR (400 MHz, CD₃OD) $\delta = 8.30$ (d, J = 7.9 Hz, 2H), 7.88 (t, J = 7.8 Hz, 2H), 7.63 (d, J = 7.6 Hz, 2H), 7.37 (d, J = 8.1 Hz, 3H), 7.17 (t, J = 7.9 Hz, 4H), 7.04 (t, J = 7.4 Hz, 2H), 6.90 (s, 2H), 4.76 (dd, J = 10.3, 6.1 Hz, 2H), 3.89 (dt, J = 11.8, 5.4 Hz, 2H), 3.33 (p, J = 6.1 Hz, 2H), 2.47 (ddd, J = 12.8, 10.2, 8.2 Hz, 2H), 2.29 (td, J = 12.8, 6.2 Hz, 3H), 1.83 (d, J = 3.5 Hz, 1H), 1.79 (s, 2H), 1.76 – 1.62 (m, 3H), 1.52 – 1.47 (m, 2H), 1.46

- 1.23 (m, 4H), 1.23 - 1.08 (m, 3H). ¹³C NMR (101 MHz, CD₃OD) δ = 170.96, 156.52, 152.54, 139.19, 136.33, 130.34, 128.30, 127.79, 123.35, 122.79, 85.72, 85.62, 77.30, 37.02, 28.64, 25.86, 25.42, 25.13, 21.11. HRMS (APCI) m/z calcd for C₄₂H₄₅N₆O₄⁺(M+H)⁺: 697.3497, found 697.3461.

L7: White solid (796.9 mg, 44% yield); >20:1 dr; mp 202.6-204.2 °C. ¹H NMR (400 MHz, CD₃OD) $\delta = 8.32$ (d, J = 7.9 Hz, 2H), 7.89 (t, J = 7.8 Hz, 2H), 7.61 (d, J = 7.6 Hz, 2H), 7.22 (d, J = 8.3 Hz, 4H), 6.93 (d, J = 8.2 Hz, 4H), 6.86 (s, 2H), 4.76 (dd, J = 10.3, 6.1 Hz, 2H), 3.89 (dt, J = 11.8, 5.3 Hz, 2H), 3.39 – 3.26 (m, 2H), 2.50 – 2.43 (m, 2H), 2.38 – 2.23 (m, 4H), 2.05 (s, 6H), 1.88 – 1.64 (m, 6H), 1.56 – 1.39 (m, 4H), 1.39 – 1.26 (m, 2H), 1.20 (t, J = 12.9 Hz, 2H). ¹³C NMR (101 MHz, CD₃OD) $\delta = 170.89$, 156.54, 152.58, 139.16, 137.98, 133.71, 130.78, 128.30, 123.44, 122.75, 85.79, 85.69, 77.34, 37.05, 28.60, 25.90, 25.43, 25.15, 21.13, 20.88. HRMS (APCI) m/z calcd for C₄₄H₄₉N₆O₄⁺(M+H)⁺: 725.3810, found 725.3798.

L8: White solid (768.9 mg, 42% yield); >20:1 dr; mp 179.7-181.3 °C. ¹H NMR (400 MHz, CD₃OD) δ = 8.32 (d, *J* = 7.9 Hz, 2H), 7.92 (t, *J* = 7.8 Hz, 2H), 7.63 (d, *J* = 7.6 Hz, 2H), 7.39 (dd, *J* = 8.9, 4.7 Hz, 4H), 6.93 (t, *J* = 8.6 Hz, 4H), 6.89 (s, 2H), 4.77 (dd, *J* = 10.3, 6.1 Hz, 2H), 3.91 (dt, *J* = 12.0, 5.4 Hz, 2H), 3.41 – 3.29 (m, 2H), 2.49 (dt, *J* = 12.6, 9.1 Hz, 2H), 2.40 – 2.24 (m, 4H), 1.87 – 1.68 (m, 6H), 1.57 – 1.45 (m, 4H), 1.35 (d, *J* = 13.3 Hz, 2H), 1.21 (d, *J* = 12.8 Hz, 2H).¹³C NMR (101 MHz, CD₃OD) δ

=170.98, 163.28, 160.83, 156.53, 152.36, 139.29, 132.44, 128.45, 125.90, 125.81, 122.85, 117.17, 116.94, 85.75, 77.20, 37.05, 28.58, 25.88, 25.41, 25.16, 21.11. ¹⁹F NMR (376 MHz, CD₃OD) δ = 116.02. HRMS (APCI) m/z calcd for C₄₂H₄₃F₂N₆O₄⁺(M+H)⁺: 733.3308, found 733.3295.

L9: White solid (802.5 mg, 42% yield); >20:1 dr; mp 158.3-159.9 °C. ¹H NMR (400 MHz, CD₃OD) δ = 8.29 (d, *J* = 7.9 Hz, 2H), 7.92 (t, *J* = 7.8 Hz, 2H), 7.65 (d, *J* = 7.6 Hz, 2H), 7.36 (d, *J* = 8.5 Hz, 4H), 7.08 (d, *J* = 8.5 Hz, 4H), 6.90 (s, 2H), 4.74 (dd, *J* = 10.3, 6.1 Hz, 2H), 3.89 (dt, *J* = 11.9, 5.3 Hz, 2H), 3.37 – 3.28 (m, 2H), 2.48 (dt, *J* = 12.6, 9.1 Hz, 2H), 2.30 – 2.25 (m, 4H), 1.84 – 1.69 (m, 6H), 1.49 (d, *J* = 14.4 Hz, 2H), 1.41 (dd, *J* = 12.8, 2.9 Hz, 2H), 1.38 – 1.29 (m, 2H), 1.19 (t, *J* = 12.9 Hz, 2H).¹³C NMR (101 MHz, CD₃OD) δ =170.91, 156.53, 152.27, 139.28, 135.03, 132.81, 130.29, 128.47, 124.46, 122.92, 85.76, 85.26, 77.18, 37.01, 28.67, 25.85, 25.36, 25.13, 21.11.HRMS (APCI) m/z calcd for C₄₂H₄₃Cl₂N₆O₄⁺(M+H)⁺ : 765.2717, found 765.2709.

L10: White solid (716.7 mg, 38% yield); >20:1 dr; mp 184.2-185.8 °C. ¹H NMR (400 MHz, CD₃OD) $\delta = 8.38$ (d, J = 7.9 Hz, 2H), 7.87 (t, J = 7.8 Hz, 2H), 7.49 (d, J = 7.6 Hz, 2H), 7.17 – 7.12 (m, 2H), 7.07 – 7.02 (m, 2H), 6.97 (d, J = 8.4 Hz, 2H), 6.80 (s, 2H), 6.60 (t, J = 7.7 Hz, 2H), 3.93 (dt, J = 11.9, 5.5 Hz, 2H), 3.80 (s, 6H), 3.39 – 3.31 (m, 2H), 2.63 (d, J = 12.6 Hz, 2H), 2.50 – 2.40 (m, 2H), 2.28 (td, J = 12.6, 6.5 Hz, 2H), 1.99 – 1.83 (m, 5H), 1.80 – 1.71 (m, 2H), 1.63 – 1.52 (m, 4H), 1.41 – 1.23 (m,

5H).¹³C NMR (101 MHz, CD₃OD) δ =171.51, 156.44, 155.66, 152.48, 139.05, 130.73, 130.03, 128.15, 123.76, 122.52, 121.55, 113.31, 85.91, 85.71, 77.04, 56.14, 37.06, 28.09, 26.04, 25.42, 25.24, 20.99. HRMS (APCI) m/z calcd for C₄₄H₄₉N₆O₆⁺ (M+H)⁺: 757.3708, found 757.3692.

L11: White solid (847.3 mg, 35% yield); >20:1 dr; mp 145.4-147.0 °C. ¹H NMR (400 MHz, CD₃OD) δ = 8.27 (d, *J* = 8.0 Hz, 2H), 8.03 (s, 4H), 7.98 (t, *J* = 7.7 Hz, 2H), 7.72 (d, *J* = 7.6 Hz, 2H), 7.51 (s, 2H), 7.20 (s, 2H), 4.78 (dd, *J* = 10.3, 6.2 Hz, 2H), 3.94 (dt, *J* = 12.0, 5.4 Hz, 2H), 3.41 – 3.32 (m, 2H), 2.54 (dt, *J* = 12.5, 8.9 Hz, 2H), 2.40 – 2.28 (m, 4H), 1.88 – 1.71 (m, 6H), 1.53 (d, *J* = 13.6 Hz, 2H), 1.47 – 1.35 (m, 4H), 1.23 (t, *J* = 12.8 Hz, 2H). ¹³C NMR (101 MHz, CD₃OD) δ =171.51, 156.46, 151.52, 139.49, 138.31, 133.70, 133.37, 128.84, 125.40, 122.95, 122.69, 122.60, 120.32, 85.97, 84.66, 77.08, 37.07, 28.71, 25.82, 25.21, 25.12, 21.03. ¹⁹F NMR (376 MHz, CD₃OD) δ = 64.7. HRMS (APCI) m/z calcd for C₄₆H₄₁F₁₂N₆O₄+(M+H)+: 969.2992, found 969.2972.

