Supporting Information

Synthesis of [4.6] Spirocarbocycles: A Base-promoted Ring-

Expansion and Subsequent I₂-mediated Regioselective

Spirocyclization Protocol

Nana Fei, † Zongkang Wang, † Peng He, † Qiongwen Kang, †Yan Wang, †Chengyu Wang*‡, and Yanzhong Li*†

† School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China

‡ School of Chemistry and Chemical Engineering, Linyi University, Shuangling Road, Linyi, Shandong, 276000, China

E-mail: yzli@chem.ecnu.edu.cn

wangchengyu@lyu.edu.cn

Table of Contents

1. General methods.	S2
2. Synthesis of 1	S3
3. Reference	S7
4. Synthesis of 3	S7
5. 1.0 mmol scale reaction for the preperation of 3a	S19
6. Synthetic transformations of compound 3a	S19
7. Mechanistic study	S22
8. NMR Copies of all the Synthesized New Starting Materials	S24
9. Copies of spectra of products	S33
10. X-ray crystallography of compound 3a	S62

1. General methods

Unless noted, all commercial reagents were used without further purification. DMSO is dried in calcium hydride and re-evaporated for use. Reactions were monitored by thin layer chromatography. Purification of reaction products was carried out by flash chromatography on silica gel (200~300 mesh). ¹H NMR spectra were recorded at 500 MHz or 600 MHz, ¹³C NMR spectra were recorded at 125 MHz or 150 MHz, and in CDCl₃ (containing 0.03% TMS) solutions. ¹H NMR spectra were recorded with tetramethylsilane (δ = 0.00 ppm) as internal reference; ¹³C NMR spectra were recorded with CDCl₃ (δ = 77.00 ppm) as internal reference. High-resolution mass spectra were recorded on a mass spectrometer with a TOF (for EI or ESI) or FT-ICR (for MALDI) analyzer. Single crystal X-ray diffraction data was collected in Bruker SMARTAPEX diffractiometers with molybdenum cathodes.

The crystal preparation and measurement methods of **3a** as follows: Place 60.0 mg of **3a** in a 50 ml round bottom flask, dissolve **3a** with 3 mL of dichloromethane, then add 30 mL of petroleum ether and shake well, seal the flask with a sealing film, pierce a few holes, and let it stand still at room temperature until crystals precipitate out. The crystal was carefully picked out from the solvent with a spatula, and observed under a microscope to confirm that it was transparent for single crystal X-ray diffraction.

2. Synthesis of 1

2-Bromobenzaldehyde derivatives **A** (3.0 mmol), Pd(PPh₃)₂Cl₂ (0.15 mmol, 0.05 equiv, 105.3 mg) and CuI (0.15 mmol, 0.05 equiv, 28.6 mg) were dissolved in dry Et₃N (9 mL) in a schlenk flask under a nitrogen atmosphere at 50 °C using an oil bath. The corresponding terminal alkyne **B** (3.75 mmol,1.25 equiv) was added and the reaction mixture was stirred for 4.5 h. After the completion of the reaction as monitored by TLC, the reaction mixture was quenched with a saturated solution of NH₄Cl and extracted with ethyl acetate (5 mL × 3). The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Finally, the crude product was purified by column chromatography (silica gel, petroleum ether/EtOAc) to get pure 2-(arylethynyl)benzaldehyde derivatives **C**.

To a solution of alkyne **D** (1.5 equiv) in dry THF at -78 °C under a nitrogen, n-BuLi (2.5 M in hexanes, 1.5 equiv) was added slowly and stirred for 1 h at -78 °C and then a solution of 2-(arylethynyl)benzaldehyde **C** (2.0 mmol) in THF was added slowly. The resulting mixture was stirred for 1 h at room temperature. After completion of the reaction as indicated by TLC, the reaction mixture was quenched by aqueous sat. NH₄Cl solution and the organic layer was extracted with EtOAc (5 mL × 3) and dried over anhydrous Na₂SO₄. The organic layer was concentrated under reduced pressure. The obtained crude product was used directly in the next step.

 MnO_2 (10.0 equiv) was added to a solution of the alcohol derivatives **E** in DCM and stirred at room temperature overnight. After completion of the reaction as monitored by TLC, the reaction mixture was filtered through Celite and concentrated under

reduced pressure. The residue was purified by column chromatography to yield the corresponding 1,6-diyn-3-ones **1**.

The aryl-fused 1,6-diyn-3-ones **1a,1c, 1d**, **1e**, **1g**, **1h**, **1i**, **1l**, **1n**, **1o**, **1p** and **1q** are reported in the literature, and the analytical data of the synthesized compounds are in good accordance with the literature data^{1,2,3,4}.

1-(2-(phenylethynyl)phenyl)-3-(m-tolyl)prop-2-yn-1-one (**1b**). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 78%, 500.2 mg. ¹H NMR (500 MHz, CD₂Cl₂) δ 8.19-8.18 (m, 1H), 7.68-7.67 (m, 1H), 7.57-7.54 (m, 3H), 7.49-7.46 (m, 1H), 7.43-7.41 (m, 2H), 7.324-7.318 (m, 3H), 7.25-7.24 (m, 2H), 2.29 (s, 3H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 177.2, 138.6, 138.3, 134.3, 133.5, 132.5, 131.8, 131.7, 131.6, 130.1, 128.7, 128.5, 128.4, 128.1, 123.1, 122.7, 119.8, 95.1, 93.4, 88.3, 87.7, 20.8. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₄H₁₆NaO 343.1093, found 343.1094.

3-(3-fluorophenyl)-1-(2-(phenylethynyl)phenyl)prop-2-yn-1-one (1g). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 75%, 489.1 mg. ¹H NMR (600 MHz, DMSO-d₆) δ 8.29-8.27 (m, 1H), 7.77-7.72 (m, 2H), 7.66-7.65 (m, 1H), 7.64-7.61 (m, 1H), 7.58-7.57 (m, 1H), 7.55-7.53 (m, 2H), 7.53-7.50 (m, 1H), 7.45-7.39 (m, 4H). ¹³C NMR (150 MHz, DMSO-d₆) δ 175.8, 161.2 (d, J=244.1 Hz), 136.8, 133.8, 133.1, 131.5, 131.0, 130.7 (d, J=8.9 Hz), 128.9 (d, J=3.0 Hz), 128.7, 128.6, 128.2, 121.7, 121.1, 120.4 (d, J=7.9 Hz), 119.0 (d, J=23.6 Hz), 118.2 (d, J=21.2 Hz), 94.3, 90.6, 87.6, 87.2. ¹⁹F NMR (471 MHz, CDCl₃) δ-111.82. HRMS (SI) m/z: [M+Na]⁺ calcd for C₂₃H₁₃FNaO 347.0843, found 347.0847.

3-(4-bromophenyl)-1-(2-(phenylethynyl)phenyl)prop-2-yn-1-one (1j). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 82%, 629.9 mg. ¹H NMR (500 MHz, CD₂Cl₂) δ 8.17-8.15 (m, 1H), 7.68-7.67 (m, 1H), 7.58-7.54 (m, 3H), 7.51-7.45 (m, 5H), 7.33-7.32 (m, 3H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 176.5, 137.6, 133.91, 133.90, 132.2, 131.5, 131.3, 131.1, 128.3, 128.0, 127.7, 125.0, 122.6, 122.4, 118.7, 94.8, 91.1, 88.2, 87.7. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₃H₁₃BrNaO 407.0042, found 407.0043.

