Supplementary Information (SI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024 ## **Supporting Information** Hypervalent Iodide(III)-Mediated Thiofluorination of Alkenes and Alkynes from Thioureas/Thiocarbamoyl Fluorides with Water and Nucleophilic Fluoride Source Junyi Zhou, Xiang Wang, Wenjun Tang and Liqin Jiang * School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China. lqjiang@sat.ecnu.edu.cn ### **Table of contents** | General experimental procedures for synthesis of (homo)allyl/propargyl amines, | , | |--|------------------| | alkenyl/alkynyl thioureas, thiocarbamoyl fluorides and PhI(OPiv) ₂ | 3 | | 2.1 General procedure for preparation of (homo)allyl/propargyl secondary amines | ¹ . 3 | | 2.2 General procedure for preparation of alkenyl/alkynyl thioureas 1, 5 ¹ | 4 | | 2.3 General procedure for preparation of thiocarbamoyl fluorides 3 ² | 4 | | 2.4 General procedure for preparation of PhI(OPiv) ₂ 3 | 5 | | 2.5 The procedure for reactions of $Ph_2S_2/PhSH/n$ -butylthioalcohol, $Et_3N \cdot 3HF$, and | | | cyclohexane | 5 | | 3. Optimization of reaction conditions for (Z)-N-(5-(fluoromethyl)-3- | | | phenylthiazolidin-2-ylidene)benzamide 2a | 5 | | 4. Optimization of reaction conditions for N-((2Z,5E)-5-(1-fluoroethylidene)-3- | | | phenylthiazolidin-2-ylidene)benzamide 6a | 7 | | 5. General procedure for synthesis of acylcarbamimidothioate 2 | 8 | | 6. General procedure for synthesis of carbamothioate 4 | 9 | | 7. General procedure for synthesis of carbamothioate 8 | 9 | | 6. Analytical data | .10 | | 7. Mechanism study | .81 | | 7.1 Radical trapping experiment | | | 7.2 Isotope labeling experiment ($H_2^{18}O$) | 82 | | 7.3 Chiral regulation experiment | | | 7.4 Experiment of disulfide as a sulfur source | 83 | | 8. The 4 mmol scale of procedures for 2a | .84 | | 9. The 10 mmol scale of procedures for 4a | .84 | | 10. The 4.6 mmol scale of procedures for 6a | | | 11. The X-ray crystallographic analysis for 2af (CCDC 2364347) | .85 | | 12. 1D NOESY spectra | .87 | | 12.1 1D NOESY spectra of 2ae | 88 | | 12.2 1D NOESY spectra of 2af | 89 | | 12.3 1D NOESY spectra of 4k | 90 | | 12.4 1D NOESY spectra of 4l | 92 | | 12.5 1D NOESY spectra of 4m | 93 | | 12.6 1D NOESY spectra of 6h | 95 | | 13. NMR spectra | .96 | 1. General information & materials. Unless otherwise stated, all commercial reagents and solvents were used without additional purification. 1 H NMR and 13 C NMR spectra were recorded in CDCl₃ at Bruker 500 MHz or 600 MHz, using CDCl₃ as a reference standard (δ = 7.26 ppm) for 1 H NMR and (δ = 77.0 ppm) for 13 C NMR. Thin-layer chromatography (TLC) was carried out using commercially prepared 100-400 mesh silica gel plates (GF254) and visualization was effected at 254 nm. The dilute solvents usually used ethyl acetate/petroleum ether, which was abbreviated as petroleum ether / ethyl acetate. High resolution mass spectra (HRMS) were recorded on the Exactive Mass Spectrometer equipped with EI or ESI ionization source and a time-of-flight (TOF) mass spectrometer. #### 2. General experimental procedures for synthesis of (homo)allyl/propargyl amines, alkenyl/alkynyl thioureas, thiocarbamoyl fluorides and PhI(OPiv)2. $$R^{1} \stackrel{\mathsf{NH}_{2}}{\overset{\mathsf{H}_{2}}{\overset{\mathsf{R}^{3}}{\overset{\mathsf{R}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}{\overset{\mathsf{R}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}{\overset{\mathsf{R}^{3}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}}{\overset{\mathsf{R}}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}}{\overset{\mathsf{R}}}}$$ #### 2.1 General procedure for preparation of (homo)allyl/propargyl secondary amines¹. A solution of primary amine (2.0 eq), potassium carbonate (2.0 eq) and (homo)allyl/propargyl bromide (1.0 eq, containing an alkene or alkyne group) in DMF (0.5 M) was stirred at room temperature overnight. The reaction was then quenched with water, extracted with EA, and the combined organic phases were washed with brine, dried with anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel using petroleum ether or petroleum ether / ethyl acetate afforded the desired secondary amine. #### 2.2 General procedure for preparation of alkenyl/alkynyl thioureas 1, 51. #### Method A A solution of KSCN (2 eq) and acyl chloride (1 eq) in acetone (1 M) was stirred at room temperature for 1~2 h, then secondary amine was added and the reaction was stirred at room temperature for 2~12 h. The reaction mixture was filtered. The filtrate was concentrated and the residue was purified by flash chromatography on silica gel using petroleum ether / ethyl acetate to give alkenyl/alkynyl thioureas 1a-1o, 1q-1af, 1ah, lai, 5a-5c, 5h, 5k, 5l. #### Method B A solution of acyl isothiocyanate (1 eq) and secondary amine (1 eq) in THF (0.1 M) was stirred at room temperature for 1~12 h until one of the reactants was consumed. The reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel using petroleum ether / ethyl acetate to give alkenyl/alkynyl thioureas 1p, 1ag, 1aj, 1ak, 5d-5g, 5i, 5j. #### 2.3 General procedure for preparation of thiocarbamoyl fluorides 32. #### Method A A solution of sulfur (4 eq) and KF (3 eq) in THF (0.1 M) was added TMSCF₃ (5 eq) under N₂, followed by the solution of secondary amines (1 eq, it could be dissolved in a small amount of THF if the amine is a solid). The mixture was stirred under N₂ at room temperature for 1-12 h until the secondary amine was consumed. Then the reaction mixture was filtered. The filtrate was concentrated and the residue was purified by flash chromatography on silica gel using petroleum ether / ethyl acetate to give thiocarbamoyl fluorides 3a-3c, 3e-3i, 3k-3i, 3n, 3p-3t. #### Method B A solution of secondary amines (1 eq), $AgSCF_3$ (1.5 eq), KBr (2.5 eq) in acetonitrile (0.05 M) was
stirred at atmosphere at room temperature for 2 h until the amine was consumed. Then the reaction mixture was filtered. The filtrate was concentrated and the residue was purified by flash chromatography on silica gel using petroleum ether / ethyl acetate to give the **3d**, **3j**, **3m**, **3o**. #### 2.4 General procedure for preparation of PhI(OPiv)₂³. A known compound, see references³ for details Reference: [1] Liu, S.; Jiang, L. Copper-Catalyzed Multicomponent Reactions of Intramolecular and Intermolecular Thiotrifluoromethylation of Alkenes: Access to CF3—Containing 2-Iminothiazolidines and Isothioureas. *Org. Lett.* **2022**, 39, 7157-7162. [2] Zhen, L.; Fan, H. Wang, X.; Jiang, L. Synthesis of Thiocarbamoyl Fluorides and Isothiocyanates Using CF₃SiMe₃ and Elemental Sulfur or AgSCF₃ and KBr with Amines. *Org. Lett.* **2019**, *21*, 2106–2110. [3] Atmuri, N.; Reilley, D.; Lubell, W. *Org. Lett.* **2017**, 19, 5066–5069. #### 2.5 The procedure for reactions of Ph₂S₂/PhSH/n-butylthioalcohol, Et₃N·3HF, and cyclohexane A solution of PhI(OPiv)₂ (0.4 mmol) and Et₃N-3HF (0.6 mmol, 3 eq) in CH₂Cl₂ (3 mL) was stirred at room temperature for 5 minutes, then 1,2-diphenyldisulfane (0.16 mmol) or PhSH (0.16 mmol) or *n*-butylthioalcohol (0.16 mmol) was added. The mixture was stirred at the room temperature in N₂ atmosphere for 30 min. Subsequently, a CH₂Cl₂ solution (3 mL) of cyclohexane (0.30 mmol) was added slowly. The mixture was stirred for 1 hour, and the reaction was subjected to detected by TLC and HRMS. The desired alkene 1,2-thiofluorination products were not detected. The PhSF or *n*-butyl-SF species was not been detected. #### 3. Optimization of reaction conditions for (Z)-N-(5-(fluoromethyl)-3-phenylthiazolidin-2- ylidene)benzamide 2a. A solution of oxidant and alkenyl thioureas **1a** (0.2 mmol) in solvent (3 mL) was stirred, then fluorinating reagent was added. The mixture was stirred at the room temperature for 2-12 h until **2a** was consumed. Then the reaction mixture was quenched with saturated NaHCO $_3$ solution, extracted with EA, and the combined organic phases were washed with brine, dried with anhydrous Na $_2$ SO $_4$ and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel eluting with petroleum ether: ethyl acetate = $10:1^{\sim}5:1$ to give product 2a. Initial discovery: **Table S1**. Optimization of the reaction conditions for $2a^a$. | entry | oxidant | fluorinating reagent | solvent | yield(%) ^b | |-----------------|--------------------------|-----------------------|---------------------------------|-----------------------| | 1 | PhI(OAc) ₂ | Et₃N·3HF | MeCN | 54 | | 2 | PhI(OPiv) ₂ | Et₃N·3HF | MeCN | 64 | | 3 | PhI(OAd) ₂ | Et₃N·3HF | MeCN | 56 | | 4 | PhI, m-CPBA ^c | Et₃N·3HF | MeCN | 45 | | 5 | PhI(OPiv) ₂ | Et₃N·3HF | CH ₂ Cl ₂ | 34 | | 6 | PhI(OPiv) ₂ | Et₃N·3HF | Et ₂ O | 56 | | 7 | PhI(OPiv) ₂ | Et₃N·3HF | PhMe | 68 | | 8 | PhI(OPiv) ₂ | Et₃N·3HF | xylene | 56 | | 9 | PhI(OPiv) ₂ | Et₃N·3HF | PhCl | 27 | | 10 | PhI(OPiv) ₂ | Et₃N·3HF | PhCF ₃ | 32 | | 11 | Selectfluor | | PhMe | 0 | | 12 | Selectfluor | Et₃N·3HF | PhMe | 0 | | 13 ^d | PhI(OPiv) ₂ | Et₃N·3HF | PhMe | 84 | | 14 ^d | PhI(OPiv) ₂ | Et₃N·3HF | PhCl | 72 | | 15 ^d | PhI(OPiv) ₂ | Et₃N·3HF | PhCF ₃ | 81 | | 16 ^d | PhI(OPiv) ₂ | Et₃N·3HF | xylene | 79 | | 17 ^d | PhI(OPiv) ₂ | Et ₃ N·3HF | MeCN | 65 | | 18 ^d PhI(OPiv) ₂ Et ₃ N·3HF PhMe/ Et ₂ O (2:1) | 80 | |---|---------| | 19 ^d PhI(OPiv) ₂ Py·HF ^e PhMe | trace | | 20 ^d $PhI(OPiv)_2$ $BF_3 \cdot OEt_2^e$ $PhMe$ | 0 | | 21 ^d PhI(OPiv) ₂ ^f Et ₃ N·3HF PhMe | 86(86g) | | $22^{d} \hspace{1cm} PhI(OPiv)_{2}{}^{f} \hspace{1cm} Et_{3}N\cdot 3HF^{h} \hspace{1cm} PhMe$ | 77 | | 23 ^d $PhI(OPiv)_2^f$ $Et_3N\cdot 3HF^i$ $PhMe$ | 75 | ^aReaction conditions: **1a** (0.2 mmol), oxidant (0.4 mmol), fluorinating reagent (0.6 mmol) in 3 ml solvent for 2 h. ^{b1}H NMR yield with CH₂Br₂ as internal standard. ^cPhI (20 mol%), m-CPBA (0.4 mmol) at -20 °C for 4 h. ^d Oxidant (0.4 mmol) and fluorinating reagent (0.6 mmol) stirred 5 minutes before **1a** (0.2 mmol) was added and then the mixture stirred for 2 h. ^ePy·HF (0.6 mmol). ^foxidant (0.23 mmol). ^gIsolated yield. ^hEt₃N·3HF (0.5 mmol). ⁱ Et₃N·3HF (0.4 mmol). # 4. Optimization of reaction conditions for *N*-((2Z,5E)-5-(1-fluoroethylidene)-3-phenylthiazolidin-2-ylidene)benzamide 6a. A solution of oxidant and fluorinating reagent in solvent (3 mL) was stirred at room temperature for 5 minutes, then alkynyl thioureas **5a** (0.2 mmol) was added. The mixture was stirred at the room temperature for 2-12 h until **5a** was consumed. Then the reaction mixture was filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel eluting with petroleum ether: ethyl acetate = 10:1 to give product **6a**. **Table S1**. Optimization of the reaction conditions for $6a^a$. | Entry | oxidant | fluorinating reagent | solvent | yield(%) ^b | |-------|-------------------------------------|----------------------|---------|-----------------------| | 1 | PhI(OPiv) ₂ ^c | Et₃N·3HF | PhMe | 46 | | 2 | PhI(OPiv) ₂ | Et₃N·3HF | PhMe | 46 | | 3 | PhI(OAc) ₂ | Et₃N·3HF | PhMe | 36 | | | | S7 | | | | 4 | PhI(OAd) ₂ | Et₃N·3HF | PhMe | 48 | |----|-------------------------------------|-------------------------|-------------------|----------------------| | 5 | PhI(OPiv)2 ^d | $Et_3N\!\cdot\!3HF$ | PhMe | 31 | | 6 | PhI(OPiv) ₂ | $Et_3N\!\cdot\!3HF$ | CH_2Cl_2 | 30 | | 7 | PhI(OPiv) ₂ | $Et_3N\!\cdot\!3HF$ | Et ₂ O | 56 | | 8 | PhI(OPiv) ₂ | $Et_3N\!\cdot\!3HF$ | DMF | trace | | 9 | PhI(OPiv) ₂ | Et₃N·3HF | DMSO | trace | | 10 | PhI(OPiv) ₂ | Et₃N·3HF | MeCN | 17 | | 11 | PhI(OPiv) ₂ | Et₃N·3HF | EtOAc | 38 | | 12 | PhI(OPiv) ₂ | Et₃N·3HF | acetone | trace | | 13 | PhI(OPiv) ₂ | $Et_3N{\cdot}3HF$ | THF | 53 | | 14 | PhI(OPiv) ₂ | Et₃N·3HF | 1,4-dioxane | 77 | | 15 | PhI(OPiv) ₂ | Et₃N·3HF | DME | 67 | | 16 | PhI(OPiv) ₂ | $Et_3N{\cdot}3HF$ | MTBE | 36 | | 17 | PhI(OPiv) ₂ | $Et_3N{\cdot}3HF$ | diethylacetal | trace | | 18 | PhI(OPiv) ₂ | py∙6HF ^e | 1,4-dioxane | 50 | | 19 | PhI(OPiv) ₂ ^f | $Et_3N{\cdot}3HF$ | 1,4-dioxane | 82 | | 20 | PhI(OPiv) ₂ f | $Et_{3}N{\cdot}3HF^{g}$ | 1,4-dioxane | 83 | | 21 | PhI(OPiv) ₂ ^f | Et₃N·3HF ^h | 1,4-dioxane | 92(82 ⁱ) | ^aReaction conditions: **5a** (0.2 mmol), oxidant (0.22 mmol), fluorinating reagent (0.6 mmol) in 3 ml solvent for 2 h. ^{b1}H NMR yield with CH₂Br₂ as internal standard. ^c0.23 mmol Phl(OPiv)₂. ^d 0.6 mmol Phl(OPiv)₂. ^epy·6HF (0.3 mmol). ^f0.21 mmol Phl(OPiv)₂. ^g0.5 mmol Et₃N·3HF. ^h0.7 mmol Et₃N·3HF. ⁱIsolated yield. #### 5. General procedure for synthesis of acylcarbamimidothioate 2. $$\begin{array}{c} R^2 \\ N \\ N \\ R^3 \\ R^6 \\ R^5 \end{array}$$ PhI(OPiv)₂, Et₃N·3HF $$\begin{array}{c} 0 \\ N \\ R^2 \\ \hline PhMe, rt \\ \hline \end{array}$$ PhMe, rt $$\begin{array}{c} R^1 \\ N \\ R^3 \\ R^6 \\ R^5 \end{array}$$ A solution of PhI(OPiv)₂ (0.23 mmol, 1.2 eq) and Et₃N·3HF (0.6 mmol, 3 eq) in PhMe (3 mL) was stirred at room temperature for 5 minutes, then alkenyl thioureas $\bf 1$ (0.2 mmol, 1 eq) was added. The mixture was stirred at the room temperature for 2 h until alkenyl thioureas $\bf 1$ was consumed. Then the reaction mixture was quenched with saturated NaHCO₃ solution, extracted with EA, and the combined organic phases were washed with brine, dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel to give product **2**. #### 6. General procedure for synthesis of carbamothioate 4. A solution of PhI(OPiv)₂ (0.4 mmol, 2 eq) and Et₃N·3HF (0.6 mmol, 3 eq) in PhMe (3 mL) was stirred at room temperature for 5 minutes, then thiocarbamoyl fluorides **3** (0.2 mmol, 1 eq) was added. The mixture was stirred at the room temperature for 4 h until thiocarbamoyl fluorides **3** was consumed. Then the reaction mixture was quenched with saturated NaHCO₃ solution, extracted with EA, and the combined organic phases were washed with brine, dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel to give product **4**. #### 7. General procedure for synthesis of carbamothioate 6. A solution of PhI(OPiv)₂ (0.21 mmol, 2 eq) and Et₃N·3HF (0.7 mmol, 3 eq) in dioxane (3 mL) was stirred at room temperature for 5 minutes, then alkynyl thioureas **5** (0.2 mmol, 1 eq) was added. The mixture was stirred at the room temperature for 3 h until alkynyl thioureas **5** was consumed. Then the reaction mixture was quenched with saturated NaHCO₃ solution, extracted with EA, and the combined organic phases were washed with brine, dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel to give product **6**. #### 6. Analytical data. **N-(allyl(phenyl)carbamothioyl)benzamide (1a):** Known compound^[1]. The general procedure from N-allylaniline (669.7 mg, 5 mmol), benzoyl chloride (702.9 mg, 5 mmol), KSCN (971.8 mg, 10 mmol) and acetone (5 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give **1a** as white solid (963.1 mg, 65% yield). *N*-(allyl(4-fluorophenyl)carbamothioyl)benzamide (1b): The general procedure from *N*-allyl-4-fluoroaniline (1663 mg, 11 mmol), benzoyl chloride (1546.6 mg, 11 mmol), KSCN (2138 mg, 22 mmol) and acetone (11 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give **1b** as white solid (2202.8 mg, 64% yield). Mp: 90.3-92.5 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.40 (s, 1H), 7.50
(dd, J = 18.5, 11.4 Hz, 3H), 7.41 – 7.28 (m, 4H), 7.02 (t, J = 8.3 Hz, 2H), 6.02 (m, 1H), 5.27 (dd, J = 25.8, 13.5 Hz, 2H), 5.01 – 4.73 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 180.9, 162.6, 161.4 (d, J = 248.4 Hz), 139.7, 132.8, 132.6, 130.5, 128.7, 127.7, 127.5, 119.4, 116.0 (d, J = 22.9 Hz), 60.1. HRMS (ESI-TOF) m/z: [M+Na]* calculated for C₁₅H₁¬FN₂NaOS 337.0781, found 337.0780. *N*-(allyl(4-chlorophenyl)carbamothioyl)benzamide (1c): The general procedure from *N*-allyl-4-chloroaniline (2222.9 mg, 13.3 mmol), benzoyl chloride (1870 mg, 13.3 mmol), KSCN (2585 mg, 26.6 mmol) and acetone (13 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give $\mathbf{1c}$ as white solid (2637 mg, 60% yield). Mp: 93.9-95.5 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.35 (s, 1H), 7.63 – 7.48 (m, 3H), 7.39 (t, J = 7.7 Hz, 2H), 7.32 – 7.24 (m, 4H), 6.02 (m, 1H), 5.38 – 5.22 (m, 2H), 4.86 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 180.9, 162.5, 142.5, 133.3, 132.8, 132.5, 130.5, 129.2, 128.7, 127.5, 127.1, 119.4, 60.1. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for $C_{15}H_{17}CIN_2NaOS$ 353.0486, found 353.0476. *N*-(allyl(4-bromophenyl)carbamothioyl)benzamide (1d): The general procedure from *N*-allyl-4-bromoaniline (3245 mg, 15.3 mmol), benzoyl chloride (2151.2 mg, 15.3 mmol), KSCN (2973.7 mg, 30.6 mmol) and acetone (15 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give 1d as white solid (3999.1 mg, 70% yield). Mp: 89.9-92.3 °C. 1 H NMR (500 MHz, CDCl₃) δ 8.34 (s, 1H), 7.64 – 7.48 (m, 3H), 7.48 – 7.34 (m, 4H), 7.23 – 7.16 (m, 2H), 6.01 (m, 1H), 5.38 – 5.21 (m, 2H), 4.86 (s, 2H). 13 C NMR (126 MHz, CDCl₃) δ 180.9, 162.5, 143.0, 132.8, 132.4, 132.1, 130.5, 128.7, 127.5, 127.4, 121.3, 119.4, 60.0. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₅H₁₇BrN₂NaOS 396.9981, found 396.9981. *N*-(allyl(4-iodophenyl)carbamothioyl)benzamide (1e): The general procedure from *N*-allyl-4-iodoaniline (3808.6 mg, 14.7 mmol), benzoyl chloride (2066.8 mg, 14.7 mmol), KSCN (2857.1 mg, 30.6 mmol) and acetone (15 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give 1e as white solid (4611.9 mg, 74% yield). Mp: 105.6-109.4 °C. 1 H NMR (500 MHz, CDCl₃) δ 8.34 (s, 1H), 7.71 – 7.61 (m, 2H), 7.61 – 7.46 (m, 3H), 7.39 (t, J = 7.7 Hz, 2H), 7.12 – 7.02 (m, 2H), 6.01 (m, 1H), 5.38 – 5.21 (m, 2H), 4.86 (s, 2H). 13 C NMR (126 MHz, CDCl₃) δ 180.8, 162.5, 143.8, 138.1, 132.8, 132.4, 130.5, 128.7, 127.5, 119.4, 92.9, 60.0. HRMS (ESI-TOF) m/z: $[M+Na]^+$ calculated for $C_{15}H_{17}IN_2NaOS$ 444.9842, found 444.9851. *N*-(allyl(4-(trifluoromethyl)phenyl)carbamothioyl)benzamide (1f): The general procedure from *N*-allyl-4-(trifluoromethyl)aniline (2454.5 mg, 12.2 mmol), benzoyl chloride (1715.3 mg, 12.2 mmol), KSCN (2371.2 mg, 24.4 mmol) and acetone (12 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give **1f** as white solid (2708.8 mg, 61% yield). Mp: 92.3-94.2 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.34 (s, 1H), 7.71 – 7.61 (m, 2H), 7.61 – 7.46 (m, 3H), 7.39 (t, J = 7.7 Hz, 2H), 7.12 – 7.02 (m, 2H), 6.01 (m, 1H), 5.38 – 5.21 (m, 2H), 4.86 (s, 2H).¹³C NMR (126 MHz, CDCl₃) δ 181.3, 162.6, 147.1, 132.7, 132.1, 130.3, 129.2 (q, J = 32.9 Hz), 128.6, 127.5, 126.1, 126.0 (q, J = 3.6 Hz), 123.4 (q, J = 272.2 Hz), 119.3, 59.9. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₈H₁₅F₃N₂NaOS 387.0749, found 387.0748. *N*-(allyl(4-methoxyphenyl)carbamothioyl)benzamide (1g): The general procedure from *N*-allyl-4-methoxyaniline (816.1 mg, 5 mmol), benzoyl chloride (702.9 mg, 5 mmol), KSCN (971.8 mg, 10 mmol) and acetone (5 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give 1g as white solid (1170.8 mg, 68% yield). Mp:93.5-96.1 $^{\circ}$ C. 1 H NMR (500 MHz, CDCl₃) δ 8.38 (s, 1H), 7.64 – 7.42 (m, 3H), 7.40 – 7.24 (m, 3H), 6.98 – 6.73 (m, 3H), 6.04 (m, 1H), 5.36 – 5.20 (m, 2H), 4.88 (s, 2H), 3.77 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 179.7, 163.0, 160.2, 133.2, 132.6, 131.0, 130.1, 128.7, 127.4, 119.2, 118.2, 113.7, 112.0, 59.2, 55.5. HRMS (ESI-TOF) m/z: [M+Na] $^{+}$ calculated for C₁₈H₁₈N₂NaO₂S 367.0887, found 349.0972. *N*-(allyl(2-fluorophenyl)carbamothioyl)benzamide (1h): The general procedure from *N*-allyl-2-fluoroaniline (775.9 mg, 5 mmol), benzoyl chloride (702.9 mg, 5 mmol), KSCN (971.8 mg, 10 mmol) and acetone (5 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give 1h as white solid (903.6 mg, 57% yield). Mp: 125.1-127.2 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.41 (s, 1H), 7.94 – 6.81 (m, 9H), 6.02 (dt, J = 17.0, 8.0 Hz, 1H), 5.43 – 5.14 (m, 2H), 5.08 – 4.66 (m, 2H). 13 C NMR (126 MHz, CDCl₃) δ 181.9, 162.8, 155.9 (d, J = 252 Hz), 132.6 (q, J = 6.3 Hz), 130.3, 129.7 (d, J = 7.8 Hz), 128.7, 128.3, 127.5, 124.4, 119.6, 116.4 (d, J = 20.2 Hz), 59.2. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₅H₁₇FN₂NaOS 337.0781, found 337.0772. *N*-(allyl(3-fluorophenyl)carbamothioyl)benzamide (1i): The general procedure from *N*-allyl-3-fluoroaniline (775.9 mg, 5 mmol), benzoyl chloride (702.9 mg, 5 mmol), KSCN (971.8 mg, 10 mmol) and acetone (5 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give 1i as white solid (817.5 mg, 52% yield). Mp: 109.8-112.3 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.42 (s, 1H), 7.53 (dd, J = 37.0, 7.6 Hz, 3H), 7.44 – 7.23 (m, 3H), 7.10 (dd, J = 30.0, 8.7 Hz, 2H), 6.93 (td, J = 8.3, 2.5 Hz, 1H), 6.02 (m, 1H), 5.30 (dd, J = 32.5, 13.7 Hz, 2H), 4.88 (d, J = 5.9 Hz, 2H). 13 C NMR (126 MHz, CDCl₃) δ 180.8, 162.4 (d, J = 249.5 Hz), 162.6, 145.3 (d, J = 9.7 Hz), 132.8, 132.6, 130.6, 130.1 (d, J = 9.1 Hz), 128.8, 127.5, 121.6, 119.4, 114.8 (d, J = 20.8 Hz), 113.4 (d, J = 23.9 Hz), 60.0. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₅H₁₇FN₂NaOS 337.0781, found 337.0770. *N*-(allyl(2-(thiophen-2-yl)ethyl)carbamothioyl)benzamide (1l): The general procedure from *N*-(2-(thiophen-2-yl)ethyl)prop-2-en-1-amine (1421.8 mg, 8.5 mmol), benzoyl chloride (1195.1 mg, 8.5 mmol), KSCN (1652.1 mg, 17 mmol) and acetone (9 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give 1l as white solid (2321.5 mg, 71% yield). Mp: 96.4-98.1 °C. The spectra of this compound show more peaks because thioamide compounds are easy to isomerize. 1 H NMR (500 MHz, CDCl₃) δ 8.39 (s, 2H), 8.21 (s, 1H), 7.81 (t, J = 11.5 Hz, 6H), 7.53 (dt, J = 52.7, 7.5 Hz, 9H), 7.17 (d, J = 5.2 Hz, 3H), 6.95 (s, 6H), 5.93 (s, 3H), 5.48 (d, J = 17.2 Hz, 1H), 5.36 – 5.12 (m, 5H), 4.57 (d, J = 109.6 Hz, 3H), 4.26 – 3.99 (m, 8H), 3.83 (s, 2H), 3.30 (m, 6H). 13 C NMR (151 MHz, CDCl₃) δ 181.2, 180.4, 163.8, 140.5, 139.8, 132.9, 132.4, 132.1, 130.5, 128.8, 127.8, 127.0, 125.9, 125.6, 124.3, 123.9, 119.8, 118.7, 56.8, 56.1, 54.8, 54.2, 28.3, 26.3. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₇H₁₈N₂NaOS₂ 3853.0753, found 353.0746. *N*-(allyl(2-phenoxyethyl)carbamothioyl)benzamide (1n): The general procedure from *N*-(2-phenoxyethyl)prop-2-en-1-amine (1127.3 mg, 6.34 mmol), benzoyl chloride (891.4 mg, 6.34 mmol), KSCN (1232.2 mg, 12.68 mmol) and acetone (6.5 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give **1n** as purple viscous liquid (1044 mg, 48% yield). The spectra of this compound show more peaks because thioamide compounds are easy to isomerize. ¹H NMR (500 MHz, CDCl₃) δ 8.68 (m, 1H), 7.82 (m, 2H), 7.57 (m, 1H), 7.46 (m, 2H), 7.28 (m, 2H), 7.07 – 6.79 (m, 3H), 5.99 (m, 1H), 5.52 – 5.13 (m, 2H), 4.73 (s, 1H), 4.51 – 3.87 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 181.3, 180.9, 164.5, 163.8, 158.3, 157.7, 133.0, 132.5, 132.2, 130.7, 129.6, 129.5, 128.8, 127.8, 121.8, 121.1, 119.8, 118.9, 114.7, 114.5, 65.9, 64.9, 57.8, 55.9, 52.4, 51.0. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for $C_{19}H_{20}N_2NaO_2S$ 363.1138, found 363.1130. **tert-butyl 4-(1-allyl-3-benzoylthioureido)piperidine-1-carboxylate (10):** The general procedure from tert-butyl 4-(allylamino)piperidine-1-carboxylate (2836.1 mg, 11.8 mmol), benzoyl chloride (1659.4 mg, 11.8 mmol), KSCN (2293.4 mg, 23.6 mmol) and acetone (11.8 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give 1o as white solid (2203.2 mg, 46% yield). Mp: 133.1-135.2 °C. The spectra of this compound show more peaks because thioamide compounds are easy to isomerize. 1 H NMR (500 MHz, CDCl₃) δ 8.33 (s, 1H), 7.82 (m, 2H), 7.54 (m, 3H), 5.87 (m, 1H), 5.56 – 5.02 (m, 3H), 4.59 (s, 1H), 4.19 (m, 3H), 2.74 (m, 2H), 2.00 (m, 2H), 1.76 – 1.63 (m, 2H), 1.46 (s, 9H). 13 C NMR (151 MHz, CDCl₃) δ 181.0, 180.4, 164.1, 163.6, 154.3, 133.3, 132.7, 132.6, 132.2, 131.1, 128.5, 127.7, 117.2, 79.6, 62.0, 61.3, 50.8, 50.0, 43.0, 29.6, 28.6, 28.2. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C_{21} H₂₉ N_3 NaO₃S 426.1822, found 426.1830. *N*-(allyl(phenyl)carbamothioyl)-4-methoxybenzamide (1p): The general procedure from *N*-allylaniline (133.2 mg, 1 mmol), 4-methoxybenzoyl isothiocyanate (193.22 mg, 1 mmol) and THF (10 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 3:1 to give 1p as white solid (296.3 mg, 91% yield). Mp: 119.2-121.3 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.29 (s, 1H), 7.48 (d, J = 8.6 Hz, 2H), 7.41 – 7.19 (m, 5H), 6.82 (d, J = 8.4 Hz, 2H), 6.04 (m, 1H), 5.36 – 5.19 (m, 2H), 4.89 (s, 2H), 3.80 (s,
3H). 13 C NMR (126 MHz, CDCl₃) δ 180.4, 163.1, 162.3, 143.7, 131.0, 129.5, 129.3, 127.9, 126.0, 125.1, 119.1, 113.9, 59.6, 55.4. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for $C_{17}H_{15}IN_2NaOS$ 444.9842, found 349.0971. *N*-(allyl(phenyl)carbamothioyl)-4-fluorobenzamide (1q): The general procedure from *N*-allylaniline (666.0 mg, 5 mmol), 4-fluorobenzoyl chloride (875 mg, 5 mmol), KSCN (971.8 mg, 10 mmol) and acetone (5 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give 1q as white solid (786.6 mg, 46% yield). Mp: 79.3-81.2 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.48 (s, 1H), 7.52 (s, 2H), 7.41 – 7.19 (m, 5H), 7.01 (t, J = 8.2 Hz, 2H), 6.02 (m, 1H), 5.26 (m, 2H), 4.88 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 180.20, 165.15 (d, J = 254.1 Hz), 161.97, 143.42, 130.59, 130.06 (d, J = 9.3 Hz), 129.12, 128.91 (d, J = 3.1 Hz), 127.89, 125.86, 119.13, 115.64 (d, J = 22.1 Hz), 59.50. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for $C_{17}H_{15}FN_2NaOS$ 337.0781, found 337.0774 *N*-(allyl(phenyl)carbamothioyl)-4-chlorobenzamide (1r): The general procedure from *N*-allylaniline (666.0 mg, 5 mmol), 4-chlorobenzoyl chloride (782.9 mg, 5 mmol), KSCN (971.8 mg, 10 mmol) and acetone (5 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give 1r as white solid (757.1 mg, 46% yield). Mp:72.1-74.2 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.27 (s, 1H), 7.51 – 7.39 (m, 2H), 7.39 – 7.21 (m, 7H), 6.03 (m, 1H), 5.37 – 5.19 (m, 2H), 4.89 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 180.0, 162.0, 143.4, 138.9, 131.2, 130.6, 129.2, 128.9, 128.9, 128.0, 125.9, 119.2, 59.5. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for $C_{17}H_{15}CIN_2NaOS$ 353.0486, found 353.0475. N-(allyl(phenyl)carbamothioyl)-4-bromobenzamide (1s): The general procedure from N-allylaniline (666.0 mg, 5 mmol), 4-bromobenzoyl chloride (1097.3 mg, 5 mmol), KSCN (971.8 mg, 10 mmol) and acetone (5 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give **1s** as white solid (1138.8 mg, 61% yield). Mp: 112.2-113.1 °C. 1 H NMR (600 MHz, CDCl₃) δ 8.28 (s, 1H), 7.48 (d, J = 8.1 Hz, 2H), 7.45 – 7.17 (m, 7H), 6.02 (m, 1H), 5.41 – 5.20 (m, 2H), 4.89 (s, 2H). 13 C NMR (126 MHz, CDCl₃) δ 180.0, 162.2, 143.3, 131.8, 131.6, 130.5, 129.2, 129.1, 128.0, 127.4, 125.9, 119.2, 59.5. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C_{17} H₁₅BrN₂NaOS 396.9981, found 396.9977. *N*-(allyl(phenyl)carbamothioyl)-4-iodobenzamide (1t): The general procedure from *N*-allylaniline (666.0 mg, 5 mmol), 4-iodobenzoyl chloride (1332.3 mg, 5 mmol), KSCN (971.8 mg, 10 mmol) and acetone (5 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give 1t as white solid (1439.5 mg, 68% yield). Mp: 118.5-121.3 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.40 (s, 1H), 7.69 (d, J = 8.0 Hz, 2H), 7.47 – 7.06 (m, 7H), 6.02 (m, 1H), 5.27 (dd, J = 25.2, 13.8 Hz, 2H), 4.88 (s, 2H). 13 C NMR (126 MHz, CDCl₃) δ 179.9, 162.4, 143.4, 137.8, 132.2, 130.6, 129.2, 128.9, 128.0, 125.9, 119.3, 100.1, 59.5. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₇H₁₅IN₂NaOS 444.9842, found 444.9846. methyl 4-((allyl(phenyl)carbamothioyl)carbamoyl)benzoate (1u): The general procedure from *N*-allylaniline (666.0 mg, 5 mmol), methyl 4-(chlorocarbonyl)benzoate (993 mg, 5 mmol), KSCN (971.8 mg, 10 mmol) and acetone (5 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 3:1 to give 1u as white solid (1034.4 mg, 58% yield). Mp: 112.1-114.4 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.32 (s, 1H), 8.00 (d, J = 8.0 Hz, 2H), 7.55 (s, 2H), 7.38 (t, J = 7.7 Hz, 2H), 7.34 – 7.21 (m, 3H), 6.04 (m, 1H), 5.38 – 5.18 (m, 2H), 4.89 (s, 2H), 3.92 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 179.6, 165.9, 162.2, 143.4, 136.7, 133.6, 130.6, 129.8, 129.3, 128.2, 127.5, 126.0, 119.4, 59.6, 52.4. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₉H₁₈N₂NaO₃S 377.0930, found 377.0921. *N*-(allyl(phenyl)carbamothioyl)-2-fluorobenzamide (1v): The general procedure from *N*-allylaniline (666.0 mg, 5 mmol), 2-fluorobenzoyl chloride (792.8 mg, 5 mmol), KSCN (971.8 mg, 10 mmol) and acetone (5 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give 1v as white solid (1114.7 mg, 71% yield). Mp: 103.7-106.4 °C. 1 H NMR (600 MHz, CDCl₃) δ 8.73 (d, J = 13.2 Hz, 1H), 7.86 (t, J = 7.8 Hz, 1H), 7.47 – 7.38 (m, 3H), 7.33 (td, J = 7.2, 1.3 Hz, 1H), 7.31 – 7.25 (m, 2H), 7.19 (t, J = 7.6 Hz, 1H), 6.99 (dd, J = 12.1, 8.3 Hz, 1H), 6.04 (m, 1H), 5.31 – 5.16 (m, 2H), 4.99 – 4.81 (m, 2H). 13 C NMR (126 MHz, CDCl₃) δ 178.50, 159.91 (d, J = 123.5 Hz), 159.30 (d, J = 3.4 Hz), 142.59, 134.26 (d, J = 9.3 Hz), 132.15, 130.76, 129.56, 128.36, 126.31, 124.86 (d, J = 3.2 Hz), 120.25 (d, J = 10.1 Hz), 119.18, 115.98 (d, J = 24.3 Hz), 58.84. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C_{17} H₁₅FN₂NaOS 337.0781, found 337.0773. *N*-(allyl(phenyl)carbamothioyl)-3-methoxybenzamide (1w): The general procedure from *N*-allylaniline (666.0 mg, 5 mmol), 3-methoxybenzoyl chloride (853.0 mg, 5 mmol), KSCN (971.8 mg, 10 mmol) and acetone (5 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 3:1 to give 1w as white solid (1011.5 mg, 62% yield). Mp: 106.3-108.1 °C. 1 H NMR (600 MHz, CDCl₃) δ 8.33 (s, 1H), 7.44 – 7.15 (m, 6H), 7.11 – 6.89 (m, 3H), 6.04 (m, 1H), 5.27 (m, 2H), 4.89 (s, 2H), 3.76 (s, 3H). 13 C NMR (151 MHz, CDCl₃) δ 179.9, 162.6, 159.6, 143.4, 134.1, 130.7, 129.5, 129.2, 127.9, 125.9, 119.2, 119.1, 118.9, 112.3, 59.4, 55.3. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₈H₁₈FN₂NaO₂S 349.0981, found 349.0971. *N*-(allyl(phenyl)carbamothioyl)furan-3-carboxamide (1x): The general procedure from *N*-allylaniline (666.0 mg, 5 mmol), furan-3-carbonyl chloride (652.7 mg, 5 mmol), KSCN (971.8 mg, 10 mmol) and acetone (5 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give 1x as white solid (901.4 mg, 63% yield). Mp: 97.2-98.1 °C. 1 H NMR (500 MHz, CDCl₃) δ 8.57 (s, 1H), 7.62 – 7.17 (m, 6H), 7.07 (d, J = 3.7 Hz, 1H), 6.44 (d, J = 3.7 Hz, 1H), 6.02 (m, 1H), 5.24 (m, 2H), 4.88 (s, 2H). 13 C NMR (126 MHz, CDCl₃) δ 178.2, 152.6, 146.2, 144.8, 142.9, 130.8, 129.4, 128.1, 126.1, 119.1, 11695, 112.6, 59.0. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₅H₁₄N₂NaO₂S 309.0668, found 309.0661. *N*-(allyl(phenyl)carbamothioyl)thiophene-2-carboxamide (1y): The general procedure from *N*-allylaniline (666.0 mg, 5 mmol), thiophene-2-carbonyl chloride (733 mg, 5 mmol), KSCN (971.8 mg, 10 mmol) and acetone (5 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give 1y as white solid (899.9 mg, 60% yield). Mp: 114.2-117.3 °C.¹H NMR (500 MHz, CDCl₃) δ 8.29 (s, 1H), 7.48 (d, J = 4.9 Hz, 1H), 7.39 (t, J = 7.7 Hz, 2H), 7.28 (dd, J = 13.8, 6.2 Hz, 4H), 6.99 (t, J = 4.3 Hz, 1H), 6.03 (m, 1H), 5.42 – 5.10 (m, 2H), 4.98 – 4.71 (m, 2H). 13 C NMR (151 MHz, CDCl₃) δ 179.1, 156.9, 143.0, 137.2, 132.2, 130.7, 129.9, 129.3, 128.0, 127.7, 126.0, 119.1, 59.1. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₅H₁₄N₂NaOS₂ 325.0440, found 325.0431. *N*-(allyl(phenyl)carbamothioyl)pivalamide (1z): The general procedure from *N*-allylaniline (666.0 mg, 5 mmol), pivaloyl chloride (602.9 mg, 5 mmol), KSCN (971.8 mg, 10 mmol) and acetone (5 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give 1z as white solid (931.7 mg, 67% yield). Mp: 102.3-105.9 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.81 (s, 1H), 7.38 (t, J = 7.8 Hz, 2H), 7.34 – 7.26 (m, 1H), 7.23 (dd, J = 7.4, 1.7 Hz, 2H), 6.00 (m, 1H), 5.32 – 5.17 (m, 2H), 4.84 (d, J = 6.0 Hz, 2H), 0.90 (s, 9H). 13 C NMR (151 MHz, CDCl₃) δ 180.3, 173.2, 143.4, 130.8, 129.1, 127.9, 126.3, 119.1, 59.3, 39.6, 26.7. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₅H₂₀N₂NaOS 299.1189, found 299.1184. *N*-(allyl(phenyl)carbamothioyl)cyclohexanecarboxamide (1aa): The general procedure from *N*-allylaniline (666.0 mg, 5 mmol), cyclohexanecarbonyl chloride (733.6 mg, 5 mmol), KSCN (971.8 mg, 10 mmol) and acetone (5 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give 1aa as white solid (751.7 mg, 50% yield). Mp:81.9-83.2 °C. 1 H NMR (600 MHz, CDCl₃) δ 7.82 (s, 1H), 7.37 (t, J = 7.8 Hz, 2H), 7.28 (dd, J = 14.2, 6.7 Hz, 1H), 7.21 (d, J = 7.7 Hz, 2H), 5.99 (m, 1H), 5.23 (dd, J = 21.8, 13.7 Hz, 2H), 4.95 – 4.70 (m, 2H), 2.18 (tt, J = 11.5, 3.4 Hz, 1H), 1.60 m, 5H), 1.22 – 0.96 (m, 5H). 13 C NMR (151 MHz, CDCl₃) δ 180.6, 171.7, 143.6, 130.8, 128.9, 127.7, 126.1, 119.0, 59.5, 45.0, 28.6, 25.4, 25.1. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₇H₂₂N₂NaOS 325.1351, found 325.1336. *N*-(allyl(phenyl)carbamothioyl)-2-phenylacetamide (1ab): The general procedure from *N*-allylaniline (666.0 mg, 5 mmol), 2-phenylacetyl chloride (773.0 mg, 5 mmol), KSCN (971.8 mg, 10 mmol) and acetone (5 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give 1ab as white solid (568.6 mg, 37% yield). Mp: 78.7-79.1 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.66 (s, 1H), 7.37 – 7.27 (m, 3H), 7.21 (q, J = 7.3 Hz, 3H), 7.11 – 6.83 (m, 4H), 5.93 (m, 1H), 5.16 (m, 2H), 4.75 (d, J = 5.6 Hz, 2H), 3.61 (s, 2H). 13 C NMR (126 MHz, CDCl₃) δ 178.6, 167.4, 142.3, 133.0, 130.7, 129.6, 129.2, 129.0, 128.2, 127.4, 126.2, 119.2, 58.8, 44.3. HRMS (ESI-TOF) m/z: [M+Na]⁺
calculated for $C_{18}H_{18}N_2NaOS$ 333.1032, found 333.1023. *N*-((2-methylallyl)(phenyl)carbamothioyl)benzamide (1ac): The general procedure from *N*-(2-methylallyl)aniline (1472.2 mg, 10 mmol), benzoyl chloride (1406 mg, 10 mmol), KSCN (1943.6 mg, 20 mmol) and acetone (10 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give 1ac as white solid (1770.8 mg, 57% yield). Mp: 121.1-123.4 °C.¹H NMR (600 MHz, CDCl₃) δ 8.37 (s, 1H), 7.50 (dt, J = 23.4, 7.5 Hz, 3H), 7.40 – 7.30 (m, 6H), 7.22 (t, J = 7.1 Hz, 1H), 5.12 (s, 1H), 4.99 (s, 1H), 4.90 (s, 2H), 1.86 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 181.0, 162.6, 144.0, 138.7, 132.7, 132.5, 128.9, 128.5, 127.6, 127.4, 125.3, 113.6, 62.4, 20.5. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₈H₁₈N₂NaOS 333.1032, found 333.1022. *N*-((3-methylbut-2-en-1-yl)(phenyl)carbamothioyl)benzamide (1ad): The general procedure from N-(3-methylbut-2-en-1-yl)aniline (1612.5 mg, 10 mmol), benzoyl chloride (1406 mg, 10 mmol), KSCN (1943.6 mg, 20 mmol) and acetone (10 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give 1ad as white solid (1930.2 mg, 59% yield). Mp: 112.2-113.4 °C. 1 H NMR (500 MHz, CDCl₃) δ 8.34 (s, 1H), 7.47 (q, J = 8.8, 7.8 Hz, 3H), 7.40 – 7.21 (m, 7H), 5.45 (t, J = 7.2 Hz, 1H), 4.87 (s, 2H), 1.69 (s, 3H), 1.44 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 179.4, 162.8, 143.3, 137.7, 133.0, 132.5, 129.2, 128.6, 127.9, 127.4, 126.4, 117.3, 55.0, 25.6, 17.8. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₉H₂₀N₂NaOS 347.1189, found 347.1178. N-((4-methoxyphenyl)(3-methylbut-2-en-1-yl)carbamothioyl)benzamide (1ae): The general procedure from 4-methoxy-N-(3-methylbut-2-en-1-yl)aniline (1912.7 mg, 10 mmol), benzoyl chloride (1406 mg, 10 mmol), KSCN (1943.6 mg, 20 mmol) and acetone (10 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give **1ae** as white solid (2020.7 mg, 57% yield). Mp: 112.2-113.4 °C. 1 H NMR (600 MHz, CDCl₃) δ 8.23 (s, 1H), 7.48 (t, J = 7.2 Hz, 3H), 7.34 (t, J = 7.7 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 8.5 Hz, 2H), 5.44 (d, J = 7.9 Hz, 1H), 4.85 (d, J = 7.0 Hz, 2H), 3.77 (s, 3H), 1.70 (s, 3H), 1.46 (s, 3H). 13 C NMR (151 MHz, CDCl₃) δ 179.33, 162.90, 158.78, 137.55, 135.51, 133.15, 132.39, 128.56, 128.45, 127.43, 127.36, 127.30, 114.30, 55.29, 54.88, 25.59, 17.85. N-(cyclohex-2-en-1-yl(phenyl)carbamothioyl)benzamide (1af): The general procedure from N-(cyclohex-2- en-1-yl)aniline (1727.0 mg, 10 mmol), benzoyl chloride (1406 mg, 10 mmol), KSCN (1943.6 mg, 20 mmol) and acetone (10 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give **1af** as white solid (2007.1 mg, 60% yield). Mp: 125.5-127.3 °C. 1 H NMR (600 MHz, CDCl₃) δ 8.16 (s, 1H), 7.55 – 7.16 (m, 10H), 6.30 (s, 1H), 5.83 (d, J = 14.1 Hz, 2H), 2.24 – 2.07 (m, 1H), 1.99 – 1.76 (m, 2H), 1.63 (m, 2H), 1.44 (q, J = 11.6 Hz, 1H). 13 C NMR (126 MHz, CDCl₃) δ 179.5, 163.3, 139.4, 133.3, 132.3, 131.0, 129.0, 128.7, 128.5, 128.3, 127.1, 126.9, 59.0, 26.8, 24.2, 20.8. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for $C_{20}H_{20}N_2NaOS$ 359.1189, found 359.1179. *N*-(cinnamyl(phenyl)carbamothioyl)benzamide (1ag): The general procedure from *N*-cinnamylaniline (1465.0 mg, 7 mmol), benzoyl chloride (984.2 mg, 7 mmol), KSCN (1360.5 mg, 14 mmol) and acetone (7 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether : ethyl acetate = 10:1 to give 1ag as white solid (1647.2 mg, 63% yield). Mp: 121.4-123.7 °C. 1 H NMR (600 MHz, CDCl₃) δ 8.36 (s, 1H), 7.47 (dt, J = 15.2, 7.2 Hz, 3H), 7.30 (m, 12H), 6.61 – 6.35 (m, 2H), 5.03 (s, 2H). 13 C NMR (151 MHz, CDCl₃) δ 179.8, 162.8, 143.2, 136.4, 134.5, 133.0, 132.6, 129.4, 128.7, 128.5, 128.1, 127.8, 127.4, 126.5, 126.3, 122.0, 59.1. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₂₃H₂₀N₂NaOS 395.1189, found 395.1186. (E)-N-(dec-6-en-5-yl(phenyl)carbamothioyl)benzamide (1ah): The general procedure from (E)-N-(dec-6-en-5-yl)aniline (343.3 mg, 1.22 mmol), benzoyl isothiocyanate (199.1 mg, 1.22 mmol) and THF (12 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give **1ah** as yellow liquid (365.4 mg, 72% yield). There is a small amount of impurities mixed in the product, but it can still be used for the next step. 1 H NMR (500 MHz, CDCl₃) δ 8.07 (s, 1H), 7.29 (m, 6H), 7.22 – 7.10 (m, 4H), 6.06 (d, J = 8.1 Hz, 1H), 5.73 (dt, J = 14.8, 6.8 Hz, 1H), 5.08 (dd, J = 15.8, 7.9 Hz, 1H), 1.91 (dq, J = 14.4, 7.8, 7.2 Hz, 2H), 1.70 (dq, J = 9.6, 4.9 Hz, 1H), 1.28 (m, 6H), 0.80 (m, 8H). 13 C NMR (126 MHz, CDCl₃) δ 179.1, 163.3, 139.2, 135.9, 133.4, 132.2, 128.9, 128.6, 128.5, 127.4, 127.1, 63.6, 34.4, 32.0, 28.2, 26.8, 22.4, 22.0, 13.9, 13.6. *N*-(but-3-en-1-yl(phenyl)carbamothioyl)benzamide (1ai): The general procedure from *N*-(but-3-en-1-yl)aniline (906.9 mg, 6.16 mmol), benzoyl chloride (866.1 mg, 6.16 mmol), KSCN (1197.3 mg, 12.32 mmol) and acetone (6.2 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give 1ai as white solid (1057.6 mg, 55% yield). Mp: 122.3-124.3 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.30 (s, 1H), 7.69 – 7.15 (m, 10H), 5.82 (m, 1H), 5.10 (m, 2H), 4.34 (s, 2H), 2.56 (q, J = 7.6 Hz, 2H). 13 C NMR (151 MHz, CDCl₃) δ 179.8, 162.7, 143.1, 134.3, 132.9, 132.5, 129.3, 128.6, 128.0, 127.4, 126.2, 117.1, 56.1, 30.6. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₈H₁₈N₂NaOS 333.1032, found 333.1022. *N*-(but-3-en-1-yl(phenethyl)carbamothioyl)benzamide (1aj): The general procedure from *N*-phenethylbut-3-en-1-amine (1752.8 mg, 10 mmol), benzoyl chloride (1406 mg, 10 mmol), KSCN (1943.6 mg, 20 mmol) and acetone (10 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give 1aj as white solid (2034.5 mg, 60% yield). The spectra of this compound show more peaks because thioamide compounds are easy to isomerize. ¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, J = 163.8 Hz, 1H), 7.78 (m, 2H), 7.52 (m, 3H), 7.40 – 7.01 (m, 6H), 6.03 – 5.57 (m, 1H), 5.15 (m, 2H), 4.10 (m, 2H), 3.69 (m, 2H), 3.07 (m, 2H), 2.75 – 2.31 (m, 2H).¹³C NMR (126 MHz, CDCl₃) δ 180.3, 163.8, 138.3, 137.7, 134.4, 133.7, 132.8, 132.4, 128.8, 128.7, 128.5, 127.7, 126.7, 126.5, 117.9, 117.2, 55.4, 55.2, 53.4, 53.2, 34.4, 32.3, 30.4. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₀H₂₂N₂NaOS 361.1345, found 361.1335. ethyl 3-(3-benzoyl-1-(but-3-en-1-yl)thioureido)propanoate (1ak): The general procedure from ethyl 3-(but-3-en-1-ylamino)propanoate (513.7 mg, 3 mmol), benzoyl isothiocyanate (489.7 mg, 3 mmol) and THF (30 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give 1ak as white solid (602.4 mg, 60% yield). The spectra of this compound show more peaks because thioamide compounds are easy to isomerize. 1 H NMR (500 MHz, CDCl₃) δ 8.74 (m, 1H), 7.98 – 7.73 (m, 2H), 7.52 (m, 3H), 6.05 – 5.56 (m, 1H), 5.30 – 4.98 (m, 2H), 4.33 – 4.07 (m, 3H), 3.91 (d, J = 40.0 Hz, 2H), 3.66 (s, 1H), 3.08 – 2.65 (m, 2H), 2.53 (d, J = 56.6 Hz, 2H), 1.40 – 1.14 (m, 3H). 13 C NMR (151 MHz, CDCl₃) δ 180.7, 171.5,164.4, 163.7, 134.3, 133.7, 132.8, 128.7, 127.8, 118.0, 117.3, 61.2, 60.8, 53.6, 52.3, 48.9, 48.2, 32.4, 31.4, 30.1, 14.0. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for $C_{17}H_{22}N_2NaO_3S$ 357.1243, found 357.1234. *N*-((4-methylpent-3-en-1-yl)(phenethyl)carbamothioyl)benzamide (1al): The general procedure from 4-methyl-*N*-phenethylpent-3-en-1-amine (610.0 mg, 3 mmol), benzoyl isothiocyanate (489.7 mg, 3 mmol) and THF (30 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give 1al as white solid (844.8 mg, 83% yield). Mp: 72.1-74.2 °C.The spectra of this compound show more peaks because thioamide compounds are easy to isomerize. 1H NMR (500 MHz, CDCl₃) δ 8.27 (m, 1H), 7.94 – 6.83 (m, 10H), 5.09 (m, 1H), 4.31 – 3.39 (m, 4H), 3.07 (m, 2H), 2.75 – 2.22 (m, 2H), 1.94 – 1.44 (m, 6H). 13 C NMR (151 MHz, CDCl₃) δ 179.9, 163.6, 138.4, 135.3, 134.9, 132.7, 132.5, 128.7, 128.5, 127.6, 126.6, 126.4, 119.6, 119.1, 55.4, 55.1, 53.7, 53.5, 34.4, 32.3, 26.8, 25.6, 24.9, 17.8, 17.6. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for $C_{22}H_{26}N_2NaOS$ 389.1658, found 389.1657. (Z)-*N*-(5-(fluoromethyl)-3-phenylthiazolidin-2-ylidene)benzamide (2a): The general procedure from *N*-(allyl(phenyl)carbamothioyl)benzamide 1a (59.3 mg, 0.2 mmol), Phl(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using petroleum ether: dichloromethane = 1:2 to give 2a as white solid (53.9 mg, 86% yield). Mp: 100-104.3 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.26 – 8.01 (m, 2H), 7.65 – 7.43 (m, 5H), 7.35 (dt, J = 16.3, 7.4 Hz, 3H), 4.59 (dd, J = 9.6, 4.7 Hz, 0.5H), 4.51 (m, 1H), 4.43 (t, J = 9.7 Hz, 0.5H), 4.28 (dd, J = 11.1, 6.9 Hz, 1H), 4.18 (dd, J = 11.1, 2.4 Hz, 1H), 3.88 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 176.2, 169.1, 140.1, 136.0, 132.2, 129.8, 129.0, 128.1, 126.9, 124.7, 82.2 (d, J = 178.9 Hz), 53.4 (d, J = 3.0 Hz), 40.2 (d, J = 21.0 Hz). ¹³F NMR (565 MHz, CDCl₃) δ -211.77. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₇H₁₅FN₂NaOS 337.0781, found 337.0774. 2b (Z)-N-(5-(fluoromethyl)-3-(4-fluorophenyl)thiazolidin-2-ylidene)benzamide (2b): The general procedure from
N-(allyl(4-fluorophenyl)carbamothioyl)benzamide 1b (51.9 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give **2b** as white solid (51.9 mg, 78% yield). Mp: 90.0-92.7 °C. 1 H NMR (500 MHz, CDCl₃) δ 8.14 – 8.04 (m, 2H), 7.47 (m, 3H), 7.37 (dd, J = 8.3, 7.0 Hz, 2H), 7.23 – 7.13 (m, 2H), 4.55 – 4.47 (m, 0.5H), 4.41 (t, J = 9.6 Hz, 1H), 4.23 (dd, J = 11.1, 6.9 Hz, 0.5H), 4.12 (dd, J = 11.1, 2.5 Hz, 1H), 3.88 (m, 1H). 13 C NMR (151 MHz, CDCl₃) δ 176.13, 169.32, 160.88 (d, J = 247.5 Hz), 135.98, 135.85, 132.31, 129.71, 128.08, 126.63 (d, J = 8.1 Hz), 115.89 (d, J = 22.8 Hz), 82.19 (d, J = 179.0 Hz), 53.40 (d, J = 3.0 Hz), 40.27 (d, J = 20.8 Hz). 19 F NMR (565 MHz, CDCl₃) δ -114.00, -212.24. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₇H₁₄F₂N₂NaOS 355.0687, found 355.0676. 2c (**Z**)-*N*-(3-(4-chlorophenyl)-5-(fluoromethyl)thiazolidin-2-ylidene)benzamide (2c): The general procedure from *N*-(allyl(4-chlorophenyl)carbamothioyl)benzamide 1c (66.2 mg, 0.2 mmol), Phl(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2c as white solid (51.6 mg, 74% yield). Mp: 120.5-127.2 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.16 – 8.04 (m, 2H), 7.53 – 7.42 (m, 5H), 7.38 (dd, J = 8.4, 7.0 Hz, 2H), 4.58 (dd, J = 9.6, 4.7 Hz, 0.5H), 4.55 – 4.45 (m, 1H), 4.40 (t, J = 9.6 Hz, 0.5H), 4.23 (dd, J = 11.1, 7.0 Hz, 1H), 4.11 (dd, J = 11.0, 2.6 Hz, 1H), 3.87 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 176.1, 169.1, 138.5, 135.8, 132.4, 132.1, 129.7, 129.0, 128.1, 125.8, 82.1 (d, J = 179.3 Hz), 53.1 (d, J = 3.1 Hz), 40.2 (d, J = 21.0 Hz). ¹³F NMR (565 MHz, CDCl₃) δ -212.26. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₇H₁₄CIFN₂NaOS 371.0392, found 371.0386. 2d (Z)-*N*-(3-(4- bromophenyl)-5-(fluoromethyl)thiazolidin-2-ylidene)benzamide (2d): The general procedure from *N*-(allyl(4-bromophenyl)carbamothioyl)benzamide 1d (75.1 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2d as white solid (56.5 mg, 72% yield). Mp: 84.9-89.1 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.10 (dd, J = 8.3, 1.4 Hz, 2H), 7.60 (d, J = 8.7 Hz, 2H), 7.53 – 7.45 (m, 1H), 7.45 – 7.33 (m, 4H), 4.59 (dd, J = 9.6, 4.7 Hz, 0.5H), 4.49 (m, 1H), 4.40 (t, J = 9.6 Hz, 0.5H), 4.24 (dd, J = 11.0, 7.0 Hz, 1H), 4.12 (dd, J = 11.0, 2.5 Hz, 1H), 3.87 (m, 1H).¹³C NMR (126 MHz, CDCl₃) δ 176.1, 169.1, 139.1, 135.8, 132.4, 132.0, 129.8, 128.14 126.1, 120.0, 82.1 (d, J = 179.2 Hz), 53.0 (d, J = 3.0 Hz), 40.2 (d, J = 20.9 Hz). ¹¹F NMR (565 MHz, CDCl₃) δ -212.17. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₇H₁₄BrFN₂NaOS 414.9886, found 414.9883. 2e (Z)-*N*-(5-(fluoromethyl)-3-(4-iodophenyl)thiazolidin-2-ylidene)benzamide (2e): The general procedure from *N*-(allyl(4-iodophenyl)carbamothioyl)benzamide 1e (84.5 mg, 0.2 mmol), Phl(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2e as white solid (74.6 mg, 85% yield). Mp: 98.1-102.4 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.10 (dd, J = 8.3, 1.4 Hz, 2H), 7.83 – 7.74 (m, 2H), 7.52 – 7.45 (m, 1H), 7.43 – 7.35 (m, 2H), 7.35 – 7.26 (m, 2H), 4.57 (dd, J = 9.6, 4.7 Hz, 0.5H), 4.48 (m, 1H), 4.38 (t, J = 9.6 Hz, 0.5H), 4.22 (dd, J = 11.0, 7.0 Hz, 1H), 4.10 (dd, J = 11.0, 2.6 Hz, 1H), 3.92 – 3.80 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 176.1, 169.0, 139.7, 137.9, 135.7, 132.4, 129.7, 128.1, 126.2, 91.1, 82.1 (d, J = 179.2 Hz), 52.9 (d, J = 3.0 Hz), 40.2 (d, J = 21.0 Hz). ¹³F NMR (565 MHz, CDCl₃) δ -212.19. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₇H₁₄IFN₂NaOS 462.9748, found 462.9760. 2f (Z)-*N*-(5-(fluoromethyl)-3-(4-(trifluoromethyl)phenyl)thiazolidin-2-ylidene)benzamide (2f): The general procedure from *N*-(allyl(4-(trifluoromethyl)phenyl)carbamothioyl)benzamide 1f (72.9 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2f as white solid (60.8 mg, 87% yield).Mp: 126.7-127.7 °C. 1 H NMR (500 MHz, CDCl₃) δ 8.17 – 8.07 (m, 2H), 7.80 – 7.66 (m, 4H), 7.54 – 7.46 (m, 1H), 7.40 (dd, J = 8.3, 7.0 Hz, 2H), 4.59 (dd, J = 9.6, 4.7 Hz, 0.5H), 4.50 (m, 1H), 4.40 (t, J = 9.6 Hz, 0.5H), 4.30 (dd, J = 10.9, 6.9 Hz, 1H), 4.17 (dd, J = 10.9, 2.6 Hz, 1H), 3.89 (m, Hz, 1H). 13 C NMR (126 MHz, CDCl₃) δ 176.2, 169.3, 143.0, 135.6, 132.6, 129.8, 128.2 (q, J = 32.8 Hz), 128.2, 126.0 (q, J = 3.7 Hz), 123.8 (q, J = 272.2 Hz), 124.3, 82.1 (d, J = 179.4 Hz), 52.8 (d, J = 3.1 Hz), 40.2 (d, J = 21.0 Hz). 19 F NMR (565 MHz, CDCl₃) δ -62.31, -212.45. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₈H₁₄F₄N₂NaOS 405.0655, found 405.0653. 2g (Z)-*N*-(5-(fluoromethyl)-3-(4-methoxyphenyl)thiazolidin-2-ylidene)benzamide (2g): The general procedure from *N*-(allyl(4-methoxyphenyl)carbamothioyl)benzamide **1g** (65.3 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give **2g** as yellow liquid (22.4 mg, 33% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.10 (dd, J = 8.3, 1.4 Hz, 2H), 7.83 – 7.74 (m, 2H), 7.52 – 7.45 (m, 1H), 7.43 – 7.35 (m, 2H), 7.35 – 7.26 (m, 2H), 4.57 (dd, J = 9.6, 4.7 Hz, 0.5H), 4.48 (m, 1H), 4.38 (t, J = 9.6 Hz, 0.5H), 4.22 (dd, J = 11.0, 7.0 Hz, 1H), 4.10 (dd, J = 11.0, 2.6 Hz, 1H), 3.92 – 3.80 (m, 1H). 13 C NMR (151 MHz, CDCl₃) δ 176.1, 169.0, 139.7, 137.9, 135.7, 132.4, 129.7, 128.1, 126.2, 91.1, 82.1 (d, J = 179.2 Hz), 52.9 (d, J = 3.0 Hz), 40.2 (d, J = 21.0 Hz). 19 F NMR (565 MHz, CDCl₃) δ -212.19. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₇H₁₄IFN₂NaOS 462.9748, found 462.9760. (Z)-*N*-(5-(fluoromethyl)-3-(2-fluorophenyl)thiazolidin-2-ylidene)benzamide (2h): The general procedure from *N*-(allyl(2-fluorophenyl)carbamothioyl)benzamide 1h (62.9 mg, 0.2 mmol), Phl(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2h as yellow liquid (47.5 mg, 72% yield). 1 H NMR (500 MHz, CDCl₃) δ 8.03 (dd, J = 8.3, 1.4 Hz, 2H), 7.53 – 7.36 (m, 3H), 7.36 – 7.21 (m, 4H), 4.62 – 4.54 (m, 1H), 4.53 – 4.44 (m, 1H), 4.18 (dd, J = 11.1, 6.9 Hz, 1H), 4.08 (dd, J = 11.1, 2.2 Hz, 1H), 3.92 (m, 1H). 13 C NMR (151 MHz, CDCl₃) δ 176.2, 169.9, 157.3 (d, J = 251.3 Hz), 135.8, 132.2, 129.8, 129.6 (d, J = 7.8 Hz), 128.8, 128.0, 127.4 (d, J = 11.8 Hz), 124.5 (d, J = 3.7 Hz), 116.8 (d, J = 19.9 Hz), 82.1 (d, J = 179.0 Hz), 52.6 (t, J = 2.9 Hz), 41.2 (d, J = 21.1 Hz). 19 F NMR (565 MHz, CDCl₃) δ -119.45, -211.73. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₇H₁₄F₂N₂NaOS 355.0687, found 355.0682. (Z)-N-(5-(fluoromethyl)-3-(3-fluorophenyl)thiazolidin-2-ylidene)benzamide (3i): The general procedure from N-(allyl(3-fluorophenyl)carbamothioyl)benzamide 1i (62.9 mg, 0.2 mmol), $Phl(OPiv)_2$ (92.5 mg, 0.23 mmol), Et_3N -3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give **2i** as yellow liquid (54.7 mg, 86% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.18 – 8.09 (m, 2H), 7.54 – 7.35 (m, 5H), 7.30 (dd, J = 8.2, 2.1 Hz, 1H), 7.04 (td, J = 8.2, 2.5 Hz, 1H), 4.59 (dd, J = 9.6, 4.7 Hz, 0.5H), 4.50 (m, 1H), 4.40 (t, J = 9.6 Hz, 0.5H), 4.26 (dd, J = 11.0, 6.9 Hz, 1H), 4.16 (dd, J = 11.0, 2.5 Hz, 1H), 3.88 (m, Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 176.20, 169.10, 162.62 (d, J = 246.8 Hz), 141.36 (d, J = 10.0 Hz), 135.77, 132.43, 130.03 (d, J = 9.2 Hz), 129.79, 128.16, 119.64 (d, J = 3.2 Hz), 113.61 (d, J = 21.1 Hz), 112.20 (d, J = 24.9 Hz), 82.11 (d, J = 179.3 Hz), 53.10 (d, J = 3.0 Hz), 40.15 (d, J = 20.9 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -111.16, -212.12. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₇H₁₄F₂N₂NaOS 355.0687, found 355.0677. 2j (2)-*N*-(3-benzyl-5-(fluoromethyl)thiazolidin-2-ylidene)benzamide (2j): The general procedure from *N*-(allyl(benzyl)carbamothioyl)benzamidee 1j (62.1 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2j as white solid (40.8 mg, 62% yield). Mp: 122.2-125.8 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.34 – 8.27 (m, 2H), 7.55 – 7.47 (m, 1H), 7.43 (dd, J = 8.3, 6.8 Hz, 2H), 7.40 – 7.30 (m, 5H), 5.06 – 4.94 (m, 2H), 4.41 (m, 1H), 4.25 (dt, J = 47.6, 9.6 Hz, 1H), 3.75 (m, 1H), 3.70 – 3.60 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 176.0, 170.2, 136.3, 135.4, 132.1, 129.7, 129.0, 128.2, 128.2, 128.1, 82.5 (d, J = 178.8 Hz), 51.3, 50.2 (d, J = 3.1 Hz), 40.3 (d, J = 20.7 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -212.12. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₈H₁₇FN₂NaOS 351.0938, found 351.0935. 2k (Z)-*N*-(3-benzhydryl-5-(fluoromethyl)thiazolidin-2-ylidene)benzamide (3k): The general procedure from *N*-(allyl(benzhydryl)carbamothioyl)benzamide 1k (77.3 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2k as white solid (52.8 mg, 65% yield).Mp: 122.7-124.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.30 – 8.15 (m, 2H), 7.52 – 7.45 (m, 1H), 7.44 – 7.26 (m, 13H), 4.48 (dd, J = 9.6, 4.9 Hz, 0.5H), 4.44 – 4.32 (m, 1H), 4.26 (t, J = 9.6 Hz, 0.5H), 3.73 (m,
1H), 3.63 (dd, J = 11.5, 2.9 Hz, 1H), 3.54 (dd, J = 11.6, 7.4 Hz, 1H).¹³C NMR (126 MHz, CDCl₃) δ 176.0, 170.3, 137.8, 137.0, 136.2, 132.1, 129.7, 129.0, 128.8, 128.8, 128.2, 128.1, 128.0, 128.0, 82.4 (d, J = 179.0 Hz), 63.5, 48.0 (d, J = 2.9 Hz), 40.3 (d, J = 21.0 Hz). ¹¹F NMR (565 MHz, CDCl₃) δ -212.21. HRMS (ESI-TOF) m/z: [M+Na]* calculated for C₂₄H₂₁FN₂NaOS 427.1251, found 427.1253. (2)-*N*-(5-(fluoromethyl)-3-(2-(thiophen-2-yl)ethyl)thiazolidin-2-ylidene)benzamide (2l): The general procedure from *N*-(allyl(2-(thiophen-2-yl)ethyl)carbamothioyl)benzamide **1l** (66.1 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give **2l** as yellow liquid (36.6 mg, 53% yield). 1 H NMR (500 MHz, CDCl₃) δ 8.35 – 8.23 (m, 2H), 7.56 – 7.47 (m, 1H), 7.44 (dd, J = 8.2, 6.8 Hz, 2H), 7.19 (dd, J = 5.1, 1.2 Hz, 1H), 6.95 (dd, J = 5.2, 3.4 Hz, 1H), 6.89 (dd, J = 3.4, 1.2 Hz, 1H), 4.34 (m, 1H), 4.22 – 4.04 (m, 2H), 3.93 (dt, J = 13.7, 6.9 Hz, 1H), 3.74 – 3.65 (m, 1H), 3.65 – 3.59 (m, 2H), 3.31 (td, J = 7.1, 4.8 Hz, 2H). 13 C NMR (151 MHz, CDCl₃) δ 175.8, 169.5, 140.4, 136.3, 132.1, 129.7, 128.1, 127.2, 125.8, 124.4, 82.4 (d, J = 178.7 Hz), 51.6 (d, J = 3.0 Hz), 49.5, 40.5 (d, J = 21.0 Hz), 27.6. 19 F NMR (565 MHz, CDCl₃) δ -212.52. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₇H₁₇FN₂NaOS₂ 371.0659, found 371.0648. 2m (Z)-*N*-(5-(fluoromethyl)-3-phenethylthiazolidin-2-ylidene)benzamide (2m): The general procedure from *N*-(allyl(phenethyl)carbamothioyl)benzamide 1m (64.9 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2m as white solid (47.6 mg, 70% yield).Mp: 72.8-73.4 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.35 – 8.24 (m, 2H), 7.52 (td, J = 7.1, 1.4 Hz, 1H), 7.49 – 7.41 (m, 2H), 7.33 (t, J = 7.6 Hz, 2H), 7.29 – 7.19 (m, 3H), 4.31 (m, 1H), 4.15 – 3.99 (m, 2H), 3.91 (m, 1H), 3.72 – 3.62 (m, 1H), 3.62 – 3.49 (m, 2H), 3.08 (dq, J = 13.4, 6.3 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 175.8, 169.4, 138.1, 136.4, 132.0, 129.6, 128.8, 128.0, 126.8, 82.3 (d, J = 178.6 Hz), 51.5 (d, J = 2.9 Hz), 49.2, 40.3 (d, J = 20.9 Hz), 33.4. ¹³F NMR (565 MHz, CDCl₃) δ -211.44. HRMS (ESI-TOF) m/z: [M+H]+ calculated for C₁₉H₂₀FN₂OS 343.1275, found 343.1254. (Z)-*N*-(5-(fluoromethyl)-3-(2-phenoxyethyl)thiazolidin-2-ylidene)benzamide (2n): The general procedure from *N*-(allyl(2-phenoxyethyl)carbamothioyl)benzamide 1n (68.1 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2n as yellow liquid (59.7 mg, 83% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.24 (d, J = 7.6 Hz, 2H), 7.50 (t, J = 7.3 Hz, 1H), 7.42 (t, J = 7.5 Hz, 2H), 7.29 (t, J = 7.7 Hz, 2H), 6.97 (t, J = 7.4 Hz, 1H), 6.91 (d, J = 8.0 Hz, 2H), 4.48 – 4.16 (m, 5H), 4.13 – 4.01 (m, 2H), 3.98 (dd, J = 11.5, 7.1 Hz, 1H), 3.77 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 175.8, 169.7, 158.1, 136.3, 132.1, 129.7, 129.7, 128.1, 121.4, 114.4, 82.3 (d, J = 178.7 Hz), 65.7, 52.7 (d, J = 2.8 Hz), 47.3, 40.8 (d, J = 21.0 Hz). 19 F NMR (565 MHz, CDCl₃) δ -211.51. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₉H₁₉FN₂NaO₂S 381.1043, found 381.1047. tert-butyl (Z)-4-(2-(benzoylimino)-5-(fluoromethyl)thiazolidin-3-yl)piperidine-1-carboxylate (2o): The general procedure from tert-butyl 4-(1-allyl-3-benzoylthioureido)piperidine-1-carboxylate **1o** (80.7 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane: methane = 100:1 to give **2o** as yellow liquid (57.6 mg, 66% yield). 1 H NMR (600 MHz, CDCl₃) δ 8.28 – 8.19 (m, 2H), 7.54 – 7.48 (m, 1H), 7.43 (td, J = 7.6, 1.8 Hz, 2H), 4.81 (td, J = 12.2, 4.5 Hz, 1H), 4.44 (m, 1H), 4.37 – 4.15 (m, 3H), 3.86 – 3.60 (m, 3H), 2.89 (s, 2H), 1.88 (d, J = 10.8 Hz, 2H), 1.66 (s, 2H), 1.49 (s, 9H). 13 C NMR (151 MHz, CDCl₃) δ 175.9, 169.5, 154.6, 136.3, 132.1, 129.6, 128.1, 82.2 (d, J = 178.6 Hz), 80.0, 54.9, 46.8, 40.2 (d, J = 20.6 Hz), 29.4, 28.7, 28.4, 27.2. 19 F NMR (565 MHz, CDCl₃) δ -212.04. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₂₁H₂₈FN₃NaO₃S 444.1728, found 444.1724. (Z)-N-(5-(fluoromethyl)-3-phenylthiazolidin-2-ylidene)-4-methoxybenzamide (2p): The general procedure from N-(allyl(phenyl)carbamothioyl)-4-methoxybenzamide 1p (65.3 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2p as white solid (56.1 mg, 74%) yield).Mp: 94.6-96.1 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.13 – 8.02 (m, 2H), 7.57 – 7.44 (m, 4H), 7.33 (tt, J = 7.1, 1.5 Hz, 1H), 6.92 – 6.79 (m, 2H), 4.59 (dd, J = 9.6, 4.8 Hz, 0.5H), 4.54 – 4.45 (m, 1H), 4.42 (t, J = 9.7 Hz, 0.5H), 4.27 (dd, J = 11.1, 6.9 Hz, 1H), 4.16 (dd, J = 11.0, 2.4 Hz, 1H), 3.83 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 175.6, 168.4, 163.0, 140.2, 131.9, 128.9, 128.8, 126.7, 124.6, 113.3, 82.2 (d, J = 179.0 Hz), 55.3, 53.2(d, J = 3.0 Hz), 40.2 (d, J = 20.9 Hz). ¹³F NMR (565 MHz, CDCl₃) δ -211.55. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for $C_{18}H_{17}FN_2NaO_2S$ 367.0887, found 367.0877. (2)-4-fluoro-*N*-(5-(fluoromethyl)-3-phenylthiazolidin-2-ylidene)benzamide (2q): The general procedure from *N*-(allyl(phenyl)carbamothioyl)-4-fluorobenzamide 1q (62.9 mg, 0.2 mmol), Phl(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2q as yellow liquid (57.5 mg, 86% yield). 1 H NMR (600 MHz, CDCl₃) δ 8.28 – 8.19 (m, 2H), 7.54 – 7.48 (m, 1H), 7.43 (td, J = 7.6, 1.8 Hz, 2H), 4.81 (td, J = 12.2, 4.5 Hz, 1H), 4.44 (m, 1H), 4.37 – 4.15 (m, 3H), 3.86 – 3.60 (m, 3H), 2.89 (s, 2H), 1.88 (d, J = 10.8 Hz, 2H), 1.66 (s, 2H), 1.49 (s, 9H). 13 C NMR (151 MHz, CDCl₃) δ 175.1, 169.2, 165.4 (d, J = 252.5 Hz), 140.0, 132.3 (d, J = 2.9 Hz), 132.2 (d, J = 9.2 Hz), 129.0, 127.0, 124.7, 115.0 (d, J = 21.7 Hz), 82.2 (d, J = 178.8 Hz), 53.4 (d, J = 3.0 Hz), 40.3 (d, J = 20.9 Hz). 19 F NMR (565 MHz, CDCl₃) δ -107.28, -212.04. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₇H₁₄F₂N₂NaOS 355.0687, found 355.0675. 2r (Z)-4-chloro-N-(5-(fluoromethyl)-3-phenylthiazolidin-2-ylidene)benzamide (2r): The general procedure from *N*-(allyl(phenyl)carbamothioyl)-4-chlorobenzamide **1r** (66.2 mg, 0.2 mmol), Phl(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give **2r** as yellow liquid (55.6 mg, 80% yield). 1 H NMR (500 MHz, CDCl₃) δ 8.02 (d, J = 8.1 Hz, 2H), 7.49 (d, J = 4.2 Hz, 4H), 7.33 (t, J = 6.6 Hz, 3H), 4.58 (dd, J = 9.6, 4.8 Hz, 0.5H), 4.55 – 4.45 (m, 1H), 4.42 (t, J = 9.6 Hz, 0.5H), 4.27 (dd, J = 11.3, 7.0 Hz, 1H), 4.15 (dt, J = 11.3, 1.9 Hz, 1H), 3.95 – 3.81 (m, 1H). 13 C NMR (151 MHz, CDCl₃) δ 175.1, 169.4, 139.9, 138.4, 134.5, 131.1, 129.0, 128.3, 127.0, 124.6, 82.1 (d, J = 179.2 Hz), 53.4 (d, J = 3.1 Hz), 40.3 (d, J = 21.0 Hz). 19 F NMR (565 MHz, CDCl₃) δ -212.25. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C_{17} H₁₄CIFN₂NaOS 371.0392, found 371.0370. (Z)-4-bromo-*N*-(5-(fluoromethyl)-3-phenylthiazolidin-2-ylidene)benzamide (2s): The general procedure from *N*-(allyl(phenyl)carbamothioyl)-4-bromobenzamide 1s (75.1 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2s as yellow liquid (59.2 mg, 75% yield). 1 H NMR (500 MHz, CDCl₃) δ 7.95 (d, J = 8.3 Hz, 2H), 7.56 – 7.42 (m, 6H), 7.34 (dh, J = 8.7, 4.5 Hz, 1H), 4.59 (dd, J = 9.6, 4.8 Hz, 0.5H), 4.55 – 4.46 (m, 1H), 4.42 (t, J = 9.6 Hz, 0.5H), 4.27 (dd, J = 11.2, 7.0 Hz, 1H), 4.16 (dd, J = 11.2, 2.5 Hz, 1H), 3.88 (m, 1H). 13 C NMR (151 MHz, CDCl₃) δ 175.3, 169.5, 139.9, 135.0, 131.3, 131.3, 129.0, 127.2, 127.0, 124.7, 82.1 (d, J = 179.0 Hz), 53.4 (d, J = 3.0 Hz), 40.3 (d, J = 20.8 Hz). 19 F NMR (565 MHz, CDCl₃) δ -212.24. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₇H₁₄BrFN₂NaOS 414.9886, found 414.9887. (Z)-*N*-(5-(fluoromethyl)-3-phenylthiazolidin-2-ylidene)-4-iodobenzamide (2t): The general procedure from *N*-(allyl(phenyl)carbamothioyl)-4-iodobenzamide 1t (84.5 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using petroleum ether: dichloromethane = 1:3 to give 2t as yellow liquid (74.3 mg, 84% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.87 – 7.76 (m, 2H), 7.76 – 7.65 (m, 2H), 7.56 – 7.41 (m, 4H), 7.34 (m, 1H), 4.60 (dd, J = 9.6, 4.7 Hz, 0.5H), 4.56 – 4.47 (m, 1H), 4.42 (t, J = 9.6 Hz, 0.5H), 4.28 (dd, J = 11.2, 7.0 Hz, 1H), 4.17 (dd, J = 11.2, 2.5 Hz, 1H), 3.89 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 175.5, 169.5, 137.4, 135.6, 131.3, 129.0, 127.1, 124.7, 100.0, 82.2 (d, J = 178.8 Hz), 53.5(d, J = 1.5 Hz), 40.3 (d, J = 20.7 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -212.14. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₇H₁₄IFN₂NaOS 462.9748, found 462.9758. 2u methyl (Z)-4-((5-(fluoromethyl)-3-phenylthiazolidin-2-ylidene)carbamoyl)benzoate (2u): The general procedure from methyl 4-((allyl(phenyl)carbamothioyl)carbamoyl)benzoate 1u (70.9 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the
residue was purified by column chromatography on silica gel using dichloromethane: methane = 100:1 to give 2u as white solid (56.0 mg, 79% yield). Mp:86-89.2 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.20 – 8.11 (m, 2H), 8.08 – 7.99 (m, 2H), 7.51 (d, J = 5.5 Hz, 4H), 7.36 (tt, J = 5.8, 2.9 Hz, 1H), 4.61 (dd, J = 9.6, 4.8 Hz, 0.5H), 4.58 – 4.48 (m, 1H), 4.44 (t, J = 9.7 Hz, 0.5H), 4.31 (dd, J = 11.2, 7.0 Hz, 1H), 4.19 (dd, J = 11.3, 2.5 Hz, 1H), 3.91 (m, 4H). 13 C NMR (151 MHz, CDCl₃) δ 175.4, 169.8, 166.7, 139.9, 139.9, 133.0, 129.6, 129.3, 129.1, 127.2, 124.7, 82.2 (d, J = 179.3 Hz), 53.5 (d, J = 2.9 Hz), 52.2, 40.3 (d, J = 21.1 Hz). 19 F NMR (565 MHz, CDCl₃) δ -212.29. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for $C_{19}H_{17}$ FN₂NaO₃S 395.0836, found 395.0830. (Z)-2-fluoro-*N*-(5-(fluoromethyl)-3-phenylthiazolidin-2-ylidene)benzamide (2v): The general procedure from *N*-(allyl(phenyl)carbamothioyl)-2-fluorobenzamide 1v (62.9 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2v as yellow liquid (46.7 mg, 70% yield). 1 H NMR (600 MHz, CDCl₃) δ 7.96 (td, J = 7.7, 2.0 Hz, 1H), 7.61 – 7.37 (m, 5H), 7.31 (t, J = 7.3 Hz, 1H), 7.16 – 7.02 (m, 2H), 4.59 (dd, J = 9.6, 4.8 Hz, 0.5H), 4.55 – 4.47 (m, 1H), 4.43 (t, J = 9.7 Hz, 0.5H), 4.29 (dd, J = 11.1, 6.9 Hz, 1H), 4.17 (dd, J = 11.1, 2.5 Hz, 1H), 3.88 (m, 1H). 13 C NMR (151 MHz, CDCl₃) δ 174.2, 169.3, 162.4 (d, J = 259.7 Hz), 139.9, 133.5 (d, J = 9.1 Hz), 132.5, 128.9, 126.9, 124.5, 124.5 (d, J = 9.1 Hz), 123.5 (d, J = 3.8 Hz), 116.8 (d, J = 22.6 Hz), 82.1 (d, J = 179.1 Hz), 53.5 (d, J = 3.0 Hz), 40.2 (d, J = 20.9 Hz). 19 F NMR (565 MHz, CDCl₃) δ -110.80, -212.11. HRMS (ESI-TOF) m/z: [M+Na]* calculated for C₁₇H₁₄F₂N₂NaOS 355.0687, found 355.0683. (Z)-N-(5-(fluoromethyl)-3-phenylthiazolidin-2-ylidene)-3-methoxybenzamide (2w): The general procedure from N-(allyl(phenyl)carbamothioyl)-3-methoxybenzamide **1w** (65.3 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N-3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane: methane = 200:1 to give **2w** as yellow liquid (56.6 mg, 87% yield). 1 H NMR (500 MHz, CDCl₃) δ 7.76 – 7.64 (m, 2H), 7.59 – 7.43 (m, 4H), 7.36 – 7.22 (m, 2H), 7.06 – 6.99 (m, 1H), 4.59 (dd, J = 9.6, 4.8 Hz, 0.5H), 4.56 – 4.47 (m, 1H), 4.42 (t, J = 9.7 Hz, 0.5H), 4.28 (dd, J = 11.2, 7.0 Hz, 1H), 4.17 (dd, J = 11.1, 2.4 Hz, 1H), 3.88 (m, 1H), 3.79 (s, 3H). 13 C NMR (151 MHz, CDCl₃) δ 175.9, 169.1, 159.4, 140.1, 137.4, 129.1, 128.9, 126.9, 124.6, 122.4, 119.3, 113.6, 82.2 (d, J = 178.9 Hz), 55.2, 53.3 (d, J = 3.0 Hz), 40.2 (d, J = 20.7 Hz). 19 F NMR (565 MHz, CDCl₃) δ -211.85. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for $C_{18}H_{17}$ FN₂NaO₂S 327.0574, found 367.0896. (Z)-*N*-(5-(fluoromethyl)-3-phenylthiazolidin-2-ylidene)furan-3-carboxamide (2x): The general procedure from *N*-(allyl(phenyl)carbamothioyl)furan-3-carboxamide 1x (57.3 mg, 0.2 mmol), Phl(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2x as yellow liquid (44.3 mg, 73% yield). Mp:90-93.2 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.62 – 7.42 (m, 5H), 7.31 (td, J = 7.3, 1.3 Hz, 1H), 7.04 (d, J = 3.4 Hz, 1H), 6.43 (dd, J = 3.4, 1.7 Hz, 1H), 4.58 (dd, J = 9.6, 4.7 Hz, 0.5H), 4.54 – 4.47 (m, 1H), 4.42 (t, J = 9.7 Hz, 0.5H), 4.28 (dd, J = 11.1, 6.9 Hz, 1H), 4.16 (dd, J = 11.1, 2.4 Hz, 1H), 3.87 (m, 1H). 13 C NMR (151 MHz, CDCl₃) δ 168.6, 167.2, 151.1, 146.2, 139.9, 128.9, 126.8, 124.5, 117.6, 111.7, 82.1 (d, J = 179.2 Hz), 53.4 (d, J = 2.9 Hz), 40.3 (d, J = 21.1 Hz). 19 F NMR (565 MHz, CDCl₃) δ -211.95. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₅H₁₃FN₂NaO₂S 327.0574, found 327.0563. (Z)-N-(5-(fluoromethyl)-3-phenylthiazolidin-2-ylidene)thiophene-2-carboxamide (2y): The general procedure from *N*-(allyl(phenyl)carbamothioyl)thiophene-2-carboxamide **1y** (60.5 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give **2y** as yellow liquid (48.8 mg, 76% yield). 1 H NMR (500 MHz, CDCl₃) δ 7.77 (dd, J = 3.7, 1.3 Hz, 1H), 7.59 – 7.40 (m, 5H), 7.36 – 7.27 (m, 1H), 7.04 (dd, J = 5.0, 3.7 Hz, 1H), 4.58 (dd, J = 9.6, 4.8 Hz, 0.5H), 4.54 – 4.45 (m, 1H), 4.41 (t, J = 9.7 Hz, 0.5H), 4.28 (dd, J = 11.1, 7.0 Hz, 1H), 4.16 (dd, J = 11.1, 2.4 Hz, 1H), 3.87 (m, 1H). 13 C NMR (126 MHz, CDCl₃) δ 170.9, 168.3, 142.3, 139.8, 132.3, 132.2, 128.9, 127.9, 126.8, 124.5, 82.1 (d, J = 179.0 Hz), 53.3 (d, J = 3.0 Hz), 40.3 (d, J = 21.0 Hz). 19 F NMR (565 MHz, CDCl₃) δ -211.85. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₅H₁₃FN₂NaOS₂ 343.0346, found 343.0334. (Z)-*N*-(5-(fluoromethyl)-3-phenylthiazolidin-2-ylidene)pivalamide (2z): The general procedure from *N*-(allyl(phenyl)carbamothioyl)pivalamide 1z (55.3 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using petroleum ether: dichloromethane = 1:3 to give 2z as white solid (39.1 mg, 66% yield).Mp: 106.5-108.0 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.63 – 7.37 (m, 4H), 7.36 – 7.23 (m, 1H), 4.56 (dd, J = 9.6, 4.8 Hz, 0.5H), 4.54 – 4.45 (m, 1H), 4.39 (d, J = 9.7 Hz, 0.5H), 4.22 (dd, J = 11.0, 6.9 Hz, 1H), 4.12 (dd, J = 11.0, 2.5 Hz, 1H), 3.83 (m, 1H), 1.16 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 190.9, 167.9, 140.2, 128.6, 126.2, 124.1, 82.2 (d, J = 179.0 Hz), 52.9 (d, J = 2.9 Hz), 41.2, 39.9 (d, J = 21.0 Hz), 27.2. ¹⁹F NMR (565 MHz, CDCl₃) δ -211.50. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₅H₁₉FN₂NaOS 317.1094, found 317.1085. 2aa (Z)-*N*-(5-(fluoromethyl)-3-phenylthiazolidin-2-ylidene)cyclohexanecarboxamide (2aa): The general procedure from *N*-(allyl(phenyl)carbamothioyl)cyclohexanecarboxamide 1aa (66.5 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2aa as white solid (31.5 mg, 49% yield).Mp: 92.4-95.1 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.50 – 7.39 (m, 4H), 7.30 – 7.27 (m, 1H), 4.55 (dd, J = 9.5, 4.7 Hz, 0.5H), 4.49 – 4.43 (m, 1H), 4.38 (t, J = 9.8 Hz, 0.5H), 4.19 (dd, J = 11.1, 6.9 Hz, 1H), 4.10 (dd, J = 11.1, 2.4 Hz, 1H), 3.80 (m, 1H), 2.33 (tt, J = 11.3, 3.6 Hz, 1H), 1.95 – 1.85 (m, 2H), 1.71 (dq, J = 11.9, 3.5 Hz, 2H), 1.66 – 1.52 (m, 2H), 1.38 (m, 2H), 1.24 – 1.12 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 188.3, 167.8, 140.1, 128.9, 126.5, 124.3, 82.2 (d, J = 178.7 Hz), 53.2 (d, J = 2.8 Hz), 47.8, 40.0 (d, J = 20.9 Hz). 29.1, 29.1, 26.0, 25.8, 25.7. ¹⁹F NMR (565 MHz, CDCl₃) δ -211.53. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₇H₂₁FN₂NaOS 343.1251, found 334.1232. (Z)-*N*-(5-(fluoromethyl)-3-phenylthiazolidin-2-ylidene)-2-phenylacetamide (2ab): The general procedure from *N*-(allyl(phenyl)carbamothioyl)-2-phenylacetamide 1ab (62.1 mg, 0.2 mmol), Phl(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2ab as yellow liquid (39.4 mg, 60% yield). 1 H NMR (500 MHz, CDCl₃) δ 7.45 – 7.35 (m, 2H), 7.35 – 7.18 (m, 8H), 4.52 (dd, J = 9.6, 4.7 Hz, 0.5H), 4.48 – 4.39 (m, 1H), 4.34 (t, J = 9.7 Hz, 0.5H), 4.17 (dd, J = 11.2, 7.0 Hz, 1H), 4.07 (dd, J = 11.2, 2.5 Hz, 1H), 3.78 (m, 1H), 3.71 (s, 2H). 13 C NMR (151 MHz, CDCl₃) δ 183.1, 168.4, 139.7, 135.9, 129.8, 128.9, 128.2, 126.7, 126.4, 124.4, 82.1 (d, J = 178.8 Hz), 53.3 (d, J = 3.0 Hz), 47.2, 40.0 (d, J = 20.2 Hz). 19 F NMR (565 MHz, CDCl₃) δ -211.91. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₈H₁₇FN₂NaOS 351.0938, found 351.0930. (*Z*)-*N*-(5-(fluoromethyl)-5-methyl-3-phenylthiazolidin-2-ylidene)benzamide (*2ac*): The general procedure from *N*-((2-methylallyl)(phenyl)carbamothioyl)benzamide **1ac** (77.0 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give **2ac** as white solid (49.6 mg, 76% yield). Mp: 138.3-140.1 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.15 – 8.08 (m, 2H), 7.56 – 7.42 (m, 5H), 7.41 – 7.28 (m, 3H), 4.54 (dd, J = 48.2, 9.4 Hz, 1H), 4.35 (dd, J = 47.4, 9.4 Hz, 1H), 4.15 (d, J = 10.9 Hz, 1H), 3.91 (d, J = 10.9 Hz, 1H), 1.67 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.2, 169.4, 140.2, 136.0, 132.2, 129.8, 128.9, 128.0, 126.8, 124.6, 85.4 (d, J = 183.6 Hz), 59.1 (d, J = 2.4 Hz), 48.8 (d, J = 19.0 Hz), 20.9 (d, J = 2.3 Hz). ¹³F NMR (565 MHz, CDCl₃) δ -212.42. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₈H₁₇FN₂NaOS 351.0938, found 351.0931. (Z)-*N*-(5-(2-fluoropropan-2-yl)-3-phenylthiazolidin-2-ylidene)benzamide (2ad): The general procedure from *N*-((3-methylbut-2-en-1-yl)(phenyl)carbamothioyl)benzamide 1ad (64.9 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2ad as yellow liquid (63.9 mg, 93% yield). 1 H NMR (500 MHz, CDCl₃) δ 8.20 – 8.07 (m, 2H), 7.59 – 7.45 (m, 5H), 7.37 (m, 3H), 4.31 – 4.18 (m, 2H), 3.81 (m, 1H), 1.54 (d, J = 9.4 Hz, 3H), 1.50 (d, J = 9.1 Hz, 3H). 13 C NMR (151 MHz, CDCl₃) δ 176.1, 169.7, 140.0, 136.1, 132.1, 129.8, 129.0, 128.0, 126.8, 124.6, 96.2 (d, J = 172.5 Hz), 52.6 (d, J = 4.2 Hz), 49.3 (d, J = 25.6 Hz), 25.6 (d, J = 23.6 Hz),
21.8 (d, J = 24.5 Hz). 19 F NMR (565 MHz, CDCl₃) δ -139.70. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₉H₁₉FN₂NaOS 365.1094, found 365.1091. (Z)-N-(5-(2-fluoropropan-2-yl)-3-(4-methoxyphenyl)thiazolidin-2-ylidene)benzamide (2ae): The general procedure from N-((4-methoxyphenyl)(3-methylbut-2-en-1-yl)carbamothioyl)benzamide 1ae (70.9 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2ae as yellow liquid (61.84 mg, 83% yield). 1 H NMR (600 MHz, Chloroform-d) δ 8.11 (dd, J = 8.3, 1.5 Hz, 2H), 7.47 – 7.42 (m, 1H), 7.42 – 7.38 (m, 2H), 7.35 (t, J = 7.6 Hz, 2H), 7.03 – 6.93 (m, 2H), 4.21 – 4.08 (m, 2H), 3.85 (s, 3H), 3.75 (ddd, J = 10.8, 8.3, 4.0 Hz, 1H), 1.48 (dd, J = 21.5, 5.9 Hz, 5H). 13 C NMR (126 MHz, Chloroform-d) δ 175.95, 169.65, 158.05, 136.19, 132.81, 131.97, 129.66, 127.93, 125.92, 114.09, 96.14 (d, J = 172.4 Hz), 55.44, 52.80, 49.35, 49.15, 25.47 (d, J = 23.8 Hz), 21.81 (d, J = 24.3 Hz). 19 F NMR (471 MHz, Chloroform-d) δ -139.88 (d, J = 8.7 Hz). (Z)-*N*-(7-fluoro-3-phenylhexahydrobenzo[d]thiazol-2(3H)-ylidene)benzamide (2ae): The general procedure from *N*-(cyclohex-2-en-1-yl(phenyl)carbamothioyl)benzamide 1ae (67.3 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2ae as white solid (56.4 mg, 80% yield). Mp: 144.1-146.3 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.09 – 7.97 (m, 2H), 7.55 – 7.27 (m, 8H), 4.88 (m, 1H), 4.42 (q, J = 6.1 Hz, 1H), 3.85 (dt, J = 14.4, 5.8 Hz, 1H), 2.06 (m, 1H), 1.93 – 1.65 (m, 3H), 1.65 – 1.45 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 176.2, 170.7, 139.1, 136.2, 132.0, 129.7, 129.1, 127.9, 127.6, 126.9, 91.0 (d, J = 174.2 Hz), 62.0 (d, J = 3.5 Hz), 47.0 (d, J = 25.0 Hz), 28.1 (d, J = 19.8 Hz), 25.2, 16.8 (d, J = 6.3 Hz). ¹³F NMR (565 MHz, CDCl₃) δ -175.19. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₀H₁₉FN₂NaOS 377.1094, found 377.1085. (*Z*)-*N*-(5-(fluoro(phenyl)methyl)-3-phenylthiazolidin-2-ylidene)benzamide (2af): The general procedure from *N*-(cinnamyl(phenyl)carbamothioyl)benzamide 1af (74.5 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2af as white solid (54.6 mg, 70% yield). Mp: 161-163.2 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.10 (d, J = 7.8 Hz, 2H), 7.70 – 7.27 (m, 13H), 5.49 (dd, J = 47.5, 9.0 Hz, 1H), 4.32 (qd, J = 11.2, 5.8 Hz, 2H), 4.15 – 3.96 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 176.0, 169.4, 140.0, 136.1, 136.0, 132.2, 129.8, 129.6, 128.9, 128.8, 128.0, 126.8, 126.8, 124.7, 94.0 (d, J = 179.5 Hz), 53.6 (d, J = 4.0 Hz), 46.4 (d, J = 26.7 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -167.30, -167.33. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₃H₁₉FN₂NaOS 413.1094, found 413.1105. (Z)-*N*-(4-butyl-5-(1-fluorobutyl)-3-phenylthiazolidin-2-ylidene)benzamide (2ag): The general procedure from *N*-(cyclohex-2-en-1-yl(phenyl)carbamothioyl)benzamide 1ag (67.3 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2ag as yellow liquid (62.6 mg, 76% yield), syn: anti = 2.2:1. 1 H NMR (600 MHz, CDCl₃) δ 8.07 – 7.92 (m, 6H), 7.49 – 7.20 (m, 26H), 4.90 – 4.73 (m, 1H), 4.58 – 4.34 (m, 6H), 4.02 (dt, J = 10.2, 7.0 Hz, 1H), 3.28 (t, J = 8.9 Hz, 2H), 1.91 – 1.32 (m, 21H), 1.31 – 1.04 (m, 14H), 0.89 (m, 10H), 0.73 (m, 10H). ¹³C NMR (151 MHz, CDCl₃) δ 176.3, 176.2, 169.0, 168.0, 139.7, 138.9, 136.1, 132.0, 131.9, 129.7, 129.7, 129.0, 128.8, 127.9, 127.4, 127.3, 127.0, 126.9, 93.7 (d, J = 177.8 Hz), 91.1 (d, J = 173.8 Hz), 64.9, 64.8 (d, J = 4.7 Hz), 49.9 (d, J = 24.0 Hz), 49.3 (d, J = 21.7 Hz), 36.5, 36.4, 34.7 (d, J = 20.6 Hz), 30.5, 27.7 (d, J = 12.3 Hz), 27.2, 22.7, 22.3, 18.3 (d, J = 2.5 Hz), 17.8 (d, J = 2.9 Hz), 13.8, 13.7, 13.7. ¹⁹F NMR (471 MHz, CDCl₃) δ -177.38, -178.64. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₂₄H₂₉FN₂NaOS 435.1877, found 435.1881. (2)-*N*-(6-(fluoromethyl)-3-phenyl-1,3-thiazinan-2-ylidene)benzamide (2ah): The general procedure from *N*-(but-3-en-1-yl(phenyl)carbamothioyl)benzamide 1ah (62.1 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using petroleum ether: dichloromethane = 1:3 to give 2ah as white solid (29.6 mg, 45% yield). Mp: 109.1-115.7 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, J = 7.7 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.39 – 7.20 (m, 6H), 4.72 – 4.44 (m, 2H), 4.01 – 3.82 (m, 2H), 3.70 (m, 1H), 2.52 (dt, J = 15.4, 5.4 Hz, 1H), 2.30 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 174.4, 164.1, 145.9, 136.8, 131.5, 129.5, 129.3, 127.8, 127.4, 126.3, 83.8 (d, J = 178.0 Hz), 49.8, 40.3 (d, J = 20.8 Hz), 26.2 (d, J = 3.2 Hz). ¹³F NMR (565 MHz, CDCl₃) δ - 216.29. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₈H₁₇FN₂NaOS 351.0938, found 351.0931. (Z)-N-(6-(fluoromethyl)-3-phenethyl-1,3-thiazinan-2-ylidene)benzamide (2ai): The general procedure from N-(but-3-en-1-yl(phenethyl)carbamothioyl)benzamide 1ai (67.7 mg, 0.2 mmol), $Phl(OPiv)_2$ (92.5 mg, 0.23 mmol), Et_3N -3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2ai as white solid (48.6 mg, 68% yield). Mp:84.1-85.7 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.27 – 8.19 (m, 2H), 7.54 – 7.46 (m, 1H), 7.42 (dd, J = 8.3, 6.8 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H), 7.29 – 7.19 (m, 3H), 4.50 (dd, J = 9.6, 5.1 Hz, 0.5H), 4.45 – 4.36 (m, 1H), 4.32 (t, J = 9.1 Hz, 0.5H), 4.03 (m, 2H), 3.54 – 3.43 (m, 1H), 3.33 (m, 2H), 3.10 (t, J = 7.3 Hz, 2H), 2.22 (m, 1H), 1.96 (m, 1H). 13 C NMR (151 MHz, CDCl₃) δ 174.4, 163.5, 138.6, 137.4, 131.5, 129.5, 128.9, 128.7, 127.9, 126.7, 83.5 (d, J = 178.3 Hz), 56.3, 47.7, 39.6 (d, J = 20.6 Hz), 33.6, 25.3 (d, J = 3.0 Hz). 19 F NMR (565 MHz, CDCl₃) δ -215.93. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₀H₂₁FN₂NaOS 379.1251, found 379.1255. ethyl (Z)-3-(2-(benzoylimino)-6-(fluoromethyl)-1,3-thiazinan-3-yl)propanoate (2aj): The general procedure from ethyl 3-(3-benzoyl-1-(but-3-en-1-yl)thioureido)propanoate 1aj (66.9 mg, 0.2 mmol), Phl(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2aj as yellow liquid (48.7 mg, 69% yield). 1 H NMR (600 MHz, CDCl₃) δ 8.12 – 8.05 (m, 2H), 7.45 – 7.27 (m, 3H), 4.45 (dd, J = 9.6, 5.2 Hz, 0.5H), 4.43 – 4.34 (m, 1H), 4.32 (dd, J = 9.6, 8.1 Hz, 0.5H), 4.07 (q, J = 7.1 Hz, 2H), 4.04 – 3.93 (m, 2H), 3.65 (m, 1H), 3.57 (m, 1H), 3.51 – 3.41 (m, 1H), 2.78 (td, J = 6.5, 2.8 Hz, 2H), 2.30 (m, 1H), 2.04 (m, 1H), 1.19 (t, J = 7.1 Hz, 3H). 13 C NMR (151 MHz, CDCl₃) δ 174.2, 171.9, 163.8, 137.1, 131.5, 129.4, 127.9, 83.6 (d, J = 177.9 Hz), 60.8, 50.3, 48.0, 39.8 (d, J = 20.9 Hz), 32.5, 25.6 (d, J = 3.6 Hz), 14.1. 19 F NMR (565 MHz, CDCl₃) δ -216.31. HRMS (ESI-TOF) m/z: [M+Na]* calculated for C₁₇H₂₁FN₂NaO₃S 375.1149, found 375.1160. (Z)-N-(6-(2-fluoropropan-2-yl)-3-phenethyl-1,3-thiazinan-2-ylidene)benzamide (2ak): The general procedure from N-((4-methylpent-3-en-1-yl)(phenethyl)carbamothioyl)benzamide 1ak (73.3 mg, 0.2 mmol), PhI(OPiv)₂ (92.5 mg, 0.23 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using dichloromethane to give 2ak as white solid (69.7 mg, 91% yield). Mp:88.4-89.6 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.27 – 8.20 (m, 2H), 7.51 – 7.45 (m, 1H), 7.42 (dd, J = 8.2, 6.7 Hz, 2H), 7.32 (td, J = 7.2, 1.6 Hz, 2H), 7.29 – 7.21 (m, 3H), 4.09 (m, 1H), 3.95 (m, 1H), 3.43 – 3.30 (m, 3H), 3.09 (m, 2H), 2.24 (dq, J = 13.7, 3.8 Hz, 1H), 1.85 (m, 1H), 1.44 (dd, J = 21.9, 13.6 Hz, 6H).¹³C NMR (151 MHz, CDCl₃) δ 174.1, 164.4, 138.6, 137.5, 131.4, 129.5, 128.9, 128.7, 127.9, 126.7, 96.0 (d, J = 172.4 Hz), 56.0, 49.7 (d, J = 25.7 Hz), 49.7, 33.5, 25.4 (d, J = 24.1 Hz), 25.0 (d, J = 4.3 Hz), 22.6 (d, J = 24.2 Hz). ¹³F NMR (565 MHz, CDCl₃) δ -137.77. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₂H₂₅FN₂NaOS 407.1564, found 407.1574. $$N^{+}$$ S^{-} N^{+} S^{-} S^{-} S^{-} S^{-} (3-methylbut-2-en-1-yl)(phenyl)carbamothioic fluoride (3a' and 3a"): The general procedure from N-(3-methylbut-2-en-1-yl)aniline (331.3 mg, 1.75 mmol), sulfur (224 mg, 7 mmol), KF (305 mg, 5.25 mmol), TMSCF₃ (1251.3 mg, 8.75 mmol) and THF (17 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 100:1 to give 3a':3a''=3.8:1 as yellow liquid (335.3 mg, 86% yield). 1 H NMR (500 MHz, CDCl₃) δ 7.51 – 7.25 (m, 17H), 7.15 (m, 8H), 5.36 (tt, J = 7.2, 1.5 Hz, 4H), 5.29 (t, J = 7.5 Hz, 1H), 4.65 (d, J = 7.2 Hz, 8H), 4.37 (d, J = 7.4 Hz, 2H), 1.72 (d, J = 7.5 Hz, 15H), 1.47 (d, J = 14.2 Hz, 15H). 13 C NMR (126 MHz, CDCl₃) δ 181.8, 179.2, 142.9, 139.7, 139.0, 139.0, 129.7, 129.4, 128.6, 128.5, 126.7, 125.8, 116.7, 115.9, 55.1, 55.0, 51.9, 51.9, 25.7, 25.6, 18.0, 17.6. 19 F NMR (565 MHz, CDCl₃) δ 23.15, 17.25. HRMS (EI-TOF) m/z: M+ calculated for C₁₂H₁₄FNS 223.0831, found 223.0835. allyl(4-methoxyphenyl)carbamothioic fluoride (3b' and 3b"): The general procedure from 4-methoxy-*N*-(3-methylbut-2-en-1-yl)aniline (688.6 mg, 3.6 mmol), sulfur (460.8 mg, 14.4 mmol), KF (627.5 mg, 10.8 mmol), TMSCF₃ (2574 mg, 18 mmol) and THF (36 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica
gel using petroleum ether: ethyl acetate = 30:1 to give 3b':3b''=3.5:1 as yellow liquid (746.1 mg, 92% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.21 – 7.15 (m, 2H), 7.10 – 7.02 (m, 7H), 6.97 – 6.93 (m, 2H), 6.93 – 6.87 (m, 7H), 5.35 (m, 4H), 5.28 (t, J = 7.5 Hz, 1H), 4.62 (d, J = 7.2 Hz, 7H), 4.34 (d, J = 7.4 Hz, 2H), 3.82 (d, J = 4.2 Hz, 14H), 1.72 (dd, J = 6.3, 1.4 Hz, 14H), 1.48 (dd, J = 13.3, 1.4 Hz, 14H). ¹³C NMR (151 MHz, CDCl₃) δ 181.9, 179.8, 159.3, 159.2, 138.9, 138.9, 135.7, 132.3, 127.8, 126.9, 116.7, 115.9, 114.8, 114.5, 55.4, 55.4, 55.2, 55.1, 25.7, 25.6, 18.0, 17.6. ¹⁹F NMR (565 MHz, CDCl₃) δ 22.74, 17.10. HRMS (ESI-TOF) m/z: M⁺ calculated for C₁₃H₁₆FNOS 253.0937, found 253.0939. $$O_2N$$ $S^ O_2N$ $S^ S^ S^-$ (3-methylbut-2-en-1-yl)(4-nitrophenyl)carbamothioic fluoride (3c' and 3c"): The general procedure from *N*-(3-methylbut-2-en-1-yl)-4-nitroaniline (103.1 mg, 0.5 mmol), AgSCF₃ (155.9 mg, 0.75 mmol), KBr (147.4 mg, 1.25 mmol) and MeCN (10 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 30:1 to give 3c':3c''=3:1 as yellow solid (110.1 mg, 82% yield). Mp: 55.0-55.9 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.23 (d, J = 8.5 Hz, 4H), 7.56 – 7.23 (m, 4H), 5.25 (d, J = 13.8 Hz, 2H), 4.63 (s, 3H), 4.36 (s, 1H), 1.65 (s, 6H), 1.45 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 178.5, 147.1, 144.9, 139.8, 126.9, 124.8, 115.4, 54.8, 25.6, 18.0. ¹³F NMR (565 MHz, CDCl₃) δ 24.85, 19.01. HRMS (ESI-TOF) m/z: M* calculated for C₁₂H₁₃FN₂O₂S 268.0682, found 268.0685. (2-bromophenyl)(3-methylbut-2-en-1-yl)carbamothioic fluoride (3d' and 3d''): The general procedure from 2-bromo-*N*-(3-methylbut-2-en-1-yl)aniline (120.1 mg, 0.5 mmol), AgSCF₃ (155.9 mg, 0.75 mmol), KBr (147.4 mg, 1.25 mmol) and MeCN (10 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 30:1 to give 3d':3d''=2.8:1 as yellow liquid (127.3 mg, 84% yield). 1 H NMR (500 MHz, CDCl₃) δ 7.61 (m, 3H), 7.30 (m, 4H), 7.20 (m, 5H), 7.07 (dd, J = 7.9, 1.6 Hz, 2H), 5.38 – 5.18 (m, 4H), 4.81 (dd, J = 14.7, 6.9 Hz, 3H), 4.62 (d, J = 7.2 Hz, 1H), 4.28 (dd, J = 14.6, 8.2 Hz, 3H), 3.94 (dd, J = 14.8, 8.2 Hz, 1H), 1.64 (d, J = 10.9 Hz, 11H), 1.37 (dd, J = 7.5, 1.4 Hz, 11H). 13 C NMR (126 MHz, CDCl₃) δ 139.9, 139.8, 138.4, 134.0, 133.6, 130.3, 130.2, 129.8, 128.8, 128.6, 128.2, 121.4, 121.4, 116.2, 115.4, 53.7, 53.7, 50.5, 50.5, 25.7, 25.7, 17.9. 19 F NMR (471 MHz, CDCl₃) δ 24.60, 15.51. HRMS (EI-TOF) m/z: M⁺ calculated for $C_{12}H_{13}$ BrFNOS 3300.9936, found 300.9935. (3-iodophenyl)(3-methylbut-2-en-1-yl)carbamothioic fluoride (3e' and 3e''): The general procedure from 3-iodo-*N*-(3-methylbut-2-en-1-yl)aniline (861.3 mg, 3 mmol), sulfur (384.7 mg, 12mmol), KF (522.9 mg, 9 mmol), TMSCF₃ (2145 mg, 15 mmol) and THF (30 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 30:1 to give 3e':3e''= 3.3:1 as yellow liquid (707 mg, 68% yield). 1 H NMR (500 MHz, CDCl₃) δ 7.80 – 7.59 (m, 5H), 7.53 (s, 3H), 7.27 (d, J = 2.6 Hz, 1H), 7.22 – 7.10 (m, 8H), 5.34 (t, J = 7.2 Hz, 3H), 5.27 (t, J = 7.7 Hz, 1H), 4.62 (d, J = 7.2 Hz, 7H), 4.34 (d, J = 7.4 Hz, 2H), 1.74 (d, J = 5.6 Hz, 13H), 1.50 (d, J = 16.9 Hz, 13H). 13 C NMR (151 MHz, CDCl₃) δ 181.2, 179.1, 143.8, 140.6, 139.6, 139.5, 137.6, 137.6, 135.8, 134.9, 131.1, 130.8, 126.4, 125.4, 116.5, 115.6, 93.9, 93.8, 55.0, 54.9, 51.9, 25.7, 25.7, 18.1, 17.7. 19 F NMR (565 MHz, CDCl₃) δ 24.13, 17.81. HRMS (EI-TOF) m/z: M+ calculated for C₁₂H₁₃FINS 348.9797, found 348.9801. (3-methylbut-2-en-1-yl)(naphthalen-1-yl)carbamothioic fluoride (3f' and 3f''): The general procedure from N-(3-methylbut-2-en-1-yl)naphthalen-1-amine (676.0 mg, 3 mmol), sulfur (384.7 mg, 12 mmol), KF (522.9 mg, 9 mmol), TMSCF₃ (2145 mg, 15 mmol) and THF (30 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 30:1 to give 3f':3f''=4.2:1 as yellow liquid (606.9 mg, 74% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.83 (dt, J = 9.9, 7.8 Hz, 10H), 7.71 (dd, J = 8.3, 1.5 Hz, 1H), 7.65 (d, J = 8.1 Hz, 4H), 7.57 – 7.30 (m, 17H), 7.24 – 7.14 (m, 5H), 5.41 – 5.25 (m, 5H), 4.90 (dd, J = 14.4, 6.9 Hz, 4H), 4.62 (dd, J = 14.6, 7.1 Hz, 1H), 4.42 (dd, J = 14.3, 7.9 Hz, 4H), 4.12 (dd, J = 14.5, 8.1 Hz, 1H), 1.64 – 1.60 (m, 3H), 1.60 – 1.53 (m, 13H), 1.25 (d, J = 1.5 Hz, 16H). ¹³C NMR (151 MHz, CDCl₃) δ 183.2, 182.5, 181.1, 180.3, 139.5, 139.5, 138.9, 136.0, 134.6, 134.3, 129.4, 129.3, 128.8, 128.7, 128.5, 128.0, 127.5, 127.3, 126.8, 126.7, 125.6, 125.2, 125.2, 124.1, 122.0, 122.0, 116.9, 115.8, 54.8, 54.8, 51.7, 51.7, 25.7, 25.6, 17.9, 17.6. ¹⁹F NMR (565 MHz, CDCl₃) δ 24.17, 17.15. HRMS (EI-TOF) m/z: M* calculated for C₁₆H₁₆FNS 273.0987, found 273.0990. benzyl(3-methylbut-2-en-1-yl)carbamothioic fluoride (3g' and 32g"): The general procedure from *N*-benzyl-3-methylbut-2-en-1-amine (771.2 mg, 4.4 mmol), sulfur (563.2 mg, 17.6 mmol), KF (766.9 mg, 13.2 mmol), TMSCF₃ (3146 mg, 22 mmol) and THF (44 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 30:1 to give 3g':3g''=1.1:1 as yellow liquid (884.2 mg, 85% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.28 (m, 9H), 7.13 (dd, J = 7.2, 1.6 Hz, 2H), 5.20 (m, 1H), 5.05 (m, 1H), 4.88 (s, 2H), 4.54 (s, 2H), 4.23 (d, J = 7.1 Hz, 2H), 3.90 (d, J = 7.2 Hz, 2H), 1.67 (dd, J = 14.9, 1.4 Hz, 7H), 1.53 (dd, J = 26.9, 1.4 Hz, 7H). ¹³C NMR (126 MHz, CDCl₃) δ 183.8, 182.6, 181.3, 180.0, 139.2, 138.8, 134.4, 129.0, 128.8, 128.3, 128.0, 127.6, 116.8, 116.1, 55.9, 55.9, 51.4, 51.4, 50.7, 50.7, 46.3, 46.2, 25.7, 25.7, 18.2, 17.8. ¹⁹F NMR (565 MHz, CDCl₃) δ 15.07, 14.69. HRMS (EI-TOF) m/z: M+ calculated for C₁₃H₁₆FNS 237.0989, found 237.0989. $$N^{+}$$ S^{-} N^{+} S^{-} S^{-} S^{-} **cyclohexyl(3-methylbut-2-en-1-yl)carbamothioic fluoride (3h' and 3h''):** The general procedure from *N*-(3-methylbut-2-en-1-yl)cyclohexanamine (836.5 mg, 5 mmol), sulfur (641.2 mg, 20 mmol), KF (871.5 mg, 20 mmol), TMSCF₃ (3554.8 mg, 25 mmol) and THF (50 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 30:1 to give **3h':3h''**= 1.3:1 as yellow liquid (822.5 mg, 72% yield). ¹H NMR (500 MHz, CDCl₃) δ 5.15 (t, J = 6.4 Hz, 1H), 4.99 (t, J = 6.7 Hz, 1H), 4.54 (tt, J = 11.6, 4.1 Hz, 1H), 4.24 (d, J = 6.4 Hz, 2H), 3.97 – 3.77 (m, 4H), 1.93 – 1.70 (m, 11H), 1.69 – 1.54 (m, 18H), 1.53 – 1.15 (m, 12H), 1.05 (tt, J = 13.0, 3.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 182.9, 182.9, 180.4, 180.3, 136.0, 135.8, 119.3, 118.3, 62.9, 62.8, 60.7, 60.6, 49.1, 49.0, 43.3, 43.2, 31.0, 29.6, 25.8, 25.7, 25.5, 25.3, 25.1, 18.3, 17.9. ¹⁹F NMR (471 MHz, CDCl₃) δ 19.39, 14.51. HRMS (EI-TOF) m/z: M+ calculated for C₁₂H₂₀FNS 229.1300, found 229.1304. tert-butyl 4-((fluorocarbonothioyl)(3-methylbut-2-en-1-yl)amino)piperidine-1-carboxylate (3i' and 3i''): The general procedure from tert-butyl 4-((3-methylbut-2-en-1-yl)amino)piperidine-1-carboxylate (805.2 mg, 3 mmol), sulfur (384 mg, 12 mmol), KF (522.9 mg, 9 mmol), TMSCF₃ (2145 mg, 15 mmol) and THF (30 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give 3i':3i''=2:1 as yellow liquid (708.6 mg, 71% yield). Mp: 55.0-56.7 °C.¹H NMR (500 MHz, CDCl₃) δ 5.14 (m, 1H), 5.01-4.92 (m, 2H), 4.72 (tq, J = 12.3, 4.1 Hz, 2H), 4.31-4.03 (m, 8H), 3.99 (tt, J = 11.7, 4.3 Hz, 1H), 3.91-3.81 (m, 4H), 2.68 (d, J = 40.1 Hz, 6H), 1.83 (m, 4H), 1.70-1.58 (m, 24H), 1.54-1.44 (m, 5H), 1.40 (d, J = 2.8 Hz, 28H). 13C NMR (151 MHz, CDCl₃) δ 182.9, 182.6, 180.8, 154.6, 154.5, 136.6, 136.5, 118.8, 117.9, 80.1, 80.0, 61.0, 61.0, 58.6, 58.5, 49.0, 48.9, 43.4, 43.4, 30.1, 28.6, 28.4, 28.4, 25.7, 18.3, 18.0. ¹⁹F NMR (565 MHz, CDCl₃) δ 19.91, 15.35. HRMS (EI-TOF) m/z: M⁺ calculated for C₁₆H₂₇FN₂O₂S 330.1777, found 330.1783. 3-ethyl 4-(2-chlorophenyl)-2-((2-((fluorocarbonothioyl)(3-methylbut-2-en-1-5-methyl yl)amino)ethoxy)methyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate (3j' and 3j"): The general procedure from 3-ethyl 5-methyl 4-(2-chlorophenyl)-6-methyl-2-((2-((3-methylbut-2-en-1yl)amino)ethoxy)methyl)-1,4-dihydropyridine-3,5-dicarboxylate (231.5 mg, 0.5 mmol), AgSCF₃ (155.9 mg, 0.75 mmol), KBr (147.4 mg, 1.25 mmol) and MeCN (10 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 3:1 to give 3j':3j"= Hz, 2H), 7.16 (dt, J = 7.9, 1.4 Hz, 2H), 7.07 (m, 4H), 6.97 (tt, J = 7.4, 1.9 Hz, 3H), 6.83 (s, 1H), 5.34 (s, 2H), 5.27 -5.04 (m, 2H), 4.71 (dd, J = 15.8, 2.8 Hz, 2H), 4.62 (dd, J = 15.8, 6.9 Hz, 2H), 4.43 -4.29 (m, 2H), 4.08 (d, J = 15.8, 6.9 Hz, 2H),
4.43 -4.29 (m, 4. 7.2 Hz, 3H), 4.04 - 3.88 (m, 8H), 3.85 - 3.73 (m, 3H), 3.70 - 3.60 (m, 4H), 3.54 (d, J = 1.2 Hz, 8H), 2.29 (d, J = 1.2 Hz, 8H), 3.85 - 3.73 (m, 3H), 3.75 - 3.73 (m, 1.9 Hz, 7H), 1.77 - 1.60 (m, 15H), 1.11 (t, J = 7.1 Hz, 7H). 13 C NMR (126 MHz, CDCl₃) δ 183.6, 181.1, 167.9, 167.9, 167.1, 167.1, 145.7, 145.6, 144.6, 144.3, 144.1, 143.9, 139.3, 139.0, 132.3, 132.2, 131.4, 129.2, 129.2, 127.4, 127.3, 126.9, 126.9, 116.8, 116.2, 104.0, 104.0, 101.6, 101.4, 68.4, 68.1, 67.6, 67.4, 59.8, 59.8, 52.4, 52.3, 51.7, 51.7, 50.8, 50.7, 48.1, 48.0, 47.8, 47.8, 37.0, 37.0, 25.7, 25.7, 19.4, 19.4, 18.2, 17.9, 14.2. ¹⁹F NMR (471 MHz, CDCl₃) δ 17.58, 16.11. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₆H₃₂CIFN₂NaO₅S 561.1597, found 561.1600. cinnamyl(phenyl)carbamothioic fluoride (3k' and 3k"): The general procedure from *N*-cinnamylaniline (248.7 mg, 1.15 mmol), sulfur (147.2 mg, 4.6 mmol), KF (200.4 mg, 3.45 mmol), TMSCF₃ (822.3 mg, 5.75 mmol) and THF (12 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 30:1 to give 3k':3k''=4.3:1 as yellow liquid (247.4 mg, 76% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.53 – 7.13 (m, 51H), 6.51 (m, 5H), 6.36 (dt, J = 16.0, 6.8 Hz, 4H), 6.24 (dt, J = 15.8, 6.7 Hz, 1H), 4.80 (d, J = 6.8 Hz, 9H), 4.53 (d, J = 6.8 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 181.8, 179.7, 142.9, 139.7, 136.0, 135.7, 135.6, 135.3, 129.9, 129.6, 128.8, 128.7, 128.7, 128.6, 128.4, 128.2, 126.8, 126.6, 125.9, 121.1, 120.3, 59.4, 59.3, 56.1. ¹⁹F NMR (565 MHz, CDCl₃) δ 24.03, 18.31. HRMS (EI-TOF) m/z: M⁺ calculated for C₁₆H₁₄FNS 271.0831, found 271.0827. **cyclohex-2-en-1-yl(phenyl)carbamothioic fluoride (3I' and 3I''):** The general procedure from *N*-(cyclohex-2-en-1-yl)aniline (545.8 mg, 3.15 mmol), sulfur (403.2 mg, 12.6 mmol), KF (549 mg, 9.45 mmol), TMSCF₃ (2252.3 mg, 15.75 mmol) and THF (12 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 30:1 to give **3I':3I''**= 4.3:1 as white solid (519.9 mg, 70% yield). Mp: 84.7-86.6 °C.¹H NMR (600 MHz, CDCl₃) δ 7.42 – 7.26 (m, 3H), 7.17 – 6.99 (m, 2H), 5.83 – 5.72 (m, 1H), 5.69 (dt, J = 10.4, 2.1 Hz, 1H), 5.63 – 5.52 (m, 1H), 2.07 – 1.90 (m, 1H), 1.90 – 1.81 (m, 1H), 1.76 (m, 1H), 1.62 – 1.46 (m, 2H), 1.41 – 1.26 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 182.2, 180.1, 136.6, 132.2, 131.9, 129.5, 129.2, 129.0, 128.8, 128.3, 127.6, 125.8, 125.4, 61.1, 61.0, 58.8, 28.0, 26.5, 24.2, 24.1, 20.8, 20.7. ¹⁹F NMR (565 MHz, CDCl₃) δ 28.36, 17.33. HRMS (EI-TOF) m/z: M⁺ calculated for C₁₃H₁₄FNS 235.0831, found 235.0835. **(E)-dec-6-en-5-yl(phenyl)carbamothioic fluoride (3m' and 3m"):** The general procedure from (E)-*N*-(dec-6-en-5-yl)aniline (140.7 mg, 0.5 mmol), AgSCF₃ (155.9 mg, 0.75 mmol), KBr (147.4 mg, 1.25 mmol) and MeCN (10 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 30:1 to give **3m':3m"** = 2.8:1 as yellow liquid (99.6 mg, 68% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.43 – 7.29 (m, 10H), 7.11 (dd, J = 7.4, 1.6 Hz, 2H), 7.04 – 6.97 (m, 5H), 5.77 (dt, J = 15.3, 6.8 Hz, 3H), 5.63 (m, 1H), 5.36 (m, 3H), 5.19 – 5.09 (m, 1H), 5.04 (m, 3H), 4.66 (q, J = 7.9 Hz, 1H), 2.06 – 1.83 (m, 7H), 1.73 – 1.57 (m, 4H), 1.52 – 1.22 (m, 29H), 0.82 (m, 22H). ¹³C NMR (151 MHz, CDCl₃) δ 181.8, 179.7, 140.4, 136.9, 136.4, 136.3, 129.4, 129.0, 128.9, 128.7, 128.3, 127.9, 126.9, 126.3, 66.3, 66.2, 65.4, 34.4, 34.2, 33.1, 31.6, 28.4, 28.2, 22.3, 22.2, 22.0, 22.0, 13.9, 13.9, 13.6, 13.6. ¹⁹F NMR (565 MHz, CDCl₃) δ 27.97, 17.11. HRMS (EI-TOF) m/z: M* calculated for C₁₇H₁₄FNS 293.1614, found 293.1609. **but-2-en-1-yl(phenyl)carbamothioic fluoride (3n' and 3n"):** The general procedure from *N*-(but-2-en-1-yl)aniline (368.1 mg, 2.5 mmol, trans and cis mixture), sulfur (320 mg, 10 mmol), KF (435.8 mg, 7.5 mmol), TMSCF₃ (1787.5 mg, 12.5 mmol) and THF (25 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 100:1 to give 3n:3n''=4:1 as yellow liquid (407.0 mg, 78% yield, trans: cis = 4:1). ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.25 (m, 35H), 7.22 (d, J = 6.7 Hz, 5H), 7.15 – 7.04 (m, 24H), 6.59 (dd, J = 17.4, 7.8 Hz, 9H), 5.76 – 5.29 (m, 31H), 4.64 (d, J = 7.0 Hz, 4H), 4.49 (d, J = 5.1 Hz, 15H), 4.35 (d, J = 7.1 Hz, 1H), 4.22 (d, J = 6.5 Hz, 4H), 3.83 – 3.68 (m, 12H), 1.72 – 1.54 (m, 37H), 1.41 (m, 7H).¹³C NMR (126 MHz, CDCl₃) δ 148.7, 132.4, 130.3, 129.7, 129.5, 129.4, 129.0, 128.6, 128.6, 127.7, 127.1, 126.7, 126.7, 125.9, 125.8, 122.1, 116.1, 112.4, 59.2, 59.1, 56.0, 51.8, 51.5, 17.7, 17.6. ¹⁹F NMR (471 MHz, CDCl₃) δ 23.92, 23.29, 17.88, 17.61. HRMS (EI-TOF) m/z: M⁺ calculated for C₁₁H₁₇₂FNS 209.0674, found 209.0676. (E)-benzyl(4-((4-methoxyphenyl)thio)but-2-en-1-yl)carbamothioic fluoride (3ο' and 3ο''): The general procedure from (E)-*N*-benzyl-4-((4-methoxyphenyl)thio)but-2-en-1-amine (149.7 mg, 0.5 mmol), AgSCF₃ (155.9 mg, 0.75 mmol), KBr (147.4 mg, 1.25 mmol) and MeCN (10 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give 3o':3o"= 1:1 as yellow liquid (157.8 mg, 87% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.22 (m, 10H), 7.21 – 7.15 (m, 2H), 7.08 – 7.01 (m, 2H), 6.86 – 6.75 (m, 4H), 5.68 – 5.49 (m, 2H), 5.38 – 5.27 (m, 1H), 5.21 – 5.04 (m, 1H), 4.68 (s, 2H), 4.29 (s, 2H), 4.08 (d, J = 6.5 Hz, 2H), 3.74 (dd, J = 21.8, 7.6 Hz, 8H), 3.41 – 3.26 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 182.6, 181.1, 159.4, 159.4, 134.7, 134.4, 134.1, 134.0, 132.1, 131.7, 129.0, 128.9, 128.4, 128.1, 127.7, 124.8, 124.7, 124.5, 124.0, 114.6, 114.5, 55.6, 55.6, 55.4, 55.3, 53.8, 53.7, 51.1, 51.0, 49.4, 49.3, 37.8, 37.7. ¹⁹F NMR (565 MHz, CDCl₃) δ 27.97, 17.11. HRMS (ESI-TOF) m/z: [M+Na]+calculated for C₁₉H₂₀FNNaOS₂ 384.0863, found 384.0857. allyl(phenyl)carbamothioic fluoride (3p' and 3p"): The general procedure from *N*-allylaniline (1688.9 mg, 12.68 mmol), sulfur (1623 mg, 50.72 mmol), KF (2206.7 mg, 38.04 mmol), TMSCF₃ (9066.2 mg, 63.4 mmol) and THF (127 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 30:1 to give 3p':3p" = 4.3:1 as yellow liquid (1992.5 mg, 80% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.56 – 7.31 (m, 9H), 7.20 (dd, J = 7.5, 2.0 Hz, 4H), 5.96 (m, 3H), 5.36 – 5.20 (m, 5H), 4.67 (dq, J = 6.4, 1.2 Hz, 4H), 4.44 – 4.36 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 182.0, 180.8, 179.4, 142.9, 139.7, 130.4, 129.7, 129.5, 129.4, 128.7, 128.6, 126.6, 125.7, 120.3, 119.9, 59.6, 59.6, 56.5, 56.4. ¹⁹F NMR (471 MHz, CDCl₃) δ 23.95, 18.51. HRMS (EI-TOF) m/z: M⁺ calculated for C₁₀H₁₀FNS 195.0518, found 195.0520. allyl(phenyl)carbamothioic fluoride (3q' and 3q"): The general procedure from *N*-(2-methylallyl)aniline (611 mg, 4.15 mmol), sulfur (531.2 mg, 16.6 mmol), KF (723.3 mg, 12.45 mmol), TMSCF₃ (2967.2 mg, 20.75 mmol) and THF (42 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 30:1 to give 3q':3q''=3.4:1 as yellow liquid (831.1 mg, 96% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.48 – 7.30 (m, 14H), 7.22 – 7.14 (m, 6H), 4.98 (s, 1H), 4.93 (t, J = 1.5 Hz, 3H), 4.87 – 4.81 (m, 4H), 4.67 (s, 6H), 4.34 (s, 2H), 1.81 (s, 13H). ¹³C NMR (151 MHz, CDCl₃) δ 182.4, 180.3, 143.0, 139.6, 138.2, 137.7, 129.6, 129.4, 128.6, 128.5, 126.5, 125.5, 114.9, 114.8, 62.6, 62.5, 59.7, 59.6, 20.3, 20.1. ¹⁹F NMR (565 MHz, CDCl₃) δ 24.93, 18.89. HRMS (EI-TOF) m/z: M⁺ calculated for C₁₁H₁₂FNS 209.0674, found 209.0677. $$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &
\\ & & \\ &$$ (4-methylpent-3-en-1-yl)(phenyl)carbamothioic fluoride (3r' and 3r"): The general procedure from *N*-(4-methylpent-3-en-1-yl)aniline (280.4 mg, 1.6 mmol), sulfur (204.8 mg, 6.4 mmol), KF (278.9 mg, 4.8 mmol), TMSCF₃ (1144 mg, 8 mmol) and THF (16 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 30:1 to give 3r':3r"= 4.1:1 as yellow liquid (157.8 mg, 87% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.27 (m, 8H), 7.22 (dd, J = 7.5, 1.8 Hz, 1H), 7.10 (dd, J = 7.5, 1.8 Hz, 4H), 4.96 (m, 2H), 4.00 – 3.90 (m, 4H), 3.72 (td, J = 7.5, 1.6 Hz, 1H), 2.35 (q, J = 7.6 Hz, 4H), 2.27 (q, J = 7.5 Hz, 1H), 1.61 (dd, J = 10.5, 1.5 Hz, 8H), 1.52 (d, J = 1.5 Hz, 9H). 13 C NMR (126 MHz, CDCl₃) δ 181.8, 179.3, 139.8, 135.5, 129.8, 129.5, 128.7, 128.6, 126.8, 125.8, 119.0, 118.7, 56.7, 56.6, 53.6, 53.6, 26.9, 25.7, 25.7, 24.8, 17.8, 17.8. 19 F NMR (565 MHz, CDCl₃) δ 24.59, 17.15. HRMS (EI-TOF) m/z: M⁺ calculated for $C_{13}H_{16}$ FNS 237.0987, found 237.0981. benzyl(4-methylpent-3-en-1-yl)carbamothioic fluoride (3s' and 3s"): The general procedure from *N*-benzyl-4-methylpent-3-en-1-amine (378.6 mg, 2 mmol), sulfur (256 mg, 8 mmol), KF (348.6 mg, 6 mmol), TMSCF₃ (1430 mg, 10 mmol) and THF (20 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 30:1 to give 3s':3s" = 1.3:1 as yellow liquid (443.5 mg, 88% yield). 1 H NMR (500 MHz, CDCl₃) δ 7.35 – 7.22 (m, 9H), 7.17 – 7.11 (m, 2H), 4.99 (tt, J = 7.3, 1.5 Hz, 1H), 4.93 (d, J = 3.9 Hz, 4H), 4.58 (s, 2H), 3.60 – 3.48 (m, 2H), 3.28 (td, J = 7.7, 1.9 Hz, 2H), 2.33 (q, J = 7.6 Hz, 2H), 2.18 (q, J = 7.5 Hz, 3H), 1.62 (dd, J = 3.0, 1.5 Hz, 7H), 1.55 (d, J = 1.3 Hz, 3H), 1.50 (d, J = 1.3 Hz, 4H). 13 C NMR (126 MHz, CDCl₃) δ 182.8 (d, J = 321.3 Hz), 181.1 (d, J = 321.1 Hz), 135.8, 135.5, 134.4, 134.4, 129.0, 128.9, 128.3, 128.0, 127.6, 119.1, 118.7, 57.1, 57.0, 53.2, 53.2, 53.0, 52.9, 48.6, 48.6, 26.7, 25.7, 24.3, 17.7, 17.6. 19 F NMR (471 MHz, CDCl₃) δ 15.36, 15.31. HRMS (EI-TOF) m/z: M* calculated for C₁₄H₁₈FNS 251.1144, found 251.1148. $$EtO_2C$$ N^+ $S^ EtO_2C$ N^+ $S^ S^-$ ethyl 3-((fluorocarbonothioyl)(4-methylpent-3-en-1-yl)amino)propanoate (3t' and 3t"): The general procedure from ethyl 3-((4-methylpent-3-en-1-yl)amino)propanoate (299.0 mg, 1.5 mmol), sulfur (192 mg, 6 mmol), KF (261.5 mg, 4.5 mmol), TMSCF₃ (1072.5 mg, 7.5 mmol) and THF (15 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 20:1 to give 3t':3t''=1.6:1 as yellow liquid (290.3 mg, 74% yield). 1 H NMR (500 MHz, CDCl₃) δ 5.07 – 5.01 (m, 1H), 4.98 (t, J = 7.6 Hz, 1H), 4.09 (qd, J = 7.1, 1.5 Hz, 5H), 3.84 (t, J = 7.0 Hz, 3H), 3.73 – 3.54 (m, 4H), 3.52 – 3.37 (m, 3H), 2.77 (t, J = 7.0 Hz, 3H), 2.58 (t, J = 7.1 Hz, 2H), 2.38 (q, J = 7.6 Hz, 2H), 2.25 (q, J = 7.4 Hz, 3H), 1.64 (s, 8H), 1.59 (s, 3H), 1.56 (s, 5H), 1.21 (t, J = 7.2 Hz, 8H). 13 C NMR (126 MHz, CDCl₃) δ 181.4 (d, J = 322.0 Hz), 181.3 (d, J = 321.5 Hz), 171.2, 170.4, 135.8, 135.6, 119.0, 118.6, 61.0, 60.9, 54.2, 54.1, 50.8, 50.8, 49.6, 49.5, 45.9, 45.8, 33.1, 30.7, 30.6, 27.0, 25.6, 24.6, 17.7, 17.5, 14.0, 14.0. 19 F NMR (471 MHz, CDCl₃) δ 16.84, 15.29. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₂H₂₀FNNaO₂S 284.1091, found 284.1091. **5-(2-fluoropropan-2-yl)-3-phenylthiazolidin-2-one (4a):** The general procedure from (3-methylbut-2-en-1-yl)(phenyl)carbamothioic fluoride **2a** (44.7 mg, 0.2 mmol), PhI(OPiv)₂ (162.5 mg, 0.4 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give **4a** as white solid (43.2 mg, 90% yield). Mp: 72.9-74.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.43 – 7.35 (m, 4H), 7.20 (m, 1H), 4.22 (m, 1H), 4.09 (m, 1H), 3.85 (m, 1H), 1.49 (m, 6H). 13 C NMR (126 MHz, CDCl₃) δ 169.5, 138.5, 129.1, 125.7, 122.0, 96.12 (d, J = 172.7 Hz), 51.17 (d, J = 5.0 Hz), 48.05 (d, J = 27.2 Hz), 25.15 (d, J = 23.7 Hz), 22.13 (d, J = 24.4 Hz). 19 F NMR (565 MHz, CDCl₃) δ -141.41. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₂H₁₄FNNaOS 262.0672, found 262.0679. 4b 5-(2-fluoropropan-2-yl)-3-(4-methoxyphenyl)thiazolidin-2-one (4b): The general procedure from (4- methoxyphenyl)(3-methylbut-2-en-1-yl)carbamothioic fluoride **2b** (50.7 mg, 0.2 mmol), PhI(OPiv)₂ (162.5 mg, 0.4 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give **4b** as yellow liquid (43.8 mg, 81% yield). 1 H NMR (500 MHz, CDCl₃) δ 7.25 – 7.17 (m, 2H), 6.87 – 6.80 (m, 2H), 4.09 (dd, J = 10.8, 8.0 Hz, 1H), 3.95 (dd, J = 10.8, 3.9 Hz, 1H), 3.81 – 3.67 (m, 4H), 1.42 (t, J = 21.9 Hz, 6H). 13 C NMR (151 MHz, CDCl₃) δ 169.4, 157.6, 131.4, 124.1, 114.4, 96.17 (d, J = 172.4 hz), 55.4, 51.59 (d, J = 5.0 Hz), 48.06 (d, J = 27.1 Hz), 25.14 (d, J = 23.7 Hz), 22.13 (d, J = 24.2 Hz). 19 F NMR (565 MHz, CDCl₃) δ -141.46. HRMS (ESITOF) m/z: [M+Na]⁺ calculated for C₁₃H₁₆FNNaO₂S 292.0778, found 292.0770. **5-(2-fluoropropan-2-yl)-3-(4-nitrophenyl)thiazolidin-2-one (4c):** The general procedure from (3-methylbut-2-en-1-yl)(4-nitrophenyl)carbamothioic fluoride **2c** (53.7 mg, 0.2 mmol), PhI(OPiv)₂ (162.5 mg, 0.4 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give **4c** as white solid (52 mg, 91% yield). Mp: 75.3-79.0 °C. 1 H NMR (500 MHz, CDCl₃) δ 8.33 – 8.20 (m, 2H), 7.72 – 7.60 (m, 2H), 4.29 (dd, J = 10.6, 7.9 Hz, 1H), 4.20 (dd, J = 10.6, 4.3 Hz, 1H), 3.94 (m, 1H), 1.53 (d, J = 2.7 Hz, 3H), 1.49 (d, J = 2.6 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ 170.1, 143.9, 143.9, 124.7, 120.4, 95.7 (d, J = 173.7 Hz), 50.5 (d, J = 5.0 Hz), 47.9 (d, J = 27.1 Hz), 25.2 (d, J = 23.9 Hz), 22.4 (d, J = 24.2 Hz). 19 F NMR (565 MHz, CDCl₃) δ -142.36. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₂H₁₃FN₂NaO₃S 307.1523, found 307.1532. **3-(2-bromophenyl)-5-(2-fluoropropan-2-yl)thiazolidin-2-one (4d):** The general procedure from (2-bromophenyl)(3-methylbut-2-en-1-yl)carbamothioic fluoride **2d** (60.4 mg, 0.2 mmol), PhI(OPiv)₂ (162.5 mg, 0.4 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give **4d** as yellow liquid (57 mg, 90% yield). 1 H NMR (500 MHz, CDCl₃) δ 7.59 (dd, J = 8.1, 1.4 Hz, 1H), 7.31 (td, J = 7.6, 1.4 Hz, 1H), 7.24 (dd, J = 7.9, 1.7 Hz, 1H), 7.17 (td, J = 7.7, 1.7 Hz, 1H), 4.05 (d, J = 10.7 Hz, 1H), 3.97 (m, 1H), 3.92 – 3.79 (m, 1H), 1.53 (d, J = 21.2 Hz, 3H), 1.43 (d, J = 21.4 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ 170.2, 137.5, 133.9, 130.1, 129.6, 128.7, 122.5, 95.8 (d, J = 172.7 Hz), 51.1 (d, J = 5.3 Hz), 49.5 (d, J = 26.3 Hz), 25.25 (d, J = 23.7 Hz), 23.05 (d, J = 24.0 Hz). 19 F NMR (565 MHz, CDCl₃) δ -142.01. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for $C_{12}H_{13}$ BrFNNaOS 339.9777, found 339.9778. **5-(2-fluoropropan-2-yl)-3-(3-iodophenyl)thiazolidin-2-one (4e):** The general procedure from (3-iodophenyl)(3-methylbut-2-en-1-yl)carbamothioic fluoride **2e** (69.8 mg, 0.2 mmol), PhI(OPiv)₂ (162.5 mg, 0.4 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give **4e** as yellow liquid (67.6 mg, 93% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.67 (m, 1H), 7.46 (m, 1H), 7.37 – 7.32 (m, 1H), 7.03 (t, J = 8.0 Hz, 1H), 4.11 (dd, J = 10.7, 7.9 Hz, 1H), 3.99 (dd, J = 10.7, 3.9 Hz, 1H), 3.78 (m, 1H), 1.41 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 169.6, 139.6, 134.6, 130.5, 130.3, 121.0, 96.0 (d, J = 173.0 Hz), 94.1, 50.9 (d, J = 5.0 Hz), 48.0 (d, J = 27.2 Hz), 25.2 (d, J = 23.8 Hz), 22.2 (d, J = 24.2 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -141.65. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₂H₁₃FINNaOS 387.9639, found 387.9650. 5-(2-fluoropropan-2-yl)-3-(naphthalen-1-yl)thiazolidin-2-one (4f): The general procedure from (3-methylbut-2-en-1-yl)(naphthalen-1-yl)carbamothioic fluoride 2f (54.7 mg, 0.2 mmol), PhI(OPiv)₂ (162.5 mg, 0.4 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give **4f** as white solid (55.3 mg, 96% yield). Mp: 118.2-119.4 °C.¹H NMR (500 MHz, CDCl₃) δ 7.77 (m, 3H), 7.54 – 7.36 (m, 3H), 7.32 (d, J = 7.3 Hz, 1H), 4.11 (t, J = 9.4 hz, 1H), 3.95 (d, J = 34.1 Hz, 2H), 1.53 (d, J = 21.2 Hz, 3H), 1.42 (d, J = 21.2 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ 170.30, 135.00, 134.59, 129.64, 128.95, 128.61, 127.09, 126.52, 125.53, 125.10, 124.15, 122.71, 122.28, 95.60 (d, J = 173.2 Hz), 52.80, 49.54, 25.01 (d, J = 24.0 Hz), 23.29. 19 F NMR (565 MHz, CDCl₃) δ -142.51, -144.47. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for $C_{16}H_{16}$ FNNaOS 312.0829, found 312.0826. **3-benzyl-5-(2-fluoropropan-2-yl)thiazolidin-2-one (4g):** The general procedure from benzyl(3-methylbut-2-en-1-yl)carbamothioic fluoride **2g** (47.5 mg, 0.2 mmol), PhI(OPiv)₂ (162.5 mg, 0.4 mmol), Et₃N-3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: dichloromethane = 1:2 to give **4g** as yellow liquid (45 mg, 89% yield). 1 H NMR (600 MHz, CDCl₃) δ 7.31 – 7.26 (m, 2H), 7.26 – 7.21 (m, 1H), 7.21 – 7.16 (m, 2H), 4.39 (s, 2H), 3.67 (m, 1H), 3.47 (dd, J = 11.0, 8.4 Hz, 1H),
3.40 (dd, J = 10.9, 4.3 Hz, 1H), 1.27 (t, J = 21.3 Hz, 6H). 13 C NMR (151 MHz, CDCl₃) δ 170.40, 135.45, 128.81, 128.34, 128.00, 96.10 (d, J = 171.9 Hz), 48.60, 48.36 (d, J = 5.0 Hz), 48.18 (d, J = 27.0 Hz), 25.12 (d, J = 24.0 Hz), 22.00 (d, J = 24.4 hz). 19 F NMR (565 MHz, CDCl₃) δ -141.43. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₃H₁₆FNNaOS 276.0829, found 276.0827. **3-cyclohexyl-5-(2-fluoropropan-2-yl)thiazolidin-2-one (4h):** The general procedure from cyclohexyl(3-methylbut-2-en-1-yl)carbamothioic fluoride **2h** (43.9 mg, 0.2 mmol), $Phl(OPiv)_2$ (162.5 mg, 0.4 mmol), $Et_3N\cdot3HF$ (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 20:1 to give **4h** as white solid (39) mg, 79% yield). Mp: 48.6-49.5 °C. ¹H NMR (500 MHz, CDCl₃) δ 3.98 (tt, J = 11.9, 3.8 Hz, 1H), 3.74 (m, 1H), 3.66 (m, 2H), 1.90 – 1.73 (m, 4H), 1.73 – 1.65 (m, 1H), 1.52 – 1.32 (m, 11H). ¹³C NMR (126 MHz, CDCl₃) δ 169.6, 96.7 (d, J = 171.7 Hz), 53.6, 48.2 (d, J = 26.4 hz), 45.0 (d, J = 5.0 Hz), 30.3 (d, J = 27.2 Hz), 25.6, 25.5, 25.5 (d, J = 23.9 Hz), 25.4, 21.8, 21.6. ¹³F NMR (565 MHz, CDCl₃) δ -140.86. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₈H₂₀FNNaOS 268.1142, found 268.1151. tert-butyl 4-(5-(2-fluoropropan-2-yl)-2-oxothiazolidin-3-yl)piperidine-1-carboxylate (4i): The general procedure from tert-butyl 4-((fluorocarbonothioyl)(3-methylbut-2-en-1-yl)amino)piperidine-1-carboxylate 2i (66.1 mg, 0.2 mmol), PhI(OPiv)₂ (162.5 mg, 0.4 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give 4i as white solid (60.4 mg, 87% yield). Mp: 69.1-72 °C. ¹H NMR (500 MHz, CDCl₃) δ 4.34 – 3.98 (m, 3H), 3.68 (m, 1H), 3.60 – 3.50 (m, 2H), 2.70 (s, 2H), 1.70 – 1.61 (m, 2H), 1.55 (m, 2H), 1.44 – 1.29 (m, 15H). 13 C NMR (151 MHz, CDCl₃) δ 169.98, 154.44, 96.26 (d, J = 172.3 Hz), 79.83, 51.77, 48.28 (d, J = 27.2 Hz), 44.90 (d, J = 5.0 Hz), 43.0, 29.19 (d, J = 29.3 Hz), 28.35, 25.33 (d, J = 23.9 Hz), 21.98, 21.82. 19 F NMR (565 MHz, CDCl₃) δ -141.25, 141.66. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₆H₂₇FN₂NaO₃S 369.1619, found 369.1618. 3-ethyl 5-methyl 4-(2-chlorophenyl)-2-((2-(5-(2-fluoropropan-2-yl)-2-oxothiazolidin-3-yl)ethoxy)methyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate (4j): The general procedure from 3-ethyl 5-methyl 4-(2-chlorophenyl)-2-((2-((fluorocarbonothioyl)(3-methylbut-2-en-1-yl)amino)ethoxy)methyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate 2j (105.0 mg, 0.2 mmol), Phl(OPiv)₂ (162.5 mg, 0.4 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 1:1 to give **4j** as yellow liquid (74.5 mg, 67% yield). 1 H NMR (600 MHz, CDCl₃) δ 7.40 (m, 1H), 7.28 – 7.22 (m, 2H), 7.15 (m, 1H), 7.10 – 7.03 (m, 1H), 5.42 (s, 1H), 4.86 – 4.63 (m, 2H), 4.11 – 4.01 (m, 2H), 3.87 – 3.70 (m, 5H), 3.70 – 3.50 (m, 5H), 2.39 (s, 3H), 1.54 – 1.41 (m, 6H), 1.21 (t, J = 7.1 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ 171.3, 171.2, 168.0, 167.2, 145.9, 144.9, 144.6, 144.6, 132.3, 131.5, 131.5, 129.2, 127.3, 126.9, 126.8, 103.8, 103.8, 101.4, 101.3, 96.9, 95.5, 68.1, 68.1, 67.8, 67.6, 59.8, 50.8, 49.4, 49.4, 49.3, 49.2, 48.5, 48.5, 48.3, 48.3, 44.4, 44.4, 37.0, 37.0, 29.7, 25.5, 25.5, 25.3, 25.3, 22.0, 22.0, 21.8, 21.8, 19.1, 19.1, 14.3. 19 F NMR (471 MHz, CDCl₃) δ -142.13, -142.19. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₂₆H₃₂CIFN₂NaO₆S 577.1546, found 577.1535. **5-(fluoro(phenyl)methyl)-3-phenylthiazolidin-2-one (4k):** The general procedure from cinnamyl(phenyl)carbamothioic fluoride **2k** (54.3 mg, 0.2 mmol), PhI(OPiv)₂ (162.5 mg, 0.4 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give **4k** as white solid (43.2 mg, 75% yield). Mp: 107.7-111.1 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.47 – 7.34 (m, 9H), 7.21 (tt, J = 5.5, 3.0 Hz, 1H), 5.50 (dd, J = 47.2, 9.1 Hz, 1H), 4.30 (m, 2H), 4.07 (m, 1H). 13 C NMR (126 MHz, CDCl₃) δ 13C NMR (126 MHz, Chloroform-d) δ 169.0, 138.6, 136.1, 135.9, 129.7, 129.6, 129.1, 128.7, 126.8, 126.7, 125.8, 122.0, 93.96 (d, J = 180.3 Hz), 52.12 (d, J = 3.8 Hz), 45.16 (d, J = 28.7 Hz). 19 F NMR (565 MHz, CDCl₃) δ -168.37. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₆H₁₄FNNaOS 310.0672, found 310.0675. **7-fluoro-3-phenylhexahydrobenzo[d]thiazol-2(3H)-one (4l):** The general procedure from cyclohex-2-en-1-yl(phenyl)carbamothioic fluoride **2l** (47.1 mg, 0.2 mmol), PhI(OPiv)₂ (162.5 mg, 0.4 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give **4l** as white solid (42.1 mg, 84% yield). Mp: 112.4-113.2 °C. 1 H NMR (500 MHz, CDCl₃) δ 7.34 (m, 2H), 7.26 – 7.20 (m, 1H), 7.20 – 7.14 (m, 2H), 4.77 (m, 1H), 4.37 (m, 1H), 3.80 (dt, J = 13.8, 6.1 Hz, 1H), 2.04 (m, 1H), 1.87 – 1.76 (m, 1H), 1.72 – 1.57 (m, 2H), 1.57 – 1.33 (m, 2H). 13 C NMR (126 MHz, CDCl₃) δ 13C NMR (126 MHz, Chloroform-d) δ 171.27, 137.55, 129.37, 127.30, 125.98, 92.14 (d, J = 175.3 Hz), 61.48 (d, J = 4.7 Hz), 47.14 (d, J = 25.4 Hz), 28.72 (d, J = 19.3 Hz), 25.98, 17.08 (d, J = 7.6 Hz). 19 F NMR (565 MHz, CDCl₃) δ -176.14. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for $C_{13}H_{14}$ FNNaOS 274.0668, found 274.0668. **5-butyl-5-(1-fluorobutyl)-3-phenylthiazolidin-2-one (4m):** The general procedure from (E)-dec-6-en-5-yl(phenyl)carbamothioic fluoride **2m** (58.1 mg, 0.2 mmol), Phl(OPiv)₂ (162.5 mg, 0.4 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 50:1 to give anti-**4m** and syn-**4m** as yellow liquid (anti-**4m**: 36.2 mg, 58% yield; syn-**4m**: 13.7 mg, 22% yield). anti-**4m**: ¹H NMR (500 MHz, CDCl₃) δ 7.38 - 7.27 (m, 4H), 7.18 (tt, J = 6.9, 1.4 hz, 1H), 4.54 (m, 1H), 4.33 (dd, J = 9.2, 3.4 hz, 1H), 3.30 (dd, J = 9.4, 8.0 Hz, 1H), 1.85 - 1.68 (m, 2H), 1.67 - 1.50 (m, 3H), 1.43 (m, 1H), 1.32 - 1.19 (m, 4H), 0.92 (t, J = 7.3 Hz, 3H), 0.78 (td, J = 8.5, 7.0, 4.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.2, 137.6, 129.3, 126.7, 125.2, 93.9 (d, J = 177.4 Hz), 63.6 (d, J = 4.7 Hz), 48.3 (d, J = 23.4 hz), 34.7, 34.5, 31.1, 27.1, 22.3, 18.2 (d, J = 2.7 Hz), 13.8 (d, J = 8.3 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -179.22. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₇H₂₄FNNaOS 332.1446, found 332.1445. syn-**4n**: ¹H NMR (500 MHz, CDCl₃) δ 7.46 - 7.39 (m, 2H), 7.39 - 7.33 (m, 2H), 7.31 - 7.24 (m, 1H), 4.95 - 4.75 (m, 1H), 4.47 (q, J = 6.1 Hz, 1H), 4.28 (dt, J = 9.8, 6.7 Hz, 1H), 1.89 - 1.60 (m, 5H), 1.53 (m, 1H), 1.40 - 1.15 (m, 4H), 1.01 (t, J = 7.2 Hz, 3H), 0.82 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.4, 138.3, 129.3, 126.8, 125.5, 91.0 (d, J = 173.6 Hz), 64.0 (d, J = 1.9 Hz), 49.5 (d, J = 25.8 Hz), 36.5 (d, J = 6.9 Lz, 20.5 (d, J = 1.9 Hz), 49.5 (d, J = 25.8 Hz), 36.5 (d, J = 1.9 Hz), 49.5 (d, J = 25.8 Hz), 36.5 (d, J = 1.9 Hz), 64.0 (d, J = 1.9 Hz), 49.5 (d, J = 25.8 Hz), 36.5 (d, J = 1.9 Hz), 64.0 (d, J = 1.9 Hz), 49.5 (d, J = 25.8 Hz), 36.5 (d, J = 1.9 Hz), 64.5 (d, J = 25.8 Hz), 36.5 21.1 Hz), 28.4 (d, J = 1.8 Hz), 27.7 (d, J = 2.2 Hz), 22.8, 17.9 (d, J = 3.1 Hz), 13.8 (d, J = 6.3 Hz). 19 F NMR (471 MHz, CDCl₃) δ -179.54. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₇H₂₄FNNaOS 332.1455, found 332.1445. 5-(1-fluoroethyl)-3-phenylthiazolidin-2-one (4n): The general procedure but-2-en-1yl(phenyl)carbamothioic fluoride 2n (41.9 mg, 0.2 mmol, trans: cis = 4:1), Phl(OPiv)₂ (162.5 mg, 0.4 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 50:1 to give 4n as yellow liquid (anti-4n: 26.9 mg, 60% yield, syn-4n: 10.6 mg, 24% yield). anti-4n: ^{1}H NMR (500 MHz, CDCl₃) δ 7.41 – 7.27 (m, 4H), 7.14 (qt, J = 5.5, 2.9 Hz, 1H), 4.70 (ddq, J = 48.5, 9.1, 6.1 Hz, 1H), 4.18 (ddd, J = 10.7, 7.0, 1.1 Hz, 1H), 4.08 (dd, J = 10.6, 3.4 Hz, 1H), 3.62 (dtd, J = 9.1, 7.2, 3.4 Hz, 1H), 1.41 (dd, J = 24.0, 6.1 Hz, 3H). ¹³C NMR (126 MHz, 126 MHz) CDCl₃) δ 169.0, 138.6, 129.1, 125.8, 122.0, 90.5 (d, J = 175.1 Hz), 52.2 (d, J = 5.3 Hz), 45.0 (d, J = 24.4 Hz), 18.8 (d, J = 22.4 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -170.47. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₁H₁₂FNNaOS 248.0516, found 248.0522. syn-4n: ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.28 (m, 4H), 7.14 (dq, J = 8.6, 4.0 Hz, 1H), 4.78 (dqd, J = 46.9, 6.3, 4.9 Hz, 1H), 4.15 (dd, J = 10.5, 7.8 Hz, 1H), 3.94 (dd, J = 10.4, 4.7)Hz, 1H), 3.87 (ddt, J = 14.8, 7.8, 4.9 Hz, 1H), 1.41 (dd, J = 23.6, 6.2 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ 169.39, 138.53, 129.13, 125.82, 122.09, δ 90.50 (d, J = 174.8 Hz), 51.39 (d, J = 4.4 hz), 44.56 (d, J = 23.3 Hz), 17.05 (d, J = 4.4 hz), 44.56 (d, J = 23.3 Hz), 17.05 (d, J = 4.4 hz), 44.56 (d, J = 4.4 hz), 44.56 (d, J = 4.5 44.5 J = 22.8 Hz). 19 F NMR (471 MHz, CDCl₃) δ -175.30. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₁H₁₂FNNaOS 248.0516, found 248.0519. 5-(fluoro(phenyl)methyl)-3-phenylthiazolidin-2-one (4o): The general procedure from (E)-benzyl(4-((4-methoxyphenyl)thio)but-2-en-1-yl)carbamothioic fluoride 2o (63.3 mg, 0.2 mmol), PhI(OPiv)₂ (162.5 mg, 0.4 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give **4o** as yellow liquid (32.4 mg, 43% yield). 1 H NMR (500 MHz, CDCl₃) δ 7.35 – 7.15 (m, 7H), 6.80 – 6.70 (m, 2H), 4.65 – 4.40 (m, 3H), 4.34 (d,