III Optimization of Reaction Conditions^a

Entry	Ligand	Solvent	Yield(%) ^b	Ee(%) ^c	Dr^d
1	L1	DCM	88	52	>20:1
2	L2	DCM	90	24	>20:1
3	L3	DCM	91	48	>20:1
4	L4	DCM	85	40	>20:1
5	L5	DCM	84	6	>20:1
6	L6	DCM	95	86	>20:1
7	L7	DCM	90	89	>20:1
8	L8	DCM	90	57	>20:1
9	L9	DCM	92	83	>20:1
10	L10	DCM	93	86	>20:1
11	L11	DCM	94	33	>20:1
12	L7	DCE	94	82	>20:1
13	L7	CHCl ₃	92	52	>20:1
14	L7	THF	95	85	>20:1
15	L7	CH ₃ CN	96	88	>20:1
16	L7	Acetone	96	91	>20:1
17	L7	CB	94	33	>20:1
18	L7	MeOH	80	10	>20:1
19	L7	EtOH	86	43	>20:1
20	L7	Butanone	94	90	>20:1
21	L7	NMP	-	-	-
22^d	L7	Acetone	87	89	>20:1
23^e	L7	Acetone	79	91	>20:1

24^{*f*} L7 Acetone 86 85 >20:1

^{*a*}Reaction conditions: Ni(OTf)₂ (10 mol%), L1-L11 (12 mol%), 1a (0.10 mmol), and 2a (0.12 mmol) in 2.0 mL of Acetone at 25 °C. ^{*b*}Isolated yield after flash chromatography. ^{*c*}Determined by HPLC analysis ^{*d*}Determined by ¹H NMR analysis. ^{*d*}Ni(ClO₄)₂·6H₂O (10 mol%). ^{*e*}Cu(OTf)₂ (10 mol%). ^{*f*}Zn(OTf)₂ (10 mol%). ^{*d*}Ni(ClO₄)₂·6H₂O (10 mol%). ^{*e*}Cu(OTf)₂ (10 mol%). ^{*f*}Zn(OTf)₂ (10 mol%).

IV Synthesis of Substrates

4-1 Synthesis of Compounds 1(α,β-unsaturated 2-acylimidazoles)⁴

 α , β -unsaturated 2-acylimidazoles **1a-1n**, **1q** were prepared according to a reported procedure. Accordingly, 2-acetyl-imidazole (10.0 mmol, 1.0 equiv.) and EtOH (20 mL) were added to a 50 mL a round-bottom flask followed by the aromatic aldehyde (10.5 mmol, 1.05 equiv.) and NaOH (11.0 mmol, 1.1 equiv.). The solution was stirred until the substrates consumption (detected by TLC). Saturated NaCl (30 mL) and H₂O (10 mL) were added and the mixture was extracted with CH₂Cl₂ (3 × 30 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The resulting residue was purified by a flash column chromatography on silica gel to give the desired products.

Following the general procedure⁶, to a suitable vacuum flame-dried flask under N₂ was added N-benzylimidazole (1.44 g, 0.01 mol, 1.0 equiv.) to 30 mL THF. The flask was cooled to -78 °C for 20-30 min before a titrated 10 mL *n*-butyllithium (2.5 M in hexanes) (1.5 equiv.) was added in drops to the flask. The reaction was stirred at -78 °C for about 5 minutes. The bath was removed and the reaction was allowed to warm to r.t. over a 30 minutes period. The reaction was cooled back down to -78 °C for 20 minutes before the corresponding Weinreb amide (1.0 equiv.) was added to the solution in THF. The reaction was stirred at -78 °C for 2 h. The reaction was quenched with water and then extracted with EtOAc for three times. The organic layer was washed with brine, and dried with Na₂SO₄. The drying agent was concentrated and directly purified by silica gel column chromatography (with ethyl acetate-petroleum ether as the eluent) to afford the desired products **10**.

Following the general procedure⁵, to a solution of Wittig reagent (1.03 g, 2.5 mmol) in toluene (12.6 mL) at room temperature was added cyclopropanecarboxaldehyde (350.5 mg, 5.0 mmol). The reaction was stirred at 85 °C overnight. After the solvent was removed in vacuo, the residue was purified by flash chromatography on silica gel (EtOAc/hexane = 1/5 to 1/3) to produce the unsaturated alkenes as a mixture of *E*:*Z* isomers. Then, to a solution of purified alkene in CH₂Cl₂ (0.2 M) at room temperaturewas added DMAP (30.5 mg, 0.25 mmol). The reaction was sealed and stored at 4 °C (fridge) for 24 hours. After isomerization, the solution was passed through a short silica columnto afford **1p** as colorless oil (306.4 mg, yield: 60%).

4-2 synthesis of Compounds 2 (sulfoxonium ylides).⁷

All the sulfoxonium ylides are known and the synthesis method is as follows. Potassium tert-butoxide (27.2 mmol, 3 g, 4.0 equiv.) and anhydrous THF (27.0 mL) were added to a 100 mL Schlenk tube under argon atmosphere. Then, trimethylsulfoxonium iodide (20.4 mmol, 4.48 g, 3.0 equiv.) was added in one portion. The suspension was heated at reflux(oil bath) for 3 hours. After that, the mixture was cooled to 0 °C, followed by slow addition of the acyl chloride (6.8 mmol, 1.0 equiv.). The mixture was stirred overnight at room temperature. The solvent was removed on a rotary evaporator. Then 80 mL H₂O was added and the mixture was extracted with DCM (8×20 mL). The organic phase was combined and dried over Na₂SO₄. The crude product was concentrated on a rotary evaporator and purified by flash column chromatography on silica gel (200-300 mesh, MeOH/EA v/v = 1:15 - 1:10) to afford the desired product (**2a-2n**).

VAsymmetric Cycloaddition Reactions

General Procedure: fitted with a magnetic stirring bar, was charged with Ni(OTf)₂ (3.6 mg, 10 mol%) in an Ar setting, followed by the addition of L7 (8.0 mg,12 mol%) and Acetone (1.0 mL, 0.1 M), with the mixture being stirred at room temperature for an hour. Following this, 1 (0.10 mmol, 1.0 equiv.) and 2 (0.12 mmol, 1.2 equiv.) were added. The reaction mixture was stirred at 25 °C for indicated time (monitored by TLC) under argon. the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 5:1) to afford chiral products.

(1*R*,2*S*,3*S*)-2-benzoyl-3-phenylcyclopropyl-(1-isopropyl-1H-imidazol-2-yl)methan one (3a). pale yellow oil (34.4 mg, 96% yield). HPLC: 91% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 7.64 min, tr (minor) = 6.87 min. [α]_D²⁶ = +7.0 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.29 (t, *J* = 7.3 Hz, 2H), 7.24 (dd, *J* = 10.4, 1.3 Hz, 2H), 7.22 – 7.18 (m, 4H), 7.17 (d, *J* = 1.1 Hz, 1H), 7.16 – 7.09 (m, 3H), 5.52 (p, *J* = 6.7 Hz, 1H), 3.82 (dd, *J* = 9.7, 6.3 Hz, 1H), 3.38 (t, *J* = 6.3 Hz, 1H), 2.84 (d, *J* = 2.5 Hz, 1H), 1.42 (dd, *J* = 6.8, 1.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ = 204.24, 186.23, 142.70, 141.01, 138.53, 129.91, 128.64, 128.44, 128.32, 126.97, 126.57, 126.03, 49.32, 45.22, 40.33, 37.33, 30.70, 29.65, 23.69, 23.52. HRMS (APCI) m/z calcd for C₂₃H₂₃N₂O₂⁺ (M+H)⁺: 359.1766, found 359.1761.

(1*R*,2*S*,3*S*)-2-(6-methylcyclohexa-2,4-diene-1-carbonyl)-3-phenylcyclopropyl-(1-is opropyl-1H-imidazol-2-yl)methanone (3b). yellow oil (35.7 mg, 95% yield). HPLC:

92% ee (Chiralpak IA column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 7.84 min, tr (minor) = 5.7 min. [α] $_{D}^{26}$ = +6.2 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.48 (d, *J* = 7.1 Hz, 2H), 7.35 (t, *J* = 7.5 Hz, 2H), 7.27 (d, *J* = 8.9 Hz, 1H), 7.21 – 7.15 (m, 3H), 7.00 (s, 2H), 5.83 (s, 1H), 5.15 – 5.09 (m, 1H), 5.01 (p, *J* = 6.7 Hz, 1H), 4.85 (s, 1H), 3.25 (d, *J* = 15.0 Hz, 1H), 3.07 (s, 1H), 2.61 (ddd, *J* = 15.3, 9.5, 5.3 Hz, 1H), 2.39 (s, 1H), 1.31 (d, *J* = 6.7 Hz, 3H), 0.83 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 197.58, 185.99, 142.91, 138.85, 138.75, 137.70, 131.86, 131.52, 129.88, 129.66, 128.74, 127.02, 126.70, 125.62, 121.27, 47.93, 42.14, 38.88, 32.38, 23.63, 23.51, 21.16. HRMS (APCI) m/z calcd for C₂₄H₂₇N₂O₂⁺ (M+H)⁺: 375.2023, found 375.2017.

