Supporting Information

Asymmetric Synthesis of Pyrrolo[1,2-a]indoles via Bifunctional Tertiary

Amine Catalyzed [3+2] Annulation of 2-Nitrovinylindoles with Azlactones

Jiang Deng,^{a§} Junyuan Yan,^{a§} Wei Li,^a Xiaomei Li,^a Zhiming Li,^a Song Wu,^a Jiachen Xie,^a Zhouyu Wang, ^{b,c} Shan Qian, ^{*a, c} and Xiao-Long He,^{*a, c}

^a Department of Pharmaceutical Engineering, School of Food and Bioengineering, Xihua University, Chengdu 610039, China.

^b Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China.

^c Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, Department of Chemistry, Xihua University, Chengdu 610039, China.

[§]These authors contributed equally to this work.

*correspondence: xlhe1021@sina.com;

Table of Contents

1. General Information	2
2. General procedure for the [3+2] or [4+2] Annulation of 2-Nitrovinyl indoles or 7-Nitrovinyl ind	loles with
Azlactones	2
3. Asymmetric [3+2] cyclization reactions of other types of functionalized indoles	18
4. Synthetic transformations	20
5. Failed trials of other azlactones under the optimized conditions	22
6. Crystal data for enantiopure cycloadducts 3x	23
7. NMR spectra and HPLC chromatograms	25

1. General Information

NMR spectra were recorded with tetramethylsilane as the internal standard. ¹H-NMR spectra were recorded at 400 MHz, ¹³C-NMR spectra were recorded at 100 MHz. Chemical shifts were reported in ppm downfield from CDCl₃ (δ = 7.26 ppm) or (CD₃)₂SO (δ = 2.50 ppm) for ¹H NMR and relative to the central CDCl₃ resonance (δ = 77.0 ppm) or (CD₃)₂SO resonance (δ = 39.52 ppm) for ¹³C NMR spectroscopy. Coupling constants are given in Hz. Enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H Column (4.6 mm×250 mmL), Chiralpak AS-H Column (4.6 mm×250 mmL), Chiralpak IB N-5 Column (4.6 mm×250 mmL), Chiralpak OD-H Column (4.6 mm×250 mmL). UV detection was monitored at 254 nm. TLC was performed on glass-backed silica plates. UV light was used to visualize products. Column chromatography was performed using silica gel (200-300 mesh) eluting with EtOAc/petroleum ether or MeOH/DCM. Unless otherwise noted, commercial reagents were used as received and all reactions were carried out directly in air atmosphere. Nitroolefin indole compounds (**1a-11, 1a-Me, 4a-4c, 7a**)^[1] and azelactones (**2a-2t**)^[2] were synthesized according to reported procedures.

2. General procedure for the [3+2] or [4+2] Annulation of 2-Nitrovinyl indoles or 7-Nitrovinyl indoles with Azlactones

General procedure A: In a 10 mL reaction tube, 2-nitroolefin indole 1 (0.1 mmol, 1.0 eq), azlactones 2 (0.12 mmol, 1.2 eq) and catalyst C4 (10 mol%) were dissolved in xylene (1.0 mL), the reaction mixture was stirred for 12-24 h at 40 °C and monitored by TLC. Upon consumption, the reaction mixture was removed to room temperature and added DABCO (2.7 mg, 30 mol%) for

further cyclization during 2-12 h. After the reaction was completed, the residue was purified by flash chromatography (EtOAc/petroleum ether = 1/10) to afford the pure chiral product **3**.

General procedure B: In a 10 mL reaction tube, 2-nitroolefin indole 1 (0.1 mmol, 1.0 eq), azlactones 2 (0.12 mmol, 1.2 eq) and catalyst C4 (10 mol%) were dissolved in xylene (1.0 mL), the mixture was stirred for 12-24 h at 40 °C and monitored by TLC. After full-conversion, the residue was purified by flash chromatography (EtOAc/petroleum ether = 1/20) to afford the pure chiral product **3'**. Subsequently, the obtained **3'** was dissolved in DCM (1.0 mL), then DABCO (2.7 mg, 30 mol%) was added to the reaction mixture and stirred at 0 °C for 2-12 h. After the reaction was completed, the residue was purified by flash chromatography (EtOAc/petroleum ether = 1/10) to afford the pure chiral product **3**.

General procedure C: In a 10 mL reaction tube, 7-nitroolefin indole 4 (0.1 mmol, 1.0 eq), azlactones 2 (0.12 mmol, 1.2 eq) and catalyst C4 (10 mol%) were dissolved in xylene (1.0 mL), the mixture was stirred for 12-24 h at 40 °C and monitored by TLC. After full-conversion, the residue was purified by flash chromatography (EtOAc/petroleum ether = 1/20) to afford the pure chiral product 5'. Subsequently, the obtained 5' was dissolved in DCM (1.0 mL), then DBU (2.7 mg, 30 mol%) was added to the reaction mixture and stirred at 0 °C for 2-12 h. After the reaction was completed, the residue was purified by flash chromatography (EtOAc/petroleum ether = 1/10) to afford the pure chiral product 5.

Synthesis of 3a (procedure B): (E)-2-(2-nitrovinyl)-1H-indole 1a (18.8 mg, 0.1 mmol), 4-benzyl-2-phenyloxazol-5(4H)-one 2a (30.1 mg, 0.12 mmol),
C4 (6.3 mg, 10 mol%) were dissolved in xylene (1.0 mL) and stirred at 40

°C for 16 h. Upon workup, product 3a' was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20). Subsequently, 3a' was dissolved in DCM (1.0 mL), then DABCO (2.7 mg, 30 mol%) was added to the reaction mixture and stirred at 0 °C for 6 h. After the reaction

was completed, the residue was purified by flash chromatography (EtOAc/petroleum ether = 1/10) to afford product **3a** as a white solid (31.1 mg, 71% yield). M.p = 96-100 °C; $[\alpha]_D^{20} = -28.2$ (c = 1.0 in CHCl₃); >19:1 dr, 90% ee, determined by HPLC analysis [Daicel chiralpak AD-H, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 21.04 min, t (major) = 9.96 min]; ¹H NMR (400 MHz, CDCl₃): δ 9.04 (s, 1H), 7.83 – 7.77 (m, 2H), 7.58 – 7.49 (m, 2H), 7.41 (t, J = 7.8 Hz, 3H), 7.21 – 7.13 (m, 1H), 7.09 – 7.00 (m, 4H), 6.97 – 6.91 (m, 2H), 6.56 (dd, J = 2.1, 0.9 Hz, 1H), 4.56 (dd, J = 12.2, 10.3 Hz, 1H), 4.45 – 4.34 (m, 2H), 3.04 (d, J = 13.5 Hz, 1H), 2.91 (d, J = 13.5 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 177.55, 162.39, 136.87, 133.79, 132.59, 131.15, 130.29, 129.12, 128.39, 128.23, 127.92, 127.84, 124.53, 122.91, 121.00, 120.39, 111.39, 105.50, 76.38, 75.87, 43.70, 42.61 ppm; ESI-HRMS: calcd for C₂₆H₂₁N₃O₄ + Na⁺ 462.1424, found 462.1416.

 $\begin{array}{ll} \text{-NO}_2 & \text{Synthesis of 3b (procedure A): } (E) \text{-}5\text{-}bromo\text{-}2\text{-}(2\text{-}nitrovinyl)\text{-}1H\text{-}\\ \text{NHBz} & \text{indole 1b (26.7 mg, 0.1 mmol), 4-benzyl\text{-}2\text{-}phenyloxazol\text{-}5(4H)\text{-}one 2a}\\ \text{(30.1 mg, 0.12 mmol), C4 (6.3 mg, 10 mol%) were dissolved in xylene} \end{array}$

(1.0 mL) and stirred at 40 °C for 12 h. Upon workup, the reaction mixture was removed to room temperature and added DABCO (2.7 mg, 30 mol%) for further cyclization during 6 h. After the reaction was completed, product **3b** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) as a light brown solid (36.3 mg, 70% yield). M.p = 86-90 °C; $[\alpha]_D^{20} = -20.0$ (c = 1.0 in CHCl₃); >19:1 dr, 80% ee, determined by HPLC analysis [Daicel chiralpak AD-H, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 21.92 min, t (major) = 9.09 min]; ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 8.5 Hz, 1H), 7.65 (d, J = 7.6 Hz, 2H), 7.58 (s, 1H), 7.48 (t, J = 7.4 Hz, 1H), 7.38 (q, J = 8.0, 7.6 Hz, 3H), 7.21 – 7.07 (m, 3H), 6.95 (d, J = 7.2 Hz, 2H), 6.68 (s, 1H), 6.19 (s, 1H), 5.67 (dd, J = 13.4, 5.5 Hz, 1H), 4.87 (dd, J = 13.4, 9.0 Hz, 1H), 4.78 – 4.71 (m, 1H), 3.50 (d, J = 13.8 Hz, 1H), 2.89 (d, J = 13.8 Hz, 1H) pm; ¹³C NMR (100 MHz, CDCl₃): δ 168.36, 168.05, 139.78, 136.15, 132.98, 132.67, 132.51, 130.26, 129.30, 128.99, 128.70, 128.24, 127.76, 127.27, 124.28, 118.43, 115.25, 101.98, 74.14, 68.04, 42.32, 38.58 ppm; ESI-HRMS: calcd for C₂₆H₂₀BrN₃O₄ + H⁺ 518.0710, found 518.0714.

Synthesis of 3c (procedure A): (E)-5-chloro-2-(2-nitrovinyl)-1Hindole 1c (22.2 mg, 0.1 mmol), 4-benzyl-2-phenyloxazol-5(4H)-one 2a (30.1 mg, 0.12 mmol), C4 (6.3 mg, 10 mol%) were dissolved in xylene

(1.0 mL) and stirred at 40 °C for 12 h. Upon workup, the reaction mixture was removed to room temperature and added DABCO (2.7 mg, 30 mol%) for further cyclization during 6 h. After the reaction was completed, product **3c** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) as a milky white solid (32.6 mg, 69% yield). M.p = 90-93 °C; $[\alpha]_D^{20} = +9.4$ (c = 1.0 in CHCl₃); >19:1 dr, 82% ee, determined by HPLC analysis [Daicel chiralpak AD-H, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 20.12 min, t (major) = 8.45 min]; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.14 (s, 1H), 7.94 – 7.86 (m, 3H), 7.70 (d, J = 2.0 Hz, 1H), 7.66 – 7.60 (m, 1H), 7.58 – 7.52 (m, 2H), 7.37 (dd, J = 8.5, 2.1 Hz, 1H), 7.19 – 7.15 (m, 2H), 7.13 – 7.09 (m, 3H), 6.40 (d, J = 2.1 Hz, 1H), 5.36 (qd, J = 14.7, 7.1 Hz, 2H), 4.74 (ddd, J = 8.1, 5.9, 1.9 Hz, 1H), 3.40 (d, J = 14.2 Hz, 1H), 3.10 (d, J = 14.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 167.69, 166.91, 140.69, 135.06, 133.86, 132.93, 132.16, 130.07, 128.56, 128.50, 128.37, 127.82, 127.75, 127.07, 123.89, 120.78, 114.11, 100.44, 72.64, 67.91, 40.55, 37.81 ppm; ESI-HRMS: calcd for C₂₆H₂₀CIN₃O₄ + Na⁺ 496.1035, found 496.1040.