J = 14.8 Hz, 1H), 3.74 (s, 3H), 3.70 – 3.59 (m, 3H), 3.03 (m, 1H). 13 C NMR (126 MHz, CDCl₃) δ 170.41, 160.34, 136.37, 135.75, 128.88, 128.27, 127.95, 121.90, 114.95, 82.85 (d, J = 175.3 Hz), 55.37, 54.07 (d, J = 18.3 Hz), 51.68, 48.58, 42.09 (d, J = 2.9 Hz). 19 F NMR (471 MHz, CDCl₃) δ –221.57. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₉H₂₀FNNaO₂S₂ 400.0812, found 400.0811. **5-(fluoromethyl)-3-phenylthiazolidin-2-one (4p):** The general procedure from allyl(phenyl)carbamothioic fluoride **2p** (39.1 mg, 0.2 mmol), PhI(OPiv)₂ (162.5 mg, 0.4 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give **4p** as yellow liquid (21.1 mg, 50% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.42 (m, 4H), 7.24 (m, 1H), 4.62 (d, J = 7.2 Hz, 1H), 4.52 (d, J = 7.3 Hz, 1H), 4.31 (dd, J = 10.7, 6.7 Hz, 1H), 4.10 (dd, J = 10.6, 2.6 Hz, 1H), 3.96 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 168.97, 138.58, 129.11, 125.86, 122.04, 82.49 (d, J = 179.2 Hz), 51.76 (d, J = 3.4 hz), 39.06 (d, J = 22.3 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -211.10. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₀H₁₀FNNaOS 234.0359, found 234.0362. **5-(fluoromethyl)-5-methyl-3-phenylthiazolidin-2-one (4q):** The general procedure from (2-methylallyl)(phenyl)carbamothioic fluoride **2q** (41.9 mg, 0.2 mmol), $Phl(OPiv)_2$ (162.5 mg, 0.4 mmol), $Et_3N\cdot 3HF$ (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give **4q** as white solid (17.5 mg, 39% yield). Mp: 124.9-131.4 °C. 1H NMR (600 MHz, $CDCl_3$) δ 7.39 (m, 4H), 7.25 – 7.18 (m, 1H), 4.59 (dd, J = 48.1, 9.3 Hz, 1H), 4.36 (dd, J = 47.1, 9.1 Hz, 1H), 4.07 (d, J = 10.4 Hz, 1H), 3.90 (d, J = 10.4 hz, 1H), 1.66 (d, J = 1.4 Hz, 3H). 13 C NMR (151 MHz, CDCl₃) δ 169.28, 138.70, 129.12, 125.85, 122.12, 85.60 (d, J = 184.2 Hz), 57.80 (d, J = 2.9 Hz), 48.56 (d, J = 19.8 Hz), 21.94 (d, J = 2.8 Hz). 19 F NMR (565 MHz, CDCl₃) δ -210.89. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₁H₁₂FNNaOS 248.0516, found 248.0519. **6-(2-fluoropropan-2-yl)-3-phenyl-1,3-thiazinan-2-one (4r):** The general procedure from (4-methylpent-3-en-1-yl)(phenyl)carbamothioic fluoride **2r** (47.5 mg, 0.2 mmol), PhI(OPiv)₂ (162.5 mg, 0.4 mmol), Et₃N-3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give **4r** as white solid (33.4 mg, 70% yield). Mp: 95.1-97.2 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.31 (t, J = 7.7 Hz, 2H), 7.25 – 7.09 (m, 3H), 3.86 – 3.63 (m, 3H), 2.33 (m, 1H), 2.03 (m, 1H), 1.42 (dd, J = 21.6, 13.4 Hz, 6H). 13 C NMR (151 MHz, CDCl₃) δ 165.2, 143.0, 129.2, 127.0, 125.8, 95.8 (d, J = 172.0 Hz), 52.8 (d, J = 25.0 Hz), 51.1, 26.2 (d, J = 4.4 Hz), 24.6 (d, J = 24.3 Hz), 23.2 (d, J = 24.3 Hz). 19 F NMR (565 MHz, CDCl₃) δ –138.79. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₃H₁₆FNNaOS 276.0829, found 276.0828. **3-benzyl-6-(2-fluoropropan-2-yl)-1,3-thiazinan-2-one (4s):** The general procedure from benzyl(4-methylpent-3-en-1-yl)carbamothioic fluoride **2s** (50.3 mg, 0.2 mmol), PhI(OPiv)₂ (162.5 mg, 0.4 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give **4s** as yellow liquid (27.9 mg, 52% yield). 1 H NMR (500 MHz, CDCl₃) δ 7.34 – 7.13 (m, 5H), 4.66 (d, J = 14.8 Hz, 1H), 4.50 (d, J = 14.8 Hz, 1H), 3.57 (m, 1H), 3.36 – 3.17 (m, 2H), 2.16 (m, 1H), 1.78 (m, 1H), 1.36 (dd, J = 21.7, 9.5 Hz, 6H). 13 C NMR (126 MHz, CDCl₃) δ 165.2, 136.3, 128.7, 128.1, 127.7, 95.7 (d, J = 172.1 Hz), 52.5 (d, J = 25.3 Hz), 51.9, 46.9, 25.7 (d, J = 4.4 Hz), 24.7 (d, J = 24.1 Hz), 23.1 (d, J = 24.3 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -138.74. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for $C_{14}H_{18}FNNaOS$ 290.0985, found 290.0978. $$EtO_2C$$ N S F ethyl 3-(6-(2-fluoropropan-2-yl)-2-oxo-1,3-thiazinan-3-yl)propanoate (4t): The general procedure from ethyl 3-((fluorocarbonothioyl)(4-methylpent-3-en-1-yl)amino)propanoate 2t (52.3 mg, 0.2 mmol), PhI(OPiv)₂ (162.5 mg, 0.4 mmol), Et₃N·3HF (96.7 mg, 0.6 mmol) and PhMe (3 mL) at room temperature for 4 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give 4t as yellow liquid (28.2 mg, 51% yield). 1 H NMR (500 MHz, CDCl₃) δ 4.16 (q, J = 7.1 Hz, 2H), 3.80 – 3.45 (m, 5H), 2.65 (q, J = 6.4 Hz, 2H), 2.30 (m, 1H), 1.91 (m, 1H), 1.44 (dd, J = 21.7, 12.2 Hz, 6H), 1.28 (t, J = 7.1 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ 171.88, 165.07, 95.72 (d, J = 172.0 Hz), 60.74, 52.50 (d, J = 25.2 Hz), 48.96, 45.99, 32.90, 25.96 (d, J = 4.3 Hz), 24.58 (d, J = 24.1 Hz), 23.12 (d, J = 24.3 Hz), 14.14. 19 F NMR (471 MHz, CDCl₃) δ -138.68. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₂H₂₀FNNaO₃S 300.1040, found 300.1033. *N*-(but-2-yn-1-yl(phenyl)carbamothioyl)benzamide (5a): The general procedure from *N*-(but-2-yn-1-yl)aniline (1036.4 mg, 5 mmol), benzoyl isothiocyanate (816.0 mg, 5 mmol) and THF (50 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give **5a** as white solid (1249.3 mg, 81% yield). 1 H NMR (500 MHz, CDCl₃) δ 8.37 (s, 1H), 7.43 (m, 10H), 5.00 (s, 2H), 1.81 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 179.6, 162.9, 142.6, 133.0, 132.6, 129.5, 128.7, 128.5, 127.4, 126.5, 81.5, 72.3, 46.6, 3.6. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₈H₁₆N₂NaOS 331.0876, found 331.0670. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₁₈H₁₆N₂NaOS 331.0876, found 331.0670. *N*-(but-2-yn-1-yl(4-methoxyphenyl)carbamothioyl)benzamide (5b): The general procedure from *N*-(but-2-yn-1-yl)-4-methoxyaniline (876.2 mg, 5 mmol), benzoyl isothiocyanate (816.0 mg, 5 mmol) and THF (50 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 3:1 to give **5b** as white solid (1397.0 mg, 70% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.34 (s, 1H), 7.61 – 7.28 (m, 7H), 6.93 (d, J = 8.9 Hz, 2H), 4.97 (s, 2H), 3.79 (s, 3H), 1.80 (t, J = 2.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 179.5, 159.3, 134.7, 133.2, 132.6, 128.7, 127.8, 127.4, 114.7, 72.5, 55.4, 46.6, 3.6. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₉H₁₈N₂NaO₂S 361.0981, found 361.0973. *N*-((4-acetylphenyl)(but-2-yn-1-yl)carbamothioyl)benzamide (5c): The general procedure from 1-(4-(but-2-yn-1-ylamino)phenyl)ethan-1-one (505.5 mg, 2.7 mmol), benzoyl isothiocyanate (440.6 mg, 2.7 mmol) and THF (27 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 3:1 to give **5c**as yellow solid (1397.0 mg, 70% yield). The product was very unstable; therefore, we didn't get pure **5c**. The product was immediately put into the next step. 1 H NMR (500 MHz, CDCl₃) δ 8.70 (s, 1H), 8.02 – 7.88 (m, 2H), 7.64 – 7.43 (m, 5H), 7.34 (t, J = 7.8 Hz, 2H), 5.00 (q, J = 2.4 Hz, 2H), 2.53 (s, 3H), 1.78 (t, J = 2.4 Hz, 3H). HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₂₀H₁₈N₂NaO₂S 373.0981, found 373.0985. *N*-(but-2-yn-1-yl(4-iodophenyl)carbamothioyl)pivalamide (5d): The general procedure from *N*-(but-2-yn-1-yl)-4-iodoaniline (964.6 mg, 8 mmol), pivaloyl chloride (2168.8 mg, 8 mmol), KSCN (1554.9 mg, 18 mmol) and acetone (8 mL) at room temperature for 5 h, the residue was washed with petroleum ether without additional purification to give **5d** as white solid (2.9412 g, 89% yield). The product contained a small amount of impurities, which was directly put into the next reaction. ¹H NMR (500 MHz, CDCl₃) δ 7.83 (s, 1H), 7.74 (d, J = 8.5 Hz, 2H), 7.07 (d, J = 8.5 Hz, 2H), 4.89 (s, 2H), 1.79 (t, J = 2.4 Hz, 3H), 0.97 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 180.8, 173.1, 142.8, 138.1, 137.6, 128.5, 125.7, 93.2, 72.0, 47.0, 39.6, 26.7, 3.6. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₆H₁₉N₂NaOS 437.0155, found 437.0160. *N*-(but-2-yn-1-yl(3-fluorophenyl)carbamothioyl)-2-methoxybenzamide (5e): The general procedure from *N*-(but-2-yn-1-yl)-3-fluoroaniline (887.1 mg, 5.2 mmol), 2-methoxybenzoyl chloride (848.6 mg, 5.2 mmol), KSCN (1010.7 mg, 10.4 mmol) and acetone (8 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 3:1 to give **5e** as white solid (1241.1 g, 67% yield). Isomerism is unconspicuous in the 1 H NMR spectrum, but it is obvious in the 13 C NMR spectrum. 1 H NMR (500 MHz, CDCl₃) δ 10.25 (s, 1H), 8.01 (dd, J = 8.0, 1.9 Hz, 1H), 7.49 – 7.38 (m, 2H), 7.22 – 7.12 (m, 2H), 7.08 (td, J = 8.3, 2.5 Hz, 1H), 7.02 (t, J = 7.6 Hz, 1H), 6.87 (d, J = 8.4 Hz, 1H), 4.97 (q, J = 2.5 Hz, 2H), 3.68 (s, 3H), 1.79 (t, J = 2.5 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ 179.3, 176.1, 167.3, 163.6, 161.6, 161.3, 159.6, 156.9, 144.2 (d, J = 9.4 Hz), 141.2 (d, J = 10.5 Hz), 134.0, 132.9, 132.8, 132.4, 130.6 (d, J = 9.1 Hz), 129.7 (d, J = 9.1 Hz), 129.0, 125.7, 122.7 (d, J = 3.2 Hz), 121.6, 120.4, 119.8, 118.8 (d, J = 3.1 Hz), 117.2, 115.3 (d, J = 20.9 Hz), 114.4 (d, J = 23.0 Hz), 113.0 (d, J = 21.3 Hz), 112.0, 111.8 (d, J = 4.2 Hz), 111.4, 81.5, 72.4, 55.9, 55.7, 46.0, 15.4, 3.6. HRMS (ESI-TOF) m/z: $[M+Na]^+$ calculated for $C_{19}H_{17}FN_2NaO_2S$ 379.0887, found 379.0892. *N*-(but-2-yn-1-yl(2-fluorophenyl)carbamothioyl)cyclohexanecarboxamide (5f): The general procedure from *N*-(but-2-yn-1-yl)-2-fluoroaniline (1387.2 mg, 8.5 mmol), cyclohexanecarbonyl chloride (1246.2 mg, 8.5 mmol), KSCN (1652.1 mg, 17 mmol) and acetone (8.5 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 3:1 to give **5f** as white solid (1.72 g, 61%
yield). 1 H NMR (500 MHz, CDCl₃) δ 8.11 (s, 1H), 7.42 – 7.28 (m, 2H), 7.23 – 7.07 (m, 2H), 5.12 (s, 1H), 4.88 – 4.53 (m, 1H), 2.18 (d, J = 12.0 Hz, 1H), 1.75 (q, J = 2.4 Hz, 3H), 1.70 – 1.43 (m, 5H), 1.11 (m, 5H). 13 C NMR (126 MHz, CDCl₃) δ 181.7, 171.9, 156.5 (d, J = 251.9 Hz), 130.2, 129.9 (d, J = 7.9 Hz), 128.8, 124.2, 124.2, 116.5 (d, J = 19.9 Hz)., 81.5, 71.8, 46.1, 45.1, 28.7, 28.6, 25.4, 25.1, 3.5. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₈H₂₁FN₂NaOS 355.1251, found 355.1251. **2-bromo-***N***-(but-2-yn-1-yl(naphthalen-1-yl)carbamothioyl)benzamide (5g):** The general procedure from *N*-(but-2-yn-1-yl)naphthalen-1-amine (976.4 mg, 5 mmol), 2-bromobenzoyl chloride (1097.3 mg, 5 mmol), KSCN (971.8 mg, 10 mmol) and acetone (5 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give 5g as white solid (1.5092 g, 69% yield). The product contained a small amount of impurities, which was directly put into the next reaction. H NMR (600 MHz, CDCl₃) δ 8.14 (s, 1H), 8.02 – 7.93 (m, 2H), 7.88 (d, J = 8.2 Hz, 1H), 7.68 – 7.56 (m, 4H), 7.38 (dd, J = 7.8, 1.3 Hz, 1H), 7.25 – 7.16 (m, 2H), 7.14 (dd, J = 7.5, 1.9 Hz, 1H), 5.40 (dt, J = 16.9, 2.4 Hz, 1H), 4.79 (dt, J = 16.9, 2.4 Hz, 1H), 1.73 (t, J = 2.4 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ 178.4, 165.5, 137.1, 136.41 134.7, 133.1, 131.6, 130.1, 129.8, 129.4, 128.6, 127.9, 127.3, 127.1, 126.0, 125.7, 122.4, 118.7, 81.9, 72.4, 45.7, 3.5. . HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₂H₁₇BrN₂NaOS 459.0137, found 459.0140. *N*-(benzyl(but-2-yn-1-yl)carbamothioyl)benzamide (5h): The general procedure from *N*-benzylbut-2-yn-1-amine (640.1 mg, 4 mmol), benzoyl isothiocyanate (656.1 mg, 4 mmol) and THF (40 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give **5h** as purple liquid (1097.3 mg, 81% yield). The product contained a small amount of impurities, which was directly put into the next reaction. 1 H NMR (500 MHz, CDCl₃) δ 8.58 (s, 1H), 7.79 (d, J = 63.9 Hz, 2H), 7.62 – 7.08 (m, 8H), 5.46 (s, 1H), 5.20 – 4.54 (m, 2H), 4.22 (d, J = 17.0 Hz, 1H), 1.84 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 180.9, 163.7, 133.0, 132.5, 128.8, 128.7, 128.0, 127.8, 71.9, 56.1, 42.2, 3.6. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₉H₁₈N₂NaOS 345.1032, found 345.1032. tert-butyl 4-(1-{but-2-yn-1-yl}-3-{4-methoxybenzoyl})thioureido)piperidine-1-carboxylate (5i): The general procedure from tert-butyl 4-(but-2-yn-1-ylamino)piperidine-1-carboxylate (1261.8 mg, 5 mmol), 4-methoxybenzoyl chloride (938.2 mg, 5 mmol), KSCN (971.8 mg, 10 mmol) and acetone (5 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 3:1 to give $\bf 5i$ as white solid (1.9237 g, 86% yield). The product are easy to isomerize, therefore, there are more peaks in the 1 H NMR and 13 C NMR spectrum. 1 H NMR (500 MHz, CDCl₃) δ 8.61 (s, 1H), 7.82 (d, J = 8.4 Hz, 2H), 6.96 (d, J = 8.5 Hz, 2H), 5.22 (s, 1H), 4.66 – 4.00 (m, 4H), 3.87 (s, 3H), 2.81 (s, 2H), 2.03 (d, J = 12.2 Hz, 2H), 1.82 (s, 5H), 1.47 (s, 9H), 1.25 (s, 1H). 13 C NMR (126 MHz, CDCl₃) δ 180.8, 163.3, 154.5, 129.9, 125.0, 114.0, 79.7, 73.2, 61.1, 55.5, 37.4, 28.8, 28.3, 3.6. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₂₃H₃₁N₃NaO₄S 468.1927, found 468.1931. *N*-(pent-2-yn-1-yl(phenyl)carbamothioyl)thiophene-2-carboxamidee (5j): The general procedure from *N*-(pent-2-yn-1-yl)aniline (1242.0 mg, 7.8 mmol), thiophene-2-carbonyl chloride (1143.5 mg, 7.8 mmol), KSCN (971.8 mg, 15.6 mmol) and acetone (7.8 mL) at room temperature for 5 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give **5j** as white solid (1804.3 mg, 70% yield). 1 H NMR (500 MHz, CDCl₃) δ 8.32 (s, 1H), 7.55 – 7.31 (m, 6H), 7.20 (d, J = 5.6 Hz, 1H), 6.98 (t, J = 4.4 Hz, 1H), 4.99 (s, 2H), 2.25 – 2.08 (m, 2H), 1.06 (t, J = 7.5 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ 178.5, 178.4, 157.1, 142.1, 137.5, 132.3, 129.7, 129.6, 128.7, 127.9, 126.8, 87.6, 72.5, 46.1, 13.6, 12.4. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₇H₁₆N₂NaOS₂ 351.0596, found 351.0600. *N*-((2,2-dimethyldodec-3-yn-5-yl)(phenyl)carbamothioyl)benzamide (5k): The general procedure from *N*-(2,2-dimethyldodec-3-yn-5-yl)aniline (1541.6 mg, 5.4 mmol), benzoyl isothiocyanate (881.3 mg, 5.4 mmol) and THF (54 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give **5k** as brown liquid (1.042 mg, 43% yield). The product contained a small amount of impurities, which was directly put into the next reaction. ¹H NMR (500 MHz, CDCl₃) δ 8.21 (s, 1H), 7.58 – 7.18 (m, 10H), 6.45 (s, 1H), 1.97 – 1.90 (m, 1H), 1.63 – 1.40 (m, 4H), 1.40 – 1.25 (m, 11H), 1.09 (s, 9H), 0.88 (t, J = 6.7 Hz, 5H). HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₈H₃₆N₂NaOS 471.2441, found 471.2452. *N*-((8-(benzyloxy)oct-5-yn-4-yl)(phenyl)carbamothioyl)benzamide (5l): The general procedure from *N*-(8-(benzyloxy)oct-5-yn-4-yl)aniline (3043.7 mg, 9.9 mmol), benzoyl isothiocyanate (1615.7 mg, 9.9 mmol) and THF (54 mL) at room temperature for 2 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give **5l** as brown liquid (2.4688 g, 53% yield). The product contained a small amount of impurities, which was directly put into the next reaction. ¹H NMR (600 MHz, CDCl₃) δ 8.18 (s, 1H), 8.08 (dt, J = 8.4, 1.7 Hz, 1H), 7.49 – 7.29 (m, 14H), 6.56 (s, 1H), 4.54 (s, 2H), 3.52 (t, J = 7.0 Hz, 2H), 2.48 (td, J = 7.2, 3.9 Hz, 2H), 1.85 (d, J = 6.5 Hz, 1H), 1.63 – 1.46 (m, 3H), 0.99 (t, J = 7.1 Hz, 3H). HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₉H₃₀FN₂NaO₂S 493.1920, found 493.1923. *N*-((2Z,5E)-5-(1-fluoroethylidene)-3-phenylthiazolidin-2-ylidene)benzamide (6a): The general procedure from *N*-(but-2-yn-1-yl(phenyl)carbamothioyl)benzamide **5a** (61.7 mg, 0.2 mmol), PhI(OPiv)₂ (85.3 mg, 0.21 mmol), Et₃N·3HF (117 mg, 0.7 mmol) and dioxane (3 mL) at room temperature for 3 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give **6a** as white solid (53.6 mg, 82% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.12 – 7.99 (m, 2H), 7.49 (d, J = 7.6 Hz, 2H), 7.41 (dt, J = 13.5, 7.5 Hz, 3H), 7.28 (q, J = 7.9 Hz, 3H), 4.74 (m, 2H), 1.99 (dt, J = 17.0, 2.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 176.0, 167.9, 148.1 (d, J = 252.8 Hz), 139.8, 135.9, 132.3, 129.8, 129.1, 128.1, 127.1, 124.8, 108.1 (d, J = 25.9 Hz), 52.0 (d, J = 6.4 Hz), 16.3 (d, J = 27.5 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -92.00. HRMS (ESITOF) m/z: [M+Na]⁺ calculated for C₁₈H₁₅FN₂NaOS 349.0781, found 349.0779. *N*-((2Z,5E)-5-(1-fluoroethylidene)-3-(4-methoxyphenyl)thiazolidin-2-ylidene)benzamide (6b): The general procedure from *N*-(but-2-yn-1-yl(4-methoxyphenyl)carbamothioyl)benzamide **5b** (67.7 mg, 0.2 mmol), PhI(OPiv)₂ (85.3 mg, 0.21 mmol), Et₃N·3HF (117 mg, 0.7 mmol) and dioxane (3 mL) at room temperature for 3 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give **6b** as white solid (52.6 mg, 74% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.10 (dd, J = 8.3, 1.4 Hz, 2H), 7.51 – 7.40 (m, 3H), 7.36 (t, J = 7.7 Hz, 2H), 6.99 (d, J = 9.0 Hz, 2H), 4.73 (dq, J = 4.5, 2.4 Hz, 2H), 3.86 (s, 3H), 2.04 (dt, J = 17.0, 2.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.9, 167.8, 158.3, 147.9 (d, J = 252.7 Hz), 136.0, 132.6, 132.1, 129.7, 128.0, 126.2, 114.1, 108.2 (d, J = 26.0 Hz), 55.5, 52.2 (d, J = 6.3 Hz), 16.3 (d, J = 27.6 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -92.15. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₉H₁₇FN₂NaO₂S 379.0887, found 379.0885. *N*-((2**Z**,5**E**)-3-(4-acetylphenyl)-5-(1-fluoroethylidene)thiazolidin-2-ylidene)benzamide (6c): The general procedure from *N*-((4-acetylphenyl)(but-2-yn-1-yl)carbamothioyl)benzamide 5c (70.1 mg, 0.2 mmol), PhI(OPiv)₂ (85.3 mg, 0.21 mmol), Et₃N·3HF (117 mg, 0.7 mmol) and dioxane (3 mL) at room temperature for 3 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give 6c as white solid (58.1 mg, 79% yield). 1 H NMR (500 MHz, CDCl₃) δ 8.20 – 8.03 (m, 4H), 7.78 (d, J = 8.6 Hz, 2H), 7.51 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.6 Hz, 2H), 4.86 (t, J = 2.7 Hz, 2H), 2.66 (s, 3H), 2.08 (dt, J = 17.0, 2.3 Hz, 3H). 13 C NMR (151 MHz, CDCl₃) δ 196.9, 176.1, 167.9, 148.5 (d, J = 253.8 Hz), 143.7, 135.6, 134.8, 132.6, 129.8, 129.2, 128.3, 123.8, 107.5 (d, J = 26.1 Hz), 51.3 (d, J = 6.6 Hz), 26.6, 16.3 (d, J = 27.5 Hz). 19 F NMR (471 MHz, CDCl₃) δ -92.16. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₀H₁₇FN₂NaO₂S 391.0887, found 391.0894. *N*-((2z,5E)-5-(1-fluoroethylidene)-3-(4-iodophenyl)thiazolidin-2-ylidene)pivalamide (6d): The general procedure from *N*-(but-2-yn-1-yl(4-iodophenyl)carbamothioyl)pivalamide 5d (82.7 mg, 0.2 mmol), PhI(OPiv)₂ (85.3 mg, 0.21 mmol), Et₃N·3HF (117 mg, 0.7 mmol) and dioxane (3 mL) at room temperature for 3 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give 6d as white solid (44.9 mg, 52% yield). 1 H NMR (500 MHz, CDCl₃) δ 7.73 (d, J = 8.9 Hz, 2H), 7.43 – 7.30 (m, 2H), 4.78 – 4.61 (m, 2H), 2.02 (dt, J = 17.0, 2.2 Hz, 3H), 1.15 (s, 9H). 13 C NMR (126 MHz, CDCl₃) δ 190.81, 166.68, 148.07 (d, J = 253.0 Hz), 139.57, 137.74, 125.71, 107.71 (d, J = 25.6 Hz), 90.65, 50.97 (d, J = 6.7 Hz), 41.22, 27.18, 16.23 (d, J = 27.5 Hz). 19 F NMR (471 MHz, CDCl₃) δ -92.15. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₆H₁₈FIN₂NaOS 455.0061, found 455.0070. *N*-((2Z,5E)-5-(1-fluoroethylidene)-3-(3-fluorophenyl)thiazolidin-2-ylidene)-2-methoxybenzamide (6e): The general procedure from