(1*R*,2*S*,3*S*)-2-(3-methylbenzoyl)-3-phenylcyclopropyl-(isopropyl-1H-imidazol-2-y l)methanone (3c).yellow oil (35.6 mg, 95 % yield). HPLC: 83% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 9.85 min, tr (minor) = 7.38 min. [α]_D²⁶ = +9.8 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.84 – 7.78 (m, 2H), 7.38 – 7.31 (m, 4H), 7.27 – 7.22 (m, 3H), 7.20 (dd, *J* = 13.8, 1.1 Hz, 2H), 5.41 (p, *J* = 6.7 Hz, 1H), 4.19 (dd, *J* = 9.7, 6.1 Hz, 1H), 3.57 (t, *J* = 6.3 Hz, 1H), 3.30 (dd, *J* = 9.7, 6.6 Hz, 1H), 2.33 (s, 3H), 1.38 (d, *J* = 6.7 Hz, 3H), 1.21 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 194.29, 186.13, 143.00, 138.81, 138.39, 137.20, 133.93, 129.94, 129.16, 128.76, 127.06, 126.87, 125.89, 121.31, 49.29, 38.79, 36.81, 30.43, 23.55, 21.38. HRMS (APCI) m/z calcd for C₂₄H₂₇N₂O₂⁺ (M+H)⁺: 375.2021, found 375.2019.

(1*R*,2*S*,3*S*)-2-(4-methylbenzoyl)-3-phenylcyclopropyl)-(isopropyl-1H-imidazol-2yl)methanone (3d). yellow solid (33.8 mg, 95% yield), mp 101.4-102.3 °C. HPLC: 81% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 13.74 min, tr (minor) = 9.23 min. [α]_D²⁶ = +15.2 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.83 (d, *J* = 8.3 Hz, 2H), 7.25 (d, *J* = 3.1 Hz, 4H), 7.16 (d, *J* = 12.1 Hz, 2H), 7.09 (d, *J* = 7.2 Hz, 3H), 5.35 (p, *J* = 6.7 Hz, 1H), 4.09 (dd, *J* = 9.7, 6.0 Hz, 1H), 3.48 (t, *J* = 6.3 Hz, 1H), 3.23 (dd, *J* = 9.7, 6.6 Hz, 1H), 2.28 (s, 3H), 1.30 (d, *J* = 6.7 Hz, 3H), 1.15 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 193.65, 186.19, 143.95, 142.99, 138.84, 134.74, 130.34, 129.90, 129.24, 128.75, 127.03, 126.85, 121.28, 49.70, 38.72, 37.30, 30.48, 23.55, 21.76. HRMS (APCI) m/z calcd for C₂₄H₂₇N₂O₂⁺ (M+H)⁺: 375.2022, found 375.2020.

(1*R*,2*S*,3*S*)-2-(3,5-dimethylbenzoyl)-3-phenylcyclopropyl-(1-isopropyl-1H-imidaz ol-2-yl)methanonepale (3e). yellow oil (37.1 mg, 96% yield). HPLC: 88% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 6.70 min, tr (minor) = 4.89 min. [α]_D²⁶ = +28.4 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.63 (s, 2H), 7.33 (d, *J* = 4.8 Hz, 4H), 7.26 – 7.14 (m, 3H), 7.11 (s, 1H), 5.40 (p, *J* = 6.7 Hz, 1H), 4.19 (dd, *J* = 9.8, 6.1 Hz, 1H), 3.57 (t, *J* = 6.3 Hz, 1H), 3.29 (dd, *J* = 9.8, 6.5 Hz, 1H), 2.27 (s, 6H), 1.37 (d, *J* = 6.7 Hz, 3H), 1.20 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 194.38, 186.08, 143.98, 138.85, 138.17, 137.22, 134.79, 130.39, 129.22, 126.98, 126.84, 126.45, 121.24,

49.24, 40.39, 37.55, 30.22, 24.73, 21.22. HRMS (APCI) m/z calcd for $C_{25}H_{27}N_2O_2^+$ (M+H)⁺: 387.2002, found 387.2000.

(1*R*,2*S*,3*S*)-2-(3-methoxybenzoyl)-3-phenylcyclopropyl)-(1-isopropyl-1H-imidazol -2-yl)methanone (3f). pale yellow solid (37.3 mg, 96% yield); mp 93.3-94.8 °C. HPLC:80% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C,tr (major) = 10.06 min, tr (minor) = 7.19 min. [α]_D²⁶ = +17.3 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) $\delta = 8.02 - 7.96$ (m, 2H), 7.32 (d, *J* = 5.3 Hz, 4H), 7.28 - 7.21 (m, 2H), 7.18 (s, 1H), 6.86 - 6.82 (m, 2H), 5.43 (p, *J* = 6.7 Hz, 1H), 4.16 (dd, *J* = 9.7, 6.0 Hz, 1H), 3.81 (s, 3H), 3.55 (t, *J* = 6.3 Hz, 1H), 3.28 (dd, *J* = 9.7, 6.6 Hz, 1H), 1.37 (d, *J* = 6.7 Hz, 3H), 1.23 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 194.35, 186.59, 150.34, 144.40, 141.67, 138.86, 130.87, 129.53, 128.89, 126.80, 125.30, 121.79, 49.40, 38.31, 36.60, 33.58, 30.94, 24.21. HRMS (APCI) m/z calcd for C₂₄H₂₅N₂O₂⁺ (M+H)⁺: 389.1803, found 389.1805.

(1*R*,2*S*,3*S*)-2-(3-fluorobenzoyl)-3-phenylcyclopropyl-(1-isopropyl-1H-imidazol-2yl)methanone (3g). pale yellow solid (34.7 mg, 92% yield); mp 87.3-88.9 °C. HPLC: 83% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 6.45 min, tr (minor) = 5.54 min. [α]_D²⁶ = +31.2 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) $\delta = 8.07 - 8.02$ (m, 2H), 7.35 - 7.29 (m, 4H), 7.26 - 7.23 (m, 2H), 7.18 (d, *J* = 1.1 Hz, 1H), 7.08 - 7.01 (m, 2H), 5.42 (p, *J* = 6.7 Hz, 1H), 4.20 (dd, *J* = 9.7, 6.1 Hz, 1H), 3.56 (t, *J* = 6.3 Hz, 1H), 3.26 (dd, *J* = 9.7, 6.6 Hz, 1H), 1.38 (d, *J* = 6.7 Hz, 3H), 1.24 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ =192.55, 186.00, 167.10, 164.56, 142.86, 138.55, 133.63, 131.19, 130.02, 128.80, 127.15, 126.83, 121.47, 115.77, 115.55, 49.32, 38.49, 36.69, 30.49, 23.57, 23.50. ¹⁹F NMR (376 MHz, CDCl₃) δ = 105.32. HRMS (APCI) m/z calcd for C₂₃H₂₂FN₂O₂⁺ (M+H)⁺: 376.1601, found 376.1599.

(1*R*,2*S*,3*S*)-2-(4-fluorobenzoyl)-3-phenylcyclopropyl-(1-isopropyl-1H-imidazol-2yl)methanone (3h). pale yellow solid (34.7 mg, 92% yield); mp 87.3-88.9 °C. HPLC: 80% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C,tr (major) = 7.67 min, tr (minor) = 5.84 min. [α]_D²⁶ = +15.1 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 8.07 – 8.01 (m, 2H), 7.33 (dd, *J* = 8.2, 2.0 Hz, 4H), 7.26 (s, 1H), 7.23 (d, *J* = 1.1 Hz, 1H), 7.18 (d, *J* = 1.1 Hz, 1H), 7.07 – 7.02 (m, 2H), 5.42 (p, *J* = 6.7 Hz, 1H), 4.20 (dd, *J* = 9.7, 6.1 Hz, 1H), 3.56 (t, *J* = 6.3 Hz, 1H), 3.26 (dd, *J* = 9.7, 6.6 Hz, 1H), 1.38 (d, *J* = 6.7 Hz, 3H), 1.24 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 192.55, 186.00, 167.10, 164.56, 142.86, 138.55, 133.63, 131.19, 130.02, 128.80, 127.15, 126.83, 121.47, 115.77, 115.55, 49.32, 38.49, 36.69, 30.49, 23.57, 23.50. ¹⁹F NMR (376 MHz, CDCl₃) δ = 105.34. HRMS (APCI) m/z calcd for C₂₃H₂₂FN₂O₂⁺ (M+H)⁺: 376.1600, found 376.1602.