 $-NO_{2}$ Synthesis of 3d (procedure A): (E)-5-fluoro-2-(2-nitrovinyl)-1H-indole NHBz 1d (20.6 mg, 0.1 mmol), 4-benzyl-2-phenyloxazol-5(4H)-one 2a (30.1 mg, 0.12 mmol), C4 (6.3 mg, 10 mol%) were dissolved in xylene (1.0

mL) and stirred at 40 °C for 12 h. Upon workup, the reaction mixture was removed to room temperature and added DABCO (2.7 mg, 30 mol%) for further cyclization during 6 h. After the reaction was completed, product **3d** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) as a white solid (28.8 mg, 63% yield). M.p = 86-91 °C; $[\alpha]_D^{20} = -19.3$ (c = 1.0 in CHCl₃); >19:1 dr, 87% ee, determined by HPLC analysis [Daicel chiralpak AD-H, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 16.75 min, t (major) = 8.07 min]; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.12 (s, 1H), 7.95 – 7.86 (m, 3H), 7.65 – 7.60 (m, 1H), 7.56 (dd, J = 8.2, 6.6 Hz, 2H), 7.44 (dd, J = 9.5, 2.5 Hz, 1H), 7.22 – 7.15 (m, 3H), 7.14 – 7.08 (m, 3H), 6.40 (d, J = 1.8 Hz, 1H), 5.36 (qd, J = 14.7, 7.1 Hz, 2H), 4.75 (ddd, J = 8.1, 6.0, 1.9 Hz, 1H), 3.41 (d, J = 14.3 Hz, 1H), 3.10 (d, J = 14.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 167.57, 166.91, 140.95, 134.90, 134.80, 133.91, 132.99, 132.15, 130.08, 128.50, 127.81, 127.75, 127.05, 126.70, 113.95, 111.70, 107.15, 100.88, 72.68, 67.85, 40.59, 37.86 ppm; ESI-HRMS: calcd for C₂₆H₂₀FN₃O₄ + Na⁺ 480.1330, found 480.1332.

Synthesis of 3e (procedure A): (E)-6-bromo-2-(2-nitrovinyl)-1H-indole

1e (26.7 mg, 0.1 mmol), 4-benzyl-2-phenyloxazol-5(4*H*)-one 2a (30.1 mg, 0.12 mmol), C4 (6.3 mg, 10 mol%) were dissolved in xylene (1.0 mL) and stirred at 40 °C for 20 h. Upon workup, the reaction mixture was removed to room temperature and added DABCO (2.7 mg, 30 mol%) for further cyclization during 6 h. After the reaction was completed, product 3e was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) as a pale yellow solid (42.4 mg, 82% yield). M.p = 203-206 °C; $[\alpha]_D^{20} = -0.7$ (*c* = 1.0 in CHCl₃); >19:1 dr, 83% ee, determined by HPLC analysis [Daicel chiralpak AD-H, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, λ = 254 nm, t (minor) = 29.25 min, t (major) = 8.58 min]; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.14 (s, 1H), 8.00 (d, *J* = 1.8 Hz, 1H), 7.94 – 7.88 (m, 2H), 7.66 – 7.52 (m, 4H), 7.47 (dd, *J* = 8.4, 1.9 Hz, 1H), 7.22 – 7.17 (m, 2H), 7.16 – 7.11 (m, 3H), 6.44 (d, *J* = 1.9, 0.7 Hz, 1H), 5.36 (qd, *J* = 14.8, 7.1 Hz, 2H), 4.72 (ddd, *J* = 8.0, 5.9, 1.9 Hz, 1H), 3.40 (d, *J* = 15.2 Hz, 1H), 3.09 (d, *J* = 14.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 167.72, 166.92, 139.74, 133.90, 132.90, 132.77, 132.18, 130.66, 130.14, 128.52, 127.85, 127.75, 127.07, 127.03, 123.08, 116.23, 115.33, 100.83, 72.65, 67.90, 40.67, 37.73 ppm; ESI-HRMS: calcd for C₂₆H₂₀BrN₃O₄ + H⁺ 518.0710, found 518.0716.

Synthesis of 3f (procedure A): (E)-4,6-dichloro-2-(2-nitrovinyl)-1Hindole 1f (25.7 mg, 0.1 mmol), 4-benzyl-2-phenyloxazol-5(4H)-one 2a (30.1 mg, 0.12 mmol), C4 (6.3 mg, 10 mol%) were dissolved in xylene (1.0 mL) and stirred at 40 °C for 15 h. Upon workup, the reaction

mixture was removed to room temperature and added DABCO (2.7 mg, 30 mol%) for further cyclization during 6 h. After the reaction was completed, product **3f** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) as a white solid (41.1 mg, 81% yield). M.p = 70-73 °C; $[\alpha]_D^{20} = -11.6$ (c = 1.0 in CHCl₃); >19:1 dr, 83% ee, determined by HPLC analysis [Daicel chiralpak IB N-5, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 40.93 min, t (major) = 36.58 min]; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.20 (s, 1H), 7.92 (d, 2H), 7.85 (d, J = 1.8 Hz, 1H), 7.63 (t, J = 7.3 Hz, 1H), 7.59 – 7.52 (m, 3H), 7.23 – 7.17 (m, 2H), 7.16 – 7.10 (m, 3H), 6.50 (d, J = 2.0 Hz, 1H), 5.47 (dd, J = 15.0, 7.8 Hz, 1H), 5.34 (dd, J = 15.0, 6.0 Hz, 1H), 4.85 – 4.74 (m, 1H), 3.41 (d, J = 14.3 Hz, 1H), 3.12 (d, J = 14.1 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 167.78, 167.00, 141.16, 133.75, 132.79, 132.21, 130.80, 130.52, 130.18, 128.75, 128.50, 127.84, 127.77, 127.07, 125.42, 123.73, 111.72, 98.65, 72.30, 68.03, 40.64, 37.54 ppm; ESI-HRMS: calcd for C₂₆H₁₉Cl₂N₃O₄ + H⁺ 508.0825, found 508.0830.

Synthesis of 3g (procedure A): (*E*)-4,6-difluoro-2-(2-nitrovinyl)-1*H*indole 1g (22.4 mg, 0.1 mmol), 4-benzyl-2-phenyloxazol-5(4*H*)-one 2a (30.1 mg, 0.12 mmol), C4 (6.3 mg, 10 mol%) were dissolved in xylene (1.0 mL) and stirred at 40 °C for 14 h. Upon workup, the reaction mixture

was removed to room temperature and added DABCO (2.7 mg, 30 mol%) for further cyclization during 6 h. After the reaction was completed, product **3g** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) as a pale yellow solid (25.1 mg, 53% yield). M.p = 93-95 °C; $[\alpha]_D^{20} = -13.2$ (c = 1.0 in CHCl₃); >19:1 dr, 75% ee, determined by HPLC analysis [Daicel chiralpak AD-H, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 8.43 min, t (major) = 7.06 min]; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.19 (s, 1H), 7.95 – 7.90 (m, 2H), 7.65 – 7.60 (m, 1H), 7.58 – 7.51 (m, 3H), 7.24 (td, J = 10.3, 2.2 Hz, 1H), 7.20 – 7.15 (m, 2H), 7.14 – 7.09 (m, 3H), 6.47 (d, J = 1.9 Hz, 1H), 5.42 (dd, J = 14.9, 7.7 Hz, 1H), 5.34 (dd, J = 15.0, 6.1 Hz, 1H), 4.80 – 4.73 (m, 1H), 3.40 (d, J = 14.3 Hz, 1H), 3.14 (d, J = 14.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 167.91, 166.96, 139.84, 139.81, 133.67, 132.85, 132.17, 131.23, 130.95, 130.09, 128.54, 128.49, 128.45, 127.88, 127.82, 127.77, 127.07, 96.01, 72.37, 68.17, 40.39, 37.67 ppm; ESI-HRMS: calcd for C₂₆H₁₉F₂N₃O₄ + Na⁺498.1236, found 498.1240.

Synthesis of 3h (procedure A): (E)-3-bromo-2-(2-nitrovinyl)-1H-indole
1h (26.7 mg, 0.1 mmol), 4-benzyl-2-phenyloxazol-5(4H)-one 2a (30.1 mg,
0.12 mmol), C4 (6.3 mg, 10 mol%) were dissolved in xylene (1.0 mL) and stirred at 40 °C for 17 h. Upon workup, the reaction mixture was removed

to room temperature and added DABCO (2.7 mg, 30 mol%) for further cyclization during 6 h. After the reaction was completed, product **3h** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) as a pale yellow solid (41.9 mg, 81% yield). M.p = 168-171 °C; $[\alpha]_D^{20} = -20.7$ (c = 1.0 in CHCl₃); >19:1 dr, 92% ee, determined by HPLC analysis [Daicel chiralpak AD-H, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 15.70 min, t (major) = 7.25 min]; ¹H NMR (400 MHz, DMSO- d_6): δ 9.21 (s, 1H), 7.98 – 7.91 (m, 3H), 7.66 – 7.61 (m, 1H), 7.56 (t, J = 7.4 Hz, 2H), 7.50 – 7.39 (m, 3H), 7.16 (dd, J = 6.7, 2.9 Hz, 2H), 7.09 – 7.02 (m, 3H), 5.47 (d, J = 6.6 Hz, 2H), 4.94 (t, J = 6.5 Hz, 1H), 3.42 (d, 1H), 3.24 (d, J = 14.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 167.51, 167.08, 135.18, 133.50, 132.84, 132.23, 132.10, 129.87, 129.53, 128.52, 127.82, 127.76, 127.13, 125.54, 124.90, 119.01, 113.12, 89.97, 70.98, 68.52, 40.15, 37.91 ppm; ESI-HRMS: calcd for $C_{26}H_{20}BrN_3O_4 + H^+$ 518.0710, found 518.0708.