1-(2-((3-methoxyphenyl)ethynyl)phenyl)-3-phenylprop-2-yn-1-one (1k). Light yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 58%, 393.3 mg. ¹H NMR (500 MHz, CD₂Cl₂) δ 8.20-8.18 (m, 1H), 7.69-7.67 (m, 1H), 7.63-7.62 (m, 2H), 7.58-7.55 (m, 1H), 7.50-7.43 (m, 2H), 7.38-7.35 (m, 2H), 7.24-7.21 (m, 1H), 7.16-7.15 (m, 1H), 7.07 (s, 1H), 6.89-6.88 (m, 1H), 3.73 (s, 3H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 176.7, 159.0, 137.9, 133.9, 132.6, 132.1, 131.1, 130.4, 129.0, 128.21 127.7, 123.9, 123.6, 122.2, 119.6, 115.8, 115.0, 94.6, 92.5, 87.55, 87.49, 54.8. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₄H₁₆NaO₂ 359.1043, found 359.1049.

3-phenyl-1-(2-(phenylethynyl)-5-(trifluoromethyl)phenyl)prop-2-yn-1-one (1m). Brown oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 40%, 301.7 mg. ¹H NMR (500 MHz, CDCl₃) δ 8.42 (s, 1H), 7.80-7.76 (m, 2H), 7.62-7.56 (m, 4H), 7.47-7.44 (m, 1H), 7.38-7.33 (m, 4H), 7.31-7.30 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 176.1, 138.6, 134.7, 133.2, 132.1, 131.1, 129.8 (q, J=33.3Hz), 129.2, 128.2 (q, J=3.5Hz), 128.6, 128.4, 128.2 (q, J=3.9Hz), 126.6, 123.4 (q, J=270.8Hz), 122.4, 119.8, 98.4, 94.7, 87.7, 87.1. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.92. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₄H₁₃F₃NaO 397.0811, found 397.0814.

1-(2-(phenylethynyl)phenyl)-3-(thiophen-3-yl)prop-2-yn-1-one (**1p**). Brown oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 80%, 502.1 mg. ¹H NMR (500 MHz, DMSO-d₆) 8.27-8.20 (m, 2H), 7.73-7.68 (m, 3H), 7.62-7.59 (m, 1H), 7.54-7.53 (m, 2H), 7.39-7.37 (m, 4H). ¹³C NMR (125 MHz, DMSO-d₆) δ 177.0, 138.1, 136.5, 134.7, 133.7, 132.1, 131.9, 130.6, 129.6, 129.4, 129.2, 128.3, 122.8, 122.0, 118.6, 95.2, 89.5, 88.7, 88.2. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₁H₁₂NaOS 397.0811, found 397.0814.

3-phenyl-1-(2-(prop-1-yn-1-yl)phenyl)prop-2-yn-1-one (**1r**). Brown oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 50:1); yield: 50%, 270.4 mg. ¹H NMR (600 MHz, CDCl₃) 8.10 (d, J=7.8 Hz, 1H), 7.65 (d, J=8.4 Hz, 2H), 7.54-7.53 (m, 1H), 7.49-7.45 (m, 2H), 7.41-7.39 (m, 3H), 2.07 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 177.8, 138.4, 134.5, 133.0, 132.3, 131.1, 130.6, 128.6, 127.3, 123.8, 120.3, 93.1, 92.8, 88.1, 78.2, 4.9. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₈H₁₂NaO 267.0780, found 267.0788.

3. Reference

(1) N. T. Patil, N. K. Pahadi, and Y. Yamamoto, Silver(I)-Catalyzed Novel Cascade Cyclization Reactions: Incorporation of Allenes into the Isochromenes. *J. Org. Chem.*, 2005, **70**, 10096-10098.

(2) M. Mandal, S. Sakthivel, and R. Balamurugan, Brønsted/Lewis Acid-Promoted Site-Selective Intramolecular Cycloisomerizations of Aryl-Fused 1,6-Diyn-3-ones for Diversity-Oriented Synthesis of Benzo-Fused Fluorenes and Fluorenones and Naphthyl Ketones. *J. Org. Chem.*, 2021, **86**, 333-351.

(3) T. Ponpandian, S. Muthusubramanian, S. Rajagopal, Sequential [3 + 2] Cycloaddition/Air Oxidation Reactions: Triazoloyl Ion Assisted Oxidative Cleavage of Alkynes. *Eur. J. Org. Chem.*, 2013, 3974-3977.

(4) F. Ye, M. Haddad, V. Michelet and V. Ratovelomanana-Vidal, Access toward fluorenone derivatives through solvent-free ruthenium trichloride mediated [2 + 2 + 2] cycloadditions, *Org. Lett.*, 2016, **18**, 5612–5615.

4. Synthesis of 3

To a solution of corresponding aryl-fused 1,6-diyn-3-ones **1** (0.2 mmol, 61.2 mg) in DMSO (2.0 mL), β -diketones **2** (0.4 mmol, 2.0 equiv, 60 μ L) and K₂CO₃ (0.4 mmol, 2.0 equiv, 55.3 mg) were added and stirred under N₂ at room temperature. After 1.5 h, I₂ (0.4 mmol, 2.0 equiv, 101.5 mg) was added and stirred for 1 h. After the completion of the reaction monitored by TLC, the reaction mixture was quenched with aqueous sat. Na₂S₂O₃ solution (2 mL). Then the filtrate was extracted with ethyl acetate (3 mL × 3). The organic layers were combined, washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by column chromatography with petroleum ether/ethyl acetate = 10:1 as the eluent to afford **3a-3v**.

Ethyl (*E*)-1'-(*iodo*(*phenyl*)*methylene*)-3',7-*dioxo*-2-*phenyl*-1',3'*dihydrospiro*[*cycloheptane*-1,2'-*inden*]-2-*ene*-3-*carboxylate* (3a). Light yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 91%, 107.5 mg, m.p. 206-208 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.33 (d, *J* = 8.5 Hz, 1H), 7.68 (t, *J* = 7.5 Hz, 1H), 7.48-7.43 (m, 3H), 7.35-7.32 (m, 1H), 7.27-7.26 (m, 2H), 7.21-7.16 (m, 3H), 7.08-7.07 (m, 3H), 3.81 (q, *J* = 7.0 Hz, 2H), 3.72-3.66 (m, 1H), 2.23 (t, *J* = 7.5 Hz, 1H), 2.03-1.95 (m, 1H), 1.68-1.59 (m, 1H), 1.55-1.52 (m, 1H), 0.82 (t, *J* = 7.5 Hz, 3H), 0.48-0.41 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 203.6, 195.3, 169.9, 149.0, 146.2, 139.3, 139.2, 138.3, 138.2, 135.3, 134.6, 130.1, 129.0, 128.4, 128.3, 128.2, 127.7, 127.5, 124.9, 124.7, 97.9, 83.4, 60.3, 37.1, 26.2, 24.0, 13.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₁H₂₅INaO₄ 611.0690, found 611.0692.

Ethyl (*E*)-1'-(*iodo(phenyl)methylene)-3'*,7-*dioxo-2-(m-tolyl)-1'*,3'*dihydrospiro[cycloheptane-1,2'-inden]-2-ene-3-carboxylate* (**3b**). Light yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 85%, 102.3 mg, m.p. 150-152 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.32 (d, *J* = 8.0 Hz, 1H), 7.68 (t, *J* = 8.0 Hz, 1H), 7.49-7.42 (m, 3H), 7.36-7.33 (m, 1H), 7.27-7.26 (m, 2H), 7.19-7.16 (m, 1H), 7.02-6.94 (m, 3H), 6.88-6.86 (m, 1H), 3.81 (q, *J* = 10.0 Hz, 2H), 3.74-3.69 (m, 1H), 2.24-2.20 (m, 1H), 2.17 (s, 3H), 2.03-1.95 (m, 1H), 1.65-1.63 (m, 1H), 1.55-1.52 (m, 1H), 0.84 (t, *J* = 7.5 Hz, 3H), 0.49-0.42 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 203.8, 195.2, 170.0, 149.1, 146.2, 139.6, 139.3, 138.2, 137.9, 137.1, 135.4, 134.5, 130.0, 128.5, 128.3, 128.2, 127.6, 125.8, 124.9, 124.8, 97.9, 83.4, 60.3, 37.2, 26.2, 24.0, 21.2, 13.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₂H₂₇INaO₄ 625.0846, found 625.0853.