(1*R*,2*S*,3*S*)-2-(4-chlorobenzoyl)-3-phenylcyclopropyl-(1-isopropyl-1H-imidazol-2yl)methanone (3i). pale yellow solid (36.5 mg, 93% yield); mp 87.8-89.6 °C. HPLC: 66% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 8.40 min, tr (minor) = 6.78 min. [α]_D²⁶ = +14.3 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.98 – 7.93 (m, 2H), 7.36 – 7.30 (m, 6H), 7.28 – 7.23 (m, 2H), 7.18 (d, *J* = 1.0 Hz, 1H), 5.40 (p, *J* = 6.7 Hz, 1H), 4.20 (dd, *J* = 9.6, 6.0 Hz, 1H), 3.55 (t, J = 6.3 Hz, 1H), 3.25 (dd, J = 9.7, 6.6 Hz, 1H), 1.38 (d, J = 6.7 Hz, 3H), 1.24 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 192.97$, 186.53, 142.81, 139.58, 138.46, 135.50, 130.04, 129.99, 128.87, 128.80, 127.17, 126.82, 49.32, 38.41, 36.75, 30.52, 23.54, 23.51. HRMS (APCI) m/z calcd for C₂₃H₂₂ClN₂O₂⁺ (M+H)⁺: 393.1301, found 393.1300.

(1*R*,2*S*,3*S*)-2-(4-bromobenzoyl)-3-phenylcyclopropyl-(1-isopropyl-1H-imidazol-2yl)methanone (3j). pale yellow solid (41.5 mg, 95% yield); mp 134.4-135.6 °C. HPLC: 71% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 8.32 min, tr (minor) = 7.77min. [α]_D²⁶ = +15.6 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.87 (d, *J* = 8.5 Hz, 2H), 7.51 (d, *J* = 8.5 Hz, 2H), 7.29 (d, *J* = 20.8 Hz, 5H), 7.21 (d, *J* = 21.2 Hz, 2H), 5.40 (p, *J* = 6.7 Hz, 1H), 4.20 (dd, *J* = 9.6, 6.0 Hz, 1H), 3.55 (t, *J* = 6.3 Hz, 1H), 3.24 (dd, *J* = 9.6, 6.6 Hz, 1H), 1.37 (d, *J* = 6.6 Hz, 3H), 1.24 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 193.16, 185.88, 142.79, 138.43, 135.89, 131.85, 130.08, 130.04, 128.79, 128.33, 127.16, 126.80, 121.52, 49.32, 38.36, 36.75, 30.52, 23.52. HRMS (APCI) m/z calcd for C₂₃H₂₂BrN₂O₂⁺ (M+H)⁺: 437.0801, found 437.0799.

(1*S*,2*R*,3*S*)-3-phenylcyclopropane-1-carbonyl-2-(1-isopropyl-1H-imidazole-2-car bonyl)benzonitril (3k). yellow oil (35.3 mg, 96% yield). HPLC: 75% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) =14.67 min, tr (minor) = 10.77 min. [α]_D²⁶ = +19.2 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 8.10 (d, *J* = 8.4 Hz, 2H), 7.69 (d, *J* = 8.5 Hz, 2H), 7.38 – 7.25 (m, 6H), 7.19 (s, 1H), 5.39 (p, *J* = 6.7 Hz, 1H), 4.24 (dd, *J* = 9.6, 6.1 Hz, 1H), 3.56 (t, J = 6.3 Hz, 1H), 3.25 (dd, J = 9.6, 6.5 Hz, 1H), 1.38 (d, J = 6.7 Hz, 3H), 1.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 193.17$, 185.63, 142.60, 140.13, 138.06, 133.06, 130.18, 128.90, 128.85, 127.32, 126.78, 121.74, 118.05, 116.29, 49.36, 38.16, 37.06, 31.43, 23.55, 23.45. HRMS (APCI) m/z calcd for C₂₄H₂₂N₃O₂⁺ (M+H)⁺: 384.1604, found 384.1602.

(1*R*,2*S*,3*S*)-2-(4-nitrobenzoyl)-3-phenylcyclopropyl-(1-isopropyl-1H-imidazol-2-y l)methanone (3l). yellow oil (36.3 mg, 96% yield). HPLC: 99% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 12.27 min, tr (minor) = 9.36 min. [α]_D²⁶ = +31.2 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.77$ (dd, J = 3.8, 1.2 Hz, 1H), 7.57 (dd, J = 5.0, 1.2 Hz, 1H), 7.46 – 7.08 (m, 8H), 7.03 (dd, J = 5.0, 3.8 Hz, 1H), 5.47 (p, J = 6.7 Hz, 1H), 4.11 (dd, J = 9.6, 6.2 Hz, 1H), 3.57 (t, J = 6.3 Hz, 1H), 3.28 (dd, J = 9.6, 6.4 Hz, 1H), 1.40 (d, J = 6.7 Hz, 3H), 1.28 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 193.07$, 185.90, 164.07, 161.61, 142.79, 139.31, 139.25, 138.42, 130.26, 130.18, 130.06, 128.80, 127.18, 126.81, 124.41, 124.38, 121.50, 120.26, 120.05, 115.27, 115.05, 49.32, 38.40, 36.86, 30.68, 23.55, 23.48. HRMS (APCI) m/z calcd for C₂₃H₂₂N₃O₄⁺ (M+H)⁺: 403.1500, found 403.1499.

(1*R*,2*S*,3*S*)-2-phenyl-3-(thiophene-2-carbonyl)cyclopropyl)-(1-isopropyl-1H-imid azol-2-yl)methanone (3m). yellow oil (34.3 mg, 94% yield). HPLC: 42% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 9.81 min, tr (minor) = 7.34 min. [α]_D²⁶ = +30.7 (c = 0.1, CH₂Cl₂).

¹H NMR (400 MHz, CDCl₃) $\delta = 7.77$ (dd, J = 3.8, 1.2 Hz, 1H), 7.57 (dd, J = 5.0, 1.2 Hz, 1H), 7.35 – 7.29 (m, 4H), 7.24 (d, J = 6.2 Hz, 2H), 7.17 (s, 1H), 7.03 (dd, J = 5.0, 3.8 Hz, 1H), 5.47 (p, J = 6.7 Hz, 1H), 4.11 (dd, J = 9.6, 6.2 Hz, 1H), 3.57 (t, J = 6.3 Hz, 1H), 3.28 (dd, J = 9.6, 6.4 Hz, 1H), 1.40 (d, J = 6.7 Hz, 3H), 1.28 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 186.71$, 185.86, 144.37, 142.96, 138.97, 133.73, 132.62, 129.94, 128.76, 128.10, 127.12, 126.83, 121.35, 49.32, 38.79, 36.50, 30.62, 23.61, 23.49. HRMS (APCI) m/z calcd for C₂₁H₂₁N₂O₂S⁺ (M+H)⁺: 365.1200, found 365.1203.

(1*R*,2*S*,3*S*)-2-(cyclohexanecarbonyl)-3-phenylcyclopropyl-(1-isopropyl-1H-imida zol-2-yl)methanone (3n). colourless solid (35.4 mg, 97% yield); mp 67.1-68.8 °C. HPLC: 99% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 8.40 min, tr (minor) = 7.14 min. [α]_D²⁶ = +4.9 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.34 – 7.27 (m, 2H), 7.27 – 7.22 (m, 4H), 7.17 (d, *J* = 1.1 Hz, 1H), 5.55 (p, *J* = 6.7 Hz, 1H), 3.80 (dd, *J* = 9.7, 6.4 Hz, 1H), 3.38 (t, *J* = 6.3 Hz, 1H), 2.87 (dd, *J* = 9.7, 6.3 Hz, 1H), 2.54 – 2.46 (m, 1H), 1.84 – 1.61 (m, 5H), 1.43 (dd, *J* = 6.7, 4.4 Hz, 6H), 1.34 – 1.14 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ = 207.85, 185.94, 142.85, 138.86, 129.78, 128.70, 126.94, 126.65, 121.16, 51.43, 49.33, 39.35, 37.44, 30.91, 28.33, 28.21, 25.94, 25.68, 23.80, 23.56. HRMS (APCI) m/z calcd for C₂₃H₂₉N₂O₂⁺ (M+H)⁺: 365.2211, found 365.2209.