Synthesis of 3i (procedure A): (E)-3-chloro-2-(2-nitrovinyl)-1H-indole 1i (22.2 mg, 0.1 mmol), 4-benzyl-2-phenyloxazol-5(4H)-one 2a (30.1 mg, 0.12 mmol), C4 (6.3 mg, 10 mol%) were dissolved in xylene (1.0 mL) and stirred at 40 °C for 17 h. Upon workup, the reaction mixture was removed

to room temperature and added DABCO (2.7 mg, 30 mol%) for further cyclization during 6 h. After the reaction was completed, product **3i** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) as a pale yellow solid (34.5 mg, 78% yield). M.p = 143-148 °C; $[\alpha]_D^{20} = +0.3$ (c = 1.0 in CHCl₃); >19:1 dr, 83% ee, determined by HPLC analysis [Daicel chiralpak AD-H, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 15.25 min, t (major) = 6.55 min]; ¹H NMR (400 MHz, DMSO- d_6): δ 9.18 (s, 1H), 7.97 – 7.92 (m, 3H), 7.66 – 7.60 (m, 1H), 7.58 – 7.53 (m, 2H), 7.53 – 7.48 (m, 1H), 7.47 – 7.39 (m, 1H), 7.20 – 7.13 (m, 2H), 7.09 – 7.04 (m, 3H), 5.46 (d, J = 6.8 Hz, 2H), 4.96 (t, J = 6.7 Hz, 1H), 3.40 (d, J = 14.3 Hz, 1H), 3.22 (d, J = 14.2Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 167.39, 167.04, 133.51, 133.14, 132.81, 132.17, 130.58, 129.87, 129.00, 128.46, 127.75, 127.72, 127.08, 125.52, 124.80, 118.08, 113.17, 103.79, 71.08, 68.39, 40.02, 37.81 ppm; ESI-HRMS: calcd for C₂₆H₂₀ClN₃O₄ + Na⁺ 496.1035, found 496.1031.

Synthesis of 3j (procedure B): (E)-5-methyl-2-(2-nitrovinyl)-1Hindole 1j (20.2 mg, 0.1 mmol), 4-benzyl-2-phenyloxazol-5(4H)-one 2a (30.1 mg, 0.12 mmol), C4 (6.3 mg, 10 mol%) were dissolved in

xylene (1.0 mL) and stirred at 40 °C for 16 h. Upon workup, product **3j'** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20). Subsequently, **3j'** was dissolved in DCM (1.0 mL), then DABCO (2.7 mg, 30 mol%) was added to the reaction mixture and stirred at 0 °C for 12 h. After the reaction was completed, the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to afford product **3j** as a yellow solid (37.1 mg, 82% yield). M.p = 73-76 °C; $[\alpha]_D^{20} = -12.2$ (*c* = 1.0 in CHCl₃); >19:1 dr, 90% ee, determined by HPLC analysis [Daicel chiralpak IB N-5, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 14.86 min, t (major) = 19.10 min]; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.06 (s, 1H), 7.91 (dt, *J* = 7.0, 1.4 Hz, 2H), 7.77 (d, *J* = 8.2 Hz, 1H), 7.65 – 7.59 (m, 1H), 7.55 (dd, *J* = 8.1, 6.5 Hz, 2H), 7.38 (s,

1H), 7.19 – 7.13 (m, 3H), 7.11 (q, J = 3.2 Hz, 3H), 6.30 (d, J = 1.8 Hz, 1H), 5.34 (h, J = 8.3 Hz, 2H), 4.72 (ddd, J = 8.1, 6.2, 1.9 Hz, 1H), 3.40 (d, J = 14.2 Hz, 1H), 3.06 (d, J = 14.2 Hz, 1H), 2.41 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 167.52, 166.82, 139.04, 134.05, 133.89, 133.16, 133.08, 132.08, 130.06, 128.47, 128.32, 127.81, 127.72, 127.00, 125.08, 121.03, 112.48, 100.53, 72.83, 67.87, 40.58, 37.97, 21.24 ppm; ESI-HRMS: calcd for C₂₇H₂₃N₃O₄ + Na⁺ 476.1581, found 476.1577.

Synthesis of 3k (procedure B): (*E*)-5-methoxy-2-(2-nitrovinyl)-1*H*indole 1k (21.8 mg, 0.1 mmol), 4-benzyl-2-phenyloxazol-5(4H)-one 2a (30.1 mg, 0.12 mmol), C4 (6.3 mg, 10 mol%) were dissolved in

xylene (1.0 mL) and stirred at 40 °C for 24 h. Upon workup, product **3k'** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20). Subsequently, **3k'** was dissolved in DCM (1.0 mL), then DABCO (2.7 mg, 30 mol%) was added to the reaction mixture and stirred at 0 °C for 12 h. After the reaction was completed, the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to afford product **3k** as a yellow solid (35.1 mg, 75% yield). M.p = 83-87 °C; $[\alpha]_D^{20} = -10.8 (c = 1.0 \text{ in CHCl}_3)$; >19:1 dr, 96% ee, determined by HPLC analysis [Daicel chiralpak IB N-5, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 13.00 min, t (major) = 26.02 min]; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.05 (s, 1H), 7.95 – 7.88 (m, 2H), 7.77 (d, *J* = 8.8 Hz, 1H), 7.65 – 7.58 (m, 1H), 7.58 – 7.51 (m, 2H), 7.20 – 7.14 (m, 2H), 7.14 – 7.09 (m, 4H), 6.94 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.31 (d, *J* = 1.8 Hz, 1H), 5.34 (h, *J* = 8.2 Hz, 2H), 4.71 (ddd, *J* = 8.1, 6.1, 1.9 Hz, 1H), 3.79 (s, 3H), 3.40 (d, *J* = 14.2 Hz, 1H), 3.07 (d, *J* = 14.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 167.31, 166.81, 156.49, 139.71, 134.80, 134.04, 133.09, 132.07, 130.05, 128.46, 127.80, 127.71, 126.99, 124.71, 113.42, 112.22, 104.23, 100.80, 72.81, 67.76, 55.40, 40.59, 38.00 ppm; ESI-HRMS: calcd for C₂₇H₂₃N₃O₅ + Na⁺ 492.1530, found 492.1537.

Synthesis of 3l (procedure B): (E)-4-methoxy-2-(2-nitrovinyl)-1Hindole 1l (21.8 mg, 0.1 mmol), 4-benzyl-2-phenyloxazol-5(4H)-one 2a (30.1 mg, 0.12 mmol), C4 (6.3 mg, 10 mol%) were dissolved in xylene

(1.0 mL) and stirred at 40 °C for 20 h. Upon workup, product **31'** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20). Subsequently, **31'** was dissolved in DCM (1.0 mL), then DABCO (2.7 mg, 30 mol%) was added to the reaction mixture and stirred at 0

°C for 12 h. After the reaction was completed, the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to afford product **31** as a yellow solid (31.4 mg, 63% yield). M.p = 73-75 °C; $[\alpha]_D^{20} = +2.8$ (c = 1.0 in CHCl₃); >19:1 dr, 77% ee, determined by HPLC analysis [Daicel chiralpak OD-H, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 14.54 min, t (major) = 26.04 min]; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.09 (s, 1H), 7.95 – 7.87 (m, 2H), 7.65 – 7.59 (m, 1H), 7.59 – 7.46 (m, 3H), 7.29 (t, J = 8.1 Hz, 1H), 7.20 – 7.09 (m, 5H), 6.87 (d, J = 8.0 Hz, 1H), 6.37 (d, 1H), 5.39 (dd, J = 14.6, 8.0 Hz, 1H), 5.30 (dd, J = 14.6, 6.3 Hz, 1H), 4.72 (ddd, J = 8.1, 6.3, 2.0 Hz, 1H), 3.89 (s, 3H), 3.40 (d, J = 14.2 Hz, 1H), 3.05 (d, J = 14.2 Hz, 1H) pm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 167.83, 166.85, 152.33, 137.35, 134.07, 133.04, 132.10, 131.13, 130.10, 128.48, 127.81, 127.72, 126.99, 125.26, 123.00, 105.93, 105.12, 97.71, 72.77, 67.97, 55.43, 40.57, 37.84 ppm; ESI-HRMS: calcd for C₂₇H₂₃N₃O₅ + Na⁺ 492.1530, found 492.1526.

Synthesis of 3m (procedure B): (*E*)-4-methyl-2-(2-nitrovinyl)-1*H*-indole 1m (20.2 mg, 0.1 mmol), 4-benzyl-2-phenyloxazol-5(4H)-one 2a (30.1 mg, 0.12 mmol), C4 (6.3 mg, 10 mol%) were dissolved in xylene (1.0 mL) and

stirred at 40 °C for 16 h. Upon workup, product **3m** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20). Subsequently, **3m'** was dissolved in DCM (1.0 mL), then DABCO (2.7 mg, 30 mol%) was added to the reaction mixture and stirred at 0 °C for 12 h. After the reaction was completed, the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to afford product **3m** as a yellow solid (34.7 mg, 73% yield). M.p = 88-93 °C; $[\alpha]_D^{20} = -12.2$ (c = 1.0 in CHCl₃); >19:1 dr, 77% ee, determined by HPLC analysis [Daicel chiralpak IB N-5, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 16.83 min, t (major) = 14.73 min]; ¹H NMR (400 MHz, DMSO- d_6): δ 9.06 (s, 1H), 7.91 (dt, J = 7.2, 1.4 Hz, 2H), 7.72 (d, J = 8.0 Hz, 1H), 7.65 – 7.59 (m, 1H), 7.58 – 7.52 (m, 2H), 7.24 (t, J = 7.7 Hz, 1H), 7.20 – 7.15 (m, 2H), 7.15 – 7.09 (m, 4H), 6.44 (d, J = 2.1 Hz, 1H), 5.41 – 5.29 (m, 2H), 4.75 (td, J = 6.1, 3.1 Hz, 1H), 3.42 (d, J = 14.2 Hz, 1H), 3.05 (d, J = 14.2 Hz, 1H), 2.45 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 167.66, 166.84, 138.40, 134.13, 133.09, 133.06, 132.07, 130.16, 130.11, 129.84, 128.46, 127.79, 127.70, 126.95, 124.44, 123.97, 110.42, 99.31, 72.84, 67.85, 40.68, 37.87, 18.20 ppm; ESI-HRMS: calcd for C₂₇H₂₅N₃O₄ + Na⁺476.1581, found 476.1590.