Ethyl (*E*)-1'-(*iodo(phenyl)methylene)-3'*,7-*dioxo-2-(p-tolyl)-1'*,3'*dihydrospiro[cycloheptane-1,2'-inden]-2-ene-3-carboxylate* (3c). Light yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 84%, 101.5 mg, m.p. 120-122 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.33 (d, *J* = 8.5 Hz, 1H), 7.69 (t, *J* = 8.5 Hz, 1H), 7.50-7.48 (m, 1H), 7.43-7.42 (m, 2H), 7.37-7.34 (m, 1H), 7.28-7.26 (m, 2H), 7.18-7.15 (m, 1H), 7.09-7.08 (m, 2H), 6.90-6.88 (m, 2H), 3.82 (q, *J* = 10.0 Hz, 2H), 3.75-3.69 (m, 1H), 3.23-3.19 (m, 1H), 2.17 (s, 3H), 2.04-1.94 (m, 1H), 1.68-1.67 (m, 1H), 1.52-1.47 (m, 1H), 0.87 (t, *J* = 7.0 Hz, 3H), 0.48-0.41 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 203.8, 195.3, 170.0, 149.1, 146.2, 139.5, 139.3, 138.0, 137.2, 135.44, 135.40, 134.5, 130.0, 128.8, 128.5, 128.3, 128.2, 125.0, 124.8, 97.9, 83.6, 60.3, 37.0, 26.1, 24.2, 21.0, 13.6. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₂H₂₇INaO₄ 625.0846, found 625.0853.

Ethyl (*E*)-1'-(*iodo(phenyl)methylene)-2-(3-methoxyphenyl)-3'*,7-*dioxo-1'*,3'*dihydrospiro[cycloheptane-1,2'-inden]-2-ene-3-carboxylate* (3d). Light yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 93%, 115.0 mg. ¹H NMR (500 MHz, CDCl₃) δ 9.34 (d, *J* = 8.5 Hz, 1H), 7.70 (t, *J* = 7.5 Hz, 1H), 7.51-7.49 (m, 1H), 7.44-7.42 (m, 2H), 7.38-7.35 (m, 1H), 7.28-7.26 (m, 2H), 7.19-7.16 (m, 1H), 7.00-6.98 (m, 1H), 6.82-6.78 (m, 2H), 6.64-6.62 (m, 1H), 3.83 (q, *J* = 9.5 Hz, 2H), 3.78-3.71 (m, 1H), 3.64 (s, 3H), 2.24-2.20 (m, 1H), 2.04-1.95 (m, 1H), 1.67-1.65 (m, 1H), 1.53-1.49 (m, 1H),0.88 (t, *J* = 7.0 Hz, 3H), 0.47-0.40 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 203.6, 195.0, 169.9, 158.8, 149.0, 146.1, 139.64, 139.63, 138.9, 138.2, 135.4, 134.6, 130.2, 128.8, 128.3, 128.2, 124.9, 124.8, 121.8, 114.3, 113.3, 97.8, 83.4, 60.3, 55.3, 36.9, 26.1, 24.1, 13.6. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₂H₂₇INaO₅ 641.0795, found 641.0797.

Ethyl (*E*)-1'-(*iodo(phenyl)methylene)-2-(4-methoxyphenyl)-3',7-dioxo-1',3'dihydrospiro[cycloheptane-1,2'-inden]-2-ene-3-carboxylate* (3e). Light yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 88%, 108.5 mg, m.p. 214-216 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.33 (d, *J* = 8.5 Hz, 1H), 7.70 (t, *J* = 5.5 Hz, 1H), 7.50-7.49 (m, 1H), 7.43-7.41 (m, 2H), 7.37-7.34 (m, 1H), 7.28-7.26 (m, 2H), 7.19-7.16 (m, 1H), 7.13-7.11 (m, 2H), 6.63-6.61 (m, 2H), 3.84 (q, *J* = 9.5 Hz, 2H), 3.77-3.72 (m, 1H), 3.66 (s, 3H), 2.23-2.19 (m, 1H), 2.02-1.93 (m, 1H), 1.65-1.61 (m, 1H), 1.53-1.49 (m, 1H), 0.90 (t, *J* = 7.0 Hz, 3H), 0.48-0.41 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 203.7, 195.4, 170.0, 158.8, 149.0, 146.2, 139.5, 138.7, 138.2, 135.4, 134.6, 130.7, 130.2, 130.1, 128.4, 128.3, 128.2, 124.9, 124.8, 113.1, 97.8, 83.5, 60.3, 55.0, 37.1, 26.2, 24.1, 13.7. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₂H₂₇INaO₅ 641.0795, found 641.0802.

Ethyl (*E*)-2-(4-ethylphenyl)-1'-(iodo(phenyl)methylene)-3',7-dioxo-1',3'dihydrospiro[cycloheptane-1,2'-inden]-2-ene-3-carboxylate (3f). Light yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 85%, 105.0 mg, m.p. 146-148 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.32 (d, *J* = 8.0 Hz, 1H), 7.68 (t, *J* = 8.5 Hz, 1H), 7.49-7.47 (m, 1H), 7.43-7.42 (m, 2H), 7.36-7.33 (m, 1H), 7.26-7.25 (m, 2H), 7.18-7.15 (m, 1H), 7.12-7.10 (m, 2H), 6.92-6.80 (m, 2H), 3.81 (q, *J* = 9.5 Hz, 2H), 3.75-3.69 (m, 1H), 3.46 (q, *J* = 7.5 Hz, 2H), 3.23-3.19 (m, 1H), 3.01-2.95 (m, 1H), 2.65-2.63 (m, 1H), 2.54-2.49 (m, 1H), 1.08 (t, *J* = 7.5 Hz, 3H), 0.82 (t, *J* = 7.0 Hz, 3H), 0.49-0.42 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 203.8, 195.3, 170.1, 149.1, 146.2, 143.5, 139.5, 139.3, 138.0, 135.7, 135.4, 134.5, 130.0, 128.9, 128.3, 128.2, 127.2, 125.0, 124.8, 97.8, 83.5, 60.2, 37.0, 28.3, 26.2, 24.1, 15.3 13.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₃H₂₉INaO₄ 639.1003, found 639.1007.

Ethyl (*E*)-2-(3-fluorophenyl)-1'-(iodo(phenyl)methylene)-3',7-dioxo-1',3'dihydrospiro[cycloheptane-1,2'-inden]-2-ene-3-carboxylate (3g). Light yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 88%, 106.3 mg, m.p. 162-164 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.34 (d, *J* = 8.0 Hz, 1H), 7.72 (t, *J* =7.0 Hz, 1H), 7.51-7.50 (m, 1H), 7.41-7.36 (m, 3H), 7.27-7.26 (m, 2H), 7.20-7.17 (m, 1H), 7.09-7.05 (m, 1H), 7.01-6.94 (m, 2H), 6.81-6.78 (m, 1H), 3.90-3.84 (m, 1H), 3.77 (q, *J* = 9.5 Hz, 2H), 2.26-2.21 (m, 1H), 2.03-1.95 (m, 1H), 1.68-1.63 (m, 1H), 1.55-1.51 (m, 1H), 0.89 (t, *J* = 7.0 Hz, 3H), 0.48-0.41 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 203.2, 195.1, 169.5, 162.0 (d, *J* = 245.0 Hz), 149.0, 146.1, 140.4 (d, *J* = 245.0 Hz), 139.2, 138.9, 137.9 (d, *J* = 1.9 Hz), 135.2, 134.8, 130.3, 129.3 (d, *J* = 8.3 Hz), 128.4, 128.3, 125.1, 125.0, 124.8, 116.2 (d, *J* = 22.9 Hz), 114.5 (d, *J* = 20.9 Hz), 98.1, 83.3, 60.5, 37.0, 26.2, 24.0, 13.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -113.07. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₁H₂₄FINaO₄ 629.0596, found 629.0603.