N-(but-2-yn-1-yl(3-fluorophenyl)carbamothioyl)-2-methoxybenzamide **5e** (71.3 mg, 0.2 mmol), Phl(OPiv)₂ (85.3 mg, 0.21 mmol), Et₃N·3HF (117 mg, 0.7 mmol) and dioxane (3 mL) at room temperature for 3 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give **6e** as white solid (58.8 mg, 79% yield). 1 H NMR (500 MHz, CDCl₃) δ 7.95 (dd, J = 7.7, 1.8 Hz, 1H), 7.66 (dt, J = 10.8, 2.3 Hz, 1H), 7.47 – 7.34 (m, 2H), 7.31 (dd, J = 8.6, 1.7 Hz, 1H), 7.04 – 6.87 (m, 3H), 4.77 (m, 2H), 3.92 (s, 3H), 2.04 (dt, J = 16.9, 2.3 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ 176.2, 167.1, 162.6 (d, J = 246.0 Hz), 159.8, 148.1 (d, J = 253.5 Hz), 141.2 (d, J = 10.7 Hz), 133.2, 132.5, 129.9 (d, J = 9.2 Hz), 125.3, 120.0, 118.9 (d, J = 3.0 Hz), 113.4 (d, J = 21.1 Hz), 112.1 (d, J = 25.6 Hz), 111.9, 107.9 (d, J = 25.4 Hz), 55.8, 51.5 (d, J = 6.6 Hz), 16.3 (d, J = 27.5 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -91.96, -111.04. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₉H₁₆F₂N₂NaO₂S 397.0793, found 397.0798. ### N-((2Z,5E)-5-(1-fluoroethylidene)-3-(2-fluorophenyl)thiazolidin-2-ylidene)cyclohexanecarboxamide (6f): The general procedure from N-(but-2-yn-1-yl(2-fluorophenyl)carbamothioyl) cyclohexanecarboxamide **5f** (66.5 mg, 0.2 mmol), Phl(OPiv)₂ (85.3 mg, 0.21 mmol), Et₃N·3HF (117 mg, 0.7 mmol) and dioxane (3 mL) at room temperature for 3 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give **6f** as white solid (48.5 mg, 69% yield). 1 H NMR (500 MHz, CDCl₃) δ 7.36 (m, 2H), 7.25 – 7.15 (m, 2H), 4.61 (dt, J = 4.6, 2.3 Hz, 2H), 2.26 (tt, J = 11.1, 3.6 Hz, 1H), 2.02 (dt, J = 16.9, 2.3 Hz, 3H), 1.82 (m, 2H), 1.67 (dt, J = 12.6, 3.4 Hz, 2H), 1.62 – 1.54 (m, 1H), 1.41 – 1.08 (m, 5H). 13 C NMR (126 MHz, CDCl₃) δ 188.2, 167.7, 157.4 (d, J = 252.3 Hz), 147.8 (d, J = 252.7 Hz), 129.7 (d, J = 7.9 Hz), 128.8 (d, J = 1.8 Hz), 127.2 (d, J = 12.1 Hz), 124.5 (d, J = 3.7 Hz), 116.8 (d, J = 19.8 Hz), 108.7 (d, J = 25.9 Hz), 51.0 (d, J = 6.6 Hz), 47.5, 29.0, 26.0, 25.7, 16.3 (d, J = 27.6 Hz). 19 F NMR (471 MHz, CDCl₃) δ -92.30, -118.77. HRMS (ESI-TOF) m/z: [M+Na] $^+$ calculated for C₁₈H₂₀F₂N₂NaOS 373.1157, found 373.1159. 2-bromo-*N*-((2Z,5E)-5-(1-fluoroethylidene)-3-(naphthalen-1-yl)thiazolidin-2-ylidene)benzamide (6g): The general procedure from 2-bromo-*N*-(but-2-yn-1-yl(naphthalen-1-yl)carbamothioyl)benzamide 5g (87.5 mg, 0.2 mmol), PhI(OPiv)₂ (85.3 mg, 0.21 mmol), Et₃N·3HF (117 mg, 0.7 mmol) and dioxane (3 mL) at room temperature for 3 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give **6g** as white solid (54.2 mg, 62% yield). 1 H NMR (600 MHz, CDCl₃) δ 8.09 – 7.83 (m, 2H), 7.71 (dt, J = 6.3, 3.6 Hz, 1H), 7.64 – 7.38 (m, 6H), 7.03 (m, 2H), 4.84 (m, 1H), 4.80 – 4.66 (m, 1H), 2.11 (dt, J = 16.9, 2.3 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ 176.1, 169.7, 148.3 (d, J = 253.3 Hz), 136.7, 136.3, 134.6, 134.1, 132.1, 131.5, 129.3, 129.1, 128.7, 127.2, 126.6, 126.6, 125.6, 125.1, 122.4, 122.0, 108.7 (d, J = 26.6 Hz), 53.0 (d, J = 6.0 Hz), 16.4 (d, J = 27.5 Hz). 19 F NMR (471 MHz, CDCl₃) δ -91.16. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for $C_{22}H_{16}BrFN_2NaO_2S$ 477.0043, found 477.0074. *N*-((2Z,5E)-3-benzyl-5-(1-fluoroethylidene)thiazolidin-2-ylidene)benzamide (6h): The general procedure from *N*-(benzyl(but-2-yn-1-yl)carbamothioyl)benzamide 5h (64.5 mg, 0.2 mmol), Phl(OPiv)₂ (85.3 mg, 0.21 mmol), Et₃N·3HF (117 mg, 0.7 mmol) and dioxane (3 mL) at room temperature for 3 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give 6h as white solid (40.9 mg, 72% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.37 – 8.25 (m, 2H), 7.57 – 7.47 (m, 1H), 7.43 (dd, J = 8.2, 6.7 Hz, 2H), 7.40 – 7.28 (m, 5H), 5.02 (s, 2H), 4.26 (dd, J = 3.6, 2.3 Hz, 2H), 1.99 (dt, J = 17.0, 2.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.8, 168.8, 148.0 (d, J = 252.3 Hz), 136.2, 135.1, 132.1, 129.7, 129.0, 128.3, 128.2, 128.1, 108.5 (d, J = 26.1 Hz), 51.2, 49.2 (d, J = 6.4 Hz), 16.4 (d, J = 27.6 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -92.23. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₉H₁₇FN₂NaOS 363.0938, found 363.0931. tert-butyl 4-((2Z,5E)-5-(1-fluoroethylidene)-2-((4-methoxybenzoyl)imino)thiazolidin-3-yl)piperidine-1-carboxylate (6i): The general procedure from tert-butyl 4-(1-(but-2-yn-1-yl)-3-(4-methoxybenzoyl)thioureido)piperidine-1-carboxylate 5i (89.1 mg, 0.2 mmol), PhI(OPiv)₂ (85.3 mg, 0.21 mmol), Et₃N·3HF (117 mg, 0.7 mmol) and dioxane (3 mL) at room temperature for 3 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 5:1 to give **6i** as white solid (51.1 mg, 55% yield). 1 H NMR (500 MHz, CDCl₃) δ 8.20 (d, J = 8.5 Hz, 2H), 6.93 (d, J = 8.6 Hz, 2H), 4.80 (tt, J = 12.2, 4.0 Hz, 1H), 4.33 (t, J = 2.9 Hz, 4H), 3.86 (s, 3H), 2.88 (s, 2H), 2.00 (dt, J = 17.0, 2.4 Hz, 3H), 1.95 – 1.87 (m, 2H), 1.73 (qd, J = 12.2, 4.5 Hz, 2H), 1.49 (s, 9H). 13 C NMR (126 MHz, CDCl₃) δ 175.1, 167.5, 162.9, 154.5, 147.9 (d, J = 252.0 Hz), 131.5, 128.9, 113.3, 108.6 (d, J = 25.4 Hz), 79.9, 55.2 (d, J = 29.7 Hz), 45.8, 45.8, 43.2, 28.8, 28.4, 16.4 (d, J = 27.6 Hz). 19 F NMR (471 MHz, CDCl₃) δ -92.56. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₂H₃₀FN₃NaO₄S 486.1833, found 486.1826. *N*-((22,5E)-5-(1-fluoropropylidene)-3-phenylthiazolidin-2-ylidene)thiophene-2-carboxamide (6j): The general procedure from *N*-(pent-2-yn-1-yl(phenyl)carbamothioyl)thiophene-2-carboxamidee 5j (65.7 mg, 0.2 mmol), PhI(OPiv)₂ (85.3 mg, 0.21 mmol), Et₃N·3HF (117 mg, 0.7 mmol) and dioxane (3 mL) at room temperature for 3 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give 6j as white solid (54.1 mg, 78% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.76 (dd, J = 3.8, 1.3 Hz, 1H), 7.67 – 7.53 (m, 2H), 7.53 – 7.42 (m, 3H), 7.32 (t, J = 7.4 Hz, 1H), 7.04 (dd, J = 5.0, 3.7 Hz, 1H), 4.80 (dt, J = 3.4, 1.7 Hz, 2H), 2.45 – 2.24 (m, 2H), 1.16 (t, J = 7.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.75, 167.09, 152.45 (d, J = 256.3 Hz), 142.28, 139.51, 132.24, 132.15, 128.88, 127.86, 126.95, 124.59, 106.90 (d, J = 26.9 Hz), 51.93 (d, J = 6.5 Hz), 24.14 (d, J = 26.0 Hz), 10.14. ¹⁹F NMR (471 MHz, CDCl₃) δ -101.3. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₇H₁₅N₂NaOS₂ 369.0502, found 369.0506. #### N-((2Z,5E)-5-(1-fluoro-2,2-dimethylpropylidene)-4-heptyl-3-phenylthiazolidin-2-ylidene)benzamide (6k): The general procedure from N-((2,2-dimethyldodec-3-yn-5-yl)(phenyl)carbamothioyl)benzamide **5k** (65.7 mg, 0.2 mmol), Phl(OPiv)₂ (85.3 mg, 0.21 mmol), Et₃N·3HF (117 mg, 0.7 mmol) and dioxane (3 mL) at room temperature for 3 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 30:1 to give **6k** as white solid (73.5 mg, 79% yield). 1 H NMR (500 MHz, CDCl₃) δ 8.11 – 8.01 (m, 2H), 7.54 – 7.45 (m, 4H), 7.45 – 7.29 (m, 4H), 5.28 (q, J = 3.8 Hz, 1H), 1.77 (m, 1H), 1.68 – 1.56 (m, 1H), 1.32 (d, J = 1.6 Hz, 10H), 1.22 (dd, J = 24.9, 5.2 Hz, 8H), 0.84 (t, J = 7.0 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ 176.0, 168.0, 157.7 (d, J = 256.5 Hz), 138.6, 136.2, 131.9, 129.7, 129.0, 127.9, 127.5, 126.9, 110.8 (d, J = 29.1 Hz), 64.5 (d, J = 7.3 Hz), 36.3 (d, J = 24.5 Hz), 32.2 (d, J = 2.4 Hz), 31.6, 29.3, 28.9, 27.7 (d, J = 3.7 Hz), 22.8, 22.5, 14.0. 19 F NMR (471 MHz, CDCl₃) δ -98.55. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₂₈H₃₅FN₂NaOS 489.2346, found 489.2353. ## *N*-((2Z,5E)-5-(3-(benzyloxy)-1-fluoropropylidene)-3-phenyl-4-propylthiazolidin-2-ylidene)benzamide (6l): The general procedure from N-((8-(benzyloxy)oct-5-yn-4-yl)(phenyl)carbamothioyl)benzamide **5l** (97.7 mg, 0.2 mmol), Phl(OPiv)₂ (85.3 mg, 0.21 mmol), Et₃N·3HF (117 mg, 0.7 mmol) and dioxane (3 mL) at room temperature for 3 h, the residue was purified by column chromatography on silica gel using petroleum ether: ethyl acetate = 30:1 to give **6l** as colorless liquid (65.3 mg, 67% yield). 1 H NMR (500 MHz, CDCl₃) δ 8.11 – 8.02 (m, 2H), 7.53 – 7.30 (m, 12H), 7.27 (m, 1H), 5.26 (dt, J = 6.1, 3.1 Hz, 1H), 4.56 (d, J = 2.2 Hz, 2H), 3.70 (t, J = 6.5 Hz, 2H), 2.82 – 2.58 (m, 2H), 1.82 – 1.70 (m, 1H), 1.69 – 1.61 (m, 1H), 1.40 (m, 2H), 0.82 (t, J = 7.4 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ 176.1, 167.6, 149.1 (d, J = 256.6 Hz), 138.6, 138.0, 136.1, 132.0, 129.7, 129.1, 128.4, 128.0, 127.6, 127.6, 127.6, 126.9, 114.3 (d, J = 24.0 Hz), 72.9, 65.7, 63.1 (d, J = 2.3 Hz), 31.7 (d, J = 25.6 Hz), 31.8, 31.6, 16.6, 13.9. 19 F NMR (471 MHz, CDCl₃) δ -100.46. HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₂₉H₂₉FN₂NaO₂S 511.1826, found 511.1830. (Z)-(2-((2-fluorobenzoyl)imino)-3-phenylthiazolidin-5-yl)methyl pivalate (7a): 1 H NMR (600 MHz , CDCl₃) δ 7.96 (td, J = 7.7, 1.9 Hz, 1H), 7.61 – 7.51 (m, 2H), 7.47 (t, J = 7.9 Hz, 2H), 7.43 – 7.37 (m, 1H), 7.31 (td, J = 7.3, 1.3 Hz, 1H), 7.16 – 7.02 (m, 2H), 4.54 – 4.18 (m, 3H), 3.99 (dd, J = 11.0, 3.6 Hz, 1H), 3.89 (qd, J = 7.2, 3.6 Hz, 1H), 1.21 (s, 9H). 13 C NMR (151 MHz, Chloroform-d) δ 178.05, 174.18, 174.15, 169.83, 163.28, 161.56, 139.93, 133.41, 133.35, 132.49, 128.92, 126.82, 124.56, 123.49, 116.84, 116.69, 64.68, 54.26, 40.25, 38.84, 27.10. #### Reference [1] Liu, S.; Jiang, L. Copper-Catalyzed Multicomponent Reactions of Intramolecular and Intermolecular Thiotrifluoromethylation of Alkenes: Access to CF3–Containing 2-Iminothiazolidines and Isothioureas. *Org. Lett.* **2022**, 39, 7157-7162. #### 7. Mechanism study. #### 7.1 Radical trapping experiment #### Adding 2.0 equiv of TEMPO to the reaction system of 1b to give 3b A solution of PhI(OPiv)₂ (0.23 mmol, 1.2 eq) and $Et_3N\cdot 3HF$ (0.6 mmol, 3 eq) in PhMe (3 mL) was stirred at room temperature for 5 minutes, then TEMPO (0.4 mmol, 2 eq) and alkenyl thioureas **1b** (0.2 mmol, 1 eq) was added. The
mixture was stirred at the room temperature for 2 h until alkenyl thioureas $\bf 1b$ was consumed. Then the reaction mixture was quenched with saturated NaHCO3 solution, extracted with EA, and the combined organic phases were washed with brine, dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure. The yield of the $\bf 1b$ was 79% through 1 H NMR spectrum with CH₂Br₂ as internal standard. #### 7.2 Isotope labeling experiment (H₂¹⁸O) $$\begin{array}{c} S \\ N \\ F \end{array} \qquad \begin{array}{c} PhI(OPiv)_2, Et_3N \cdot 3HF \\ H_2^{18}O, PhMe, rt \end{array}$$ A solution of PhI(OPiv)₂ (162.5 mg, 0.4 mmol) and Et₃N·3HF (98.2 mg, 0.6 mmol) in PhMe (3 mL) was stirred at room temperature for 5 minutes, then $H_2^{18}O$ (8 mg, 0.4 mmol) and (3-methylbut-2-en-1-yl)(phenyl)carbamothioic fluoride **3a** (44.7 mg, 0.2 mmol) was added. The mixture was stirred at the room temperature for 4 h until thiocarbamoyl fluorides **3a** was consumed. Then the reaction mixture was quenched with saturated NaHCO₃ solution, extracted with EA, and the combined organic phases were washed with brine, dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was analyzed by LC-MS. #### 7.3 Chiral regulation experiment A solution of PhI(OPiv)₂ (0.23 mmol, 1.2 eq) and Et₃N·3HF (0.6 mmol, 3 eq) in PhMe (3 mL) was stirred at room temperature for 5 minutes, then alkenyl thioureas 1r (0.2 mmol, 1 eq) was added. The mixture was stirred at the room temperature for 2 h until alkenyl thioureas 1r was consumed. Then the reaction mixture was quenched with saturated NaHCO₃ solution, extracted with EA, and the combined organic phases were washed with brine, dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure. The yield of the 1r was 53% by analyzing 1r NMR spectrum with 1r CH₂Br₂ as internal standard.and the residue was analyzed by HPLC, which showed the reaction is not stereoselective. #### 7.4 Experiment of disulfide as a sulfur source A solution of PhI(OPiv)₂ (0.4 mmol,2 eq) and $Et_3N\cdot 3HF$ (0.6 mmol, 3 eq) in CH_2CI_2 (3 mL) was stirred at room temperature for 5 minutes, then cyclohexene (0.4 mmol, 2 eq) and diphenyl disulfide (0.2 mmol, 1 eq) was added. The mixture was stirred at the room temperature for 10 h. TLC monitoring showed that a large amount of raw materials remained and few new products were produced. #### 8. The 4 mmol scale of procedures for 2a. A solution of PhI(OPiv)₂ (1950 mg, 4.8 mmol) and Et₃N·3HF (2006.5 mg, 12 mmol) in PhMe (60 mL) was stirred at room temperature for 20 minutes, then *N*-(allyl(phenyl)carbamothioyl)benzamide **1a** (1185.6 mg, 4 mmol) was added. The mixture was stirred at the room temperature for 2 h until alkenyl thioureas **1a** was consumed. Then the reaction mixture was quenched with saturated NaHCO₃ solution, extracted with EA, and the combined organic phases were washed with brine, dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel using petroleum ether: dichloromethane = 1:2 to give **3a** as yellow liquid (872.3 mg, 69%). #### 9. The 10 mmol scale of procedures for 4a. A solution of PhI(OPiv)₂ (8125.2 mg, 20 mmol) and Et₃N·3HF (5016.3 mg, 30 mmol) in PhMe (100 mL) was stirred at room temperature for 10 minutes, then (3-methylbut-2-en-1-yl)(phenyl)carbamothioic fluoride **3a** (2233.1 mg, 10 mmol) was added. The mixture was stirred at the room temperature for 4 h until thiocarbamoyl fluorides **3a** was consumed. Then the reaction mixture was quenched with saturated NaHCO₃ solution, extracted with EA, and the combined organic phases were washed with brine, dried with anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give **4a** as white solid (1923.9 mg, 80%). #### 10. The 4.6 mmol scale of procedures for 6a. A solution of PhI(OPiv)₂ (1962.2 mg, 4.83 mmol) and Et₃N·3HF (2692.1 mg, 16.1 mmol) in dioxane (69 mL) was stirred at room temperature for 10 minutes, then N-(but-2-yn-1-yl(phenyl)carbamothioyl)benzamide $\mathbf{5a}$ (1418.6 mg, 4.6 mmol) was added. The mixture was stirred at the room temperature for 4 h until alkynyl thioureas $\mathbf{5a}$ was consumed. Then the reaction mixture was quenched with saturated NaHCO₃ solution, extracted with EA, and the combined organic phases were washed with brine, dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel using petroleum ether: ethyl acetate = 10:1 to give $\mathbf{6a}$ as white solid (766.2 mg, 51%). # 11. The X-ray crystallographic analysis for 2af (CCDC 2364347) With 50% ellipsoid: 2af Bond precision: C-C = 0.0091 A Wavelength=1.34139 a=20.6128(9) b=9.2353(4) c=37.9915(19) alpha=90 beta=103.249(2) gamma=90 a=20.6128(9) b=9.2353(4) Cell: Temperature: 170 K Calculated Reported Volume 7039.8(6) Space group C c Hall group C -2yc Moiety formula C20 H19 F N2 O S Sum formula C20 H19 F N2 O S 7039.8(6) C 1 c 1 C -2yc C20 H19 F N2 O S C20 H19 F N2 O S 354.43 354.43 Mr Dx,g cm-3 1.338 1.338 16 16 Mu (mm-1) 1.177 F000 2976.0 1.177 2976.0 F000' 2986.94 F000' h,k,lmax 26,12,49 Nref 16200[8103] 26,12,49 15342 Tmin, Tmax 0.932, 0.954 0.674,0.752 Tmin' 0.910 Correction method= # Reported T Limits: Tmin=0.674 Tmax=0.752 AbsCorr = MULTI-SCAN Data completeness= 1.89/0.95 Theta(max)= 60.739 wR2(reflections) = R(reflections) = 0.0566(12785)0.1495(15342) S = 1.077Npar= 902 #### 12. 1D NOESY spectra. # 12.1 1D NOESY spectra of 2af NOE (H_b) enhancement = 4.1%, NOE(H_c) enhancement = 1.9% 1D NOESY spectra of 2af is shown as above. When the hydrogen H_a of the methine attached to sulfur was irradiated, the 1D NOESY spectra shows that the NOE enhancement of H_b of the methine attached to nitrogen is 4.1%. The NOE enhancement of H_c of the methine attached to fluorine is 1.9%. # 12.2 1D NOESY spectra of 2ag NOE (H_b) enhancement = 3.9%, NOE(H_c) enhancement = 1.2% 1D NOESY spectra of 2ag is shown as above. When the hydrogen H_a of the methine attached to sulfur was irradiated, the 1D NOESY spectra shows that the NOE enhancement of H_b of the methine attached to nitrogen is 3.9%. The NOE enhancement of H_c of the methine attached to fluorine is 1.2%. # 12.3 1D NOESY spectra of 4k NOE (H_b) enhancement = 3.5%, NOE(H_c) enhancement = 0.7% 1D NOESY spectra of 4k is shown as above. When the hydrogen H_a of the methine attached to sulfur was irradiated, the 1D NOESY spectra shows that the NOE enhancement of H_b of the methine attached to nitrogen is 3.5%. The NOE enhancement of H_c of the methine attached to fluorine is 0.7%. NOE (H_b) enhancement = 2.4%, NOE(H_c) enhancement = 1.0% 1D NOESY spectra of 4k is shown as above. When the hydrogen H_a of the methine attached to sulfur was irradiated, the 1D NOESY spectra shows that the NOE enhancement of H_b of the methine attached # 12.5 1D NOESY spectra of 4m NOE (H_b) enhancement = 1.4%, NOE(H_c) enhancement = 0.8% 1D NOESY spectra of anti-4n is shown as above. When the hydrogen H_a of the methine attached to sulfur was irradiated, the 1D NOESY spectra shows that the NOE enhancement of H_b of the methine attached to nitrogen is 1.4%. The NOE enhancement of H_c of the methine attached to fluorine is 0.8%. NOE (H_b) enhancement = 2.8%, NOE(H_c) enhancement = 0.4% 1D NOESY spectra of syn-4n is shown as above. When the hydrogen H_a of the methine attached to sulfur was irradiated, the 1D NOESY spectra shows that the NOE enhancement of H_b of the methine attached to nitrogen is 2.8%. The NOE enhancement of H_c of the methine attached to fluorine is 0.4%. # 12.6 1D NOESY spectra of 6h NOE(H_c) enhancement = 0.1% 1D NOESY spectra of 6h is shown as above. When the hydrogen H_a of the methine attached to N-atom was irradiated, the 1D NOESY spectra shows that the NOE enhancement of H_c of the methine attached to double bond is 0.1%. # 13. NMR spectra. # $$\rm 1e^{-1}H\ NMR\ (500\ MHz,\ in\ CDCl_3)$$ ## ## 1H NMR (600 MHz, in CDCI3) ¹⁹F NMR (565 MHz, in CDCl₃) ¹⁹F NMR (565 MHz, in CDCl₃) ## 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 (1 (ppm)) ## ¹H NMR (500 MHz, in CDCl₃) 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) S141 ¹H NMR (500 MHz, in CDCl₃) ---211.52 ¹H NMR (600 MHz, in CDCl₃) 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) $^{19}\mathrm{F}\ \mathrm{NMR}\ (565\ \mathrm{MHz},\ \mathrm{in}\ \mathrm{CDCl_3})$ S155 $^{19}\mathrm{F}\ \mathrm{NMR}\ (565\ \mathrm{MHz}, \, \mathrm{in}\ \mathrm{CDCl_3})$ ## -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) still s $^{1}\mathrm{H}$ NMR (500 MHz, in CDCl₃) 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -110 (ppm) 2 y $^{19}\mathrm{F}\ \mathrm{NMR}\ (565\ \mathrm{MHz},\ \mathrm{in}\ \mathrm{CDCl_3})$ 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -110 (ppm) ¹H NMR (500 MHz, in CDCl₃) 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) $^{19}\mathrm{F}\:\mathrm{NMR}$ (565 MHz, in CDCl3) ## ¹H NMR (600 MHz, in CDCl₃) $^{19}\mathrm{F}\ \mathrm{NMR}\ (565\ \mathrm{MHz},\ \mathrm{in}\ \mathrm{CDCl_3})$ 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) $^{19}\text{F NMR}$ (565 MHz, in CDCI $_3)$ zan 1H NMR (600 MHz, in CDCl₃) -100 f1 (ppm) -150 -200 -250 -300 100 ¹⁹F NMR (565
MHz, in CDCl₃) ## 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) 2aj ¹H NMR (600 MHz, in CDCl₃) $^{19}\text{F NMR}$ (565 MHz, in $\text{CDCI}_3)$ -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 f1 (ppm) 8 8 2 2 4 8 8 2 2 4 8 8 2 2 4 8 8 2 4 8 2 $^1\mathrm{H}$ NMR (600 MHz, in CDCI₃) -150 -200 -250 -300 100 20.0 19.5 19.0 18.5 18.0 17.5 17.0 16.5 16.0 15.5 15.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 ft (ppm) -200 -150 -250 -300 100 ¹⁹F NMR (565 MHz, in CDCl₃) 7.750 7.748 7.749 ¹H NMR (500 MHz, in CDCl₃) ¹⁹F NMR (471 MHz, in CDCl₃) ¹³C NMR (126 MHz, in CDCl₃) ¹⁹F NMR (565 MHz, in CDCl₃) $^{19}\mathrm{F}\ \mathrm{NMR}\ (565\ \mathrm{MHz},\ \mathrm{in}\ \mathrm{CDCl_3})$ ¹H NMR (500 MHz, in CDCl₃) ¹⁹F NMR (565 MHz, in CDCl₃) ## ¹H NMR (500 MHz, in CDCl₃) ¹⁹F NMR (471 MHz, in CDCl₃) 1.00-1 1. ¹⁹F NMR (471 MHz, in CDCl₃) 11 (ppm) ¹⁹F NMR (565 MHz, in CDCl₃) 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) **4s** ¹⁹F NMR (471 MHz, in CDCl₃) ## ¹H NMR (500 MHz, in CDCl₃) ¹H NMR (500 MHz, in CDCl₃) ¹⁹F NMR (471 MHz, in CDCl₃) ¹H NMR (500 MHz, in CDCl₃) 19F NMR (471 MHz, in CDCl₃) ## -150 -200 -250 -300 100 40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -3 $^{19}\!\text{F}$ NMR (471 MHz, in CDCl₃) --- -92.56 ¹⁹F NMR (471 MHz, in CDCl₃) ¹⁹F NMR (471 MHz, in CDCl₃)