Synthesis of 3n (procedure B): (E)-2-(2-nitrovinyl)-1H-pyrrole 1n (13.8 mg, Bn 10/91 0.1 mmol), 4-benzyl-2-phenyloxazol-5(4*H*)-one **2a** (30.1 mg, 0.12 mmol), **C4** (6.3 mg, 10 mol%) were dissolved in xylene (1.0 mL) and stirred at 40 °C for 13 h. Upon workup, product **3n'** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20). Subsequently, **3n'** was dissolved in DCM (1.0 mL), then DABCO (2.7 mg, 30 mol%) was added to the reaction mixture and stirred at 0 °C for 12 h. After the reaction was completed, the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to afford product **3n** as a yellow solid (35.7 mg, 92% yield). M.p = 90-93 °C; $[\alpha]_D^{20} = -7.7$ (*c* = 1.0 in CHCl₃); >19:1 dr, 57% ee, determined by HPLC analysis [Daicel chiralpak IB N-5, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min, λ = 254 nm, t (minor) = 10.07 min, t (major) = 7.67 min]; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.01 (s, 1H), 7.92 – 7.80 (m, 2H), 7.57 – 7.47 (m, 3H), 7.21 – 7.16 (m, 5H), 7.07 (dd, *J* = 3.2, 1.1 Hz, 1H), 6.30 (t, *J* = 3.1 Hz, 1H), 5.75 (dd, *J* = 3.1, 1.5 Hz, 1H), 4.98 (dd, *J* = 14.9, 5.9 Hz, 1H), 4.63 (dd, *J* = 15.0, 9.2 Hz, 1H), 4.30 (ddd, *J* = 9.4, 5.8, 1.3 Hz, 1H), 3.38 (d, *J* = 6.1 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 169.81, 168.03, 134.34, 133.11, 132.48, 132.09, 129.94, 128.34, 127.77, 127.64, 127.49, 118.55, 111.79, 104.76, 74.08, 67.92, 42.52, 38.41 ppm; ESI-HRMS: calcd for C₂₂H₁₀N₃O₄ + Na⁺412.1268, found 412.1264.

Synthesis of 30 (procedure B): (E)-2-(2-nitrovinyl)-1H-indole 1a (18.8 mg, 0.1 mmol), 4-(4-fluorobenzyl)-2-phenyloxazol-5(4H)-one 2b (32.2 mg, 0.12 mmol), C4 (6.3 mg, 10 mol%) were dissolved in

xylene (1.0 mL) and stirred at 40 °C for 13 h. Upon workup, product **30'** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20). Subsequently, **30'** was dissolved in DCM (1.0 mL), then DABCO (2.7 mg, 30 mol%) was added to the reaction mixture and stirred at 0 °C for 12 h. After the reaction was completed, the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to afford product **30** as a yellow solid (33.3 mg, 73% yield). M.p = 91-99 °C; $[\alpha]_D^{20} = +12.0$ (c = 1.0 in CHCl₃); >19:1 dr, 60% ee, determined by HPLC analysis [Daicel chiralpak AD-H, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 8.13 min, t (major) = 8.99 min]; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.11 (s, 1H), 7.93 – 7.86 (m, 3H), 7.65 – 7.60 (m, 2H), 7.58 – 7.53 (m, 2H), 7.38 – 7.28 (m, 2H), 7.23 (s, 4H), 6.47 (dd, J = 1.9, 0.7 Hz, 1H), 5.41 (dd, J = 14.7, 8.1 Hz, 1H), 5.30 (dd, J = 14.8, 6.1 Hz, 1H), 4.73 (ddd, J = 8.1, 6.1, 1.9 Hz, 1H), 3.39 (d, J = 14.2 Hz, 1H), 3.04 (d, J = 14.1 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 167.15, 166.97, 138.81, 133.63, 133.45, 133.01, 132.12, 132.07, 131.75, 130.09,

128.49, 127.71, 127.692, 124.14, 123.94, 121.22, 112.91, 101.07, 72.75, 67.64, 40.82, 36.78 ppm; ESI-HRMS: calcd for C₂₆H₂₀FN₃O₄ + K⁺496.1069, found 496.1070.

Synthesis of 3p (procedure B): (E)-2-(2-nitrovinyl)-1H-indole 1a
 F (18.8 mg, 0.1 mmol), 4-(3-fluorobenzyl)-2-phenyloxazol-5(4H)-one
 2c (32.2 mg, 0.12 mmol), C4 (6.3 mg, 10 mol%) were dissolved in

xylene (1.0 mL) and stirred at 40 °C for 16 h. Upon workup, product **3p'** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20). Subsequently, **3p'** was dissolved in DCM (1.0 mL), then DABCO (2.7 mg, 30 mol%) was added to the reaction mixture and stirred at 0 °C for 12 h. After the reaction was completed, the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to afford product **3p** as a yellow solid (35.1 mg, 77% yield). M.p = 102-105 °C; $[\alpha]_D^{20} = -7.8$ (c = 1.0 in CHCl₃); >19:1 dr, 91% ee, determined by HPLC analysis [Daicel chiralpak IB N-5, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 10.12 min, t (major) = 14.09 min]; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.15 (s, 1H), 7.94 – 7.86 (m, 3H), 7.66 – 7.60 (m, 2H), 7.59 – 7.52 (m, 2H), 7.32 (pd, J = 7.3, 1.5 Hz, 2H), 7.19 (td, J = 8.0, 6.3 Hz, 1H), 7.11 – 6.93 (m, 3H), 6.46 (d, J = 1.8 Hz, 1H), 5.41 (dd, J = 14.7, 8.1 Hz, 1H), 5.31 (dd, J = 14.7, 6.2 Hz, 1H), 4.75 (ddd, J = 8.1, 6.2, 1.9 Hz, 1H), 3.41 (d, J = 14.8 Hz, 1H), 3.10 (d, J = 14.1 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 167.30, 166.96, 138.80, 137.12, 133.63, 133.01, 132.14, 130.11, 129.59, 128.51, 127.71, 126.53, 124.15, 123.96, 121.23, 116.98, 113.90, 112.87, 101.01, 72.76, 67.76, 40.75, 37.14 ppm; ESI-HRMS: calcd for C₂₆H₂₀FN₃O₄ + H⁺ 458.1511, found 458.1543.

Synthesis of 3q (procedure B): (E)-2-(2-nitrovinyl)-1*H*-indole 1a (18.8 mg, 0.1 mmol), 4-(4-chlorobenzyl)-2-phenyloxazol-5(4*H*)-one 2d (34.2 mg, 0.12 mmol), C4 (6.3 mg, 10 mol%) were dissolved in

xylene (1.0 mL) and stirred at 40 °C for 19 h. Upon workup, product **3q'** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20). Subsequently, **3q'** was dissolved in DCM (1.0 mL), then DABCO (2.7 mg, 30 mol%) was added to the reaction mixture and stirred at 0 °C for 12 h. After the reaction was completed, the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to afford product **3q** as a yellow solid (34.5 mg, 73% yield). M.p = 95-96 °C; $[\alpha]_D^{20} = -7.3$ (*c* = 1.0 in CHCl₃); >19:1 dr, 92% ee, determined by HPLC analysis [Daicel chiralpak IB N-5, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (minor) =

14.19 min, t (major) = 20.96 min]; ¹H NMR (400 MHz, DMSO- d_6): δ 9.10 (s, 1H), 7.95 – 7.85 (m, 3H), 7.65 – 7.60 (m, 2H), 7.55 (dd, J = 8.2, 6.6 Hz, 2H), 7.37 – 7.28 (m, 2H), 7.26 – 7.20 (m, 2H), 7.01 – 6.93 (m, 2H), 6.45 (d, J = 1.9 Hz, 1H), 5.41 (dd, J = 14.7, 8.1 Hz, 1H), 5.31 (dd, J = 14.7, 6.1 Hz, 1H), 4.74 (ddd, J = 8.1, 6.0, 1.9 Hz, 1H), 3.38 (d, J = 14.3 Hz, 1H), 3.06 (d, J = 14.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 167.35, 166.94, 138.87, 133.61, 133.03, 132.12, 132.04, 130.42, 130.10, 128.48, 127.71, 124.11, 123.92, 121.20, 114.60, 114.38, 112.88, 100.94, 72.77, 67.74, 40.69, 36.73 ppm; ESI-HRMS: calcd for C₂₆H₂₀ClN₃O₄ + Na⁺496.1035, found 496.1040.

Synthesis of 3r (procedure B): (E)-2-(2-nitrovinyl)-1H-indole 1a (18.8 mg, 0.1 mmol), 4-(4-nitrobenzyl)-2-phenyloxazol-5(4H)-one 2e (35.5 mg, 0.12 mmol), C4 (6.3 mg, 10 mol%) were dissolved in xylene (1.0 mL) and stirred at 40 °C for 20 h. Upon workup,

product **3q'** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20). Subsequently, **3r'** was dissolved in DCM (1.0 mL), then DABCO (2.7 mg, 30 mol%) was added to the reaction mixture and stirred at 0 °C for 12 h. After the reaction was completed, the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to afford product **3r** as a yellow solid (39.2 mg, 81% yield). M.p = 87-90 °C; $[\alpha]_D^{20} = +27.4$ (c = 1.0 in CHCl₃); >19:1 dr, 91% ee, determined by HPLC analysis [Daicel chiralpak IB N-5, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 29.16 min, t (major) = 11.48 min]; ¹H NMR (400 MHz, DMSO d_6): δ 9.24 (s, 1H), 8.08 – 8.04 (m, 2H), 7.94 – 7.90 (m, 1H), 7.84 (d, J = 1.5 Hz, 1H), 7.58 – 7.50 (m, 7H), 7.37 – 7.31 (m, 2H), 6.30 (d, J = 1.3 Hz, 1H), 5.17 (dd, J = 15.1, 5.9 Hz, 1H), 4.74 (dd, J =8.5, 6.8 Hz, 1H), 4.48 (ddd, J = 9.0, 5.9, 1.6 Hz, 1H), 3.64 – 3.52 (m, 2H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 169.08, 167.14, 146.88, 141.56, 138.87, 134.00, 132.96, 132.29, 131.73, 129.88, 128.46, 127.87, 124.38, 123.89, 123.38, 121.23, 113.10, 101.06, 73.88, 67.97, 41.80, 38.64 ppm; ESI-HRMS: calcd for C₂₆H₂₀N₄O₆ + Na⁺ 507.1275, found 507.1274.