Ethyl (*E*)-2-(4-fluorophenyl)-1'-(iodo(phenyl)methylene)-3',7-dioxo-1',3'dihydrospiro[cycloheptane-1,2'-inden]-2-ene-3-carboxylate (3h). Light yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 85%, 102.8 mg, m.p. 223-225 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.35 (d, *J* = 8.0 Hz, 1H), 7.73 (t, J = 7.0 Hz, 1H), 7.53-7.51 (m, 1H), 7.44-7.38 (m, 3H), 7.30-7.28 (m, 2H), 7.22-7.19 (m, 3H), 6.83-6.80 (m, 2H), 3.84 (q, J = 9.5 Hz, 2H), 3.80-3.73 (m, 1H), 2.28-2.24 (m, 1H), 2.02-1.97 (m, 1H), 1.65-1.63 (m, 1H), 1.58-1.54 (m, 1H), 0.92 (t, J = 7.0 Hz, 3H), 0.49-0.42 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 203.4, 195.3, 169.7, 163.0, 162.0 (d, J = 246.0 Hz), 149.0, 146.1, 139.2, 138.8, 138.0, 135.3, 134.8, 134.2 (d, J = 3.5 Hz), 130.93, 130.87, 130.3, 128.3 (d, J = 12.9 Hz), 125.0, 124.8, 114.7 (d, J = 21.0 Hz), 98.0, 83.4, 60.4, 37.1, 26.2, 23.9, 13.7. ¹⁹F NMR (471 MHz, CDCl₃) δ -114.12. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₁H₂₄FINaO₄ 629.0596, found 629.0602.

Ethyl (*E*)-2-(4-chlorophenyl)-1'-(iodo(phenyl)methylene)-3',7-dioxo-1',3'dihydrospiro[cycloheptane-1,2'-inden]-2-ene-3-carboxylate (3i). Light yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 87%, 108.6 mg, m.p. 197-199 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.33 (d, *J* = 8.0 Hz, 1H), 7.72 (t, *J* = 7.0 Hz, 1H), 7.51-7.49 (m, 1H), 7.40-7.37 (m, 3H), 7.27-7.26 (m, 2H), 7.20-7.15 (m, 3H), 7.09-7.08 (m, 2H), 3.90-3.83 (m, 1H), 3.76 (q, *J* = 9.5 Hz, 2H), 2.24-2.21 (m, 1H), 2.02-1.94 (m, 1H), 1.67-1.62 (m, 1H), 1.55-1.50 (m, 1H), 0.92 (t, *J* = 7.0 Hz, 3H), 0.47-0.40 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 203.2, 195.2, 169.5, 148.9, 146.1, 139.2, 138.9, 138.0, 136.8, 135.2, 134.8, 133.6, 130.4, 130.3, 128.4, 128.3, 128.0, 125.0, 124.9, 98.1, 83.4, 60.5 36.9, 26.1, 24.0, 13.6. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₁H₂₄ClINaO₄ 645.0300, found 645.0309.

Ethyl (*E*)-2-(4-bromophenyl)-1'-(iodo(phenyl)methylene)-3',7-dioxo-1',3'dihydrospiro[cycloheptane-1,2'-inden]-2-ene-3-carboxylate (3j). Light yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 84%, 111.8 mg, m.p. 189-191 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.33 (d, *J* = 8.5 Hz, 1H), 7.74-7.68 (m, 1H), 7.52-7.47 (m, 1H), 7.44-7.39 (m, 3H), 7.33-7.24 (m, 4H), 7.20-7.17 (m, 1H), 7.10-7.08 (m, 2H), 3.90-3.83 (m, 1H), 3.76 (q, *J* = 9.5 Hz, 2H), 2.24-2.21 (m, 1H), 2.01-1.93 (m, 1H), 1.67-1.64 (m, 1H), 1.54-1.49 (m, 1H), 0.90 (t, *J* = 7.0 Hz, 3H), 0.47-0.40 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 203.2, 195.2, 169.5, 149.0, 146.1, 139.2, 138.9, 138.1, 137.4, 135.2, 134.9, 131.0, 130.7, 130.3, 128.4, 128.3, 127.7, 125.1, 125.0, 121.9, 98.1, 83.4, 60.5, 36.9, 26.2, 24.0, 13.6. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₁H₂₄BrINaO₄ 688.9795, found 688.9801.

Ethyl (*E*)-1'-(*iodo*(3-*methoxyphenyl*)*methylene*)-3',7-*dioxo*-2-*phenyl*-1',3'*dihydrospiro*[*cycloheptane*-1,2'-*inden*]-2-*ene*-3-*carboxylate* (3k). Light yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 92%, 114.0 mg, m.p. 126-128 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.31 (d, *J* = 8.4 Hz, 1H), 7.69 (t, *J* = 7.2 Hz, 1H), 7.48-7.47 (m, 1H), 7.36-7.33 (m, 1H), 7.19-7.18 (m, 3H), 7.09-7.06 (m, 3H), 7.03-7.02 (m, 1H), 6.95 (s, 1H), 6.75-6.74 (m, 1H), 3.82 (q, *J* = 9.6 Hz, 2H), 3.77 (s, 3H), 3.74-3.72 (m, 1H), 2.27-2.24 (m, 1H), 2.05-1.99 (m, 1H), 1.72-1.67 (m, 1H), 1.65-1.61 (m, 1H), 0.81 (t, *J* = 7.2 Hz, 3H), 0.69-0.64 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 203.8, 195.3, 169.9, 159.0, 149.1, 147.3 139.4, 138.4, 138.0, 135.4, 134.6, 130.1, 129.1, 127.7, 127.5, 125.0, 124.8, 114.8, 97.6, 83.5, 60.3, 54.4, 37.3, 26.3, 24.2, 13.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₂H₂₇INaO₅ 641.0795, found 641.0803.

Ethyl (*E*)-1'-((4-chlorophenyl)iodomethylene)-3',7-dioxo-2-phenyl-1',3'dihydrospiro[cycloheptane-1,2'-inden]-2-ene-3-carboxylate (31). Light yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 82%, 101.7 mg. ¹H NMR (500 MHz, CDCl₃) δ 9.30 (d, *J* = 8.5 Hz, 1H), 7.69 (t, *J* = 7.0 Hz, 1H), 7.48-7.46 (m, 1H), 7.39-7.33 (m, 3H), 7.27-7.25 (m, 2H), 7.19-7.17 (m, 2H), 7.09-7.07 (m, 3H), 3.85 (q, *J* = 9.5 Hz, 2H), 3.76-3.69 (m, 1H), 2.27-2.23 (m, 1H), 2.09-2.00 (m, 1H), 1.72-1.63 (m, 2H), 0.84 (t, *J* = 7.5 Hz, 3H), 0.56-0.49 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 203.5, 194.9, 169.7, 148.7, 144.5, 140.0, 139.2, 138.14, 138.07, 135.3, 134.6, 134.2, 130.3, 130.1, 128.9, 128.3, 127.8, 127.6, 124.9, 124.8, 95.9, 83.4, 60.4, 36.9, 26.2, 24.1, 13.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₁H₂₄ClINaO4 645.0300, found 645.0306.