(1*R*,2*S*,3*S*)-2-(cyclohexanecarbonyl)-3-(o-tolyl)cyclopropyl-(1-isopropyl-1H-imid azol-2-yl)methanone (4a). colourless solid (37.1 mg, 98% yield); mp 65.8-67.6 °C. HPLC: 99% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 7.11 min, tr (minor) = 5.76 min. [α]_D²⁶ = +2.8 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.27 (s, 1H), 7.18 – 7.13 (m, 4H), 7.10 (d, *J* = 4.4 Hz, 1H), 5.56 (p, *J* = 6.7 Hz, 1H), 3.77 (dd, *J* = 9.6, 6.7 Hz, 1H), 3.43 (t, *J* = 6.6 Hz, 1H), 2.83 (dd, *J* = 9.6, 6.5 Hz, 1H), 2.55 – 2.47 (m, 1H), 2.38 (s, 3H), 1.77 (dd, *J* = 43.6, 29.8 Hz, 5H), 1.44 (dd, *J* = 11.8, 6.7 Hz, 6H), 1.36 – 1.15 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ = 208.19, 186.28, 142.86, 138.15, 136.78, 130.09, 129.80, 127.10, 126.08, 125.85, 121.17, 51.54, 49.33, 37.69, 36.54, 28.90, 28.47, 28.25, 25.95, 25.71, 25.68, 23.86, 23.54, 19.76. HRMS (APCI) m/z calcd for C₂₄H₃₁N₂O₂⁺ (M+H)⁺: 379.2301, found 379.2303.

(1*R*,2*S*,3*S*)-2-(cyclohexanecarbonyl)-3-(m-tolyl)cyclopropyl)-(1-isopropyl-1H-imi dazol-2-yl)methanone (4b). colourless solid (36.0 mg, 95% yield); mp 67.9-69.2 °C. HPLC: 93% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 10.47 min, tr (minor) = 8.63 min. [α]p²⁶ = +6.8 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.18 (s, 1H), 7.14 – 7.08 (m, 2H), 6.96 (d, *J* = 5.5 Hz, 3H), 5.47 (p, *J* = 6.7 Hz, 1H), 3.72 (dd, *J* = 9.7, 6.4 Hz, 1H), 3.27 (t, *J* = 6.3 Hz, 1H), 2.79 (dd, *J* = 9.7, 6.3 Hz, 1H), 2.46 – 2.37 (m, 1H), 2.25 (s, 3H), 1.76 – 1.53 (m, 5H), 1.36 (dd, *J* = 6.7, 4.1 Hz, 6H), 1.27 – 1.07 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ = 207.88, 185.97, 142.86, 138.78, 138.35, 129.75, 128.58, 127.69, 127.21, 123.73, 121.12, 51.41, 49.31, 39.43, 37.47, 30.45, 28.31, 28.21, 25.94,

25.68, 25.66, 23.78, 23.56, 21.48. HRMS (APCI) m/z calcd for C₂₄H₃₁N₂O₂⁺ (M+H)⁺: 379.2300, found 379.2298.

(1*R*,2*S*,3*S*)-2-(cyclohexanecarbonyl)-3-(p-tolyl)cyclopropyl-(1-isopropyl-1H-imid azol-2-yl)methanone (4c). colourless oil (36.0 mg, 95% yield). HPLC: 91% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 12.22 min, tr (minor) = 9.72 min. [α]_D²⁶ = +3.5 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.27 - 7.25$ (m, 1H), 7.17 (s, 1H), 7.12 (s, 4H), 5.55 (p, *J* = 6.7 Hz, 1H), 3.77 (dd, *J* = 9.7, 6.4 Hz, 1H), 3.34 (t, *J* = 6.3 Hz, 1H), 2.83 (dd, *J* = 9.6, 6.3 Hz, 1H), 2.53 – 2.44 (m, 1H), 2.32 (s, 3H), 1.85 – 1.61 (m, 5H), 1.43 (dd, *J* = 6.7, 4.4 Hz, 6H), 1.30 – 1.14 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ = 208.01, 186.13, 158.69, 142.90, 130.86, 129.75, 127.78, 121.11, 114.13, 55.43, 51.42, 49.31, 39.30, 37.34, 30.07, 28.34, 28.22, 25.96, 25.16, 23.80, 23.57. HRMS (APCI) m/z calcd for C₂₄H₃₁N₂O₂⁺ (M+H)⁺: 379.2299, found 379.2298.

(1*R*,2*S*,3*S*)-2-(cyclohexanecarbonyl)-3-(4-methoxyphenyl)cyclopropyl-(1-isoprop yl-1H-imidazol-2-yl)methanone (4d). colourless oil (36.3 mg, 92% yield). HPLC: 90% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 8.54 min, tr (minor) = 7.96 min. [α]_D²⁶ = +18.8 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.25 (s, 1H), 7.18 – 7.13 (m, 3H), 6.84 (d, *J* = 8.7 Hz, 2H), 5.55 (p, *J* = 6.7 Hz, 1H), 3.79 (s, 3H), 3.75 (dd, *J* = 9.6, 6.4 Hz, 1H), 3.33 (t, *J* = 6.4 Hz, 1H), 2.80 (dd, *J* = 9.6, 6.3 Hz, 1H), 2.49 (td, *J* = 10.9, 5.4 Hz, 1H), 1.83 - 1.60 (m, 5H), 1.43 (dd, J = 6.7, 5.3 Hz, 6H), 1.27 - 1.15 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 186.13$, 158.69, 142.90, 130.86, 129.75, 127.78, 121.11, 114.13, 55.43, 51.42, 49.31, 39.30, 37.34, 30.07, 28.34, 28.22, 25.96, 25.69, 23.80, 23.57. HRMS (APCI) m/z calcd for C₂₄H₃₁N₂O₃⁺ (M+H)⁺: 395.2297, found 395.2299.

(1*R*,2*S*,3*S*)-2-(cyclohexanecarbonyl)-3-(4-fluorophenyl)cyclopropyl-(1-isopropyl-1H-imidazol-2-yl)methanone (4e). colourless oil (36.0 mg, 94% yield). HPLC: 99% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 11.99 min, tr (minor) = 9.43 min. [α]_D²⁶ = +3.6 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.35$ (dd, J = 7.2, 2.2 Hz, 2H), 7.27 (s, 1H), 7.17 (dd, J = 5.2, 2.4 Hz, 3H), 5.53 (p, J = 6.6 Hz, 1H), 3.78 (dd, J = 9.8, 6.4 Hz, 1H), 3.34 (t, J = 6.3 Hz, 1H), 2.85 (dd, J = 9.8, 6.2 Hz, 1H), 2.52 – 2.44 (m, 1H), 1.69 (s, 5H), 1.43 (t, J = 6.7 Hz, 6H), 1.36 – 1.14 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) $\delta =$ 207.41, 185.40, 142.72, 141.32, 130.22, 130.08, 129.91, 129.61, 125.57, 122.85, 121.35, 51.46, 49.39, 39.14, 37.47, 29.71, 28.33, 28.19, 25.93, 25.66, 23.81, 23.56. ¹⁹F NMR (376 MHz, CDCl₃) $\delta =$ 114.46. HRMS (APCI) m/z calcd for C₂₃H₂₈FN₂O₂+ (M+H)⁺: 383.2100, found 383.2099.

(1*R*,2*S*,3*S*)-2-(4-chlorophenyl)-3-cyclopropyl-(1-isopropyl-1H-imidazole-2-carbon yl)(cyclohexyl)methanone (4f). colourless solid (38.3 mg, 96% yield); mp 113.8-115.7 °C. HPLC: 90% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH

= 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 8.91min, tr (minor) = 7.84 min. [α]_D²⁶ = +13.2 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.31 – 7.26 (m, 3H), 7.18 – 7.14 (m, 3H), 5.53 (p, *J* = 6.7 Hz, 1H), 3.77 (dd, *J* = 9.7, 6.4 Hz, 1H), 3.34 (t, *J* = 6.3 Hz, 1H), 2.82 (dd, *J* = 9.8, 6.2 Hz, 1H), 2.52 – 2.44 (m, 1H), 1.81 (d, *J* = 42.8 Hz, 5H), 1.43 (t, *J* = 6.6 Hz, 6H), 1.28 – 1.14 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ = 207.55, 185.57, 142.75, 137.43, 132.70, 129.87, 128.83, 128.06, 121.31, 51.45, 49.38, 39.16, 37.39, 29.72, 28.34, 28.17, 25.92, 25.66, 23.80, 23.55. HRMS (APCI) m/z calcd for C₂₃H₂₈ClN₂O₂⁺ (M+H)⁺: 399.1797, found 399.1800.