Synthesis of 3s (procedure B): (E)-2-(2-nitrovinyl)-1H-indole 1a (18.8 mg, 0.1 mmol), 4-(4-(tert-butoxy)benzyl)-2-phenyloxazol-5(4H)-one 2f (38.7 mg, 0.12 mmol), C4 (6.3 mg, 10 mol%) were dissolved in xylene (1.0 mL) and stirred at 40 °C for 20 h. Upon

workup, product 3s' was obtained by flash chromatography on silica gel (EtOAc/petroleum ether =

1/20). Subsequently, **3s'** was dissolved in DCM (1.0 mL), then DABCO (2.7 mg, 30 mol%) was added to the reaction mixture and stirred at 0 °C for 12 h. After the reaction was completed, the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to afford product **3s** as a yellow solid (38.3 mg, 75% yield). M.p = 87-90 °C; $[\alpha]_D^{20} = -36.8 (c = 1.0 \text{ in CHCl}_3)$; >19:1 dr, 92% ee, determined by HPLC analysis [Daicel chiralpak IB N-5, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 10.40 min, t (major) = 19.95 min]; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.09 (s, 1H), 7.95 – 7.91 (m, 2H), 7.87 (d, *J* = 7.9, 1.1 Hz, 1H), 7.65 – 7.60 (m, 1H), 7.57 – 7.48 (m, 3H), 7.27 (dtd, *J* = 26.5, 7.4, 1.2 Hz, 2H), 7.07 – 6.98 (m, 2H), 6.61 – 6.53 (m, 2H), 6.26 (d, *J* = 1.9, 0.7 Hz, 1H), 5.37 (d, *J* = 7.0 Hz, 2H), 4.77 (td, *J* = 6.9, 2.0 Hz, 1H), 3.30 (d, *J* = 14.3 Hz, 1H) gpm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 168.43, 166.80, 153.92, 139.02, 133.53, 133.09, 132.06, 130.37, 130.09, 128.44, 127.96, 127.78, 123.96, 123.81, 123.13, 121.07, 112.73, 100.21, 77.72, 72.81, 68.46, 39.82, 39.73, 37.51, 28.30 ppm; ESI-HRMS: calcd for C₃₀H₂₉N₃O₅ + H⁺ 512.2180, found 512.2184.

Synthesis of 3t (procedure B): (*E*)-2-(2-nitrovinyl)-1*H*-indole 1a (18.8 mg, 0.1 mmol), 4-(4-methylbenzyl)-2-phenyloxazol-5(4*H*)-one 2g (31.8 mg, 0.12 mmol), C4 (6.3 mg, 10 mol%) were dissolved in xylene (1.0 mL) and stirred at 40 °C for 20 h. Upon workup, product

3t' was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20). Subsequently, **3t'** was dissolved in DCM (1.0 mL), then DABCO (2.7 mg, 30 mol%) was added to the reaction mixture and stirred at 0 °C for 12 h. After the reaction was completed, the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to afford product **3t** as a yellow solid (37.6 mg, 83% yield). M.p = 88-96 °C; $[\alpha]_D^{20} = -11.8$ (c = 1.0 in CHCl₃); >19:1 dr, 90% ee, determined by HPLC analysis [Daicel chiralpak IB N-5, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 10.80 min, t (major) = 12.39 min]; ¹H NMR (400 MHz, DMSO- d_6): δ 9.04 (s, 1H), 7.94 – 7.87 (m, 3H), 7.66 – 7.58 (m, 2H), 7.58 – 7.51 (m, 2H), 7.38 – 7.27 (m, 2H), 7.08 – 7.02 (m, 2H), 6.92 (d, J = 7.9 Hz, 2H), 6.40 (d, 1H), 5.33 (qd, 2H), 4.73 (ddd, J = 8.1, 6.1, 1.9 Hz, 1H), 3.38 (s, 1H), 3.02 (d, J = 14.3 Hz, 1H), 2.15 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 167.76, 166.83, 138.99, 136.05, 133.64, 133.06, 132.09, 130.93, 130.11, 129.95, 128.48, 128.43, 127.72, 124.08, 123.90, 121.19, 112.87, 100.80, 72.84, 67.84, 40.61, 37.57, 20.55 ppm; ESI-HRMS: calcd for C₂₇H₂₃N₃O₄ + Na⁺ 476.1581, found 476.1583.

Synthesis of 3u (procedure A): (*E*)-2-(2-nitrovinyl)-1*H*-indole **1a** (18.8 mg, 0.1 mmol), 4-benzyl-2-(4-fluorophenyl)oxazol-5(4*H*)one **2h** (32.2 mg, 0.12 mmol), **C4** (6.3 mg, 10 mol%) were

dissolved in xylene (1.0 mL) and stirred at 40 °C for 16 h. Upon workup, the reaction mixture was removed to room temperature added DABCO (2.7 mg, 30 mol%) for further cyclization during 5 h. After the reaction was completed, product **3u** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) as a white solid (37.9 mg, 83% yield). M.p = 95-100 °C; $[\alpha]_D^{20} = -19.7$ (c = 1.0 in CHCl₃); >19:1 dr, 90% ee, determined by HPLC analysis [Daicel chiralpak AD-H, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 22.29 min, t (major) = 7.49 min]; ¹H NMR (400 MHz, DMSO- d_6): δ 9.12 (s, 1H), 8.03 – 7.97 (m, 2H), 7.89 (dd, J = 7.9, 1.4 Hz, 1H), 7.59 (dd, J = 7.2, 1.5 Hz, 1H), 7.44 – 7.37 (m, 2H), 7.36 – 7.26 (m, 2H), 7.20 – 7.14 (m, 2H), 7.12 – 7.07 (m, 3H), 6.39 (d, J = 14.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 167.68, 165.80, 138.91, 133.97, 133.61, 130.54, 130.45, 130.06, 129.57, 127.79, 127.00, 124.09, 123.90, 121.19, 115.60, 115.38, 112.84, 100.81, 72.78, 67.97, 40.52, 37.92 ppm; ESI-HRMS: calcd for C₂₆H₂₀FN₃O₄ + Na⁺ 480.1330, found 480.1327.

Synthesis of 3v (procedure A): (*E*)-2-(2-nitrovinyl)-1*H*-indole **1a** (18.8 mg, 0.1 mmol), 4-benzyl-2-(p-tolyl)oxazol-5(4*H*)-one **2i** (31.8 mg, 0.12 mmol), **C4** (6.3 mg, 10 mol%) were dissolved

in xylene (1.0 mL) and stirred at 40 °C for 16 h. Upon workup, the reaction mixture was removed to room temperature and added DABCO (2.7 mg, 30 mol%) for further cyclization during 5 h. After the reaction was completed, product **3v** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) as a white solid (35.7 mg, 79% yield). M.p = 85-88 °C; $[\alpha]_D^{20} = -23.9$ (c = 1.0 in CHCl₃); >19:1 dr, 92% ee, determined by HPLC analysis [Daicel chiralpak AD-H, n-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 30.16 min, t (major) = 11.72 min]; ¹H NMR (400 MHz, DMSO- d_6): δ 8.98 (s, 1H), 7.89 (d, J = 7.7, 1.3 Hz, 1H), 7.82 (d, 2H), 7.59 (d, 1H), 7.39 – 7.25 (m, 4H), 7.19 – 7.14 (m, 2H), 7.13 – 7.07 (m, 3H), 6.38 (d, 1H), 5.35 (dq, J = 8.3 Hz, 2H), 4.72 (ddd, J = 8.0, 6.1, 1.9 Hz, 1H), 3.40 (d, J = 14.2 Hz, 1H), 3.07 (d, J = 14.2 Hz, 1H), 2.39 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 167.79, 166.68, 142.16, 138.95, 134.04, 133.60, 130.23, 130.11, 130.08, 128.99, 127.78, 127.74, 126.98, 124.06, 123.88, 121.18, 112.84,

100.70, 72.86, 67.87, 40.66, 37.90, 21.06 ppm; ESI-HRMS: calcd for $C_{27}H_{23}N_3O_4 + Na^+ 476.1581$, found 476.1574.

Synthesis of 3w (procedure B): (*E*)-2-(2-nitrovinyl)-1*H*-indole 1a (18.8 mg, 0.1 mmol), 2,4-dibenzyloxazol-5(4*H*)-one 2j (31.8 mg, 0.12 mmol), C4 (6.3 mg, 10 mol%) were dissolved in xylene (1.0 mL) and stirred at 40 °C for 16 h. Upon workup, product 3w' was obtained by

flash chromatography on silica gel (EtOAc/petroleum ether = 1/20). Subsequently, **3w'** was dissolved in DCM (1.0 mL), then DABCO (2.7 mg, 30 mol%) was added to the reaction mixture and stirred at 0 °C for 12 h. After the reaction was completed, the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to afford product **3w** as a yellow solid (28.5 mg, 63% yield). M.p = 84-88 °C; $[\alpha]_D^{20} = +2.1$ (c = 1.0 in CHCl₃); >19:1 dr, 91% ee, determined by HPLC analysis [Daicel chiralpak IB N-5, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 5.99 min, t (major) = 7.69 min]; ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.94 (s, 1H), 7.84 (d, J = 7.8, 1.3 Hz, 1H), 7.54 (d, J = 7.1, 1.5 Hz, 1H), 7.33 – 7.20 (m, 8H), 7.12 – 7.02 (m, 5H), 6.31 (d, J = 1.8 Hz, 1H), 5.31 (d, 2H), 4.57 (td, J = 7.1, 1.9 Hz, 1H), 3.60 (s, 2H), 3.21 (d, J = 14.3 Hz, 1H), 3.06 (d, J = 14.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 170.87, 167.94, 138.82, 135.56, 133.64, 133.59, 129.98, 129.91, 129.09, 128.22, 127.77, 127.02, 126.49, 124.07, 123.85, 121.13, 112.78, 100.56, 72.90, 67.60, 41.36, 40.50, 37.98 ppm; ESI-HRMS: calcd for C₂₇H₂₃N₃O₄ + H⁺ 454.1761, found 454.1760.