Ethyl (*E*)-2-(3-fluorophenyl)-1'-(iodo(phenyl)methylene)-3',7-dioxo-1',3'dihydrospiro[cycloheptane-1,2'-inden]-2-ene-3-carboxylate (3m). Light yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 97%, 126.0 mg, m.p. 190-192 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.48 (d, *J* = 8.5 Hz, 1H), 7.91 (d, *J* = 8.5 Hz, 1H), 7.73 (s, 1H), 7.43-7.42 (m, 2H), 7.29-7.26 (m, 2H), 7.22-7.19 (m, 3H), 7.11-7.10 (m, 3H), 3.82 (q, *J* = 9.5 Hz, 2H), 3.75-3.67 (m, 1H), 2.25-2.21 (m, 1H), 2.04-1.96 (m, 1H), 1.64-1.63 (m, 1H), 1.57-1.54 (m, 1H), 0.83 (t, *J* = 7.0 Hz, 3H), 0.50-0.43 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 203.0, 194.5, 169.7, 151.6, 145.8, 138.8, 138.6, 138.5, 138.1, 135.5, 132.2 (q, 33.6 Hz), 130.9 (q, 3.6 Hz), 129.0, 128.6, 128.3, 127.9, 127.8, 125.6, 123.1 (q, 270.0 Hz), 121.8 (q, 4.1 Hz), 101.2, 83.8, 60.4, 37.0 26.2, 23.9, 13.5. ¹⁹F NMR (471 MHz, CDCl₃) δ -63.03. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₂H₂₄F₃INaO₄ 679.0564, found 679.0565.

Ethyl (*E*)-3'-(*iodo(phenyl)methylene*)-5'-*methoxy*-1',7-*dioxo*-2-*phenyl*-1',3'*dihydrospiro[cycloheptane*-1,2'-*inden]*-2-*ene*-3-*carboxylate* (3n). Light yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 84%, 104.2 mg, m.p. 178-180 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.81 (d, *J* = 2.5 Hz, 1H),7.44-7.40 (m, 3H), 7.28-7.26 (m, 2H), 7.22-7.16 (m, 3H), 7.12-7.08 (m, 3H), 6.91-6.89 (m, 1H), 3.94 (s, 3H), 3.83 (q, *J* = 9.5 Hz, 2H), 3.72-3.66 (m, 1H), 2.25-2.21 (m, 1H), 2.02-1.94 (m, 1H), 1.65-1.62 (m, 1H), 1.53-1.48 (m, 1H), 0.83 (t, *J* = 7.0 Hz, 3H), 0.45-0.38 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 204.2, 193.0, 169.9, 164.9, 151.3, 146.2, 139.4, 139.1, 138.4, 138.1, 129.0, 128.8, 128.3, 128.2, 127.7, 127.5, 126.4, 118.5, 108.1, 98.2, 83.6, 60.3, 55.9 37.1, 26.1, 24.1, 13.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₂H₂₇INaO₅ 641.0795, found 641.0798.

Ethyl (*E*)-1'-(*iodo(phenyl)methylene*)-2-(*naphthalen-2-yl*)-3',7-dioxo-1',3'dihydrospiro[cycloheptane-1,2'-inden]-2-ene-3-carboxylate (30). Light yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 93%, 119.1 mg. ¹H NMR (500 MHz, CDCl₃) δ 9.31 (d, *J* = 8.5 Hz, 1H), 7.70-7.26 (m, 4H), 7.59-7.57 (m, 1H), 7.50-7.48 (m, 2H), 7.38-7.36 (m, 4H), 7.26-7.24 (m, 3H), 7.21-7.18 (m, 1H), 3.87 (q, *J* = 10.0 Hz, 1H), 3.79-3.72 (m, 1H), 3.63-3.56 (m, 1H), 2.28-2.24 (m, 1H), 2.08-2.00 (m, 1H), 1.71-1.67 (m, 1H), 1.59-1.55 (m, 1H), 0.65 (t, *J* = 7.0 Hz, 3H), 0.55-0.48 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 203.7, 195.2, 169.9, 149.1, 146.2, 139.7, 139.2, 138.8, 136.0, 135.3, 134.6, 132.7, 132.4, 130.1, 128.4, 128.3, 128.2, 127.30, 127.27, 127.1, 126.0, 125.9, 125.0, 124.9, 98.0, 83.7, 60.3, 37.0, 26.3, 24.2, 13.4. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₅H₂₇INaO₄ 661.0846, found 661.0857.

3р

Ethyl (*E*)-1'-(*iodo(phenyl)methylene)-3'*,7-*dioxo-2-(thiophen-3-yl)-1'*,3'*dihydrospiro[cycloheptane-1,2'-inden]-2-ene-3-carboxylate* (**3p**). Light yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 77%, 91.5 mg, m.p. 218-220 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.31 (d, *J* = 8.4 Hz, 1H), 7.72 (d, *J* = 7.8 Hz, 1H), 7.55-7.54 (m, 1H), 7.41-7.38 (m, 3H), 7.28-7.26 (m, 2H), 7.19-7.17 (m, 1H), 7.04 (s, 1H), 6.91 (s, 1H), 3.93-3.88 (m, 1H), 3.77 (q, *J* = 10.0 Hz, 2H), 2.21-2.18 (m, 1H), 2.00-1.93 (m, 1H), 1.63-1.55 (m, 2H), 0.96 (t, *J* = 7.2 Hz, 3H), 0.57-0.51 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 203.5, 195.3, 169.9, 149.1, 145.9, 139.7, 138.3, 138.0, 135.4, 134.6, 134.4, 130.2, 128.7, 128.4, 128.3, 125.0, 124.8, 124.6, 123.7, 97.8, 83.4, 60.5, 37.1, 26.5, 23.6, 13.7. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₉H₂₃INaO₄S 617.0254, found 617.0264.

Methyl (*E*)-1'-(*iodo(phenyl)methylene)-3'*, 7-*dioxo-2-phenyl-1'*, 3'*dihydrospiro[cycloheptane-1,2'-inden]-2-ene-3-carboxylate* (**3q**). Light yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 87%, 99.5 mg, m.p. 197-199 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.33 (d, *J* = 8.5 Hz, 1H), 7.68 (t, *J* = 10.0 Hz, 1H), 7.47-7.42 (m, 3H), 7.35-7.32 (m, 1H), 7.27-7.26 (m, 2H), 7.20-7.19 (m, 3H), 7.10-7.06 (m, 3H), 3.81 (q, *J* = 9.5 Hz, 1H), 3.30 (s, 3H), 2.25-2.21 (m, 1H), 2.03-1.94 (m, 1H), 1.65-1.63 (m, 1H), 1.54-1.50 (m, 1H), 0.48-0.41 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 203.5, 195.2, 170.2, 149.0, 146.1, 139.6, 139.3, 138.2, 138.0, 135.3, 134.6, 130.1, 128.8, 128.3, 128.2, 127.8, 127.6, 124.9, 124.7, 98.0 83.3, 51.3, 37.1, 26.1, 24.0. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₀H₂₃INaO₄ 597.0533, found 597.0541.