(1*R*,2*S*,3*S*)-2-(2-bromophenyl)-3-(1-isopropyl-1H-imidazole-2-carbonyl)cyclopro pyl)(cyclohexyl)methanone (4g). yellow oil (43.3 mg, 98% yield). HPLC: 98% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 9.60 min, tr (minor) = 8.26 min. [α]_D²⁶ = +10.8 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.57 (d, *J* = 7.9 Hz, 1H), 7.26 (d, *J* = 5.8 Hz, 2H), 7.18 – 7.10 (m, 3H), 5.57 (p, *J* = 6.7 Hz, 1H), 3.80 (dd, *J* = 9.7, 6.7 Hz, 1H), 3.57 (t, *J* = 6.5 Hz, 1H), 2.76 (dd, *J* = 9.7, 6.4 Hz, 1H), 2.60 – 2.51 (m, 1H), 1.81 (d, *J* = 47.2 Hz, 5H), 1.44 (dd, *J* = 10.3, 6.7 Hz, 6H), 1.31 – 1.15 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ = 207.72, 185.69, 142.85, 138.18, 132.86, 129.78, 128.66, 127.98, 127.57, 126.18, 121.19, 51.45, 49.35, 38.06, 36.54, 31.45, 28.38, 28.29, 25.96, 25.74, 25.64, 23.81, 23.59. HRMS (APCI) m/z calcd for C₂₃H₂₈BrN₂O₂⁺ (M+H)⁺: 443.1300, found 443.1298.

(1*S*,2*S*,3*R*)-2-(3-bromophenyl)-3-(1-isopropyl-1H-imidazole-2-carbonyl)cyclopro pyl)(cyclohexyl)methanone (4h). yellow oil (42.0 mg, 95% yield). HPLC: 90% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 8.44 min, tr (minor) = 7.60 min. [α]_D²⁶ = +14.0 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.36 (d, J = 2.7 Hz, 2H), 7.27 (s, 1H), 7.17 (dd, J = 5.5, 2.4 Hz, 3H), 5.53 (p, J = 6.6 Hz, 1H), 3.78 (dd, J = 9.8, 6.4 Hz, 1H), 3.34 (t, J = 6.3 Hz, 1H), 2.85 (dd, J = 9.8, 6.2 Hz, 1H), 2.53 – 2.45 (m, 1H), 1.82 – 1.61 (m, 5H), 1.43 (t, J = 6.8 Hz, 6H), 1.31 – 1.14 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ = 207.40, 185.39, 142.71, 141.31, 130.22, 130.07, 129.90, 129.60, 125.56, 122.84, 121.35, 51.45, 49.38, 39.14, 37.47, 29.71, 28.33, 28.18, 25.92, 25.66, 23.80, 23.55. HRMS (APCI) m/z calcd for C₂₃H₂₈BrN₂O₂⁺ (M+H)⁺: 443.1299, found 443.1297.

((1*S*,2*S*,3*R*)-2-(4-bromophenyl)-3-(1-isopropyl-1H-imidazole-2-carbonyl)cyclopro pyl)(cyclohexyl)methanon (4i). colourless solid (42.0 mg, 95% yield); mp 115.3-116.9°C. HPLC: 93% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 9.41 min, tr (minor) = 8.22 min. [α]_D²⁶ = +3.2 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ =7.42 (d, *J* = 8.5 Hz, 2H), 7.27 (d, *J* = 1.1 Hz, 1H), 7.17 (d, *J* = 1.0 Hz, 1H), 7.12 – 7.08 (m, 2H), 5.53 (p, *J* = 6.7 Hz, 1H), 3.77 (dd, *J* = 9.7, 6.4 Hz, 1H), 3.33 (t, *J* = 6.3 Hz, 1H), 2.82 (dd, *J* = 9.7, 6.2 Hz, 1H), 2.52 – 2.44 (m, 1H), 1.84 – 1.59 (m, 5H), 1.43 (t, *J* = 6.6 Hz, 6H), 1.31 – 1.17 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ = 207.50, 185.51, 142.71, 137.96, 131.75, 129.87, 128.41, 121.31, 120.69, 51.42, 49.36, 39.11, 37.34, 29.75, 28.32, 28.15, 25.91, 25.64, 23.78, 23.53. HRMS (APCI) m/z calcd for C₂₃H₂₈BrN₂O₂⁺ (M+H)⁺: 443.1296, found 443.1298.

((1*S*,2*S*,3*R*)-2-(4-yclohexanecarbonyl)-3-(1-isopropyl-1H-imidazole-2-carbonyl)cy clopropyl)benzonitrile (4j). yellow oil (35.1mg, 90% yield). HPLC: 90% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 23.41 min, tr (minor) = 15.26 min. [α]_D²⁶ = +24.8 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.60 (d, *J* = 8.3 Hz, 2H), 7.33 (d, *J* = 8.3 Hz, 2H), 7.28 (s, 1H), 7.18 (s, 1H), 5.52 (p, *J* = 6.7 Hz, 1H), 3.83 (dd, *J* = 9.9, 6.4 Hz, 1H), 3.40 (t, *J* = 6.3 Hz, 1H), 2.89 (dd, *J* = 9.9, 6.2 Hz, 1H), 2.53 – 2.45 (m, 1H), 1.83 – 1.61 (m, 5H), 1.44 (t, *J* = 6.8 Hz, 6H), 1.30 – 1.17 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ = 207.02, 184.90, 144.65, 142.55, 132.53, 129.99, 127.40, 121.56, 118.85, 110.69, 51.46, 49.45, 39.23, 37.70, 29.89, 28.31, 28.12, 25.87, 25.61, 25.60, 23.78, 23.51. HRMS (APCI) m/z calcd for C₂₄H₂₈N₃O₂⁺ (M+H)⁺: 390.2101, found 390.2099.

((1*R*,2*S*,3*S*)-2-(cyclohexanecarbonyl)-3-(3-(trifluoromethyl)phenyl)cyclopropyl)(1 -isopropyl-1H-imidazol-2-yl)methanone (4k). colourless solid (41.9 mg, 97% yield); mp 86.7-87.5 °C. HPLC: 90% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 8.10 min, tr (minor) = 7.47 min. [α]_D²⁶ = +10.4 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.56 (d, *J* = 8.1 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.28 (s, 1H), 7.18 (s, 1H), 5.53 (p, *J* = 6.7 Hz, 1H), 3.84 (dd, *J* = 9.8, 6.4 Hz, 1H), 3.42 (t, *J* = 6.3 Hz, 1H), 2.89 (dd, *J* = 9.8, 6.2 Hz, 1H), 2.54 – 2.45 (m, 1H), 1.90 – 1.64 (m, 5H), 1.44 (t, *J* = 6.4 Hz, 6H), 1.31 – 1.14 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ = 207.31, 185.26, 143.10, 142.66, 129.93, 126.97, 125.71, 125.67, 125.63, 125.59, 121.41, 51.46, 49.40, 39.20, 37.55, 29.82, 28.32, 28.14, 25.89, 25.63, 25.62, 23.77, 23.62, 23.51. ¹⁹F NMR (376 MHz, CDCl₃) $\delta = 62.37$. HRMS (APCI) m/z calcd for C₂₄H₂₈F₃N₂O₂⁺ (M+H)⁺: 433.1999, found 433.2001.

((1*S*,2*R*,3*S*)-2-(cyclohexanecarbonyl)-3-(5-methylthiophen-2-yl)cyclopropyl)(1-iso propyl-1H-imidazol-2-yl)methanone (4l). yellow oil (34.6 mg, 90% yield). HPLC: 64% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 14.78 min, tr (minor) = 11.58 min. [α]_D²⁶ = -9.6 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.26$ (s, 1H), 7.17 (s, 1H), 6.69 (d, *J* = 3.4 Hz, 1H), 6.55 (d, *J* = 3.5 Hz, 1H), 5.53 (p, *J* = 6.6 Hz, 1H), 3.74 (dd, *J* = 9.7, 6.3 Hz, 1H), 3.45 (t, *J* = 6.2 Hz, 1H), 2.82 (dd, *J* = 9.7, 6.1 Hz, 1H), 2.42 (s, 3H), 1.91 – 1.66 (m, 5H), 1.43 (dd, *J* = 8.2, 6.7 Hz, 6H), 1.32 – 1.13 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ = 207.62, 185.54, 142.77, 140.33, 138.27, 129.86, 125.07, 124.33, 121.21, 51.43, 49.35, 40.00, 38.26, 28.31, 28.17, 26.22, 25.97, 25.70, 25.68, 23.82, 23.58, 15.46. HRMS (APCI) m/z calcd for C₂₂H₂₉N₂O₂S⁺ (M+H)⁺: 385.1904, found 385.1905.