Synthesis of 3x (procedure A): (*E*)-5-fluoro-2-(2-nitrovinyl)-1*H*-indole 1d (20.6 mg, 0.1 mmol), 4-benzyl-2-(4fluorophenyl) ∞ azol-5(4*H*)-one 2h (32.2 mg, 0.12 mmol), C4

(6.3 mg, 10 mol%) were dissolved in xylene (1.0 mL) and stirred at 40 °C for 16 h. Upon workup, the reaction mixture was removed to room temperature and added DABCO (2.7 mg, 30 mol%) for further cyclization during 5 h. After the reaction was completed, product **3x** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) as a white solid (36.1 mg, 76% yield). M.p = 91-93 °C; $[\alpha]_D^{20} = -13.8$ (c = 1.0 in CHCl₃); >19:1 dr, 90% ee, determined by HPLC analysis [Daicel chiralpak AD-H, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 27.04 min, t (major) = 8.23 min]; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.12 (s, 1H), 8.04 – 7.93 (m, 2H), 7.87 (dd, J = 8.8, 4.6 Hz, 1H), 7.46 – 7.36 (m, 3H), 7.21 – 7.13 (m, 3H), 7.12 – 7.07 (m, 3H), 6.39 (d, J = 1.9

Hz, 1H), 5.35 (qd, J = 14.7, 7.0 Hz, 2H), 4.72 (ddd, J = 8.0, 6.0, 1.9 Hz, 1H), 3.38 (d, J = 14.2 Hz, 1H), 3.10 (d, J = 14.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 167.51, 165.79, 140.87, 134.85, 133.78, 130.50, 130.42, 129.98, 129.48, 127.75, 127.00, 126.64, 115.55, 115.34, 113.88, 111.64, 107.09, 100.83, 72.61, 67.88, 40.47, 37.85 ppm; ESI-HRMS: calcd for C₂₆H₁₉F₂N₃O₄ + Na⁺ 498.1236, found 498.1243.

Synthesis of 5a (procedure C): (E)-7-(2-nitrovinyl)-1H-indole 4a (18.8 mg, 0.1 mmol), 4-benzyl-2-phenyloxazol-5(4H)-one 2a (30.1 mg, 0.12 mmol), C4
(6.3 mg, 10 mol%) were dissolved in xylene (1.0 mL) and stirred at 40 °C for 12 h. After full-conversion, the residue was purified by flash chromatography

(EtOAc/petroleum ether = 1/20) to afford the pure chiral product **5a'**. Subsequently, the obtained **5a'** was dissolved in DCM (1.0 mL), then DBU (2.7 mg, 30 mol%) was added to the reaction mixture and stirred at 0 °C for 2 h. After the reaction was completed, the residue was purified by flash chromatography (EtOAc/petroleum ether = 1/10) to afford the pure chiral product **5a** as a pale yellow solid (31.6 mg, 72% yield). M.p = 86-88 °C; $[\alpha]_D^{20} = +20.6$ (c = 1.0 in CHCl₃); >19:1 dr, 77% ee, determined by HPLC analysis [Daicel chiralpak AD-H, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 21.35 min, t (major) = 10.35 min]; ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.94 (s, 1H), 7.94 – 7.89 (m, 2H), 7.67 (d, J = 3.6 Hz, 1H), 7.64 – 7.58 (m, 1H), 7.54 (dd, J = 8.2, 6.6 Hz, 2H), 7.40 (dt, J = 7.9, 1.0 Hz, 1H), 7.17 (t, J = 7.6 Hz, 1H), 7.06 – 7.02 (m, 1H), 6.95 – 6.89 (m, 3H), 6.81 – 6.76 (m, 3H), 5.70 (dd, J = 14.6, 8.0 Hz, 1H), 5.46 (dd, J = 14.6, 3.5 Hz, 1H), 5.30 (dd, J = 8.1, 3.4 Hz, 1H), 3.20 (d, J = 14.1 Hz, 1H), 3.00 (d, J = 14.1 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 167.02, 164.20, 133.71, 133.26, 132.65, 131.85, 129.34, 128.37, 127.70, 127.31, 127.22, 126.78, 123.72, 122.14, 120.39, 119.69, 118.95, 110.69, 74.26, 64.36, 40.55, 38.61 ppm; ESI-HRMS: calcd for C₂₆H₂₁N₃O₄ + Na⁺462.1424, found 462.1427.

Synthesis of 5b (procedure C): (E)-3-chloro-7-(2-nitrovinyl)-1H-indole
4b (22.2 mg, 0.1 mmol), 4-benzyl-2-phenyloxazol-5(4H)-one 2a (30.1 mg, 0.12 mmol), C4 (6.3 mg, 10 mol%) were dissolved in xylene (1.0 mL) and stirred at 40 °C for 12 h. After full-conversion, the residue was purified by

flash chromatography (EtOAc/petroleum ether = 1/20) to afford the pure chiral product **5b'**. Subsequently, the obtained **5b'** was dissolved in DCM (1.0 mL), then DBU (2.7 mg, 30 mol%) was added to the reaction mixture and stirred at 0 °C for 2 h. After the reaction was completed, the residue was purified by flash chromatography (EtOAc/petroleum ether = 1/10) to afford the pure chiral product **5b** as a pale yellow solid (34.5 mg, 73% yield). M.p = 86-90 °C; $[\alpha]_D^{20} = +1.0$ (c = 26.0 in CHCl₃); >19:1 dr, 86% ee, determined by HPLC analysis [Daicel chiralpak AD-H, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 28.81 min, t (major) = 10.09 min]; ¹H NMR (400 MHz, DMSO- d_6): δ 9.03 (s, 1H), 7.96 – 7.88 (m, 3H), 7.65 – 7.59 (m, 1H), 7.54 (dd, J = 8.2, 6.7 Hz, 2H), 7.35 – 7.22 (m, 2H), 7.14 (dt, J = 7.3, 1.3 Hz, 1H), 6.94 – 6.85 (m, 3H), 6.83 – 6.77 (m, 2H), 5.75 (dd, J = 14.7, 7.8 Hz, 1H), 5.49 (dd, J = 14.7, 3.6 Hz, 1H), 5.33 – 5.26 (m, 1H), 3.19 (d, J = 14.1 Hz, 1H), 3.09 (d, J = 14.1 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 167.10, 163.91, 133.54, 132.78, 131.93, 131.75, 129.30, 128.38, 127.73, 127.20, 126.84, 124.48, 124.45, 120.86, 120.29, 119.03, 116.89, 114.82, 74.08, 64.05, 40.27, 39.00 ppm; ESI-HRMS: calcd for C₂₆H₂₀ClN₃O₄ + Na⁺496.1035, found 496.1044.

Synthesis of 5c (procedure C): (*E*)-5-bromo-7-(2-nitrovinyl)-1*H*-indole 4c (26.7 mg, 0.1 mmol), 4-benzyl-2-phenyloxazol-5(4*H*)-one 2a (30.1 mg, 0.12 mmol), C4 (6.3 mg, 10 mol%) were dissolved in xylene (1.0 mL) and stirred at 40 °C for 12 h. After full-conversion, the residue was purified by flash chromatography (EtOAc/petroleum ether = 1/20) to afford the pure chiral

product **5c'**. Subsequently, the obtained **5c'** was dissolved in DCM (1.0 mL), then DBU (2.7 mg, 30 mol%) was added to the reaction mixture and stirred at 0 °C for 2 h. After the reaction was completed, the residue was purified by flash chromatography (EtOAc/petroleum ether = 1/10) to afford the pure chiral product **5c** as a pale yellow solid (41.9 mg, 81% yield). M.p = 96-99 °C; $[\alpha]_D^{20} = 29.6$ (c = 1.0 in CHCl₃); >19:1 dr, 53% ee, determined by HPLC analysis [Daicel chiralpak AS-H, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 22.94 mbin, t (major) = 40.24 min]; ¹H NMR (400 MHz, DMSO- d_6): δ 9.01 (s, 1H), 7.92 – 7.88 (m, 2H), 7.73 (d, J = 3.6 Hz, 1H), 7.65 – 7.59 (m, 2H), 7.57 – 7.51 (m, 2H), 7.23 (t, J = 1.6 Hz, 1H), 6.95 – 6.87 (m, 3H), 6.82 – 6.77 (m, 2H), 6.75 (d, J = 3.6 Hz, 1H), 5.80 (dd, J = 14.7, 7.3 Hz, 1H), 5.47 (dd, J = 14.8, 3.9 Hz, 1H), 5.29 (dt, J = 7.1, 2.6 Hz, 1H), 3.19 (d, J = 14.1 Hz, 1H), 3.07 (d, J = 14.1 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 167.12, 164.23, 133.54, 132.85, 131.93, 131.54, 129.32, 128.90, 128.39, 127.70, 127.26, 126.94, 123.46, 122.45, 122.23, 121.73, 115.91, 110.11, 73.74, 64.17, 40.27, 38.83 ppm; ESI-HRMS: calcd for C₂₆H₂₀BrN₃O₄ + Na⁺ 540.0529, found 540.0530.

3. Asymmetric [3+2] cyclization reactions of other types of functionalized indoles

Synthesis of 6a': (*E*)-1-methyl-2-(2-nitrovinyl)-1*H*-indole 1a-Me (20.2 mg, 0.1 mmol), 4-benzyl-2-phenyloxazol-5(4*H*)-one 2a (30.1 mg, 0.12 mmol), C4 (6.3 mg, 10 mol%) were dissolved in xylene (1.0 mL) and stirred at 40

°C for 12 h. Upon workup, product **6a'** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/15) as a yellow solid (32.1 mg, 73% yield). M.p = 73-76 °C; $[\alpha]_D^{20} = +2.7$ (c = 1.0 in CHCl₃); dr = 3:1, 53% ee, determined by HPLC analysis [Daicel chiralpak AD-H, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 12.97 min, t (major) = 10.60 min]; ¹H NMR (400 MHz, CDCl₃): δ 7.73 – 7.67 (m, 2H), 7.57 (dt, J = 7.8, 0.9 Hz, 1H), 7.39 – 7.33 (m, 2H), 7.26 (d, J = 3.5 Hz, 2H), 7.19 – 7.10 (m, 7H), 6.67 (s, 1H), 5.06 – 4.99 (m, 1H), 4.90 (dd, J = 14.0, 4.4 Hz, 1H), 4.52 (dd, J = 10.9, 4.5 Hz, 1H), 3.85 (s, 3H), 3.18 (d, J = 13.1 Hz, 1H), 3.12 (d, J = 13.3 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 177.01, 158.96, 136.29, 134.55, 133.10, 132.54, 129.59, 128.42, 127.48, 126.77, 126.68, 126.01, 123.82, 120.85, 119.53, 118.74, 109.15, 98.43, 75.72, 74.55, 29.09, 25.75, 24.19 ppm; ESI-HRMS: calcd for C₂₇H₂₃N₃O₄ + H⁺ 454.1761, found 454.1884.