(E)-1'-(iodo(phenyl)methylene)-3',7-dioxo-2-phenyl-1',3'-

dihydrospiro[cycloheptane-1,2'-inden]-2-ene-3-carbonitrile (**3r**). Light yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 84%, 91.2 mg, m.p. 251-253 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.32 (d, *J* = 8.5 Hz, 1H), 7.72 (t, *J* = 7.5 Hz, 1H), 7.51-7.49 (m, 1H), 7.40-7.34 (m, 7H), 7.26-7.25 (m, 1H), 7.22-7.21 (m, 3H), 3.69 (q, *J* = 10.0 Hz, 1H), 2.28-2.24 (m, 1H), 1.95-1.92 (m, 1H), 1.66-1.64 (m, 2H), 0.69-0.62 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 202.0, 194.1, 153.6, 148.9, 145.9, 138.6, 136.8, 135.0, 134.9, 130.4, 129.2, 128.84, 128.82, 128.6, 128.5, 125.2, 125.0, 119.0, 118.6, 98.1, 83.4, 36.6, 27.4, 23.0. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₉H₂₀INNaO₂ 564.0431, found 564.0440.

(*E*)-3-acetyl-1'-(iodo(phenyl)methylene)-2-phenylspiro[cycloheptane-1,2'-inden]-2ene-3',7(1'H)-dione (3s). Light yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 84%, 94.2 mg, m.p. 200-202 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.34 (d, *J* = 8.0 Hz, 1H), 7.70 (t, *J* = 8.5 Hz, 1H), 7.49-7.44 (m, 3H), 7.37-7.34 (m, 1H), 7.32-7.28 (m, 2H), 7.22-7.20 (m, 3H), 7.13-7.12 (m, 3H), 3.82 (q, *J* = 10.0 Hz, 1H), 2.25-2.21 (m, 1H), 2.02-1.98 (m, 1H), 1.76-1.70 (m, 1H), 1.61 (s, 3H), 1.41-1.38 (m, 1H), 0.49-0.42 (m, 1H).¹³C NMR (125 MHz, CDCl₃) δ 206.3, 203.9, 195.3, 149.1, 146.6, 146.3, 139.7, 137.6, 136.6, 135.3, 134.6, 130.2, 129.6, 128.5, 128.3, 128.2, 125.1, 124.8, 97.5, 83.8, 36.9, 29.9, 26.1, 24.8. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₀H₂₃INaO₃ 581.0584, found 581.0580.

Ethyl (*E*)-1'-(chloro(phenyl)methylene)-3',7-dioxo-2-phenyl-1',3'dihydrospiro[cycloheptane-1,2'-inden]-2-ene-3-carboxylate (3t). Light yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 81%, 80.1 mg. ¹H NMR (500 MHz, CDCl₃) 7.56-7.51 (m, 3H), 7.36-7.33 (m, 6H), 7.19-7.12 (m, 5H), 3.83 (q, J = 7.0 Hz, 2H), 3.27-3.22 (m, 1H), 3.10-3.05 (m, 1H), 2.75-2.70 (m, 1H), 2.55-2.50 (m, 1H), 2.27-2.19 (m, 2H), 0.79 (q, J = 7.0 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ 201.5, 195.5, 169.1, 141.7, 138.4, 137.3, 136.2, 133.5, 131.8, 130.5, 129.8, 128.5, 128.4, 128.2, 128.0, 127.7, 126.4, 122.9, 122.0, 93.4, 87.0, 84.6, 60.8, 36.7, 27.1, 24.7, 13.4. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₁H₂₅ClNaO₄ 519.1334, found 519.1342.

Ethyl (*E*)-2-butyl-1'-(iodo(phenyl)methylene)-3',7-dioxo-1',3'dihydrospiro[cycloheptane-1,2'-inden]-2-ene-3-carboxylate (3u). Light yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 83%, 94.3 mg. ¹H NMR (600 MHz, CDCl₃) 9.36 (d, J = 8.4 Hz, 1H), 7.83-7.80 (m, 2H), 7.56-7.53 (m, 1H), 7.27-7.23 (m, 4H), 7.17-7.14 (m, 1H), 4.20-4.11 (m, 2H), 3.57-3.52 (m, 1H), 2.42-3.37 (m, 1H), 2.10-2.07 (m, 1H), 1.86-1.80 (m, 1H), 1.67-1.64 (m, 1H), 1.56-1.52 (m, 1H), 1.42-1.38 (m, 1H), 1.34-1.26 (m, 4H), 1.12-1.05 (m, 2H), 0.71 (q, J= 7.2 Hz, 3H), 0.57-0.51(m, 1H).¹³C NMR (150 MHz, CDCl₃) δ 204.5, 196.3, 169.5, 149.7, 146.0, 141.4, 139.6, 135.8, 134.9, 134.2, 130.3, 128.2, 128.1, 125.4, 124.9, 97.6, 85.4, 60.4, 36.7, 32.6, 32.5, 26.5, 23.6, 23.4, 14.1, 13.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₉H₂₉INaO₄ 591.1003, found 591.1013.

Ethyl (E)-1'-(1-iodoethylidene)-3',7-dioxo-2-phenyl-1',3'dihydrospiro[cycloheptane-1,2'-inden]-2-ene-3-carboxylate (3v). Light yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 74%, 77.6 mg. ¹H NMR (600 MHz, CDCl₃) 8.98 (d, *J* = 7.8 Hz, 1H), 7.62-7.61 (m, 1H), 7.58-7.55 (m, 1H), 7.34-7.31 (m, 1H), 7.03-6.99 (m, 3H), 6.92-6.91 (m, 2H), 3.75 (q, J = 7.2 Hz, 2H), 3.71-3.66 (m, 1H), 2.94 (s, 3H), 2.81-2.77 (m, 1H), 2.69-2.65 (m, 1H), 2.61-2.55 (m, 1H), 2.53-2.47 (m, 1H), 2.15-2.10 (m, 1H), 0.75 (q, J = 7.2 Hz, 3H).¹³C NMR (150 MHz, CDCl₃) δ 202.6, 196.4, 170.1, 149.4, 138.5, 138.3, 138.2, 137.7, 135.6, 134.6, 129.3, 129.2, 127.5, 127.2, 124.5, 124.2, 97.5, 82.9, 60.7, 39.5, 36.9, 29.6, 22.9, 13.4. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₆H₂₃INaO₄ 549.0533, found 549.0536.

5. 1.0 mmol scale reaction for the preparation of 3a

In a schlenk tube, aryl-fused 1,6-diyn-3-one **1a** (1.0 mmol, 306.4 mg), ethyl 2oxocyclohexanecarboxylate **2a** (2.0 mmol, 2.0 equiv, 300 μ L), K₂CO₃ (2.0 mmol, 2.0 equiv, 276.4 mg) and DMSO (10.0 mL) were stirred under N₂ at room temperature. After 1.5 h, I₂ (2.0 mmol, 2.0 equiv, 507.6 mg) was added and stirred for 1 h. After the completion of the reaction monitored by TLC, the reaction mixture was quenched with aqueous sat. Na₂S₂O₃ solution (5 mL). Then the filtrate was extracted with ethyl acetate (5 mL × 3). The organic layers were combined, washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by column chromatography with petroleum ether/ethyl acetate = 10:1 as the eluent to afford **3a** (Light yellow solid, 529.8 mg, 90%).