((1*R*,2*S*,3*S*)-2-(cyclohexanecarbonyl)-3-(naphthalen-2-yl)cyclopropyl)(1-isopropy l-1H-imidazol-2-yl)methanone (4m). yellow oil (39.8 mg, 96% yield). HPLC: 98% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 9.80 min, tr (minor) = 8.72 min. [α]_D²⁶ = -3.6 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) $\delta = 8.30$ (d, J = 8.1 Hz, 1H), 7.85 (d, J = 8.1 Hz, 1H), 7.76 (d, J = 7.4 Hz, 1H), 7.57 – 7.47 (m, 2H), 7.39 (d, J = 7.5 Hz, 2H), 7.27 (d, J = 6.3 Hz, 1H), 7.19 (s, 1H), 5.62 (p, J = 6.6 Hz, 1H), 3.93 (d, J = 8.1 Hz, 2H), 2.95 – 2.90 (m, 1H), 2.58 – 2.50 (m, 1H), 1.92 – 1.58 (m, 5H), 1.46 (dd, J = 12.1, 6.7 Hz, 6H), 1.38 – 1.13 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 208.33$, 186.27, 142.85, 134.73, 133.65, 133.04, 129.88, 128.53, 127.86, 126.51, 126.06, 125.40, 124.42, 123.94, 121.25, 51.67, 49.36, 37.51, 36.32, 28.55, 28.33, 28.17, 25.94, 25.73, 25.64, 23.90, 23.52. HRMS (APCI) m/z calcd for C₂₇H₃₁N₂O₂⁺ (M+H)⁺: 4152301, found 415.2299.

((1*S*,2*R*,3*S*)-3-(cyclohexanecarbonyl)-[1,1'-bi(cyclopropan)]-2-yl)(1-isopropyl-1Himidazol-2-yl)methanone (4n). colourless oil (29.6 mg, 90% yield). HPLC: 81% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 10.51 min, tr (minor) = 7.57 min. [α]_D²⁶ = +13.2 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.23 (d, *J* = 1.1 Hz, 1H), 7.16 (d, *J* = 1.1 Hz, 1H), 5.51 (p, *J* = 6.7 Hz, 1H), 3.26 (dd, *J* = 9.5, 6.3 Hz, 1H), 2.46 – 2.36 (m, 2H), 2.33 – 2.25 (m, 1H), 1.87 – 1.65 (m, 5H), 1.41 (dd, *J* = 12.3, 6.7 Hz, 6H), 1.32 – 1.14 (m, 5H), 0.99 – 0.91 (m, 1H), 0.49 (dd, *J* = 5.2, 4.4 Hz, 2H), 0.27 – 0.22 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ = 208.71, 186.91, 142.97, 129.61, 120.93, 51.39, 49.35, 49.23, 35.93, 34.42, 29.37, 28.42, 28.28, 25.99, 25.73, 23.81, 23.58, 11.36, 3.56, 3.48. HRMS (APCI) m/z calcd for C₂₀H₂₉FN₂O₂⁺ (M+H)⁺: 329.2199, found 329.2197.

((1*S*,2*R*,3*S*)-2-(cyclohexanecarbonyl)-3-(trifluoromethyl)cyclopropyl)(1-phenyl-1 H-imidazol-2-yl)methanone (40). colourless solid (33.2 mg, 85% yield); mp 69.2-71.3 °C. HPLC: 75% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 6.98 min, tr (minor) = 6.11 min. [α] $_{D}^{26}$ = -7.0(c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.45 (dd, *J* = 5.0, 1.9 Hz, 3H), 7.32 – 7.28 (m, 3H), 7.20 (d, *J* = 1.0 Hz, 1H), 3.62 (dd, *J* = 10.2, 6.2 Hz, 1H), 2.95 – 2.85 (m, 2H), 2.52 – 2.46 (m, 1H), 1.86 – 1.65 (m, 5H), 1.34 – 1.18 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ = 205.88, 181.62, 142.65, 137.90, 131.14, 130.21, 129.17, 129.02, 128.27, 127.51, 126.09, 125.87, 123.31, 51.42, 31.00, 30.41, 28.16, 27.90, 25.84, 25.58, 25.52. ¹⁹F NMR (376 MHz, CDCl₃) δ = 66.6. HRMS (APCI) m/z calcd for C₂₁H₂₂F₃N₂O₂⁺ (M+H)⁺: 391.1599, found 391.1602.

((1*R*,2*S*,3*S*)-2-(cyclohexanecarbonyl)-3-(4-ethynylphenyl)cyclopropyl)(1-isopropy l-1H-imidazol-2-yl)methanone (4p). colourless oil (35.7 mg, 92% yield). HPLC: 90% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 80:20, flow rate: 1.0 mL/min, 40 °C, tr (major) = 8.31 min, tr (minor) = 5.75 min. [α]_D²⁶ = +15.6(c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.43$ (d, J = 8.3 Hz, 2H), 7.26 (s, 1H), 7.20 – 7.16 (m, 3H), 5.53 (p, J = 6.7 Hz, 1H), 3.80 (dd, J = 9.7, 6.4 Hz, 1H), 3.36 (t, J = 6.3 Hz, 1H), 3.07 (s, 1H), 2.85 (dd, J = 9.8, 6.2 Hz, 1H), 2.53 – 2.45 (m, 1H), 1.87 – 1.63 (m, 5H), 1.45 – 1.40 (m, 6H), 1.34 – 1.16 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 207.47$, 185.51, 142.72, 139.81, 132.44, 129.84, 126.60, 121.28, 120.64, 83.48, 51.41, 49.34, 49.21, 39.29, 37.48, 30.17, 28.30, 28.15, 25.90, 25.63, 23.77, 23.52. HRMS (APCI) m/z calcd for $C_{25}H_{29}N_2O_2^+$ (M+H)⁺: 389.2199, found 389.2202.

VI Gram-scale Experiments and Synthetic Transformations

An oven-dried 100 mL Schlenk tube, fitted with a magnetic stirring bar, was charged with Ni(OTf)₂ (144 mg, 10 mol%) in an Ar setting, followed by the addition of L7 (320 mg, 12 mol%) and Acetone (40 mL, 0.1 M), with the mixture being stirred at room temperature for an hour. Following this, **1a** (960 mg, 4.0 mmol, 1.0 equiv.) and **2a** (942 mg, 4.8 mmol, 1.2 equiv.) were added. The reaction mixture was stirred at 25°C for indicated time (monitored by TLC) under argon. the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 5:1) to afford products the respective products **3a** (yellow oil, 1430 mg, 94% yield, 91% ee).

To a dry flask under argon containing **4j** (44.2 mg, 0.1 mmol, 1.0 equiv.) was sequentially added Et₃N (1.0 mL), phenyl acetylene (13.0 μ L, 0.12 mmol, 1.2 equiv.), PdCl₂(PPh₃)₂ (2.0 mg, 0.005 mmol, 0.05 equiv.), CuI (2.0 mg, 0.01 mmol, 0.1 equiv.). The mixture was stirred for 12 h at 95 °C in a pre-heated oil bath. Then the mixture was filtered through a pad of celite. Removal of solvent under reduced pressure afforded a residue which is purified by column chromatography on silica gel eluting with ethyl-acetate: hexane (10 – 12 %) to afford compound **5a** with 60% yield. HPLC: 84% ee (Chiralpak IA column, $\lambda = 254$ nm, n-hexane/i-PrOH = 70:30, flow rate: 1.0

mL/min, 40 °C, tr (major) = 13.53 min, tr (minor) = 7.19 min. $[\alpha]_D^{26}$ = +5.6 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.48 – 7.43 (m, 2H), 7.40 (d, *J* = 8.3 Hz, 2H), 7.30 – 7.25 (m, 3H), 7.19 (s, 1H), 7.15 – 7.10 (m, 3H), 5.47 (p, *J* = 6.7 Hz, 1H), 3.75 (dd, *J* = 9.7, 6.4 Hz, 1H), 3.31 (t, *J* = 6.3 Hz, 1H), 2.80 (dd, *J* = 9.8, 6.2 Hz, 1H), 2.42 (t, *J* = 10.9 Hz, 1H), 1.79 – 1.57 (m, 5H), 1.36 (dd, *J* = 6.7, 5.4 Hz, 6H), 1.27 – 1.10 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ = 207.56, 185.61, 142.77, 139.22, 131.93, 131.69, 129.85, 128.45, 128.35, 126.66, 123.35, 121.85, 121.28, 89.72, 89.26, 51.44, 49.36, 39.40, 37.52, 30.31, 28.33, 28.19, 25.93, 25.66, 23.79, 23.55. HRMS (APCI) m/z calcd for C₃₁H₃₃N₂O₂⁺ (M+H)⁺: 465.2504, found 465.2506.