Synthesis of 8a: (E)-3-(1H-indol-2-yl)-1-phenylprop-2-en-1-one 7a (24.7 mg, 0.1 mmol), 4-benzyl-2-phenyloxazol-5(4H)-one 2a (30.1 mg, 0.12 19/91

mmol), C4 (6.3 mg, 10 mol%) were dissolved in xylene (1.0 mL) and stirred at 40 °C for 12 h. Upon workup, the reaction mixture was removed to room temperature and added DABCO (2.7 mg, 30 mol%) for further cyclization during 6 h. After the reaction was completed, product **8a** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) as a pale yellow solid (21.4 mg, 43% yield). M.p = 77-79 °C; >19:1 dr, 0% ee, determined by HPLC analysis [Daicel chiralpak AD-H, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min, λ = 254 nm]; ¹H NMR (400 MHz, CDCl₃): δ 8.88 (s, 1H), 7.87 – 7.80 (m, 2H), 7.77 – 7.67 (m, 2H), 7.49 – 7.42 (m, 2H), 7.40 – 7.30 (m, 6H), 7.29 – 7.27 (m, 1H), 7.09 – 6.99 (m, 5H), 6.95 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 6.31 (d, *J* = 2.0 Hz, 1H), 4.34 (dd, *J* = 9.3, 3.8 Hz, 1H), 3.67 (dd, *J* = 17.2, 9.3 Hz, 1H), 3.48 (dd, *J* = 17.2, 3.8 Hz, 1H), 3.18 (d, *J* = 13.4 Hz, 1H), 3.07 (d, *J* = 13.3 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 197.04, 179.51, 161.20, 136.65, 136.36, 133.78, 133.53, 133.02, 130.39, 128.87, 128.83, 128.78, 128.75, 128.69, 128.27, 128.14, 128.06, 127.50, 125.33, 122.00, 120.47, 119.79, 111.21, 102.69, 42.00, 40.99, 39.46 ppm; ESI-HRMS: calcd for C₃₃H₂₆N₂O₃ + H⁺499.2016, found 499.2023.

4. Synthetic transformations

9

followed by the addition of $(Boc)_2O$ (32.7 mg, 0.15 mmol) the reaction mixture was carried out at - 30 °C for 24 h and . monitored by TLC. After completion, the reaction mixture was quenched with saturated NH₄Cl and extracted with DCM (3 × 5 mL). The combined organic layers was dried over anhydrous Na₂SO₄, then filtered and concentrated under reduced pressure to afford the residue which was purified by by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to give product **9** as a white solid (44.7 mg, 88% yield). M.p = 94-96 °C; $[\alpha]_D^{20} = +20.2$ (*c* = 1.0 in CHCl₃); >19:1 dr, 90% ee, determined by HPLC analysis [Daicel chiralpak IB N-5, *n*-hexane/*i*-

PrOH = 80/20, 1.0 mL/min, λ = 254 nm, t (minor) = 6.77 min, t (major) = 10.93 min]; ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.90 (s, 1H), 7.93 – 7.85 (m,3H), 7.61 (t, *J* = 7.3 Hz, 1H), 7.57 – 7.50 (m, 3H), 7.33 – 7.23 (m, 3H), 7.22 – 7.14 (m, 2H), 7.06 (p, *J* = 3.7 Hz, 3H), 6.37 (d, *J* = 1.9 Hz, 1H), 4.13 (t, *J* = 7.3 Hz, 1H), 3.66 (dd, *J* = 11.1, 5.9 Hz, 2H), 3.42 (d, *J* = 14.1 Hz, 1H), 3.07 (d, *J* = 14.1 Hz, 1H), 1.36 (s, 9H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 168.89, 166.22, 155.69, 141.79, 134.49, 133.90, 133.34, 131.85, 130.15, 130.10, 129.98, 128.34, 127.61, 127.56, 126.69, 123.74, 123.28, 120.73, 112.70, 99.59, 77.98, 67.97, 42.82, 37.82, 28.15 ppm; ESI-HRMS: calcd for C₃₁H₃₁N₃O₄ + Na⁺ 532.2207, found 532.2208.

Synthesis of 10: Compound **3a** (43.9 mg, 0.1 mmol) was dissolved in DCM (2 mL), DBU (38.0 mg, 0.25 mmol) was added and the solution was stirred at room temperature for 48 h. After the reaction was completed, product **10**

was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) as a white solid (24.7 mg, 63% yield). M.p = 92-96 °C; $[\alpha]_D^{20} = +26.0$ (c = 1.0 in CHCl₃); >19:1 dr, 89% ee, determined by HPLC analysis [Daicel chiralpak IB N-5, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 6.31 min, t (major) = 7.37 min]; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.35 (s, 1H), 7.87 (dd, 3H), 7.59 (dd, J = 8.3, 6.3 Hz, 1H), 7.50 (t, 3H), 7.27 (t, 1H), 7.22 (t, 1H), 7.13 – 7.06 (m, 2H), 7.04 – 6.94 (m, 3H), 6.56 (s, 1H), 5.84 (s, 1H), 5.55 (s, 1H), 3.42 (dd, 2H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 169.99, 166.40, 140.54, 139.36, 134.55, 133.52, 133.33, 132.39, 130.54, 130.37, 128.86, 128.21, 128.11, 127.50, 124.65, 124.52, 121.93, 113.49, 109.33, 98.49, 68.75, 42.74 ppm; ESI-HRMS: calcd for C₂₆H₂₀N₂O₂ + Na⁺415.1417, found 415.1424.

21/91

Synthesis of 11: Compound 3a (43.9 mg, 0.10 mmol) was dissolved in 2 mL of MeOH, the reaction was cooled down to -30 °C. NiCl₂·6H₂O (47.4 mg, 0.20 mmol) was added and stirred for 5 minutes, then NaBH₄ (22.7 mg, 0.6 mmol) was added slowly, then the reaction was carried out at - 30 °C for 30 minutes. The reaction was monitored by TLC and was completed, then quenched with saturated NH₄Cl, the reaction was concentrated under reduced pressure, and extracted with DCM (3 × 5 mL). Product 11 was obtained by flash chromatography on silica gel (MeOH/DCM = 1/50) as a white solid (33.1 mg, 81% yield).

Synthesis of 12: Compound 11 (20.4 mg, 0.05 mmol) and $(\text{HCHO})_n$ (1.8 mg, 0.06 mmol) were dissolved in DCM (1 mL), the reaction was cooled down at 0 °C, and TFA (5.7 mg, 0.05 mmol) was slowly added dropwise, the reaction was stirred at room temperature for 2 h. After the reaction was completed, the reaction was extracted with DCM (3 × 5 mL), then the

filtrate was concentrated under reduced pressure, obtain the product of the closing ring. The product was dissolved in dry DCM and cooled down at -30 °C, then TEA (7.6 mg, 0.075 mmol) and DMAP (1.3 mg, 20 mol%) were added, and Ts-Cl (6.6 mg, 0.06 mmol) was added slowly, and the solution was reacted and stirred at -30 °C for 1h, and after the reaction was completed, product **12** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) as a white solid (20.1 mg, 70% yield). M.p = 103-105 °C; $[\alpha]_D^{20} = -24.2$ (*c* = 1.0 in CHCl₃); >19:1 dr, 89% ee, determined by HPLC analysis [Daicel chiralpak IB N-5, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min, λ = 254 nm, t (minor) = 12.58 min, t (major) = 13.99 min]; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.98 (s, 1H), 7.69 (t, *J* = 8.1 Hz, 4H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.47 (q, *J* = 7.7 Hz, 3H), 7.41 (d, *J* = 8.0 Hz, 3H), 7.14 (h, *J* = 5.1 Hz, 4H), 7.07 – 6.99 (m, 3H), 4.59 (d, *J* = 13.9 Hz, 1H), 3.93 (dd, *J* = 12.9, 2.4 Hz, 1H), 3.84 (d, *J* = 13.9 Hz, 1H), 3.72 (d, *J* = 4.0 Hz, 1H), 3.54 (d, *J* = 13.2 Hz, 1H), 3.01 (dd, *J* = 12.8, 4.2 Hz, 1H), 2.36 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 178.52, 159.22, 143.44, 136.38, 133.79, 132.93, 132.47, 130.10, 129.84, 128.92, 128.63, 127.93,

127.64, 127.24, 127.18, 125.59, 124.35, 121.76, 118.91, 117.68, 111.54, 107.38, 77.33, 45.73, 42.59, 41.67, 31.10, 20.92 ppm; ESI-HRMS: calcd for $C_{34}H_{29}N_3O_4S$ + Na⁺ 598.1771, found 598.1777.

5. Failed trials of other azlactones under the optimized conditions

6. Crystal data for enantiopure cycloadducts 3x

Crystallization of 3x: The pure product 3x (25 mg) was dissolved in the mixture solvent of *n*-hexane and dichloromethane (2 mL, 3:1, v/v) in a 10 mL vial. Then, the solution was allowed for slow evaporation to afford the crystal of 3x in a good quality for the crystallography analysis.

a/Å	12.0073(5)			
b/Å	24.9718(10)			
c/Å	17.9593(8)			
$\alpha/^{\circ}$	90			
β/°	108.3510(10)			
γ/°	90			
Volume/Å ³	5111.1(4)			
Ζ	8			
$\rho_{calc}g/cm^3$	1.401			
μ/mm^{-1}	0.255			
F(000)	2218.0			
Crystal size/mm ³	$0.39 \times 0.33 \times 0.12$			
Radiation	MoKa ($\lambda = 0.71073$)			
2Θ range for data collection/	^o 3.928 to 54.984			
Index ranges	$-15 \le h \le 15, -32 \le k \le 32, -23 \le l \le 23$			
Reflections collected	69498			
Independent reflections	23175 [$R_{int} = 0.0643, R_{sigma} = 0.0661$]			
Data/restraints/parameters	23175/145/1341			
Goodness-of-fit on F ²	1.030			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0795, wR_2 = 0.2088$			
Final R indexes [all data]	$R_1 = 0.1316$, $wR_2 = 0.2516$			
Largest diff. peak/hole / e Å ⁻³ 0.38/-0.53				
Flack parameter	0.06(5)			

References

- [1] Justin M. Lopchuk, Gordon W. Gribble; Heterocycles. 2011, 82, 1617-1631.
- [2] Amanda C. de Mello, Patricia B. Momo, Antonio C. B. Burtoloso, and Giovanni W. Amarante.
- J. Org. Chem. 2018, 83, 11399-11406.