6. Synthetic transformation of compound 3a

In a schlenk tube, **3a** (0.2 mmol, 117.8 mg), Pd(PPh₃)₂Cl₂ (0.006 mmol, 3 mol%, 4.5 mg), CuI (0.006 mmol, 3 mol%, 1.7 mg) and NEt₃ (2 mL) were added under N_2 at room temperature. Then 1-ethynyl-3-methylbenzene 4 (0.3 mmol, 0.15 equiv, 39 µL) was added dropwise and the mixture was stirred at 50 °C in an oil bath for 9 h. After the completion of the reaction monitored by TLC, the reaction mixture was quenched with aqueous sat. NH₄Cl solution (2 mL). Then the filtrate was extracted with ethyl acetate (3 mL \times 3). The organic layers were combined, washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by column chromatography with petroleum ether/ethyl acetate = 15:1 as the eluent to afford **7** (Yellow oil, 97.7 mg, 85%). ¹H NMR (500 MHz, CDCl₃) δ 9.18 (d, J = 6.5 Hz, 1H), δ 7.65 (d, J = 7.0 Hz, 1H), 7.54-7.53 (m, 2H), 7.47-7.45 (m, 1H), 7.32-7.25 (m, 7H), 7.24-7.22 (m, 2H), 7.18-7.17 (m, 1H), 7.07-7.06 (m, 3H), 3.87 (q, J = 10.0 Hz, 2H). 3.74-3.67 (m, 1H), 2.35 (s, 3H), 2.29-2.26 (m, 1H), 2.07-1.99 (m, 1H), 1.74-1.69 (m, 1H), 1.56-1.52 (m, 1H), 0.83 (q, J = 7.5 Hz, 3H), 0.54-0.47 (m, 1H).¹³C NMR (125) MHz,CDCl₃) δ 204.0, 196.2, 170.0, 149.7, 139.8, 139.7, 138.7, 138.4, 138.2, 137.7, 135.5, 132.0, 129.8, 129.6, 129.5, 128.9, 128.6, 128.4, 127.9, 127.6, 127.4, 125.2, 124.4, 124.1, 122.8, 101.1, 91.5, 81.3, 60.3, 37.2, 25.9, 24.5, 21.2, 13.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₄₀H₃₂NaO₄ 599.2193, found 599.2198.

In a schlenk tube, **3a** (0.2 mmol, 117.8 mg), (4-methoxyphenyl)boronic acid **5** (0.4 mmol, 2.0 equiv, 60.8 mg), Pd(PPh₃)₄ (0.01 mmol, 5 mol%, 11.6 mg),Cs₂CO₃ (0.6 mmol, 3.0 equiv, 195.5 mg) and THF (2 mL) were added under N₂ and stirred at 60 °C in an oil bath for 1 h. After the completion of the reaction monitored by TLC, the reaction mixture was quenched with aqueous sat. NH₄Cl solution (2 mL). Then the filtrate was extracted with ethyl acetate (3 mL × 3). The organic layers were combined, washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by column chromatography with petroleum ether/ethyl acetate = 10:1 as the eluent to afford **8** (Yellow oil, 97.8 mg, 86%).¹H NMR (500 MHz, CDCl₃) δ 7.43-7.33 (m, 6H), 7.29-7.24 (m, 3H), 7.20-7.06 (m, 6H), 6.94-6.89 (m, 2H),

6.69-6.67 (m, 1H), 3.91 (q, J = 11.5 Hz, 1H), 3.83 (s, 3H), 3.75-3.67 (m, 2H), 2.30-2.26 (m, 1H), 2.06-1.99 (m, 1H), 1.78-1.70 (m, 1H), 1.62-1.57 (m, 1H), 0.82 (q, J = 7.5 Hz, 3H), 0.71-0.64 (m, 1H).¹³C NMR (125 MHz, CDCl₃) δ 204.9, 197.3, 170.1, 159.4, 151.2, 145.0, 142.0, 140.2, 138.8, 137.4, 135.9, 134.60 134.5, 132.8, 130.4, 129.3, 129.2, 128.3, 128.1, 127.5, 127.4, 125.9, 124.3, 114.7, 114.6, 82.2, 60.2, 55.2, 37.3, 25.8, 24.5, 13.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₈H₃₂NaO₅ 591.2142, found 519.2149.

In a schlenk tube, **3a** (0.2 mmol, 117.8 mg), 4-methylbenzenethiol **6** (0.24 mmol, 1.2 equiv, 30.2 mg), CuI (0.02 mmol, 10 mol%, 4.3 mg), NEt₃ (0.4 mmol, 2.0 equiv, 60 µL) and dioxane (2 mL) were added under N₂ and stirred at 100 °C in an oil bath for 15 h. After the completion of the reaction monitored by TLC, the reaction mixture was quenched with aqueous sat. NH₄Cl solution (2 mL). Then the filtrate was extracted with ethyl acetate (3 mL \times 3). The organic layers were combined, washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by column chromatography with petroleum ether/ethyl acetate = 20:1 as the eluent to afford **9** (Yellow oil, 68.1 mg, 58%). ¹H NMR (500 MHz, CDCl₃) δ 9.11 (d, J = 8.0 Hz, 1H), 7.63 (t, J = 8.5 Hz, 1H), 7.47-7.46 (m, 1H), 7.26-7.21 (m, 4H), 7.15-7.05 (m, 8H), 6.972-6.966 (m, 3H), 3.89-3.85 (m, 1H), 3.82-3.78 (m, 1H), 3.72-3.65 (m, 1H), 2.24 (s, 3H), 2.22-2.20 (m, 1H), 2.00-1.92 (m, 1H), 1.62-1.61 (m, 1H), 1.46-1.42 (m, 1H), 0.82 (q, J = 7.0 Hz, 3H), 0.40-0.33 (m, 1H).¹³C NMR (125 MHz,CDCl₃) δ 204.6, 196.9, 170.0, 150.0, 142.3, 139.9, 138.6, 137.4, 137.1, 135.4, 135.3, 134.5, 131.4, 130.8, 129.2, 129.1, 128.4, 127.7, 127.6, 127.5, 127.43, 127.35, 127.24, 127.23, 124.6, 82.7, 60.2, 37.2, 25.8, 24.2, 21.1, 13.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₈H₃₂NaO₄S 607.1914, found 607.1920.

7. Mechanistic study

In a schlenk tube, aryl-fused 1,6-diyn-3-one **1a** (0.2 mmol, 61.2 mg), ethyl 2oxocyclohexanecarboxylate **2a** (0.4 mmol, 2.0 equiv, 60 μ L), K₂CO₃ (0.4 mmol, 2.0 equiv, 55.3 mg) and DMSO (2.0 mL) were stirred under N₂ at room temperature. After 1.5 h, I₂ (0.4 mmol, 2.0 equiv, 101.5 mg) and butylated hydroxytoluene (BHT) (0.4 mmol, 2.0 equiv, 88.1 mg) were added and stirred for 1 h. After the completion of the reaction monitored by TLC, the reaction mixture was quenched with aqueous sat. Na₂S₂O₃ solution (2 mL). Then the filtrate was extracted with ethyl acetate (3 mL × 3). The organic layers were combined, washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by column chromatography with petroleum ether/ethyl acetate = 10:1 as the eluent to afford **3a** (Light yellow solid, 104.9 mg, 89%) (equation.1).

In a schlenk tube, aryl-fused 1,6-diyn-3-one **1a** (0.5 mmol, 154.1 mg), ethyl 2oxocyclohexanecarboxylate **2a** (1.0 mmol, 2.0 equiv, 150 μ L), K₂CO₃ (1.0 mmol, 2.0 equiv, 138.2 mg) and DMSO (5.0 mL) were stirred under N₂ at room temperature for 1.5 h. After the completion of the reaction monitored by TLC, the reaction mixture was quenched with H₂O (2 mL). Then the filtrate was extracted with ethyl acetate (3 mL × 3). The organic layers were combined, washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by column chromatography with petroleum ether/ethyl acetate = 10:1 as the eluent to afford **1aa** (Light yellow oil, 206.2 mg, 89%) (equation.2). **1aa**: ¹H NMR (500 MHz, CDCl₃) δ 17.1 (s, 1H), 7.52-7.50 (m, 2H), 7.36-7.35 (m, 3H), 7.21-7.19 (m, 1H), 7.11-7.08 (m, 1H), 6.99-6.88 (m, 4H), 6.78-6.72 (m, 3H), 3.86 (d, *J* = 7.0 Hz, 2H), 2.84-2.49 (m, 4H), 2.27-2.23 (m, 2H), 0.80 (t, *J* = 7.0 Hz, 3H).¹³C NMR (125 MHz,CDCl₃) δ 197.2, 190.7, 170.1, 144.1, 140.7, 139.1, 132.1, 131.6, 131.5, 129.0, 128.4, 128.3, 128.1, 127.4, 127.1, 127.0, 126.9, 123.1, 120.6, 114.7, 93.1, 87.0, 60.4, 35.6, 31.1, 28.9, 13.4. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₁H₂₆NaO₄ 485.1723, found 485.1723.