An oven-dried 25 mL Schlenk tube was charged with **4p** (38.8 mg, 0.1 mmol), benzylazide (55.7 mg, 0.4 mmol), and CuI (19.0 mg, 10 mol%) in THF (1 mL, 1.0 M solution). The reaction was stirred at room temperature for 30 min, concentrated in vaccum. The concentrate was then purified by silica gel chromatography (PE/EtOAc = 5/1-2:1) to afford **6a** colorless oil (80% yield).HPLC: 87% ee (Chiralpak IC column, $\lambda = 254$ nm, n-hexane/i-PrOH = 70:30, flow rate: 1.0 mL/min, 40 °C, tr (major) = 9.24 min, tr (minor) = 8.09 min. [α]_D²⁶ = +10.6 (c = 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.65 (d, *J* = 8.3 Hz, 2H), 7.60 (s, 1H), 7.27 (d, *J* = 7.1 Hz, 3H), 7.23 – 7.14 (m, 5H), 7.08 (s, 1H), 5.53 – 5.40 (m, 3H), 3.74 (dd, *J* = 9.7, 6.4 Hz, 1H), 3.30 (t, *J* = 6.3 Hz, 1H), 2.79 (dd, *J* = 9.8, 6.2 Hz, 1H), 2.46 – 2.36 (m, 1H), 1.78 – 1.49 (m, 5H), 1.33 (t, *J* = 6.3 Hz, 6H), 1.24 – 1.06 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ = 207.54, 185.59, 171.08, 147.76, 142.64, 138.72, 134.70, 129.71, 129.20, 129.10, 128.71, 128.02, 126.94, 125.85, 121.18, 119.53, 60.34, 54.15, 51.26, 49.20, 39.25, 37.33, 30.09, 28.18, 28.06, 25.79, 25.51, 23.64, 23.39, 21.02, 14.18. HRMS (APCI) m/z calcd for $C_{32}H_{36}N_5O_2^+$ (M+H)⁺: 522.2824, found 522.2823.

VII NMR Spectra

¹H NMR-L8 (400 MHz, CD₃OD)

¹⁹F NMR-L8 (376 MHz, CD₃OD)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹⁹F NMR-L11 (376 MHz, CD₃OD)

-50 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -78 -79 -71 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR-3c (400 MHz, CDCl₃)

¹H NMR-3g (400 MHz, CDCl₃)

¹⁹F NMR-3g (376 MHz, CDCl₃)

¹⁹F NMR-3h (376 MHz, CDCl₃)

-105.2656

¹H NMR-3i (400 MHz, CDCl₃)

¹H NMR-3j (400 MHz, CDCl₃)

0.0000 TMS Z 1.3897 Z 1.3730 Z 1.2641 Z 1.2342 5.4251 5.4083 5.3916 5.3749 5.3584 180.9 1.01-I 3.07-≡ 3.05-≡ 2.03H 2.00-I 1-00L E-00-1 6.5 6.0 5.5 5.0 4.5 4.0 fl (ppm) 8.0 9.5 9.0 3.0 2.5 2.0 1.5 8.5 7.5 3.5 -0. 7.0 1.0 0.5 0.0 ¹³C NMR-3k (101 MHz, CDCl₃) 38.1620 37.0646 31.4266 23.5457 23.5457

4.2596 4.2444 4.2357 4.2206 3.5732 3.5574 3.5574 3.5416 3.2688 3.2688 3.2524 3.2286

¹H NMR-3k (400 MHz, CDCl₃)

110 100 fl (ppm)

90 80 70 60 50 40 30 20 10 0 //

210 200 190 180 170 160 150 140 130 120

¹H NMR-3m (400 MHz, CDCl₃)

4.1334 4.1179 4.0940 4.0940 3.55700 3.5543 3.55700 3.2543 3.2623 3.2623

5.5020 5.4853 5.4686 5.4520 5.4353

7,77807 7,7778 7,77778 7,77788 7,7778 7,5717 7,5717 7,5594 7,5594 7,5594 7,5594 7,5594 7,5594 7,5594 7,5594 7,5594 7,5594 7,5594 7,51980 7,73185 7,51702 7,73185 7,73185 7,73185 7,73185 7,75170 7,75172 7,5594 7,75172 7,751772 7,751 0.0000 TMS

1.3965 1.3898 1.28841.2718

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR-3n (400 MHz, CDCl₃)

210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹⁹F NMR-4e (376 MHz, CDCl₃)

-65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -16 f1 (ppm)

210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR-4g (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR-4h (400 MHz, CDCl₃)

¹H NMR-4k (400 MHz, CDCl₃)

¹⁹F NMR-4k (376 MHz, CDCl₃)

¹H NMR-4l (400 MHz, CDCl₃)

5.6502 5.6336 5.6169 5.6169 5.5836

2.8.3139 6.8.2938 6.8.2938 7.7.517 7.7.7696 7.7.7511 7.7.5511 7.7.5511 7.7.5511 7.7.5511 7.7.5511 7.7.5511 7.7.5511 7.7.5511 7.7.3816 7.7.3916 7.7.391707000000000000000000000000000 $< \frac{3.9373}{3.9170}$

2.9418 2.90216 2.90216 2.90216 2.90216 2.90216 2.90216 2.90216 2.90216 2.5042 2

¹H NMR-4n (400 MHz, CDCl₃)

¹⁹F NMR-40 (376 MHz, CDCl₃)

-66.5678

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR-6a (400 MHz, CDCl₃)

VIII HPLC Traces on Chiral Stationary Phase

racemic-3a

CU CU

chiral-3e

~ ~

chiral-4l

c

IX Single Crystal X-Ray Diffraction of 4a

Crystal data and structure refinement for **4a**. The method for crystal growth: mixture of Petroleum ether and ethyl acetate, at room tempretrue. X-ray derived ORTEP of **4a** with thermal ellipsoids shown at the 35% probability level.

CCDC: 2378265

Identification code	4a	
Empirical formula	C24 H30 N2 O2	
Formula weight	378.50	
Temperature	173.0 K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P 1 21 1	
Unit cell dimensions	a = 10.483(2) Å	a= 90°
	b = 9.2579(13) Å	b=112.815(13)°
	c = 12.006(2) Å	$g = 90^{\circ}$
Volume	1074.0(3) Å ³	
Z	2	
Density (calculated)	1.170 Mg/m ³	
Absorption coefficient	0.583 mm ⁻¹	
F(000)	408	
Crystal size	0.17 x 0.09 x 0.07 mm ³	
Theta range for data collection	3.994 to 72.228°	
Index ranges	-10<=h<=12, -11<=k<=11, -14<=l<=14	
Reflections collected	11154	
Independent reflections	4065 [R(int) = 0.0947]	
Completeness to theta = 67.679°	99.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7536 and 0.5954	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4065 / 19 / 245	
Goodness-of-fit on F ²	1.090	
Final R indices [I>2sigma(I)]	R1 = 0.0704, $wR2 = 0.1832$	

R indices (all data)	R1 = 0.1206, $wR2 = 0.2112$
Absolute structure parameter	0.0(8)
Extinction coefficient	n/a
Largest diff. peak and hole	0.427 and -0.295 e.Å ⁻³

X References

W. Li, X.-H. Liu, X.-Y. Hao, Y.-F. Cai, L.-L. Lin, X.-M.Feng, A Catalytic Asymmetric Ring-Expansion Reaction of Isatins and α-Alkyl-α-Diazoesters: Highly Efficient Synthesis of Functionalized 2-Quinolone Derivatives. *Angew. Chem.* 2012, 124, 8772-8775.

(2) X.-H. L.-L. Liu, Lin, X.-M. Feng, Chiral *N*, *N*-dioxide ligands: synthesis, coordination chemistry and asymmetric catalysis. *Org. Chem. Front.* 2014, 1, 298-302.

(3) R.-M. Liu, Y.-H. Wang, Z.-Y. Chen, L. Zhang, Q.-H. Shi, Y. Zhou, Y.-P. Tian, X.-L. Liu, New tertiary amine-derived C2-symmetric chiral pyridine-N,N'-dioxide ligands and their applications in asymmetric catalysis. *Org. Chem. Front.* 2022, **9**, 6881–6887; (b) Z.-Y. Chen, P. Hu, X.-R. Wang, K.-L. Xu, Y.-H.Wang, Y.-P. Tian, Y. Zhou, X.-L. Liu, Design and Synthesis of Rigid-Featured Tertiary AmineDerived C2-Symmetric Chiral Furan-N,N'-dioxide Ligands. *Eur. J. Org. Chem.* 2023, **26**, e202300764.

(4) X. Gao, C.-W. Li, L. Chen, X. Li, Asymmetric Synthesis of Axially Chiral Arylpyrazole via an Organocatalytic Arylation Reaction. *Org. Lett.* 2023, **25**, 7628-7632.

(5) H. Huo, K. Harms, E. Meggers, J. Am. Chem. Soc. 2016, 138, 6936-6939.

(6) Y.-J. Zhao, X. Tian, Z.-F. Zhao, J.-X. Pian, S.-W. Li, Asymmetric (3+2) Cycloaddition Employing β -Fluoroalkylated α , β -Unsaturated 2-Acyl Imidazole Catalyzed by a Chiral-at-Metal Rhodium Complex. *Adv. Synth. Catal.* 2024, **366**, 1590-1594.

(7) S. Zhu, K. Shi, H. Zhu, Z.-K. Jia, X.-F. Xia, D.-W. Wang, L.-H. Zou, Copper-Catalyzed Annulation or Homocoupling of Sulfoxonium Ylides: Synthesis of 2,3-Diaroylquinolines or α,α,β -Tricarbonyl Sulfoxonium Ylides. *Org. Lett.* 2020, **22**, 1504-1509.