7. NMR spectra and HPLC chromatograms

Peak#	Ret. Time	Area	Height	Area%	Height%
1	9.961	8333629	395084	94.788	97.423
2	21.048	458218	10451	5.212	2.577
Total		8791847	405535	100.000	100.000

864 864 864 864 864 864 864 864 864 864	186	709 683 663 649	901 8879 868 845 750 750 728	515 481	907
	-6.	5.5.5	4 4 4 4 4 4 4 4	n'n'	121

¹H NMR (400 MHz, CDCl₃)

28 / 91

-1.03-I

4.5

5.0 f1 (ppm) 1.29-f

3.0

2.5

2.0

1.5

1.0

0.5

0.0

3.5

4.0

2.06-

5.5

100

6.0

6.5

7.0

3.16 1.07 2.13 3.16 3.15 4

7.5

8.0

8.5

1.01-1

9.0

9.5

Peak#	Ret. Time	Area	Height	Area%	Height%
1	8.226	3197538	170440	51.160	70.668
2	16.859	3052509	70745	48.840	29.332
Total		6250047	241185	100.000	100.000

Peak#	Ret. Time	Area	Height	Area%	Height%
1	8.070	14606354	763318	93.675	97.241
2	16.751	986287	21653	6.325	2.759
Total		15592642	784972	100.000	100.000

reak#	Ket. Time	Area	Height	Alea70	Height 70
1	36.586	17629978	182441	91.293	91.616
2	40.930	1681371	16695	8.707	8.384
Total		19311348	199137	100.000	100.000

3g ¹H NMR (400 MHz, DMSO-*d*₆) 11 S 5 5 1 **F86**.0 5.5 °° 0 2.09 <u>−</u> €.5 -02-J 1.08<u>-</u>I F-00 1.11-1 3.5 5.0 4.5 f1 (ppm) 9.0 8.5 7.0 6.0 3.5 2.5 2.0 1.5 1.0 0.5 4.0 3.0

0.0

Peak#	Ret. Time	Area	Height	Area%	Height%
1	7.067	6235478	360113	87.190	89.876
2	8.438	916139	40564	12.810	10.124
Total		7151616	400677	100.000	100.000

Peak#	Ret. Time	Area	Height	Area%	Height%
1	7.257	10663626	609506	95.961	98.346
2	15.704	448884	10249	4.039	1.654
Total		11112510	619755	100.000	100.000

9, 182

Peak#	Ret. Time	Area	Height	Area%	Height%
1	6.551	8270088	525103	91.699	96.526
2	15.257	748628	18897	8.301	3.474
Total		9018717	544000	100.000	100.000

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1</t

Peak#	Ret. Time	Area	Height	Area%	Height%
1	14.867	2188817	49373	5.002	6.836
2	19.105	41569543	672841	94.998	93.164
Total		43758359	722215	100.000	100.000

Peak#	Ret. Time	Area	Height	Area%	Height%
1	13.009	912080	25906	1.845	4.187
2	26.027	48516223	592810	98.155	95.813
Total		49428303	618717	100.000	100.000

Peak#	Ret. Time	Area	Height	Area%	Height%
1	14.545	1675133	13968	11.488	19.827
2	26.046	12906780	56481	88.512	80.173
Total		14581913	70449	100.000	100.000

100.000

100.000

11297167

Total

Peak#	Ret. Time	Area	Height	Area%	Height%
1	14.735	12928410	307740	88.254	89.313
2	16.837	1720734	36822	11.746	10.687
Total		14649143	344562	100.000	100.000

¹H NMR (400 MHz, DMSO-*d*₆)

Peak#	Ret. Time	Area	Height	Area%	Height%
1	7.676	3888855	226385	78.335	81.887
2	10.079	1075515	50075	21.665	18.113
Total		4964371	276460	100.000	100.000

9. 2014 Sector 2014 Sector

Peak#	Ret. Time	Area	Height	Area%	Height%
1	6.764	3662934	211970	22.043	27.493
2	8.255	4613816	219688	27.765	28.494
3	9.115	4660447	201820	28.046	26.177
4	10.078	3680014	137507	22.146	17.835
Total		16617210	770985	100.000	100.000

Peak#	Ret. Time	Area	Height	Area%	Height%
1	8.132	6593203	331851	20.498	21.875
2	8.990	25571534	1185162	79.502	78.125
Total		32164737	1517014	100.000	100.000

9 147 147 147 147 147 147 147 147 147 147 147 147 148 147 148 147 148 147 158 148

¹H NMR (400 MHz, DMSO-*d*₆)

Peak#	Ret. Time	Area	Height	Area%	Height%
1	10.126	1017347	36920	4.856	7.386
2	14.099	19931836	462948	95.144	92.614
Total		20949183	499868	100.000	100.000

58 / 91

1	0.074	4551701	170545	25.017	57.052
2	11.992	4530298	148069	23.707	27.914
3	14.259	5023050	117992	26.286	22.244
4	21.634	5004315	67845	26.188	12.790
Total		19109364	530450	100.000	100.000

Peak#	Ret. Time	Area	Height	Area%	Height%
1	14.196	884907	21076	4.343	6.771
2	20.960	19491190	290199	95.657	93.229
Total		20376096	311275	100.000	100.000

60 / 91

I Can//	Ret. Inne	Inca	rieigin	/ iicu/o	110ignt/0
1	11.473	2707098	77418	50.794	75.854
2	28.920	2622509	24643	49.206	24.146
Total		5329607	102061	100.000	100.000

Peak#	Ret. Time	Area	Height	Area%	Height%
1	11.486	2387259	64003	95.166	98.130
2	29.162	121257	1219	4.834	1.870
Total		2508515	65222	100.000	100.000

62 / 91

Peak#	Ret. Time	Area	Height	Area%	Height%
1	10.335	2818033	73243	48.572	63.238
2	20.220	2983762	42578	51.428	36.762
Total		5801795	115821	100.000	100.000

Peak#	Ret. Time	Area	Height	Area%	Height%
1	10.408	704026	18494	4.148	7.187
2	19.954	16268316	238844	95.852	92.813
Total		16972342	257338	100.000	100.000

64 / 91

Peak#	Ret. Time	Area	Height	Area%	Height%
1	6.341	3434587	210420	26.283	36.943
2	7.594	3492961	190328	26.730	33.416
3	10.791	3103730	98116	23.751	17.226
4	12.697	3036347	70715	23.236	12.415
Total		13067624	569580	100.000	100.000

Peak#	Ret. Time	Area	Height	Area%	Height%
1	10.800	1754433	54781	5.180	6.100
2	12.395	32112540	843260	94.820	93.900
Total		33866973	898042	100.000	100.000

66 / 91

Peak#	Ret. Time	Area	Height	Area%	Height%
1	6.474	3142260	223408	22.067	37.743
2	7.543	3969932	239165	27.879	40.405
3	20.186	3177470	59964	22.314	10.130
4	22.316	3950185	69384	27.740	11.722
Total		14239847	591920	100.000	100.000

Peak#	Ret. Time	Area	Height	Area%	Height%
1	7.493	17514245	1025937	94.951	98.340
2	22.297	931253	17316	5.049	1.660
Total		18445498	1043253	100.000	100.000

¹H NMR (400 MHz, DMSO-*d*₆)

Peak#	Ret. Time	Area	Height	Area%	Height%
1	10.816	4003573	165578	33.848	50.382
2	11.699	2006533	75956	16.964	23.112
3	26.998	3984560	60455	33.688	18.395
4	29.923	1833260	26655	15.499	8.111
Total		11827925	328644	100.000	100.000

Peak#	Ret. Time	Area	Height	Area%	Height%
1	6.568	1296409	86180	50.238	52.673
2	7.589	1284149	77435	49.762	47.327
Total		2580557	163615	100.000	100.000

7	1	/	9	1	•
7	1	/	9	1	

100.000

100.000

6615952

Total

72 / 91

Peak#	Ret. Time	Area	Height	Area%	Height%
1	8.299	4626549	238918	52.919	81.189
2	28.133	4116109	55356	47.081	18.811
Total		8742658	294274	100.000	100.000

Peak#	Ret. Time	Area	Height	Area%	Height%
1	8.233	5689704	294208	94.892	98.534
2	27.048	306279	4376	5.108	1.466
Total		5995983	298584	100.000	100.000

¹H NMR (400 MHz, DMSO-*d*₆)

74 / 91

Peak#	Ret. Time	Area	Height	Area%	Height%
1	10.383	7101706	294320	50.111	69.451
2	21.340	7070344	129458	49.889	30.549
Total		14172050	423778	100.000	100.000

Peak#	Ret. Time	Area	Height	Area%	Height%
1	10.353	9416586	391370	88.132	94.380
2	21.351	1268044	23304	11.868	5.620
Total		10684631	414674	100.000	100.000

76 / 91

78 / 91

Peak#	Ret. Time	Area	Height	Area%	Height%
1	22.940	2235851	13280	23.449	39.868
2	40.243	7298972	20030	76.551	60.132
Total		9534824	33310	100.000	100.000

80 / 91

L	Реак#	Ret. Time	Area	Height	Area%	Height%
Γ	1	11.044	5085196	275772	48.952	53.192
[2	11.512	195067	16376	1.878	3.159
[3	13.413	125099	4355	1.204	0.840
ſ	4	13.807	4982759	221940	47.966	42.809
	Total		10388120	518443	100.000	100.000

Peak#	Ret. Time	Area	Height	Area%	Height%
1	10.606	8369745	501534	59.145	63.855
2	11.235	531733	25868	3.757	3.293
3	12.407	2940676	147248	20.780	18.747
4	12.978	2309177	110780	16.318	14.104
Total		14151331	785431	100.000	100.000

Peak#	Ret. Time	Area	Height	Area%	Height%
1	11.235	542935	25730	15.500	14.871
2	12.407	2959757	147292	84.500	85.129
Total		3502692	173022	100.000	100.000

83 / 91

Peak#	Ret. Time	Area	Height	Area%	Height%
1	15.434	5822430	173242	50.614	65.324
2	27.666	5681104	91963	49.386	34.676
Total		11503534	265206	100.000	100.000

Peak#	Ret. Time	Area	Height	Area%	Height%
1	14.873	9556465	285023	50.637	65.016
2	27.060	9315944	153367	49.363	34.984
Total		18872409	438390	100.000	100.000

85 / 91

Peak#	Ret. Time	Area	Height	Area%	Height%
1	6.777	125816	6022	4.790	7.286
2	10.935	2500869	76635	95.210	92.714
Total		2626685	82657	100.000	100.000

Peak#	Ret. Time	Area	Height	Area%	Height%
1	6.289	730343	49500	48.982	52.306
2	7.364	760708	45135	51.018	47.694
Total		1491050	94635	100.000	100.000

2225 2255 22555 2255 2255 2255 2255 2255 2255 2255 2255 2255 2255

4,604 4,604 3,3143

¹H NMR (400 MHz, DMSO-*d*₆)

Peak#	Ret. Time	Area	Height	Area%	Height%
1	12.468	599871	23115	49.971	56.870
2	13.917	600564	17530	50.029	43.130
Total		1200434	40646	100.000	100.000

Peak#	Ret. Time	Area	Height	Area%	Height%
1	12.583	266301	10217	5.622	7.185
2	13.999	4470429	131976	94.378	92.815
Total		4736730	142192	100.000	100.000