In a schlenk tube, **1aa** (0.2 mmol, 92.4 mg), K₂CO₃ (0.4 mmol, 2.0 equiv, 55.3 mg), I₂ (0.4 mmol, 2.0 equiv, 101.5 mg) and DMSO (2.0 mL) were stirred under N₂ at room temperature for 1.0 h, After the completion of the reaction monitored by TLC, the reaction mixture was quenched with aqueous sat. Na₂S₂O₃ solution (2 mL). Then the filtrate was extracted with ethyl acetate (3 mL \times 3). The organic layers were combined, washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by column chromatography with petroleum ether/ethyl acetate = 10:1 as the eluent to afford **3a** (Light yellow solid, 112.8 mg, 96%) (equation.3).

8. NMR Copies of all the Synthesized New Starting Materials

40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -5 f1 (ppm)

¹H NMR (600 MHz, DMSO-d₆) $\begin{array}{c} 8.285\\ 7.754\\ 7.754\\ 7.754\\ 7.754\\ 7.754\\ 7.754\\ 7.755\\ 7.755\\ 7.659\\ 7.659\\ 7.653\\ 7.653\\ 7.663\\ 7.663\\ 7.663\\ 7.663\\ 7.663\\ 7.663\\ 7.653\\ 7.653\\ 7.673\\ 7.556\\ 7.553\\ 7.$ 0 1g 7.8 8.4 8.2 8.0 7.6 7.4 7.2 f1 (ppm) 2.11 1.00 1.00 2.00 1.00 4.00 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0 f1 (ppm) ¹³C NMR (150 MHz, DMSO-d₆) 162.033 160.406 136.787 133.878 133.076 133.533 133.075 131.533 130.775 130.775 130.775 130.775 130.775 128.655 130.776 128.655 130.776 128.655 132.749 121.749 133.755 39.279 39.749 39.749 39.749 39.749 39.749 39.775 39.749 33.275 33.275 33.275 33.275 175.845 136.787 133.818 133.076 133.076 131.533 131.533 131.533 130.716 130.716 130.716 130.716 130.716 131.533 130.716 128.565 132.655 132.655 132.655 132.655 132.655 132.655 132.655 132.655 132.655 132.749 122.120 122.655 122.655 122.655 122.655 122.655 122.655 122.655 122.655 122.655 123.655 123.655 123.655 123.749 123.74 1g للسلل 140 135 120 130 125 115 f1 (ppm) 0 -10 -2

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR (125 MHz, CD₂Cl₂)

¹³C NMR (125 MHz, CD₂Cl₂)

¹H NMR (500 MHz, DMSO-d₆)

¹³C NMR (125 MHz, DMSO-d₆)

40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -5 f1 (ppm)

¹³C NMR (600 MHz, CDCl₃)

9. Copies of spectra of products

¹³C NMR (125 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

f1 (ppm)

¹³C NMR (125 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

f1 (ppm)

¹³C NMR (125 MHz, CDCl₃)

^{40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -5} f1 (ppm)

¹³C NMR (125 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -5 f1 (ppm)

1 H NMR (600 MHz, CDCl₃)

9.318 9.304 7.671 7.567 7.567 7.567 7.567 7.567 7.187 7.178 7.187 7.1187

¹³C NMR (150 MHz, CDCl₃)

S45

9.310 9.293 7.569 7.5675 7.5675 7.5675 7.5675 7.5675 7.338 7.5675 7.338 7.7.573 7.7.333 7.7.338 7.7.333 7.7.333 7.7.333 7.7.348 7.7.333 7.7.175 7.7.333 7.7.175 7.7.333 7.7.175 7.7.333 7.7.175 7.7.333 7.7.175 7.7.333 7.7.175 7.7.333 7.7.175 7.7.333 7.7.175 7.7.333 7.7.175 7.7.115 7.7.17

¹³C NMR (125 MHz, CDCl₃)

S46

9.491 9.474 9.472 7.285 7.285 7.285 7.218 7.218 7.218 7.217

¹³C NMR (125 MHz, CDCl₃)

 $f_{122,252}^{128,19} = \frac{1}{122,252} + \frac{1}{$

8.8.11 8.8.11 7.2.423 7.2.423 8.806 7.2.423 7.2.423 7.2.423 7.2.423 7.2.423 7.2.423 7.2.423 7.2.17 7.2.235 7.2.103 7.114 7.2.217 7.2.217 7.2.217 7.2.217 7.2.213 7.114 7.2.217 7.2.1103 7.2.1103 7.2.114 7.2.114 7.2.114 7.2.114 7.2.1103 7.2.1103 7.114 7.114 7.114 7.114 7.114 7.114 7.114 7.114 7.1103 7.114 7.114 7.114 7.114 7.114 7.1103 7.1103

¹³C NMR (125 MHz, CDCl₃)

1 H NMR (500 MHz, CDCl₃)

S52

1 H NMR (500 MHz, CDCl₃)

0.000

¹³C NMR (150 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

1 H NMR (500 MHz, CDCl₃)

7.425 7.409 7.3399 7.3350 7.3350 7.3350 7.3350 7.3350 7.3351 7.35517 7.35517 7.3

¹³C NMR (125 MHz, CDCl₃)

10. X-ray crystallography of compound 3a.

Ethyl (*E*)-1'-(*iodo*(*phenyl*)*methylene*)-3',7-*dioxo*-2-*phenyl*-1',3'-*dihydrospiro*[*cycloheptane*-1,2'*inden*]-2-*ene*-3-*carboxylate* (3a)

(Ortep ellipsoids are depicted at the 50% level)

3a

Table S1. Crystal data and structure refinement for 3a.

Identification code	3 a
Empirical formula	C ₃₁ H ₂₅ IO ₄
Formula weight	588.41
Temperature	213(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Pca 21
Unit cell dimensions	$a = 17.4166(4) \text{ Å}, \alpha = 90^{\circ}.$
	$b = 10.3859(3) \text{ Å}, \beta = 90^{\circ}.$
	$c = 27.8098(8) \text{ Å}, \gamma = 90^{\circ}.$
Volume	5030.4(2) Å ³
Z	8
Density (calculated)	1.554 Mg/m3
Absorption coefficient	1.309 mm ⁻¹
F(000)	2368
Crystal size	0.160× 0.130 ×0.090 mm ³
Theta range for data collection	1.961 to 25.996°.
Index ranges	-21<=h<=21, -12<=k<=12, -34<=l<=34
Reflections collected	67394
Independent reflections	9844 [R(int) = 0.0569]
Completeness to theta = 25.242°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.5728
Data / restraints / parameters	9844 / 1 / 651
Goodness-of-fit on F ²	1.035
Final R indices [I>2sigma(I)]	$R_1 = 0.0335, wR_2 = 0.0750$
R indices (all data)	$R_1 = 0.0434, wR_2 = 0.0799$
Extinction coefficient	n/a
Largest diff. peak and hole	1.535 and -0.764 e.Å ⁻³

